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Abstract— The efficiency of autonomous robots depends on
how well they understand their operating environment. While
most of the traditional environment models focus on the spatial
representation, long-term mobile robot operation in human
populated environments requires that the robots have a basic
model of human behaviour.

We present a framework that allows us to retrieve and
represent aggregate human behaviour in large, populated
environments on extended temporal scales. Our approach,
based on time-varying Poisson process models and spectral
analysis, efficiently retrieves long-term, re-occurring patterns
of human activity from robot-gathered observations and uses
these patterns to i) predict human activity level at particular
times and places and ii) classify locations based on their periodic
patterns of activity.

The application of our framework on real-world data, gath-
ered by a mobile robot operating in an indoor environment for
one month, indicates that its predictive capabilities outperform
other temporal modelling methods while being computationally
more efficient. The experiment also demonstrates that spectral
signatures act as features that allow us to classify room types
which semantically match with humans’ expectations.

I. INTRODUCTION

Modelling human activities is necessary to succeed in
human robot interaction and robot planning of interactions.
As a key goal of robots is interaction with human beings,
activity models should serve not only to characterize and
identify ongoing activities, it should also account for when
and where those activities are normally performed. Much
robotics research has focused heavily on how to identify
activities, leaving predicting ”when” and ”where” (i.e. spatio-
temporal context) of those activities are likely to happen to
the experts [1], [2], [3].

Inferring when activities are likely to happen is possible if
there are periodic patterns tied to each activity. Fortunately,
in human-centered environments, activities exhibit strong
rhythmic patterns (daily, weekly, etc). For example, during
term time, students normally come to class in the morning,
populate canteen areas for lunch, and leave campus before
evening. Similar periodic patterns are observable in many
types of data such as traffic on a motorway [4], and trading
on a stock exchange.

In a similar way to inferring temporal patterns of activities,
knowing where activities normally take place is possible if
there are definitions of bounded spaces in terms of their
functions. These functionalities are normally defined by
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Fig. 1: Map of the robot environment and example spectral
signatures of the selected rooms. The global map consists
of two open plan areas {1,3}, a corridor {12}, a kitchen
{5}, three single occupancy offices {2, 10, 11}, three regular
offices {4, 8, 9}, and two meeting rooms {6, 7}. Similarity
of room 8 and 9 signatures indicates that these rooms have
a similar category.

activities being performed in those places, such as offices
for working, canteens for having lunch, and kitchens for
cooking. Based on their functionality, places which serve the
same purpose quite often display the same activities. Hence,
they roughly exhibit the same periodic patterns.

In this paper, we focus on the problems of predicting
when and where activities are likely to take place, and
characterising places according to their activity patterns to
maximise human-robot interactions. We simply represent the
count of activities performed by humans in each place during
some time interval. The temporal pattern of activities is
identified by the fluctuating number of humans at particular
locations. To learn these temporal patterns in each place,
we extend a framework introduced in [5] which is based on
Bernoulli distributions.

We replace Bernoulli distributions representing the pres-
ence of humans with Poisson processes representing the
number of humans in particular places at particular times.
Bernoulli distributions, which represent data in binary states,
are not suitable for representing the level of activity since
they will limit the level of activity to being present or
absence. The level of activities provides the information
about how busy a place is, hence, leading to how interesting
a place is given particular times. Because our aim is to
maximise human robot interactions, models with Poisson
processes seem to be the better option.
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We use the proposed temporal model for two purposes.
First, the model can predict the level of human activity in a
particular space at a particular time. Second, parameters of
the model can act as spatio temporal signatures that allow
us to classify the types of individual room. To evaluate
the performance of our model in terms of its predictive
capabilities, we compare the accuracy of its predictions
with a state-of-the-art probabilistic model (Gaussian Process
Regression with periodic kernels). To verify the ability to
classify location types, we perform hierarchical clustering of
the temporal signature and compare the resulting clusters to
the real room types.

II. RELATED WORK

There has been recent interest in predicting regular pat-
terns in time series data and using these to find abnormal
ones. Several general methods are designed to deal with
time series with periodicities, from models such as AutoRe-
gressive Moving Average (ARMA) to kernel-based nonpara-
metric models such as Gaussian processes (GPs). Ihler et
al. [4], [6] described a modified Markov-modulated Poisson
processes for detecting unusual data points or segments in
time-series. The Poisson processes are used as probabilistic
models for counting regular patterns and behaviour whereas
the Markov chain is used to track the occurrence of anoma-
lous events.

Ghassemi and Deisenroth [7] proposed periodic Gaussian
processes by re-parametrising the periodic kernel in combi-
nation with a double approximation to allow analytic long
term forecasting of periodic patterns. Duvenaud et al. [8], [9]
introduced a fully automated Bayesian framework based on
Gaussian processes with self structured kernel choices, which
are built compositionally by adding and multiplying a small
number of base kernels. The framework can automatically
model any combination of high-level characteristics of time
series data, such as smoothness, periodicity and linear trends.

Our framework is derived from the Frequency Map En-
hancement (FreMEn) technique proposed by Krajnik et al.
[5] for spatio-temporal environment representations in long-
term scenarios. The FreMEn technique is based on Fourier
analysis in combination with a Bernoulli distribution to
represent the binary state of data. It has been used in
many applications, such as in occupancy grids to compress
long-term observations [10], in topological maps to improve
robotic search [11], and in path planning [12]. The technique
can be applied to all models that represent the world as a
set of independent components with binary states [13]. We
extend the technique by employing both Poisson processes
as the counting model to replace the binary states of FreMEn
and a new way of selecting the most prominent frequency
components of the Fourier spectrum.

III. DATA SET

Our dataset is a collection of human trajectories resulting
from a long term deployment of the mobile robot. The data
are from a one-month deployment in a building, using a
Metralabs Scitos A5 mobile robot equipped with a robust

human tracking algorithm which can detect humans passing
within range of its sensors [14]. Since these observations
are done by a mobile robot, most of the stored data are
incomplete. The detected human trajectories represent only
a small fraction of a person’s motion.

The partial information collected by a mobile robot is
unavoidable because a mobile robot can not fully sense its
environment. It can only perceive partial data at a particular
time and place. Moreover, the robot’s own movement, sensor
limitations, and changes in the environment also affect what
information a robot can perceive. As a result, our dataset is
a collection of chronologically clipped histories about what
the robot saw during its observation. Hence, any kind of
inference from our dataset is a challenge.

The tracking algorithm we used in our robot produced
many false positives, including table legs and chairs. To
remove false positives from our dataset, a simple filtering
method was used. This is based on the displacement pose
ratio, which means the distance between the first pose and
the last pose of the trajectory over the number of poses in the
trajectory. We did not simply remove all short trajectories,
having length less than 1m, because information regarding
where the persons usually were might be lost. We rather
chose to take trajectories with its displacement ratio as the
highest ten percent as our dataset. With this filtering, false
positives still appear, but the number of them is significantly
reduced.

Since the building where our robot was deployed is a large
area, we hand-segmented the office into semantic regions
such as offices, open plans, a kitchen and corridors. From
this process, we obtained 12 datasets, one dataset for each
semantic region, over a four-week period. The segmented
regions can be seen in the global map in Figure 1.

All collected and filtered human trajectories are used as
inputs for the Poisson model. Using Bayesian estimation,
we calculate arrival rates for many Poisson processes spread
over a month, resulting in a time series of arrival rates. The
time series is then analysed via Fourier analysis, to extract
its temporal periodic structure. This periodic structure is then
used to both predict the level of human activity in a particular
space at a particular time and to find types of places forming
sensible clusters.

IV. PROBABILISTIC COUNTING MODEL AND SPECTRAL
REPRESENTATION

Poisson Models

The appropriate probabilistic model for count data is the
Poisson distribution. The probability mass function of the
Poisson distribution is:

P (N ;λ) =
e−λλN

N !
N = 0, 1, 2, . . . (1)

where the parameter λ represents the rate, or average number
of occurrences in a fixed time interval, and N is the number
of occurrences.

Here we refer toN (ti, tj) as a measurement of the number
of individuals or objects detected over the time interval



Fig. 2: The λ time series of the corridor updated over 4 week
period.

[ti, tj) for i, j ∈ {1, . . . , T}. We thus transform our λ to
be a function of time, i.e. λ(ti, tj). Hence, (1) becomes a
non-homogeneous Poisson distribution, in which the degree
of heterogeneity depends on the function λ(ti, tj). As we
use a fixed time interval at any point in time, we define
λ(ti, ti+δ) for i ∈ {1, . . . , T} and δ ∈ N.

Working with datasets with much missing data means
we need a confidence sensitive estimate for the λ. This
can be achieved via Bayesian estimation to fully calculate
the posterior distribution. We chose a Gamma distribution
conjugate distributions for learning the Poisson parameter λ:

λ ∼ Γ(λ;α, β) (2)

The posterior distribution of λ(ti, tj) given data points
x1, . . . , xn is calculated as

P (λ|x1, . . . , xn) = Γ(λ, α+

n∑
i=1

xi, β + n) (3)

where α, β are the shape and the inverse scale parameter of
the Gamma distribution [15].

To fit the Poisson processes and provide the model with
good confidence estimate for the λ, we impose one pe-
riodicity by splitting the monthly dataset into a weekly
period. For each weekly dataset, we calculate the number
of trajectories appearing every specified time interval, i.e.,
every 10 minutes. We then update our Poisson distribution
at each time interval. As we use conjugate prior distributions,
the rate λ for each time interval is updated by updating the
Gamma distribution. The Maximum a posteriori (MAP) is
chosen to be the point estimate for each updated λ. The
point estimate for each λ throughout an entire week creates
the λ time series. This is what we refer to as the Poisson
process model. Figure 2 shows an example of how the λ
time series over a week looks after being estimated using a
four-week long dataset. The red bar at each point in Figure 2
shows the upper and lower bound of the confidence interval
of each λ.

Spectral Representation in Fourier Transform

The Fourier transform is a reversible, linear transformation
that decomposes a function of time f(t) into the frequencies

Fig. 3: A comparison between the l best amplitude model,
the l addition amplitude model, and the Poisson model (the
original non periodic model).

that make it up F (ω). The function F (ω) is commonly
referred to as the frequency spectrum of f(t).

The spectral model - We have shown how we model the
occurrence rate λ as a function of time, i.e. λ(ti, tj). Since
we have multiple regions having their own λ time series, we
assume that each region is independent to each other. Hence,
we can explain the use of the Fourier transform on aa time
series of λ for an individual region.

The Fourier transform extracts periodic patterns from λ by
calculating the frequency spectrum of λ, i.e. F (ω) = FT (λ).
In [5], l coefficients with the highest absolute value along
with their frequencies ωk(for k = 1, . . . , l) are selected. For
later reference, we call this technique the l Best Amplitude
Model (BAM). The coefficients are then used to reconstruct
the smoothed signal by means of the inverse Fourier trans-
form λ′ = IFT (F ′(ω)).

Selecting the l best coefficients is a way to filter other
frequencies, which are prone to noise, to have a smoother
reconstruction signal. However, this technique can not com-
pletely capture the magnitude of the original signal whenever
the sampling rate is significantly higher than the highest
desired frequency. In other words, the higher the ratio
between the total number of data points and the highest
observed frequency, the smaller the value of the l coefficient
with the highest absolute value. Figure 3 shows a signal
formed of 30 different periodic signals and stretched over
10000 data points and its reconstruction of l BAM. The
highest predefined signal repeats itself 109 times over the
data points. It gives the ratio between data points and the
highest signal 92.5 against 1. As a result the reconstruction
of l BAM technique has a somewhat smaller magnitude than
the original signal, even though it captures all the predefined
frequencies.

We modified the way to obtain l coefficients in [5] to tackle
the aforementioned problem by extracting multi-periodic
patterns. To obtain a Fourier spectrum of the raw data, we
find a frequency ωk with the highest absolute value, then
subtract it from the data and transform it again. Whenever we
obtain a frequency we have encountered, the absolute value
is added to the absolute value of the frequency that we have



encountered. We iterate this multiple times until we obtain
l desired coefficients. We adopted this technique from [16]
applied to get multiperiodic pulsation from observed stars.
For later reference, we call this technique the l Addition
Amplitude Model (AAM). Figure 3 shows how close the
AAM reconstruction is to the original Poisson model at each
point. This displays that the AAM captures the magnitude
of the original Poisson model much better than BAM does.

The results are stored as a set S consisting of l triples
abs(ωk), arg(ωk), and ωk which describe the amplitudes,
the phase shifts and frequencies of the spectral model. The
detailed procedure of l AAM can be seen in Algorithm 1.

Algorithm 1 l addition amplitude model (AAM)
Input: x1, . . . , xn: input signal,

total: maximum total frequency
Output: S: a collection of (abs(ωk), arg(ωk), ωk)
Procedure:

1. Init. k ← 1
// Get the frequency zero (ω1 = 0)
2. ωk ← FT (x1, . . . , xn)[0]
3. S ← [[abs(ωk), arg(ωk), ωk]]
4. Repeat until k > total
• k ← k + 1
// Get the frequency with the highest amplitude
• ωk ← FT (x1, . . . , xn)[1]
// Update S with ωk
• if ωk ∈ S, abs(S[ωk])← abs(S[ωk]) + abs(ωk)

arg(S[ωk]) = avg(arg(ωk))
else S ← S + [[abs(ωk), arg(ωk), ωk]]

// Create a cosine signal from ωk and substract
• x′1, . . . , x′n ← abs(ωk) ∗ cos(2π ∗ ωk + arg(ωk))
• x1, . . . , xn ← x1, . . . , xn − x′1, . . . , x′n

Model purposes - The l addition amplitude model serves
two purposes: reconstruction of the original λ time series,
i.e., the Poisson processes, and representing spatio-temporal
signatures for each region. Reconstructing λ time series is
done via the inverse Fourier transform, λ′ = IFT (S), where
S is a collection of significant periodic patterns of λ extracted
via the Fourier analysis.

Examining the Poisson processes and spectral analysis
associated with each region, Figure 1 shows that different
regions have similar patterns. As each set S represents the
periodic patterns occurring in each region, this enables us
to characterize regions according to the similarity of their
set S. Hence, the set S for each region can be seen as a
spatio-temporal signature for that region.

There are several feature sets which can be constructed
from the set S. Here, all frequencies ωk from each region
are put together in the descending order based on how
many regions each frequency appears in. m most common
frequencies are then selected. These frequencies ω1, . . . , ωm
are then treated as bins where the value of these bins come
from abs(ωk), or arg(ωk), or a combination of both with
k ∈ {1, . . . ,m}.

TABLE I: Comparison of the predictive accuracy of root
mean squared error (RMSE) of Poisson model, two Poisson
spectral models, and the Automatic Statistician using syn-
thetic datasets.

Method RMSE
no-noise noise

Poisson processes 101.14 unit 167.98 unit
l Addition amplitude model (AAM) 101.13 unit 161.48 unit
l Best amplitude model (BAM) 109.11 unit 165.53 unit
Automatic statistician (AS - 5 kernels) 101.57 unit 170.31 unit

V. ALGORITHM PERFORMANCE

To investigate the quality of our proposed model in
finding periodic patterns from long term observations, we
include comparisons with a model with similar capabilities.
For this comparison we choose the Automatic Statistician
(AS) framework of [8], which employs Gaussian processes.
Gaussian processes (GP) are a state-of-the-art method for
learning models from data. It has been shown that GP with a
periodic kernel is able to find repeating patterns for long-term
forecasting [7]. Throughout the test, we limited the maximum
number of kernel compositions to five. Adding more kernels
to the AS model makes the time to construct and calculate
the coefficient matrix infeasibly long.

The comparison is based on each model’s ability to predict
the level of human activity across time and space. Due to the
nature of our comparison, we exclude the original FreMEn
model from this because FreMEn models the presence of an
activity rather than the level of the activity itself [5]. We
do compare the original technique for extracting periodic
patterns, BAM to our current technique AAM.

To complete our models for comparison, we include the
original non-periodic Poisson processes model. One should
note that for the purpose of comparison, we shrink the λ
time series to one fifth resulting in fewer data points to fit
our dataset for the Automatic Statistician. This is because the
implementation could not handle the size of the covariance
matrix needed for the Gaussian process [8].

At the end of the section, we study the ability of the best
method to classify rooms or regions according to their spatio-
temporal signatures. Two different clustering algorithms are
presented to show as a comparison.

Validation on Synthetic Data

First we validated the ability of different models to recover
periodic patterns on a set of synthetic data. The synthetic
dataset was created from 30 different periodic patterns. We
then added Gaussian noise to each point in the synthetic data.

Our synthetic dataset follows the format of our four-week
long real dataset. We performed four-fold-cross-validation
(CV) on the synthetic dataset where each CV-fold is a
different week. We compared four models including the
Poisson processes, AAM, BAM, and AS. We record the root
mean squared error (RMSE) of the reconstructions in Table
I.

With the absence of noise, Table I shows that many models
performed similarly, with the exception of BAM which



TABLE II: Comparison of the predictive accuracy of root mean squared error (RMSE) of Poisson model, the Poisson spectral
models, and the Automatic Statistician using real-world dataset.

Method RMSE for each region Average
1 2 3 4 5 6 7 8 9 10 11 12

Poisson model 2.63 9.50 7.32 2.65 5.85 2.92 4.40 4.13 1.91 1.54 4.93 5.02 4.40
l AAM 2.49 8.99 6.61 2.65 5.66 2.45 4.20 4.04 1.87 1.40 4.83 4.67 4.15
l BAM 2.57 9.02 6.93 2.65 5.69 2.45 4.20 4.04 1.87 1.40 4.82 4.95 4.22
AS (5 kernels) 2.49 8.67 6.71 2.66 5.76 3.40 4.34 4.02 1.97 1.47 5.03 4.79 4.27

TABLE III: Comparison of the learning time of the Poisson spectral models and the Automatic Statistician using real-world
datasets. Note that the automated statistitian times are in hours, while the AAM and BAM times are in seconds.

Method Learning time for each region Average
1 2 3 4 5 6 7 8 9 10 11 12

l AAM 1.1s 1.0s 1.3s 0.8s 0.8s 0.6s 0.8s 1.0s 0.8s 1.0s 1.2s 1.4s 0.9s
l BAM 0.1s 0.2s 0.1s 0.1s 0.2s 0.1s 0.1s 0.2s 0.1s 0.3s 0.2s 0.1s 0.2s
AS (5 kernels) 3.4h 1.8h 4.0h 1.9h 2.5h 2.4h 1.4h 2.0h 2.0h 1.2h 2.9h 1.5h 2.3h

performed poorly. In the presence of noise, AAM and BAM
showed their competence by outperforming any other model.
The table clearly shows that models with spectral analysis
performed slightly better than a fully Bayesian approach in
the presence of noise.

One should note that we used strong uniform priors for
our Poisson processes which are suitable for our real world
datasets. Our priors are based on the assumption that people
appear in any time of a day is unlikely to happen. In other
words, the arrival rate λ at any time interval is close to
zero. We did not try to find suitable priors to match our
synthetic dataset. As a result, the Poisson processes did not
perform really well on our synthetic dataset with the average
error 100 units without noise and 167 units with noise.
Nonetheless, this does not affect the relative performance
of our reconstruction model which is slightly better than AS
reconstruction since both of the reconstructions are based on
Poisson processes.

Performance on Real World Datasets

We compared the four models described in the previous
section in terms of their predictive accuracy on our real-
world datasets. We performed four fold cross-validation in
a weekly manner on the collected datasets as described in
Section III.

Results are presented in Table II. From the average result,
AAM, BAM, and the AS model improved the predictive
accuracy of the Poisson processes by 6%, 4.3%, and 3.1%
respectively. Once more, the table confirms that in the
presence of noise, models with spectral analysis performed
slightly better than Gaussian Processes. Moreover, Table I
and II show that the introduction of the AAM technique for
periodic pattern extraction improves the predictive accuracy
of our reconstruction model.

We also present the time needed for the learning recon-
struction (Table III). Our finding here is based on our reduced
dataset, explained earlier in this section. In terms of speed,
BAM outran other models at least by a factor of 5. The AAM

is still fast (1 second on average). This leaves the AS model
by far the slowest one, with at least one hour needed to learn.

A. Clustering Capability

To test the hypothesis that different regions have similar
patterns, we consider a clustering approach. We require a
clustering process that makes weak prior assumptions about
the number of room classes and which will produce a
hierarchical structure capturing the room similarities. For
this we employ Dirichlet Process (DP)-means clustering [17].
This algorithm combines Dirichlet process mixture models
and a classical clustering algorithm, so as to have scalable
algorithms that retain the main benefit of Bayesian non-
parametrics, which is the ability to model infinite mixtures.
Using this clustering algorithm, we range over the penalty
parameter rather than explicitly deciding the number of
clusters prior to the learning process. We compared this to
the standard K-Means algorithm.

Using the AAM model, each clustering process constructs
a tree which expresses the similarities between room types
in a hierarchical fashion. For the DP-means clustering, the
dendrogram was produced by varying the penalty parameter,
whereas for K-Means, the dendrogram was produced by
varying the number of clusters we would like to have. Figure
4 shows the dendrograms produced by DP-Means clustering
(4a) and K-Means clustering (4b).

From Figure 4, it is easy to verify that clusters produced
by two clustering algorithms are sensible. Those clusters can
be used to represent the general function/type of a room.
Moreover, the clustering hierarchy of the algorithms matches
with a semantic room type hierarchy. One should note that
the single occupancy office {2} is a special case. This room
belongs to the manager. It thus has quite a different pattern
of activity.

VI. CONCLUSIONS

We have presented an approach to building a probabilistic
model of time-varying counting processes. We have shown



(a) DP-Means clustering. (b) K-Means clustering.

Fig. 4: Dendograms of region clustering.

that this can find regular (periodic) patterns in human
behaviour. The approach is based on an assumption that
aggregate statistics of human activities have periodicities
which can be observed from the fluctuating number of
humans around. These periodic patterns can be described
by means of frequency, amplitude, and phase, modelled
using the Fourier and inverse Fourier transforms. By taking
the most significant spectrum components of the Fourier
transform, we indirectly obtain the most significant periodic
patterns in the human activity level. As each region might
have a unique frequency spectrum, the spectrum components
can be further used as features for region-type clustering.

We then evaluated the performance of the proposed frame-
work on several time-series of counts representing tracked
people, which were collected by an autonomous mobile robot
in an indoor environment over a month. The results indicate
that the proposed framework is able to produce the model up
to 1000 times faster than the Automatic Statistician frame-
work with competitive prediction performance. Moreover, we
demonstrated that the spectral representation of the model
serves a dual purpose by allowing us to cluster regions
by their spatio-temporal signatures. The clusters produced
by our framework show an intuitive result in which the
clusters match roughly with human expectations of room-
type clustering.

In this paper, we have performed the temporal analysis
independently for each room. An interesting extension would
be to automatically understand the relationship between the
time series for all different rooms. Furthermore, we will
investigate the descriptiveness of other methods with our
spatio-temporal signatures in room-type clustering.
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