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Abstract 16	

One of the greatest attributes of metal halide perovskite solar cells is their surprisingly 17	

low loss in potential between bandgap and open-circuit voltage, despite the fact that they suffer 18	

from a non-negligible density of sub gap defect states. Here, we use a combination of transient 19	

and steady state photocurrent and absorption spectroscopy to show that CH3NH3PbI3 films 20	

exhibit a broad distribution of electron traps. We show that the trapped electrons recombine with 21	

free holes unexpectedly slowly, on microsecond time scales, relaxing the limit on obtainable 22	

Open-Circuit Voltage (Voc) under trap-mediated recombination conditions. We find that the 23	

observed VOCs in such perovskite solar cells can only be rationalized by considering the slow 24	

trap mediated recombination mechanism identified in this work. Our results suggest that existing 25	

processing routes may be good enough to enable open circuit voltages approaching 1.3 V in ideal 26	

devices with perfect contacts.  27	



Introduction 28	

Metal halide perovskite solar cells owe their rapid rise to power conversion efficiencies 29	

over 22 %1,2 to several key properties. They benefit from their low exciton binding energies3,4, 30	

high ambipolar mobilities5–7, high absorption cross-sections8, and long carrier lifetimes9–11. 31	

These properties have allowed this class of materials to function effectively as not just 32	

photovoltaic devices, but also as light emitting diodes (LEDs) and optically pumped lasers12–14. 33	

Still, the materials are known to suffer from a significant density of sub gap states that should 34	

induce non-negligible recombination losses10,11,15,16. Extensive time resolved photoluminescence 35	

and terahertz spectroscopy on the most commonly employed CH3NH3PbI3 perovskite has shown 36	

that at solar fluences, the photo-carrier dynamics are limited by a monomolecular trapping 37	

process while the radiative bimolecular recombination process is surprisingly slow and hence 38	

only dominates at high excitation densities7,10,11,17. While it is accepted that carrier trapping plays 39	

a dominant role in perovskite photo-carrier dynamics at solar fluences, the nature of the traps and 40	

the recombination pathway has remained unexplored.  41	

Generally, carrier trapping into deep subgap states is considered to lead to rapid non-42	

radiative recombination which severely limits the quasi-Fermi level splitting of the materials, 43	

and hence photovoltage of the solar cells. This follows the Shockley Reed Hall (SRH) 44	

framework, where recombination occurs through a state within the forbidden band of the 45	

semiconductor. SRH behavior can be categorized by two distinct regimes where the 46	

semiconductor is either doped or closer to intrinsic. In a highly doped semiconductor, trapping 47	

into a sub gap state leads to immediate annihilation by the many excess carriers of the opposite 48	

charge, while trapping into such a state does not necessarily lead to immediate recombination in 49	

a lightly or undoped material. The SRH model has generally been applied to highly doped silicon 50	



solar cells where trapping results in immediate recombination and hence the trapping lifetime of 51	

the minority carrier becomes the most relevant parameter18. Indeed, SRH recombination has been 52	

generally proposed to dominate in lead halide semiconductors7,11,18,19 Despite evidence that the 53	

perovskite layers are generally only lightly doped, past work has primarily assumed that the 54	

recombination rate of the trapped electron or hole is the same as the trapping rate, and hence the 55	

trapping lifetime has been used to estimate both electron and hole diffusion lengths6,7,20. With the 56	

reported sub-gap trap densities of around 1016 cm-3 and an effective trapping lifetime of about 57	

100 ns10,11, rapid trap mediated recombination would result in a severe limitation in attainable 58	

photovoltages of perovskite solar cells. Still, this relatively new technology boasts voltages 59	

already approaching 1.2 V21,22, which is remarkably high for a semiconductor with a bandgap of 60	

only 1.6 eV. In the limit where all recombination is due to radiative band-to-band recombination 61	

the material should be able to achieve ideal VOCs around 1.3 V23, not much higher than what has 62	

been already experimentally obtained. This suggests that the subgap states, thought to be almost 63	

unavoidable in a solution processed and low-temperature crystallized material, may not form 64	

highly detrimental recombination centers.  Previous photoconductivity measurements led us to 65	

suggest that the carrier trapping process leads to a photodoping effect, which implies a long lived 66	

trapped species and associated long lived free carrier species15. Such slow trap mediated 67	

recombination would allow for far greater fermi level splitting and VOCs compared to rapid trap 68	

mediated recombination where the trapped carriers recombine almost instantaneously with free 69	

carriers. Still, such a phenomenon has hitherto remained unexplored within the field of 70	

perovskite solar cells. While several photophysical models have been developed to explain 71	

photoluminescence decays7,10,11, none have been extended to consider the recombination 72	

lifetimes of the trapped charge even though this may be one of the most relevant parameters to 73	



consider when it comes to determining how detrimental a given density of trap sites might be to 74	

the total recombination flux, quasi fermi level splitting, and photovoltage in solar cells. Some 75	

important questions that remain to be addressed can be summarized as follows: 1) do the 76	

predominant defects act as electron or hole traps? 2) what is their energetic distribution? 3) how 77	

rapid is trap mediated recombination? 4) how does the effective carrier lifetime affect the 78	

theoretically obtainable VOCs of perovskite solar cells? 79	

 In this work, we directly monitor trapped electron – free hole recombination kinetics in 80	

metal halide perovskite films for the first time, establishing that CH3NH3PbI3 suffers from a 81	

significant and broad density of sub gap electron traps. Surprisingly, after an initial fast electron 82	

trapping process (100 ns lifetime), the trapped electrons slowly recombine with free holes on 83	

tens of µs timescales, thus deviating significantly from the expected rapid trap mediated 84	

recombination pathway. This results in a situation where most of the traps are filled at solar 85	

fluences allowing the solar cells to obtain improved photovoltages.  86	

We finally address the implications to the theoretically obtainable VOCs in perovskite 87	

solar cells by using simple Fermi-Dirac statistics.  If we account for the slow trapped charge 88	

recombination and associated trap filling we estimate maximum obtainable VOCs close to 1.3V, 89	

about 150 mV higher than that expected for rapid trap mediated recombination — clearly more 90	

consistent with the experimental results21,22. These findings shed light on the high photovoltages 91	

achieved for this system despite the inevitable presence of significant trap densities inherent in 92	

solution processed semiconductors.  93	

Results and Discussion 94	

1. Nature and energetic distribution of trap sites 95	



In order to firstly measure the trap energy distribution, we performed Fourier transform 96	

photocurrent spectroscopy on a perovskite layer with two lateral ohmic contacts, which serves as 97	

a photoresistor. Any photocurrent collected upon sub gap excitation directly implies the presence 98	

of sub gap sites, and so this measurement allows us to obtain the energetic distribution of such 99	

states.  100	

The sample structure is shown in Figure 1a, and the normalized photocurrent spectrum is 101	

shown in Figure 1b.  We used a gold/perovskite/gold structure (the perovskite deposition 102	

method for all measurements except where otherwise noted is the PbCl2 derived perovskite) 103	

which guarantees an ohmic response limited by the semiconductor layer rather than the contacts 104	

(see Figure S1)24,25, applying a bias of 10 V over a channel of 4 mm. Since the device functions 105	

as a planar photodetector with symmetric contacts, we only require the presence of one free 106	

carrier to measure any photocurrent under external applied bias15. This allows us to detect 107	

transitions that result in only one free carrier, such as a direct valence band to trap level 108	

transition. Consistent with previous reports of low Urbach energies we observe a sharp band 109	

edge onset in the photocurrent corresponding to an Urbach energy of 25 meV26 (Fig. 1), but also 110	

observe an additional broad tail with a distinct slope in the photocurrent extending from the band 111	

edge to the instrument limitation at almost 1.1 eV. This is direct evidence for the presence of a 112	

broad distribution of trap states down to at least 0.5 eV from either the valence or conduction 113	

band edge. Previous theoretical studies have focused on identifying distinct types of defects with 114	

discrete energy levels, with the most recent work suggesting that iodide interstitials are likely to 115	

manifest themselves as relatively deep electron traps27–29. The shape of our subgap photocurrent 116	

spectrum is not completely coherent with this scenario. It seems possible that the broad 117	

distribution of subgap states could be due to an inhomogeneity in crystallinity and perhaps 118	



stoichiometry on the nano-to-micro scale, or even to the presence of multidimensional defects 119	

which have not yet been well studied.	120	

a) 	 b)	  121	

c)  d)	  122	

Figure 1. (a) Schematic of the symmetric laterally contacted device held under 10 V applied bias. (b) 123	

Normalized photocurrent spectral response of the device at an applied bias of 10 V. the device is 124	

encapsulated with an inert PMAA layer. (c) Photocurrent (10 V) as a function of intensity of an above gap 125	

(690 nm) excitation for devices covered by a hole accepting Spiro-OMeTAD, an electron accepting 126	

PCBM, or an inert PMMA layer. (d) Photocurrent (10 V) of the same devices as a function of fluence of a 127	

sub gap (850 nm) excitation. We point out that the fluence denoted in 1d is not equivalent to an absorbed 128	

fluence; the absorption cross-section at 850 nm is unknown and may be different for the different 129	

samples. 130	



 131	

Having established that our material is suffering from the presence of a broad distribution 132	

of sub gap trap sites, we aim to determine whether this distribution is associated with electron or 133	

hole trapping, or both. Here, we measure the photocurrent from the same device architecture 134	

shown in Fig 1.a upon monochromatic excitation both above and below gap. We compare   the 135	

pristine  perovskite covered by a thin layer of  inert PMMA with one covered by a thin hole 136	

accepting (spiro-OMeTAD, referred to as Spiro), or electron accepting layer (PCBM)5. The 137	

perovskite is directly excited and the vast majority of the detected current comes from the 138	

carriers in the perovskite layer only (see supplemental discussion S1)15. We point out that the 139	

photocurrent measured here is proportional to the carrier densities and their mobilities. Under 140	

steady state illumination, the carrier density is determined by the carrier lifetime. This can be 141	

formally represented by Equation 130: 142	

 143	

𝐼 ∝ 𝑞 𝑛 ∙ 𝜇! + 𝑝 ∙ 𝜇! =  𝑞(𝐺 ∙ 𝜏! ∙ 𝜇! + 𝐺 ∙ 𝜏! ∙ 𝜇!)     Eq. 1 144	

 145	

where I is the photocurrent, q is the elemental charge, n and p the electron and hole densities 146	

respectively, µ the carrier mobilities, G the generation rate, and τ the effective carrier lifetimes at 147	

the relevant conditions. Considering that PCBM and Spiro have been previously demonstrated to 148	

be effective electron and hole acceptors5, reducing PL by over 90 %, it is fair to consider only 149	

hole densities and mobilities within the perovskite in presence of the PCBM acceptor and only 150	

electron densities and mobilities in presence of the Spiro acceptor. The results obtained upon 151	

above gap excitation are displayed in Figure 1c. The steady state photocurrent in samples with 152	

PCBM electron accepting layers is higher than that of samples with an inert top layer. This is 153	



expected, since electron transfer to PCBM will result in a longer lived free hole population in the 154	

perovskite. Lifetime will be associated with the recombination rate between a hole in the 155	

perovskite and an electron in the PCBM layer. Such lifetimes have been found to be on the order 156	

of 1-10 µs via transient photovoltage measurements for recombination at both the perovskite-157	

PCBM and perovskite-Spiro interfaces31. Surprisingly, the samples with the Spiro hole acceptor 158	

exhibit orders of magnitude lower photocurrent even than the neat samples, despite the fact that 159	

they should also exhibit enhanced lifetimes associated with slow recombination across the 160	

perovskite-Spiro interface (electrons in perovskite with holes in Spiro). This leads us to conclude 161	

that either the electron mobility is orders of magnitude lower than the hole mobility, or that 162	

electrons are predominantly trapped. Since the effective masses for electrons and holes has been 163	

repeatedly shown to be roughly the same3,32,33, we believe that our results indicate that electrons 164	

are trapped and hence suffer from a low effective long range mobility.  165	

So far, the results suggest that the material suffers from a significant and broad density of 166	

sub gap electron traps, which limit the effective long-range electron mobility. To relate the 167	

photo-current response upon sub gap excitation observed in Figure 1b to the behavior in Figure 168	

1c, we excite the samples with a sub gap excitation source (850 nm laser) and monitor the 169	

photocurrent. The results are plotted in Figure 1d, and show that sub gap excitation leads to little 170	

to no detectable photocurrent (over three orders of magnitude lower than the neat samples) when 171	

a hole acceptor is placed on top of the samples. On the other hand, the presence of an electron 172	

acceptor has a similar effect as with above gap illumination. This allows us to claim that deep 173	

electron traps are present, which can be directly populated by excitation from the valence band to 174	

yield trapped electrons and free holes. The free holes can be collected as photocurrent in neat 175	

samples, but no photocurrent is collected in samples with the Spiro hole acceptor simply because 176	



there are only trapped electrons left in the film. The proposed mechanism is displayed in Scheme 177	

1. It is worth noting that upon sub-gap excitation, in principle, one would expect the same photo-178	

current for PCBM and PMMA contacted thin films. Nevertheless in Figure 1d we can notice a 179	

small deviation. We speculate that this may be due to a different chemical interaction between 180	

the interfaced materials which may cause the density, nature, distribution, and lifetime of trapped 181	

electrons to be different.  182	

 183	

	  184	

 185	

Scheme 1. Schematic illustration of carrier dynamics upon above and below gap excitation when the 186	

perovsktie is contacted by electron (PCBM) and hole (Spiro-MeOTAD) accepting layers. 187	

Note that in Figure 1c, the sublinear behavior for the electron-accepting sample suggests 188	

that recombination across the perovskite-PCBM interface has a charge density dependence, 189	

while this is not observed for the perovskite-Spiro interface. This is well in agreement with the 190	

scenario where free electrons in the PCBM and free holes in the perovskite recombine in the first 191	

case, while free holes in the spiro will recombine with localized, trapped electrons in the 192	

perovskite in the second case.  193	

2) Trap mediated recombination lifetimes and mechanism 194	



In an effort to directly monitor the trapped electron lifetimes, we performed transient 195	

photocurrent measurements on the same samples used for the steady state photocurrent 196	

measurements, this time using a pulsed excitation analogous to that used in transient PL 197	

measurements rather than a steady state excitation. This measurement allows us to monitor the 198	

transient photoconductivity of the perovskite layer with various charge quenching layers, and 199	

thus directly probe the free carrier population as a function of time after excitation. Monitoring 200	

the photoconductivity rather than the photoluminescence means that we are not limited by the 201	

presence of radiative recombination but can monitor any free carrier. We start by performing an 202	

above gap fluence dependence with non-quenching samples (Figure 2a). At early times (< 1 µs) 203	

the decays become steeper  for higher excitation densities as previously observed via 204	

photoluminescence spectroscopy when moving from monomolecular to bimolecular 205	

recombination regimes. Interestingly, we also observe an extremely slow component in the 206	

photoconductivity traces that makes up an increasingly large fraction of the decay as the 207	

excitation density is reduced. This component has not generally been observed in transient 208	

photoluminescence data we and others7,10,11,20,34 have ever recorded for CH3NH3PbI3 (see Figure 209	

S2), which means that whichever mobile photoexcited species is still present on these long time 210	

scales cannot relax radiatively. It is reminiscent, however, of some of the slow decays observed 211	

when measuring transient voltage decays35. Notably this slow component, which appears to 212	

decrease in decay rate over time, makes up less than 10 % of the total decay upon high excitation 213	

(1017 cm-3) but approximately 50 % of the total decay upon low (1015 cm-3) excitation. Since the 214	

signal is directly proportional to the photoconductivity and hence carrier density, its relative 215	

magnitude is used as a proxy for carrier density. 216	



We performed the same measurements (at ‘low’ 1015 cm-3 excitation density) for a 217	

sample with the hole layer (Figure 2b). It shows an extremely rapid decay in the photocurrent 218	

and do not show any observable slow tail, unlike for the case of the PMMA and PCBM (see 219	

Figures S2 and S3) covered samples. This decay is consistent with rapid hole transfer to the 220	

Spiro5, leaving only electrons in the material, which clearly do not contribute to any photocurrent 221	

on time scales > 10s of ns. As evidenced by both these and the steady state photocurrent 222	

measurements in Figure 1, it is evident that the electrons do not contribute to any significant 223	

photocurrent, at least for long-range transport. This is direct proof that electrons are 224	

predominantly being trapped in the CH3NH3PbI3 perovskite with ~100 ns monomolecular 225	

lifetimes.  226	

We can now explain the fluence dependent transient photocurrent kinetics for the neat 227	

samples shown in Figure 2a. As the excitation density approaches the trap density, the slow 228	

component takes up an increasingly large fraction of the decay.  At low excitation densities, most 229	

of the generated electrons are trapped on 100s of ns timescales as has been previously reported 230	

for these materials and as we show here (see fits in Figure S4), and free holes are left behind 231	

until they recombine with the trapped electrons. These holes are responsible for the remaining 232	

slowly decaying photocurrent. The fact that the slow component of the decay takes up a large 233	

fraction of the decay only once initial densities of 1015 cm-3 are used means that the trap density 234	

lies somewhere between 1015-1016 cm-3, similar to what we have previously found from 235	

photoluminescence decays in these materials10,11. While a rapid trap mediated recombination 236	

model would suggest that once the electrons are trapped, they should recombine at a similar rate 237	

with free holes, our data shows that this recombination process is actually extremely slow and 238	

takes place via a density dependent process that can be as slow as many microseconds. This is 239	



more akin to the situation in materials such as ZnO or TiO2 where holes can be trapped at 240	

surfaces for long times of up to seconds, leaving free electrons36,37. This is known as a 241	

“photodoping” effect, which is what we propose to be happening in our perovskite thin films. 242	

Since the material is ionic and defects are expected to be charged27,38,39, a filled trap is likely to 243	

be neutral and hence relatively unlikely to lead to rapid recombination.  244	

a)	 b)	  245	

Figure 2. (a) Transient photocurrent (20 V) of a device upon 690 nm excitation at three different 246	

excitation densities. The device is covered with just an inert PMMA layer. (b) Transient photocurrent (20 247	

V) traces for devices with the hole accepting Spiro and the inert PMMA layers, measured at 690 nm at 248	

1015 cm-3 excitation densities. 249	

If such an effect is observable via the photoconductivity across thin films, it should also 250	

be observable in transient absorption kinetics. Indeed, since the long lived photoconductivity in 251	

neat samples and samples with PCBM electron acceptor represents the presence of a long lived 252	

free hole population, this should be observable as a bleach at the perovskite band edge due to 253	

state filling in the valance band40. We therefore performed transient absorption studies on neat 254	

films and films with PCBM and Spiro accepting layers. We display transient absorption decays 255	

probed at the peak of the band edge bleach at 750 nm in Figure 3. The high initial excitation 256	

density (necessary to detect the small long lived signal) results in rapid initial decay, 257	



corresponding to bimolecular recombination in the PMMA coated samples and to a combination 258	

of bimolecular recombination and charge transfer for the Spiro and PCBM coated samples. Still, 259	

by measuring the decay to longer time scales than have been previously reported, we find that 260	

the transient absorption decays closely mimic the transient photocurrent decays, exhibiting a 261	

significant long-lived free carrier population only in presence of PMMA and PCBM, which we 262	

can now assign to remnant free holes in the valence band. Of course, this implies that hole 263	

diffusion lengths in perovskite films are likely to be much longer than electron diffusion lengths.  264	

 265	

Figure 3. Transient absorption decay probed at 750 nm for sample coated with PMMA, PCBM, and 266	

Spiro. The excitation wavelength was 532 nm at 1018 cm-3 initial excitation density. A zoomed in version 267	

of the long living tails is plotted on a linear scale in Figure S5. 268	

The fact that recombination of the trapped electrons with free holes is extremely slow has 269	

significant implications to perovskite solar cells. Since the balance between the generation and 270	

recombination rates of trapped carriers determines their depopulation, the slower the 271	

depopulation rate, the lower the illumination intensity required to fill all the trap states at steady 272	

state. This effect would in principle increase the expected VOC value at a fixed density of trap 273	



states, since the total non-radiative recombination rate will be lower, enabling operation closer to 274	

the radiative limit.  275	

To further quantify steady state trap filling, we have taken films formed via different 276	

preparation routes and hence likely with different trapping rates and densities, and studied the 277	

illumination intensity at which the traps are primarily filled. To accomplish this, we monitor the 278	

photocurrent contribution from a modulated sub-gap excitation (850 nm) as a function of a 279	

steady-state above-gap excitation (650 nm). We modulate only the 850 nm laser and use a lock-280	

in amplifier to detect the photocurrent signal from this modulation. Based on the discussion 281	

above, we expect to observe a point at which the above gap excitation background has filled 282	

most of the trap sites, and the subgap contribution should shrink. The background fluence at 283	

which the subgap contribution becomes less than it was in the absence of any above gap 284	

excitation background gives an idea of the illumination intensity required to fill the traps at 285	

steady state and achieve optimum fermi level splitting. 286	

We have chosen to use three MAPbI3 preparation routes which we have previously 287	

optimized to provide efficient devices: the PbCl2 derived perovskite, the Pb(Ac)2 derived 288	

perovskite41, and the Pb(Ac)2 perovskite treated with hypophosphorous acid (HPA)42. These 289	

routes provide a wide range of crystal sizes (see SEM images in Figure S6), with the Pb(Ac)2 290	

route giving the smallest small crystals, HPA-treated Pb(Ac)2 increasing the crystal size 291	

somewhat, and the PbCl2 route having the largest crystals42,43. 292	

We show the measurements of subgap photocurrent in Figure 4, where the HPA treated 293	

sample demonstrates significant trap filling at 1.7 x 1017 cm-2 s-1, but the non HPA treated 294	

Pb(Ac)2 derived film demonstrates a less significant trap filling at equivalent fluences. 295	

Interestingly, the PbCl2 derived perovskite gives evidence for the most quick trap state filling, 296	



with the IR photocurrent contribution diminishing at a fluence of 2 x 1016 cm-2 s-1. Again, this is 297	

established by the above gap excitation fluence at which the IR photocurrent is rapidly declining 298	

and drops below what it was in the absence of any above gap excitation.  299	

The results indicate that of the three perovskite routes, the PbCl2 route may be the most 300	

favorable in terms of achieving a material with low trap densities. However, it has been 301	

notoriously difficult to obtain films with 100 % coverage of the substrate44, resulting in pinholes 302	

and losses in open circuit voltages. This has led to the use of the Pb(Ac)2 derived perovskite, 303	

which forms into extremely smooth and continuous films. However, this appears now to come at 304	

the price of a slightly increased trap density. This points to traps being localized predominantly 305	

on the surface of crystals, since this route attains smaller grains sizes42,43. The HPA treatment 306	

still allows for the formation of smooth and continuous films, but clearly seems to decrease the 307	

trap density and result in a material in which most of the traps are filled, consistent with a slight 308	

increase in grain size (though not to the extent of the PbCl2 films).  309	

	  310	



 311	

Figure 4. The subgap photocurrent contribution is monitored as a function of above gap light excitation 312	

fluence for devices coated with PMMA. The perovskite films are derived from the Pb(Ac)2 route (with 313	

and without HPA treatment) and PbCl2 routes. The sub gap contribution is distinguished by modulating 314	

the 850 nm and using a lock in amplifier to detect only this signal. The dashed lines represent the sub gap 315	

photocurrent contribution in the absence of any above gap photoexcitation bias. The solid lines are simply 316	

to guide the eye, while the data points are denoted by symbols. b) Schematic demonstrating the sub gap 317	

current generation mechanisms at low and high fluences. 318	

 The most significant behavior observed here is that the different samples exhibit very 319	

different points at which their sub gap contribution is strongly diminished, consistent with 320	

varying trapping and trapped electron – hole recombination rates. We confirm this again by 321	

plotting the transient photocurrent of Pb(Ac)2-derived perovskite films with and without HPA in 322	

Figure S7, where we find that that the HPA treatment slows the trapped electron – hole 323	

recombination rate as well as the trapping rate itself. This is  further evidence that the absolute 324	

trap density and processing route of the films affects the rate at which trapped electrons can 325	

recombine with free holes, and that not all traps behave the same. Of course, this was already 326	

expected from the broad distribution of sites exhibited in Figure 1b.  327	

Implications to VOC 328	



 We can take this analysis slightly further, and estimate the obtainable photovoltage due to 329	

the effectiveness of fermi level splitting, bearing in mind what we have learned from the 330	

measurements presented here. If the 100 ns (taken as a typical value for many of the perovskite 331	

films used throughout different laboratories)6,20,21 electron trapping process resulted in immediate 332	

recombination of the trapped electron with a free hole, the effective electron and hole lifetimes 333	

would both be 100 ns. Of course, if the trapped electron to free hole recombination rate is 334	

extremely slow then it is likely many traps can be filled at solar fluences (as is the case for the 335	

PbCl2 derived and HPA treated Pb(Ac)2 derived perovskite films), high hole densities are 336	

reached, and only the radiative bimolecular recombination rate becomes increasingly relevant. 337	

Using the simple relations shown below45, it is possible to estimate the maximum obtainable 338	

fermi level splitting and hence a rough approximation of maximum VOC for the three cases: rapid 339	

100 ns trap mediated recombination, a slow trap mediated recombination model, vs complete 340	

trap filling at 1 sun and resultantly only bimolecular recombination; 341	

𝐺 = 𝑅 𝑛,𝑝           (2) 342	

𝑅 𝑛,𝑝 !"#" =
!
!
= !

!
         (3) 343	

𝑅 𝑛,𝑝 !"#$% = 𝑛 ∙ 𝑝 ∙ 𝐵        (4) 344	

𝑉!" = 𝐸!" − 𝐸!" = 𝐸! − 𝐾𝑇 ∙ ln
!
!!,

− 𝐾𝑇 ∙ ln ( !
!!
)    (5) 345	

 346	

where G is the generation rate (based on JSC of 23 mA cm-2 and a 500 nm thick film), R(n,p) is 347	

the recombination rate of electrons and holes respectively, τ is the monomolecular recombination 348	

lifetime, B is the bimolecular recombination coefficient (9 x 10-10 cm-9 s-1), EFn and EFp are the 349	

quasi fermi levels for electrons and holes respectively, EG is the bandgap (1.6 eV), KT is the 350	

thermal energy in eV, and NC (1.9 x 1018 cm-3) and NV (2.4 x 1018 cm-3) are the effective density 351	



of states of the conduction and valence bands respectively. We calculate the effective density of 352	

states based on the reported electron and hole effective masses of approximately 0.18 and 0.21m0 353	

for electrons and holes respectively3,32. Here, we simply estimate the steady state carrier densities 354	

based on the rate equations shown above for the different cases: for the first case we assume a 355	

100 ns monomolecular lifetime for both electrons and holes, for the second case we assume a 356	

100 ns lifetime for electrons but a 10 us lifetime for holes, and for the third case we simply use 357	

the literature value for the bimolecular recombination coefficient and calculate the corresponding 358	

electron and hole densities at one sun’s worth of excitation. Once the carrier concentrations are 359	

known, we can use the calculated density of states to determine the degree of quasi fermi level 360	

splitting for each type of carrier. Table 1 shows our estimation of electron and hole densities as 361	

well as the resultant Fermi level splitting and theoretically obtainable VOCs for the two extreme 362	

cases. We also describe the situation where electron traps are not filled but the trapped electron 363	

to free hole recombination has a slow monomolecular lifetime of 10 µs (a conservative 364	

approximation based on the transient decays shown in Figure 2 and 3). 365	

Table 1. Electron (n) and hole (p) densities, corresponding fermi level splitting, and theoretical VOCs for 366	

the three different dominant recombination mechanisms described in Scheme 2.  367	

 
G (cm-3 s-1) n  (cm-3) p  (cm-3) |EC - EFn| (eV) |EV - EFp| (eV) VOC (V) 

100 ns trap 
recombination 2.9 x 1021 2.9 x 1014 2.9 x 1014 0.23 0.23 1.14 

Traps Filled- bimolecular 2.9 x 1021 5.7 x 1015 5.7 x 1015 0.15 0.16 1.30 
Long Lived Holes 2.9 x 1021 2.9 x 1014 2.9 x 1016 0.23 0.11 1.26 

 368	



	  369	

Scheme 2. The three different recombination mechanisms considered in Table 1 are schematically 370	

illustrated. 371	

This analysis makes it very clear that a rapid trap mediated recombination model with 372	

100 ns trapping and recombination lifetimes would lead to very low electron and hole densities 373	

yielding low theoretical VOCs of approximately 1.14 V, which is incompatible with the high 374	

experimental observed values of up to 1.19 V21. We note that we ignore recombination across the 375	

ETL and HTM interfaces with the perovskite, and that the values presented here are very clearly 376	

the maximum attainable values assuming ideal contacts. When we consider the results from 377	

Figure 4 which indicate that traps are starting to be filled for the PbCl2 derived material, we must 378	

consider the situation where primarily bimolecular recombination affects the carrier dynamics 379	

and densities, or at least a situation where most traps are filled and hence the behavior is more 380	

akin to the bimolecular case. The photoluminescence quantum yields of perovskite films made in 381	

this way have been reported to be 10-30 %10,13 at solar fluences, which is in line with a situation 382	

where most, but likely not all, traps are filled. In a perovskite film with traps filled, where 383	

bimolecular recombination is the dominant mechanism, it becomes possible to obtain high VOCs 384	

of approximately 1.3 V in line with the thermodynamic limit for a 1.6 eV semiconductor, and 385	

consistent with the highest reported values of 1.19 V in a real device. Considering the situation 386	

where traps are further from completely filled, like the case for the Pb(Ac)2 derived perovskite, 387	



but including the fact that trapped electrons only recombine with free holes on slow (µs) 388	

timescales, we find that it is possible to obtain high VOCs of approximately 1.26 V, still 389	

consistent with the high observed voltages even in non optimized films with significant electron 390	

trap densities. In this case, the high hole densities obtained at one sun’s worth of excitation mean 391	

that radiative recombination will start to compete with the trapping process, i.e. the extremely 392	

slow hole recombination will result in increasingly high PLQEs even at low fluences such as at 393	

one sun. We make a rough estimation of the relative contribution due to radiative recombination 394	

for the fast and slow trap mediated recombination (scenario 1 and 2 in the table) and find that 395	

this yields photoluminescence quantum yields of 0.3 and 26 %, respectively. This analysis 396	

proves that it is not possible to obtain high quantum yields nor high fermi level splitting in our 397	

perovskite materials if we simple consider100 ns trapping and recombination time constants. In 398	

fact, we now find that the reported quantum yields of 10-30% is only well explained by the fact 399	

that trapped carriers are long lived, allowing high enough carrier densities to be reached to 400	

facilitate radiative recombination even at one sun. We note that our estimations ignore any non-401	

radiative recombination due to the introduction of the selective contact layers or even other 402	

deeper traps through which recombination may be more rapid which we cannot identify here. 403	

The charge selective contacts have been shown to limit the ELQE and PLQE of perovskite 404	

devices46, and thus currently present a severe limitation on the obtainable photo voltages in solar 405	

cells. However, our results show that as the contacts continue to improve, we can expect to 406	

observe VOCs approaching 1.3 V without any need for further improvement in optoelectronic 407	

quality of the perovskite films themselves.  408	

Conclusions 409	



We have used a combination of transient and steady state photocurrent, absorption, and 410	

photoluminescence spectroscopy to study the carrier dynamics in perovskite films over long time 411	

scales. Electron trapping is a predominant decay pathway, but the trapped electrons are 412	

surprisingly long lived; they only recombine with associated free holes over the course of many 413	

microseconds. This allows most of the traps in perovskite films made with typical deposition 414	

methods to be filled at solar fluences and hence allows us to rationalize the high VOCs reported 415	

for perovskite solar cells, which exceed the limits imposed by a rapid trap mediated 416	

recombination model. We furthermore find that due to these fortuitously long lived traps, 417	

perovskite films made via existing processing routes exhibit or are close to exhibiting high 418	

enough optoelectronic quality that they should enable solar cells with VOCs approaching 1.3 V 419	

provided that non radiative decay due to contact layers can be mitigated. 420	

 421	

Experimental Section 422	

Perovskite fabrication method 423	

Glass substrates were sequentially cleaned in Helmanex soap, acetone, and isopropanol. Most of 424	

the measurements (unless otherwise noted) were performed on perovskite films made via the 425	

PbCl2 precursor method. Here, 0.8M solutions of 3:1 (by molar concentration) of 426	

methylammonium Iodide:PbCl2 in DMF were spin coated on oxygen plasma cleaned glass 427	

substrates at 2000 rpm for 45 seconds in a nitrogen filled glovebox. The substrates were allowed 428	

to dry at room temperature for 30 minutes, then annealed at 90 C for 90 minutes, followed by 429	

120 C for 20 minutes. The gold electrodes were then thermally evaporated onto the perovskite 430	

films through a shadow mask. Then polymethylmethacrylate (PMMA) (20 mg/ml) or PCBM (20 431	



mg/ml) or Spiro-OMeTAD (100 mg/ml) were spin coated on to the perovskite films at 2000 rpm 432	

for 45 seconds. 433	

For the PbAc2 derived perovskite films, 1M solutions of 3:1 MAI:PbAc2 with or without .0075M 434	

hypophosphorous acid were spin coated at 2000 rpm for 45 seconds. The films were allowed to 435	

sit at room temperature for 5 minutes, after which they were annealed at 100 C for 5 minutes. 436	

Steady State photocurrent measurements 437	

Samples were illuminated with a mechanically chopped laser source (either 650 or 850 as 438	

detailed in the main text). A power supply was used to provide a voltage bias across the devices 439	

and the current was recorded on a lock-in amplifier in current mode, set to the chopping 440	

frequency. The chopping frequency was set to 23 Hz. 441	

In the case where a visible light bias was used and only the sub gap contribution measured, a 690 442	

nm laser was continuously illuminating the samples while a mechanically chopped 850 nm laser 443	

excitation was used to detect the subgap contribution. Again, the modulated photocurrent was 444	

detected with a lock-in amplifier. In all cases the laser excitation was defocused to cover the 445	

entire area between the electrodes. The noise at the output of the lock-in used here (SR530) is  446	

0.13 𝑝𝐴 √𝐻𝑧 and with a specified bandwidth of 0.01Hz, we have a noise level of 6fA. This 447	

gives more than enough room to measure the pA signals which were the lowest reported in this 448	

work. 449	

 450	

Excitation density was estimated by assuming that 90 % of the above gap excitation was 451	

absorbed within the perovskite. The red excitation was used to ensure a fairly uniform absorption 452	

profile, and for the sake of simplicity, the total generated carriers were assumed to be uniformly 453	

distributed throughout the bulk.  454	



Transient Photocurrent Spectroscopy 455	

The same samples were excited by 1 ns laser pulses (690 nm, 1 Hz repetition rate), making sure 456	

to illuminate the entire area between the electrodes. A power supply was used to bias the sample, 457	

while the photocurrent was amplified with a trans-impedance amplifier (gain X 10,000) and then 458	

measured with an oscilloscope.  459	

To confirm that we are not simply measuring the time for carrier to be swept out by the electric 460	

field, we calculate the sweep-out time using a mobility of 20 cm2 V-1 s-1 as an upper limit. This 461	

yields a lower limit sweep out time of 8 ms, far longer than any of the events we have described 462	

above. 463	

Transient Absorption Spectroscopy 464	

Transient absorption (TA) spectroscopy was conducted using an amplified Ti:sapphire laser (100 465	

fs pulses at 800 nm) focused into a sapphire plate to generate a broadband white light probe. The 466	

frequency-doubled output of a Q-switched Nd:YVO4 laser acted as a pump (700 ps FWHM 467	

pulses at 532 nm), synchronized to the Ti:sapphire laser via a digital delay generator. This setup 468	

enables us to perform TA over pump-probe delays from one nanosecond to hundreds of 469	

microseconds, covering the timescales of both band-to-band recombination and long lived trap 470	

recombination.   471	

 472	

FTPS 473	

Fourier transform photocurrent spectroscopy was performed by using a modified FTIR setup. 474	

The excitation was focused onto the perovskite device which was biased by an external power 475	

supply. The photocurrent was amplified, recorded, and the interferogram converted to a 476	

photocurrent spectrum by a custom designed program.  477	
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