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Abstract

The accurate automated extraction of arterial and venous (AV) trees in fundus images

subserves investigation into the correlation of global features of the retinal vascula-

ture with retinal abnormalities. The accurate extraction of AV trees also provides

the opportunity to analyse the physiology and hemodynamic of blood flow in retinal

vessel trees. A number of common diseases, including Diabetic Retinopathy, Cardio-

vascular and Cerebrovascular diseases, directly affect the morphology of the retinal

vasculature. Early detection of these pathologies may prevent vision loss and reduce

the risk of other life-threatening diseases.

Automated extraction of AV trees requires complete segmentation and accurate

classification of retinal vessels. Unfortunately, the available segmentation techniques

are susceptible to a number of complications including vessel contrast, fuzzy edges,

variable image quality, media opacities, and vessel overlaps. Due to these sources of

errors, the available segmentation techniques produce partially segmented vascular

networks. Thus, extracting AV trees by accurately connecting and classifying the

disconnected segments is extremely complex.

This thesis provides a novel graph-based technique for accurate extraction of AV

trees from a network of disconnected and unclassified vessel segments in fundus
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images. The proposed technique performs three major tasks: junction identification,

local configuration, and global configuration.

A probabilistic approach is adopted that rigorously identifies junctions by exam-

ining the mutual associations of segment ends. These associations are determined by

dynamically specifying regions at both ends of all segments. A supervised Naïve

Bayes inference model is developed that estimates the probability of each possible

configuration at a junction. The system enumerates all possible configurations and

estimates posterior probability of each configuration. The likelihood function esti-

mates the conditional probability of the configuration using the statistical parameters

of distribution of colour and geometrical features of joints. The parameters of feature

distributions and priors of configuration are obtained through supervised learning

phases. A second Naïve Bayes classifier estimates class probabilities of each vessel

segment utilizing colour and spatial properties of segments.

The global configuration works by translating the segment network into an ST-

graph (a specialized form of dependency graph) representing the segments and their

possible connective associations. The unary and pairwise potentials for ST-graph

are estimated using the class and configuration probabilities obtained earlier. This

translates the classification and configuration problems into a general binary labelling

graph problem. The ST-graph is interpreted as a flow network for energy minimiza-

tion a minimum ST-graph cut is obtained using the Ford-Fulkerson algorithm, from

which the estimated AV trees are extracted.

The performance is evaluated by implementing the system on test images of

DRIVE dataset and comparing the obtained results with the ground truth data. The
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ground truth data is obtained by establishing a new dataset for DRIVE images with

manually classified vessels. The system outperformed benchmark methods and

produced excellent results.
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Chapter 1

Introduction

1.1 Introduction

Retinal fundus images provide an excellent resource to study the morphology of

the retinal vasculature as they can provide a view up to the micro-vascular level in

vivo. These images contain forests of mutually intersecting and overlapping arterial

and venous (AV) vascular trees. These vascular trees show adaptation to various

pathological conditions associated with diseases including Diabetic Retinopathy

(DR), Cardiovascular and Cerebrovascular Diseases. In addition, the AVR value

can be a good indicator of retinopathy of prematurity (Sun et al., 2009). Another

complexity is the ‘plus’ disease that results in retinal vascular dilation and tortuosity

(Koreen et al., 2007). Furthermore, hypertension and cardiovascular signs are being

frequently associated with dilatation and elongation of retinal vessels (Cheung et al.,

2011). Pathological conditions that directly influence the morphology of retinal

vascular trees include generalized retinal arterial narrowing, retinal venous dilatation,

neovascularization, and alteration to AVR (artery-to-venous width ratio) (Lesage

et al., 2009) (Hubbard et al., 1999) (Wong et al., 2004).



2 Introduction

Computer based automated systems can assist ophthalmologists in obtaining

clinically significant information from the retinal vasculature using fundus images.

These systems can potentially detect and/or predict several abnormalities at an early

stage, minimize subjective opinions, reduce resource-related costs, and ultimately

reduce or prevent vision loss. To support the quantitative evaluation of the clinical

significance of the abovementioned morphological changes in the vasculature, ef-

ficient extraction of retinal arterial and venous trees is a prerequisite (Vickerman

et al., 2009). A preliminary step before extraction of AV trees comprises of accurate

segmentation of retinal vessels. Unfortunately, existing image processing techniques

developed for the segmentation of retinal vessels are susceptible to several sources

of error including inconsistent vessel contrast, fuzzy edges, variable image quality,

media opacities, and vessel overlaps; causing them to produce partially segmented

vascular networks. This complicates the process of classifying vessel segments, thus

accurate AV trees extraction become extremely complex. A sample image selected

with partially segmented vasculature obtained using automatic segmentation (Al-Diri

et al., 2009) is given in Figure 1.1.

Consequently, the current state of the art lacks a comprehensive system for

reconstructing broken segments of retinal vessels and identifying AV trees. There

is a limited body of literature which addresses this issue. However, none of the

available techniques have reached the level of performance required to efficiently

extract AV trees from completely disconnected network of segments with complex

junctions. This thesis describes a novel robust method for AV extraction from an

incomplete network of segments with moderate-to-complex junctions.
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Fig. 1.1 Vessels with yellow colour showing undistinguishable vessel class.



4 Introduction

1.2 Hypothesis

An automated image processing technique can efficiently extract arterial and venous

vascular trees from a network of vessel segments disconnected at junctions in a

fundus image.

1.2.1 Aims and Objectives

The aim of this work is to fully automate the reconstruction of retinal vascular

network from incomplete vessel segments and to extract arterial and venous trees in

fundus images. To achieve this, the objectives are:

1. To identify vessel segment junction locations.

2. To configure vessel segments at identified junction locations.

3. To classify vessels into arteries and veins.

4. To globally configure the segment networks by resolving conflicts of junction

configurations among each other and extract arterial/venous trees simultane-

ously.

1.3 Methodology and Contributions

This thesis presents a graph based probabilistic framework for accurate extraction

of arterial and venous trees from a network of incomplete segments of vessels.

The components of the proposed system are based on probability theory (Bayes’s

theorem (Diaconis and Freedman, 1986) and MAP: Maximum A Posteriori), de-

pendency graph theory (Markov Random Field) (Kindermann et al., 1980) (Geman

and Graffigne, 1986), and inference estimation (Graph cut (Boykov et al., 2001),
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Ford-Fulkerson algorithm (Ford and Fulkerson, 1956), and Max-Flow Min-Cut the-

orem (Ahuja et al., 1988)). They exploit underlying morphological properties of

segments and bifurcations. A procedure is adopted for the translation of segments

network into a dependency graph Markov Random Field (MRF). The formulated

graph expresses the joint probability distribution of segment class labels and con-

nectivity (configurations). The Bayesian posterior probabilities are estimated for

mutually exclusive and collectively executive configurations at all junctions using a

number of vessels’ geometrical and colour features. In addition, a supervised Naïve

Bayes classifier is used to estimate vessel class probabilities for vessel segments

using colour and spatial features. For extraction of AV trees, the inference on the

formulated graph is performed by implementing an ST-graph cut. The performance

of the proposed system is evaluated at each major phase. The system is highly stable

and demonstrates excellent results overall.

The key contributions in this thesis are summarized as follow:

1. A probability-based system for creating junctions consisting of vessel segment

ends. The system finds mutual associations of segments with each other at

dynamically specified regions at all segment endings. Based on the strength of

the segment associations, groups of segment ends are identified as junctions.

2. A Bayesian probabilistic model for estimating posterior probabilities of con-

figuration of vessel segments locally at identified junctions. Together with the

prior probabilities of configurations, the model uses conditional likelihoods of

configurations estimated by considering intensity and geometrical features at

segment endings.

3. A Naïve Bayes classifier for classifying vessel segments using colour and

spatial features of arteries and veins.
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4. A graph-based automated system for extracting arterial and venous trees.

The system represents the segment network as a dependency graph Markov

Random Field with a procedure for estimating unary and pairwise potentials

for graph edges. A global optimal configuration of the formulated graph is

inferred by implementing an ST graph cut using the Ford-Fulkerson algorithm.

The system then re-joins extracted trees of identical class in order to resolve

discontinuities occurred due to missing segments.

5. A manually class-identified gold standard vessel image set derived from the

DRIVE image database (Staal et al., 2004). This dataset is publically available

to the research community for the purposes of evaluation and comparison.

6. A detailed statistical analysis of morphological features of retinal vessels.

1.4 Thesis Overview

This thesis is organized as follows. Chapter 2 provides a brief medical background of

the retinal vasculature, its correlation with diseases, and clinical biomarkers. Chapter

3 provides a review of literature including techniques for AV trees extraction and

the general purpose techniques utilised in the proposed methodology. Chapter 4

describes two models; one for the identification of junctions to be resolved and the

other for estimating posterior probabilities of all possible configurations at identified

junctions. This chapter also introduces a new vessel-classified set for DRIVE images.

Chapter 5 describes a novel procedure for translating the AV tree extraction problem

into a general binary labelling problem expressed as a dependency graph Markov

Random Field. Over these graphs, the ST cut is implemented using the Ford-

Fulkerson algorithm. This chapter also includes tasks including detection of disjoint
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network of segments, vessel classification, global configuration, and tree joining.

Chapter 6 describes the implementation of the proposed system and each major task

separately. The experimental evaluation is performed by comparing the system’s

outcome with the ground truth data and with the outcome of other available systems.

This chapter also provides a critical analysis of the techniques used in the proposed

methodology. Chapter 7 concludes the thesis and gives recommendations for future

work. The overall pipeline overview of the Thesis is shown in Figure 1.2
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Fig. 1.2 Pipeline Overview for the Thesis



Chapter 2

Medical Background

2.1 Introduction

The human retina is a unique window to the health condition of the whole body. It is

of significant value for many non-invasive clinical and subclinical tasks. Diabetic

Retinopathy (Danis and Davis, 2008), Macular Degeneration (Bird et al., 1995),

Retinal Detachment (Committee et al., 1983), and Retinoblastoma (Knudson, 1971)

are some common conditions that may lead to blindness, and are manifested on

the retina. Ophthalmologists use a variety of methods including ophthalmoscopy

(fundoscopy) to examine the retina for diagnostic and predictive purpose.

Fundoscopy (Hoyt et al., 1973) is a technique for examining the interior of the

eye using a specialized fundus camera. The fundus camera is attached to a low-power

microscope that provides a moderate-to-high angle (optos) (Silva et al., 2012) view

of the retina. For examination, ophthalmologists obtain photographs or real-time

videos of the interior of the retina on computers systems attached to these cameras.

These systems might come with image processing techniques for automatic detection
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of landmarks in the fundus images.

The retinal vasculature is a prominent retinal feature with distinctive importance

from the disease diagnostics viewpoint, and can be viewed clearly in fundus images.

Morphological changes in the retinal vasculature have been quantified for detection,

prediction, and/or grading of a range of pathological disorders. Early detection of

clinically-significant features in the retinal vasculature can help to prevent vision-loss

and several life-threating diseases including systemic complications such as cardio-

vascular diseases. The ocular manifestation of various pathological abnormalities is

examined by analysing geometrical and spatial information of vasculature during

retinal screening. The AVR (artery-to-vein ratio), vessel bifurcation features, LDR

(length-to-diameter ratio), vessel tortuosity, and fractal properties of vascular trees

are potential landmarks considered by ophthalmologists for disease diagnostic pur-

pose. This chapter discusses some common retinal vascular features and discusses

their clinical significance.

2.2 Anatomy and Functionality of Retina

The retina is the light-sensitive inner layer in the eye. It is a non-invasive brain

tissue of the central nervous system (CNS). It consists of two types of neurons

(photoreceptor cells): rods and cones. The function of rods is to provide vision in

dim light, whilst cones are responsible for colour perception in daylight. Light from

the external environment striking the retinal layer is converted into nerve impulses

through chemical and electrical reactions and which are then transmitted to the brain

along the optic nerve. The anatomy is shown in Figure 2.1.
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Described below are the retinal layer components of interests for this thesis. A

normal fundus is also shown in Figure 2.2.

• The Macula (Macula Lutea) is an oval-shaped dark pigmented area in the

centre of retina and is responsible for central vision. The anatomical macula

has diameter 5.5 mm (0.22 in) whilst clinical macula is 1.5 mm (0.059 in)

in healthy retina (Lyle, 1995). The macula is of a special importance from

a clinical significance standpoint, as any damage to it, generally referred as

Maculopathy, may lead to complete loss of central vision. The Fovea (Fovea

Centralis) is the small pit in the Macula that provides the sharpest vision

details.

• The Optic Nerve Head (ONH) or Optic Disc, the brightest area in the retina,

represents the opening of the cranial nerve (optic nerve) which is responsible

of transmitting visual information from retina to the brain. The ONH is also

the entry point of major blood vessels to the retinal layer. Damage to ONH

can be caused by various pathological complications generally referred as

Glaucoma diseases that may lead to vision loss.

• The retinal blood vessels nourish the inner layer of the retina. These vessels

emerge out of the ONH and spread through the perfusion area by means of

branching and thinning, forming mutual overlaps of arterial and venous trees.

The smallest diameter vessels arterioles and venules in the retina are connected

to each other via the capillary bed making up the microcirculation. The mor-

phology of the retinal vessels follows certain physiological principles, and may

alter in response to disease, and thus has great importance from a clinically sig-

nificance standpoint. There are many medical studies available on qualitative

and quantitative aspects of the retinal vascular morphology, associating retinal
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Fig. 2.1 The anatomy of the eye taken from http://www.sneretina.com/retinal-
diseases-and-treatments/

vascular adaptation to various life-threatening risks including cardiovascular,

cerebrovascular and systemic diseases.

2.3 Retinal Vascular Adaptation to Diseases

Retinal vascular features are the potential biomarkers for a number of disease families

including cardiovascular, cerebrovascular and systemic complications. The diseases

with their diagnosable symptoms associated to vasculature are described below.

2.3.1 Systemic Diseases

A systemic disease is one that directly/indirectly affects a number of organs and/or

tissues potentially including the retina. The systemic diseases affecting the topogra-
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Fig. 2.2 Normal Fundus Image from DRIVE dataset

phy of retinal vasculature (Hayreh et al., 2001) includes nephropathy, atherosclerosis,

renal diseases including retinopathy and its variations such as hypertensive retinopa-

thy, and diabetic retinopathy which is one of the leading causes of blindness in

developed countries.

2.3.2 Cardiovascular Diseases

Cardiovascular diseases affect the heart and blood vessels. Studies have proven

direct associations between physiological and pathological alterations in the retinal

vasculature with several cardiovascular complications (Wong et al., 2001) including
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hypertension, coronary heart disease (CHD), and congestive heart failure. The most

prominent symptom of cardiovascular diseases observed in the retinal vasculature

are arterial narrowing, smaller AVR (Artery to Vein ratio), and venular dilation.

2.3.3 Cerebrovascular Diseases

The strongest evidence for the association between the retinal and cerebral vascula-

ture is the identical nature in terms of anatomical features, physiological character-

istics, and embryological origin of both vasculatures. It is the common practice to

analyze the retinal vasculature to indirectly study the cerebral vasculature (GOTO

et al., 1975). For instance, fibrous and fibro-hyalinoid thickenings of the retinal major

arteries have direct associated with changes in the intracerebral arteries. Studies have

also proved that changes to retinal major arteries are a potential signs of cerebral

hemorrhage and infarction (GOTO et al., 1975).

2.4 Retinal Vascular Morphology as a Clinical Biomarker

Alterations to the topological features of vascular trees can provide indications of

above-mentioned diseases. These features are discussed below.

2.4.1 Fractal Properties of Retinal Vessel Trees

Several studies have shown quantitative and qualitative correlations of the fractal

dimension of retinal trees with a number of conditions. The Fractal analysis of

retinal vessel trees characterizes the complexity of the global geometry of the retinal

vasculature. In the medical literature, there exists various empirical and theoretical

studies regarding the fractal properties of the retinal vasculature; several computer-
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based algorithms have been introduced to perform automated analysis of the fractal

dimension of retinal vessel trees (Masters, 2004) and (Stošić and Stošić, 2006).

2.4.2 Vessel Bifurcation

The features at vessel bifurcations are perhaps the most studied and significant

clinical markers. Each feature at bifurcation has been investigated independently and

in correlation with other features; for instance, the vessel diameters and vessel angles

at bifurcation have been theoretically proved to have strong interdependence. Zamir

(Zamir et al., 1979) and Murray (Murray, 1926) theories on bifurcation features are

being widely accepted by the research community. Some of the common bifurcation

features include the asymmetry ratio, bifurcation index, diameter ratio, area ratios,

length ratios, and bifurcation angles.

2.4.3 Artery to Venous Ratio

A quantitative feature that has been studied by several authors is the ratio of arterial

to venous diameter (AVR), which is extracted by measuring major veins and arteries

radiating from the optic nerve head. The AVR has been used as a clinical indicator as

it is highly sensitive to arterial narrowing. The feature has been empirically observed

and several authors have provided a quantitative range of AVR (King et al., 1996).

The AVR value is also regarded a good indicator of retinopathy of prematurity. In

addition, an abnormal AVR value is the sign of high blood pressure and pancreas

disease (Kondermann et al., 2007). These pathologies include venous dilatation, clot

blockage in arteries/veins, i.e. Central retinal artery occlusion (CRAO) (Beatty and

Eong, 2000) and Central retinal vein occlusion (CRVO) (Hayreh, 2015).
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2.4.4 Vessel Tortuosity and Vessel Length to Diameter Ratio

The vessel tortuosity or the degree of vessel tortuousness is a qualitative indicator for

abnormalities such as ‘plus’ disease. However, more recently it has been observed

as a quantitative feature and different methods are proposed for its measurements.

The length to diameter ratio or LDR is a significant clinical biomarker and is

measured between consecutive bifurcations. The LDR has a direct correlation with

general arterial narrowing and rarefaction as it tends to increase in the presence of

these complications. Both of these complications arise as the result of hypertension.

2.5 Conclusion

Medical studies provide evidences that a number of cardiovascular, cerebrovascular,

and systemic diseases directly affect the morphology of the retinal vasculature. A

number of physiological alterations in the retinal vasculature can be served as clinical

biomarkers for complications such as hypertension, stroke and diabetic retinopathy.

The literature provides various measurement tools for describing vascular features

including AVR, LDR, vessel tortuosity, and bifurcation features. It is therefore

arguable that a comprehensive analysis of the retinal vasculature in terms of feature

measurements may provide the basis for early diagnostics and prevention of several

diseases. However, extracting such measurements manually or semi-manually is

time consuming exercise and unreliable, which suggests that automated extraction of

measurement is desirable. A vital step towards this analysis is the accurate extraction

of arterial and venous trees.



Chapter 3

Literature Review

3.1 Introduction

The retinal vasculature consists of mutually overlapping arterial and venous

trees. These trees show adaptation to several pathological disorders manifested in

fundus images. To study the association of retinal vascular changes to various dis-

eases, segmentation and classification of retinal vessels is a prerequisite. Inefficient

segmentation yields errors including disconnected, missing, and/or false segments.

This chapter describes the state of art techniques for solving problems including

classification of retinal vessels, local configuration of vessel segments, and extraction

of AV trees by globally configuring and classifying disconnected vessel segments.

The classification of retinal vessels is challenging but a long known problem, and

therefore a good number of techniques are available. Some elegant techniques have

been reported that disregard the classification of retinal vessels and locally resolve

dis-connectivity in a partially segmented vasculature to obtain binary segmented
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trees. This approach has two major limitations; firstly the configurations at junctions

in extracted binary trees may conflict with each other as the junctions are resolved

independently from each other. This may yield non-consistent binary trees. Secondly,

the system doesn’t classify the extracted trees. Efficiently extracting AV trees

from fully disconnected network of vessel segments by globally configuring all the

junctions and classifying all segments is relatively new area. To the best of our

knowledge, only three techniques have been reported so far that purely address this

problem. This thesis addresses the same task.

In the second half of this chapter (in Section 3.3), the techniques utilised in the

proposed methodology described for AV trees extraction in this thesis, are briefly

reviewed. The overall methodology is designed under the domain of dependency

graph and probability theory. This includes, Bayesian probability models that have

been designed for many purposes including classification in a vast range of domains.

In addition, an advanced graphical model named Markov Random Field, which is

the premier choice for expressing the joint probability distribution of priors and

likelihoods. Moreover, a number of inference techniques including Maximum a

Posteriori estimation through exhaustive search, as well as graph cuts to get optimal

solutions, are being frequently used by experts, and which are also the part of the

proposed methodology.
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3.2 Review of the Current State of Art

3.2.1 Local Configuration of Vessel Segments

The local configuration of retinal vessel segments refers to connecting the segment

ends with each other locally at each junction. All possible configurations at each

junction are considered independently, i.e. without the knowledge of configurations

at other junctions–followed by selecting the most likely configuration estimated by

probability or any cost functions. Very few comprehensive techniques have been

developed for configuring the segments at junctions.

The most recent technique, developed in (Favali et al., 2015), obtains a connec-

tivity kernel using the Fokker-Planck equation that utilises the geometrical structure

of multi-orientation cortical connectivity of vessels. By using the spectral clustering

on a large local affinity matrix, constructed by both the connectivity kernel and the

feature of intensity, the vessels are identified successfully in a hierarchical topology

each representing an individual perceptual unit. The method resolves crossings

by considering the local variation of orientation and intensity features using the

Euclidean distance between the intensities of blood vessels. The approach is imple-

mented using normalized affinity matrix that keeps the discriminative information

vessels at crossings.

The work produced in (Al-Diri et al., 2010) performs perceptual grouping of reti-

nal segments at disconnected junctions using self-organizing feature map (SOFMs)

that uses the cost functions for configuration. This method works by first identifying

isolated segment ends as leaves (terminal segments), with the others labelled as join-

able segment ends (JSEs). The centrelines of JSEs are progressively extended until
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it terminates or reaches the body of another segment. Using a set of rules, the groups

of segment ends are identified in local JSE sets. These sets are then independently

resolved using cost functions that gives low value for plausible junction geometry

by considering the plausibility of all possible configurations. The cost functions

utilise the intensities, widths and angles of the segment ends at local JSE sets. In

addition, the method detects overlapping segment whenever a segment appears with

over-width.

In addition, a vessel tracing algorithm reported in (Tsai et al., 2004) can identify

simpler cases such as bifurcations and crossings at disconnected/connected junctions.

The method works in three phases. Firstly, the seed points on the vessels are gathered,

then by recursively tracing the seed points along the vessel centreline assuming an

antiparallel edge model, and finally the local regions are identified. Each region

is the point of intersection of vessel directions, and is identified as bifurcation or

crossing depending on the number of vessels composing the region.

Moreover, a supervised probabilistic model is developed for local configuration

of segments at true junctions in (Qureshi et al., 2014) and which is also one of the

contributions of this thesis. The details of this method are provided in next chapter.

Furthermore, to the best of our knowledge, there are two techniques (described

below) in the literature that performs global configuration of segments to obtain

forests of binary trees.

Lin et al. (Lin et al., 2012) used curvature, width and intensity of segments as

features, and an extended Kalman filter to resolve the connectivity at bifurcations
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and crossings for extracting binary trees. This methodology works in three steps:

1) the extended Kalman filter is used to iteratively correct and learn the continuity

pattern of a disconnected segment; 2) the system selects the next segment, with the

highest continuity, in the close neighbourhood of previous segment; 3) grouping of

previous and next segment using minimum cost matching algorithm to resolve the

conflicts in configurations. In addition, their method performs global configuration,

and extracts trees, however doesn’t identify the classes of trees.

A similar approach adopted by Lau et al. (Lau et al., 2013) that extracts optimal

forests of binary trees in a specified region of interest (ROI). Their methodology

works by detecting the crossover points, and then by extracting optimal forests of

trees using on a rule-based model. The crossover points are detected using the

segment intensity, angle, and width. This technique attempts to globally configure

binary trees consisting of major vessels in limited zones.

3.2.2 Classification of Vessel Segments

The accurate classification of retinal vessels provides an opportunity to extract

potential clinical features (such as AVR, etc.) for diagnosis of various pathologies. In

addition, the classification of retinal vessels is also a prerequisite for studies involving

analysis of microcirculation of retinal vascular system, and hemodynamic of blood

flow in arterial and venous vessels. A number of techniques have been presented

for classifying the retinal vessels in fundus images, which utilise features including

geometry (e.g. arteries are thinner than veins), colour (e.g. arteries are brighter

than veins), and topographical information (e.g. crossing vessels are invariably from
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opposite class) of vessels. These features are local and relative, and thus classification

is challenged by variable local and image contrast, media opacities, and variable

reflective properties of vessels (specular highlights, “silver wiring”). Some of these

classifiers are discussed below.

One of the earliest attempts to classify retinal vessels in fundus images was made

by Li et al. (Li et al., 2003). They presented a very efficient piecewise Gaussian

model for extracting the intensity profile of major retinal vessels. The model put

considerable importance to central reflex in the vessels which is utilised as a filter

on the image for classifying vessels. They used a minimum Mahalanobis distance

classifier to differentiate retinal vessels. In addition, they performed a comparison

of single Gaussian with piecewise Gaussian model and concluded that the latter is

far appropriate than former. They utilise intensity distribution of the cross section

of blood vessel in the green channel of the image. They argue that green plane is

the clearest channel in the retinal images whilst red is usually saturated and blue

is too dark. They tested their model using a large number of major segments and

reported good results. During the same year, Grisan et al. (Grisan and Ruggeri,

2003) reported a technique in which the colour features including red values and the

mean of the hue values of the pixels were used to classify vessels. They first divided

the retinal image into four quadrants within concentric zone around the optic nerve

head. This enabled their system to control the discrimination of vessels locally in

each quadrant. Features extraction and classification process is performed in each

quadrant independently from other quadrants.

In addition, Kondermann et al. (Kondermann et al., 2007) trained two classifiers

based on neural networks and SVM (Support Vector Machine); and was able to
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classify major vessels to a good extent. They also introduced two feature extraction

methods-one for vessel profile features and other for vessel ROI based feature vectors.

The multiclass PCA method was used to reduce to dimensionality of feature vectors.

In addition, before extracting the features, they process the image to remove the

shading effect. Similarly, Narasimha-lyer et al. in (Narasimha-Iyer et al., 2007)

reported an SVM classifier that uses both functional and structural features of retinal

vessels. The structural features exploited the central reflex of vessels whilst the

functional feature includes ratio of the vessel optical densities for oxygen-sensitive

and oxygen-insensitive wavelengths obtained from arteries and veins.

Moreover, Zamperini et al. (Zamperini et al., 2012) has used width and colour

features of vessels for a number of classifiers including K-Nearest-Neighbour, Sup-

port Vector, and Quadratic Bayes Normal classifiers. They compared the outcome of

all classifiers, founding Quadratic Bayes Normal classifier with best results. Further-

more, A graph-based technique is introduced in (Rothaus et al., 2009) for classifying

retinal vessels. The anatomical characteristics of the retinal vasculature are modelled

as dual constraint graph. The technique works by means of manually labelling few

major segments, followed by propagating the labelling across the vascular graph

using a set of domain specific rules.

Recently, a graph-based approach for classifying vascular trees is introduced in

(Dashtbozorg et al., 2014). They used the segmented retinal vasculature to obtain

a graph consisting edges and nodes that denote segments and segment intersection

points respectively. The graph links (segments) at intersection points are labelled

from one of two vessel classes. For labelling of links, they utilise vessels features
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including intensity, angle, orientation, and width. Another recent work published

in (Eppenhof et al., 2015) has proposed an AV classification model via graph cut

optimization. The main focus of their work is on classification of major vessels using

the contextual information mainly obtained from bifurcations and crossings. There

is a significant difference between their proposed technique and ours in terms of the

inference techniques utilised, segments and dataset used, and the pairwise potentials

proposed.

It is noted that in all the publications discussed above the basic features utilised

for discriminating vessels into arteries and veins are nearly the same, i.e. hue,

saturation and intensity of vessels. The only difference is the classification model

proposed to use these features. In this thesis, a novel method for classifying vessel

segments using colour, physiological, and the spatial features of retinal vasculature

is introduced. To the best of our knowledge, this is the first time spatial features of

retinal vessels are thoroughly analysed and used as potential indicator for vessels

classification. The classification framework is designed using a Bayes probability

model in conjunction with graph cut for global labelling of both major and minor

vessels.

3.2.3 Global Optimal Configuration for Extracting Arterial and

Venous Trees

Automated extraction of arterial and venous trees from a network of disconnected

retinal vessel segments at junctions is an important and relatively new task. This

task comprises of local configuration and classification of segments simultaneously

through a sophisticated procedure ensuring no conflicts of local configurations (i.e.
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global configuration) among each other. To the best of our knowledge, there are only

two techniques available in literature (Joshi et al., 2014) and (Hu et al., 2015) that

purely address this task.

The most recent method introduced in (Hu et al., 2015) for extracting AV trees by

globally configuring the segment network. The method works in three major steps:

1) identifying and separating the connected points in the segmented vasculature,

followed by estimating costs of local configurations, 2) calculating global config-

uration costs, followed by extracting multiple anatomical trees using graph-based

metaheuristic algorithm for optimization, 3) classifying the extracted binary trees

into AV trees.

Joshi et al. (Joshi et al., 2014) have introduced a method for extracting AV trees

by finding an optimal Dijkstra’s graph search using orientation, width and intensity

for segments’ configuration whilst colour properties of vessels for classification. The

first phase of their method works by obtaining the binary segmentation of retinal

vasculature. In the segmented vasculature, the bifurcation, crossing and terminal

points are identified and separated to obtain singleton segments. In the second phase,

the segment network is represented as graph by denoting the segments as nodes,

and their associations as edges. The Dijkstra’s graph searches the minimum edge

cost path between nodes. The function that estimates the cost path between any two

nodes uses orientations, widths and intensities of segments corresponding to nodes.

The Dijkstra’s graph search yields several paths (sub-graphs), each consisting of a

number of segments. In the third phase, they used fuzzy C-means clustering method

to classify the extracted graphs (trees) into one of the two vessel classes.
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For an efficient extraction of AV trees, a novel graph based comprehensive

procedure is presented in this thesis. The method is highly appropriateness for the

given application (AV trees extraction task) from both algorithmic and theoretic

viewpoint. The main advantage of our system over the existing techniques is that it

addresses two problems (classification and connectivity) by integrating them into

a single model. On the contrast, the existing techniques solve each of these tasks

separately losing the opportunity to efficiently make the two tasks as complimentary

processes. Moreover, the existing models don’t fully exploit spatial features of

vessels as we did. Finally the existing techniques use greedy algorithms and don’t

exhaustively go through the search space for vessel configurations. A complete

comparison of technical issues between proposed AV extraction method and the

current state of art is provided in evaluation Chapter 6.

3.3 Review of Techniques for Proposed Methodology

The framework of the proposed methodology is designed mainly under the do-

main of probability theory. The principle elements utilised are the Naïve Bayesian

formulation, dependency graph model, and graph-cut based inference using the

Ford-Fulkerson algorithm. The following sections of this chapter provide theoretical

and application based details of the aforementioned techniques.

3.3.1 Naïve Bayes Probability

The Naïve Bayesian probability model (Bernardo and Smith, 2001) is a statistical

model which forms its basis on Bayes’ theorem (Bayes’ law or Bayes’ rule). The

Bayes’ theorem states that the posterior probability of an event A given event F is
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equal to conditional probability of event F given A times the prior probability of A.

Mathematically, it is written as:

p(A|F) =
p(F |A)p(A)

p(F)
(3.1)

Whereas, p(A|F) is posterior probability, p(F |A) is conditional probability of

event F given A, p(A) is prior probability of event A, whilst p(F) is the prior

probability of event F and is used as normalizing constant in Bayes’ theorem.

In addition, the Maximum a Posteriori (or MAP) estimation is the mode of

posterior distribution. Precisely, it refers to the object class with highest posterior

probability estimated through bayes’ formula as given:

δ̂MAP(x) = argmax
δ

p(x|δ )p(δ ) (3.2)

Whereas, δ is the class label and x is feature vector.

3.3.2 Markov Random Field

Dependency graph models are the probabilistic tools for expressing the joint proba-

bility distribution of a system. The Bayesian Network (Friedman et al., 1997) and

Markov Random Field (MRF) (Kindermann et al., 1980) are two major 2-D graph

models capable to express dependencies (as edges) among random variables (nodes).

The key difference between the two models is that formulizing Bayesian Network

requires distinct dependencies, i.e. directions of edges among the nodes are required

such that the established graph remain acyclic; whilst Markov Random Fields can be

undirected (or bidirectional) and can be cyclic.
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Formally, the Markov Random Field is a graphical model (2D Graph), as shown

in Figure 3.1 of a set of random variables with Markov properties expressed as an

undirected graph. The three Markov properties of an MRF graph are explained as:

Let G = (V,E) is an undirected graph of random variables Z = (Za)a∈V , then the

graph G is said to be MRF if following are true:

• Pairwise Markov Property: Any two non-adjacent variables (nodes) in G are

conditionally independent given all other variables, i.e.

Za ⊥ Zb|ZV\{a,b}, i f{a,b} ̸∈ E (3.3)

• Local Markov Property: Given its neighbor, a variable in G is independent of

all other variables, i.e.

Zb ⊥ ZV\close(b)|Zneigh(b) (3.4)

• Global Markov Property: Any two subsets (A and B) of G are conditionally

independent given a subset S of G partitioning A and B, i.e.

ZA ⊥ ZB|ZS (3.5)

3.3.2.1 Markov Random Field in Computer Vision

During the last few years, the MRF models have become the premier choice for

addressing numerous high, mid and low-level vision problems (Wang et al., 2013)

(Li, 2009). A variety of vision problems including classification (Solberg et al.,
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Fig. 3.1 A sample of two possible MRF graphs

1996), segmentation (Yang and Jiang, 2003) (Kato and Pong, 2006), optical flow

(Heitz and Bouthemy, 1993), motion analysis (Tsai et al., 2012), and many others

have been expressed in pair-wise or higher-order MRFs.

Vision problems in the context of MRF models are typically treated as energy

minimization problems (Szeliski et al., 2006). In segmentation, individual pixels may

be treated as nodes with four or eight connected dependencies to their neighbours

(see Figure 3.1). Each node (pixel) possess unary potential (or singleton potential),

whilst the edges between nodes encode the contextual constraints referred as pairwise

potential. Informally, the unary potential (unary term) is the compatibility of the pixel

with a specific label, and the pairwise potential is the compatibility of neighbouring

labels. The MRF energy has the following form:

E(Z) = ∑
i∈V

Φi(zi)+ ∑
(i, j)∈E

Φi j(zi j) (3.6)

For instance, given an MRF representing a grid of pixels of an image (shown in

Figure 3.2), the objective is to find an optimal classification of pixels into foreground

and background. In this case, the unary potential of each pixel is the likelihood

of the pixel as background or foreground. This could be a value representing the

probability of the pixel belonging to a specific class based on its own features. The
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Fig. 3.2 A grid of pixels with its corresponding MRF.

pairwise potential typically expresses smoothness between neighbouring pixels de-

fined as strength of connectivity in the graph. Thus, the pairwise potential expresses

a cost term (probability of connectivity) that penalizes the variation of states between

neighbouring nodes.

In the domain of computer vision, most of the MRF-based applications denote

nodes as the grid of image pixels; however, the representation is not limited to image

pixels only. There are several applications such as in (Saund, 2006) and (Bianco

et al., 1999) in which the nodes of MRF-graph denote objects/states rather than

image pixels. The crucial step is the formulation of the logic of interaction among

these variables (objects) in the framework of heterogeneous Markov Random Fields.

To this end, minimizing the aforementioned energy function using an appropriate

inference technique could yield in disjoint graphs that correspond to optimal classifi-

cation of pixels.
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3.3.3 Inference on Markov Random Field

Inferring an optimal configuration on the formulated MRF is a key task. Various

families of inference techniques exist each with its strength and weakness including

Iterated Conditional Mode, Simulated Annealing , Loopy Belief Propagation, and

Graph Cuts. The Iterated Conditional Modes (Besag, 1986) are the most computa-

tionally efficient methods for optimizing MRF energy, which work by iteratively

maximizing the joint probability of each variable conditioned on rest. However,

these methods lack the ability to obtain good optimums (Wang et al., 2013). On

the other hand, the Simulated Annealing (SA) (Geman and Geman, 1984), (Blake

and Zisserman, 1987), (Tupin et al., 1998), are the probabilistic techniques to obtain

global optimum solution in large search space. The SA is a metaheuristic approach

which works by interpreting slow cooling as a slow decrease in the probability of

inferring bad solutions. In theory, Simulated Annealing methods obtain guaranteed

global optimum solutions; however, these methods are considered impractical from

computational cost viewpoint (Wang et al., 2013). A relatively advanced approach

is Loopy Belief Propagation (Weiss and Freeman, 2001), (Freeman et al., 2000),

(Felzenszwalb and Huttenlocher, 2006), for estimating approximate inference on

probabilistic graphical models. These methods, also known as sum-product message

passing techniques, are the message passing algorithms that calculate the marginal

distribution of unobserved nodes conditioned on observed nodes. These methods

perform very well in regard to computational cost, and obtaining optimum solutions.

In recent years, the graph cut approach (Boykov et al., 2001), (Greig et al.,

1989), (Roy and Cox, 1998), (Boykov et al., 1998), (Ishikawa and Geiger, 1998)

gained importance due to the strong theoretical support of max-flow min-cut theorem
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Fig. 3.3 An optimal cut is shown severing the graph that results in pixels classifica-
tion.

and computational efficiency. These are powerful alternatives to abovementioned

techniques and thus have been utilised in numerous vision problems, including binary

labelling problems. In this thesis, the graph cut approach is utilised for finding the

global optimal configuration on MRF.

3.3.3.1 Graph Cuts

In the domain of graph theory, a graph-cut is the separation of a given graph by means

of partitioning the vertices into two or more disjoint subsets (as shown in 3.3) that is

minimum or maximum in some sense depending on the application purpose. To this

end, the minimum graph cut techniques can be employed to efficiently solve a wide

range of computer vision problems (represented in MRF graphs) including image

smoothing, segmentation, labelling, and energy minimization tasks. The MRF based

energy minimization tasks (Equation 3.6) are typically reduced to the maximum flow

problem; and thus, solved by finding the minimal cut using the max-flow min-cut

theorem. Under binary problem formulation, the minimum energy solution using

graph cut finds a globally optimal solution, which often corresponds to maximum

posteriori estimate solution. In the following paragraphs, the max flow problem, the



3.3 Review of Techniques for Proposed Methodology 33

Ford-Fulkerson algorithm, max-flow min-cut theorem, and ST -cut is described in

detail.

3.3.3.2 Max Flow Problem

In optimization theory, max flow problems are described maximizing the flow in

a source-sink flow network as shown in 3.4(a). In a flow network, the edges have

specific directions and capacities (weights). The objective is to maximize the flow

from source node (S) to sink node (T ) such that the capacities of the edges are not

saturated. This formulation of Max Flow was coined for the first time by T.E. Harrris

and F. S. Ross to model Soviet railway traffic flow in 1954. Later in 1955, two

mathematicians Lester R. Ford, Jr. and Delbert R. Fulkerson solved the max flow

problem by introducing the Ford–Fulkerson algorithm.

3.3.3.3 Ford-Fulkerson Algorithm

The Ford-Fulkerson algorithm (Ford and Fulkerson, 1956) or FFA is a method to

find the maximum flow in a flow network by iteratively finding the augmenting paths

in a residual graph until there is no path left from source to sink. With this approach,

several implementation of FFA are available in literature. Let G(V,E) be a graph

with source (S) and sink (T) node, capacity c(u,v) for each edge e(u,v) from u to v,

and flow f (u,v) from u to v. The FFA finds the maximum flow from S to T while

maintaining the following constraints:

The flow along an edge never exceeds its capacity, i.e.

∀(u,v) ∈ E f (u,v)≤ c(u,v) (3.7)
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The total flow from u to v is always equal to total flow from v to u, i.e.

∀(u,v) ∈ E f (u,v) =− f (v,u) (3.8)

The net flow leaving source node S must be equal to net flow arriving at T , i.e.

∑
(S,u)∈E

f (S,u) = ∑
(v,T)∈E

f (v,T) (3.9)

The computer vision community frequently uses a special version of MRF; the

ST-graph, for minimum cut (or ST-cut) for binary optimization problems using

Ford-Fulkerson algorithm. In ST graph for binary problems, the source node repre-

sents one of the class label whilst the sink node represents the opposite class label.

An example given in Figure 3.4 demonstrates implementation of Ford-Fulkerson

algorithm on a ST graph. All edges from source to nodes and all edges from nodes to

sink are called t-links, whilst edges between all other intermediate nodes are termed

as n-links. In each iteration from Figure 3.4(a) to Figure 3.4(f), the algorithm finds

the new path Pi from source (S) to sink (T) in the residual graph. The flow f sent

along each path Pi is equal to the minimum of the available capacities of edges

that form path Pi. For instance, a path P1 found in Figure 3.4(a) from source to

sink is via (S, n1, n3, T). The maximum flow f can be sent along P1 is 0.25. After

sending flow along P1, the capacity of each edge forming path P1 is decreased by

amount f as shown in Figure 3.4(b). Also, to keep the flow equilibrium in n-links,

the capacity of each edge opposite to the direction of edge forming P1 is increased

by amount f , as shown in case of n1 and n3, the capacity c(n3,n1) is increased by

0.25. Since the total capacity of t-link e(n3, T) is utilised in path P1, no more flow

can be sent through this link and hence the direction of edge e(n3, T) is changed. In

each iteration, the f is increased by amount of flow of the new path. The algorithm
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stops when there is no path left to send flow from S to T. The final flow f is the

maximum flow sent from S to T via 5 unique paths shown in Figure 3.4(a) to Figure

3.4(f), i.e. f =0.25+0.28+0.21+0.2+0.21=1.15. In the final residual graph Figure

3.4(f), any node, to which the source node can still send flow directly or via another

node(s), is remain connected to source and disconnected from T, i.e. the node is

labelled S. All other nodes, to which the source node cannot send flow in the final

residual graph, are disconnected from source and remained connected to T, i.e. the

nodes are labelled T. Thus, in Figure 3.4(f), the node n1 and n3 are assigned S label,

and node n2 is assigned with T label.

3.3.3.4 Max-Flow Min-Cut Theorem

The Max-Flow Min-Cut theorem states that in a flow network, the minimum capacity

required to separate the network in such a way that no flow can pass from source to

sink node is equal to the maximum amount of flow from source to sink. This implies

that in the example provided in Figure 3.4, the maximum flow (i.e. 1.15) obtained

through running Ford-Fulkerson algorithm is equal to the minimum cost required to

sever the graph such that no flow can pass from source to sink, as shown in Figure

3.4(f). This theorem provided a strong basis for solutions developed for a wide

range of MRF based energy minimization problems including image segmentation,

classification and optical flow.

3.4 Conclusion

Under the domain of probability theory, graph based methods provide an effective

framework for many computer vision problems. Probability and graph theory are

well understood areas offering a range of algorithms based on the strong theoretical
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concepts. The Bayesian base posterior probability, for estimating global optimal so-

lution using graphical expressions is the comprehensive approach, utilised to achieve

to milestones of this project. Since the underlying models for local configuration

and classification are trained under probabilistic framework, the MRF graphical

model is the highly appropriate for the current domain. Out of the two probabilistic

graphical models (MRF and Bayesian Network), the MRF model is most suitable

for the current problem as it allows cycles in the formulated graph, i.e. its bidirec-

tional. During the experiments and evaluation, the applicability of Naïve Bayes’ law,

Markov Random Field, Ford-Fulkerson Algorithm, and ST graph cut for inference,

is found highly subtle for major tasks of the current project.
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Fig. 3.4 The Ford-Fulkerson algorithm is applied on each graph. In each iteration
from (a)-(f), the algorithm finds a new path from source to sink and send the flow
along it. In each iteration, the algorithm updates the residual graph by decreasing the
capacities of edges utilised in sending flow. The algorithm stops when there is no
path left from source and sink.





Chapter 4

Vessels Local Configuration

4.1 Introduction

This chapter has three major contributions summarized in the following paragraphs.

First, a new probability based system is described (in Section 4.4) that is designed

to efficiently form junctions. A junction is a set of segment ends in close proximity

which may be interconnected; whereas segment interconnections are called joints

including bridges (two segments joining), bifurcations (a parent segment joining two

child segments), and terminals (single segment degenerate case). These junctions are

formed by a novel dynamic region growing algorithm. This does not require hand-

tuning of parameters, rather it is controlled by dynamically derived parameters for

each region. The system ensures accurate assignment of segment ends to appropriate

junctions and largely avoids forming large, false, or complex junctions.

Second, a supervised Bayesian probabilistic model is developed (in Section 4.5)

for estimating the posterior probabilities of possible connection configurations of
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segment ends within each junction. The geometrical and intensity features of retinal

vessels at junctions follow certain principles which help to identify the true joints

of broken segments. A detailed statistical analysis of these features, extracted from

the landmark segment joints at junctions, is conducted using the training data. The

representative parameters of frequency distributions of these features are identified

and utilised for estimating priors and conditional likelihoods of configurations in

the test data. The advantage of the Bayesian probability model is that it is trained to

represent all mutually exclusive configurations at each junction.

Third, a new image set is established (in Section 4.2) consisting of standard

binary vessel segmented images of DRIVE augmented with vessels classified as

arteries and veins. The vessels are manually labelled in three phases by a trained

ophthalmologist and two computer vision experts. This dataset is used to evaluate

the proposed system. The dataset is freely available for study and research purpose.

Section 4.2 provides the details of methods introduced in (Al-Diri et al., 2009)

and (Bankhead et al., 2012). These methods are used to obtain two sets of segmented

vessels in DRIVE images and are used for training and testing. Section 4.3 formally

states the research problem and the expected outcome of the thesis. This section also

provides formal definitions of all the major components of retinal vascular system.

Parts of this chapter are published in (Qureshi et al., 2013) and (Qureshi et al.,

2014).The overall pipeline overview of Implementation is shown in Figure 4.1.
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Fig. 4.1 Pipeline Overview for Implementation
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4.2 Material

A number of retinal image sets are publically available for study and research pur-

pose. These image sets are frequently used by researchers to comparatively assess

algorithms for localization, segmentation, registration, classification, and identifi-

cation of several retinal components in fundus images. The publically available

datasets include STARE (Hoover, 1975), DRIVE, and diaretdb0/1 (Kauppi et al.,

2006). The DRIVE dataset is also utilised in this thesis.

4.2.1 DRIVE Dataset

The DRIVE (Digital Retinal Images for Vessel Extraction) dataset is designed for the

comparative study and analysis of retinal vessels. It is one of the most widely used

dataset for vessel identification, vessel segmentation, and analysis of other retinal

components, as used in (Jelinek et al., 2007), (Adjeroh et al., 2007), (Martinez-Perez

et al., 2007), (Perfetti et al., 2007), and (Wang et al., 2007). The DRIVE contains 40

colour retinal images obtained through a screening program in the Netherlands from

400 diabetic subjects aged between 25-90 years, using a Canon CR5 non-mydriatic

3CCD camera with a 45 degree field of view (FOV). All images are of size 768 ×

584 pixels with 8 bits per colour channel, and are divided into a training set and

test set, each with 20 images, of the 40 images, 33 images do not show any sign

of diabetic retinopathy, signs of mild early diabetic retinopathy including exudates,

hemorrhages and pigment epithelium changes.

The dataset also contains three sets of binary images segmentations given manual

of vessels (vessels identified as white pixels). These sets are Single Manual Set

(20 images) for training set; First Manual Set (20 images) and Second Manual Set
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(20 images) for test set. These sets were manually segmented by three observers

(originally vision experts trained by ophthalmologists) from the DRIVE research

group. For all the 40 images, there is also a set containing mask images that delineates

the Field of view. A sample colour fundus image and its equivalent binary vessel

segmented image from DRIVE is shown in Figure 4.2.

4.2.2 DRIVE Vessels-Classified Set

The research community lacks ground truth vessel labels (Artery/Vein) for the

DRIVE dataset. This may lead to subjective errors when algorithms are evaluated

using DRIVE images. In the following section (Section 4.2.2.1), a new gold standard

image set with classified vessels as an extension of DRIVE dataset is presented,

offering a highly reliable benchmark set for the future research.

4.2.2.1 Classified Vessels for DRIVE (CVD)

The Classified Vessels set for DRIVE images or CVD is established as an extension

of the DRIVE images using the Single Manual Set (training set) and the First Manual

Set (test set). The CVD set contains 40 images, resolution 565x584, consisting of

manually segmented vessels with arteries marked red, veins blue, undistinguish-

able/orphan vessels as yellow, and distracting vessels (vessel-like data) marked with

green colour. The green distributors might be true vessels in some cases; however

their type is difficult to judge. A sample classified image is shown Figure 4.3.

4.2.2.2 Vessels Labeling Criteria

Following is a list of few characteristics of the retinal vasculature used as guidelines

during the labeling process.
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(a)

(b)

Fig. 4.2 (a): A healthy retinal image from DRIVE image set with (b): its manually
segmented vessels in binary image.
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(a)

(b)

Fig. 4.3 (a): A sample colour retinal image from DRIVE image set and (b): its
equivalent vessels-classified image from CVD image set.
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1. Vessels crossing each other must belong to opposite classes. (Kondermann

et al., 2007), (Larsen et al., 2005).

2. Arteries are usually thinner than veins in a close neighborhood (Liew et al.,

2007) (Tramontan et al., 2008).

3. Parallel vessels in a close neighborhood usually belong to opposite classes.

4. The width of a parent vessel at a bifurcation is normally larger than that of its

children vessels (Zamir, 1976), (Zamir and Chee, 1986), (Zamir and Brown,

1982) and (Zamir, 1978).

5. Arteries are brighter than veins in their neighborhood.

6. The central reflex is usually brighter/wider in arteries than veins (Narasimha-

Iyer et al., 2008), (Brinchmann-Hansen and Heier, 1986), (Lowell et al.,

2004b), and (Brinchmann-Hansen et al., 1986).

7. The vessels inside the optic nerve head are usually twisted and don’t provide

meaningful information, thus are not considered, unless exceptionally clear

and prominent.

4.2.2.3 Vessel Labeling Process

Three observers labelled the vessels: two computer vision experts (including the

author) at the School of Computer Science, University of Lincoln, UK, and one

trained ophthalmologist at Sunderland Eye Infirmary, UK. The labeling is performed

with a thorough analysis of enhanced colour images of DRIVE.

A three phase labeling process is conducted to perform labeling and to resolve

labeling conflicts. In the first phase, all three observers independently labeled the
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vessels. Around 85% of the vessels were consistently classified by all observers in

first phase. The remaining of 15% vessels included a small percentage of unlabeled

and distracting vessels.

In the second phase, the three observers shared their labeling with each other,

and reconsidered their initial decisions. The observers were allowed to update their

labeling upon change in opinion. This phase resolved 3% of vessels labeling.

In the third phase, the 12% of inconsistently labelled vessels were labelled by

voting using the following criterion:

1. If any two observers (O1 and O2) label a vessel as xi, whilst the third observer

(O3) labels the same vessel as x j, then the final label of that vessel is set as xi.

2. If three observers (O1, O2, and O3) label a vessel differently from each other,

i.e. xi, x j and xk respectively, then vessel is marked Unlabeled.

3. An exceptional case of rule 2 is that if all three observers (O1, O2, and O3)

have different label for vessel, however the ophthalmologist observer (say O1)

is confident on his labeling xi, then the vessel is set with xi as its final label.

The three phase process resulted in 96% of vessels classified into arteries and

veins, 3% of vessels as unlabeled, and 1% of vessels as distraction. In addition, the

bifurcation and crossover locations in the labeled set are compared with the junction

locations provided in (Azzopardi and Petkov, 2011) and have been found completely

consistent. The dataset is publically available for evaluation purposes. The labeling

opinion for unlabeled (shown in Figure 4.4) and distracting vessels (shown in Figure

4.5) from experts is welcome.
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4.2.2.4 Labelling Complications

The unlabeled vessels (shown in Figure 4.4) refer mostly to those vessels emerging

from the temporal (brighter side) of the optic nerve head, and/or thin vessels with

insufficient features to be distinguished. During the labeling phases, two images were

found with a few missing vessel segments in their corresponding binary segmented

manual images (see Figure 4.6). In such cases, the labels of the nearby vessels are

judged using spatial information, i.e. by observing the labels of neighboring vessels.

Fig. 4.4 Vessels with yellow colour showing undistinguishable vessel class.

Fig. 4.5 The type of vessels (identified as green) is uncertain or these are not true
vessels.

4.2.3 DSJS for Analysis and Experiments

Many robust techniques for automated segmentation of retinal vessels have been

reported to date, (Hunter et al., 2005), (Marín et al., 2011), (Mendonca and Campilho,
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Fig. 4.6 The arrow in the labeled image indicates a missing artery segment; while
the corresponding binary equivalent (taken from Manual Set) doesn’t provide any
information about this missing segment.

2006), (Ricci and Perfetti, 2007), (Ricci and Perfetti, 2007), (Lupaşcu et al., 2010),

(Odstrcilik et al., 2013), (Li et al., 2015), (Li et al., 2015), (Al-Diri et al., 2009)

and (Roychowdhury et al., 2015). The proposed system presented in this thesis is

capable to extract A/V trees from disconnected vessel segments obtained using any

segmentation technique.

A probabilistic tracking method is proposed in (Roychowdhury et al., 2015) to

detect blood vessels in retinal images. In this process, the vessel edge points are

detected iteratively using local grey level statistics and vessel’s continuity properties.

At a given step, a statistical sampling scheme is adopted to select a number of vessel

edge point’s candidates in a local studying area. Local vessel’s sectional intensity

profiles are estimated by a Gaussian shaped curve. A Bayesian method with the

Maximum a posteriori (MAP) probability criterion is then used to identify local

vessel’s structure and find out the edge points from these candidates. Different

geometric shapes and noise levels are used for computer simulated images, whereas

real retinal images from the REVIEW database are tested.

In (Zhang et al., 2015) an automatic unsupervised blood vessel segmentation

method for retinal images is proposed. Firstly, a multidimensional feature vector

is constructed with the green channel intensity and the vessel enhanced intensity
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feature by the morphological operation. Secondly, self-organizing map (SOM) is

exploited for pixel clustering, which is an unsupervised neural network. Finally,

they classify each neuron in the output layer of SOM as retinal neuron or non-vessel

neuron with Otsu’s method, and get the final segmentation result.

An automated framework for segmenting retinal vasculatures is proposed in

(Zhao et al., 2015). The proposed framework consists of three technical compo-

nents: Retinex-based image inhomogeneity correction, local phase-based vessel

enhancement and graph cut-based active contour segmentation. These procedures

are applied in the following order. Underpinned by the Retinex theory, the inhomo-

geneity correction step aims to address challenges presented by the image intensity

in-homogeneities, and the relatively low contrast of thin vessels compared to the

background. The local phase enhancement technique is employed to enhance ves-

sels for its superiority in preserving the vessel edges. The graph cut-based active

contour method is used for its efficiency and effectiveness in segmenting the vessels

from the enhanced images using the local phase filter. They have demonstrated its

performance by applying it to four public retinal image datasets (3 datasets of colour

fundus photography and 1 of fluorescein angiography).

For training and evaluation of the proposed automated system, two segmentation

techniques ((Al-Diri et al., 2009) and (Bankhead et al., 2012)) are used to obtain the

network of disconnected vessel segments in DRIVE images. These are termed the

‘DRIVE Segment-Junction Set’ DSJS1 and DSJS2 respectively. The technique in

(Al-Diri et al., 2009) works by using two pairs of active contours to capture each side

of the vessel edge, whilst in (Bankhead et al., 2012) vessels are segmented through

an iterated procedure of wavelet thresholding. The segmented sets DSJS1 and DSJS2
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differ from each other in many aspects, including the number of segmented vessels in

each image, number of false segments, number and locations of disconnected points

of segments network, and complexity of junctions. From the viewpoint of such

aspects, the difference in DSJS1 and DSJS2 gives an opportunity for a fair evaluation

of the proposed system.

In addition, the optic nerve head is a highly vessel-congested area in which

vessel segments are usually twisted and/or broken; thus segments inside ONH are

not considered during the analysis and experiments. To eliminate vessel segments

from the ONH, the centre is manually located and vessel segments are removed from

a region of size 100 × 100 pixels cantered at the ONH centre.

A sample of images selected from DSJS1 and DSJS2 is given in Figure 4.7.

As mentioned earlier that the DRIVE dataset comes with gold standard binary

images with manual segmentation of vessels for all of its 40 colour images; the key

reason for not utilizing the gold standard binary image set of manually segmented

vessels for training and testing purpose, is because the measurements obtained

from binary images are not as precise as extracted from colour images using some

automatic segmentation technique. For instance, the pixel coordinates of vessel

edges in the manually segmented binary images are expressed as whole numbers;

whilst an elegant automatic vessel segmentation technique provides accurate vessel

boundaries with fraction of pixels. Also, the centrelines obtained from manual

segmentation using some thinning function are usually not as accurate, particularly

at the junction location. In addition, the gold standard binary image set consists

of vessel segmentation with no false or missing segments, making the problem

of connectivity and classification of segments fairly simple. Thus evaluating AV
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extraction technique using such dataset would keep the state of the art ambiguous as

any automatic segmentation technique usually results in few false and/or missing

segments. However, in this thesis, the gold standard binary set is used only for

comparing the results obtained from automatic connectivity and classification of

broken segments which were obtained using automatic segmentation technique.

4.3 Formal Problem Statement

This section formally describes the problem and expected outcomes, defining the

terminology, and elements constituting the vascular system using set builder notation.

4.3.1 Preliminaries

• Definition 1. Tree: A retinal fundus image consists of a forest of single or

multiple vascular trees T l
j of arteries (A) and veins (V ). In a completely seg-

mented retinal vasculature, a tree T l
j comprises of connected vessel segments

of identical classes.

• Definition 2. Segment: In an incompletely segmented vasculature (such as

DSJS1 and DSJS2), a segment sa is an atomic section of (apparent) vessel with

no bifurcations, crossings or breaks. It has two ends: the head h (which is

nearest to optic disc) and tail t. The following rules are applicable:

1. S = {{S1},{S2}, ...,{Sk}}

Whereas, S j is the subset of superset S.

2. S j =
{

sr
a|a = 1,2,3, ...∧ r ∈ {h, t}

}
3. T l

j = {S j|∀sr
a ∈ S j,sr

a = l}
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(a)

(b)

Fig. 4.7 Vessel segments obtained using technique Bankhead et al. (2012) in (a) and
Al-Diri et al. (2009) in (b).
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4. ∀sr
a ∈ T l

j ⇒ sr
a = l

5. ∪p{Sp}= S s.t. Sa∩Sb = /0.

A segment must have both of its ends belong to the same tree, i.e.

6. ∀si ∈ Tj⇒{sh
a,s

t
a} ∈ Tj

A segment is the part of only one tree at a time , i.e.

7. ∀sa ∈ Tk,sb ∈ Tq⇒ a ̸= b

The superscript r with segment sa is ignored whenever unnecessary.

• Definition 3. Joint: A joint Lu is a knot (a type of connection) of segment

ends. There are three types of joints: a bridge is a joint of two segments

ends with one head and one other tail (sh
a,s

t
b), a bifurcation is a joint of three

segment ends with one tail and the heads of other two segments (st
a,s

h
b,s

h
c),

and a terminal is a segment tail end (st
a) that is not connected to anything. All

segments forming any joint must belong to the identical vessel class.

8. ∀(sa,sb) ∈ Lu⇔ (sa,sb) ∈ l

Segments forming any joint must be directly connected to each other.

9. ∀(sa,sb) ∈ Lu⇔ sa↔ sb, Symbol ‘↔’ denotes connectivity.

From 8 and 9, we can deduce

10. ∀(sa↔ sb) ⇔ (sa,sb) ∈ l

A segment sa can’t have both of its ends belong to same joint, i.e.

11. ∀(sr
a,s

r
′

b ) ∈ Lu⇒ i ̸= j
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• Definition 4. Junction: A junction jk is a spatial location where a number of

segment ends either meet or come into close proximity. Let J be a superset of

sets Ji, whereas each Ji consists of junctions jk, then the following rules are

applicable:

12. J =
{
{J1},{J2}, ...{Jm}

}
13. Ji = { jk|k = 1,2,3...}

A junction cannot contain both the ends of a segment, i.e.

14. ∀a,b,sh
a,s

t
b ∈ jk⇒ a ̸= b

It must be noted that much of the literature uses ‘junction’ as a term for a

‘bifurcation’ joint only; here, a junction refers to a set of segment ends in a

spatial location that connected by a number of joints.

• Definition 5. Junction Configuration: A junction configuration, Ck
q (the qth

configuration of the kth junction is a combination of joints, such that every

segment end in the junction is assigned to exactly one joint, Ck
q = {Lu

k |
⋃

u sr
a ∈

Lu
k = jk}. The superscript u represents joint index.

• Definition 6. Label Set: The label set L is the set of vessel class labels which

are assigned to vessel segments during the inference process, and is given as

L = {li|li ∈ (A,V )}.

• Definition 7. Global Configuration: A global configuration refers to a set of

configurations at all junctions across the network. A local configuration, on
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the other hand, refers to the one identified at specific junction independently

from configurations at other junctions.

• Definition 8. Disjoint Network: Assuming the entire segment space S as a

segment network F, a disjoint network Fi is a subset of F such that all segments

that belong to Fi must be associated to each other directly via a single junction

or indirectly via multiple junctions. The configuration of each disjoint network

Fi may result in one or multiple vascular trees, thus:

15. F =
{
{F1},{F2},{F3}, ..,{Fk}

}
16. Fi =

{
T l

j | j = 1,2,3...∧ l ∈ {A,V}
}

Also, a junction jk can belong to only one disjoint network Fi at a time, i.e.

17. ∀sa ∈ Fp,sb ∈ Fq⇒ @ jk s.t. (sa,sb) ∈ jk

A fundus image with several vascular disjoint networks is given in Figure 4.8.

The segments form single joints or multiple overlapping joints at their associated

junctions. This proves that any two segments (sa,sb) associated to a junction jk don’t

necessarily connected to each other, i.e. they might belong to different overlapping

joints. In addition, the cardinality of junction, denoted by | jk|, is the total number

of segment ends associated to jk.The list of symbols used in this thesis with their

descriptions are provided in Table 4.1.

4.3.2 Problem Statement

The configurations of different disjoint networks are independent of each other, thus

the proposed method is applied on each disjoint network Fi separately. Formally,

given a disjoint network F of set of unlabeled segment set S with their joints discon-

nected at respective junctions jk of junction set J, the objective is to find a highest
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(a)

(b)

Fig. 4.8 (a) A retinal image from DRIVE with several disjoint networks. (b) A single
disjoint network Fi consisting of nine segments and four junctions.
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Symbols Descriptions
A Label of an arterial segment
V Label of a venous segment
l Class Label (representing either Artery or Vein)
si ith segment
sr

i Specific end of ith segment,
where r represents either head or tail end of segment

S Segment Space (Set of all segments)
S Set of selected segments (Subset of S)
T l

j jth tree of vessels of class label l
jk,J jk : kth junction; J : Junction Space
J Set of selected junctions (Subset of J)

Ck
q qth configuration of segment ends at kth junction

h, t h : Head of the segment; t : Tail of the segment
Lu uth joint (such as Bifurcation, Bridge etc)

η ,ηi η : Hue (extracted from entire segment); ηi : Hue of ith segment
ψ,ψi ψ : Saturation (extracted from entire segment); ψi : saturation of ithsegment
v,vi v : Intensity (extracted from ending profiles of segment);

vi : intensity of ith segment
w,wi w : Average segment Width; wi : average width of ithsegment

r Orientation (refers to segment head or tail)
m,mi m : Slope of centreline of segment at specific end;

mi : slope of centreline of ith segment at its specific end
α Angle between slopes of two segments at some junction
β Width-Ratio of two segments
γ Difference between intensities of two segments
δ j jth intensity profile
φ Difference between orientations of two segments at a junction
φ 1 Orientation of a Terminal (φ 1 = r )
φ k For Bridges (k=2), Bifurcations (k=3)
f Feature Vector specific to the model

χr
a Segment end region at rth end of ath segment

Ωa,b Shared region between segment end regions of segment a and b, i.e. χr
a and χr

b
fp Front point (pixel) of the centreline of a segment at its specific end
bp Back point (pixel) of the centreline of a segment at its specific end
ϒr

a Length between points fp and bp
V Set of nodes in the formulated MRF graph
E Set of edges in the formulated MRF graph

e(sa,sb) Edge between node sa and sb in formulated MRF graph
G⃗ST Formulated ST graph
S Source node in formulated graph
T Sink node in formulated graph
F́ Configured disjoint network
G
′
ST Residual graph after running Ford-Fulkerson algorithm
ŝa Major Segment
s̄a Minor Segment

Table 4.1 Symbols and Descriptions.
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probability global configuration Ci of vessel segments at junctions by means of

forming joints and classifying vessel segments of joints in order to extract AV Trees

(T l
i ) such that extracted trees don’t violate any of the aforementioned constraints

(1-17).

This objective is achieved in a pipeline of four major phases given as

1. Forming junctions.

2. Estimating probabilities of local configurations.

3. Estimating class probabilities of segments.

4. Extraction of AV trees though global configuration.

The first two phases are explained in Section 4.4 and Section 4.5, whilst the

remaining two phases are detailed in Chapter 5.

4.4 Junction Formation

Forming junctions is the first and the most critical task in the process of AV trees

extraction. In this process, a number of geometrical locations are identified as

junction points in the network of disconnected segments, with each junction point

composed of (associated with) a small number of segment ends which may be

interconnected. Accurate identification of these points is very important to ensure

good performance at later stages. The literature does not offer any efficient technique

that guarantees correct identification of junctions across segment network, and thus

often resulting in non-true junctions such as wrong association of segment ends to the
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(a) (b)

(c) (d)

Fig. 4.9 (a): An illustration of two consecutive bifurcations at junction 1 and 2. (b):
When disconnected, the segment sr

a has equal chance to be associated to the junction
1 forming a wrong junction. (c): An illustration of two bifurcations at junctions 1
and 2 on very close vessels. (d): When disconnected, any system might form one
big junction.
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junction or identifying multiple close junctions as single junction. The illustration of

these complexities is shown in Figure 4.9.

The geometrical features at the end profiles of a segment provide a good estimate

of the direction of the missing part of the segment—this helps to approximate the

location of the junction where the segment joins. Viewing a junction as a meeting

point of endings of multiple segments, a junction is identified by considering the

mutual associations of two or more segments having their ends in close proximity to

each other. In this context, the conventional methods of identifying junction point,

such as Tsai et al. (2004) and Al-Diri et al. (2010), work by growing the central line

of a segment, in the direction obtained from ending profiles of segment, followed

by detecting the intersection point with the direction vectors of other segments,

see Figure 4.10. This approach works well with fairly simple cases, however, the

accuracy in complex cases is not guaranteed.

Fig. 4.10 The direction vectors of four segment ends find an intersection point, thus
forming a junction of all four segment ends.

This thesis presents a probability based procedure to form junctions. The method

works by specifying variable size regions at the ends of all segments in conjunction
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to predefined conditions; followed by identifying junctions, each composed of all

those segments that share their specified regions with each other to a reasonable

extent. This procedure avoids forming abovementioned (non-true) types of junctions

to a substantial extent. The complete procedure to form junctions is explained below.

4.4.1 Segment End Regions

A region is specified at each end of a segment, termed as ‘segment end region’ (SER)

and is denoted by χ . The SER has four vertices—the coordinates of two of these

vertices correspond to the two side points of the ending profile of the segment, whilst

the other two are specified using a number of geometrical features at the ending

profiles of a segment, see Figure 4.11.

At a particular end r of a segment sr
a, let fp and bp denotes front and back points

on the centreline at first and seventh profile respectively, whilst ps1 and ps2 denotes

edge points of side 1 and side 2 of first profile of sr
a. The coordinates of bp and f p

are used to obtain the direction vector of sr
a. The segment end region χr

a for segment

sr
a is defined as a region (set of image pixels), inside a convex polygon having four

vertices, i.e. ps1, ps2, ps3, and ps4. The coordinates of ps3 and ps4 are specified

using the length (denoted by ϒr
a) between the point bp and the point up to which the

centreline is increased. A sample of segments with segment end regions is shown in

Figure 4.11.

A shared-region Ωa,b represents number of pixels shared by regions χr
a and χr

b of

particular ends of two segments sr
a and sr

b, see Figure 4.12. The shared-region Ωa,b

provides an opportunity to the system to form a junction jk that is composed of sr
a
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Fig. 4.11 An illustration of an SER at the end of a segment. The centreline at the end
of the segment is increased as direction vector using bp and fp points. The green
points are the four vertices of the polygon.

and sr
b. In this context, a crucial step is to decide the value of ϒ as it determines the

size of χ for the segment end. A fixed size χ is not desirable: a large size produces

inappropriate or excessive shared-regions, and the formation of excessively large or

incorrect junctions. A small χ yields reduced numbers of shared-regions, and the

failure to detect some true junctions. The approach adopted is to initially use a small

size χ (using ϒMIN) for all segment ends, followed by the size of χ for a subset of

segment set that demonstrates either of the two conditions:

Fig. 4.12 An illustration of SERs of two segments with shared regions shown in
shade.
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Condition 1: When χr
a of a segment sr

a doesn’t have shared-region with χr
b of

any other segment sr
b, the length ϒr

a is incrementally increased to update the size of

χr
a, until χr

a becomes the part of any Ω, or ϒr
a value reaches a maximum limit ϒMAX .

This step is demonstrated in Figure 4.13.

Condition 2: When χr
a of a segment sr

a shares a region with both χr
b and χr

′

b of

segment sb, the ϒr
a is repeatedly decreased until χr

a shares region with χr
b only. This

step is demonstrated in Figure 4.14.

During experiments, ϒMIN=7 and ϒMAX =10. The value of angles Θ1 and Θ2 is

set 28.

In addition, the growing centreline (direction vector) at the segment end sr
a may

touch the boundary of another segment sb. In this case, the segment sb is split up into

two segments at the points where the direction vector sr
a collide with sb. An pictorial

description of this process is given in Figure 4.15.

4.4.2 Forming Junctions

In terms of SERs, a junction is defined as an association of segments that is de-

termined by considering a shared region Ω between SERs of two or more of its

associated segment ends. Any two segment ends associated with a junction must

have shared-region between their SERs. Out of all segment ends forming a junction

jk, any two segment ends (sr
a,s

r
b) must either have a shared-region Ωa,b or associated

via another segment end sr
c of jk, i.e. when there exists a relation as Ωa,c and Ωb,c.
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(a)

(b)

(c)

Fig. 4.13 (a)-(c): An Illustration demonstrating step by step increase in the size of
SER of segment sr

a until it found shared region with the SER of segment sr
b or sr

c.
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(a)

(b)

Fig. 4.14 (a) The system forms a single junction associating (sr
a, sr

b, sr
′

b , sr
c) based on

the implication of shaded regions. (b) The size of SER of sr
a is recursively decreased

until it shares region with only one SER of segment sb which is closer to sr
a, i.e. sr

b.
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(a)

(b)

(c)

(d)

Fig. 4.15 (a) The segment sr
a using its direction vector at the ending encounters the

boundary of sb
a; (b)-(c) the system splits sb

a at the hit points; (d) and forms a junction
with three segments sr

a, sr
b, and sr

c.
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Through a supervised training process, Ωa,b for any two segment ends sr
a,andsr

b

associated to all true/false junctions were identified in training set of DSJS. The

training process consists of interactively associating the endings of segments with

their true connections as well as with false connections at the respective junctions.

The following statistics are obtained during analysis:

• Mean of Ω obtained from all true junctions = µΩ=22 pixels.

• Standard deviation of Ω obtained from all true junctions = σΩ=7.5 pixels.

• Mean of Ω obtained from all false junctions = µ
′
Ω

=5.2 pixels.

• Standard deviation of Ω obtained from all false junctions = σ
′
Ω

=3.3pixels.

The distributions of Ω in case of both true and false junctions is approximately

normally distributed. Therefore, for any two segment ends sr
a and sr

b having shared-

region Ωa,b, the probability that sr
a and sr

b belongs to an identical junction is given

by:

p
(
(sr

a,s
r
b) ∈ jk|Ωa,b

)
=

p
(
Ωa,b|(sr

a,s
r
b) ∈ jk

)
p
(
Ωa,b|(sr

a,sr
b) ∈ jk

)
+ p
(
Ω
′
a,b|(sr

a,sr
b) ∈ jk

) (4.1)

The posterior probabilities p
(
(sr

a,s
r
b) ∈ jk|Ωa,b

)
and p

(
(sr

a,s
r
b) ∈ jk|Ω

′
a,b

)
were

normalized to 1. For any two ends sr
a,s

r
b having direct association, i.e. there exists

Ωa,b, the value p
(
(sr

a,s
r
b) ∈ jk|Ωa,b

)
must be greater or equal to 0.5.
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4.5 Probability Estimation for Local Configurations

of Junctions

In Section 4.4, the system identifies independent junctions, composed of a small

number of segment ends. To extract vascular trees from the segment network, the

segment ends at each junction must be correctly connected with each other by means

of joints including bifurcations, bridges, and terminals. A combination of joints

accounting for all segment ends at a junction jk is termed as ‘configuration of the

junction’. Depending on the number of segment ends in a junction, there are multiple

possible configurations of each junction. In the following sections of this chapter

(Section 4.5.1 to Section 4.5.5), a Bayesian probability based supervised procedure

is introduced to estimate the posterior probabilities of all possible configurations at

each junction.

4.5.1 Local Configuration Set

The configurations of a junction with a given number of segment ends fall into several

configuration classes, based on the number and type of joints in the configuration.

The configuration set is the set of all possible configurations (combinations) of

segment ends in a particular junction. Each configuration may compose of one or

multiple possible joints of segment ends depending on the number of segment ends

associated to the junction.

Let junction jk have N associated segment ends, then the configuration set

Ck = {Cq
k} consists of all possible configurations Ck

q of joints, whereas subscript q

denotes a unique configuration.
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When N=2, jk = {sr
1,s

r
2}, there are two possible configurations Ck

1 =
{
{sr

1},{sr
2}
}

and Ck
2 =

{
{sr

1,s
r
2}
}

. The configuration Ck
1 consists of two terminals {sr

1} and {sr
2},

whilst Ck
2 composes of a bridge between sr

1 and sr
2.

When number of associated segment N is three, i.e. jk = {sr
1,s

r
2,s

r
3}, then all

possible configurations are given in Table 4.2. Out of seven total configurations in

Table 4.2, note that three configurations Ck
5, Ck

6 and Ck
7 all represent a bifurcation

joint with the same three segment ends. However, the identity of the parent segment

end in a bifurcation is important, thus three different bifurcations are considered. For

example, the bifurcation combinations {(sr
1,{sr

2,s
r
3})} and {(sr

2,{sr
1,s

r
3})} are not

the same, whereas {(sr
1,{sr

2,s
r
3})} and {(sr

1,{sr
3,s

r
2})} are identical. In addition, the

ordering of segments in case of a bridge is irrelevant, e.g. {sr
1,s

r
2} and {sr

2,s
r
1} are

identical.

Similarly, when number of associated segments n is four, i.e. jk = {sr
1,s

r
2,s

r
3,s

r
4},

the 22 possible configurations are given as in Table 4.3. In addition, for any value of

n, the total possible configurations at junction jk can be enumerated using a similar

procedure.

4.5.2 Bayesian Inference Modelling

A Naïve Bayesian inference model is developed to estimate the posterior probability

for each configuration of a junction. The posterior probability p(Ck
q| jk) of qth

configuration Ck
q at junction jk is estimated by Bayes theorem using the prior times

the likelihood up to normalizing constant, and is given as:
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Configuration Class Configurations
Three Terminals Ck

1 =
{
{sr

1},{sr
2},{sr

3}
}

One Bridge + One Terminal Ck
2 =

{
{sr

1,s
r
2},{sr

3}
}

One Bridge + One Terminal Ck
3 =

{
{sr

1,s
r
3},{sr

2}
}

One Bridge + One Terminal Ck
4 =

{
{sr

2,s
r
3},{sr

1}
}

One Bifurcation Ck
5 =

{
{sr

1,s
r
2,s

r
3}
}

Ck
5 =

{
{sr

1,s
r
3,s

r
2}
}

One Bifurcation Ck
6 =

{
{sr

2,s
r
1,s

r
3}
}

Ck
6 =

{
{sr

2,s
r
3,s

r
1}
}

One Bifurcation Ck
7 =

{
{sr

3,s
r
1,s

r
2}
}

Ck
7 =

{
{sr

3,s
r
2,s

r
1}
}

Table 4.2 Possible Configurations drawn from three segments

p(Ck
q| jk) ∝ p(Ck

q)p( jk|Ck
q) (4.2)

The normalizing constant here is the sum of posterior probabilities of all possible

configuration at junction jk, i.e. ∑q p(Ck
q| jk) = 1.

The likelihood of the qth configuration at junction jk, i.e. p( jk|Ck
q), is the joint

probability (statistical term ‘Joint’) of all the joints comprising the qth configuration,

thus Equation (4.2) can be rewritten as:

p(Ck
q| jk) = p(Ck

q)∏
u

p(Lu
k |f

u
k) (4.3)

where P(Lu
k |f

u
k) is the posterior probability of the joint, given the observed features

fu
k = {

⋃
fa
i |sa

i ∈ Lu
k}, and u is the joint index.
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Configuration Class Configurations
Four Terminals Ck

1 =
{
{sr

1},{sr
2},{sr

3},{sr
4}
}

One Bridge + Two Terminal Ck
2 =

{
{sr

1,s
r
2},{sr

3},{sr
4}
}

One Bridge + Two Terminal Ck
3 =

{
{sr

1,s
r
3},{sr

2},{sr
4}
}

One Bridge + Two Terminal Ck
4 =

{
{sr

1,s
r
4},{sr

2},{sr
3}
}

One Bridge + Two Terminal Ck
5 =

{
{sr

2,s
r
3},{sr

1},{sr
4}
}

One Bridge + Two Terminal Ck
6 =

{
{sr

2,s
r
4},{sr

1},{sr
3}
}

One Bridge + Two Terminal Ck
7 =

{
{sr

3,s
r
4},{sr

1},{sr
2}
}

Two Bridges Ck
8 =

{
{sr

1,s
r
2},{sr

3,s
r
4}
}

Two Bridges Ck
9 =

{
{sr

1,s
r
3},{sr

2,s
r
4}
}

Two Bridges Ck
10 =

{
{sr

2,s
r
3},{sr

1,s
r
4}
}

One Bifurcation + One Terminal Ck
11 =

{
{sr

1,s
r
2,s

r
3},{sr

4}
}

Ck
11 =

{
{sr

1,s
r
3,s

r
2},{sr

4}
}

One Bifurcation + One Terminal Ck
12 =

{
{sr

1,s
r
3,s

r
4},{sr

2}
}

Ck
12 =

{
{sr

1,s
r
4,s

r
3},{sr

2}
}

One Bifurcation + One Terminal Ck
13 =

{
{sr

1,s
r
2,s

r
4},{sr

3}
}

Ck
13 =

{
{sr

1,s
r
4,s

r
2},{sr

3}
}

One Bifurcation + One Terminal Ck
14 =

{
{sr

2,s
r
3,s

r
4},{sr

1}
}

Ck
14 =

{
{sr

2,s
r
4,s

r
3},{sr

1}
}

One Bifurcation + One Terminal Ck
15 =

{
{sr

2,s
r
1,s

r
3},{sr

4}
}

Ck
15 =

{
{sr

2,s
r
3,s

r
1},{sr

4}
}

One Bifurcation + One Terminal Ck
16 =

{
{sr

2,s
r
1,s

r
4},{sr

3}
}

Ck
16 =

{
{sr

2,s
r
4,s

r
1},{sr

3}
}

One Bifurcation + One Terminal Ck
17 =

{
{sr

3,s
r
1,s

r
4},{sr

2}
}

Ck
17 =

{
{sr

3,s
r
4,s

r
1},{sr

2}
}

One Bifurcation + One Terminal Ck
18 =

{
{sr

3,s
r
2,s

r
4},{sr

1}
}

Ck
18 =

{
{sr

3,s
r
4,s

r
2},{sr

1}
}

One Bifurcation + One Terminal Ck
19 =

{
{sr

3,s
r
2,s

r
1},{sr

4}
}

Ck
19 =

{
{sr

3,s
r
1,s

r
2},{sr

4}
}

One Bifurcation + One Terminal Ck
20 =

{
{sr

4,s
r
1,s

r
2},{sr

3}
}

Ck
20 =

{
{sr

4,s
r
2,s

r
1},{sr

3}
}

One Bifurcation + One Terminal Ck
21 =

{
{sr

4,s
r
1,s

r
3},{sr

2}
}

Ck
21 =

{
{sr

4,s
r
3,s

r
3},{sr

2}
}

One Bifurcation + One Terminal Ck
22 =

{
{sr

4,s
r
2,s

r
3},{sr

1}
}

Ck
22 =

{
{sr

4,s
r
3,s

r
2},{sr

1}
}

Table 4.3 Possible Configurations drawn from four segments
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In a second application of Bayes, the probability p(Lu
k |f

u
k) is calculated as

p(Lu
k |f

u
k) =

p(fu
k |L

u
k)p(Lu

k)

p(fu
k |L

u
k)p(Lu

k)+ p(fu
k |L

u′
k )(p(Lu′

k ))
(4.4)

where p(Lu
k) is the prior probability of the joint class, p(fu

k |L
u
k) is the likelihood

function for the observed features, given the (true) joint type, and p(fu
k |L

u′
k ) is the

likelihood function for the observed features given a “false joint” consisting of

arbitrarily chosen segment ends within a junction that do not form a true joint.

Table 4.4 lists all the junction configuration classes with up to six segment ends,

the frequencies within the training set, and the prior configuration probabilities,

P(Ck
q), estimated from these. Some theoretically possible larger configurations never

occurred; thus these have been set to a minimal figure (0.001) to allow the system to

respond if it does encounter such rare cases.

The likelihood function for a joint p(fk
q|Lu

k), is modelled using the multivariate

normal probability density function N (µu
k ,Σ

u
k), where µu

k and Σu
k are the centroid

vector and covariance matrix of the joint feature vector for that class of joints;

p(fu
k |L

u′
k ) is similarly modelled. The prior probabilities of the joint classes, p(Lu

k),

estimated from the frequency distribution in the training set, are given in Table 4.5.

4.5.3 Feature Selection and Extraction

To estimate the probability of joints at junctions, a small number of features are

extracted at the associated segment ends. These features bear rich information about

joints. For example, terminals are typically small (low width); bridged segments

have roughly equal widths, intensity profiles and directions; bifurcations have a
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| j| Configuration Total Frequency P(Cq)

1 1T 2124 2034 0.951
2 2T 45 0.451

1B 98 53 0.540
3 3T 15 0.011

1B, 1T 18 0.013
1Y 1370 1337 0.975

4 4T 5 0.007
2B 632 0.888

1B, 2T 19 0.026
1Y, 1T 711 55 0.077

5 5T 0 0.001
2B, 1T 2 0.039
1B, 3T 0 0.001
1Y, 1B 47 0.921
1Y, 2T 51 2 0.039

6 6T 0 0.001
3B 0 0.001

2B, 2T 1 0.100
1B, 4T 0 0.001

2Y 7 0.700
1Y, 3T 0 0.001

1Y, 1B, 1T 10 2 0.200

Table 4.4 Prior probabilities estimates of all possible junction configurations. T =
terminal, B = bridge, Y = bifurcation.
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Number of segments at all junctions 4056
Number of terminals 2034

Prior Probability for terminals 0.501
Prior Probability for non-terminals 0.498

Groups of two segments in all junctions 2038
Number of bridges 670

Prior Probability for bridges 0.328
Prior Probability for non-bridges 0.672

Groups of three segments in all junctions 2081
Number of bifurcations 1381

Prior Probability for bifurcations 0.663
Prior Probability for non-bifurcations 0.336

Table 4.5 Frequency distributions and Prior probability estimates of joint classes.

consistent relationship between widths and angles. The features are extracted from

an area along 7 centreline-profiles at the segment end; see Figure 4.16. The basic

segment end features are discussed below.

4.5.3.1 Basic Features

• Vessel Direction The direction vector m represents the direction of the straight

line between the first and last centreline points in the segment end fp and bp,

towards the junction the segment end is associated with: see Figure 4.16. The

procedure is fairly simple and it consists of measuring the vessels direction

vector (m) by specifying the seed points along the vessel segment. Specifying

seed-points is however slightly tricky, as it can drastically change the output.

In this analysis, we measure the direction vector of a vessel at a particular end

by taking front ( fp) and back (bp) pixels (7 centreline pixels along segment)

as the seed points.
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Fig. 4.16 End of vessel segment with front point fp and back point bp on seven
profiles.
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It is important to mention here, that when considering the number of seg-

ment ending profiles, the parameter 7 is found a reasonable number based on

empirical observations. This value is sensitive when estimating the ending

direction of a segment. It is observed in some cases that by using less or above

than 7 ending profiles gave wrong direction of segment end. This is because

sometimes a segment is locally tortuous, and thus by increasing or decreasing

the number of ending profiles, there is a significant change in the direction of

the segment.

• Vessel Width The Ribbon of Twins active contour model (Al-Diri et al., 2009)

is used to extract the vessel width at the seven centreline pixels of the segment

end. The final width w is the mean of widths calculated at each centreline

pixel of seven profiles at segment’s end.

• Vessel Intensity The vessel intensity v is described as the grey level dis-

tribution of intensity at each centreline profile of segment end. The grey

level distribution of intensity at each profile is measured by considering the

edge points of segment’s profile followed by taking the linear interpolation

of a 2-D grid. Let a segment end has edge points up to seven profile as{
(x11,y11,x21,y21),(x12,y12,x22,y22),

(x13,y13,x23,y23),(x14,y14,x24,y24),(x15,y15,x25,y25),(x16,y16,x26,y26),

(x17,y17,x27,y27)
}

. The first subscript index with x and y represent the sides

of segment (i.e. 1 for side1 and 2 for side2) whilst the second superscript index

denotes the profile index (1-7).

Let µδ j and σδ j represents the mean and standard deviation of intensity of jth

profile of segment sa obtained using two edge points of the profile, then µv
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and σv represents mean and standard deviation of intensity of the segment end

respectively, and given as:

µv =
∑

7
j=1 µδ j

7
(4.5)

σv =
∑

7
j=1 σδ j

7
(4.6)

• Vessel Orientation The Orientation refers to the relative position of the par-

ticular end of a segment to the centre of the optic nerve head. All retinal

vessels originate at the optic nerve head and bifurcate several times to spread

out over the retina. A segment between any two consecutive bifurcations

can be considered as a parent segment or a child segment depending on the

bifurcating point one references to. The end of a segment originated as a result

of a bifurcation, is closer to the ONH than the other end of the same segment

where it bifurcates itself. This property provides a good indication for a true

orientation of segment’s origin.

The orientation of a segment is measured by calculating the Euclidean distance

from the centre of ONH to the front pixel fp of each segment end.

4.5.3.2 Derived Features

The derived features are calculated from the basic feature obtained from two of more

segment ends; there include the width ratio β , angle α , intensity difference γ , and

orientation parity φ 2.
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Let sr
1 and sr

2 be two segment ends with basic features {w1,µv1,σv1,m1,r1} and

{w2,µv2,σv2,m2,r2} respectively, then the deflection angle α and width ratio β are

defined as:

α = cos−1
(

m1.m2

|m1|.|m2|

)
(4.7)

β =
min(w1,w2)

max(w1,w2)
(4.8)

Since the intensity distribution is represented by its mean and standard deviation,

the difference between the distributions of two segment ends can be characterized

using Bhattacharya distance between distributions as:

γ =
1
4

ln

(
1
4

(
σ2

v1

σ2
v2

+
σ2

v2

σ2
v1

+2

))
+

1
4

(
(µv1−µv2)

2

σ2
v1
+σ2

v2

)
(4.9)

Similarly, the parity between the end types in a pair, φ 2, is defined as φ 2 = r1⊕r2,

where ⊕ denotes the exclusive-OR operator.

The extracted features are then normalized to the range [0,1], using:

f n
i =

fi− fmin

fmax− fmin
(4.10)

4.5.4 Parameter Estimation through Supervised Learning

The likelihood function p(fu
k |L

u
k) in Equation 4.4 is the probability density function

which is the estimate of the likelihood of a particular joint Lu
k given a set of features

fu
k . The densities are estimated through a supervised training process by identifying

frequency distributions of features of true joints including terminals, bridges, and
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bifurcations. The following sections (4.5.4.1, 4.5.4.3, 4.5.4.2) provide details of

procedure for identifying representative parameters of frequency distributions of

distinct feature sets for three joint classes.

4.5.4.1 Terminals

During the training process, around 1923 true terminals were identified in the

training set of DRIVE. The training process consists of interactively identifying

the terminal segments in training sets of both DSJS1 and DSJS2 image sets. The

basic features extracted from true terminals includes width (w), intensity (v) and

orientation (r). The direction feature (m) for a terminal doesn’t represent or affect

its characteristics, and therefore is not included in the feature set fter = {w,v,r}.

The frequency distribution of the each feature of fter is tested against normality

using shapiro wilk test and are found normally distributed with following parameters:

µw = 0.09,µv = 0.48,σw = 0.04 and σv = 0.12.

The orientation r is a discrete variable and is examined at 1923 true terminals, out

of which 1422 terminals are found tail (t). The probability mass function based on

Bernoulli distribution is established for orientation feature. Let Gter be the probability

mass function of the distribution a, then:

Gter =

{
0.73 r = t

0.27 r = h
(4.11)

where 0.73 = 1422/1923, there being 1422 tail segment ends among 1923 terminals.

The likelihood can then be estimated using the generalized probability density

function as:
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P(f|L) = N (µw,σw)N (µv,σv)Gter. (4.12)

4.5.4.2 Bridges

During the training process, 564 true bridges were identified in DRIVE training im-

age set. Through interactive system, the true bridges were identified while using the

Gold standard binary image set for reference. The basic features extracted from seg-

ment ends forming true bridges includes {w, v, a, m}, using which derived features

{α,β ,γ,φ 2} were calculated. The parameters of their frequency distributions are

identified as: µα = 0.49,σα = 0.056,µβ = 0.85,σβ = 0.11,µγ = 0.27,σγ = 0.15.

The end class parity has value 1 (tail meets head) in 531=564 = 0.94 of the true

bridges (the remaining 6% of cases occurring rarely where segments curve back to-

wards the ONH), and defines the probability mass function Gbri. Thus, the likelihood

for a bridge can be calculated by:

P(f|L) = N (µα ,σα)N (µβ ,σβ )N (µγ ,σγ)Gbri. (4.13)

4.5.4.3 Bifurcations

The bifurcations were examined by performing a pairwise analysis of the width,

intensity and direction disparities between the parent segment end and each of the

child segments’ ends in turn. In addition to derived features, two more features θ and

φ 3 are estimated at bifurcations. The angle θ is the angle between the two children,

and an end class feature φ 3 which is defined as 1 when the parent is a tail and both

children are heads, 0 otherwise.
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Let fy,z represents feature taken between segments y and z, where parent segment

is represented as 1, whilst the two children as 2 and 3. The feature vector is given

as f = (α1,2,α1,3,θ2,3,β1,2,β1,3,β2,3,γ1,2,γ1,3,γ2,3,φ
3). An illustration of a typical

bifurcation with its features is shown in Figure 4.16. The features were extracted at

1381 true bifurcations with the distribution parameters provided in Table 4.6. The

feature φ 3 = 0.76 = 1050/1381, given that 1050 of the 1381 training bifurcations

had the typical end orientation combination. The likelihood of a bifurcation is then

calculated using the product of the estimated normal distribution functions for the

continuous parameters and the Bernoulli mass function Gbi f for the orientation as:

P(f|L) = N (µα1 ,σα1)N (µα2,σα2)N (µθ ,σθ )N (µβ1,σβ1)N (µβ2,σβ2)N (µβ3,σβ3)

N (µγ1 ,σγ1)N (µγ2,σγ2)N (µγ3,σγ3)Gbi f .

(4.14)

The parameters for the false joint distributions were estimated using the same

training set. All non-terminal segment ends from the training set were taken as false

terminals. A false bridge set was constructed by matching each bridge segment end

in a crossing junction with its non-partners. A false bifurcation set is constructed

by taking the true bifurcations and swapping the parent segment end with a child

segment end.

4.5.5 Overlap Removal

An overlap (or overlapping segment) is one where two vessels from opposite classes

run parallel and overlap for short distance, and are segmented as a single segment.

The geometrical structure of an overlap greatly resembles to two bifurcations—one
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angle β γ

s1,s2 µα1 = 0.36 µβ1
= 0.71 µγ1 = 0.31

σα1 = 0.07 σβ1
= 0.32 σγ1 = 0.25

s1,s3 µα2 = 0.41 µβ2
= 0.68 µγ2 = 0.32

σα2 = 0.08 σβ2
= 0.27 σγ2 = 0.31

s2,s3 µθ = 0.23 µβ3
= 0.72 µγ3 = 0.27

σθ = 0.10 σβ3
= 0.24 σγ3 = 0.36

Table 4.6 Parameters of distributions of bifurcation features.

at each end of the overlapping segment which appears like the parent segment at

both junctions due to its exaggerated width. This leads to a high probability of

falsely identifying bifurcations at overlap ends. To resolve this, the system detects

an overlap whenever both ends of a segment are identified as parents of bifurcations.

The system then merges the two junctions at the ends of the overlapping segment,

discarding that segment; when the configuration is resolved it should select two

bridges, as shown in Figure 4.17.

Often, overlapping segments appear in consecutively. For instance, a true single

overlap might be disconnected resulting in multiple overlapping segments appear one

after another, as shown in Figure 4.18. In such a case, resolving overlaps requires

considering the configurations of multiple junctions at the same time. This requires

a global configuration step which will be discussed in the next chapter.

4.6 Conclusion

Discontinuity of the segmented retinal vasculature is an unavoidable obstacle for

those interested in studying the geometrical properties of vascular trees. Under the
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Fig. 4.17 Overlapping segments are falsely segmented as a single, wide ‘overlap
segment’. This is detected an eliminated, and the system detects the resulting pair of
bridges.

Fig. 4.18 The illustration shows multiple overlapping segments (in green colour)
appeared consecutively. The dotted arrows indicate threes junction points.
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framework of probability, two automated systems, one for forming junctions and the

other for estimating the probabilities of junction configuration are presented.

An efficient region-based algorithm is presented for forming junctions (groups)

of segment ends having the potential to be connected to each other. Using the

direction vector and angles at each segment end, the algorithm dynamically specifies

local regions at the segment end to explore its mutual association with endings of

other segments in close proximity.

Using Bayes theorem, a comprehensive probabilistic model is presented and

trained for estimating the most probable connectivity of broken segments locally

at junctions. The system enumerates all possible configurations of segment ends

at junction and estimates the posterior probability of each configuration using the

configuration likelihood (conditioned on geometrical and colour features of segments)

and prior probabilities obtained from a supervised training process

In addition, a new benchmark vessel-classified set is introduced for DRIVE image

database. This dataset is designed to support the evaluation of the performance of

proposed systems and is free for study and research purposes.

The experimental details of the systems developed for junction formation and

probability estimation for local configurations are provided in evaluation Chapter 6.





Chapter 5

Arterial and Venous Trees Extraction

5.1 Introduction

This chapter presents a novel graph-based method for arterial and venous tree ex-

traction from a network of disconnected and unlabelled vessel segments in fundus

images. Through an efficient procedure, the problem of classifying and connecting

vessel segments is translated into a general binary labelling problem expressed in

a probability-based dependency graph. The translation represents the segment net-

work as using a number of MRF graphical models. The formulated MRFs express

joint probability distributions by treating segment class probabilities as conditional

likelihoods (unary node potentials), and segment connectivity probabilities as pri-

ors (pairwise edge potentials). The conditional likelihood is obtained by training

a Naïve Bayesian classifier. Unlike conventional labelling methods that utilise

only the colour properties of vessels, the proposed classifier exploits both colour

and spatial properties of the vasculature to efficiently classify vessels in situations

when the images are unprocessed or have non-uniform contrast. In addition, a

fairly simple approach is developed to identify number of disjoint networks out of
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the entire network of segments, for each of which a unique MRF graph is established.

On each formulated MRF, the ST-cut is obtained to infer the optimal global

configuration. The ST-cut is implemented using the well-known Ford-Fulkerson

algorithm, followed by back-translation of configured MRFs to configured-disjoint-

networks. In configured disjoint networks, the linking of extracted identical class

sub-trees is performed in order to extract complete trees of arteries and veins. Link-

ing of sub-trees resolves the problem of missing segments to a great extent.

This chapter is organized as following: Section 5.3 describes the method to detect

disjoint networks in a single segment network. Section 5.4 explains a procedure to

represent the identified disjoint networks in MRFs models. Section 5.6 and Section

5.5 describe the methods for calculating both unary and pairwise potentials. The

underlying functions used in estimating the pairwise potentials are explained in

Chapter 4. The method for extracting AV trees by obtaining the global configuration,

back translation, then connected sub-trees is explained in Section 5.7.

5.2 The Vasculature as an MRF

Conventionally, the MRF graph used for labelling problems in the field of computer

vision represents a 2-dimensional grid of image pixels as a network of nodes con-

nected to each other via a 4 or 8-neighbourhood system, as explained in Chapter 3.

Each node possesses a unary potential as the likelihood of belonging to certain class,

determined by any cost or probability function. Any two neighbouring nodes possess

a pairwise potential (weight of the edge between them) which usually expresses
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smoothness or connectivity probability.

The translation of an image into an MRF is fairly straightforward. However,

representing domain-specific objects or states and their associations into an MRF

along with appropriate functions to obtain unary and pairwise potentials is more

complex. To this end, the following sections explain the procedures for identifying

disjoint networks, representing each identified disjoint network into MRF, and

estimating pairwise and unary potentials for nodes; followed by applying inference

technique to estimate optimal global labelling and connectivity configuration.

5.3 Disjoint Network Identification

According to Definition 8 given in Section 4.3, a superset F is a set of one or more

disjoint networks Fi, each consisting of single or multiple overlapping vascular trees.

A typical retinal fundus image contains several disjoint networks of segments. In a

completely and accurately segmented vasculature, all disjoint network Fi are strictly

separated from each other. In such rigid conditions, identifying true disjoint networks

of connected trees is straightforward. However, in case of network of disconnected

segments, accurately identifying disjoint networks of discontinued segments is non-

trivial as the accuracy is highly dependent on the outcome of junction formation

process.

In this thesis, a simple propagation algorithm is used to identify all disjoint

networks of disconnected segments present in a retinal image. The approach works

by first randomly selecting a segment, exploring its associated junctions at both

ends to find other associated segments to the same junctions, and iteratively tracking
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each newly found segment until the search exhausts. All explored segments are then

associated to a single disjoint network Fi. Using this approach, the set of segments is

divided into several mutually separate disjoint networks which can be subsequently

resolved. All segments in an image are explored once, and are associated to exactly

one disjoint network Fi. Any two segments (sr
a and sr

b) of a disjoint network Fi

must be directly associated to each other via a junction jx or having association like

(sr
a ∈ jx, sr

b ∈ jy, sr
c ∈ jx, sr

′

c ∈ jy).

A descriptive algorithm (Algorithm 1) is given below that identifies disjoint

networks in the network of disconnected segments.

A sample image with several identified disjoint networks is shown in Figure 5.1,

each assigned with a unique colour. Note that a disjoint network may consist of a

single segment only.

5.4 Disjoint Network Translation into MRF

An appropriate translation of a disjoint network of segments into MRF graph is

performed by representing each singleton segment si of disjoint network F as a

unique node in MRF. For any labelling problem expressed in MRF, the fundamental

assumption is that every node in MRF is a random variable that can be assigned a

label from a predefined set of labels-in this case from L = A,V (artery or vein).

In addition to this, an undirected edge between nodes of the MRF indicates

an association or label dependency, i.e. any two nodes connected via an edge in

MRF express conditional dependence between their labels. The segments in the

vasculature are associated with each other through the junctions their ends belong to.

Also, all segments associated with a junction are mutually dependent on each other
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Algorithm 1: IdentifyForests
Input:
Queue S = {sh

1,s
t
1,s

h
2,s

t
2,s

h
3,s

t
3, ...s

h
n,s

t
n} // set of ends of all segments

Queue J = { j1, j2, j3, ... jm} // set of all identified junctions

whereas: jk = {sr
a,s

r
b,s

r
c, ....|r ∈ {h, t}∧ sr

a,s
r
′

b ⇒ a ̸= b}
Dis jointnetworks F
Output:
Fi =

{
{Si},{Ji}

∣∣i = 1,2,3...
}

begin
i←− 1 // GlobalVariable
while S ̸= /0 do

j←− dequeue(J)
SearchAssociatedSegmentEnds( j)
i←− i+1

procedure SearchAssociatedSegmentEnds( j)
enqueue Ji( j)
Mark j as explored

for ∀sr
a in F.IncidentSegment( j,sr

a) do
if sr

a is unexplored then
temp←− F.Ad jacentJunction( j,s) if junction temp is unexplored
then

enqueue Si(sr
a)

dequeue S(sr
a)

Mark sr
a as explored

dequeue J(temp)
Mark temp as explored
SearchAssociatedSegmentEnds(temp) // Recursive Call
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when labeled. Thus the association between any two segments (sa,sb) via junction

jk, can be represented by means of a direct edge between nodes sa and sb in MRF.

For instance, a junction with five associated segment ends is represented in MRF as

a Maximal Clique in which all five nodes are adjacent with each other as shown in

Figure 5.2. Another example of vasculature translation into MRF is given in Figure

5.3.

Formally, a disjoint network F consisting a set S of vessel segments sa, such that

segments of S are associated with each other by means of their respective junctions

jk of junction set J, is mapped into an MRF graph G(V,E), such that the node set V

is the bijection of set S with identical denotations and indices; whilst the edge set E

is the set of edges between nodes of V such that each edge e(sa,sb) must satisfy the

condition, i.e. e(sa,sb) = e(sb,sa)⇒ (sr
a,s

r
b ∈ jk).

Note that if any two nodes are adjacent (sa ∼ sb) in G, it doesn’t necessarily

mean that their corresponding segments belong to the same joint; rather it merely

expresses an association between their specific ends via some junction jk. Later, the

edge between nodes sa and sb in G will be severed if the inference process finds the

two nodes (segments) are not the part of the same joint at junction jk.

It is important to mention that the representation of all segments as nodes does

not include overlapping segments. The reason to represent only non-overlapping

segments into the MRF is that the formulated MRF will consider the graph for

binary labelling (i.e. artery and vein), whilst overlapping segments are unclassifiable

segments.
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Fig. 5.1 A number of disjoint networks are shown. Each disjoint network consists of
one to several numbers of associated segments. All segments associated to a disjoint
network are shown with a colour unique to the one any other disjoint network
segments have.
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(a) (b)

Fig. 5.2 A junction with five associated segment ends with its representation in MRF
as maximal clique. All nodes have direct edges among each other.

Referring to the example shown in Figure 4.17, the single overlapping segments

are resolved by merging the two junctions (associated with overlapping segment)

into one junction, thus the representation includes only jz with four associated seg-

ments s2,s3,s4 and s5. A similar procedure also applies to multiple consecutive

overlapping segments, the representation requires merging all the junctions, with

which overlapping segments are associated, into a single junction. Referring to the

example in Figure 4.18, the junctions jx, jy and jz are merged into one junction jk

before representation by the MRF, as shown in Figure 5.4. However, merging more

than two neighbouring junctions into single junction may raise configuration issues

with the complexity of the configuration step. This issue is discussed and resolved in

Section 5.5.
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(a)

(b)

Fig. 5.3 (a) An example of a network of vessel segments; (b) and its corresponding
representation as MRF. Segments of vasculature are represented as nodes and their
associations at junctions are expressed by direct links in the MRF. All segments are
represented by numeric indices and junctions by alphabetic indices.



96 Arterial and Venous Trees Extraction

5.5 Pairwise Potential of Nodes

The weight w(sa,sb) is the pairwise potential of the edge e(sa,sb) in G. It represents

the probability that corresponding segments (sa,sb) are part of the same joint and

thus belong to identical class. This is very similar to MRF-based image segmenta-

tion, in which any two neighbouring pixels of an object tends to have strong bonds

(smoothing, less variation, etc.) with each other, while there are weak bonds at object

boundaries. In binary labelling problems, the pairwise potential is typically the cost

of assigning opposite labels to adjacent nodes (Wang et al., 2013). Thus, using rule

10 (stated in Section 4.3), the pairwise potential (weight of an edge) between any

adjacent nodes in G is the probability of connectivity of corresponding segment ends

at their respective junction jk, i.e. w(sa,sb)= p(sa↔ sb).

Using the addition law of probability, the connectivity probability of segments sa

and sb at jk, is the sum of the probabilities of all those configurations at jk in which

sa and sb are the part of same joints, i.e.

p(sa↔ sb) = ∑
q

p(Ck
q),where.(sa,sb) ∈ Lk

y∧Lk
y ∈Ck

q (5.1)

Where, Ck
q is qth configuration at the kth junction, and Lk

y is the yth potential joint

composed of ends of segments sa and sb at kth junction. Similarly, the probability

that segments sa and sb are disconnected at jk, is equal to the sum of probabilities of

all those configurations at jk in which sa and sb are the part of different joints. In

addition, the terms p(sa↔ sb) and p(sa↔ sb| fk) refer to the same quantity and thus

can be interchangeably used; where fk is the set of measured features at the junction.

In the context of energy minimization on MRF, the pairwise potential p(sa↔ sb) is

the cost of assigning opposite labels to nodes sa and sb by disconnecting them. A
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preliminary step is to normalize all configurations p(Ck
q| jk) at jk to 1 before utilizing

for estimating connectivity probability.

Example: Let a junction jk has three associated segment ends {sa,sb,sc} as

shown in Figure 5.5(a). There are seven configurations, i.e. three with one bifurca-

tion Ck
1 =

{
{sa,{sb,sc}

}
,Ck

2 =
{

sb,{sa,sc}
}
, and Ck

3 =
{

sc,{sa,sb}}
}

, three with

one bridge and one terminal Ck
4 =

{(
{sb,sc}

)
,{sa}

}
,Ck

5 =
{(
{sa,sc}

)
,{sb}

}
,Ck

6 ={(
{sa,sb}

)
,{sc}

}
, and one with three terminals Ck

7 =
{(
{sa}

)
,
(
{sb}

)
,
(
{sc}

)}
.

Notice that from a connectivity standpoint, Ck
1,C

k
2 and Ck

3 are identical as all three

segment ends (sa,sb,sc) at jk in Ck
1 through Ck

3 must be connected to each other to

compose a bifurcation joint. However, the probability of the configuration varies

with the parent segment of the bifurcation.

To estimate p(sa ↔ sb| jk), the relevant configurations are Ck
1,C

k
2,C

k
3, and Ck

6.

Thus, p(sa↔ sb| jk)= p(Ck
1| jk)+ p(Ck

2| jk)+ p(Ck
3| jk)+ p(Ck

6| jk). Similarly, p(sa↔

sc| jk)= p(Ck
1| jk)+ p(Ck

2| jk)+ p(Ck
3| jk)+ p(Ck

5| jk), and p(sb↔ sc| jk)=∑
4
q=1 p(Ck

q| jk).

A junction with two segment ends sa and sb has only two configurations, one with

two terminals Ck
1 =

{(
{sa}

)
,
(
{sb}

)}
, and the other with one bridge Ck

2 =
{

sa,sb
}

.

The only relevant configuration to estimate the connectivity probability of sa and sb

is Ck
2, thus p(sa↔ sb| jk) = p(Ck

2| jk).

The aforementioned examples consider junction cardinality | jk| = 3 and 2 respec-

tively; a similar procedure Equation 5.1 is applicable to any large number, e.g. with

| jk|= 4 22 are configurations.
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(a)

(b)

(c)

Fig. 5.4 (a) The consecutive overlapping segments s3 and s4 are shown in green. (b)
The junctions jx, jy, and jz are merged into single junction jk by ignoring overlapping
segments s3 and s4. (c) The equivalent MRF graph for junction jk is shown.
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The quantity p(Ck
q| jk) is estimated using Equation 4.3.

Referring to the example given in Figure 5.4, estimating the pairwise potential

for nodes at junctions including overlaps is non-trivial. In the original vasculature,

the segment s5 is not directly associated to any of segments (s1,s2,s6,s7) at junction

jk, nor are segments s1 and s2 directly associated with s6 and s7, considering a

joint that is composed of segment ends which truly belong to different junctions is

misleading. Considering a true joint to include an overlap segment is also infeasible

as the features extracted from an overlapping segment don’t follow proper ratios

with features extracted from non-overlapping segments.

To address this, the pairwise potential between any two nodes (segments) that

appear on such junction, is set to 0.5, giving an equal probability for any two nodes

to be connected or disconnected.

5.6 Classification of Segments (Unary Potential)

The vessels in the retina originate from the optic nerve head (ONH) and spread

through the retinal perfusion area by means of bifurcations. The vessel segments

near the ONH usually have prominent colour and geometrical features and thus are

easily class distinguishable. However, moving farther away from ONH, at every

bifurcation, each child has smaller width than of its parent segment; and thus after

several successive bifurcations, the vessel segments become as thin that their colour

and geometrical measurements become insufficient to distinguish their classes. These

vessels can be termed so thin segments denoted by s̄c, whilst all other segments as

major segments denoted by ŝa. In the following Section 5.6.1, the class probability
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(a)

(b)

(c)

Fig. 5.5 The junction with three segments is translated into an MRF, where each
link between any two neighbouring nodes expresses its connectivity probability as a
pairwise potential.
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(unary potential) is estimated for each node (referring to a unique major segment) of

the MRF G.

5.6.1 Classifying Major Vessel Segments

Through supervised learning, a Naïve Bayesian classifier is trained for estimating

the class probabilities of ma jor segments using colour and geometrical features of

segments. Let ŝa be a ma jor segment with feature set fa = {wa,ηa,ψa,va}, then

class probability p(ŝa = l| fa) can be estimated as:

p(ŝa = l| fa) =
p( fa|ŝa = l)p(ŝa = l)

∑
l′
u=l p( fa|ŝa = u)p(ŝa = u)

(5.2)

p( fa|ŝa = l) = N (µw,σw)N (µη ,ση)N (µψ ,σψ)N (µv,σv) (5.3)

The p(ŝa = l) is the prior probability, i.e. occurring frequency of segment with

true label l in the training set as p(ŝa = A) = 0.46 and p(ŝa =V ) = 0.53. The term

p( fa|ŝa = l) is the probability density function for class label l. The features of

segments sa including wa, ηa, ψa, and va denote average width, average hue, average

saturation and average intensity respectively. It should be noted that these features

are extracted by considering all profiles of the segment in contrast to the process of

estimating configuration probabilities where features were extracted from the seven

end profiles.

To optimize the classifier, the mean and standard deviation (µ,σ ) for each feature

were estimated. A training set of 300 arterial and 348 venous ma jor segments

(segments with average width wa >= 3.5 pixels) in in DSJS training sets of 20

colour images. The frequency distributions of feature set were modelled as normally
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Width Hue Saturation Intensity
Arteries (A) µA

w=4.3 µA
η =0.057 µA

ψ=0.68 µA
v =0.74

σA
w=0.8 σA

η =0.002 σA
ψ=0.03 σA

v =0.02
Veins (V) µV

w =4.8 µV
η =0.044 µV

ψ =0.74 µV
v =0.61

σV
w =1.3 σV

η =0.008 σV
ψ =0.02 σV

v =0.03
Table 5.1 Estimated parameters of feature distributions

distributed with parameters (µ,σ ) given in Table 5.1. The class probabilities of all

minor segments s̄c are set to 0.5, i.e. p(s̄c = l) = p(s̄c = l
′
) = 0.5.

5.6.1.1 Spatial Properties of Retinal Vessels

To determine the retinal vessel class, the intensity is the most useful colour feature.

The arteries carry oxygenated blood and often have a light reflex visible in the centre,

and thus usually have higher intensity than veins. However, the intensity is insuffi-

cient to distinguish arteries when the contrast in the perfusion area of an unprocessed

fundus image is not uniform. A good number of arterial and venous segments in the

training set were found with similar mean intensities and thus equal probability of

being classified as arteries or veins. This can be seen in a fundus image in Figure 5.6.

Assuming the image contrast is relatively constant in local regions, the aforemen-

tioned issue can be resolved to a great extent by considering the distribution of colour

properties of segments in close neighbourhoods. As the sample of regions provided

in Figure 5.7 demonstrates, the intensity of major arteries is normally higher than the

intensity of major veins in a close neighbourhood. Thus a significant difference in

intensities between any two neighbouring major vessel segments is a good indication

that they belong to opposite classes. To this end, the neighbourhood of a segment is

defined below, followed by extending the Naïve Bayes classifier, given in Equation
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5.2, by introducing a spatial feature intensity-ratio.

Analysing features of retinal vessels locally inside concentric zones while taking

the ONH as the centre is a common practice adopted by many researchers, as in

((Grisan and Ruggeri, 2003), (Saez et al., 2012), (Relan et al., 2013)). In this thesis,

a slightly different approach is used to define neighbourhood of a segment. Formally,

the neighbourhood of segment ŝa is defined as the circular zone za around ŝa such

that the coordinates of the centre point of za and middle pixel of the centreline of

segment ŝa are similar, as shown in Figure 5.8. The diameter of zone za is equal to

double the average diameter size of the normal optic nerve head. For DRIVE images,

the average diameter of healthy ONH is manually measured and is equal to 82 pixels.

A neighbouring segment of ŝa is any major segment ŝb laying (partly or completely)

in za. If multiple neighbouring candidates for ŝa exist in za, the one with greatest

length is treated as the neighbouring segment for ŝa.

Let ŝa and ŝb are the two neighbouring major segments with mean intensities as

va and vb respectively, then the intensity ratio ζa,b is given as:

ζa,b =
min(va,vb)

max(va,vb)
(5.4)

During the training process, the intensity ratio ζa,b is extracted from identical

and opposite class neighbouring major segments. The frequency distribution of

ζa,b for identical and opposite class neighbouring major segments is identified

with parameters µ I
ζ
=, σ I

ζ
=, µO

ζ
=, σO

ζ
=. Whereas, I and O denote identical and

opposite class segments respectively. The probability that the two neighbouring

major segments ŝa and ŝb belong to opposite vessel classes is given as:
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Fig. 5.6 The mean intensity of the major vein in the lower arc varies gradually. The
downward-pointing arrows along the vein highlight the variation of mean intensity
between partitions. The intensity of the arrow is exaggerated to illustrate the relative
intensities of the segments. The chances of misclassification are high, if the intensity
of segment in each partition is analysed independently. In addition, in the upper arc,
the intensity of a vein segment (shown in dashed-block) appears higher than intensity
of artery segment (shown in dotted-block). However, the same artery segment (shown
in dotted-block) has higher intensity than its neighbouring vein segment (shown in
solid-block).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 5.7 (a)-(h), Major arteries and veins are present in small neighbourhoods. The
arteries are lighter than veins.
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Fig. 5.8 Two spatially close segments sx and sy are shown, each with its neighbour-
hood zone. Each circular zone has diameter double the size of normal ONH.

p(ŝa = l, ŝb = l′|ζa,b) =
p(ζa,b|ŝa = l, ŝb = l′)

p(ζa,b|ŝa = l, ŝb = l)+ p(ζa,b|ŝa = l, ŝb = l′)
(5.5)

Whereas:

p(ζa,b|ŝa = l, ŝb = l) = N (µ I
ζa,b

,σ I
ζa,b

) (5.6)

and

p(ζa,b|ŝa = l, ŝb = l′) = N (µO
ζa,b

,σO
ζa,b

) (5.7)

When va > vb, and l corresponds to artery (A), the classifier is updated as:
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p(ŝa = l| fa) =
p( fa|ŝa = l)p(ŝa = l)

∑
l′
u=l p( fa|ŝa = u).p(ŝa = u)

p(ŝa = l, ŝb = l′|ζa,b) (5.8)

and

p(ŝa = l′| fa) =
p( fa|ŝa = l)p(ŝa = l)

∑
l′
u=l p( fa|ŝa = u).p(ŝa = u)

(
1− p(ŝa = l, ŝb = l′|ζa,b)

)
(5.9)

When va ≤ vb, and l corresponds to artery (A), the classifier is updated as:

p(ŝa = l| fa) =
p( fa|ŝa = l)p(ŝa = l)

∑
l′
u=l p( fa|ŝa = u).p(ŝa = u)

(
1− p(ŝa = l, ŝb = l′|ζa,b)

)
(5.10)

and

p(ŝa = l′| fa) =
p( fa|ŝa = l)p(ŝa = l)

∑
l′
u=l p( fa|ŝa = u).p(ŝa = u)

p(ŝa = l, ŝb = l′|ζa,b) (5.11)

The quantity p(ŝa = l, ŝb = l′|ζa,b) must be carefully used; a value less than 0.5

indicates the two segments ŝa and ŝb are more likely to belong to the same class. In

such a case, updating Equation 5.2 in Equations (5.8-5.11) may mislead the classifier,

and is thus omitted, i.e. the original Equation 5.2 is used.

In the rest of the algorithm, major and minor segments are treated identically,

and s̄a or ŝa is written as sa.
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5.7 Artery Vein Trees Extraction

Having translated the segments network into an MRF graph, the segment connec-

tivity and classification problem resolve to a general MRF based binary labelling

problem, where any appropriate inference technique can be applied to derive global

labelling and connectivity.

Some of the families of MRF inference techniques are Graph Cuts (Boykov

et al., 2001), Linear Programming (Glocker et al., 2008), and Simulated Annealing

(Geman and Geman, 1984). To obtain best achievable results, one could theoretically

perform a global MAP estimation by considering the joint probabilities of unary and

pairwise potentials of nodes. However, this requires an exhaustive search which may

be computationally infeasible for complex cases. Out of the vast range of inference

techniques, the ST-graph cut has been extensively used in computer vision problems.

The ST-graph cut using the Ford-Fulkerson algorithm requires polynomial time to

find a global optimal solution which usually corresponds to MAP estimation for a bi-

nary labelling problem. This has strong theoretical support from the maximum-flow

minimum-cut theorem as described in Chapter 3.

For binary labelling problems, an ST-graph is a directed MRF graph with two

additional nodes S and T termed the source and sink such that the in-degree of

source node (d−
Γ
(S)) and out-degree of sink node (d+

Γ
(T)) is zero. We transform the

formulated graph G to ST-graph G⃗ST, such that in G⃗ST there exists directed edges

(known as t-links) e(S,sa) and e(sa,T) for each node (sa); and directed edges in both

directions (known as n-links) between sa and sb, i.e. e(sa,sb) and e(sb,sa) for all

neighbouring nodes. The additional nodes S and T refers to two labels l and l
′
. The
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Fig. 5.9 A sample ST-Graph with four nodes, i.e. source(l) node, sink(l
′
) node,

and two nodes denoting segments sa and sb. The pairwise potential of sa and sb
is expressed as the weight of each edge between them. The pairwise potential
demonstrates how probable sa and sb are from identical class and thus connected to
each other. The unary potentials are shown with the edges, to and from, sa and sb.
The unary potential is the probability a node belongs to certain class (l or l

′
).
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capacity of a t-link is the class likelihood (unary potential) of each node sa towards a

specific label l or l
′
, i.e. the capacity c(S,sa) of edge e(S,sa) is equal to p(sa = l| fa),

and c(sa,T) of edge e(sa,T) is equal to p(sa = l| fa). Similarly, the capacity of n-link

(edge) between adjacent nodes is the pairwise potential (probability of connectivity

between nodes), given as c(sa,sb) = c(sb,sa) = p(sa ↔ sb). An example of two

neighbouring nodes sa sb in ST graph is shown in Figure 5.9.

After formulating G⃗ST, the objective is to find a global minimum cut that divides

the graph into sub graphs such that there is no path left from S to T. The max-flow

min-cut theorem states that the maximum flow in an ST-graph is equal to the mini-

mum cut configuration on the ST-graph. The minimum cut is inferred by finding the

maximum flow on G⃗ST using Ford-Fulkerson algorithm discussed in Chapter 3. A

minimum cut is demonstrated in Figure 5.10.

5.7.1 Back-Translation of Configured MRF to Labelled Trees

The AV trees extraction process involves back-translation of the final residual graph

G
′
ST to F́ (configured disjoint network) after obtaining the minimum cut on G⃗ST. The

segments corresponding to nodes which are connected to source node in G
′
ST are

labeled l in F́ provided source node was considered as l during formulating G⃗ST.

The opposite label l
′
is assigned to the segments in F́ corresponding to nodes which

are connected to sink node in G
′
ST. Any two segment ends associated to a junction

in F are connected to each other in F́ if their corresponding nodes are connected

in G
′
ST after separating source from sink; they remained unconnected otherwise. In
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Figure 5.11 the back-translation of G
′
ST to F́ is illustrated.

Formally, a disjoint network F , consisting of segments of S = {s1,s2,s3...}which

are associated with each other through their respective junctions of set J = { j1, j2, ...},

is translated to an MRF graph G⃗ST using the procedures explained in Section 5.4,

Section 5.5, and Section 5.6. The Ford-Fulkerson algorithm runs on G⃗ST resulting

in a final residual graph G
′
ST. The following rules, assuming the source and sink

node in G
′
ST represents label l and l

′
respectively, are then applied to translate G

′
ST to

configured disjoint network F́ :

1. A segment sa in disjoint network F́ is labelled l, if in the G
′
ST, the source

node can still send some flow to the corresponding node of segment sa either

directly and/or via other node(s). See Figure 5.12.

2. A segment sa in disjoint network F́ is labelled l
′
, if in the G

′
ST, some flow can

be still sent from corresponding node of segment sa to the sink node either

directly and/or via other node(s). See Figure 5.13.

3. A segment sa in disjoint network F́ is labelled opposite to the label assigned to

its neighbouring node sb, if in the G
′
ST, neither source node can sent any flow

to node sa, nor any flow can be sent from node sa to sink node and node sb.

See Figure 5.14.

4. If any two neighbouring nodes sa and sb in G
′
ST are assigned with identical

label, their corresponding segments in F́ must be connected to each other at

their respective junction.



112 Arterial and Venous Trees Extraction

(a) (b)

(c) (d) (e)

(f) (g) (h)

Fig. 5.10 The node V and A in ST-graphs(c-h) denote vessel class vein and artery
respectively. From (c)-(h), the step by step procedure of the Ford-Fulkerson algorithm
is demonstrated. In (h), the minimum cut is found deducing that s1 and s3 are
connected to each other and belong to vein class, whilst s2 belongs to artery class
and doesn’t have connection with any of other segments.
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(a)

(b)

Fig. 5.11 (a) A global minimum cut is shown in the illustration. The source node
A is denoting artery label whilst sink node V represent vein label. (b) According to
the obtained cut in (a), the segments are labelled and connected. The red and blue
colour is used to represent arteries and veins respectively.
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(a) (b) (c)

Fig. 5.12 In all cases (a)-(c), the source node l can send some flow to segment node
sa directly and/or indirectly via segment node sb, and therefore sa will be labelled as
l.

(a) (b) (c)

Fig. 5.13 In (a) and (c), the segment node sa can send some flow to sink node l
′
.

Although in (b), sa can’t send any flow to l
′

, however, segment node sb can send
flow to both l

′
and sa. In all cases (a)-(c), segment node sa will be labelled as l

′
.
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(a) (b)

Fig. 5.14 In both cases (a) and (b), the segment node sa can neither receive any flow
from source node l (either directly or indirectly), nor can send any flow to sink node
l
′
. However in (a), the neighbouring node sb can receive some flow from source

node l but can’t send any flow to segment node sa, and therefore sa will be labelled
as l

′
and sb will be labelled as l. Also in (b), the neighbouring node sb can send some

flow to sink node l
′

but can’t send any flow to segment node sa, and therefore sa will
be labelled as l and sb will be labelled as l

′
.

The result of applying the above rules is a configured disjoint network F́ con-

sisting of one or multiple trees (T l
i ) each composed of connected segments having

identical labels. Any segment, except overlapping segments, in configured disjoint

network F́ can belong to only one tree at a time. Overlapping segments are treated

as shared by opposite labelled trees and thus are not assigned by any label. It is

important to note that any segment sa associated to an overlapping segment sb via a

junction in F will be remain connected to sb in F́ ; although, the system has specified

the class and the tree the segment sa belongs to. Referring to the example given

in Figure 5.4, suppose the minimum cut on the graph classifies s1,s5 and s7 as

arteries of tree T A
1 , whilst s2 and s6 as veins of tree TV

2 , then segments s1,s2,s3 are

connected to each other at jx, segments s3,s4,s5 are connected to each other at jy,

whilst segments s4,s6,s7 are connected to each other at jz.
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5.7.2 Connecting Extracted Trees

As aforementioned, a fundus image contains multiple disjoint networks, each con-

sisting of one or more overlapping trees. The configuration of a disjoint network Fi

is independent of the configuration of the rest of the disjoint networks. Therefore,

for each MRF graph that corresponds to a unique disjoint network, a separate ST-cut

is obtained. A cut obtained on a disjoint network may result in a single tree T l
x or

multiple trees as T l
x ,T

l
′

x+1, and so on. All segments belonging to a tree must belong

to the same vessel class and are connected at respective junctions.

A post-processing step to obtain a global configuration to explore the opportu-

nity to connect the identical class trees (such as T l
x ,T

l
y ), extracted in a configured

disjoint network, with each other. The possibility of connecting trees arises when

a significantly long vessel segment is missing between spatially-close or adjacent

junctions, and which results in multiple sub-trees of an identical class. Illustrations

of missing segments that resulted in multiple extracted trees are given in Figure 5.15

(a)-(b). A disjoint network, configured in three or more than three trees, may support

connection(s) between trees of identical class. The procedure for connecting identical

class sub-trees in a configured disjoint network F́ requires correct identification of 1)

the root segments of sub-trees T l
x and T l

y , and 2) the terminal junction of a specific

sub-tree to which the root segment of another sub-tree can be connected to form a

bridge, or the bridge junction of a specific sub-tree to which the root segment another

sub-tree will be connected to form a bifurcation . The two tasks are explained below.
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5.7.2.1 Tree Root Detection

A root segment sa is one whose head end sh
a is not connected to the end of any other

segment, whilst the tail end st
a is either the parent of a bifurcation and is connected

to the heads of two child segments, or is a terminal end and is not connected to any

other segment. Thus, an extracted tree T l
x in F́ has several unconnected ends–out of

which, one is the head of the root segment, whereas all other ends are terminals.

Due to missing segment(s), a single true tree may be extracted as multiple sub-

trees in F́ , each having a unique root segment, as shown in Figure 5.15 (a)-(c). To

construct a complete single tree in such case, the head end of the root segment sh
a of

one of the extracted sub-tree T l
x of a certain class l is connected to the terminal end

st
b of an appropriate segment of another tree T l

y of the same class. As the roots of all

trees emerge out of the ONH, the head end sh
a of the root segment of a completely

extracted tree is always closer to the ONH as compared to terminal end(s) st
a of

the same tree. Using this condition, detecting root segments in extracted trees is

straightforward. In addition to this, the width of a segment is a good indicator to

identify the root segment of an extracted tree as the root segment is usually wider

than the terminal segments.

To accurately identify the root segment out of a number of segments with their

one end unconnected, the system utilises two features that include the Euclidian

distance between the centre of the ONH and the unconnected ends of segments, and

the widths of the segments with one end unconnected. Formally, given an extracted

tree T l
x consisting of segment set S = {s1,s2,s3, . . .}, then S

′
is the set of segment

ends belonging to those segments of S having at least one unconnected end, i.e.
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S
′
= {sr

a|sa ∈ S∧ sr
aisunconnected}. Let wa is the mean width of segment sa and d̈r

a

is the Euclidian distance between the centre of ONH and rth end of segment sa. Then

the probability that an unconnected end sr
a of set S

′
is the head end of root segment,

given all other unconnected end(s) sr
b of set S

′
, is as:

p(sr
a→ root|S

′
\sr

a
) =

p(S
′
\sr

a
|sr

a→ root)

p(S′\sr
a
|sr

a→ root)+ p(S′\sr
a
|sr

a→ terminal)
(5.12)

Whereas,

p(S
′
\sr

a
|sr

a→ root) = Gwa.Gd̈a
(5.13)

Gwa =

{
0.97 ∀b,wa > wb

0.03 ∃b,wa < wb

(5.14)

and

Gd̈a
=

{
0.95 ∀b, d̈a < d̈b

0.05 ∃b, d̈a > d̈b

(5.15)

The parameters for both functions Gwa and Gd̈a
are obtained through the training

process.

5.7.2.2 Connecting Trees

After identifying root and terminal(s) for each identical class tree T l
x and T l

y extracted

in a configured disjoint network, the system connects the two trees (under certain

conditions) to form a single tree T l
z by means of joining the head end of the root seg-

ment of specific tree out of two trees (T l
x ,T

l
y ) with the tail end of a specific terminal
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of the tree opposite to the one whose root segment is to be connected.

Out of the two head ends sr
a and sr

i of root segments sa and si belonging to two

trees T l
x and T l

y respectively, the one which is farther from the centre of ONH is con-

nected to a terminal of the other tree which is selected from a closed-neighbourhood

of the root segment to which the terminal is to be connected. Assume the root head

sr
a of tree T l

x is found farther from the centre of the ONH, then choosing the correct

terminal sr
k of tree T l

y in the closed-neighbourhood of sr
a, to which sr

a is possibly

be connected, the procedure analyses the angle ϑa,k between the root segment sa

of tree T l
x and each of the terminal segment sk of tree T l

y . The ϑa,k is the angle,

calculated by considering the two direction vectors-one for sa and the other for sk.

The direction vector of a segment sa or sk can be calculated by considering the

central points of its connected and unconnected ends, as shown in Figure 5.15 (b).

A maximal angle indicates high chances of missing segment between the two trees.

Thus, sa of tree T l
x is connected to any terminal sk of tree T l

y , if ϑa,k is larger than 160

degree. The value 160 is obtained during the training process. In this process, several

completely extracted trees were selected; in each of these, a segment is randomly

chosen and removed which resulted in broken trees. The ϑa,k is then calculated for

true connections between the sub-trees. In the training examples, the minimum and

maximum value for ϑ
x,y
a,k is found 145 and 173 degree respectively.

In case the dis-connected trees are the result of absence of a significantly long

part of the child segment of a parent at a bifurcation, as shown in Figure 5.15 (c),

then the head end sr
a of tree T l

x is connected to the segment end sk which is the part

of a bridge occurred at an adjacent or spatially-closed junction of sr
a.
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(a) (b)

(c)

Fig. 5.15 a) A dotted-style vessel segment is missing as indicated by the arrow. b)
The direction vectors of two segments are forming angle. c) A dashed-style vessel
segment is missing at a bifurcation as indicated by the arrow.



5.8 Conclusion 121

5.8 Conclusion

This chapter introduces a novel procedure for efficiently extracting arterial and ve-

nous trees from disconnected and unlabelled vessel segments in fundus images. The

procedure is carried out in a pipeline of several essential tasks. The key contribution

of this chapter is the transformation of networks of disconnected segments into

probability-based Markov Random Field dependency graphs. The transformation

consists of representing the association of segments and junctions into 2-D graphs,

and estimating unary and pairwise potentials as weights for graph edges. The trans-

formation supports the application of any appropriate inference method for binary

labelling by interpreting the graph as a flow network for energy minimization. A

minimum ST-cut is obtained over the formulated graphs, implemented by running

the Ford-Fulkerson algorithm. After obtaining the global minimum cut, and perform-

ing back-translation of global configuration to labelled/connected trees, the extracted

trees of identical class are joined with each other in order to extract complete trees

of arteries and veins.

In addition, prior to transforming segments network into graphs, an efficient

method is used to identify unique disjoint networks.





Chapter 6

Experiments, Evaluation and

Discussion

6.1 Introduction

This chapter provides performance details of the key stages of the proposed system.

The evaluation is performed using two segment sets DSJS1 and DSJS2 obtained

using segmentation techniques by (Al-Diri et al., 2009) and (Bankhead et al., 2012)

respectively for the DRIVE test images.

Section 6.3 provides the specification and the expected outcome of each major

task. This section also defines criteria for assessing the performance of the system,

followed by an experimental evaluation of each model including junction identifica-

tion, local configuration, and global configuration for AV tree extraction. In addition,

complications and causes of failure in each task are discussed.

Section 6.4 provides a detailed discussion of the net performance of the sys-

tem in terms of a robustness analysis, obtained results, and novel improvements

compared to the state of the art solutions. A critical analysis of several elements,
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including the sensitivity of represented parameters, and system limitations with

possible suggestions for improvement, is also presented. Section 6.5 concludes the

chapter.

6.2 Pre-processing

The RGB versions of all images, used for training and testing purposes, were first

enhanced to improve colour contrast. The Multi-scale Retinex technique (Jobson

et al., 1997) is used for image enhancement; see Figure ??.

In the original DSJS1 set the boundary points of a few segments overlapped,

where there are overlapping vessels. In such a case, a segment is randomly selected

out of the two overlapping segments, and removed as the system doesn’t expect

pre-identified overlaps.

In the original DSJS2 set all segments are isolated and disconnected at junctions.

In a few cases the end points of two or more segments at a junction were very

close; in such an extreme case, the system reduces the length of these segments by

removing the boundary pixels of up to three end profiles.

6.3 Evaluation

6.3.1 Scope of the Local and Global Configuration

For an unambiguous assessment, it is of high importance to understand the difference

between the local and global configuration with regard to their expected outcome.

These differences are elaborated in the form of given points.
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(a)

(b)

Fig. 6.1 (a) An unprocessed RGB image taken from test images of DRIVE. (b) An
equivalent enhanced image.
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1. The local configuration of a junction refers to connecting the segment ends by

searching through the possible configurations locally at that junction while ig-

noring the configurations at the rest of the junctions; for instance finding MAP

configuration at each junction. The global configuration, on the other hand,

considers configurations of all junctions of a disjoint network simultaneously.

2. The global configuration of a disjoint network may or may not correspond to

the global MAP solution, but guarantees a globally-optimal configuration.

3. Using the MAP configuration at each junction locally doesn’t guarantee build-

ing trees, as the local MAP configurations of junctions might have conflicts

with each other (i.e. graph cycles), whereas global configuration reduces the

chances of cycles to a great extent. A possible example of such conflict is when

ends of any two different segments are connected at a junction jk, implying

that they belong to an identical trees; while the other ends of same segments

cross each other at an adjacent junction jk+1, contradict the configuration at

jk.

4. Local configuration resolves only those overlaps which appear as a single

segment. Global configuration is able to resolve overlaps where the vessels

are broken into multiple consecutive segments which require processing con-

figurations of several junctions simultaneously.

6.3.2 Evaluation criteria

The success rate of each major task is calculated based on the following criteria.

• Junction Identification The junction identification model is assessed by analysing

the associations of segments with each other according to following rules:
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1. A success is counted when an end of a true segment is correctly associated

with its junction.

2. A failure is counted when an end of a true segment is not associated with

any junction. This excludes terminal and root ends.

3. A failure is counted when an end of a true segment is associated with a

junction other than the junction it truly belongs to in the ground truth.

4. A failure is counted when both ends of a segment are associated to the

same junction.

5. The association of a false segment to a specific junction, containing the

end of at least one true segment, is neither counted as success nor failure,

as later, the extracted trees may yield a configuration that does not include

the false segment at that junction.

6. Two mistakes are counted whenever the system unifies two spatially-

close junctions into a single junction.

• Local Configuration

1. The system counts one success per correctly configured joint (for instance,

three segment ends forming a true bifurcation; or two segment ends

forming a true bridge). This also includes cases when a segment is

missing from the dataset at a joint. For instance, if a true bifurcation is

configured as a bridge, when the third segment is missing in the dataset,

is also counted a success.

2. A partially configured joint is counted as one failure. For instance, if a

true bifurcation is configured as a bridge and a terminal.
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3. A junction may consists of multiple joints, and thus may result in multiple

successes and/or multiple failures.

4. Local configuration is responsible for resolving overlaps, each of which

appears as a single segment. Global configuration resolves overlaps that

consist of segments broken into multiple consecutive segments requiring

configuration of several junctions simultaneously.

5. The configuration of a joint is counted as a failure if the joint consists of

one or multiple false segment end(s).

• Segment Classification The system counts one success per correctly classified

segment; one failure for incorrect classification. When the corresponding

segment in the ground truth set is unclassified, it is ignored.

• Global Configuration The system counts one failure whenever an extracted

tree has a configuration at a junction that conflicts with the configuration of

other junctions.

• Ground Truth Data The outcome of each task is compared with the established

ground truth dataset (CVD) mentioned in Chapter 4. The test images of the

CVD set are provided in Appendix A of the thesis.

6.3.3 Junction Identification Model

The junction identification model is evaluated on test sets of DSJS1 and DSJS2. The

system proved highly efficient, correctly identifying junctions in a highly discontinu-

ous and complex vascular network. Using the criteria above, the system correctly

identified 98.5% and 98.1% junctions in the DSJS1 and DSJS2 test sets respectively.
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The full statistics are given in Table 6.1.

The system initially used ϒMIN =7, which resulted in a number of Condition 1

and Condition 2 cases. As explained in Chapter 4, ϒ is the length of the vector using

which the segment end region (SER) is defined; Condition 1 refers to situation when

a segment end is not associated to any junction; and Condition 2 arises when both

ends of a segment becomes the part of the same junction. The system efficiently

resolved these cases by dynamically updating the ϒ value, resolving cases such as

segment ends with no association to any junction, over-large junctions, and junctions

with incorrect associations. Setting ϒMIN < 7 has little effect on the system outcome

other than a small increase in the computational cost. However, the ϒMAX value

is fairly sensitive; a very high value may result in huge numbers of segment ends

assigned to junction. The primary cause of failure the excessive distance of segment

ends from the true junction locations, resulting in failure to assign the segment end

to the junction. However, the tree-joining step typically resolves this discontinuity

later.

The percentage-wise mean cardinalities of identified junctions in the DSJS1 test

images are: 42.9% with cardinality one, 26.6% with cardinality two, 22.9% with

cardinality three, 6.1% with cardinality four, and 1.3% with cardinality five. For

DSJS2, the statistics are: 56.1% with cardinality one, 12% with cardinality two,

25.7% with cardinality three, 5.6% with cardinality four, and 0.4% with cardinality

five. The image-wise identified junctions with their cardinalities are given in Table

6.2. As shown in the table, the cardinality of any identified junction never exceeded

5; which was also the highest cardinality of the junctions in the ground truth data.

It may be worth noting that in principle higher cardinalities are possible (e.g. two
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DSJS1
Total number of segment ends to be associated 7610
Total number of segment ends correctly associated to junctions 7501
Total number of segment ends remained un-associated 97
Total number of segment ends wrongly associated to junctions 12
Success Rate 98.5 %
DSJS2
Total number of segment ends to be associated 4264
Total number of segment ends correctly associated to junctions 4185
Total number of segment ends remained un-associated 69
Total number of segment ends wrongly associated to junctions 10
Success Rate 98.1%

Table 6.1 Performance of the Junction Identification Model

coincident bifurcations), although this did not occur in DSJS1 or DSJS2, so is closely

none.

A junction with significantly higher cardinality is caused by either associating

both ends of a segment to the same junction and/or by merging multiple spatially-

close junctions into a single junction. Typically, the available connectivity techniques

are not trained to address the former case (if it arises) by disassociating one of the

ends of the segment from the junction. The latter case presents two problems. First,

due to the exponential increase in the number of possible configurations, finding

the MAP configuration becomes computationally expensive. For instance, if two

spatially-close junctions, each with cardinality four, are merged into a single junction

with cardinality 8, then would be of 4364 configurations. Secondly, the performance

of any local configuration system decreases with increasing cardinality, as geometry

of possible joints becomes finer grained and therefore the chances of mistakes is high.
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Image
Number

Segment
Set

Cardinality of Junctions

1 2 3 4 5 Total
1 DSJS1 102 65 53 16 1 237
2 DSJS1 69 60 62 10 3 204
3 DSJS1 90 68 47 15 5 225
4 DSJS1 59 32 26 6 1 124
5 DSJS1 96 48 42 10 4 200
6 DSJS1 76 33 31 12 1 153
7 DSJS1 126 66 56 13 2 263
8 DSJS1 100 37 28 6 2 173
9 DSJS1 66 22 35 6 1 130
10 DSJS1 82 63 30 10 4 189
11 DSJS1 93 53 50 20 3 219
12 DSJS1 96 58 57 9 3 223
13 DSJS1 79 54 50 23 3 209
14 DSJS1 97 60 62 9 5 233
15 DSJS1 50 82 55 11 1 199
16 DSJS1 104 53 55 15 3 230
17 DSJS1 72 42 36 5 2 157
18 DSJS1 86 52 40 13 0 191
19 DSJS1 82 49 45 12 3 191
20 DSJS1 73 49 36 13 3 174
1 DSJS2 82 21 33 6 1 143
2 DSJS2 64 13 32 9 0 118
3 DSJS2 83 19 25 3 0 130
4 DSJS2 56 8 24 7 0 95
5 DSJS2 64 14 30 7 0 115
6 DSJS2 51 8 22 10 1 92
7 DSJS2 72 12 36 4 0 124
8 DSJS2 24 19 32 11 0 86
9 DSJS2 64 8 24 5 0 101
10 DSJS2 70 15 22 6 0 113
11 DSJS2 75 22 35 6 0 138
12 DSJS2 68 19 41 5 1 134
13 DSJS2 75 10 42 11 1 139
14 DSJS2 61 8 32 7 1 109
15 DSJS2 55 14 31 5 0 105
16 DSJS2 54 21 33 6 1 115
17 DSJS2 75 13 24 4 1 117
18 DSJS2 73 15 29 5 2 124
19 DSJS2 80 10 32 5 2 129
20 DSJS2 66 12 22 11 0 111

Table 6.2 Junctions with their associated number of segment ends.
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6.3.4 Local Configuration Model

For every possible configuration at each identified junction, the local configuration

model estimates a probability value. An experiment is performed to analyse the

efficiency of the local configuration model by choosing the MAP configuration at

each junction.

The experiments are performed on test sets of DSJS1 and DSJS2. The model

produced excellent results on both DSJS1 and DSJS2 sets, with the success rates

94.3% and 95.3% respectively. Detailed statistics are provided in Table 6.3. From

the statistics given in this table, it is clear that the number of bridges in DSJS1 is

nearly three times the number of bridges found in DSJS2. This shows that DSJS1

has a higher disconnectivity rate than of DSJS2. Also, the number of bifurcations

in DSJS1 is approximately 1.5 times higher than number of bifurcations found in

DSJS2. This is the evidence that quite a few segments for the ending parts of vessel

trees are missing in DSJS2.

The system was able to identify 31 and 22 overlapping segments out of total

33 and 23 in DSJS1 and DSJS2-obtaining overall 94.2% and 95.6% sensitivity;

and 99.7% and 99.1% specificity respectively. In addition, 99.1% and 98.5% of

true trifurcations were detected respectively in DSJS1 and DSJS2. The removal of

segments inside the optic nerve head eliminated 0.7% of the joints. These results

are compared with the result of technique introduced in (Al-Diri et al., 2010) as they

have used DSJS1 to test their system. The success rates they achieved are 76%, 71%,

and 59% for bridges, bifurcations and terminals respectively. Whereas, as given in

Table 6.3, the success rates we achieved are 94.07%, 93%, and 96.1% respectively

for bridges, bifurcations and terminals respectively. An overall improvement of

22.3% is achieved by our system.
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Joints DSJS1 DSJS2
Total Configured Success Total Configured Success

Bridges 1537 1446 94.07% 554 509 91.8 %
Bifurcations 899 836 93% 601 550 91.5 %
Terminals 1653 1589 96.1% 1312 1293 98.5 %

Roots

Table 6.3 Summarized results of the local configuration model.

Segmentation errors and false segments are the main sources of failure cases. A

third cause of failure in a few cases of local configuration inference is the unavail-

ability of sufficient training data particularly for cases when the positions of segment

ends are not regular. For such cases, the parameters for the prior probability p(Ck
q)

are obtained from a very limited number of examples. If a sufficiently large training

data is available, the problem may be mitigated by updating prior for such cases.

By empirical observations, the features used to estimate the joint likelihood

functions, suggest that the angle and orientation are the most important, followed by

width, while the intensity has the least effect on the overall results. The configuration

results are shown on a sample test images of DRIVE for DSJS1 are in Appendix B

of the thesis.

6.3.5 AV tree Extraction Model

We tested the global configuration system on test images of DSJS1 and DSJS2. The

system successfully achieved global configurations by resolving conflicts in local

configurations with improved results from 94.3% to 95.7% in DSJS1 and from 95.6%

to 96.2% in DSJS2. In addition, in most of the cases, the obtained global config-

urations correspond to the MAP estimations. The system was able to accurately

classify 94.7% and 93.4% of the total segments in test images of DSJS1 and DSJS2
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respectively. The majority of failure cases in both sets results from segments which

are isolated (i.e. not associated with the junctions of extracted trees), or where the

corresponding vessels in manually labelled set are remained unclassified.

The trees are extracted on test images of DSJS1 and DSJS2. A sample of ex-

tracted trees in DSJS1 is provided in Appendix C.

Before comparison, it is important to take the key aspects of the alternative

techniques into account. For instance, the technique (Dashtbozorg et al., 2014)

provides solution for classifying only the major vessel segments having average

width above 3 pixels. Similarly, the work produced in (Lau et al., 2013) classifies

only the major vessel segments in a predefined area. Thus, these techniques are not

compatible with our AV tree extraction model.

The technique in (Lin et al., 2012) performs global configuration of vessel

segments but does not classify them, and thus extracts binary trees only. The authors

of (Lin et al., 2012) technique tested their system using test images DRIVE with the

success rates obtained as follows: 76% bifurcations, 83% bridges, 88% terminals,

and 83% overall success. We achieved improved performance by 19.2% for bifurca-

tions, 11.7% for bridges, 8.1% for terminals, and 12.06 % overall.

We compared the result of AV tree extraction model with two previous tech-

niques developed for extracting AV trees. The two techniques (Joshi et al., 2014)

and (Hu et al., 2015) perform AV trees extraction by considering both major and

minor segments. Both techniques consider segments of the whole image, however,

in (Hu et al., 2015), the segments with average width below 1.5 pixels are ignored.
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Techniques A B C D E F G
(Al-Diri et al., 2010) Yes Yes 72.1% No No NA NA

(Lin et al., 2012) Yes Yes 88.7% Yes No NA NA
(Hu et al., 2015) Yes Yes NA Yes Yes No 86.1%

(Joshi et al., 2014) No Yes NA Yes Yes No 91.4%
Proposed Method Yes Yes 95% Yes Yes Yes 95.7%

Table 6.4 Comparison of techniques: A) Performs local configuration of segments,
B) Used DRIVE dataset, C) Result of local configuration, D) Performs global
configuration of segments, E) Performs classification of segments, F) Performs
classification and configuration as complimentary process, G) Result of AV tree
extraction. N/A= Not Applicable.

The mean results produced by these techniques are 91.4% and 86.1% respectively.

In terms of results, we have obtained better results than any of these techniques. A

summary of the comparison of the results produced by the discussed techniques are

given in Table 6.4.

Our system has two advantages over the alternative techniques. The first is

that the proposed AV tree extraction model addresses two problems (classification

and connectivity) by integrating them into a single binary labelling problem. The

synergy of classification and configuration knowledge to improves performance. In

contrast, all the above discussed techniques resolve the two tasks separately by firstly

extracting the binary skeletons of vessel trees, followed by classifying them into

one of the vessel classes. In addition, our classification model not only exploits

the crossing of vessels as a potential classification feature, but also considers the

spatially-close (parallel running) vessels as a classification indicator.

The second factor is that previous techniques mostly follow heuristic (greedy) ap-

proaches to get the optimal configuration. For instance, at a junction of three segment
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ends, the technique in (Hu et al., 2015) considers only four potential configurations,

whilst our local configuration model considers seven configurations in total. This

raises an issue of over-fitting the model on the specific data. In contrast, our model

never ignores any possible configuration at junctions. In particular, the inference

models uses unary and pairwise potentials, and integrates the probabilities of the

entire search space. This makes the model highly reliable for previously unseen data

with unique vessel patterns.

In literature, the common approach to evaluate the proposed systems is to use the

single partition of DRIVE dataset, i.e. by taking 20 images for training and 20 images

for testing. However, we also performed a cross validation (rotation estimation)

test to assess the proposed model as how the results of a statistical analysis will

generalize to an independent data set.

In this experiment, the entire dataset (consisting of training and testing images)

is considered as single dataset of 40 images. The k-fold cross validation technique is

used by first randomly partitioning the original dataset into equal subsamples for both

DSJS1 and DSJS2. The k value is taken 10, resulting in total 10 subsamples, each of

size 4 images. Followed by training the k−1 subsamples, and testing system on the

remaining subsample. The experiment is repeated 10 times by so each subsample is

used for testing exactly once and 9 times for training.

The randomly generated subsamples with image numbers are provided in Table

6.5.

The training of the k−1 subsamples is conducted using exactly the same proce-

dure utilised for training the single partition of original dataset. The results obtained
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in all ten repetitions are shown in Figure 6.2.

Fig. 6.2 The success rate on subsamples of DSJS1 and DSJS2.

The average results obtained from this experiment (95.89% for DSJS1 and

95.91% for DSJS2) are slightly higher than the result obtained by using single

partition of dataset. This concludes that by increasing the training data, a better accu-

racy can be achieved. Though the representative parameters of feature distributions

obtained from training data in each repetition during the experiment were slightly

different from each other; however, when taken as an average, the difference was

near to none.
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Subsample Number Image Numbers
Subsample 1 21, 13, 14, 29
Subsample 2 31, 12, 4, 15
Subsample 3 35, 32, 6, 10
Subsample 4 5, 9, 18, 25
Subsample 5 11, 26, 3, 38
Subsample 6 1, 7, 36, 39
Subsample 7 8, 34, 16, 22
Subsample 8 23, 24, 33, 2
Subsample 9 19, 20, 27, 28

Subsample 10 30, 17, 37, 40

Table 6.5 Random Distribution of 40 Images of DRIVE into Subsamples.

6.4 Discussion

6.4.1 System Performance

The global configuration model is able to extract highly probable AV trees by clas-

sifying segments and finding non-conflicting local configurations simultaneously.

Integrating classification and connectivity probabilities into a graphical model pro-

duces the complementary strength of the proposed approach. The overall system

remained stable throughout the implementation of each major stage. The algorithm

for the AV trees extraction model is run using Matlab 2015b version on Intel Core i6;

and which took less than one minute to process on average. The prebuilt functions

of Matlab made the algorithm run significantly faster with minimum use of space.

The number of segments per image is not usually high (i.e. 150 to 350 on average),

the Ford-Fulkerson algorithm didn’t take long to get the optimal graph cut. However,

by increasing the segment ends at junctions might result in big search space and thus

computational efficiency will be affected.
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To the best of our knowledge, we are the first to develop an AV tree extraction

model that integrates the connectivity and classification tasks into a single binary

labelling problem and solves this with a single technique. Modelling the joint prob-

ability of connectivity and classification in the MRF graph, and inferring using

the ST-cut, is proves to be an appropriate solution for the current problem. The

system typically converges to high performance global configurations that usually

correspond to MAP solutions. Moreover, the minimum cut efficiently utilises the

connectivity priors to classify minor segments whose unary potentials are equally

likely for any class. Furthermore, the experiments show that by introducing the spa-

tial feature ζ , the efficiency of the naïve Bayes classifier has significantly improved.

It is common practice for authors to train and evaluate their connectivity tech-

niques by utilizing the segments that are obtained using their own segmentation

methods. The performance of these techniques may be influenced by the complexity

level or discontinuity characteristics of their segmentation algorithms, and/or the pre-

defined assumptions. In addition, the unavailability of their segmentation techniques

or their segments to the research community makes difficult to judge the overall

progress in the state of the art. Moreover, using different segmentation techniques for

the same image set produce different results and thus the complexity of discontinuity

varies. This motivated us to evaluate our system, and produced results, using the

segments obtained from two different techniques for the same dataset. In case of

DSJS2, in particular, not only the segments but also its technique is available online

for free and has been used by a number of researchers.

The results of the experiments demonstrate that the system is able to efficiently

extract AV trees from a range of patterns of incompletely-segmented vasculatures.
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However, a significant increase in the number of false and/or missing segments can

degrade the overall performance. Typically, the available connectivity techniques

don’t integrate the task of distinguishing true/false segments; rather separate tech-

niques are utilised to remove false segments. For the future work, the proposed

local configuration model can be trained for extended configurations that may be

partially or composed of false segments. In such case, the formulated MRF can

also be extended to multivariable labelling problem with three classes as arterial

segment, venous segment, and false segment. For inference over such MRFs, there

are various algorithms available that work by reducing the problem to a sequence of

minimization sub-problems with binary variables, such as (Boykov et al., 2001) and

(Veksler, 1999).

The only step in the proposed technique that requires user intervention is the

manual identification of the centre of optic nerve head. This can be automatically

achieved by using any sophisticated OD localization technique such as (Lowell et al.,

2004a), (Mohammed et al., 2014), and (Qureshi et al., 2012).

6.5 Conclusion

We assessed the major stages of the proposed AV extraction model using precise

evaluation criteria. The performance is analysed by testing the system on two differ-

ent segmentations, each obtained for the DRIVE test images. The two sets DSJS1

and DSJS2 demonstrate unique and complex patterns of disconnected vasculatures.

The elementary models including junction identification, local configuration, global

configuration and trees joining, produced best results on both DSJS1 and DSJS2 sets.
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The reference image set is used for comparison at all the stages. The performance is

also compared with the results produced by published alternative techniques. The

proposed system exceeds the documented performance of state of the art techniques.

We also discussed the limitations of the system with possible suggestions to address

these.





Chapter 7

Conclusion and Future Work

7.1 Introduction

The automated extraction of retinal arterial and venous trees from disjoint networks

of vessel segments in fundus images is a prerequisite to examine the correlation of

global features of retinal vasculature with a number of abnormalities that arise in the

retina. In addition, it supports the analysis of physiology and hemodynamic of blood

flow in retinal vessel trees.

Automated AV trees extraction in retinal images is relatively new area with

very few published techniques. In this thesis, a novel probabilistic graph based

methodology is presented which requires zero user-intervention and is able to extract

AV trees from a segmented vasculature disconnected at some or all junctions. The

system efficiently locates all junction points, locally connects the segment ends,

classifies the vessel segments, and extract AV trees by finding a highly optimal

global configuration of the segment network.
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The project has developed a robust graph based extraction model that can resolve

discontinuities occurring in the segmentation of images containing overlapping tree-

like structures. The methodology is optimized to resolve discontinuity in retinal

vascular trees; however, it could be adopted for a number of other trees and track

like structures.

7.2 Novelty of Science

Based on a sequence of processing steps, an efficient extraction method is developed

that is comprehensive and far more robust than the previously published techniques.

A probabilistic graphical model is developed for the accurate extraction of arterial

and venous trees from a network of disconnected retinal vessel segments in fundus

images. The contributions are presented below.

7.2.1 Junction Identification Model

The identification of junction locations is a critical task as the outcome of the rest

of following phases depends highly on the accuracy of identified junction points. A

fully automated technique that works by dynamically growing segment ends regions

(SERs), is developed for identifying junction points. The SERs created utilise

direction vectors and angles at segment ends, and through a supervised probabilistic

manner the overlaps of SERs of several segment ends are identified as junction points.

The approach assures junction properties such as:

• Both ends of a segment can’t be assigned to the same junction.

• A junction never exceeds a specific number of associated segment ends.
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Unlike alternative models that result in significantly high number of associated

segment ends, the proposed model obtains excellent results by identifying smaller

junctions with restricted numbers of segment ends.

7.2.2 Probabilistic Model for Local Configuration

A new supervised Bayesian probability model is developed for correctly connect-

ing the vessel segment ends at junctions. The probabilistic framework effectively

utilises the priors and conditional likelihoods of local configurations in two passes of

Bayesian inference and estimates configuration posteriors. The likelihood functions

are equipped with the estimated parameters of Gaussian distributions of a number of

segment joints features. This model is capable of estimating the MAP (Maximum

A Posteriori) configuration on any number of associated segments provided the

configuration priors are obtained through a sufficiently large dataset. In addition,

an extension of this model is might be possible for junctions with a mixture of

associated true and non-true segments using the similar approach of enumerating

mutually exclusive and collectively exhaustive configurations and choosing the MAP

estimation. The developed model is able to correctly identify segment joints in-

cluding bifurcations (parent-children relationship), bridges, overlaps, and mixture

of these joints. This model is evaluated independently of other parts of AV trees

methodology with excellent results produced.

7.2.3 Vessels Classification

Due to an increase in research interest in examining the functional and structural

behaviour of retinal arteries and veins at both local (i.e. at junctions or between

consecutive junctions) and global level (i.e. trees level), a Naïve Bayes classifier is
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trained for soft labelling of retinal vessel segments. This model estimates the poste-

rior class probability of segments using geometrical, colour, and spatial properties.

To the best of our knowledge, it is the first time spatial information of vessels is thus

been used to improve the performance of vessel classification.

7.2.4 Arterial and Venous Trees Extraction

A novel approach is developed to translate the disjoint network of segments network

into a dependency graph Markov Random Field (MRF). The formulated MRF

expresses joint probability distribution of segments’ classification and connectivity.

The translation converts the AV tree extraction problem into an energy minimization

problem for binary labelling.

An MRF is formulated and an ST-graph cut is used to derive the global op-

timal labelling and connectivity simultaneously. The ST-graph cut is obtained

by implementing Ford-Fulkerson algorithm. The minimum cut yields sub-graphs

each representing a connected tree of arteries or veins, through a process of back-

translation of the graph into vessel trees. The extracted sub-trees of same class are

considered for re-joining if separated because of missing segments. The system is

highly efficient and produces excellent results.

7.2.5 Other Contributions

This project introduces a vessels classified image set for DRIVE images. The vessels

were manually classified into arteries and veins by retinal imaging experts and an

ophthalmologist. This publically available dataset provides an opportunity to the

future researchers to evaluate alternative labelling algorithms.



7.3 Future Work 147

This thesis also provides an insight into the structural behaviour of the retinal

vasculature through statistical analysis of a number of retinal vascular features.

The findings can be utilised to examine the correlation of vascular structures and

abnormalities that arise in retina. In conjunction with physiological features, the

obtained findings would be useful for studying global features of vessel trees.

7.3 Future Work

7.3.1 Global Features of Retinal Vasculature

The fractal properties of retinal vascular trees provide insight into global features

of the retinal vasculature. A number of medical studies (Stošić and Stošić, 2006)

reported direct correlation of vascular fractal features to several pathologies. As both

choroid and retinal vessels originate from same ophthalmic artery, examining the

global features of retinal arterial and venous trees may also provide understanding

and changes to vascular system at outer retina. This may provide indirect relation of

retinal vascular changes to complications at other retinal layers including Age-related

Macular Degeneration (AMD) which is a leading cause to loss of central vision. In

addition, extraction of AV trees provides global view of vascular system which is an

opportunity to examine the physiology and hemodynamic of blood flow in retinal

vessels.

Moreover, the AVR feature is being frequently used in clinical diagnosis, obtain-

ing AVR (Artery-to-Vein Ratio) is an immediate application of AV trees extraction.

This thesis will also help researchers to examine the vascular behaviour near the
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optic nerve head and investigating possible impact on vascular trees of glaucomatous

diseases.

7.3.2 Extended MRF

Detecting and removing false segments is out of the scope of this thesis, and thus

all the nodes of formulated MRF are treated as corresponding to true segments.

A potential research direction is to extend the formulated MRF from binary to

multiclass labelling problem by taking false segments as additional class to arteries

and veins.

7.3.3 Retinal Image Registration

Retinal image registration (Zana and Klein, 1999) demonstrates significant impor-

tance for clinical diagnostics and security systems. Features and locations of vascular

landmarks including bifurcations, crossings, and overlaps are the common parame-

ters examined during the identification process, as well as used in the registration

process of retinal images, obtained in certain intervals, to investigate disease pro-

gression. The extracted AV trees are potentially useful for the above-mentioned

applications in the context of inspecting vascular landmarks and trees structure.

7.3.4 Tree Topology Estimation

Tree like structures such as plant roots, tree branches, lightening, and other vascula-

ture structures are often analysed in images, and thus requires efficient algorithms for

extraction. The novel extraction system presented in this thesis with slight modifica-

tion can be efficiently trained for such applications. In addition, the abovementioned

structures project planar graphs after the cut is performed on the formulated MRF,
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thus the graph based approach in this thesis may also be utilised for optimal extraction

of planar graphs in general, such as in (Estrada et al., 2015).

7.3.5 Road Extraction

Automatic extraction of lanes and roads from high resolution satellite imagery is an

important task in transportation applications (Gruen and Li, 1995). The availability

of topographic databases of the Earth provides means for several applications such

as traffic management, automated navigation, disaster prevention, military purposes,

and critical decision making in emergency incidents. Image processing techniques

implemented on aerial images for road extraction generally results in fragments,

requiring efficient approaches to correctly connect these broken fragments. The

fragmentation occurs generally due to shadows of objects including buildings, trees,

roofs of houses, and the visual breakages caused by bridges. The local configuration

model of this thesis can be employed to estimate highly likely connectivity of

these fragments, yielding an improved performance of the road and lane extraction

processes.
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Appendix A

Sample Images with

Classified-Vessels for DRIVE



166 Sample Images with Classified-Vessels for DRIVE

(a) Image 1

(b) Image 2



167

(a) Image 3

(b) Image 4



168 Sample Images with Classified-Vessels for DRIVE

(a) Image 5

(b) Image 6



169

(a) Image 7





Appendix B

Sample Images with Local

Configuration of Junctions

The red lines on each image are used to connect ends of two segments, blue lines for

connecting ends of three segments and magenta lines are for connecting ends of four

segments at a junction. The overlapping segments are shown in green colour edges.



172 Sample Images with Local Configuration of Junctions

(a) Image 1-DSJS1

(b) Image 2-DSJS1
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(a) Image 3-DSJS1

(b) Image 4-DSJS1



174 Sample Images with Local Configuration of Junctions

(a) Image 5-DSJS1

(b) Image 6-DSJS1



175

(a) Image 7-DSJS1





Appendix C

Sample Images of Extracted Trees of

Arteries and Veins

Segments with red colour edges are identified as arteries whilst segments with blue

colour edges are identified as veins.



178 Sample Images of Extracted Trees of Arteries and Veins

Fig. C.1 Image 1-DSJS1



179

Fig. C.2 Image 2-DSJS1



180 Sample Images of Extracted Trees of Arteries and Veins

Fig. C.3 Image 3-DSJS1



181

Fig. C.4 Image 4-DSJS1



182 Sample Images of Extracted Trees of Arteries and Veins

Fig. C.5 Image 5-DSJS1



183

Fig. C.6 Image 6-DSJS1



184 Sample Images of Extracted Trees of Arteries and Veins

Fig. C.7 Image 7-DSJS1


