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General abstract 

Egg incubation temperature impacts a range of phenotypes in oviparous reptiles including sex, 

growth, physiology, behaviour and cognition.  However, the long-term behavioural consequences of 

egg incubation temperature have seldom been studied. This project investigated the long-term 

effects of egg incubation temperature on the behaviour and cognition of bearded dragons. The first 

experiment tested the impact of incubation temperature on the growth and foraging behaviour of 

bearded dragons. The second experiment tested the personality of lizards and the third the gaze 

following ability of lizards. The results showed that egg incubation temperature influenced the 

growth and foraging behaviour of bearded dragons. While the personality of the lizards was 

unaffected, incubation temperature did influence the development of different behavioural traits 

during ontogeny.  The gaze following ability of bearded dragons was unaffected by incubation 

temperature however the results did show for the first time that a lizard species is capable of gaze 

following into the distance. The overall results show that incubation temperature impacted upon 

some of the long-term behaviour of bearded dragons and suggests that egg incubation temperature 

will influence the lifetime history trajectory of bearded dragons. 
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Chapter One: 1.1 General Introduction 

 

Behavioural plasticity is defined as ‘the capacity of the same genotype to produce a different 

phenotypic outcome depending upon inputs during development’ (Nettle & Bateson, 2015).There 

are two different types of adaptive developmental plasticity. The first assumes that the information 

obtained in early environmental circumstances allows animals to adapt their phenotype to the 

surrounding environment. For example, when gravid female field fall crickets (Gryllus pennsylvanicus) 

are exposed to a wolf spider (Hogna helluo) the offspring of the cricket show a heightened 

immobility response to spiders cues (Storm & Lima, 2010). The second implies that early 

environmental conditions affect the somatic state of animals and is often referred to as making the 

‘best of a bad situation’ (Nettle & Bateson, 2015). For example, bulb mites (Rhizoglyphus robini) that 

develop on a rich diet display an aggressive phenotype when older, whereas mites raised on poorer 

diets develop a non-aggressive phenotype (Smallegange, 2011). The interaction between early 

environmental factors such as temperature and humidity that occur during egg incubation can 

dramatically affect the phenotypes of oviparous reptiles (Deeming, 2004) and in some cases these 

factors can affect the long-term phenotypes of reptiles (Burger, 1998; Elphick and Shine, 1998). The 

characteristics of oviparous reptiles have been shown to be influenced by the smallest of details 

including (Burger, 1998; Elphick and Shine, 1998), humidity, moisture levels and substrate type 

(Booth, 2004). 

 The interaction between incubation temperatures and sex is well studied; temperature has 

been shown to influence the sex of at least 13 out of 25 crocodilian species (although not all species 

have been tested), both species of tuataras, approximately 67-85 turtle species out of 245 species 

analysed, and approximately 37-161 species of lizard species from approximately 3,750 species 

(Valenzuela, 2004). This phenomenon is called temperature dependent sex determination (TSD) and 

it has been suggested that it is adaptive as it allows flexibility to environmental change (Deeming and 

Ferguson, 1989). However, research has shown that the temperatures that select for males or 

females are species-dependent and no trend has been seen (Deeming, 2004).  For example, Deeming 

and Ferguson (1989), showed in alligators (Alligator mississippiensis) that hotter incubation 

temperatures (33oC) produced males while in various species of chelonians and squamates, higher 

temperatures produce females (Bull, 1980; Gutzke, 1987). Not all oviparous reptiles have their sex 

determined by temperature; others are determined by genes, also known as genotypic sex 

determination (GSD; Valenzuela, 2004). Much previous work has focussed on this aspect of egg 

incubation, therefore there are large gaps in our knowledge about the impact of egg incubation 

temperature on other traits.  
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 Egg incubation temperature has been shown to influence the morphology and physiology of 

oviparous reptiles (Alberts et al., 1997; Elphick and Shine, 1998). For example pine snakes (Pituophis 

melanoleucus) incubated at hotter temperatures took significantly longer to shed their first skin than 

snakes incubated at colder temperatures (Burger, 1989). The growth of oviparous reptiles is also 

influenced by incubation temperature. For example, geckos (Eublepharis macularius) incubated at 

hotter temperatures (32.5oC) grow faster than those incubated at colder temperatures (30oC) 

(Tousignat and Crews, 1995) although the reverse effect is seen in the (Podarcis muralis) lizard as 

lizards incubated at colder temperatures grew faster (Van Damme et al., 1992). Egg incubation 

temperature has also been shown to affect the body plans of lizards (Takydromus wolteri) as lizards 

incubated at hotter temperatures had significantly shorter and narrower heads than lizards 

incubated at lower temperatures (Pan and Ji, 2001). 

 Egg incubation temperature has also been shown to influence the behaviour of oviparous 

reptiles (Van Damm et al., 1997, Burgess et al., 2006) and particular attention has been given to the 

anti-predatory behaviours of hatchlings. For example, running speed (see Table 1) appears to differ 

depending on incubation temperature, but again the differences appear to be species specific; elf 

skinks (Nannoscincus maccoyi) incubated at cooler conditions (20 ± 4oC) run faster than those 

incubated at warmer temperatures (Downes and Shine, 1999) whereas (Bassiana duperreyi) lizards 

showed the opposite effect with those incubated at hotter temperatures (27 ± 4o C) running faster 

than those incubated at colder temperatures (20 ± 4o C). These differences persisted for up to 20 

weeks (Elphick and Shine 1998). Furthermore, egg incubation temperature can influence predator 

detection. Downes and Shine (1999) showed that elf skink hatchlings incubated under cooler 

conditions would respond more strongly to snake scent than lizards incubated at warmer incubation 

temperatures. This suggests that elf skinks are better at detecting potential predators and quicker to 

avoid them which in turn could increase their fitness. Egg incubation temperature has also been 

shown to affect the maintenance behaviours of oviparous reptiles such as righting time in turtles 

which will decrease the likelihood of predation as the animals will be vulnerable for less time 

(Ashmore and Janzen, 2003).  

Whilst development under optimal conditions should encourage the development of normal 

cognitive functions, research has shown that when incubated at the limits of incubation 

temperature, differences in incubation history will influence the cognition of oviparous lizards. Amiel 

and Shine (2012) suggested that individuals of Bassiana duperreyi hatchlings incubated at hotter 

temperatures (22 ± 7oC) learnt a simple learning discrimination, the location of a safe shelter, more 

quickly than compared to those incubated at colder temperatures (16 ± 7oC). This effect was 

replicated in young lizards (10-25 days old) of the same species (Amiel et al., 2014) suggesting that 

the influence of egg incubation on learning may continue into adulthood.  Clark et al. (2014) took this 
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research one step further by showing that lizards incubated at hotter temperatures were successful 

at reversal learning while lizards incubated at colder temperatures could not. This implies that the 

lizards incubated at hotter temperatures had flexible learning while the cold group did not. For this 

experiment however, lizards incubated at colder temperatures failed to learn the association while 

the lizards incubated at hotter temperatures only performed one reversal implying that this may not 

have been true flexible learning. Taken together, these results suggest that in addition to 

physiological and behavioral traits, learning ability may be impacted by incubation temperature. 

However, our understanding of the relationship between incubation temperature and cognitive 

ability is still in its infancy and needs further investigation.  

1.2 Key questions  

The majority of work examining the effect of egg incubation temperature on the phenotypes of 

reptiles has tended to use hatchlings and the long-term effects of egg incubation temperature are 

rarely considered outside of TSD (Burger, 1992; Van Damme et al., 1992; Deeming, 2004). Hatchlings 

are more likely to be vulnerable to predators so looking at the effect of egg incubation temperature 

on anti-predator behaviour, such as running speed, is important. However, other types of behaviours 

will be important for an animal if it is to reproduce thus, the long-term influences of egg incubation 

temperature on the physiological, behavioural and cognitive phenotypes of oviparous reptiles is 

something that needs to be investigated further.  

 Bearded dragons (Pogona vitticeps) are a social oviparous species of reptile that are common 

throughout central Australia. They have a wide range of different behavioural repertoires 

(Brattstrom, 1971) and have recently been shown to be capable of sophisticated social learning in the 

form of imitation (Kis et al., 2014). When incubated under recommended conditions (27-30oC), 

bearded dragons have GSD, however evidence shows that when incubated at extremely hot 

temperatures bearded dragons have TSD (+33oC)  (Holleley et al 2015). Therefore, bearded dragons 

are an ideal species to test for the effect of egg incubation temperature on phenotypic differences 

due to incubation temperature as long as the lizards are incubated across their normal range (27o C- 

30o C) as there will not be sex based differences due to incubation temperature.   

To examine the impact of egg incubation on behavioural and cognitive phenotypes of 

bearded dragons, we investigated three key areas. The first investigated the effect of egg incubation 

temperature on foraging behaviour and growth. Egg incubation temperature has been shown to 

effect the growth of various different lizards, although no pattern between the relationship between 

incubation temperature and growth has been found (Deeming, 2004). Given that both the growth 

and size of reptiles has been shown to be important for fitness it was essential to investigate this. 

Further, we wanted to examine how this interacted with foraging success. No study has previously 
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looked at the relationship between egg incubation temperature and the foraging behaviour of lizards 

and there is only one paper which has examined this in snakes. Burger (1991b), showed that pine 

snakes (Pituophis melanoleucus) incubated at cooler incubation temperatures were less able to 

successfully catch and eat mice when presented with them. If an animal is unable to forage both 

efficiently and successfully then it is less likely to survive or to pass on its genes (Dunham, 1978). 

With this in mind Chapter Two investigates the effect of egg incubation temperature on foraging 

behaviour by providing juvenile bearded dragons with prey items (crickets) and recording the lizards’ 

success in approaching them. The relationship between foraging ability and growth and is then 

explored.   

The second area of interest is the impact of incubation temperature on personality. 

Personality traits are behavioural traits that are consistent over time and context; they have been 

shown to affect the fitness and lifetime history trajectories of various different species of animals 

(Biro and Stamps, 2008). The results of chapter two suggests that egg incubation temperature effect 

the foraging behaviour of bearded dragons and studies have shown that ‘boldness’ and increased 

foraging rate are positively correlated (Ward et al., 2004; Kruvers et al., 2009). Thus it is likely that 

personality may be affected by incubation temperature. To our knowledge, no study has previously 

investigated this. The findings of this are presented in Chapter Three.   

 The final area of interested is the impact of incubation temperature on social cognition. Up 

until recently reptiles were perceived as “stupid and inert” (Wilkinson and Huber, 2012). However, 

recent research has revealed that reptiles have more complex cognition than previously thought 

(reviewed by Wilkinson and Huber, 2012). For example red-footed tortoises (Chelonoidis carbonaria) 

have been shown to be capable of spatial cognition that is similar to that of mammals and birds 

(Wilkinson et al., 2007; Wilkinson et al 2009; Mueller-Paul et al., 2012). Further, they are capable of 

social learning and can learn to solve a detour task by observing the behaviour of a conspecific 

(Wilkinson et al., 2010). Crucially for this work, bearded dragons have been shown to be capable of 

sophisticated social learning in the form of imitation (Kis et al., 2014) Chapter Four therefore 

investigates the effects of egg incubation temperature on the social cognition of bearded dragons. 

Specifically, we investigated gaze following into the distance and geometric gaze following.  Being 

able to follow the gaze of a conspecific offers many potential advantages to animals. It is thought 

that animals might follow gaze to find potential food sources or to alert to potential predators 

(Zuberbühler, 2008). Wilkinson et al. (2010) showed that the red footed tortoise is capable of 

following the gaze of a conspecific into the distance suggesting that at least one species of reptile has 

the cognitive capacity to gaze follow. Egg incubation temperature had been shown to influence the 

learning ability of bearded dragons (Junttilia et al., in preparation) which could in turn influence their 

ability to gaze follow and the trajectory at which animals learn to gaze follow throughout ontogeny.  
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Each chapter will be presented as a stand-alone paper. The findings will be integrated and summed 

up in a general discussion at the end of the thesis.  



 

Table 1. A review of studies that have tested the effect of egg incubation temperature on the growth and running speed of oviparous reptiles. The arrows in 

the temperature section show if an increase (arrow pointing up) or a decrease (arrow pointing down) in temperature increases or decreases the growth and 

speed of oviparous reptiles. If no change occurs than a + is used.  

Order Species Temperature Growth Speed Reference 

Chelonian Apalone mutica ↑  ↑ Janzen, 1993 

 Chelonia mydas. ↑  ↑ (swimming speed) Burgess, Booth & Lanyon, 2006 

 Chelonia mydas (again) ↓  ↑ Ischer, Ireland & Booth, 2009 

 Dermochelys coriacea ↓  ↑ Mickelson & Downie, 2010 

 Chrysemys picta bellii ↑  ↑ Elnitsky & Claussen, 2006 

Crocodilian Alligator mississippiensis = 1 ↑  Joanen et al., 1987  

 Crocodylus porosus ↑ ↑  Webb & Cooper-Preston, 1989 

 Crocodylus niloticus ↑ ↑  Hutton, 1987 

Lizards Eublepharis macularius ↑ ↑  Tousignat & Crews., 1995 

 Sceloporus virgaatus  ↓  ↑ Qualls & Andrews, 1999 

 Podarcis muralis ↓ ↑  Van Damme et al., 1992 

 Cyclura nubile ↑ ↑  Alberts et al., 1997 

 Bassiana duperreyi ↑  ↑ Elphick and Shine, 1998;   Amiel et al., 2013 

 Nannoscincus maccoyi  ↓  ↑ Downes and Shine, 1999 

 Lmpropholis delicata ↑  ↑ Downes & Shine, 1999 



 14 

 

 

 

 

 

 

 

1Intermediate temperatures had highest growth rates 

 Saproscincus mustelina  ↑  ↑ Downes & Shine, 1999  

 Amphibolurus muricatus ↓ ↑ ↓ Esquerre, Keogh & Schwanz, 2014 

 Chamaeleo calyptratus ↓ ↑ + Andrews, 2008 

 Oligosoma Suteri ↑  ↑ Hare, Pledger, Daugherty, 2008 

 Anolis carolinensis ↓ ↑  Goodman, 2008  

Snakes Pituophis melanoleucus ↓  ↑ Burger, 1991 

 Coluber constrictor ↑  ↑ Burger, 1990 



 

Chapter Two – Foraging behaviour of juvenile lizards correlates with 

egg incubation temperature  

 

Abstract 

Egg incubation temperature impacts the behaviour of various species of reptiles. Previous 

experiments have tended to focus on differences in the anti-predator responses of hatchlings 

incubated at different temperatures. However, survival requires more than evading predators. To 

date, no study has looked at the long-term impact of egg incubation temperature on the foraging 

behaviour of lizards. This study investigated this using a clutch of bearded dragon (Pogona vitticeps) 

eggs that were incubated at different temperatures within the natural range; half of them were 

incubated at a ‘hot’ temperature (30 ± 3 oC) and half at a ‘cold’ temperature (27 ± 3 oC). The growth 

and foraging behaviour of the lizards was then compared. The lizards incubated at colder 

temperatures grew more quickly; however, those incubated at hotter temperatures were 

significantly better at foraging. These results are the first to show that egg incubation temperature 

impacts the foraging behaviour of lizards and suggests a trade-off between growth and foraging 

speed, which could influence a reptile’s life history trajectory.  
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2.1. Introduction 

Sensitivity to environmental factors such as egg incubation temperatures allows for the development 

of a variety of different phenotypes in oviparous reptiles (Deeming 2004). Temperature-dependent 

sex determination is a well-documented example of this in reptiles (Valenzuela 2004) but, 

temperature can also impact on hatching success, hatchling growth, physiology, morphology, and 

locomotion (Elphick and Shine, 1998; Flatt et al., 2001; Deeming 2004; Booth 2004; Burgess et al., 

2006).  

Generally, the effects of incubation temperature on behavioural traits have been tested in 

neonatal animals. For instance, cold-incubated hatchlings of Bassiana duperreyi (Scincidae) exhibited 

more anti-predator behaviours than hot-incubated hatchlings despite comparable running speeds 

(Flatt et al., 2001). Hatchling pine snakes (Pituophis melanoleucus) incubated at cool temperatures 

(22-23°C) took longer to emerge from the egg at hatching, exhibited less anti-predator responses, 

were less effective at foraging, and were less likely to find shade during a thermoregulation test 

compared with snakes incubated at hotter temperatures (27-28°C; Burger, 1998). Burger (1991) 

tested the ability of pine snake hatchlings from two incubation temperatures to trace a scent in a Y-

shaped maze where one branch of the maze was baited with a mouse odour while the other was not. 

Snakes from the hottest incubation temperature (33°C) were attracted more often to the mouse 

odour than animals incubated at colder temperatures (28°C). By contrast responses to snake scent 

and the ability to evade snake predation was unaffected by incubation temperature in three lizard 

species (Downes & Shine 1999). Burger (1991b) also provided live mice to pine snake hatchlings and 

recorded how quickly the snakes approached and ate the prey species. The snakes incubated at 

hotter (30-33°C) and medium incubation temperatures (26-28°C) hunted significantly quicker and 

were more able hunters than those at colder temperatures (21-23°C). In addition, studies on the 

effect of incubation temperature on learning ability of B. duperreyi hatchlings have shown that hot-

incubated individuals were significantly better at learning tasks than cold-incubated animals (Amiel & 

Shine 2012, Amiel et al., 2014; Clark et al. 2014).     

Although some effects of incubation temperature, most obviously sex (Deeming & Ferguson 

1991; Valenzuela 2004), have long-lasting (life-time) effects on animals, most studies have only 

tested the impact on hatchlings (Deeming 2004; Booth 2004). This is despite the potential 

importance of incubation environment on long-term fitness of individuals. Downes and Shine (1999) 

looked at the effects of incubation temperature on phenotypic traits such as running speeds and the 

chemosensory response to a snake scent for up to 42 days post-hatching in three species of 

Australian lizard, however, it was age rather than incubation environment that had the most impact 
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on behaviour. Warner & Andrews (2002) tested the long-term effects of incubation environment on 

phenotype of the eastern fence lizard (Sceloporus undulates) under field conditions. They found that 

hydric conditions for eggs during incubation had no effect on survival or phenotypic traits after a year 

but clutch was a determining factor for these traits. Slow-growing but fast runners had better 

survival than fast-growing but slower individuals. In contrast Elphick and Shine (1997) showed that 

juvenile lizards (Bassiana duperreyi) incubated at hotter incubation temperature were faster than 

those incubated at colder temperatures. This shows that only a few studies have examined these key 

behaviours over long periods of time despite the fact that  differences in the phenotypes of reptiles 

has been shown to affect an individual’s fitness and survival rates (Warner & Andrews, 2002).  

There are two key areas of these studies that are of concern. Firstly, most studies are 

conducted on hatchlings so we have large gaps in our understanding of the long-term effects of 

varying egg incubation temperature on the phenotypic plasticity of oviparous reptiles. Being faster as 

a hatchling does not necessarily translate to faster speeds as adults (Husak 2006). How long do 

effects of incubation temperature observed in neonatal individuals persist as they grow, are they 

ecologically relevant, and will they impact an animal’s long-term fitness? Secondly, most tests of 

locomotor speed are conducted under a degree of duress – hatchling lizards are ‘encouraged’ to run 

by people (e.g. Downes & Shine, 1999; Warner & Andrews 2002) rather being allowed to move 

naturally within the test arena. Hatchlings have even been exposed to direct predation by snakes 

without any means of escape (Downes & Shine, 1999). If individuals were indirectly encouraged to 

move would the effect of incubation temperature still remain? Moreover, how long do behavioural 

effects observed in hatchling snakes (Burger 1991b) persist into juveniles or adults? 

In light of these issues we have examined the growth and foraging behaviour of bearded 

dragons (Pogona vitticeps) incubated at two different temperatures. In lizards, there are a variety of 

advantages to being bigger than a conspecific (Van Damme et al., (1992); Braña, 2000; Ferguson and 

Fox, 1984). Larger animals are more likely to retain body heat for longer, meaning that they can 

remain active for longer, (Avery, 1982) and are more likely to survive in times of hardship such as 

during temperature declines (Ferguson and Fox, 1984). Further, social dominance in lizards is 

strongly correlated with size in both males and females (Fox, 1983; Tokarz, 1985) allowing dominant 

lizards to have control over resources, such as basking spots, food, territory and reproductive activity 

(Stamps, 1977, Stamps, 1984, Trivers, 1976). The ability to forage effectively is also crucial for 

survival. If an animal cannot forage effectively it is more likely to grow at a slower rate and will take 

longer to reach sexual maturity, and more likely to die earlier (Dunham, 1978) thus it is less likely 

that it will pass on its genes. Bearded dragons typically live in deserts and woodland in central 

Australia where food is often scarce and males will fight for territories and reproductive 

opportunities (Brattstrom, 1971). Being able to forage effectively will give a lizard a direct advantage 
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over competitors, as their longevity could increase. When bearded dragons are incubated at their 

optimal range the sex of the lizards is determined by genotypic sex determination (Ezaz et al., 2005; 

2011; Holleley et al., 2015) making them an ideal species for this type of experiment.  

Further, instead of studying neonates we examined the foraging activity in animals at 18 

weeks of age. Differences in growth were observed and as a result the ‘cold group’ was tested at the 

same age and the same mass as the animals from the hotter temperature (‘hot group’). This allowed 

us to investigate the effects of egg incubation temperature on behavior when groups were matched 

for both age and size. The growth of the lizards were also recorded and compared between lizards 

from different incubation temperatures.  Live house crickets (Acheta domesticus) were used as prey 

to test for differences in the foraging ability of the juvenile bearded dragons. Given that pine snakes 

incubated at hotter temperatures were better at foraging than those from colder incubation 

temperatures (Burger, 1991b), we hypothesized that the ‘hot group’ of lizards would be more 

successful than the ‘cold group’ at foraging and that this would be unaffected by the mass of the 

individuals.  

2.2. Methodology 

(a) Animals 

A clutch of 14 eggs were laid by a captive female bearded dragon sired by only one male. The clutch 

was then split into two groups of seven eggs at random. They were subsequently incubated in plastic 

boxes with vermiculite (Booth, 2004). The ‘hot group’, was incubated in a heat-controlled room 

maintained at an average temperature of 30oC (± 3oC) whilst the ‘cold group’ of eggs were incubated 

in a second heat-controlled room at an average temperature of 27oC (± 3oC). Water was added to the 

substrate surrounding the eggs as necessary. Animals in the ‘hot group’ hatched between 58 and 60 

days (mean ± SD = 58.6 ± 0.3 days) after being laid, while the ‘cold group’ hatched between 83 and 

91 ( mean ± SD = 88.9 ± 1.0) days after being laid (t = -33.947, P = 0.001).   

After hatching, the lizards were all housed in the same room and maintained at a 

temperature of 29oC (± 3oC). Initially the lizards were kept in groups in small glass vivariums (30 x 20 x 

20 cm) and were later moved into bigger ones (145 x 48 x 60 cm). Hatchlings all received food ad lib, 

however, as they got older all food was weighed and balanced meaning that the ‘hot’ and ‘cold’ 

group received the same amount of food. Lizards incubated at different temperatures were kept 

separately. The lizards were sexed by vent inspection at 15 weeks of age and both groups contained 

4 males and 3 females. The lizards were weighed (in grams) using an electronic scale (Ohaus 

precision plus TP2000) every week from two weeks after hatching and throughout the testing period. 

The mass of the animals was recorded for up to 52 weeks after hatching however this data (18 weeks 
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+) was not included as egg laying makes it less reliable has the mass of bearded dragons drop 

significantly once an animal lays eggs .  

(b) Experimental set-up and apparatus  

An arena measuring 128 x 32.5 cm with 19 cm opaque high walls, was used for the foraging 

experiment. The floor (wooden) of the arena was marked into 25cm segments up to the test distance 

of 1.0m; these distances were used to calculate the speed of the lizards. A digital video camera (Sony 

HDR-CX22OE) was placed above the arena on a tripod and all trials were recorded. The testing room 

was maintained at 28.5oC (± 1oC).   

(c) Procedure 

The ‘hot group’ were tested 18 weeks after hatching. The ‘cold group’ were tested at 15 weeks, when 

they attained the same mass as the ‘hot group,’ and again at 18 weeks when they were the same age 

as the hot group.  

All animals were habituated to the arena. During habituation trials, the lizards were 

individually placed at one end of the testing arena and a cricket (a favoured food item) was put at the 

opposite end. If the subject moved towards, caught and ate the cricket in three consecutive trials, 

each of which was a maximum of 3 minutes long, then it was considered habituated (Kis et al, 2014). 

This continued until all animals were habituated, which took 2 days.   

At the start of each experimental trial the lizard was placed in the starting position, which 

was behind the zero line for speed calculation (see Figure 1). A transparent plastic container 

containing a cricket was then placed in the arena 1.0 m from the lizard. The lizard had 3 minutes to 

approach the cricket. Once the lizard was within 5 cm of the box, a second cricket was presented to 

the lizard as a reward and the stimulus cricket was removed. The size of the cricket (1.4 cm in length) 

was kept constant for all trials. If the lizard did not approach the cricket within the 3-minute trial time 

then the stimulus cricket was removed and the lizard was deemed to have been unsuccessful in that 

trial. To ensure that the lack of approach was not due to issues with motivation a second cricket was 

still presented. If the lizard did not eat the cricket then the trial was excluded from the analysis but 

the trial was not repeated. Each lizard received 4 trials, irrelevant of success. This resulted in the ‘hot 

group’ having 27 usable trials the ‘cold group’ – same mass had 24 trials and the ‘cold group’ – same 

age had 28 trials. The order in which the lizards were tested was randomly selected daily using a 

random number generator. Lizards from all treatments were tested between the hours of 9.00-

16.00; the hot group were tested over three days while the cold groups over two days.   
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Figure 1. The arena used in the foraging experiment.  

(d) Data analysis  

The video for each trial was analysed using Avidemux 2.6 software. The time taken for each lizard to 

move across each 25cm segment of the arena was recorded and converted to speeds (m/s). A 

general linear model was used to analyse the effects of incubation treatment on mass. The mass of 

the lizards was the dependant variable while the age, temperature and the interaction between 

temperature and age were included as fixed factors. The individual lizard was included as a random 

factor in the model. Average foraging success (successful or unsuccessful) was calculated for each 

animal by assigning each trial a pass of fail mark (1 or 2) and the effect of incubation treatment  was 

tested with a Kruskal Wallis test.  Mann-Whitney U tests were used to test pairwise differences in the 

successful trial completion data from the treatment groups. A general linear model, with post-hoc 

Tukey tests, was used to test for differences in the speed of the treatment groups. The running speed 

(metres per second) was used as the dependent variable while the treatment, distance and the 

interaction between the two were used as fixed factors. The individual lizard was used as a random 

variable. Lizards tested at different times were considered as being in different ‘treatment’ groups.  

0.25m 

0.50m 

0.75m 

1.0m 

Side of arena (19cm) 

Cricket trapped in a transparent container 
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All data was analysed using SPSS (version 23) with the exception n of the general linear modelling 

whereby Minitab (version 16.2.4) was used.   

2.3. Results 

(a) Impact of temperature on mass.  

All animals were a similar mass at hatching, but by 10 weeks-of-age the lizards in the ‘cold group,’ 

were heavier, a trend that continued as both groups got older (Figure 2). General linear modelling 

indicated that mass was significantly affected by the age of the animal (F1,187 = 726.76, p < 0.001). 

More interestingly, the temperature at which the eggs were incubated also had a significant effect on 

mass (F1,187 = 15.68, p < 0.001) . There was also a significant effect of the individual within the model 

(F12,187 = 6.21, p < 0.001) and a significant interaction between temperature and age (F1,187 = 122.24, p 

< 0.001). This means that the ‘cold group’ had significantly quicker growth than the ‘hot group.’ 

 

 

Figure 2. Average mass (± SE) of bearded dragons incubated at 27oC and 30oC from 2 to 18 weeks 

from hatching (with least square regression lines calculated by excel).  

(b) Test completion  

The lizards in the ‘hot-group’ were 100% successful at this task (27/27 usable trials). By comparison, 

the ‘cold-group’ of bearded dragons failed to complete 9 trials out of 24 usable trials (38%) when 

they were matched for mass and failed to complete 11 trials out of 28 usable trials (39%) when they 

were matched for age. An analysis of the mean foraging success showed a significant difference 

between the lizards from different treatment groups (Kruskal-Wallis test: χ² = 6.484, df = 2, p = 
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0.039). Mann-Whitney tests revealed that the hot-incubated group was significantly more successful 

than the cold-incubated animals at both the same mass (U = 7.0, n1 = 7, n2 = 6, p = 0.014) and age (U = 

10.5, n1 = 7, n2 = 7, p = 0.025). The cold-incubated lizards did not alter significantly at different ages 

indicating that their behaviour was consistent across time (U = 18.5, n1 = 6, n2 = 7, p = 0.709.) 

(c) Speed to finish trial 

Generally the speed of the lizards decreased as they approached the cricket (Figure 3). Measures of 

speed over the four different segments showed that the ‘hot-group’ was quicker than the ‘cold-

group’ at both the same age and same mass over the first 3 intervals (Figure 3). General linear 

modelling revealed that treatment and distance both significantly affected running speed of the 

subjects (treatment: F2,45 = 5.82, p = 0.013; distance: F3,45 = 20.69, p < 0.001). However, as the speed 

of the bearded dragons progressively decreased as they neared the cricket and in the last 25cm the 

lizards moved comparatively slowly in all three conditions. Interestingly, as the ‘cold-group’ got older 

they ran at slower speeds (Figure 3). In addition, the interaction between distance and treatment 

was also significant (F6,45 = 3.23, p = 0.016).  

ANOVA tests revealed significant differences in speeds between the treatment groups 

recorded at 0.25 m (F2,15 = 7.134, p = 0.007), 0.50 m (F2,15 = 4.320, p = 0.033) but neither at 0.75 m 

(F2,15 = 3.596, p = 0.053) nor at  1.0 m (F2,15 = 1.607, p = 0.233). Tukey tests showed but the ‘hot group’ 

was not significantly different with the ‘cold group’ at the same mass but they were significantly 

faster than the ‘cold group’ when they were the same age at 0.25 m (p = 0.006), 0.50 m (p  = 0.026) , 

0.75 m (p = 0.045) but not at 1.0 m (0.211).    
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Figure 3. Average (± SE) of running speeds (m·s–1) for bearded dragons in the different treatments 

measured at each 0.25 m intervals  over the course of a 1 m track (with least square regression 

lines calculated by excel) 

 

2.4. Discussion 

 This experiment shows that egg incubation temperature impacts upon the post-hatching 

growth of bearded dragons. Those incubated at a cooler temperature were significantly heavier than 

those incubated at a hotter temperature from 10 weeks of age showing for the first time that egg 

incubation temperature influenced the long-term growth of bearded dragons. This trend continued 

until at least 18 weeks. Further, the foraging success of juvenile bearded dragons was significantly 

affected by egg incubation temperature. The ‘hot group’ completed more trials than the ‘cold group’ 

when the animals were at both the same age and the same mass but were only significantly quicker 

than the ‘cold group’ when tested at the same age. This implies that the ‘hot group’ were better at 

foraging than the ‘cold group’. Despite this, the ‘cold group’ were heavier, suggesting that there may 

be a potential trade-off between a lizard’s size and its foraging ability. These results however support 

work by Burger (1991b) on snakes and suggests that incubation temperatures could have a long-term 

influence the foraging ability of a wide variety of oviparous reptiles although it is unknown if the 

same potential trade-off is seen in pine snakes.  

Egg incubation temperature has been shown to impact the growth of various different 

species of reptiles (Deeming, 2004). Previous studies have revealed that egg incubation temperature 

impacts on the mass and size of lizard’s hatchlings in various ways, such as affecting body plan, head 

size, tail length and other traits (Alberts et al., 1997; Deeming, 2004). It would be expected that 

animals at colder temperatures would perhaps be bigger as hatchlings take longer to hatch and have 

more time to absorb nutrients from the yolk sac (Andrews, 2004). Alberts et al., (1997) showed that 

there were no differences in Cuban rock iguanas hatchlings (Cyclura nubila) incubated at different 

temperatures but lizards incubated at hotter temperatures (31oC) had quicker post hatching growth 

speeds in their first year from hatching with the differences persisting for up to 14 months. Van 

Damme et al., (1992) showed the opposite effect in the wall lizard hatchlings (Podarcis muralis) with 

lizards incubated at colder temperatures (24oC) having quicker growth post hatching compared with 

lizards incubated at hotter temperatures (28oC). In lizards there are numerous advantages to being 

larger than a conspecific such as dominance over resources and better survival rates over winter 

(Fox, 1983; Ferguson and Fox, 1984; Tokarz, 1985). Our results showed that bearded dragons 

incubated at colder incubation temperatures grew more quickly than lizards incubated at hotter 
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incubation temperatures. Smaller animals are likely to be more vulnerable to potential predators 

meaning that quicker growth rates, as were seen in the lizards incubated at colder temperatures 

could be advantageous (Deeming, 2004). However, despite this bearded dragons incubated at hotter 

incubation temperatures were quicker at foraging than lizards incubated at colder temperatures.  Egg 

incubation temperature has also been shown to impact the running speed of various different 

oviparous reptiles (Downes & Shine, 1999; Warner & Andrews 2002) however these experiments 

encouraged animals to run under a degree of duress rather than testing appetitive behaviour  

(Deeming, 2004). The results of the present study show that egg incubation temperature has long-

term effects on the running speeds of bearded dragons even when animals were not ‘encouraged to 

move’ by a human experimenter. This is likely to be important for individual fitness suggesting that 

when food resources are scarce lizards incubated at hotter temperatures will outperform lizards 

incubated at colder temperatures in regards to foraging success. The results of the present 

experiment suggest that there is a potential trade-off between the growth and foraging speed in 

relation to egg incubation temperature. This could imply that egg incubation temperature affect the 

life-history trajectory of bearded dragons. 

The mechanisms that control differences in individual phenotypes are not that well 

understood.  It has been suggested that embryonic sensitivity to environmental conditions, such as 

temperature, is adaptive as each individual egg in a clutch will have individual phenotypic differences 

as a consequence of temperature variance which will alter the somatic state of each animal 

(Deeming and Ferguson, 1989, Deeming and Ferguson, 1991). Deeming and Ferguson (1989) 

suggested that crocodilian embryos that develop under different incubation temperatures produce 

hatchlings that are pre-adapted to a variety of different environments, which is likely to increase the 

likelihood of survival and future reproduction (Deeming & Ferguson 1989). A recent study that 

examined the stomach contents of wild bearded dragons found that termites (Isoptera) accounted 

for 94.6% their diet (Oonincx et al., 2015). Termite biomass and terminate foraging activity increases 

significantly with an increase in soil moisture levels (Abensperg-Traun and de Boer, 1990) while 

hotter temperatures will result in a reduction of soil moisture and a reduction in potential prey for 

bearded dragons. This suggests that in hotter environments food resources will be scarce implying 

that foraging ability will be crucial for survival meaning that bearded dragons incubated at hotter 

incubation temperatures could have a direct advantage. In contrast to this, when food abundance is 

high bearded dragons incubated at colder incubation temperature could have the advantage as they 

have quicker growth rates. Social dominance and size are positively correlated (Fox, 1983; Tokarz, 

1985) meaning that lizards incubated at colder incubation temperatures to dominate resources such 

as food and reproductive activity (Stamps, 1977, Stamps, 1984, Trivers, 1976). Reptilian egg 

incubation temperature is directly related to the temperature of the external environment and the 
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results of the present experiment suggest that egg incubation temperature will produce animals that 

are more suited to the environment which they are emerging into.  

Our study showed that there is a potential trade-off between growth and foraging speed 18 

weeks after hatching despite the lizards been tested at temperature that was intermediate to 

incubation temperature. Thus lizards incubated at a certain temperature may be more suited to 

emerge into an environment with a similar temperature compared with lizards incubated at other 

temperatures. Evidence to support this idea can be found in the literature as sun skink lizards 

(Lampropholis delicata) and weasel skinks (Saproscincus mustelina) incubated at hotter temperatures 

ran faster than lizards incubated at colder temperatures at warm temperatures but stopped more 

when tested at colder temperature compared to lizards incubated at colder incubation temperatures 

(Downes and Shine, 1998). Elphick and Shine (1999) also showed that lizards (Bassiana duperreyi) 

incubated at hotter incubation temperatures ran faster at warmer body temperatures than lizards 

incubated at colder temperatures. Evidence is also provided by the present study as lizards incubated 

at colder temperatures grew bigger more quickly and large reptiles are better at retaining heat and 

more suited to cold environments (Avery, 1982). Environmental conditions will of course change 

seasonally however this might give oviparous reptiles an early advantage (Adolph, 1993). 

Undoubtedly, due to slight differences in the environmental factors for each individual egg within a 

clutch there will be individual differences in the phenotypes of reptiles from the same clutch with 

different animals being more suited to different environments. The results of the current study are 

the first to suggest that egg incubation temperature impacts upon the behaviour and growth of 

bearded dragons which in turn suggests that egg incubation temperature is likely to affect the life 

history trajectories of the animals.  

 In sum, our results suggest that there were no differences between the mass of the lizards in 

early development, however as the lizards developed differences in growth rates did occur. The 

results also showed that the running speed of lizards can be tested in other ecologically relevant 

experiments such as foraging ability and suggest a new methodology for testing running speed. This 

is the first experiment to demonstrate that the foraging ability of a lizard species is impacted by egg 

incubation temperature.  
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Chapter Three: Early environmental factors that occur during 

embryonic development influence the behavioural traits of 

oviparous reptiles. 

 

Abstract 

Long-term personality traits, i.e. differences in the behaviour of individual animals of the same 

species that are consistent over time and context, such as ‘boldness’ have been shown to be 

heritable and experimentally repeatable in various species. Interestingly, research is showing that 

early environmental factors that occur during ontogeny can also impact the ‘personality’ of animals. 

Manipulating reptilian egg incubation temperature is an ideal way to investigate this further, as it has 

been shown to impact the physiology, morphology, behaviour, and even the cognition of certain 

oviparous reptiles. Bearded dragon (Pogona vitticeps) eggs were incubated at two different average 

temperatures and the hatchlings were raised under the same environmental conditions. Individual 

lizards were tested with a novel object and a novel environment test to see whether egg incubation 

temperature has a long-term impact on the ‘boldness’ of juvenile lizards. The results showed that in 

the novel object experiment, egg incubation temperature did affect the time spent in close proximity 

to the novel object as well as activity levels however, in the novel environment locomotion was not 

influenced by incubation temperature. The results were not repeatable suggesting that egg 

incubation temperature did not influence the personality of bearded dragons. This suggests that egg 

incubation temperature impacts the behavioural traits of lizards at different stages in ontogeny. 
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3.1 Introduction 

The term ‘personality’ describes differences in behavioural traits between different individual 

animals from the same species that are consistent over time and context (Carere and Eens, 2005).  

Animal personality has been shown to be heritable (Brown, 2007) meaning that these behaviours are 

subject to natural and sexual selection (Smith and Blumstein, 2008; van Oers et al., 2008). Although 

animal personality has an underlying genetic component (Van Oers et al, 2005), it can also be heavily 

influenced by environmental factors. Boldness, the willingness of an animal to take risks in a novel 

situation, is the most common personality trait studied. For instance, rainbow trout (Onchorhyncus 

mykiss) adjust their ‘boldness’ levels based on observing shy or bold conspecifics (Frost et al., 2007) 

and tropical poeciliid fish (Brachyraphis episcopi) have different levels of ‘boldness’ based on 

environmental factors, such as localised predation pressure (Brown, Jones and Braithwaite, 2005).   

 Egg incubation temperature affects sex determination, growth, behaviour and pigmentation 

in many reptiles (Deeming, 2004) and so incubation conditions could impact on boldness. ‘Boldness’ 

has been shown to have implications for an animal’s life history trajectory across a range of species 

(Biro and Stamps, 2008) and can affect current and future reproductive success (Wolf et al., 2007). 

Various personality traits have been shown in different species of reptiles. For example, darker 

melanin-based colouration in eastern Hermann’s tortoises (Eurotestudo boettgeri) correlates with 

aggressive behaviour and boldness (Mafli, 2009) which could in turn be important for food 

acquisition. Male Eastern water skinks (Eulamprus quoyii) are bolder than female skinks, which 

improved their performance in a spatial cognition task (Carazo, 2014). If egg incubation temperature 

influences the boldness of reptiles this will impact the fitness and life history trajectory of oviparous 

reptiles affecting survival and future reproduction.  

 Despite the relative abundance of research into animal personality traits, the relationship 

between early life experiences that occur during embryonic development and the resulting impact 

on animal personality post-hatching has received little attention. The work that is available suggests 

that this is a promising avenue for research. Artificial manipulation to increase androgen levels in 

yolks of black-headed gull (Larus ridibundus) eggs resulted in a positive correlation between 

personality traits such as ‘aggression’ (Müller et al., 2009). Prenatal, maternal effects, such as stress 

levels, have been shown to elevate glucocorticoids levels in fish and bird eggs (damselfish fish ,  

Pomacentrus amboinensis: McCormick, 2006; Japanese quall, Coturnix japonica: Bertin et al., 2009) 

showing that egg laying females can change the hormone composition of their eggs which can in turn 

effect an animal’s personality (Bertin et al., 2009). 

  The most obvious example of early environmental factors influencing the phenotype of 

oviparous species is in species with temperature-dependent sex determination (Janzen et al., 1998; 
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Valenzuela, 2004). We know that sex can impact upon the personality of an individual (Carazo, 2014). 

Further, egg incubation temperature affects the behaviour (Burger, 1989; Burgess, 2006) and the 

cognition (Amiel and Shine, 2012; Amiel, Lindström and Shine, 2013; Clark et al., 2014) of various 

reptile species. In this experiment we investigate the impact of egg incubation temperature on 

personality in lizards. This study looked at the effect of egg incubation temperature on the boldness 

of bearded dragons (Pogona vitticeps) an oviparous lizard found in central Australia. We used a novel 

object test and a novel environment test to investigate personality differences between animals 

incubated at different temperatures. In contrast to some other studies investigating animal 

personality, this experiment tested both the short-term repeatability of the behavioural traits of the 

animals, over the course of 5-6 days and the long-term, over the course of five months.  Our previous 

work suggests that bearded dragons incubated at hotter temperatures are  quicker at approaching 

prey than lizards at colder temperatures (Siviter et al., in preparation a; chapter 2). Given the 

correlation between foraging and boldness seen in other species (Ward et al., 2004; Kruvers et al., 

2009) we hypothesised that lizards incubated at hotter egg temperatures would be bolder than 

lizards incubated at colder egg incubation temperatures.  

3.2 Methodology and design 

(a) Animals 

This study was conducted using 13 bearded dragons hatched from the same clutch where the laying 

female only had access to one male (Siviter et al., in preparation a). Half of the eggs were randomly 

chosen to be incubated at 30 ± 3oC, the ‘hot group,’ and the other half were incubated at 27 ± 3oC, 

the ‘cold group.’ Once the lizards had hatched the environmental conditions, such as provision of 

food, housing and room temperature, were the same for all lizards. Over the course of testing all 

lizards were between the ages of 10-15 months, animals were sexually mature and had previous 

experimental experience (see chapter two). The ‘hot group’ contained 7 lizards with 4 males and 3 

females while the ‘cold group’ contained 6 lizards, 3 male and 3 female. If a female was gravid she 

was temporarily removed from the experiment and tested again after she had laid her eggs. The 

average mass and body size of the ‘hot’ and the ‘cold groups’ were similar during testing (10 months: 

t = -0.76, p = 0.324; 12 months: t = 0.96, p = 0.359: 15 months: t = 1.03, p = 0.324) 

Novel object experiment 

(b) Experimental design  

The experimental arena was a wooden box measuring 76.5 x 73cm and 19cm high with black 

meshing placed over the top. The box was visually split into four quadrants (38.25 x 36.5cm) one of 

which contained the novel item. Four objects, all initially novel to the lizards and all of which were a 
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similar size (mean ±SD; 13.62 ± 2.43), were used in this experiment. Two objects were used for test 

one and two for test two.  The objects were always placed in the same quadrant in the arena, 54cm 

from the starting position of the lizards. The room was maintained at 28.5 ± 1oC by portable electric 

heaters. A digital camera (Sony HDR-CX22OE) attached to a tripod was placed above the arena so 

that the whole arena area could be recorded during the experiment.  

(c) Procedure 

All animals were habituated to the environment prior to testing. During habituation a single lizard 

was placed into the arena and left for 15 minutes for 3 successive days. After this a mealworm was 

placed on the opposite side of the enclosure. The lizard had 5 minutes to reach the mealworm. If the 

lizard ate the mealworm within 5 minutes of it being placed on 3 consecutive days then it was 

considered habituated. If the lizard failed to eat the mealworm within 5 minutes the habituation 

procedure was repeated until the lizard ate on three consecutive days. This continued until all the 

animals were habituated.  

 To ensure that the behavioural traits being measured were consistent across time the lizards 

received four different test trials with four different novel objects. The lizards were first tested 10 

months after hatching with either one of two novel objects (counterbalanced across animals; test 1). 

At the start of each trial a lizard was placed on a marker on the opposite side of the arena to the 

object, facing towards it. Each trial lasted 20 minutes and each lizard was exposed to the first novel 

object for four consecutive days. This allowed us to measure their responses to the repeated 

exposure to an originally novel object. After being repeatedly exposed to the original novel object 

lizards would receive two more trials of 5 minutes, one with a new novel object and one with the 

now ‘familiar’ object. 5 months later the experiment was repeated with two different novel objects; 

this will be referred to as test 2.  

(d) Data collection and statistical analysis  

Solomon coder was used to analyse the behaviour of the lizards. Only the first 5 minutes of each 

video was analysed to allow direct comparison with all trials. The amount of time that each lizard 

spent in the area surrounding the novel object was recorded. This was considered as the animal 

being in close proximity to the object. When any part of a lizard, was on the line surrounding the 

object it was considered to be inside the quadrant with the exception of the tail of the lizard. The 

time the lizard spent moving (locomotion) was also recorded for each animal. The lizard was 

considered to be moving if it lifted a leg off the ground and the body position moved. A lizard was 

not considered to be moving if only the head of the animal moved. All videos were coded by a coder 

who was blind to the experimental and incubation conditions  
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 The data from the novel object experiment was not normally distributed and therefore non-

parametric tests were used. A linear mixed effects model was used to see if there was an effect of 

incubation temperature on proximity to the ‘familiar’ object. The dependant variable was time spent 

in close proximity to the object and the fixed factors were locomotion, temperature and the 

interaction between the two. The random factors were month and animal. The same formula was 

used to determine if temperature influenced the time spent in close proximity to the novel object. 

Wilcoxon tests were used to test whether the behaviours were consistent and repeatable over time 

when comparing data sets (in the short term and long term) with average values being used from 

both novel objects and compared over time.  All p-values are given as exact values to control for the 

small sample size.   

Novel environment experiment 

(e) Experimental design 

The experiment was identical to the previous experiment with some small exceptions. Instead of four 

novel objects, four different novel environments were used. Arena A measured 76.5 x 73 cm with 

pink patterned wrapping paper along the walls and sawdust on the floor, by contrast, arena B was 

rectangular (105 x 38 cm) and contained leopard print wall paper and a plastic bubble-wrap floor. In 

the later experiments two different arenas were used. Arena C measured 77 x 38 cm with a 

laminated, patterned floor with a comic book wallpaper design. Arena D was 63 x 40 cm and 

contained a randomly patterned wallpaper containing and the floor was covered with paper cuttings. 

The lizards were first tested 12 months (test 3) after hatching; this was repeated again 3 months 

later, when the lizards were 15 months old (test 4).   

(f) Procedure 

The procedure for the novel environment experiment was identical to that of the novel object 

experiment with the exception that the lizards were not habituated to the environment prior to 

starting.  

Data collection and data analysis.  

A linear mixed effects model was also used to see if there were differences between groups in the 

responses of the repeated exposure to the originally novel but now ‘familiar environment’. The 

dependant variable was the time spent in locomotion and the fixed factors were trial and 

temperature while the random factors were animal and month. The same formula was used to 

determine if temperature influenced time spent in locomotion in a novel environment. Wilcoxon 

tests were used to test whether the behaviours were consistent and repeatable over time when 



 31 

comparing data sets (in the short term and long term) with average values being used from the novel 

environment and familiar environment compared over time  

3.3 Results  

Repeated exposure to an originally novel object 

Figure 1 shows that the ‘hot group’ spent more time in close proximity to the ‘familiar’ object in all of 

the repeated exposure  trials when the lizards were 10 months old. When the lizards were tested 5 

months later it appeared that both groups of lizards spent similar amounts of time in close proximity 

to the novel object (Figure 2). The results did show that over both time periods  egg incubation 

temperature did have an effect on the time spent in close proximity to the novel object (t = 2.46, df = 

122.41, p = 0.015). The results also showed that there was a significant effect of incubation 

temperature on the locomotion of the lizards (t = 4.66, df = 122.05, p  < 0.001) and there was also a 

significant quadratic relationship of locomotion and time spent in close proximity to the object (t = -

3.94, df = 122.59, p = 0.001). This suggests that incubation temperature affected locomotion and 

lizards that moved around an intermediate about of time spent more time in close proximity to the 

object. There was no effect of trial on the results suggesting that the animals did not habituate to the 

novel object (p > 0.05).  

 

Figure 1. Trial 1 shows the median time spent in close proximity to an originally novel   object for 

both the ‘hot’ and the ‘cold group’ (± the interquartile range) when tested at 10 months of age. 
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Trials 2-5 shows the median time spent (± the interquartile range) in close proximity to the object 

during e repeated exposure over the trials. .  

 

Figure 2. Trial 1 shows median time spent in close proximity to an originally novel object for both 

the ‘hot’ and the ‘cold group (± the interquartile range). Trials 2-5 show median time spent in close 

proximity to the object during repeat exposure trials when the lizards were tested at 15 months of 

age.  

Novel object experiment 

The results revealed that egg incubation temperature significantly affected the amount of time the 

lizards spent in close proximity to the novel object (Temperature: t = -2.75, df = 48.76, p = 0.016) with 

the ‘hot group’ spending more time in close proximity to the novel object in test 1 but not test 2 

(Figure 3 and Figure 4). The results also showed that with the first 3 novel objects the ‘hot group’ 

spent more time in locomotion when compared to the ‘cold group’ (Figure 5). The time that the 

lizards spent in locomotion was also significantly different for lizards incubated at different 

incubation temperatures (Locomotion: t = 4.69, df = 2.95, p < 0.001) and there was a significant 

interaction between locomotion and temperature (t = -2.75, df  = -2.08, p = 0.008). The effects of 

month and individual lizard were used as a random factor in model and were not significant (p > 

0.05).  This shows that egg incubation temperature influenced both the time that the lizards spent in 

close proximity to the novel object and the locomotion of the lizards.   
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Figure 3. Median time spent (± interquartile range) in the quadrant containing the novel object 

over the course of 5 minutes for the ‘hot’ and ‘cold’ group when the animals were first tested with 

two novel objects at 10 months of age (test 1).  

 

Figure 4. Median time spent in seconds (± interquartile range) in the quadrant  containing the 

novel object over the course of 5 minutes for the ‘hot’ and ‘cold’ group when the animals were 

tested with two novel objects for a second time, 5 months after previously being tested (test 2).  
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Figure 5. Median time spent in locomotion in the 4 novel object experiments (± the inter quartile 

range). Novel object 1 and 2 were tested at 10 months after hatching and novel objects 3 and 4 

were tested at 15 months after hatching.  

Time differences in the novel object experiment  

When the lizards were tested originally in test 1, there were no significant differences in the trial 1 

proximity to novel objects for the ‘hot group’ (Wilcoxon x2 = -0.34, df = 7, p = 0.813) or the ‘cold 

group’ (Wilcoxon x2 = -0.73, df = 6, p = 0.625) over the course of 4-5 days suggesting that the 

behaviour was repeatable (Figure 3). The lizards proximity to the novel object was also repeatable 

over the course of 4-5 days for both the ‘hot group’ (x2 = -1.75, df = 6, p = 0.125) and the ‘cold group’ 

(x2 = -1.21, df = 6, p = 0.313) in test 2 when the lizards were tested at 15 months after hatching.  

 To see if the lizard’s willingness to be in close proximity to a novel object was consistent over 

time (5 months) the average response to the two novel objects was taken from each test and 

compared using a Wilcoxon. The ‘behaviour of the ‘hot group’ was not repeatable (x2 = -2.37, df = 7 p 

= 0.016) and neither was the ‘cold group’ (x2 = -2.20, df = 6, p = 0.031).  

Repeated exposure to an originally novel environment 

Figure 6 shows that during the repeated exposure trials, when the lizards were tested originally at 12 

months the ‘hot group’ spent more time in locomotion when in the familiar environments but 3 

months later there were no differences between the lizard incubated at different temperatures 
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(Figure 7).  The results confirmed this and showed that there was no significant effect of incubation 

temperature on the locomotion in now ‘familiar’ environment (Temperature: t = -1.10, df  = -8.05, p = 

0.292) and there was no significant effect of trial (Trial: t = 2.00, df = 3.74, p = 0.053).   

 

Figure 6. Trial 1 shows the median time spent in locomotion for both the ‘hot’ and the ‘cold group 

(± the interquartile range) when the lizards were tested at 12 months after hatching  Trials 2-5 

show the time spent in locomotion when repeatedly exposed to the originally novel environment.  
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Figure 7. Trail 1 shows the median time spent in locomotion (± interquartile range) for both the 

‘hot’ and the ‘cold group’ in an originally novel environment when the lizards were tested at 15 

months after hatching ). Trials 2-5 show time the medium time spent moving in repeated exposure 

trials to the environment.  

Novel environment experiment 

Lizards incubated at hotter incubation temperatures moved around more in a novel environment 

when tested at 12 months of age (test 3; Figure 8. When the lizards were tested again in two 

different novel environment 3 months later, the lizards from each group moved around the novel 

environment a similar amount (Figure 9, test 4) and the results showed that overall there was no 

significant effect on incubation temperature on the locomotion of bearded dragons in a novel 

environment (Temperature:  t = 0.28, df = 8.25, p = 0.279). 
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Figure 8. Median (± inter quartile range) time spent in locomotion for the ‘hot’ and ‘cold’ group in a 

novel environment when the lizards were tested for the first time in two novel environments at 12 

months after hatching (test 3).   

 

 

Figure 9. Median( ±inter quartile range) time spent in locomotion for the ‘hot’ and ‘cold’ group in a 

novel environment when the lizards were tested in two different novel environments 3 months 

after originally being tested (test 4).   
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Time differences in the novel environment experiment 

The results showed that in test 1 the behaviour of the lizards was repeatable in the short term across 

4-5 days for the ‘hot group’ (x2 = -1.36, df = 6, p = 0.219) and the ‘cold group’ (x2 = -0.41, df = 6, p = 

0.813). For test 2 ‘hot group’ (x2 = -0.73, df = 6, p = 0.563) and the ‘cold group’ (x2 = -2.02, df = 5, p = 

0.063).   

 The results of a Wilcoxon test showed that the ‘behaviour of the ‘hot group’ was not significantly 

different over the course of 3 months (x2 = -1.01, df = 7 p = 0.375) as was the behaviour of the ‘cold 

group’ (x2 = -9.43, df = 6, p = 0.438).  

3.4 Discussion 

The results of the novel object experiment showed that the ‘hot group’ spent more time in 

close proximity to the novel object compared to the ‘cold group’ in test 1 however, this was not 

repeatable five months later in test 2. As well as this, in the presence of the first three novel objects 

the ‘hot group’ appeared to spend more time in locomotion than the ‘cold group’. The novel 

environment experiment showed that there was no difference between the locomotion of lizards 

incubated at different temperatures either. It is surprising that the locomotion of the lizards was 

significantly affected by incubation temperature in the novel object experiment but not the novel 

environment experiment. One possible explanation for this is that egg incubation temperature 

influences the development of certain behavioural traits at different stages in ontogeny. The results 

from test 1 suggest that egg incubation temperature influenced both the proximity to the novel 

object and the activity of the lizards, with lizards incubated at hotter temperatures being more active 

and ‘bolder’. Boldness and activity levels are often positively correlated (Van Oers, 2005). The novel 

environment experiment was conducted two months later meaning that it is possible that the 

behavioural traits had changed over time. However, for behavioural traits such as boldness to be 

defined as personality they need to be repeatable across time and context. Our results show that in 

the novel object experiment the time spent in close proximity to the novel object lizards was 

repeatable in the short-term but not the long-term. This would suggest that egg incubation 

temperature does not influence the long-term personality of lizards but instead influences the 

development in behavioural traits at different stages in ontogeny.  This therefore implies that egg 

incubation temperature influenced the behavioural traits of bearded dragons at different stages 

throughout ontogeny.  

Egg incubation temperature has been shown to affect the development of oviparous reptiles 

with the growth, physiology and behaviour all being influenced by incubation temperature (Deeming, 

2004). For example, egg incubation temperature impacts upon the growth rates of oviparous reptiles 

at different stages in ontogeny. Alberts et al., (1997) showed that in Cuban rock iguana’s (Cyclura 
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nubile) growth rates were effected by incubation temperature with lizards incubated at hotter 

temperatures (31oC) having quicker growth rates for up to 14 months. In contrast to this Siviter et al., 

(in preparation a, chapter two) found that the growth rates of bearded dragons incubated at 

different temperatures were different at different stages in their development. The results showed 

that lizards incubated at colder temperature grew heavier faster than those incubated at a hotter 

temperature, suggesting differences in the ontogeny of the lizards. Developmental changes in the 

behaviour of oviparous reptiles as a result of incubation history have rarely been examined, with 

most previous studies only testing the behaviour of hatchlings meaning the long-term effects of 

incubation temperature on behaviour are largely unknown, with some exceptions (Elphick and Shine, 

1998). The results of our experiment show that egg incubation temperature influences the 

behavioural traits of bearded dragons for up to at least 10 months from hatching and suggest that 

developmental differences in behavioural traits are likely to be due to differences in incubation 

history. The fact that the influence of incubation temperature were stronger while the animals were 

younger could suggest that incubation temperature is ‘prepares’ oviparous reptiles for the 

environment which they will emerge into. However, the results from test 2 show a large variance in 

the results between novel object 3 and novel object 4 suggesting that to investigate this further 

another repetition on the novel object experiment would be advisable. Previous experiments testing 

the personality of animals generally only test the repeatability of behavioural traits over short 

periods of time (e.g. Frost et al., 2007; Short and Petren, 2008). Interestingly, the results of the 

present experiment showed that certain behavioural traits were repeatable in the short-term but not 

in the long-term. Had this experiment failed to test the long-term repeatability then a different 

interpretation would have been placed on the results.  

The mechanisms that cause temperature-dependent differences in the phenotypes of 

oviparous reptiles are still not fully understood (Valenzue, 2004; Deeming, 2004). One possibility is 

that the relationship between egg incubation temperature and the phenotype of oviparous species 

of reptiles is adaptive as it allows a clutch of eggs to be suited to a wide variety of different 

environments (Deeming and Ferguson, 1991). The environment that the lizards are incubated in will 

reflect the environment that they are emerging into and it has been suggested that this is adaptive, 

as animals will emerge into an environment that they are better adapted to (Siviter et al., in 

preparation a; chapter 2). It has been suggested that the sensitivity of oviparous reptiles to 

environmental factors may make animals more flexible in dealing with changing environments and 

could be a valuable defence mechanism for tackling human induced climate change.   

Personality traits such as boldness and activity have been shown to be linked with food 

acquisition in a range of different species (Biro and Stamps, 2008). The results of the present 

experiment suggest that lizards incubated at different temperatures will behave differently at 
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different stages of their development.  Interestingly, Siviter et al., (in preparation a; chapter 2) 

showed that lizards incubated at hotter temperatures were better at foraging than lizards incubated 

at colder temperatures while lizards incubated at colder temperatures had higher growth rates. The 

results from the present experiment suggest that the ‘hot group’ were ‘bolder’ and more active 

when tested at 10 months from hatching compared with the ‘cold group’. A positive correlation 

between foraging intake and activity/boldness has been seen in a range of species, for example, 

active Solea solea fish were shown to have a higher feed intake when compared to less active fish 

(Mas-Muñoz et al., 2011) and great tits (Parus major) that sang more actively were more explorative 

and suggested to be better at foraging (Naguib et al., 2010). The results from the present experiment 

could suggest that there could be a positive correlation between higher incubation temperatures, 

foraging ability and certain behavioural traits, although this would require further research. Keogh et 

al., (2012) showed that the activity rates of a polygynous lizard (Eulamprus heatwolei) and 

reproductive rates were positively correlated with males that are active in mate searching increasing 

individual fitness. However, when resources are plentiful lizards that are less bold may have an 

advantage over active lizards as they may have a higher likelihood of predation (Carter et al., 2010) 

and will potentially use more energy. Cooler egg incubation temperatures can produce heavier and 

larger lizards (Deeming, 2004) suggesting that lizards incubated at these temperatures will be able to 

dominate resources (Tokarz, 1985). The ‘cold group’ were less active than the ‘hot group’ suggesting 

that bearded dragons incubated at lower temperatures may have quicker growth rates as they use 

less energy. The present study shows that throughout development egg incubation temperature 

influences the developmental differences in the behaviour traits of oviparous reptiles; this suggests 

that egg incubation temperature influences the life history and fitness of individual oviparous reptiles 

and produces reptiles that are able to adjust to a flexible environment.  

In conclusion, the results showed that egg incubation temperature did not impact the long-

term ‘boldness’ of bearded dragons but rather egg incubation temperature influenced the 

development of the behavioural traits of lizards at early  stages in ontogeny.  
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Chapter Four- Bearded dragons are capable of following the gaze of 

conspecifics into the distance but not geometrically 

 

Abstract 

 Gaze following is the ability to co-orient with a conspecific and is thought to be highly adaptive. 

There are two types of gaze following that are often referred to, gaze following into the distance and 

gaze following around a barrier also known as geometric gaze following. Research suggests gaze 

following into the distance does not involve complex cognition while geometric gaze following does. 

Egg incubation temperature has been shown to influence the learning ability of oviparous reptiles 

which could potentially influence gaze following ability. This experiment investigated three 

questions. 1) Can bearded dragons follow the gaze of a conspecific into the distance; 2) can bearded 

dragons geometrically gaze follow and 3) does egg incubation temperature influence bearded 

dragons’ ability to gaze follow. The results showed that bearded dragons are capable of following the 

gaze of a conspecific into the distance but not geometrically. There was also no difference in the gaze 

following ability of lizards incubated at different egg incubation temperatures. The fact that the 

lizards were not capable of geometrically gaze following provides more evidence that these two 

different types of gaze following involve different levels of cognitive abilities with geometric gaze 

following involving more complex cognition. The results are the first to show that a lizard species is 

capable of gaze following into the distance, suggesting that gaze following into the distance is more 

common than previously thought.  
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4.1 General Introduction 

Egg incubation temperature has been shown to influence the phenotypes of various different 

species of oviparous reptiles (Deeming, 2004) and can even affect the behaviour and cognition of 

reptiles (Amiel and Shine, 2012). For example, lizards (Bassiana duperreyi) incubated at hotter 

temperatures (22 ±7.5oC) were better at learning a simple learning discrimination than lizards 

incubated at colder temperatures (16 ±7.5oC) (Amiel and Shine, 2012). It has also been suggested 

lizards (Bassiana duperreyi) incubated at hotter temperatures were capable of greater cognitive 

flexibly than lizards incubated at colder temperatures (Clark et al., 2014). The ability to gaze follow 

has many potential advantages; co-orienting with conspecifics may aid learning about potential food 

sources, in predator detection and increase the observations of important social interactions (Emery, 

2000; Zuberbühler, 2008). Gaze following is thought to contain both innate and learnt elements, thus 

if egg incubation temperature influences the learning ability of oviparous reptiles then it could 

impact on the ability to gaze follow. Two different modes of gaze following are typically observed, 

gaze following into the distance and geometric gaze following. Gaze following into the distance refers 

to an animal’s ability to follow the gaze of a conspecific or a hetero-specific to a location in space 

(Emery et al., 2000). Geometric gaze following, whereby an animal has to change its own line of sight 

in order to follow the gaze of another (e.g. around a barrier) is thought to be more complex (Loretto 

et al., 2010) as the animal either has to learn that barriers will impair sight (Tomasello et al., 1999) or 

understand the visual representation of the animal gaze (Povinelli and Eddy, 1996). Given that gaze 

following into the distance is not thought to require complex cognition it has been suggested that 

this trait should be relatively common throughout the animal kingdom while geometric gaze 

following will be less frequently observed. For example Loretto et al., (2010) showed that the 

northern bald ibis (Geronticus eremita) were able to follow the gaze of a conspecific into the distance 

but not around a barrier and Burkart & Heschl (2006) showed that common marmosets (Callithrix 

jacchus) could follow the gaze of a human experimenter into the distance but not around a barrier. In 

addition, Schoegl et al., (2007) also showed that common ravens (Corvus corax) (that can 

geometrically gaze follow) would rapidly habituate to the gaze of a human experimenter when 

following the gaze of a conspecific into the distance however they did not habituate to the gaze of a 

conspecific looking around a barrier, suggesting two different modes for gaze following into the 

distance and geometric gaze following. 

The development of gaze following into the distance and gaze following around a barrier 

appear to develop at different stages in ontogeny. The ability to gaze follow around a barrier will 

undoubtedly have important learning elements to it and the development of gaze following 

throughout ontogeny is well studied in animals including humans (Brooks and Meltzoff, 2005). 
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Ravens, for example, could gaze follow into the distance at around 8 weeks of age however they 

could not follow the gaze of a conspecific around a barrier until they were approximately 8 months 

old which is around the time they become independent from their parents (Schloegl et al., 2007). 

This same trend was seen throughout the ontogeny of wolves (Canis lupus) (Range & Virányi, 2011) 

and evidence has shown the human infants can acquire the skill to gaze follow into the distance at as 

soon as two months of age (Scaife and Bruner, 1975) and only become capable of geometric gaze in-

between 12-18 months of age (Moll and Tomasello, 2004). These results suggest that if an animal is 

socially housed and repeatedly exposed to the gaze of a conspecific that an animal can learn to 

follow the gaze of a conspecific.  

The central bearded dragon (Pogona vitticeps) can be found throughout central Australia and 

is considered a social species of reptiles with several social interactions being recorded (Carpenter, 

1970; Brattstrom, 1971). Males and females will have overlapping territories and will often share 

basking spots while males will defend territories from other males. Previous studies (Siviter et al., in 

preparation a; Siviter et al., in preparation b) have shown that egg incubation temperature can affect 

the long-term behaviour of bearded dragons. This experiment looked at the differences in the gaze 

following ability of bearded dragons with different incubation histories. We ran two separate 

experiments. Experiment one tested whether bearded dragons are capable of following the gaze of a 

conspecific into the distance while experiment two tested whether bearded dragons can follow the 

gaze of a conspecific around a barrier. Recent research has shown that egg incubation temperature 

influenced the learning ability of bearded dragons, with lizards incubated at colder temperatures 

(27oC ± 3) performing better than lizards incubated at a hotter temperatures (30oC ± 3) (Junttilia et 

al., in preparation). It was hypothesized that lizards incubated at colder incubation temperatures will 

perform better in both experiment one and experiment two compared with lizards incubated at 

hotter incubation temperatures.  

 Experiment 1: Gaze following into the distance 

4.2 Introduction 

The orienting response model refers to animals following the gaze of a conspecific into the distance 

and contains both learnt and innate elements and one hypothesis suggests that some animals, 

including humans are ‘hard-wired’ to gaze follow (Emery, 2000). However, it is widely accepted that 

this type of gaze following does not require high levels of cognitive ability as it is common through-

out the animal kingdom (Povinelli and Eddy, 1996; Tomasello, 1999; Loretto et al., 2010). For 

example numerous primate species (apes Pan troglodytes, Pongo pygmaeus : Tomasello et al., 1998; 

Itakura, 1996), Old world monkeys (Cercocebus atys torquatus, Macaca mulatta, M. arctoides, M. 

nemestrina: Tomasello et al., 2001; Macaca arctoides Anderson and Mitchell, 1999), birds (Northern 



 44 

bald ibises Geronticus eremita: Loretto, et al., 2010; common raven: Corvus corax : Schloegl et al., 

2007) and one species of reptile (red footed tortoises (Geochelone carbonaria) : Wilkinson et al., 

2010) have all been shown to be capable of gaze following into the distance.  It still remains unclear if 

the ability to follow gaze into the distance is unique to tortoises or if it is more general across 

reptiles.  

This experiment tested to see whether bearded dragons could follow the gaze of a 

conspecific into the distance. We tested whether they could follow the gaze of a conspecific to the 

side and upwards and whether egg incubation temperature influenced this ability. It has been 

suggested that looking to the side and looking upwards have different functions. For example  

looking up  has been described as an anti-predator response for spotting aerial predators (Bugnyar et 

al., 2004) while following the gaze of a conspecific to the side might be more relevant in social or 

hunting situations (Range and Viranyi, 2011). Bearded dragons are a social species of reptiles and 

have recently being shown to be capable of sophisticated social learning, namely imitation, (Kis et al, 

2014) which is often thought to be the pinnacle of social learning. Given that bearded dragons 

incubated at colder incubation temperatures were better at learning a simple learning discrimination 

(Junttilia et al., in preparation) than lizards incubated at hotter incubation temperatures it was 

predicted that bearded dragons would have different levels of gaze following ability at different 

stages in ontology.  

4.3 Methodology 

Egg incubation temperature 

A clutch of eggs, sired by one male, was randomly split into half and assigned to the ‘hot group’ and 

the ‘cold group’. The ‘hot group’ were incubated at an average temperature of 30 ± 3oC and the ‘cold 

group’ were incubated at an average temperature of 27 ± 3oC. The eggs were held in plastic boxes 

with a vermiculate substrate and kept moist (Booth, 2004).  

Animals 

Once hatched the animals were housed in as similar environments as possible and maintained at an 

average temperature of 29 ± 3o C. The animals were socially housed, in vivariums that were 150 x 60 

x 60cm, with each vivarium containing a UV light, heat lamp and shelters.  There were a total of 13 

animals used in this experiment with the ‘hot group’ containing 7 lizards, 4 males and 3 females, 

while the ‘cold group’ contained 6 lizards, 3 males and 3 females. All animals had previous 

experimental experience (e.g. Siviter et al., in preparation a, Siviter et al., in preparation b) and were 

subadults when tested (46-51 weeks old). There were no differences in mass of the lizards at the 

time of this experiment and all animals were sexually mature.  
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Experimental set up 

The experimental setup consisted of a rectangular arena measuring 118cm x 37cm x 19cm. A 

computer monitor was positioned in one end of the arena, which was used to present video stimuli 

to the observer animal (Figure 1). The video footage showed a bearded dragon doing one of three 

things; looking straight (the control), looking to the side and looking upwards (see descriptions of 

videos below).  

 

 

 

Figure 1. Experimental apparatus for experiment 1.  

 

Procedure 

All lizards were habituated to their environment. Each lizard received two ten-minute habituation 

trials.  Mealworms were placed inside the arena and the animals were considered habituated if they 

ate all the food on two consecutive trials. All the lizards were habituated within two trials. Animals 

were tested over the course of five days with each animal receiving one session a day containing 3 

trials. Each trial was separated by an inter-trial interval of at least 10 minutes during which the lizard 

was returned to its enclosure. Each animal received 9 trials in total, 3 trials per condition. The order 

of the trials was counterbalanced between animals and across sessions.  
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The observer animal was placed 60cm from the monitor facing towards the screen. If the 

observer was not looking at the screen (classed as at least one eye facing towards the screen) or the 

lizard moved off before the video was played then the trial was terminated and repeated on another 

day, although the other trials from the sessions could still be used. Exactly 5 seconds after the 

bearded dragon had been placed in the arena a video from one of the three conditions was 

presented to the observer lizard (see below). For this experiment three different stimuli were 

presented to the subjects. The videos presented a female bearded dragon that was unfamiliar to the 

observer lizard and showed her 1) moving her head up 2) moving her head sideways and 3) 

stationary and facing forward which was used as a control (see below for details). Once the videos 

had played the video stopped on the last frame. The average length of the video clips was 3.8 

seconds and a different video was used in each trial meaning that each animal only saw each video 

once. The same female bearded dragon was used as the demonstrator animal in each trial. The 

response from the lizard was recorded for 5 seconds after the video had started after which the trial 

was terminated.  All trials were recorded on a video camera (Sony HDR-CX22OE) and were analysed 

using VLC media player. As bearded dragons do not have visible sclera, head orientation was used to 

assess the direction in which the dragon looked and is commonly used for assessing gaze direction 

(e.g. Loretto et al, 2010).  

 

Look up condition: The video showed the demonstrator lizard looking up either by moving its head 

upward or by turning its head and positioning one eye upwards. An observer lookup was counted if 

the observer dragon looked up by either extending its head and neck upwards or by turning its head 

so one eye was directed upwards in the 5s following the stimulus presentation.  

Look sideways condition: The stimuli were the same as those in the look up condition with the 

exception that the observer animals observed footage of the demonstrator looking into the distance 

to the side.  The observer lizard was considered to be looking sideways if its head moved sideways in 

either direction. Bearded dragons have binocular vision meaning that in order to follow the gaze of a 

conspecific the lizard could move its head to the side in either direction. 

Control Stationary demonstrator: To control for the influence of the presence of a conspecific we 

included a condition in which the demonstrator faced towards to observer and did not show a shift in 

gaze direction. When presented with the control condition, observers were expected to show fewer 

shifts in their gaze.  

 

Data 
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All trials were coded from video recordings and a response was only included if it occurred within 5 

seconds of the stimulus being presented. The data was analysed using a general linear mode that 

tested for the effect of temperature and test condition on gaze. For the looking up condition if a 

lizard looked up in a trial it was coded as 1 and if it did not look up it was coded as 2. In the looking to 

the side condition if a lizard looked to the side it was coded as a 1 if it did not it was coded as a 2. 

These numbers were used as the dependant variable in a general linear model while incubation 

temperature and test condition were used as fixed factors as was the interaction between them. The 

individual was used as a random factor. Ten percent of the data was coded by a second individual 

who was naïve to the conditions of the experiment and inter observer reliability was good (Cohens k 

= 0.892, p = 0.001) 

4.4 Results 

Looking up into the distance condition:  

The lizards looked up on average 30.76% of time in looking up trials but only 12.82% of time in 

control trials (Figure 2). Despite this there was no significant difference between the looking up 

condition and the control when all the animals were examined. (F1,23 = 3.56, p = 0.072). The ‘hot 

group’ spent on average 28.57% of trials looking up when the demonstrator lizard did compared to 

the ‘cold group’ that spent 33.33% (Figure 2). There was no effect of incubation temperature on 

average number of trials that the lizards looked up (F1,23 = 0.52, p = 0.490) and there was no 

interaction between incubation temperature and  test condition (F1,22 = 0.47, p = 0.503).  

 

Figure 2. Mean % of trials that the lizards looked up in (±SE) for the control condition and the 

looking up condition.  

Looking sideways into the distance condition:  
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The lizards looked to the side in 87.17% of the look sideways trials compared to the control trials 

where they spent 53.84% looking to the side and this difference was significant overall (F1,23 = 8.37, p 

= 0.008). The ‘hot group’ spent on average 90.47% of trials looking sideways when the demonstrator 

lizard looked to the side while the ‘cold group’ spent on average 85.71% of time trials looking to the 

side, (Figure 3) but there was no statistical difference between the groups (F1, 23 = 0.38, p = 0.543). 

There was no interaction between incubation temperature and test condition (F1,22 = 0.17, p = 0.686). 

 

Figure 3. Mean % of trials in which the lizards looked to the side (± SE) for the control condition and 

the sideways looking condition.  

4.5 Discussion 

The results did show for the first time that a lizard species is capable of following the gaze of a 

conspecific into the distance, meaning that two different species of reptiles have now been shown to 

be capable of following the gaze of conspecifics (Wilkinson et al., 2010). This suggests that the ability 

to gaze follow into the distance is possibly more common in reptiles than previously thought. The 

results of this experiment are also the first to show that a reptile species is capable of gaze following 

to the side. The results showed no difference between lizards incubated at different temperatures in 

their ability to follow the gaze of a conspecific. Interestingly the lizards readily followed the gaze of a 

conspecific to the side but not upwards. It is possible that the two types of gaze serve different 

functions. Bearded dragons are a social species that are vulnerable to aerial predators (Marchant & 

Higgins 1993). Following the gaze of a conspecific upwards has been determined as a cue for spotting 

potential aerial predators meaning that it is surprising that lizards do not readily follow the gaze of a 

conspecific upwards (Bugynar et al., 2004). However, bearded dragons, like many other lizards (Greer 

1989), freeze when a predator is observed. It is possible that if the lizard was to look up it might 

attract the attention of aerial predators.  
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 The results showed no effect of egg incubation temperature on gaze following into the 

distance, although lizards incubated at colder temperatures did appear to have greater variation in 

looking than lizards incubated at hotter temperatures. Although egg incubation temperature did not 

influence the ability of lizards to gaze follow into the distance it is possible that incubation 

temperature would perhaps influence other types of gaze following therefore in experiment two we 

tested the same lizards in a geometric gaze following experiment.  

Experiment 2 – Geometric gaze following 

4.6 Introduction 

Gaze following into the distance, is thought to reflect a social facilitated response which does not 

require complex cognition (Povinelli and Eddy, 1996). Geometric gaze following, in which an animal is 

able to co-orient with a conspecific around a barrier is thought to be more cognitively demanding 

and implies that the animal has either learnt that barriers impair sight or and that the animal 

understands the visual perception of another animal (Tomasello et al., 1999; Bräuer et al., 2005, 

Loretto et al., 2010). Gaze following into the distance is relatively common throughout the animal 

kingdom, however, geometric gaze following is not and only a few species have been shown to be 

capable of geometric gaze following (chimpanzees Pan troglodytes: Bräuer et al., 2005: ravens 

Bugnyar et al., 2004; wolves, Range and Viranyi, 2011).  

The bearded dragons used in this experiment were socially housed in vivarium’s containing 

multiple barriers in the form of shelters meaning that the animals had ample opportunity to learn the 

role of a barrier. Bearded dragons have also been shown to use shelters to hide after confrontation 

(Carpenter et al., 1970). To our knowledge, no species of reptile has been shown to follow the gaze 

of a conspecific around a barrier therefore experiment two aimed to answer two questions: 1) Can 

bearded dragons follow the gaze of a conspecific around a barrier and 2) does egg incubation 

temperature affect bearded dragons’ ability to geometrical gaze follow. Based on the same rationale 

as experiment one it was hypothesized that the lizards incubated at colder incubation temperatures 

will move around the barrier more when the demonstrator lizard looked behind the barrier.  

4.7 Methodology 

Experimental set up 

The same animals that were used in experiment one were used in this experiment, they were 15 

weeks older (61-66 weeks) at the time of testing. The arena used for this measured 73x73cm and a 

computer monitor upon which the stimuli were presented was placed at one end of the arena. In 

addition to this a visual barrier (41 x 16cm) was placed so that the lizard could see the screen but the 

barrier obstructed the view of the lizard to one side of the arena (Figure 4).  
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Figure 4. Experimental apparatus used in experiment 2. 

Procedure 

The procedure was the same as used in experiment one with the addition of the barrier, which was 

used in all conditions. The stimuli were similar to those used in the previous experiment. After all the 

videos had been played the lizards had 55 seconds in the arena until the experimenter terminated 

the trial. With the added exception of the increase in trial time the procedure was the same as used 

in experiment one. There was also an addition of an extra condition; 

Looking sideways behind the barrier: The demonstrator lizard looked sideways behind the barrier. 

This meant that the observer lizard had to reposition itself in order to follow the gaze of the 

demonstrator lizard.   

Statistical analysis. 

The direction of gaze was taken from the first 5 seconds after the video had been played. This was 

analysed for all conditions. For the gaze following into the distance part of this experiment the same 

statistics were used as in experiment one. The videos were analysed blind to the condition. . Ten 

percent of the data was analysed by a second individual who was blind to condition and the Inter 

observer reliability was good (Cohens k = 0.913, p = 0.001). When coding the videos, the lizard was 

considered to have moved past the barrier if its head moved past the barrier so it could clearly follow 

the gaze of the demonstrator lizard or if the observer animal climbed over the barrier in the 60 

seconds after the video had been played (Figure 4). If the lizard was considered to have passed the 

barrier it was coded as 1 and if it did not pass the barrier it was coded as 2 and the coding was same 
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for all conditions. The data was analysed using a general linear model and the movement around the 

barrier was used as the dependant variable while incubation temperature and trial as well as the 

interaction between them were used as fixed factors. The individual was used as a random factor. 

4.8 Results 

Looking upwards into the distance:  

The lizards looked up in 66.66% of the trials when the demonstrator did compared to 30.76% of trials 

in the control condition which was significantly different (F1,23 = 10.89, p = 0.003). The ‘hot group’ 

looked up on average in 76.19% of trials in the compared to the ‘cold group’ that spent on average 

55.55% of trials looking up. However there was no significant effect of incubation temperature (F1,23 

= 1.44, p = 0.242; Figure 5) and no significant interaction between incubation temperature and test 

condition (F1,22 = 0.466, p = 0.502).  

 

Figure 5. Mean % of trials that the lizards look upwards (± SE) for the control condition and looking 

up condition for experiment 2.  

Sideways looking into the distance:  

The lizards looked to the side in 92.30% of trials compared to 61.53% in the control and this 

difference was significant (F1,23 = 21.49, p = 0.001). The ‘hot group’ spent on average 95.30% of the 

trials looking to the side when the demonstrator lizard did compared to the ‘cold group’ that spent 

88.88% of trials and there was no significant effect of incubation temperature (F1,23 = 0.29, p = 0.597; 

Figure 6). There was also no significant interaction between incubation temperature and test 

condition (F1,22 = 0.002, p = 0.965).   
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Figure 6. Mean % of looks trials in which the lizard looked to the side (± SE) for the control group 

and the looking sideways condition for experiment 2.  

Barrier sideways looking into the distance:  

The lizards looked sideways in 89.74% of trials when the demonstrator did so compared to 61.53% in 

the control trials and this difference was significant (F1,23 = 10.24, p = 0.004). The ‘hot group’ looked 

sideways in 90.47% of the trials compared to the ‘cold group’ that looked sideways in 88.88% and 

there were no differences between lizards incubated at different incubation temperatures (F1,23 = 

0.18, p = 0.894; Figure 7). There was no significant interaction between temperature and test 

condition (F1,22 = 0.09, p = 0.765) 

 

Figure 7. Mean % of trials that the lizard looked to the side (± SE) for the control group and the 

looking sideways, behind the barrier condition.  
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Moving around or over the barrier:  

The lizards walked around the barrier on average in 48.71% of trials when the demonstrator lizard 

looked behind the barrier compared to 33.33% in the control trial and this difference was not 

significant (F1,23 = 1.44, p = 0.242; Figure 8). The ‘hot group’ walked around or over the barrier when 

the demonstrator animals looked behind the barrier in 57.14% of the trials compared with the ‘cold 

group’ that moved around or over the barrier in 38.88% of the trials although this difference was not 

significant (F1,23 = 1.24, p = 0.277; Figure 8). There was also no significant interaction between 

incubation temperature and test condition (F1,22 = 0.09, p = 0.765). 

 

Figure 8. Mean % of trials that the lizards moved around or over the barrier.  

4.9 Discussion 

The results suggest that bearded dragons are not capable of geometric gaze following despite a slight 

trend towards bearded dragons moving around the barrier when the demonstrator lizard looked 

behind it. Interestingly, the ‘hot group’ did move around the barrier more than the ‘cold group’ when 

the demonstrator looked behind the barrier; however this difference was not significant suggesting 

that the ‘hot group’ could have just moved more in general. Furthermore, in accordance with the 

results from experiment 1 there were no differences between the ‘hot’ and ‘cold’ groups in their 

ability to follow the gaze of a conspecific into the distance for any of the looking into the distance 

conditions. These results suggest that egg incubation temperature does not influence the gaze 

following ability of adult lizards incubated at different temperatures.  

 Interestingly and in contrast to the results from experiment one the bearded dragons could 

follow the gaze of a conspecific look up into the distance. Bearded dragons often freeze when under 
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threat and we previously suggested that the inconsistency of bearded dragons to follow the gaze of a 

conspecific up was due to this anti-predator response. The results from experiment 1 do show a 

trend towards the lizards looking up more when a conspecific looked up suggesting that results from 

experiment 1 could be influenced by the small sample size. The experimental arena was also a 

slightly different shape meaning that the lizards had a better view of what was above them. It is also 

possible that something about having the barrier present in the experiment makes the observer look 

up more. The results could also imply that the trajectory that lizards learn to follow the gaze of a 

conspecific upwards could be different to that of gaze following to the side. Further experiments 

would be required to understand why there were differences.  

 4.10 General discussion 

The results of both experiments show that bearded dragons are capable of gaze following into the 

distance and are the first to show that a lizard species is capable of gaze following suggesting that 

gaze following maybe more common in reptiles than previously thought. The results also showed 

that bearded dragons would follow the gaze of a conspecific to the side more readily than upwards, 

adding evidence to the hypothesis that gaze following to the side and upwards have evolved for 

different functions. The results also provide evidence that bearded dragons were not capable of 

geometric gaze following, suggesting that gaze following into the distance and geometric gaze 

involve different levels of cognitive ability (Loretto et al., 2010).  

The results also showed that egg incubation temperature does not influence the gaze 

following ability of bearded dragons and there are two possible explanations for this. Firstly, as 

previously mentioned gaze following into the distance requires less complex cognition when 

compared to geometric gaze following (Povinelli and Eddy, 1996; Tomasello, 1999). Our hypothesis, 

that bearded dragons incubated at colder incubation temperatures would be better at gaze 

following, was based on the premise that the lizards incubated at cooler temperatures were better at 

learning, which in turn could result in an improvement in gaze following ability. Given that gaze 

following into the distance is relatively simple to learn it is possible that gaze following into the 

distance is more innate and involves less learning. The results suggest that bearded dragons do not 

have the capability to gaze follow geometrically, meaning that it is unlikely that geometric gaze 

following is influenced by egg incubation temperature. Alternatively, egg incubation temperature 

could affect the gaze following into the distance ability of bearded dragons during early 

development. Apes, wolves and rooks develop different gaze following abilities at different stages 

throughout ontogeny (chimpanzees: Bräuer et al., 2005; ravens: Schloegl et al., 2004; wolves: Range 

and Viranyi, 2011) and research in humans shows that gaze following develops after gaze sensitivity 

as an infant develops (Brooks and Meltzoff, 2005). The lizards in the present experiment were all 

around one year old and had ample opportunity to learn to follow the gaze of a conspecific, meaning 
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that the effect of egg incubation temperature on gaze following throughout ontogeny is unknown. In 

order to determine if egg incubation temperature affects the gaze following ability of bearded 

dragon during early development it would be necessary to repeat this experiment at different stages 

of a bearded dragon’s life. If bearded dragons were to have different learning abilities then it is 

possible that the development of bearded dragon gaze following could be influenced.   

All species that have been shown to geometrically gaze follow are social species with high 

levels of maternal care and cooperation, although living in groups is not a guarantee that geometric 

gaze following will be present (marmosets: Burkart and Heschl, 2004; Northern bald ibises :Loretto et 

al., 2010). Bearded dragons are a social species (Carpenter, 1970; Brattstrom, 1971) as males and 

females will have overlapping territories, but they do not cooperate and do not have maternal care. 

All the lizards in this experiment had extensive experience with barriers and were socially housed and 

all had been habituated to the environment. They moved past or climbed over the barrier in 33% of 

control trials suggesting that neophobia was not a factor. These results add to the evidence that gaze 

following into the distance requires a lower level mechanism compared with geometric gaze 

following that is more cognitively demanding and supports the hypothesis that there are two modes 

of gaze following (Schloegl et al., 2004; Lorreto et al., 2010; Range and Virányi,  2011). The results 

could also suggest that geometric gaze following is possibly only seen in species that live in social 

groups with higher levels of interactions. In order to test this idea further it would be interesting to 

compare the gaze following abilities of bearded dragons and Egernia lizards that live in family groups 

(While et al., 2015). It could be hypothesized that Egernia lizards, due to their high levels of sociality 

and extensive experience with using gaze as hatchlings, perform better than bearded dragons in a 

gaze following experiment.  

In conclusion these results show that egg incubation temperature does not influence the 

gaze following ability of lizards. The results, however, are the first to show that a lizard species is 

capable of following the gaze of a conspecific into the distance and also provide evidence that 

bearded dragons cannot geometrically gaze follow. These results provide more evidence that 

geometric gaze following involves more complex cognition than gaze following into the distance. In 

order to understand gaze following in bearded dragons better it could be suggested that future 

studies focus on the development of gaze following throughout ontogeny.  
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Chapter Five: Summary of findings 

 

The overall results show that egg incubation temperature influenced the growth, foraging ability and 

the development of behavioural traits of bearded dragons, though their gaze following ability was 

unaffected. The results reveal, for the first time, that egg incubation temperature influences the 

long-term growth and behavioural phenotypes of bearded dragons. This could ultimately influence 

the lizard’s life history trajectory.  

The results of chapter two showed that incubation temperature influenced the long-term 

foraging behaviour of bearded dragons with lizards incubated at hotter temperatures foraging more 

successfully and running faster than lizards incubated at cooler temperatures. There was, however, a 

potential trade off with growth, as lizards incubated at colder temperatures had quicker growth 

rates. Previous work with pine snakes hatchlings (Pituophis melanoleucus) has shown a similar trend 

(Burger, 1991 b), suggesting that the influence of incubation temperature on foraging ability could be 

common to oviparous reptiles.  If incubation temperature does impact foraging success then it would 

also be interesting to see if the same potential trade-off between foraging speed and growth is 

observed in other oviparous species.  

In chapter three we explored the role of incubation temperature on personality. The results 

showed that at 10 months of age the ‘hot group’ spent more time in close proximity to the novel 

object and were more active than the ‘cold group.’ Although not repeatable, the results suggest that 

egg incubation temperature could have influenced the development of certain behavioural traits at 

different stages of ontogeny. The results show that sensitivity to environmental conditions will result 

in differences in the range of phenotypes of oviparous reptiles which could result in a clutch of eggs 

being suited to a wide variety of different environments. This implies that bearded dragons 

incubated at different incubation temperatures will have different life history trajectories. Further, 

the results show the importance of investigating the relationship between egg incubation 

temperature and personality in the long-term across ontogeny to ensure the repeatability of the 

results.  

 The results from chapter four showed that bearded dragons are capable of gaze following 

into the distance but no evidence was found suggesting that they were capable of geometric gaze 

following. This research is the first to show that a lizard species is capable following the gaze of a 

conspecific and suggests that the two different modes of gaze following require different levels of 

cognitive ability (Loretto, 2010). Interestingly, egg incubation temperature did not influence gaze 

following ability this is in stark contrast with the data from the previous chapters. The lizards used in 
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this experiment were sexually mature and it is possible that if they have been tested as hatchlings 

then the trajectory that develop this ability may differ. Alternatively, it is possible that gaze following 

is highly adaptive and essential for success and therefore developmental differences are not 

observed.  

What does this mean? 

The results clearly show that egg incubation temperature influences the long-term phenotypes of 

bearded dragons. Chapter two suggests a trade-off between foraging ability and growth while the 

results of chapter three showed that the behavioural traits of bearded dragons were different at 

different stages in ontogeny. Growth and foraging ability will be important for the fitness of bearded 

dragons and behavioural traits such as activity and ‘boldness’ have been shown to increase food 

consumption in a range of species (Biro and Stamps, 2008) but have also been linked to increased 

predation risk (Carter et al., 2010). However, different phenotypes will be suited to different 

environments. Deeming and Ferguson (1989) suggested that sensitivity to environmental conditions, 

such as incubation temperature, is adaptive as a clutch of eggs will produce animals that are suited to 

a wide variety of different environments. The results of this project support this idea and suggest 

that animals incubated in a certain environment will be more suited to the environment into which 

they emerge. The results of chapters 2 and 3 suggest that bearded dragons incubated at hotter 

incubation temperatures will be better at foraging and potentially more active/bolder than lizards 

incubated at colder incubation temperatures at certain stages in ontogeny. Termites (Isoptera) 

account for (94.6%) of wild bearded dragons diet (Oonincx et al., 2015). Termite abundance and 

activity decreases in hotter temperatures (Abensperg-Traun & Boer, 1990) and therefore animals 

hatching into hotter environment will have less prey available. Thus they need to be better hunters. 

Conversely, at colder incubation temperatures the bearded dragons grew heavier quicker. Being 

large in cooler environments is thought to be beneficial to lizards as larger lizards can retain heat for 

longer are more likely to survive winter and can dominate food resources (Avery, 1982; Ferguson and 

Fox, 1984). However, in order to further test the hypothesis that sensitivity to environmental 

conditions makes bearded dragons more adapted to their emerging environment, lizards need to be 

tested in their natural habitat (see Warner and Andrews, 2002). Egg incubation temperature did not 

influence bearded dragon gaze following ability while research has shown that egg incubation 

temperature will influence their learning ability (Junttilia et al., in preparation). This suggests that egg 

incubation temperature will affect some cognitive ability of bearded dragons but not gaze following 

ability. It is possible that gaze following is highly adaptive meaning that differences due to incubation 

temperature are not observed. The results from this project suggest that egg incubation temperature 

will affect the life history trajectory of bearded dragons and provide more evidence of the 
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importance of incubation temperature of oviparous reptiles. These results could ultimately be 

important for ex-situ conservation that relies on the artificial incubation of eggs. 

Wider Implications 

The results show that bearded dragons, incubated within their optimal range, are potentially 

suited to a wide variety of different environments, which could increase the fitness of the clutch 

(Deeming and Ferguson, 1989). Further these results suggest that sensitivity to environmental 

conditions means that individuals emerge into an environment that they are potentially better 

adapted to. Holleley et al., (2015) showed that extreme incubation temperatures can rapidly change 

the biology of bearded dragons as bearded dragon incubated at extremely hot temperatures (33oC-

36oC) change from having genetic dependant sex determination to temperature dependant sex 

determination. This suggests that bearded dragons could either be vulnerable to human induced 

climate change as the biology of the lizards can change rapidly, potentially resulting in the population 

having a sex bias or the results show that bearded dragons adapt flexibly to environmental change. 

The results of the current project suggest that bearded dragons alter their phenotypes to a changing 

environment which could prove as an invaluable defence mechanism in the face of human induced 

environmental change. Ultimately the impact of human induced climate change on bearded dragons 

will depend on the speed that the temperature of the environment changes and if the lizards can 

respond adapt to the new conditions.  

Further studies and conclusion 

The results of this project show that egg incubation temperature affects a range of different 

phenotypic traits in bearded dragons. However in order to understand the effects of early 

environmental factors on the behaviour and cognition of oviparous species further a wide variety of 

species need to be tested. Currently studies investigating this topic are heavily biased towards a few 

species. For example the relationship between incubation temperature and the behaviour of pine 

snakes is extremely well studied (Burger, 1989; Burger, 1991; Burger 1991 b; Burger 1998) while the 

effects of incubation temperature on the behaviour of crocodilian species is almost unknown 

(Deeming, 2004). Currently all of the published work investigating the relationship between egg 

incubation temperature and cognition has been conducted in one species of lizard (Bassiana 

duperreyi) (Amiel and Shine 2012; Amiel et al., 2013; Clark et al., 2014). The effect of incubation 

temperature on the behaviour of any bird species up until recently was relatively unknown, although 

now incubation temperature has been shown the influence the growth, body size and locomotor 

performance of birds (Hepp et al., 2015). Unfortunately due to the relatively few species of oviparous 

reptiles studied it is also unknown of any possible phylogenetic trends of egg incubation temperature 

or if the effects of egg incubation temperature are species specific.  Some evidence in lizards, 
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however, does suggest that post hatching effects are more likely to be species/ecologically specific 

rather than having an overall phylogenetic effect. For example, the results of the present experiment 

suggest that bearded dragons incubated at hotter temperatures ran faster than lizards incubated at 

colder temperatures. In contrast, lizards (Nannoscincus maccoyi) incubated at colder temperatures 

were faster lizards than lizards incubated at hotter temperatures (Downes and Shine, 1999) while 

other lizards (Bassiana duperreyi) were quicker when incubated at hotter temperatures (Elphick and 

Shine, 1998). Furthermore, bearded dragons incubated at colder incubation temperatures (27 ± 3) 

were better at learning a simple learning discrimination than lizards incubated at hotter 

temperatures (30 ± 3) (Junttilia et al., in preparation); in contrast lizards (Bassiana duperreyi) 

incubated at hotter temperatures (22 ± 7oC) learnt a learning discrimination quicker lizards incubated 

in cooler conditions (16 ± 7oC) (Amiel and Shine 2012; Clark et al., 2014;). In order to understand the 

effects of egg incubation temperature on the behaviour and cognition future studies should focus on 

broadening the species database in order to understand potential phylogenetic trends. 

 Previous experiments investigating the effects of egg incubation temperature on the 

phenotypes of oviparous lizards have tended to use hatchlings as a result, very little is known about 

the long-term effects of incubation temperature (Deeming, 2004). The results of this project show 

that the impact of egg incubation temperature on the growth and behaviour of bearded dragons 

were still present in adulthood while the results of chapter 3 showed that the behavioural traits of 

bearded dragons were different at different stages of ontogeny. Although the behaviour of 

hatchlings is crucial for survival, in order to reproduce the long term effects of incubation 

temperature could be essential. This suggests that future studies should focus long-term effects of 

egg incubation temperature while also testing for the effects of incubation temperature at different 

stages of ontogeny.  

This project suggests that egg incubation temperature will influence the fitness and life 

history trajectory of bearded dragons. However, the main limitation of this project is that the animals 

used were captive. Studies have shown that behaviours such as running speed are important for the 

survival of hatchlings in their natural environment (Warner and Andrews, 2002) while other 

behavioural traits such as boldness have been shown the influence food intake in the Namibian rock 

agama lizards (Agama planiceps) (Carter, 2010). This suggests that phenotypic traits such as foraging 

ability and other behavioural traits that are sensitive to incubation period could also influence 

survival. However in order to understand these further, future experiments should focus on analysing 

the effects of egg incubation temperature in the wild.  

 In conclusion, the results showed that egg incubation temperature influenced the long-term 

phenotypes of bearded dragons effecting growth, behaviour and the behavioural traits throughout 

ontogeny. The results add to the evidence showing the importance of the environmental conditions 
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that occur during incubation temperature and the resulting impact they have on the fitness of 

oviparous reptiles.  
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