
Evaluating Retinal Blood Vessels’

Abnormal Tortuosity in Digital Image

Fundus

Submitted in fulfilment of the requirements for the

Degree of MSc by research

School of Computer Science

University Of Lincoln

Mowda Abdalla

June 30, 2016



Acknowledgements

This project would not have been possible without the help and support of many

people. My greatest gratitude goes to my supervisors Dr. Bashir Al-Diri, and Prof.

Andrew Hunter who were abundantly helpful and provided invaluable support, help

and guidance. I am grateful to Dr. Majed Habeeb, Dr. Michelle Teoailing, Dr.

Bakhit Digry, Dr. Toke Bek and Dr. Areti Triantafyllou for their valuable help with

the new tortuosity datasets and the manual grading. I would also like to thank my

colleagues in the group of retinal images computing and understanding for the great

help and support throughout the project.

A special gratitude goes to Mr. Adrian Turner for his invaluable help

and support. Deepest gratitude are also for my parents, Ali Shammar and Hawa

Suliman, and to my husband who believed in me and supported me all the way.

Special thanks also go to my lovely daughters Aya and Dania. Finally, I would like

to convey warm thanks to all the staff and lecturers of University of Lincoln and

especially the group of postgraduate students of the School of Computer Science.

2



Abstract

Abnormal tortuosity of retinal blood vessels is one of the early indicators of a number

of vascular diseases. Therefore early detection and evaluation of this phenomenon

can provide a window for early diagnosis and treatment. Currently clinicians rely on

a qualitative gross scale to estimate the degree of vessel tortuosity. There have been

many attempts to develop an accurate automated measure of tortuosity, yet it seems

that none of these measures has gained universal acceptance. This can be attributed

to the fact that descriptions and definitions of retinal vessel tortuosity are ambiguous

and non-standard. In addition unified public datasets for different disease are not

regularly available. I have propose a tortuosity evaluation framework in order to

quantify the tortuosity of arteries and veins in two dimensional colour fundus images.

The quantification methods within the framework include retinal vessel morphology

analysis based on the measurements of 66 features of blood vessels. These features

are grouped as follows: 1) Structural properties 2) Distance approach features 3)

Curvature approach features 4) Combined approach features 5) Signal approach

features. The features numbered 1 to 4 above are derived from literature. Item

number five are new features which I have proposed and developed in this thesis.

These features have been evaluated using a manually graded retinal tortu-

osity dataset as controlled set. I have also built three tortuosity datasets, each of

which contains two manual gradings. These datasets are: 1) A general tortuosity

dataset 2) A diabetic retinopathy dataset 3) A hypertensive retinopathy dataset. In

addition, I have investigated the differences in tortuosity patterns in hypertensive

and diabetic retinopathy. New pathology based datasets were used in this investi-

gation. These are the major contributions of this thesis.
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Chapter 1

Introduction

The aim of this chapter is to introduce retinal blood vessels tortuosity, which is a

medical phenomenon that affects the retina. It also highlights the importance of its

accurate evaluation. In addition, this chapter presents the researcher’s motivation

and the rationale behind conducting the research and states the set of aims and

objectives of the thesis. A description of tasks and investigations that were carried

out throughout the project is also included. A general overview of the flow of the

thesis structure is presented at the end of this chapter.

1.1 Introduction

Retinal blood vessel tortuosity has been associated with the presence and progres-

sion of a number of vascular diseases such as Diabetic Retinopathy, Hypertensive

Retinopathy, Retinopathy of Prematurity (ROP), facioScapuloHumeral Muscular

Dystrophy (FSHD), Coats Disease and many more [54, 62]. First of all, what is

retinal vessels tortuosity and how can it be estimated or graded accurately? The

word ”Tortuous”, according to the Oxford Dictionary is defined as: ”full of turns

and twists” [22]. However, this is not exactly a helpful definition when it comes

to describing retinal blood vessels tortuosity, bearing in mind that the blood ves-

sels are already spread in a semi sphere shaped eye and they are already slightly

curved and twisted. Therefore, I introduce the term “Increased tortuosity” or “Ab-

normal tortuosity” instead. This is more meaningful and accurate in describing this

phenomenon.
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There are a number of measures that have been proposed to evaluate ab-

normal tortuosity in the past 42 years. The evaluation of the accuracy of these

methods varies depending on the types of the ground truth used. Some of these

evaluation methods are: 1) Classifying vessels as either tortuous or non-tortuous.

2) Ordering a number of retinal vessel segments by increased tortuosity. 3) Grad-

ing the tortuosity of the whole vascular tree. However, none of these measures has

gained a universal acceptance, [see section 2.7].

In this thesis I investigated retinal blood vessels abnormal tortuosity and

morphological changes of vessels with respect to tortuosity. In addition, a review

of most of the tortuosity measures proposed in the literature has been completed.

[See chapter 2]. Subsequently, a framework for evaluating abnormal tortuosity has

been proposed. The next sections present the rationale and motivation behind

investigating this phenomenon and proposing my framework.

1.2 Rationale

Recent advances in computing and information technology have had a huge impact

on all aspects of our lives, especially in the health care sector. Medical image anal-

ysis has played a significant role in improving the way that diseases are detected,

diagnosed and treated. As improvement continues in some of the medical imaging

fields such as CT, X-rays and MRI scans, additional investigations are being carried

out to replace some of the old conventional diagnostic methods. Methods such as

naked eye inspections of medical imaging, and subjective qualitative diagnostic de-

cisions, like retinal fundus images, to be replaced by automated diagnostic systems

that are capable of providing accurate quantitative measurements or even diagnosis.

Along with the improvement in medical imaging technologies such as image registra-

tion and fusion; and image capturing tools there have been a general improvement in

equipment in terms of quality and resolutions within the medical sciences in general.

Investigations are still being undertaken to find ways of marrying these advances in

imaging with the emerging medical discoveries, that might utterly change the con-

ventional methods of disease diagnosis and treatment. As possible outcome is that,

diseases could be predicted and either prevented or treated earlier.

18



One of the interesting findings in ophthalmology is the strong positive

correlation which has been found between retinal blood vessels abnormal tortuosity

and the presence and progression of some vascular diseases [54, 62]. This discovery

could lead to a leap forward in the development of robust non-invasive diagnostic

tools. Since the retina is the only place where blood vessels can be directly visualized,

non-invasively, in vivo, it provides easy access for studying the micro-circulation

and the haemo-dynamic of blood flow in the human body. For basic background

knowledge of the retina and its arterial and venous systems, see the following sections

under the literature review, Section 2.5, about the human eye, Section 2.5.1, about

retinal venous and arterial systems.

At present, ophthalmologists estimate retinal vessels morphology changes,

and retinal vascular abnormalities in general, through naked eye inspection. These

inspections are either performed through an ophthalmoscope, which is an instru-

ment used by ophthalmologists, to directly inspect the fundus of the eye; or through

images captured by special cameras known as retinal fundus images. Then, the de-

gree of tortuosity is estimated, mostly based on clinician experience and knowledge

since there is no standard guide for tortuosity evaluation. This is mostly evaluated

using a qualitative scale such as ”mild”, ”moderate”, ”severe” and ”extreme”. Oc-

casionally, this is useful however, it is not that effective especially when it comes to

early accurate tortuosity detection, and hence early diagnosis and treatment.

Ophthalmologists’ reliance on manual tools and techniques to monitor and

qualitatively evaluate the changes in retinal vessels morphology can lead to devastat-

ing outcomes such as losing eyesight. With improved image processing techniques

and software, accurate results can be obtained and further complications can be

prevented.

1.3 Motivation

Globally, the estimated prevalence of diabetes in adults between the ages of 20

and 79 worldwide for 2012 was 382 million and it is expected to affect 592 million

people by 2035 [21]. It is estimated that 175 million people have undiagnosed type

two diabetes. Diabetic retinopathy alone accounts for about 7% of people who are
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registered blind in England and Wales, and it is also considered the leading cause

of preventable sight loss in people of working age in the UK. Nevertheless, diabetic

retinopathy represents one of the diseases that have been found to have correlations

between its progression and the tortuosity of retinal blood vessels [72, 64]. Therefore,

developing an automated tortuosity evaluation tool is equally important to finding

cures to all these diseases.

1.4 Hypothesis

1.4.1 Aims and objectives

Aims

The aims of this thesis are: A) to develop a quantitative tortuosity evaluation

framework to evaluate abnormal or increased tortuosity of human retinal blood

vessels using two dimensional digital image. The framework consists of a number of

features that represent most aspects of structural changes in retinal blood vessels.

B) To develop new features. C) To build a pathology based tortuosity dataset of

diabetic and hypertensive retinopathy, and a large general dataset. D) To investigate

tortuosity differences between diabetic and hypertensive retinopathy.

Objectives

In order to achieve the stated aims, a set of objectives have to be accomplished first

as follows:

1) Evaluate the existing tortuosity measures from the literature for grading tor-

tuosity.

2) Investigate the development of new tortuosity evaluating features based on

Fourier Transform.

3) Combine the best selection of tortuosity features to build a robust framework

for evaluating tortuosity.

4) Create a new dataset, which consists of two subsets: diabetic and hypertensive

sets, in addition to the development of manual grading, in which retinal blood
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vessels, in this new dataset, will be graded by volunteer ophthalmologists.

5) Evaluate the developed framework by reference to a public dataset, which is

Retinal Vessel Tortuosity Dataset (RVTDS) foracchia2005luminosity.

6) Evaluate the developed framework by reference to the developed private dataset

mentioned in 4.

7) Evaluate the tortuosity differences between hypertension and diabetic retinopa-

thy by reference to the developed private dataset mentioned in 4.

1.5 Investigations

At the start of this project, I conducted a literature review on the evaluation of

retinal blood vessels tortuosity in retinal image fundus, in which I critically evaluated

and analysed previous work conducted in this field. I also selected and sourced

information closely related to the topic, which was later used to provide the context

for my thesis. In addition, I highlighted some of the good existing research built

upon that research, and identified gaps that needed to be addressed and investigated.

Moreover, in the course of the literature investigations, I visited two of the biggest eye

screening centres in the UK; Sunderland eye infirmary and Boston retinal screening

center, and I had the opportunity to have informative discussions with a number of

expert ophthalmologists and clinicians.

At the second stage of the project, and fully equipped with the right knowl-

edge and clear plans, I started the process of building an evaluation framework that

included a large number of features. I also developed a number of new features

most of which were based on Fourier Transform (FT). I used various statistical

analysis methods to analyse my framework performance and presented the results.

Meanwhile, I also started on developing tortuosity datasets. At the beginning, and

with help of my supervisors, we built a semi-automated system that: A) segmented

retinal blood vessels from 2D fundus images, B) labelled vessel segments as vein and

arty, C) Graded the degree of tortuosity. However, things did not go to plan, in

terms of automation, and I had to plan and prepare for a manual grading. Thus,

three new datasets were proposed.
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At the third stage of this project. and based on facts obtained during the

literature review, I analysed arteries and veins of patients with hypertension and dia-

betic retinopathy with regard to vessel structural properties, to see if there were any

differences in vessels behaviour between these diseases. At the final stage I reported

and documented all work done throughout the project, in addition to discussing

results and stating future plans for improvements, projects and publications.

1.6 Thesis overview

This section provides an overview of the thesis structure. The first chapter provides

an introduction to the thesis problem, which is retinal blood vessels evaluation, from

both the medical and the computing sides. It provides the medical definition of the

described phenomenon, in addition to the urgent need of an accurate measure on the

part of the health professionals in this field. It also outlines some of the previous work

done regarding this problem and some reflections upon them, see Section 2.7. This

chapter extends to state the rationale and motivations that has drawn the researcher

to conduct such research. This is followed by the thesis hypothesis, a statement of

the aims and objectives, and details of the initial comprehensive investigation.

The second chapter documents the literature review conducted on both the

medical and the computing sides of the research. On the computing side, the chap-

ter provides an introduction to digital image processing and analysis, in particular

medical imaging and more specifically retinal image analysis. Then, the chapter

provides a detailed description of retinal blood vessels tortuosity in general, in addi-

tion to an introduction to the anatomy of the retina and its components. Following

this there is a comprehensive review of measures to evaluate blood vessels tortuosity

which are most frequently proposed in the literature.

The third chapter of this thesis describes the development, and the analysis

processes involved, of the proposed tortuosity evaluation framework. It outlines the

features that constitute the framework, whether they are taken from the literature,

or proposed in this study. Implementation and statistical evaluation of these fea-

tures, using the RVTDS and the new tortuosity dataset, are also included in this

chapter.
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The fourth chapter of this thesis documents the process of building a gen-

eral image tortuosity dataset that consists of 130 segments of diabetic and hyperten-

sive patients. This dataset was then divided to create two pathology based datasets,

hypertensive and diabetic with 77 and 53 segments respectively. Grading systems

are discussed and graders are outlined, then after detailed implementation process

the Intraclass Correlation Coefficient (ICC) of the graders is analysed. Consequently

three new datasets were proposed.

The fifth chapter of this thesis, is mainly focused on investigating differ-

ences in tortuosity between diseases. The diseases datasets proposed in chapter four

are used. The proposed frameworks features were measured using these datasets,

results are then analysed and reported.

The sixth and final chapter concludes the thesis by outlining contributions

made and discusses plans for future work improvement. It starts by highlighting

results obtained in this project and it concludes by suggesting improvements and

outlining plans for future projects.

1.7 Conclusion

Increased or abnormal retinal blood vessels tortuosity has been proven to be an

early indicator of the presence or advancement of a number of vascular and non

vascular diseases. Several attempts have been made to accurately evaluate this

abnormal tortuosity, however there is still no universal evaluation method. After a

comprehensive investigation of all aspects that surround this phenomenon, I propose

an evaluation framework with a clear set of aims and objectives as outlined in the

thesis overview and set out in detail over the next chapters.
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Chapter 2

Literature review

This chapter provides a detailed literature review of the evaluation of retinal blood

vessels tortuosity in digital fundus image in both medical and computing fields. The

first two sections provide a general introduction to the field of digital image pro-

cessing and analysis, followed by an overview of medical imaging technologies and

approaches in particular, retinal imaging. The chapter then proceeds to describe

retinal blood vessels tortuosity and provides an overview of the anatomy and struc-

ture of the retina and its components. The last three sections of this chapter, provide

a broad overview of most frequently proposed evaluation methods in the literature,

touch also upon evaluation methods used in other disciplines, and considers some

issues raised by ophthalmologists regarding the type of measures and methods to be

used in the evaluation. Previous data analysis methods used are also discussed in

this chapter.

2.1 Introduction

A great number of tortuosity evaluation methods have been proposed within the

last 42 years. In this chapter, different approaches to tortuosity evaluation are

outlined and critically evaluated. These approaches are different in terms of tortu-

osity quantification methods, types of blood vessel segments used and the various

approaches to validation techniques. Although some of the tortuosity evaluation

methods which have been suggested showed good results, none of these measures

has gained acceptance as a universal tortuosity evaluation feature or measure.
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A review paper, based on this chapter has been presented at the Science

and Information Conference (SAI 2015) and recorded in the conference proceedings

published by IEEE. The paper can be found in Appendix .1.

2.2 Digital image processing and analysis

Digital image processing is a branch of computer vision, which in turn is a branch

of computer science. Before proceeding to define the image processing and image

analysis fields, a basic understanding of images and their components is needed.

An image, as described by Gonzales and Woods [38], is a two dimensional function,

f(x, y), where x and y are spatial planes or coordinates. The amplitude of f at any

pair of coordinates (x, y) is called the intensity or grey level of the image at that

point. When x, y and the amplitude values of f are all finite, discrete quantities,

then the image is called a digital image.

Gonzales and Woods also noted that the field of image processing refers to

processing digital images by means of using a digital computer. In other words, as

described by Zhou et al. [94], digital image processing is the technology of applying

a set of computer algorithms to process digital images. Moreover, Vernon [89] stated

that image processing can be thought of as a transformation, which takes an image

and produces an image, i.e. it starts with an image and produces a modified or

enhanced image, whereas digital image analysis is the transformation of an image

into something other than an image, i.e. it produces some information represent-

ing a description or decision about the initial image. There are three main fields or

categories in image processing: A) Image restoration, in which noise and blur are re-

moved from an image using particular operations and algorithms. B) Segmentation

of regions of interest, which is the process of isolating particular parts of an image,

for example the background, foreground or specific textured or coloured object or

area. C)Image enhancement, which is the enhancement of the image brightness,

sharpness, etc. In medical image processing systems, most of these techniques and

processes are used to process and improve images of the human body or parts of it for

further analysis i.e. for diagnosis or examination purposes. Examples of medical im-

ages are Energetic High-Frequency Electromagnetic Radiation (X-ray), Computed
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Tomography (CT) scan images, Magnetic Resonance Imaging (MRI), ultrasound

images, etc. The next section will provide more information about medical image

processing.

2.3 Medical image processing and analysis

Medical image analysis is the field in which images of the human body or part of it,

are digitally processed for research or clinical purposes, such as diagnosis, finding

more information about or investigations of diseases. Over the last few decades, as

stated by Arnulf Oppelt [71], enormous improvements have been made in the area of

imaging systems for use in medical diagnostics, and new techniques such as magnetic

resonance tomography have been developed. This has opened up new avenues in

early diagnosis, especially, but not limited to conditions related to the brain such as

strokes, spine injuries and abnormal tissues in the human body in general.

Since the field of medical image processing has been an interdisciplinary

research field attracting expertise from applied mathematics, engineering, com-

puter science, physics, statistics, biology and medicine, huge improvements have

been made in conventional techniques such as X-rays [94]. Image processing and

analysis of medical images normally go through a number of stages or phases.

These phases start with the image acquisition process and include: 1) image forma-

tion/reconstruction. 2) Image enhancement. 3) Image compression and storage. 4)

Image analysis. 5) Visualisation of the processed image. The process ends with the

evaluation and validation of obtained results [26]. This study is mainly focused on

retinal image processing and analysis. The next section provides more details about

image analysis stages with reference to retinal imaging.

2.3.1 Retinal image analysis

One of the interesting facts about the eye that it is the only organ in the body where

blood vessels can be directly visualised in vivo without any medical intervention.

Ophthalmologists have put that fact into use for many years as can be seen in

the following statement by Gowers in 1876:” . . . When the retina is free from

local disease, there is no reason to believe that the retinal artery and vein differ in
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their condition from other arteries and veins of the same size, and, therefore, any

marked change in their state, apart from cerebral or ocular disease, may be taken

as evidence of a similar change throughout the vascular system”, [40]. Subsequent

studies confirmed that there are correlations between brain diseases and changes in

the retinal vascular [87, 73], in particular vascular dementia [67, 93], and stroke [76].

There has been rapid development in image processing technologies rele-

vant to ophthalmology over the past few years including progress towards devel-

oping automated diagnostic systems for conditions such as diabetic retinopathy,

age-related macular degeneration and retinopathy of prematurity [74]. In retinal

image analysis studies, retinal images are processed, in similar ways that images

in general are processed, to extract desired information or diagnosis needed; these

process are staged as follow:

A) Image acquisition and pre-processing: At this stage images of patients’ retinas

are acquired or retrieved from sources such as image databases. These images

are then pre-processed through operations such as enhancement or smoothing.

The set-up of the cameras, in addition to the quality of the captured images

and the outcome of the pre-processing, play a significant role in the success

of subsequent stages. The quality of retinal images, has been considered as

one of the problems in successfully capturing images of the ocular fundus

because of factors such as defocus, medial opacities or the presence of artefact

[56, 60]. The preprocessing stage therefore also includes image restoration, in

which damages caused by the image capturing process, noise or blurriness are

reversed.

B) Segmentation: The second stage is the segmentation of regions of interests,

which in this case means those regions in the retina that could possibly be

segmented such as the retinal vasculature (retinal arteries and veins) or ab-

normal anomalies such as lesions. There are different segmentation techniques

for different tasks. The outcome of this stage is normally a binary image or

a measurement mask with the white colour marking the regions of interests

and black representing the background. Morphological operations can be used

at this stage for further enhancement or correction using operations such as

opening, closing, and dilation or eroding.
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C) Evaluation and visualization: At this stage, measurement can be carried out

in addition to basic or advanced evaluation of the data resulting from these

measurements, and/or image visualization. [See Figure 2.1 for the stages of

image analysis.]

In conclusion, increasing technology leading to the development of digital imaging

systems over the past two decades has revolutionised fundal imaging [74]. Auto-

mated diagnosis of retinal fundal images using digital image analysis offers huge

potential time and cost benefits such as the ability to examine a large number

of images, and offering more objective measurements than current observer driven

techniques [74]. Nowadays retinal image analysis is considered a standard clinical

practice with an increasing number of retinal medical applications.

Figure 2.1: A graph shows the stages of image analysis

2.4 Blood vessel’s tortuosity

The word ”tortuous” is defined in the Oxford Dictionary as: ”full of turns and

twists”. Nevertheless, tortuosity observation is not just confined to blood vessels,

it has been studied and measured in various disciplines, for example, tortuosity has

been used to describe rivers, animals’ pathways, materials, tubes, etc. However,

in the medical field the term tortuous has been particularly associated with blood

vessels and in some cases with nerves. When it comes to describing structural
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changes in blood vessels, the use of tortuous seems not quite precise, given the

nature and the functionality of blood vessels. Blood vessels in general as described

by [86] consist of arteries, arterioles, capillaries, venules and veins. All blood in the

human body is carried in these vessels. The arteries, which are strong, flexible and

resilient, carry blood away from the heart and bear the highest blood pressures.

Since the arteries are elastic, they tend to narrow (recoil) passively to help maintain

blood pressure. Arteries normally branch into smaller vessels called arterioles; both

arteries and arterioles have muscular walls that can adjust their diameter to increase

or decrease blood flow to a particular part of the body.

Capillaries as defined by Mary Bird [6] are fine, hair like, vessels consisting

of one cell thick coats. Since they are only one cell thick, they act as a bridge

between arteries and veins. They consist of fluid containing oxygen, nutrients and

other substances which are able to flow into the tissues, consequently supplying the

individual cells with their requirements.

Veins, which return blood to the heart, can widen (dilate) as the amount

of fluid in them increases. Some veins have valves in them, to prevent blood from

flowing backward. If these valves leak, the back-flow of the blood can cause the veins

to stretch and become elongated and convoluted (tortuous) [86]. [See figure 2.5 for

a tortuous vein]. Bearing all these structural properties in mind, the researcher sug-

gests that the use of ”abnormal tortuosity” would provide a more logical description

of the abnormal structural changes in blood vessels. Abnormal tortuous vessels can

occur in several places in the body, and some of these tortuous vessels might indicate

a medical condition, especially in structures like the retina, the brain (cerebral) or

abdomen.

2.5 The retina

The human eye is the organ which gives the sense of sight; it allows humans to

observe and learn more about their surrounding environment, more than they nor-

mally do with any of their other senses. The eyes are located in the front half of the

orbits surrounded by fat and connective tissues and supported by a facial hammock.

They rest in these two bony cavities, the orbits, on either side of the nose [19]. The
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concave interior part of the human eye, consists of the retina, the choroid, the sclera,

the optic disk, and blood vessels, which can be seen through the ophthalmoscope by

the naked eye. The retina has been known as the most complex organ in the human

body. It is the sensory layer of the eye extending from the optic disk to the ora

serrata [59]. This layer is a delicate nervous membrane, upon the surface of which

images of external objects are received, as stated in Gray’s Anatomy [41].

The retina consists of the macula, which is the most sensitive area of the

retina characterised by its richness of cons, or bulbous particles which are ones of

the light sensitive elements that convert electromagnetic waves into nerve impulses.

Retinal blood vessels usually end at the margins of the macula [58]. Retinal blood

vessels are discussed in detail in Section 2.5.1. Another important part of the retina

is the fovea, located in the centre of the macula, which has the densest concentration

of cons, and is responsible for acute vision and the production of bright reflex.

[See Figure 2.2 illustrates the anatomy and parts of the retina.] An effective way

of obtaining a deep understanding of the parts that make up the eye and their

functionalities, is to go through the process of vision. The process by which vision

happens in the eye is similar to the work flow of a digital camera. The reflected light

waves from an object, such as a tree, enter the eye first through the cornea, which is

the clear dome of the front part of the eye. The light then travels through the pupil,

which is the circular opening in the centre of the coloured iris. The pupil adjusts

itself by contracting and dilating with the change of light intensity entering through

it. The entering light is first bent or converged by the cornea, and then bent further

by the crystalline lens, located immediately behind the iris and the pupil, to a nodal

point (N) located immediately behind the back surface of the lens. [See Figure 2.3].

The image at that point becomes reversed and turned upside-down, while the light

continues through the vitreous humor, the clear gel that makes up about 80% of

the eye’s volume, and then back to the clear focus on the retina behind the vitreous

[70].

2.5.1 Retinal blood vessels

There are two types of vessels that supply blood to the eye. The choroidal blood

vessels, which supply the external parts of the eye with an amount that represents
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Figure 2.2: The anatomy of the eye

around 65-85% of the whole amount of blood that the eye receives; and the central

retinal artery, which is, on the contrary, the eye’s internal blood supplier that extends

and branches to arterioles.

This study mainly revolves around the internal vascular of the retina es-

pecially the retinal blood vessels, arteries and veins, that extend from the optic disc

to the peripheral or the edges of the retina.

Retinal arterial system

Arteries in general, as defined in Gray’s anatomy [41], are cylindrical tubular vessels,

which serve to convey blood from the heart to every part of the body. Therefore,

they deal with a high blood pressure flow. They are characterised by thick muscular

walls with a lot of smooth muscles, for flexibility, and also by a relatively small

lumen, which is the cylindrical hole through which the blood flows.

The retinal arterial system consists of the central retinal artery, and the

retinal arterioles. The central retinal artery, which is the main blood supply to the

retina, is fed by the ophthalmic artery which branches off the carotid artery. It is an

end artery without any anastomoses that enters the optic nerve estimated as 1cm

behind the globe. Central artery occlusion might cause irreparable damage, such

as vision loss, due to ischemia. The retinal arterioles arise from the central retinal

artery; they have smooth muscle within their walls, but they differ from the arteries

in their internal elastic lamina, which is discontinuous in nature [54].
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Figure 2.3: Vision process and parts of the human eye

Retinal venous system

The veins are the vessels which serve to return the deoxygenated blood from the

capillaries of different parts of the body to the heart, therefore they deal with low

blood pressure [41]. Veins are very similar to arteries in their structure, but they

have larger lumens compared to arteries and relatively thin muscular walls, which

means less smooth muscle or less elastic fibres. Moreover, veins have valves to

prevent back flow of the deoxygenated blood, which allow veins to deal effectively

with the low blood pressure flow.

The venous system also includes the small venules, which have a similar

structure to capillaries, but are larger in size. Larger venules, which contain smooth

muscle gradually join to form veins. In addition to the smooth muscle, veins contain

elastic tissue in their walls and they are to some extent distensible; they gradually

expand in width as they pass posteriorly towards the central retina as described by

Kanski [54]. Figure 2.4 illustrates the positions of macula, fovea, veins and arteries

in a retinal funds image.
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Figure 2.4: Retinal Arteries, Veins, Fovea and Optic nerve

2.5.2 Retinal fundus

In the retina and retinal imaging, the fundus represents the inner part of the eyeball.

It includes parts such as the retina, optic disc, and the macula. The fundus of the

eye can be seen through the pupil with an ophthalmoscope, which is an instrument

used by ophthalmologists to inspect the interior or fundus of the eye.

2.6 Retinal vessel’s tortuosity

In the previous sections, it has been indicated that the use of the word tortuous

with blood vessels in general is not precisely accurate, especially with blood vessels

located in structures like the retina. This is because the blood vessels are spread in a

semi-spherical shaped eye and these vessels are already slightly curved and twisted.

Normal retinal blood vessels are straight or slightly curved but in some diseases

they become dilated and start to take different paths. This dilation, as explained

by William E. Hart, et al. [48] is caused by radial stretching of the blood vessel,

and the serpentine path occurs because of longitudinal stretching. Tortuosity can

be focal, which occurs only in a small region of the retina or individual segment,

or general which involves the entire retinal vascular tree, Figure 2.6 shows retinal

images with tortuous and non-tortuous retinal blood vessels.
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Figure 2.5: Tortuous vein (varicose vein)

Retinal vessels tortuosity and hypertension

Retinopathy is a general term that refers to any form of non-inflammatory dam-

age to the retina of the eye. Hypertensive retinopathy is a disease that affects the

retina that occurs because of hypertension-induced changes to the small vessels in

the eyes. Cholesterol is formed in larger arteries, just like elsewhere in the body

and this arteriosclerosis in the eye leads to tiny infarcts and superficial bleeding

on the retina. The arteriosclerotic changes will remain until overall cholesterol is

treated. However, hypertensive retinopathy will get better as the underlying cause,

hypertension, is treated. Signs of hypertensive retinopathy that can be examined

and identified in the fundus oculi are generalised and localized arteriolar narrow-

ing, increased light reflex, arteriovenous crossing phenomena, arterial attenuation

(decrement in the arterial attenuation) and more severe signs such as exudates,

haemorrhages and papilloedema. These signs have long been considered indicative

of the stages of, and prognosis in, systemic arterial hypertensive disease [53, 54].

It is clear that tortuosity is one of the earliest signs that can be spotted. Mostly

people with hypertensive retinopathy are usually symptoms free. They will not

34



Figure 2.6: (a) tortuous and (b) non-tortuous retinal fundus images

have changes in their vision and they may not even know that they have high blood

pressure. Often, hypertensive retinopathy is spotted during an eye examination,

when the doctor observes the classical changes in the eye associated with hyperten-

sive retinopathy and the required treatment will then begin. Clinically, weeks to

months after successful treatment of hypertension, an eye exam should show that

the retinopathy changes have resolved.

Retinal vessels tortuosity and diabetes

Diabetic retinopathy is the most common diabetic eye disease and the leading cause

of blindness in adults. It is caused by changes in the blood vessels in the retina.

Blood vessels may swell and leak fluids, or abnormal new blood vessels may grow

on the surface of the retina. Diabetic retinopathy is a progressive disease; in which

changes may not be noted at first, but with time, retinopathy gets worse and even-

tually leads to vision loss. Intermittent blurring of vision is a usual complaint and is

caused by the swelling or edema of the lens due to changes in blood sugar levels. It

usually affects both eyes [1]. There are four stages or types of diabetic retinopathy:

1) Mild Nonproliferative Retinopathy: This is the earliest stage of diabetic retinopa-

thy, in which small balloon-like swelling occurs in the retina’s tiny blood ves-

sels.
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2) Moderate Nonproliferative Retinopathy: At this stage some blood vessels in

an area are blocked.

3) Severe Nonproliferative Retinopathy: At this stage more blood vessels become

blocked and the retina begins to grow new blood vessels in an effort to provide

nourishment to areas that suffer from lack of blood supply.

4) Proliferative Retinopathy: This is an advanced stage, in which new vessels are

formed in the retina but they are very fragile and abnormal; they are not the

cause of blindness, but when they leak, due to weakness, severe loss of vision

and then blindness can occur.

It is extremely important for diabetic patients to have their eyes examined regu-

larly by an ophthalmologist. Keeping blood sugars, as well as cholesterol and blood

pressure under control will help limit the damage to eyes and help keep valuable eye-

sight. One of the main differences between the two retinopathies is that hypertensive

retinopathy is reversible, and diabetic retinopathy is not.

2.7 Previous work on grading retinal vessels tor-

tuosity

In the past, there have been many attempts to develop an accurate tortuosity grading

measure or system. This section provides a brief overview of the measures which

have been most commonly proposed in the past 42 years of research in chronological

order. The majority of the proposed measures can be classified into three main

groups: 1) measures based on the ratio between the curve length and the chord

length. 2) Measures based on the local curvature at each point, or changes in the

curve direction or sign along the blood vessel segment.3) Combined measures; these

measures are the product of the combination of the previous measures. Recently

researchers have started to incorporate additional structural properties or behaviours

of blood vessels, (such as segment width, number of sub-curves in a blood vessel

segment, etc.), into curvature measures. This is because ophthalmologists carrying

out clinical observations, rely on these basic structural properties to estimate the

degree of tortuosity.
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One of the earliest attempts to mathematically evaluate retinal blood ves-

sels abnormalities was conducted in 1967 by Kagan et al. [53], The study focused on

measuring the width and artery to vein ratio. They also investigated signs in fundus

oculi secondary to hypertension, such as generalised and local arteriolar narrowing,

increased light reflex, and arteriovenous crossing phenomena and so on. Their aim

was to differentiate between hypertensive and non-hypertensive retinas and to dis-

tinguish and separate the stages of hypertension from each other. They assessed

three subject groups: normal, hypertensive and hypertensive with abnormalities.

The width of the main upper and lower temporal arteriol and venule were measured

using a curvometer (an instrument normally used for map reading). The measures

were at a distance of one disc diameter from the periphery of the disc, to the near-

est mm. Their study revealed that there are differences between hypertensive and

non-hypertensive retinas. They reported that there is smaller width of arterioles

with the hypertension group in addition to retinal abnormalities as well as with the

venules, but without significance. Also, they reported a smaller A/V ratio with the

abnormalities group compared to the normal.

A few years later, the relative length variation method was proposed. It was

first introduced by Lotmart [63], and altered later by Bracher [7]. This method was

based on the measurement of the length of blood segment and its underlying chord.

This is one of the first methods that is based on distance measurement. The measure

subdivides a single vessel segment into series of single sub-arcs with curve height

hi, and chord lengths li, tortuosity is then estimated as the relative length variation

Equation 2.2, where L is the length of the blood vessel, and the approximation

is derived using a sinusoidal model of a blood vessel segment. Unfortunately, the

technique is not fully automated and it requires manual selection of points on the

fundus photograph to divide the vessel into a series of single arcs. Bracher [8] also

noted that blood vessels may take sinusoidal form, but are more often irregular in

as much as bends alternate with straight parts, and there is no rule for the distance

of the bend from the disc. The study also estimated the integral width and length

of blood vessels. Using this measure as a part of a suite of tortuosity measures, 91%

was achieved in the classification of individual retinal vessel segments as tortuous

or non-tortuous and 95% in the classification of a whole vascular tree as tortuous
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and non-tortuous, the study was conducted by Hart et al. in 1999 [49] using a

private dataset without an indication to a particular disease, and a logit model for

the classification.

As cited in [49] Kaupp et al. have reported unpublished results of an

automated tortuosity measure that uses a Fourier transform of the perpendicular

along the blood vessel segment. Smedby et al. [83] introduced five measures to grade

tortuosity of femoral arteries, included a number of integral curvature measures and

a measure that is based on the number of inflection points along the blood vessel,

in addition to another which calculates the number of fractions of the blood vessel

segment that has a high curvature. Capowski, Kylstra and Freedmen [14] proposed

a tortuosity index based on spacial frequencies. It was built on a grade index system,

in which retinal images were classified as either tortuous or non-tortuous. Although

it had been found that the index forms an objective measure of the ROP disease

state, it has been stated that it is not sensitive to non-ROP changes. Hart, et al. [49]

described a suite of automated tortuosity measures of the tortuosity of retinal vessel

segments. The suite included arc over chord measure, the total curvature and the

total squared curvature. The latter two measures were each averaged by their chord

and curve lengths. The blood vessel segments used were manually and automatically

extracted. The measures have zero value for a straight segment and an increasing

positive values for a tortuous one. They also proceeded to prove two hypotheses

concerning the proposed measures: first the transformation properties of measured

vessel segments, and secondly the vessel composition and scaling. Regarding vessel

composition, they believed that if a segment in a vessel is tortuous, it means the

entire vessel is tortuous too, and also assumed that the direction and orientation of

vessel do not affect the vessel tortuosity. Their proposed measures were tested on two

classification problems: 1) the classification of segments as either tortuous or non-

tortuous. 2) The classification of a whole vascular tree. The achieved classification

rate of the first problem was 91% and 95% for the other. However, their measures

have been found to fail to differentiate between the tortuosities of structures that

visually appear to be different in tortuosity. Two years later Hart, et al. explored the

relative length variation which had been introduced earlier by Lotmart Freiburghaus

and extended by Bracher [63, 7] as previously noted. They used the curvature of
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a parametrized curve as defined in Equation 2.1 (Where α(t) is the angle of the

tangent line at t, and s is the distance at t). However they found that there is

still difficulty in accurately estimating the degree of tortuosity especially with the

subjectivity gross scale, which increases the difficulty of identifying changes between

classes.

Tortuosity(t) =
dα

d(s)
(t) (2.1)

Geoffrey Dougherty [25] proposed a novel index for measuring abdominal arterial

tortuosity, which is caused by the compression of the spine with age. The proposed

index is based on the second differences of the coordinates of the vessel mid line,

or derived from the standard deviation of successive differences, dXo, dX1, . . . , dXN ,

in the horizontal co-ordinates. Thus, the index depends on the vessel length and

the sampling interval. However, the author noted that it can be made independent

of both by dividing by the sampling interval. This variant based measure the au-

thor referred to as the Standard Deviation Tortuosity (SDT). The index assigns a

value of zero, if the measured vessel is straight. The measure is independent of the

magnification, resizing of the image or the sampling frequency.

Kheng Goh et al. [37] described twelve tortuosity measures, and used a

data mining algorithms to classify retinal images as either tortuous or non-tortuous.

Using arc over chord, and the curvature measure suite in addition to the direction

angle change. Kheng Goh et al. stated that these measures of curvature do not give

a reliable and consistent indication of the overall measure of tortuosity of the vessel

segment under consideration if used individually. However, they observed that if

some of these attributes of the different curvature definitions are used collectively, the

degree of reliability and accuracy in measuring the curvature of a particular segment

of the retinal vessel is increased. In their proposed Automatic Diabetic Retinal Image

Screening system ADRIS, they combined all the data of the 12 attributes associated

with the four curvature definitions or measures and fed the data into an association

based data mining classification tool known as CBA. The output of CBA consists

of a set of association rules governing the relationship between the 12 attributes

that reliably and accurately classify the input vessel segments as either tortuous

or otherwise. Heneghan, Conor et al. [51]measured the width and tortuosity of
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retinal vessels that were extracted from retinas of ROP patients. They used the

ratio between the arc and chord length to estimate tortuosity. Their algorithm

consistently overestimated the degree of tortuosity by approximately 0.07, which

they attributed to the discrete nature of a digital image. They added that since

pixels have a finite size, this means that measuring distance from centre to centre

of each pixel will force a theoretically smooth curve to follow a zig-zag path with

a longer length. However, they explained that the estimate is consistently biased

over the range of tortuosities of interest, so that measurements of tortuosity can

be considered as reliable in a relative sense. After applying a simple retrospective

screening paradigm, they yield a screening test with a sensitivity and specificity of

82% and 75%. Factors confounding a more accurate test include poor image quality,

inaccuracies in vessel segmentation, inaccuracies in measurement of vessel width and

tortuosity, and limitations inherent in screening based solely on examination of the

posterior pole. Bullit et al. [13] proposed an innovative method based on 3-D

curvature estimated via a geometric technique. They used three of the existing

tortuosity metrics: Distance metric (DM) which is the ratio between the arc length

and the chord length normally used on 2D images; Inflection Count Metric (ICM) in

which the DM is multiplied by the number of inflection points in a vessel; the Sum

of Angles Metric (SOAM) which is implemented by integrating the total curvature

along the curve. Although their proposed method was the most sensitive in detecting

two types of abnormal tortuosity, it has been found to be ineffective with tight curves.

Grisan, Enrico et al.[43] suggested that there are important aspects that should be

considered before measuring vessel tortuosity, such as the factors that influence the

vessel to be tortuous or non-tortuous in the first place. Their approach was to

provide some solutions to problems encountered in previous studies such as long

vessel tortuous classification. The three transformation properties they suggested

that might influence the evaluation of vessels tortuosity are:

1) Translation, rotation and scaling: Grisan et al. stated that translation and

rotation are not supposed to influence the perception of tortuosity. But with

scaling, they believed that a single vessel does not affect clinical perception.

However, they questioned that especially when it came to vessel calibre.

2) Composition: They introduced a new definition of composition property, which
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completely contradicts the Hart, William et al. definition [48]. They stated

that a vessel s with a combination of various segments si, will not have a

tortuosity measure less than any of its composing parts.

3) Modulation: They assumed that the greater the number of changes in the cur-

vature sign or the twist, the more tortuous the vessel is considered. Similarly,

they added, the greater the amplitude (maximum distance of the curve from

the underlining cord) of the twist is, the greater is the tortuosity associated

with it.

Grisan et al. investigated all the existing algorithms, then added additional features

and proposed a new improved algorithm [28, 44]. They believed that, compared with

the previous algorithms, their technique was more reliable and robust. However, a

more extensive evaluation based on a larger set of images is needed. Longmuir,

Susannah Q., et al. [62] presented a paper that investigated Facioscapulohumeral

Muscular Dystrophy, which is an autosomal-dominant disease, and it has been found

that retinal blood vessel tortuosity to be one of its several signs. Their methodology

was based on the extraction of the centreline of each artery and vein. Their calcu-

lation was then determined by the number of changes in curvature sign, the angle

of curvature of the vessel, the ratio of arc length to the respective chord length

and total length of the vessel. The tortuosity was calculated by the ratio of the

arc length to the respective chord length. Their results showed that there is a cor-

relation between the subjective tortuosity of arteries, and the severity of FSHD.

However, these results were not that significant compared with the tortuosity of

veins. Trucco, Emanuele, et al. [29] supported the notion of incorporating vessel

features in the tortuosity calculation process. They stated that curvature may not

be the only quantity involved in modelling tortuosity, and they assumed features

like vessel thickness, or calibre, may also play a role in tortuosity estimation. Danu

Onkaew et al. [20] used previous algorithms in developing their method. They

went on to upgrade an algorithm that was developed based on curvature to estimate

the vessel tortuosity using chain code. However, the algorithm did not show any

compatibility with the transformation properties that ophthalmologist use to define

tortuosity measures.

Recently Rodriguez, Martin et al.[65] introduced a different approach for
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evaluating tortuosity; they used the fast Fourier transform of the vessel’s curvature

as a tortuosity evaluation method. Results were promising especially when it came

to aspects such as the variation of amplitude, frequency and length of vessels.

Diedrich, Karl T., et al. [23] carried out research that investigated the

brain’s arteries and their relation to arterial vascular diseases mainly focused on

hypertension. A centreline extraction algorithm was used and a distance based

tortuosity metric was applied to magnetic resonance angiography (MRA) of brain

images to quantitatively measure the tortuosity of arterial vessel centrelines. The

study resulted in a correlation between tortuosity and hypertension. In recent years,

Turior, Rashmi, and Bunyarit Uyyanonvara. [88] used existing curvature measure-

ment algorithms as a base of their new algorithm. They introduced two new methods

for curvature measurement: a numerical integration method and a numerical differ-

entiation method to calculate the curvature of vessel segments. Ghadiri, Farnoosh

et al. [35] developed an automated algorithm to grade tortuosity of an entire vessel

network. Their technique was primarily based on the vessel direction. Hence, they

evaluated vessel network tortuosity without using vessel centreline tracing. During

the same year Ghodasra, Devon H., et al. [36] set out to describe the rate of change

in retinal vessel tortuosity and width in eyes that developed type one Retinopathy

of Prematurity (ROP). They used a computer assisted image analysis system to

grade vessels tortuosity and width. The rate of change per day was calculated using

a linear regression model and the results showed a relation between tortuosity and

the width of the vessels.

The literature also includes attempts to build automated or semi-automated

integrated systems, (such as the Retinopathy Of Prematurity Tool (ROPtool) [90]

and Computer Assisted Image Analysis of the Retina (CAIAR))that respectively

segment, classify and measure blood vessels tortuosity [92]. However, this study fo-

cuses on methods and algorithms that evaluate the tortuosity of individually blood

vessel segments.

In conclusion, the literature review shows that most studies have been

based on the ratio between the curve length and the chord length. However, this

measure has proven to lack accuracy because it assigns the same tortuosity value to

an intuitively very tortuous curve as to a simple, gently curve with the same average
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deviation from the chord [29, 48]. On the other hand, the measures based on the

local curvature at each point along the course of vessel segment have also been found

to be unable to capture some of the important aspects related to blood vessels walls

or boundaries such as aneurysms [5]. Consequently, suggestions have been made that

curvature may not be the only quantity involved in modelling tortuosity, and that

vessel features should also play a role in curvature estimation [43, 29]. However the

right combination of features needs to be identified and tested. As clearly indicated

above, in addition to a number of innovative approaches such as grading tortuosity

on 3D images, researchers also tried to incorporate the clinical perception aspects of

tortuosity in their methods with consideration to the properties that influence blood

vessels to become tortuous in the first place such as the length of the vessel, and how

smooth the vessel is, etc. With all these studies in mind, and with consideration to

the advantages and drawbacks encountered in these studies, a tortuosity evaluation

framework is proposed in an attempt to capture most of vessels curvature and to

automatically and accurately grade retinal blood vessel tortuosity. A number of

improved tortuosity measures are also proposed and incorporated in the framework.

2.7.1 Grading tortousity in other disciplines

Beside the studies of retinal blood vessels’ tortuosity, this phenomenon has also been

investigated in various parts of the human body. Vessels tortuosity in general has

been associated with the presence of disease, for example the study of the tortuosity

of abdominal arterial and compression of the spine, conducted by [25], proved that

there is a significant correlation between the tortuosity of the abdominal aorta and

subjects’ age. In another example, blood vessels tortuosity also has been found

to be relevant as a detector of the beginning of malignant tumours in the human

brain [13, 27]. There are also studies of the tortuosity of the microarchitecture of

the trabecular bone in an investigative study that aims to improve fracture risk

prediction [75].

Furthermore, tortuosity also has been investigated and measured in other

non-medical disciplines. In civil and environmental studies, tortuosity is considered

as one of the geometrical properties of cracks and so has been investigated in that

context and measured in cement and concrete cracks [2]. In physics, tortuosity is
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investigated, studied and measured in porous media [66]; In electricity and lightning

research the tortuosity of lightning spark is expressed using the mean absolute value

of angle change, which is a measure frequently used in measuring tortuosity of blood

vessels.[4]. In agricultural science particularly in animal behaviour studies, the tor-

tuosity of an animal’s path resulting from seasonal migrations was also investigated

and its characteristics and tortuosity were calculated [31].

2.7.2 Tortuosity measure properties

Although ophthalmologists fail to agree on a universal definition of vessels tortuosity,

they mostly seem to agree on what a tortuosity measure needs to satisfy to become

clinically meaningful. They suggest that a tortuosity measure should be invariant

to translation, rotation and scaling. Moreover the position and the orientation of

the blood vessel should not affect the perception or the degree of the tortuosity.

This seems to be a strong beginning towards setting corner stones in the quest

for the perfect tortuosity measure. Few studies have investigated these properties.

Hart, et al. [48] discussed two tortuosity properties, vessel composition and scaling.

Enrico Grisan, et al. [43] discussed three of the vessels transformation properties:

translation, rotation and scaling, composition and modulation.

2.8 Existing tortuosity evaluating features

This section outlines some of the most used tortuosity evaluating features from the

literature that are based on various approaches to estimating tortuosity in addition

to a number of basic blood vessels structural properties’ measurements. It also

provides a critical evaluation of these features, their strengths and limitations in

order to be incorporated in the proposed tortuosity evaluating framework.

2.8.1 Distance approach

These features are mainly constructed to evaluate tortuosity by measuring the length

of the blood vessel segment or curve, or the length of the path that the blood vessel

takes, known as the Arc and denoted by LC ; and the length of the straight line

between the two end points of the blood vessel segment or arc, known as the Chord
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and denoted by LX . Tortuosity is then estimated mainly by taking the ratio between

those two lengths. The next sections provide some measures based on this approach.

Relative length variation

This was the first distance based feature. It was introduced first by Lotmart

Freiburghaus [63], and altered later by Bracher [7]. This feature subdivides a vessel

segment into a series of single arcs with heights hi, and chord lengths li. Tortuosity

is then estimated as the Relative Length Variation (RLV) 2.2, where L is the length

of the blood vessel, li represents chord lengths and hi is arrow heights. The approxi-

mation is derived using a sinusoidal model of a blood vessel segment. Unfortunately,

the technique is not fully automated and it requires manual selection of points on

the fundus photograph to divide the vessel into a series of single arcs. Using this

measure as a part of a suite of tortuosity measures, 91% was achieved in the classi-

fication of segments as tortuous or non-tortuous and 95% in the classification of a

whole vascular tree [49] on a private dataset with no particular disease,

RLV =
LC

l
≈ 8

3

n∑

i=1

(
hi

li
) (2.2)

.

Arc over chord ratio

The Arc Over Chord ratio (AOC) is the most simple, basic and most used distance

based tortuosity evaluation feature. It is introduced by [48]. Given the blood vessel

segment as a curve o arc (S), and the length of the curve as ( LC), 2.5 or 2.6, and

the straight distance between the two end points of the blood vessel segment, known

as the chord length as (LX) equation 2.7. This feature simply examines how long

the curve is, compared with the straight distance between its two end points. The

feature has zero value for straight vessel segments and increasing positive value for

segments as they become tortuous. It is also free of any manual manipulations or

interactions. See Equation 2.3;

AOC =
LC2(S)

LX(S)
− 1, (2.3)

or

POC =
LC(S)

LX(S)
− 1 (2.4)
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Implementation Dataset Performance

William E Hart (1997) [48] Private Dataset Has a classification rate of 91% ∗1 and 95%∗2 as one of 7 measures.

Conor Heneghan (2002) [51] Private Dataset Average increase in tortuosity with the severity of the disease(ROP).

David Wallace (2003)[91] Private Dataset 80% sensitivity and 91% specificity.

Elizabeth Bullitt (2003)[13] Private Dataset It does not differentiate between tight coils and smooth curves.

Julien Jomier (2003)[52] Private Dataset (ROP) 80% sensitivity and 92% specificity in the prediction of retinopathy compared to experts

Enrico Grisan (2003)[43] Retinal Vessel Tortuosity DataSet(Public) Arteries P =0.857, and veins P= 0.036 ∗3

Enrico Grisan (2006) [28] Retinal Vessel Tortuosity DataSet(Public) Arteries P= 0.792, and veins P= -0.656∗4.

Enrico Grisan (2008) [44] Retinal Vessel Tortuosity DataSet(Public) Arteries P= 0.792, and veins P= -0.656. ∗4

Crystal S. Y. Cheung etal (2011) [17] Private Dataset Significant reductions in all vascular measurements were observed compared to pre-treatment∗6

Rashmi Turior (2012)[88] Private Dataset Achieved a classification rate of 73% ∗5

Arunava Chakravarty (2013)[15] Retinal Vessel Tortuosity DataSet(Public) It can distinguish between the relative size, shapes and orientations of vessel bends.

Amir Mohsenin (2013) [69] Private Dataset 80% sensitivity and 92% specificity in predicting retinopathy .

Table 2.1: Some of the implementations, datasets and performances achieved using

Arc Over Chord Lengths Ratio: (1) as one of a suite of measures they achieved 91%

for classifying individual segments; (2) 95% for the classification of whole retinal

vascular trees as tortuous or non-tortuous; (3) Spearman’s Rank Correlation with

the clinical order, using numerical differentiation;(4) Spearman’s Rank Correlation

with the clinical order; (5), using K-nearest neighbour classifier; (6) Comparative

study between ROP patients pre and post treatment.

LC =
n−1∑

i=1

√
(xi − xi+1)2 + (yi − yi+1)2, (2.5)

LC2 =

∫ t1

t0

√
x′(t)2 + y′(t)2, (2.6)

LX =
√

(xn − x1)2 + (yn − y1)2. (2.7)

This feature is found to work very well with short segments. However it assigns the

same tortuosity value for a long nicely curved vessel as to a very twisted similar

length segment. [See figure 4.1]. To sum up, Distance based features have failed

in evaluating retinal vessels tortuosity and, as explained by Emmanuel Trucco [29],

that the ratio between the curve and the chord is simply a measure of deviation from

a straight line, which is more of a global measure, whereas tortuosity seems more

directly related to local measures such as curvature. See Table 2.1 for some of the

implementations, datasets used and performances achieved using distance approach

features.
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2.8.2 Curvature approach

Curvature, in mathematics, is the amount by which a surface deviates from a straight

line. This deviation or twist can be measured in many ways: Geometrically, for each

point along a curve by calculating the magnitude or rate of change of the angle theta

θ, which is the angle made by the tangent line and the positive x-axis, with respect

to the curve length or by the measurement of geometrical changes along a blood

vessel such as angles between consecutive tangents’ lines and changes in concavity,

such as the Sum Of Angles Measure (SOAM) Equation 2.20 and the Inflection

Count Metric (ICM) Equation 2.26.

Algebraically, by finding the physical rate of change along the blood vessel

or the derivative of a function at each point, based on difference operators for data

that are equally spaced, it is possible to calculate forward difference, middle differ-

ence, backwards difference. This provides a close estimation of curvature at each

point along the curve or the blood vessel segment.

Through interpolation, in which curvature is estimated by splines inter-

polation, given a function fn = f(xn), where n = 0, ..., N , a spline, which is a

polynomial would be fitted between each two pairs of consecutive points, one of

whose coefficients are determined. Cubic splines, normally, produce an interpolated

function that is continuous through to the second derivative. Splines in general

tend to be more stable than fitting a polynomial through the N +1 points, with less

possibility of wild oscillations between consecutive points. The curvature evaluation

features used to estimate tortuosity in the literature vary between these methods.

The following sections set out some of these features as proposed in the literature.

The signed and unsigned curvature

These measures calculate the signed and unsigned curvature at each single point

along a blood vessel segment. The sign of the signed curvature C indicates the

direction in which the unit tangent vector rotates as a function of the parameter

t along the blood vessel segment. If the unit tangent rotates counter-clockwise,

then C > 0 (positive), if it rotates clockwise, then C < 0(negative). Given a

blood vessel segment (S), as a plane curve, where S is represented by centre line

points represented by S = [(x1, y1), (x2, y2), ..., (xn−2, yn−2)), (xn−1, yn−1), (xn, yn)],
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and given parametrically in the Cartesian coordinates as y(t) = (x(t), y(t)), the

curvature C at point t, C(t), can be estimated as follows:

Signed C(t) =
x′(t)y′′(t)−y′(t)x′′(t)

[x′(t)2+y′(t)2]
3
2

, (2.8)

Unsigned C(t) = abs(Signed C). (2.9)

Total signed and unsigned curvature of a blood vessel segment

Given the previous curve (S), and the xn, yn points representing the centre line

points, the total signed and unsigned curvature of this segment is the integral cur-

vature along the blood vessel segment with respect to it’s length expressed as follows:

TSC(S) =

∫ tn

t0

Signed C(t) dt (2.10)

TUSC(S) =

∫ tn

t0

Unsigned C(t) dt (2.11)

Total squared signed curvature of a blood vessel segment

Given the same blood vessel segment S tortuosity as the total squared curvature is

estimated as :

TSSC(S) =

∫ tn

t0

Signed C(t)2 dt (2.12)

Total signed/unsigned curvature normalised by the blood vessel arc length

Tortuosity here is estimated by normalising the total signed or unsigned curvature

by the blood vessels’ arc length as:

Signed C normlised by LC =
TC(S)

LC(S)

(2.13)

Total squared signed curvature normalised by the blood vessels’ arc length

Tortuosity here is estimated by normalizing the total squared signed curvature by

the blood vessel arc length as:

TSSC normalised by LC =
TSC(S)

LC(S)

(2.14)
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Total signed/ unsigned curvature normalised by the blood vessels’ chord

length

Tortuosity here is estimated by normalising the total signed or unsigned curvature

by the blood vessel arc length as:

TSC normalised by Lx =
TC(S)

LX(S)

(2.15)

Total squared signed curvature normalised by the blood vessels’ chord

length

Tortuosity here is estimated by normalising the total signed curvature by the chord

length between the two end points of the blood vessel segment

TSSC normalised by LC =
TSC(S)

LX(S)

(2.16)

Tortuosity using numerical differentiation

This measure is introduced by Rashmi et al. [88]. Given a blood vessel segment

(S), where S is represented by centre line points as

S = [(x1, y1), (x2, y2), ..., (xn−1, yn−1)), (xn−1, yn−1), (xn, yn)] this measure estimate

curvature based on numerical differentiation between the points along the blood

segment calculated as follow:

first differences between the xn points

x(1) = [x2........xn], and x(2) = [x1........xn−1]

y(1) = [y2........yn], and y(2) = [y1........yn−1]

then the calculation of the slopes m

m(1) = [m2 −mn] =
x(1)
y(1)

m2 = [m1 −mn−1] =
x(2)
y(2)

Tortuosity =
n∑

i=1

D = [m1 −m2] (2.17)
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Tortuosity coefficient

This measure proposed by Geoffrey Dougherty [25]. It is based on the second differ-

ences of the vessel mid line. Tortuosity is estimated by summing the absolute values

of these second differences, represented by δi which are the differences between the

gradients between two successive segments, then it is divided by P which is the sam-

pling interval. The measure is claimed to be easily converted and generalised to the

use of three dimensional measurements. The measure is expressed mathematically

as follows:

Tortuosity Coe = {
N∑

j=1

|δi|}/P (2.18)

Tortuosity based on chain code

The Slope Chain Code tortuosity measure is built on a chain code called Slope Chain

Code (SCC). The measure is proposed by Ernesto Bribiesca [11]. It is simply based

on converting a continuous curve to a discrete one by placing straight-line segments

of constant length around the curve (the end points of the straight-line segments

always touching the curve), and calculating the slope changes ai between contiguous

straight-line segments scaled to a continuous range from −1 to +1. The SCC of

a curve is independent of translation, rotation, and optionally of scaling, which is

considered an important advantage for computing tortuosity. For the mathematical

representation of this measure see Equation 2.19.

T SCC =
n∑

i=1

|ai| (2.19)

There are similar measures in the literature such as the signed and the unsigned

tortuosity evaluation measures, and Rashmi’s method. Both methods evaluate tor-

tuosity by taking the differences between consecutive slops along the blood vessel

segment [88].

Sum of angles metric (SOAM)

This measure is proposed by Semdby, [83] and improved by Elizabeth Bullitt et al.

[13, 27]. It measures tortuosity through evaluating the angles between consecutive

trios of points along the space curve represented by a vessel skeleton, then normalised
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by path length. Results are in a form of radians/cm. Vessels of high curvature have

been noted to have elevated SOAM values. The measure has been found to be an

effective tool in detecting high-frequency, low-amplitude coils or sine waves. See

Equation 2.20, where Pk is curvature at point k and CPk is the total angle at P .

SOAM =

∑n−3
k=1 CPk∑n−1

k=1 |Pk − P(k−1)|
(2.20)

Mean curvature (MC)

This measure is proposed by Chanjira Sinthanayothin et al. [82]. The main principle

of MC is fitting circles that fit curves or sub-curves perfectly along a curve. The

radiuses of all circle representing curves will then be obtained for the tortuosity of

the image to be calculated as the mean curvature (MC). Where 0 is image with

low tortuosity and close to 1 is high tortuosity. [See Equation 2.21.]

MC = AV G

[ n∑

i=1

1

ri

]
(2.21)

Mean direction angle change (MDAC)

This measure is proposed by Chandrinos et al. [16]. It measures tortuosity by

averaging the change of angles calculated at reasonable discrete steps along the

blood vessel. The measure works by considering two centerline pixels, P − s and

P + s for each pixel indicated in the track list, P , pixels that lie ahead and after

P , respectively. Consequently two vectors (P − s, P ) and (P, P + s) are formed and

normalised by dividing each with its norm. Lastly, the dot product is calculated

and the inverse cosine of this product. MDAC is then estimated by averaging those

angles over the number of points used along the vessel track. This measure does not

work with short segments for instance segments with 10 or less points.

MDAC =
1

(tlength−2∗step)
tlength−step∑

n=step

arccos(UV (Pn−step), Pn).UV (Pn, Pn+step)

(2.22)

Absolute direction angle change (ADAC)

This measure is proposed by K. G. Goh, et al. [37]. It is based on tracking the vessel

centreline and accumulating any direction change along the path of the vessels. At
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the end of this tracking, the number of changes in direction will indicate how tortuous

the segment of the blood vessel is.

ADAC =
N−n∑

i=i+1

(θ(i) ≥ π

6
) (2.23)

Fast Fourier transform based methods

Recently Martin Rodriguez et al. [65] have introduced a different approach for

evaluating tortuosity. The Fast Fourier transform (FFT) of the vessel’s curvature

is used as an evaluating method for tortuosity. The method computes the angle

variations in three dimensions along the path of the vessel, and then each angle θc

is divided by the Euclidean distance Dc between the two points.

θC = Cos−1(
−−−→
TC−1

−−−→
TC+1

|
−−−→
TC−1||

−−−→
TC+1|

) (2.24)

The overall total curvature in rad/mm is calculated as the sum of curva-

tures at each centroid as follows:

TSCC =
∑

C

θC

DC

(2.25)

The amplitude spectra obtained clearly showed differences in tortuosity for the two

segments. However, the TSCC obtained for two different tortuous segments were

similar although they were completely different in shape, [See section 2.9 in this

chapter for a review on FT].

To sum up, measures expressed by equations (2.8) to (2.16) are proposed

by Hart, William et al. [48]. These measures combined together were able to

achieve a classification rate of 91% for the classification of a group of independent

retinal blood vessels’ segments and to achieve 95% for the classification of the whole

vascular tree of independent retinal images. The total squared curvature measure

was recommended as best measure. See Table 2.2 for some of the curvature and

combined methods implementations.

2.8.3 Combined methods

These are the methods that result from the combination of two or more of the

previous methods. Some of these methods may also incorporate other blood vessels
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Measure Implementations

Total curvature (TC) Enrico Grisan [43, 28, 44], Chanjira Sinthanayothin (2010) ,

Rashmi Turior (2012), Arunava Chakravarty (2013).

Total squared curvature (TSC) Enrico Grisan(2003, 2006, 2008), Arunava Chakravarty (2013).

Total curvature normalised by arc length Enrico Grisan(2003, 2006, 2008), Arunava Chakravarty (2013).

Total squared curvature normalised by the arc length Enrico Grisan (2003, 2006, 2008).

Total curvature normalised by the chord length Enrico Grisan (2003, 2006, 2008), Arunava Chakravarty (2013).

Total squared curvature normalised by the chord length Enrico Grisan (2003, 2006, 2008)

Tortuosity Coefficients Geoffery Dougherty (2000).

Sum of Angles Metric (SOAM) Enrico Grisan (2006), Elizabeth Bullitt (2003, 2005),

Sodi A,(2013), Arunava Chakravarty (2013).

Inflection count metric (ICM) Elizabeth Bullitt (2003, 2005), Arunava Chakravarty (2013)

Mean direction angle change (MDAC) Conor Heneghan (2002),Enrico Grisan (2003, 2006, 2008)

, Arunava Chakravarty (2013)

.

Absolute Direction Angle Change (ADAC) Enrico Grisan (2006) [28] Arunava et al. (2013) [15] .

Tortousity based on curvature and improved chain code (TCCC) Onkaew et al. (2011) [20], Abbadi et al. (2013) [30] .

Mean Direction Angle Change (MDAC) Enrico Grisan (2003, 2008) [43, 44], Conor Heneghan et al. (2002) [51], Arunava et al. (2013) [15] .

Table 2.2: Some of the curvature and the mixed tortousity measures’ implementa-

tions

.

structural properties such as thickness, width, inflection points counts, etc.

Inflection count metric (ICM)

This measure is proposed by Smedby for 2D curves [83] and extended by Elizabeth

Bullitt [13, 27] to be implemented on 3D images or space curves. This measure

counts ”inflection points” along each space or plane curve and multiplies this number

(plus one) times the total curve length and then divides by the distance between

end points. [See equation 2.26.]

ICM = (nic+1)
LX
LC

(2.26)

Tortuosity based on curvature and improved chain code (TCCC)

This measure proposed by Danu Onkaew et al. [20]. It is an automatic tortuosity

measure that classifies retinal images as tortuous and non-tortuous. It is based on

the curvature calculated from an improved chain code algorithm and the number
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of inflection points, where, nic and L are the number of inflections and arc length

respectively. This measure evaluates vessel tortuosity by summing curvature at

every pixels of vessel and also considers the number of inflection points at each

sub-vessel. This formula has a dimension of 1=L and thus may be interpreted as a

tortuosity density, so it can be compared in vessels that have a different length. The

advantage of this formula is that it does not depend on segmentation of the vessel

tree.

TCCC =
(nic+1)

nic

1

L

n∑

n=1

K(Pi, K) (2.27)

Sub-curves and distance based measures (Grisan measure)

Enrico Grison proposed a new tortuosity measure and improved it over the years

[43, 28, 44]. The algorithm based on the partitioning of each vessel into segments

of constant-sign curvature and on the combination between the number of such

segments and their curvature values. However, this measure requires manual vessel

extraction and inflection point placement. The following are the three equations in

which the measure has been improved.

T1 =
n−1

LC

n∑

n=1

[
LCSi

LXSi

]
, (2.28)

T2 =
n−1

LC

1

LC

n∑

n=1

[
LCSi

LXSi

]
, (2.29)

T3 =
n−1

n

1

LC

n∑

n=1

[
LCSi

LXSi

]
, (2.30)

where n is the number of curves in a segment.

Tortuosity index (TI)

This measure is proposed by [62]. It evaluates tortuosity by identifying the number

of changes in curvature sign. Where n is the number of segments in a single vessel,

m represents the angles of curvature θi, length of the respective area is denoted by

LC and the length of the chord is represented by LX .

TI =

[(n+ 1) ∗ [
∑m

i θi] ∗ [
∑m

i

LCi

LXi
]]

Lc ∗m ∗m

]
(2.31)
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Tortuosity based on vessel wall thickness

This is proposed by Hind Azegrouz et al. [5] and extended by Emanuele Trucco and

Hind Azegrouz [29]. It combines curvature and thickness. It is defined as a weighted

Minkowski norm of the curvatures along the vessel boundaries, and is an increasing

function of vessel diameter (Thickness), see Equation 2.32 where Cb1 and Cb2 are,

respectively, the local curvatures of the two vessel boundary points (b1 and b2), and

p is a strictly positive integer.

TW =

( N∑

n=3

|KB1(n)
|+ |KB2(n)

|
2

) 1
P

(2.32)

Automatic tortuosity image classifier

This algorithm can automatically classify images as tortuous or non-tortuous, where

nic and L are the number of inflection points and arc length respectively. This

measure evaluates vessel tortuosity by summing curvature at every pixel of vessel

and also considers the number of inflection point at each sub-vessel. This formula

has a dimension of 1 = L and thus may be interpreted as a tortuosity density, so

it can be compared in vessels that have a different length. The advantage of this

formula is that it does not depend on segmentation of the vessel tree [20, 88].

2.9 Review of Fourier transform analysis

It is clear that FT is not a novel technique when it comes to tortuosity evaluation. In

this study the FT of the vessel signed curvature, displacement distances, (which are

the distances from each point along the blood vessel segment and the vessel chord),

and the first and second derivatives of the vessel segment were all investigated to

estimate tortuosity in an attempt to accurately evaluate tortuosity using 2D images.

Fourier Transform is the process in which a signal or a function of time

or space is processed expressed in the form of frequencies of the sine and cosine

waves that make up the signal or the function. The concept of Fourier transform

was introduced by Baron Fourier after 20 years after introducing the Fourier series,

which is effective in the representation of periodic, continuous and discrete signals

or functions, as an extension of, and in order to solve, what the Fourier series
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failed to represent, which is non periodic signals. In this study the blood vessel

segments are represented as functions of space, which are aperiodic and discrete,

therefore Discrete Fourier Transform of aperiodic signals Discrete Fourier Transform

of aperiodic signals (DTFT) can be efficiently computed using the Fast Fourier

Transform.

The input or the signal to be analysed using FT, is normally either a

function of space or time. The signal in time domain, can simply be described as if

a signal has been viewed while its amplitudes are going up and down in an erratic

manner with the time progressing to the right. With FT analysis, any arbitrary

wave or signal can be broke down into its harmonic components and then their

contents(amplitudes) can easily be identified.

The output of FT analysis is normally in the form of Frequency Domain

or Signal Spectrum, which is when the output of the input signal is viewed from

the side, along the frequency axis. In this case the constituent frequencies along the

frequency axis can be seen, as well as the peak amplitudes of these discrete frequen-

cies. Spectrum has many names in the literature such as: gain, frequency response,

rejection, magnitude, power spectrum, power spectral density etc; all these termi-

nologies simply refer to this distribution of signal content over a certain frequency

band. The width of the spectrum is known as the bandwidth of the signal and the

resolution of the frequencies (fn+1 − fn) is called the bin size. The bin size of a

spectrum is constant and it is an important parameter in determining how well the

signal has been represented. The fundamental frequency is the smallest frequency

with the largest amplitude [12, 42].

To analyse the spectrum of a given signal using the Fourier transform, the

continuous form of Fourier analysis is normally used with a continuous signal, which

is given by Equation 2.33 and the inverse by Equation 2.34, where F (w) represents

the spectrum and w is the frequency; f(x) is the signal in time domain where x is

the time and i is the sqrt(−1)(complex number theory). Finite discrete signals are

those signals that are finite in time, and have a discrete set of points. They are also

known as sampled signals. As previously noted, analysing a discrete signal using the

continuous form of the Fourier analysis, can be achieved by increasing the period of

the discrete signal which allows the creation of an aperiodic version of the signal.
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To represent a finite signal in time or space mathematically, the infinite borders of

the integrals are replaced by finite ones, and the integral symbol will be replaced

by a sum as explained in Equations 2.35 and 2.36 for Discrete Fourier Transform

(DFT) and its inverse.

F (w) =

∫ ∞

−∞
f(x)e(−2πwix)dx (2.33)

F (x) =

∫ ∞

−∞
f(w)e(2πwix)dw (2.34)

Fn =
N−1∑

k=0

f(k)e(−2πink)/N (2.35)

Fk =
1

N

N−1∑

n=0

f(2)e(2πikn)/N (2.36)

2.10 Data analysis methods

The main aim of most studies in this problem domain, that of grading retinal blood

vessels tortuosity, is to find an accurate measure that can precisely evaluate the

degree of retinal blood vessels tortuosity. However, objectives to satisfy this aim are

varied. Normally, ophthalmologists evaluate the degree of a retinal blood vessel seg-

ment tortuosity by considering changes in and around that vessel segment, and then

(based on a pre-set number of indicators or signs), the vessel segment is classified

as tortuous(abnormal) or non-tortuous(normal). These signs are largely based on

the knowledge and expertise of the clinician or the ophthalmologist carrying out the

screening or the grading test. On some occasions, more precise, qualitative scales

such as mild, moderate, severe and extreme are used.

Analysis techniques vary according to the objectives of the studies and the

nature of available datasets. The most commonly used method to test proposed

tortuosity measures is the classification of blood vessel segments, or a whole reti-

nal vascular tree, into “tortuous” or “non-tortuous”. For instance [48] used a logit

model for the binary classification of individual segments and the classification of

whole retinal vascular trees, and Rashmi et al. [88]used three supervised learning

techniques (Naive Bayesian classifier, K-Nearest (KNN) classifier and K-mean clus-

tering algorithm) for tortuosity classification. Random Forests (RF) and Artificial
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Neural Network (ANN) are used in this study to evaluate the proposed framework.

[background Details of these methods and their implementations can be found in

sections 2.10 and 2.10]. Other studies, used more than the basic two class classi-

fication. For example Trucco, Emanuele et al. used a logistic regression model to

assign vessels to one of three tortuosity classes [29].

On the other hand, there are other studies that went on to classify a number

of tortuous vessels by reference to the manner of increased tortuosity, for example

utilising datasets such as the RVTDS, which consists of retinal blood vessel seg-

ments that are ranked in increased tortuosity from 1 (representing non-tortuous) to

30 (representing severely tortuous) by an expert ophthalmologist.

Furthermore, there are more innovative analysis methods used to test pro-

posed tortuosity measures, such as a study done by Hathout and Do [50] which used

a mathematical model of non-tortuous or normal vessels by extracting the parame-

ters of the shape of the non-tortuous vessels. Using those parameters the model was

then tested by using normal vessels to test the accuracy of the developed model. A

similar model was introduced in the 1960s for analysing the meandering of rivers as

cited in [50].

Machine learning

Arthur Samuel defined Machine Learning (ML) as the field of study that ”gives

computers the ability to learn without being explicitly programmed” [81]. Tom

Mitchell provided a more logically detailed definition as follows: ” A computer

program is said to learn from experience E with respect to some task T and some

performance measure P, if its performance on T, as measured by P, improves with

experience E” [68].

The simplest basic approach in machine learning is to test multiple al-

gorithms until the best algorithm is found based on performance. However, this

approach has been found to be very time-consuming. Machine learning can be

classified into two classes of learning approaches, supervised/ unsupervised and re-

inforcement learning.

In reinforcement learning the parameters of an artificial neural network are

normally fixed and where data is usually not given, but generated by interactions
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with the environment. Reinforcement learning is suitable for problems which include

a long-term versus short-term reward trade-off, such as robot control, telecommuni-

cations, and games such as chess and other sequential decision making tasks [55].

In unsupervised learning, data are grouped based on characteristics or

similarity, and interpreted only based on the input data. The algorithms used on this

occasion are called Clustering algorithms such as k-means, Gaussian mixture and

neural networks, etc. As can clearly be noted there are overlapping characteristics

between regression and clustering analysis in techniques such as decision trees, neural

network, linear regression and ensemble methods.

In supervised learning a model will be developed based on the input data,

which is the processed raw data that needs to be analysed; and the output or the

response variable. This also known as the desired output. If the desired output

is discrete in nature, classification techniques can be used such as support vector

machines and Naive Bayes. However, if it is continuous, then regression methods

should be utilised such as linear regression, artificial neural networks and decision

trees.

With all that being said, machine learning is not entirely free from chal-

lenges and obstacles. These problems range from the amount of data; predictors,

and their degree of complexity, to the significant technical expertise needed in order

that the fundamentals of the methods are understood and correctly followed.

Neural networks ANN represents a type of computing that is loosely based on

the way that the brain, or the central nervous systems of mammalians in general,

perform complex computations, such as an approximation of functions that depend

on a large number of data or variables [46]. Artificial neural networks are typically

organised in layers, which normally consist of one or more interconnected nodes,

which themselves contain activation or cost functions. The inputs are introduced

to the neural network through the input layer, which is connected to one or more

hidden layers that carry out the processing or the computations. The result of these

computations is subsequently passed through the output layer. Artificial neural

networks, in general, have some form of learning rule, which modifies the connection

weights according to the inputs that are presented to the neuron through the input

layer. There are different kinds of learning methods which can modify the connection
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weights in order to obtain the desired output.

A logistic neuron, which is a non-linear neuron, was utilised to learn the

degree of the retinal blood vessels tortuosity from the various types of features

that were encompassed in the proposed tortuosity evaluation framework in order

to provide gradings that are close to or match that of the clinical ones provided

with the data. First of all, the neuron computes the logit z, which is the bias, b,

plus the sum of the total inputs (features) , xi, multiplied by the weights, wi. [See

Figure 2.37]. The neuron then provides an output y which is a smooth non- linear

function of the logit. The function is approximately equal to zero when z, the logit,

is big and negative, and it is approximately equal to one if z is big and positive. In

between the function changes non-linearly as shown in Figure 2.7. The function is

shown in equation 2.38. The smooth continuous change gives the logistic function

Figure 2.7: This graph shows a logistic function

nice derivatives which make the learning of the neuron easier.

In order to obtain the derivatives of a logistic function with respect to the

weight (which is what is needed for the learning process), the derivative of the logit

z itself needs to be computed, as the bias plus the sum of the inputs (features)

multiplied by the weights. When this is differentiated with respect to wi, which

represents the weights, the result is xi. Following the same manner, the derivative

of the logit with respect to xi is wi, as shown in Equations 2.39 and 2.40. The

derivative of the output y with respect to the logit can also easily be calculated if

y is expressed in terms of the output which is as seen in equation 2.38; to equal

y(1 − y). [See the proof in Equation 2.41]. The chain rule is then used to get the

derivatives needed for the weight learning of the logistic unit. To learn the weight

the derivative of the output with respect to each weight is needed see equation 2.42,
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which is the gradient descent learning rule, where E represents the error.

Z = b+
N∑

i=1

xiwi (2.37)

y =
1

1 + e−Z
(2.38)

∂z

∂wi
= xi (2.39)

∂z

∂xi
= wi (2.40)

dy

dz
= y(1− y),

y =
1

1 + e−z
= (1 + e−z)−1,

dy

dz
=
−1(−e−z)
(1 + e−z)2

=
1

1 + e−z
e−z

1 + e−z
= y(1− y)

because :

e−z

1 + e−z
=

(1 + e−z)− 1

1 + e−z
=

1 + e−z

1 + e−z
−1

1 + e−z
= 1− y

(2.41)

∂y

∂wi
=

∂z

∂wi

∂y

∂z
,

∂E

∂wi
=
∑

n

∂yn

∂wi

∂E

∂yn
= −

∑

n

(xi)
nyn(1− yn)(tn − yn)

(2.42)

Random forests Random Forests (RF) is one of the most powerful, fully au-

tomated machine learning techniques [10]. It is an ensemble learning method for

classification and regression, in which a number of decision trees are generated at

one time and their final outputs are combined for the final output or prediction.

The concept and technique was originally developed by UC Berkeley visionary, Leo

Breiman in a paper that was published in 1999 [9], and he continued to perfect it

with his student and collaborator Adele Cutler to develop the final form of Random

Forests [85].
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RF can be used to predict different types of variable, such as continuous, as

well as an estimation of the probability of the occurrence of a particular outcomes.

Ensembles are normally used as a divide and conquer technique to improve the

performance of classifiers. The main idea behind using Ensembles is that a group

of individual weak variables or features can be grouped to form a strong variable or

learner.

Random Forests analysis usually starts with an input of a group of vari-

ables, to which the concept of decision trees is applied. Flowing from top to bottom

these features start to bracket together in smaller sets of group of features as they

traverse down the tree. The results of RF analysis is either an average or weighted

average of the terminal nodes or a voting majority in the case of categorical vari-

ables. In RF analysis of a large number of predictors, the eligible predictor group

will be different from one node to another. With the increment of the rate of

intra-correlation, The RF error will also increase, therefore uncorrelated trees in

RF models are essential. The decrement of the selected group of features, normally

indicates the decrement of both intra-tree correlation and the strength of individual

trees, so an optimal number of features is advised. Among the biggest advantages

of RF are that it characterises by speed, and its ability to cope with unbalanced

and missing data. However when used for regression RF are not able to predict

beyond the range that is set in the training data, and might over-fit datasets that

are particularly noisy [85]. Several methods of testing or validating classifiers can

be used such as threshold, cross-validation, mean precision and so on.

2.11 Conclusion

With the strong correlation found between the tortuosity of retinal blood vessels and

a number of vascular diseases together with the advancement in image processing

technologies, many attempts have been made to find an accurate evaluation tool

to measure the degree of retinal blood vessels tortuosity. In these attempts various

methods have been proposed and evaluated on datasets of different pathologies, sizes

and shapes. The tortuosity evaluation methods have been analysed and critically

evaluated in terms of accuracy and suitability. They can be placed into three main
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groups: a distance approach; a curvature approach and combined methods. The next

chapter details the process of building our proposed tortuosity evaluation framework

and why these group of features are incorporated along with our new proposed

features into one tortuosity evaluation framework.
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Chapter 3

Building tortuosity datasets

This chapter details the building process of three new tortuosity datasets. It starts

by inspecting currently available tortuosity datasets, discusses their advantages and

drawbacks and identifies the benefits of building new ones. The chapter proceeds

to outline the actual process of building the proposed datasets, including the image

segmentation, segments labelling (as veins and arteries), through to stage of vessels

grading which was carried out by volunteer graders. This chapter also includes a

description of the grading systems used and the actual manual grading process. The

chapter concludes by discussing the manual grading results in terms of reliability,

and analyses the observers’ agreement on both grading types and the final proposed

gold standard datasets.

3.1 Introduction

The strong correlation found to exist between the retinal blood vessels tortuosity

and the presence and progression of diseases, has encouraged a great number of

researchers to investigate and evaluate this phenomenon. Most of the existing tor-

tuosity evaluation measures were tested on private datasets with segments that were

preprocessed using various methods in terms of vessels segmentations, labelling, etc.

Whether these datasets were private or public, they differ in their sizes, pathologies,

segment types and the tortuosity validation methods. Validation methods such as

classification of segments as tortuous or non-tortuous, or ranking in case of the use

of datasets with manual clinical order, etc.
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As previously indicated in this document, researchers have started to focus

on investigating the underlying causes of tortuosity and the suitable methods of

quantifying them. In particular, ophthalmologists suggested that segments used in

the evaluation of the tortuosity should have specific properties, such as the type

of vessels in terms of size, segment cut and location. Our new tortuosity dataset

segments were taken from seventeen retinal images of patients with diabetic and

hypertensive retinopathy. Two pathology sub-datasets were also generated from

these segments of diabetic and hypertension.

3.2 Tortuosity datasets

There is a great number of tortuosity evaluation datasets, however the majority are

private. [See table 3.1 for some of the tortuosity datasets used in the literature]. The

BioImLab Retinal vessel tortuosity dataset appears to be the only publicly available

one, which is proposed by [44], and discussed in great detail in section 3.3. Both

public and private datasets differ in size, types of segments, segment length, segmen-

tation techniques and pathologies. They also vary in their evaluation methods, such

as using a manual clinical order of the datasets segments in increased or decreased

order, or using a simple classification in two or more classes similar to the subjec-

tive clinical evaluation. Thus comparative tortuosity studies and providing feasible

accurate results prove to be quite difficult. In addition, researches in this field focus

on perfecting tortuosity evaluation measures, and ignore datasets. I believe that

datasets need to be improved and revised as a number of ophthalmologists noted

that the segments used in tortuosity estimation, should be one of the following: A)

a segment that extends from the optic disc to the peripheral without bifurcation;

B) a segment that extends from the optic disc to the first major bifurcation; C) a

segment that lies between two major bifurcations. Therefore new robust datasets

for evaluating retinal blood vessels tortuosity are crucial, especially when it comes

to comparative tortuosity studies between different diseases. In summary most of

the tortuosity datasets reviewed in the literature, are not available publicly, are rela-

tively small in size and there are no specialized datasets for specific diseases such as

diabetic and hypertensive retinopathy and with the same processing methods such
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as vessel segmentation, labelling and marking.

In this study specialised tortuosity datasets from images of diabetic and

hypertensive patients were built to aid in the process of quantifying retinal blood

vessels tortuosity. The datasets consist of three subsets: 1) a general tortuosity

dataset with vein and artery segments and two manual grading (segments are from

diabetic and hypertensive patients); 2) hypertensive retinopathy dataset with vein

and artery segment sets; 3) diabetic retinopathy dataset with vein and artery seg-

ment sets. Details of these datasets will be found in the next sections.

Author Pathology /feature measured Availability Nature of the dataset

Kagan et al. (1976) ROP/Tortuosity (segments and whole tree) Private Not available

William E. Hart (1997,1999) Not particular(segments and whole tree ) Private 20 retinal images

Geoffrey Dougherty (2000) Abdominal Arterial/ Tortuosity Private Aortograms of 82 patients

Conor Henghen (2002) ROP/Width and tortuosity Private 23 subjects

Elizabeth Bullitt (2003), Brain tumours/vessels Tortuosity Private 11 normal and 6 patients

Elizabeth Bullitt (2005) Brain tumours/vessels Tortuosity Private 34 Healthy subjects and 30 patients

Enrico Grisan (2003,2006,2008) Not particular/Tortuosity Public Retinal Vessel Tortuosity Data

Christopher G. Owen (2008) Diabetes/Tortuosity Private 53 patients and 60 controls

Sodi A (2013) Fabry disease/Tortuosity + width Private 35 patients

Susannah Q. Longmuir, et al(2010) FSHD /Tortuosity Private 7 patients

Amir Mohsenin (2013) ROP/Tortuosity Private 9 patients and 7 healthy

Table 3.1: This table shows some of the tortuosity datasets used in the literature

3.3 The retinal vessel tortuosity dataset

The RVTDS is a dataset of retinal vessels segments from normal and hypertensive

patients and their manually estimated tortuosity degrees [33]. It consists of 30

images of retinal arteries and 30 retinal veins segments with similar length and

calibre, and 30 images of the same arteries as well as 30 images of the same veins,

all preprocessed by a normalization algorithm. The dataset also contains Matlab

data structures that consist of records. Each record includes the name of the image,

the X and Y samples of the manually drawn vessel centreline in addition to the

ordinal position of the vessel in the manual order, which is the increasing tortuosity

order list, as provided by a retinal specialist (Dr. S. Piermaracocchi, Department of

Ophthalmology, University of Padova).

The images were acquired with a 50◦ fundus camera (TRC 50, Topcon,

Japan) and digitized with a scanner at 1100 x 1300 pixels. To sum up, the dominant
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properties of the RVTDS as the ground truth (gold standard) of a tortuosity dataset

are:

1) Artery and vein segments in this dataset have similar length and calibre.

2) The centreline points of these segments are preprocessed by a normalization

algorithm.

3) Vessels are manually ordered by a single retinal specialist in increased degree

of tortuosity.

4) The dataset also falls on the small size side, since it consists of just 60 vein

and artery segments.

5) These segments are taken from images of hypertensive and normal patients.

3.4 Proposed dataset

One of the main objectives of this study is to build a relativity larger tortuosity

dataset to help grade retinal blood vessels tortuosity, and specialized datasets for

hypertensive and diabetic retinal vessels to identify differences or similarities in

tortuosities the way in which retinal blood vessels change to cope with the effects of

those diseases on the retinal vascular system.

Our general dataset consists of 109 retinal blood vessel segments, extracted

from seventeen retinal images. The number of segments extracted per image, were

ranged between 1 to 20 segments. The seventeen retinal images used in this dataset

were of patients who underwent retinal screening due to diabetic and hypertension

retinopathy in UK, Denmark and Greece. Six of the images are of diabetic patients

and were taken as part of the screening system in the United Kingdom in Sunderland

Eye Infirmary, as provided by doctor Majed Habeeb. The other eight images are of

diabetic patients, were from Denmark provided by doctor Toke Bek, and the last

three images are of hypertensive patients and provided by doctor Areti Triantafyllou,

research fellow of Internal Medicine, Papageorgiou Hospital, Aristotle University of

Thessaloniki, Greece. The general dataset was then divided, based on pathology,

into two subsets, diabetic and hypertension each of which has vein and artery groups.
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3.4.1 Image dataset

Retinal vessels segmentation

The retinal blood vessels of the retinal images were segmented using the segmenta-

tion method described in [3], which uses two pairs of contours to capture each vessel

edge, while maintaining width consistency. The segmentation stage produced some

fragmented segments due to overlapped vessels, bifurcations and the poor quality

of some images. A semi-automated program was built to connect these fragmented

segments which involves manual selection of the fragmented segments ends to be

connected. [Refer to figure 3.1 for an example of these fragmented and then con-

nected segments].

Since there were no clear, standard rules to identify the types, locations

or parts of retinal blood vessel segments that are appropriate for the process of

tortuosity evaluation, the segments used were chosen based on a number of those

rules which expert ophthalmologists normally use during naked eye inspection in

clinical settings, as previously indicated. Such rules for example that the vessels are

of a certain size and extend from the optic disc to the peripheral without bifurcation,

or a segment that lies between two major bifurcations or first major bifurcation, are

the best suited segments for tortuosity evaluation. Therefore the selection process

of the vessels were formally based on these rules. This stage involved separation or

dividing of what appear to be unified longer segments into smaller segments due to

bifurcations. 131 segments were produced at this stage. The next section provides

the details of labelling these segments as veins and arteries.

Retinal vessels segments labelling

Vein segments in general can be distinguished from arteries in the retina through

a well known set of medical properties. For instance arteries are characterised by

thick muscular walls, to withstand the high pressure of blood pumped out of the

heart, whereas veins on the other hand have thin walls and relatively darker colour

when compared to arteries, [see section 2.5.1]. That been said, the labelling of

retinal segments as veins and arteries through eye inspection is not an easy task.

The labelling of segments has been carried out by an expert ophthalmologist and
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Figure 3.1: This graph shows the vessel segmentation stage and the fragmented

vessels connection stage

two expert researchers in retinal image processing. Another researcher was also

consulted in cases of conflict. At the end of this stage, 74 segments were labelled as

vein and 57 segments were labelled as artery.

3.4.2 Graders

Three doctors volunteered to assist in the process of grading the retinal blood seg-

ments. The first grader was doctor Majed Habeeb, who is a consultant ophthalmolo-

gist, from Sunderland Eye Infirmary in the United Kingdom. The second grader was

Doctor Michelle Teoailing, a senior house officer in Lincoln County Hospital. The

third and final grader was Doctor Bakhit Digry, an emergency consultant doctor

in Lincoln County Hospital. Those three graders were randomly chosen and they

graded the segmented retinal segment independently. The grading was performed

manually, then the final grades were fed to the system.

3.4.3 Grading systems

Two grading systems were used in the new tortuosity dataset: The order, i.e. order-

ing the retinal vessel segments in increased or decreased tortuosity; and classification

i.e. the classification of retinal vessel segments into groups based on the degree of

tortuosity. The next sections provide more details of these grading systems.
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Order

Using the order grading system, the segments in the general tortuosity dataset were

ordered in increased positive tortuosity, from least to most tortuous, for each group

(artery, vein) independently. For the arteries, the grading was from 1 to 57 and

for the veins the grading was from 1 to 74. The grading was performed by the

graders mentioned in Section 3.4.2. The grading process was carried out separately

and independently by each grader. This grading was based on the grading of the

free public tortuosity dataset RVTD, which is found in section 3.3; in which the

segments were ordered in increased tortuosity from 1 to 30, which is the number of

instances for each of the artery and vein groups, 1 representing non tortuous, and

30 the most tortuous. The blood segments in the RVTDS were all presented in a

position showing them traversing in the horizontal plane. However, the number of

the instances in the proposed dataset is large compared with the number of segments

in the RVTD, also the order in the RVTD was conducted by a single ophthalmologist.

The manual grading reliability and the agreement between the observers (graders),

of this grading, were analysed, in order to validate the order based graded segments

as a new gold standard tortuosity dataset. [See section 3.5 for the analysis results.]

Group classification

The previous order grading system works well with small datasets, however it be-

comes complicated, especially with large datasets that have larger instances. Con-

sequently, we introduced the group classification grading system. This grading is an

extended version of the subjective tortuosity scale, normally used by ophthalmolo-

gists, to evaluate retinal vessels tortuosity as mild, moderate and severe in a clinical

setting. The group classification includes seven classes: non tortuous; tortuous to

mild; mild; mild to moderate; moderate; moderate to severe; and severe. They are

represented by numbers from 1 to 7. Similar to the previous grading, the volunteer

graders grouped the datasets arteries and vein segments into seven classes based on

the degree of tortuosity with class one being non tortuous and class seven repre-

senting severe tortuous. The final group classifications were analysed to validate the

graders agreement. [See section 3.5 for the analysis results.]
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3.5 Manual grading analysis

At the grading stage, an initial grading was carried out by the researcher and one

of the three volunteer experts, to rule out any errors or mistakes in the segmented,

marked and labelled blood vessels. This involved checking the clarity of the images

of the segments, and that they were correctly labelled and marked before the final

grading. The grading of the retinal blood vessels tortuosity, within the new tortu-

osity dataset, was then conducted in two stages. The first stage was the task of

grading the segments using the order grading system. The graders were asked to

grade a number of blood vessels’ segments, manually, in increased tortuosity from

1 being non tortuous to the last segment which represents the most tortuous. The

second stage was to group the segments into classes using the group classification

grading system. In this task the graders were asked to group all segments into seven

groups: group one for non-tortuous; two for tortuous to mild tortuous; three for

mild tortuous; four for mild to moderate tortuous; five for moderate tortuous; six

for moderate to severe tortuous and seven for severe tortuous.

The average of the graded segments, using the order grading, of the veins

were varied between 34 and 37 tortuosity among the three graders, and between

22.5 and 29 tortuosity for the arteries. [See the following tables 3.2 and 3.3 for the

veins and arteries gradings descriptive statistics respectively.] Whereas the average

Figure 3.2: This graph shows the descriptive statistics of the three grades order of

the veins segments

of the classification of the veins into tortuosity degree groups were varied between
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Figure 3.3: This graph shows the descriptive statistics of the three grades order of

the arteries segments

3.67 and 4.36 tortuosity group, among the three graders and between 2.18 and 4.35

tortuosity group for the arteries. [See the following figures 3.4 and 3.5 for the veins

and arteries group classification descriptive statistics respectively.]

Figure 3.4: This graph shows the descriptive statistics of the graders tortuosity

group classification of the veins segments

3.5.1 Inter observers agreement

Inter observer error represents the differences between the interpretations of a num-

ber of observations of the same phenomena carried out by different observers at

different times using the same measure. Intraclass Correlation Coefficient is a mea-

surement normally used to measure the reliability of such ratings or measurements.

When it comes to a model in which each subject is graded by the same grader, a

choice can be made between two types of statistical analysis: Consistency, which is
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Figure 3.5: This graph shows the descriptive statistics of the graders tortuosity

group classification of the arteries segments

when systematic differences between graders are irrelevant; and absolute agreement

in which systematic differences are relevant. However in this study each subject

(vessel segment) was graded by a different grader, therefore in this case the measure

will be a measure of absolute agreement [80].

ICC is normally calculated by taking the ratio between the sums of various

variance component estimates, and it is defined to be within the interval [0, 1]. The

labels “single” or “average” in the ICC output refer to the grade whose reliability is

to be measured. The “average measures” give the reliability of a grade that is made

up as the average of the different observed grades. Conversely, the “single measure”

is the appropriate statistic to quantify inter-observer reliability. It gives the relia-

bility of a grade that is scored by just one of several observes. The interpretation

of alpha values according to the Streiner and Norman [84] is: if the values > 0.9,

then it implies some possible redundancy, values between 0.7 and 0.9 are usually

acceptable and values < 0.7 indicate that the items do not correlate very well with

one another.

On the other hand, for non-numerical items for example qualitative or

categorical, the inter observer agreement analysis is normally measured by Cohen’s

kappa coefficient analysis. Landis and Koch [57] for Kappa coefficients suggest that:

values of 0.01 indicates ”poor” agreement, values from 0.01 to 0.20 indicate “slight”

agreement, values from 0.21 to 0.40 indicate “fair” agreement, values from 0.41 to

.60 indicate “moderate” agreement, values from 0.61 to 0.80 indicate “substantial”

agreement and values from 0.81 to 1.00 indicate “almost perfect” agreement. These

categories are probably also reasonable for intraclass correlation coefficients. Since
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Cohen’s kappa was built to be used for two observers, an extended version introduced

by Light [61] was used to estimate the observers’ agreement by calculating the

average kappa for all observer pairs.

The next sections provide a detailed ICC and Kappa analysis of both grad-

ing methods by the three graders and the new proposed gold standard tortuosity

dataset.

ICC analysis of the order grading

The interclass correlation coefficient conducted between the order gradings of the

veins segments (from least to most tortuous) by grader one, two and three showed

a high degree of reliability between those graders measurements. The single mea-

sures of ICC for the veins was .760 with 95% confidence interval from .663 to .837

(F (62, 124) = 10.578, p < .001). [See the details in figure 3.6]. The ICC of the

arteries showed a high degree of reliability between the three graders measurements,

the single measures of ICC was .736 with 95% confidence interval from .607 to .836

(F (42, 84) = 9.737, p < .001). [See the details in figure 3.7.]

Figure 3.6: This table shows the ICC of the graders order of the veins segments

Kappa analysis of the group classification grading

An inter observer reliability analysis using the Kappa statistic was performed be-

tween the graders pairs, to determine consistency among the three graders. The

inter observer reliability of the pairs of the graders, (B, D and M, H), (B, D and M,

T) and (M, H and M, T), on the veins, were found to be Kappa = 0.237 (p =0.000),

Kappa = 0.079 (p =.08) and Kappa = 0.125 (p = 0.004) respectively, with average
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Figure 3.7: This table shows the ICC of the graders order of the arteries segments

Kappa = 0.192 [61]. [See details in Figures 3.8, 3.9 and 3.10]. On the other hand,

Figure 3.8: This graph shows Kappa analysis of (B, K and M, H) of the group

classification of the veins segments

the Kappa analysis conducted between the graders pairs, of the artery group were

found to be Kappa = 0.03 (p = 0.4), Kappa= 0.107 (p = .03) and Kappa = 0.191 (p

= 0.001) for (B, D and M, H), (B, D and M, T) and (M, H and M, T) respectively,

with average Kappa = 0.23. [See details in Figures 3.11, 3.12 and 3.13.]

3.5.2 Ordered and classified tortuosity dataset

The ICC and Kappa analysis of the order and classification gradings showed a high

to moderate degree of reliability, and slight agreement between the graders’ grading

for both tests respectively, but are not close to a complete agreement. Consequently

a voting system was used, which considers the first grader grades in conflicted cases,

due to his expertise in this field compared to the other graders. The gold standard

tortuosity dataset using tortuosity order and classification was formed as follows:
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Figure 3.9: This graph shows Kappa analysis of (B, K and M, T) of the group

classification of the veins segments

Figure 3.10: This graph shows Kappa analysis of (M, H and M, T) of the group

classification of the veins segments

It consists of 43 artery and 63 veins taken from hypertensive and diabetic patients,

and their manually estimated tortuosity. Some segments were eliminated because

they either graded in the wrong group or were overlooked by one of the graders.

The dataset includes Matlab R2014a data structures that consist of records. Each

record includes the name of the image, the coordinates of the vessel walls, the ordinal

position of the vessel segment in the manual order, manual class, disease type and

where the image is from.

3.5.3 Diabetic and hypertension datasets

The ordered and classified tortuosity dataset has been divided, based on disease, to

hypertension and diabetic datasets, as follows:
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Figure 3.11: This graph shows Kappa analysis of (B, K and M, H) of the group

classification of the artery segments

Figure 3.12: This graph shows Kappa analysis of (B, K and M, T) of the group

classification of the artery segments

Diabetic dataset

The diabetic dataset consist of 53 retinal blood vessel segments segments divided

to 34 vein and 19 artery segments. Similar to the ordered and classified tortuosity

dataset it include Matlab data structures that consist of records; each record include

the name of the image, the coordinates of the vessel walls, the ordinal position of

the vessel segment in the manual order, manual class, disease type and where the

image is from.

Hypertension dataset

The hypertension dataset consist of 77 retinal blood vessel segments, 39 vein and 38

artery segments. As with the previous datasets, it includes Matlab data structures

that consist of records, each of which includes the name of the image, the coordinates

of the vessel walls, the ordinal position of the vessel segment in the manual order,

manual class, disease type and where the image is from.

77



Figure 3.13: This graph shows Kappa analysis of (M, H and M, T) of the group

classification of the artery segments

3.6 Conclusion

One of the main problems involved in carrying out tortuosity evaluation is the avail-

ability of free public datasets characterised by decent size and variety in pathology

suitable to be used for tortuosity evaluation. In this study we propose a general

tortuosity dataset that includes 130 segments of diabetic and hypertensive patients

in addition to two pathology based datasets of hypertension and diabetic retinopa-

thy. Although the ICC of the gradings carried out by the three graders showed a

degree of high to moderate agreement, it was expected that it would be difficult to

reach a complete agreement between the three graders specially in the order grading.

Likewise, the Kappa tests performed between the graders pairs showed slight agree-

ment. Tortuosity evaluation, even if it conducted by an expert ophthalmologist, is

a subjective evaluation and largely relies upon the clinician’s experience. To sum

up, the dominant properties of the proposed retinal vessels tortuosity datasets from

the standpoint of a new improved tortuosity dataset are:

1) The first disease based tortuosity datasets.

2) The vessel segments in these datasets are not of similar length or calibre.

3) They include two manual grading systems, with order and classification based

on tortuosity

4) In addition to the vessel center line, the segments walls coordinates are also

included.
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5) Relatively large in size, the general dataset consists of 130 vein and artery

segments.
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Chapter 4

My framework

This chapter documents the development of the proposed tortuosity evaluation

framework and its analytic processes, in addition it details the proposition of our new

tortuosity features. It starts by an introduction to highlight the rationale behind

building this evaluation tool. It describes all the tortuosity parameters included in

the framework, as well as providing their logical grouping arrangements. The chap-

ter proceeds to list and subsequently review the implementation stages, of both new

and existing features, and presents the analysis of the resulting data. The framework

is implemented on two tortuosity datasets. (The statistical analysis, classification

and machine learning analysis are found in sections 4.3 and 4.4). The chapter con-

cludes with a discussion of the statistical analysis results of the outlined problems

and provides plans and recommendations for future work.

4.1 Introduction

One of the main objectives of this study is to develop an evaluation tool that is

accurately able to estimate the degree of retinal blood vessels tortuosity, in view of

the fact that huge benefits ensue from early identification of these retinal changes.

In the course of the literature review it became clear that ophthalmologists have

failed to agree on a single medical definition of the word “tortuosity”. As a result

various fundamentally different descriptions have been published and this has led to

confusion as to what to measure in order to quantify the degree of abnormal vessel

tortuosity.
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A number of factors need to be considered in order to quantify the degree

of retinal blood vessel curvature accurately and this is often overlooked. More im-

portantly, some of these factors need to be applied first before the evaluation process

is commenced, which is often overlooked. For example, structural properties such as

the number of sub-curves and the degree and types of curves along the blood vessel

segment need to be considered in the evaluation process. This requires a standard

description of retinal vessels tortuosity. In discussions with ophthalmologists it was

highlighted that the blood vessel segments to be measured for tortuosity should ei-

ther be a single segment that extends from the optic disc to the periphery of the

retina without bifurcations or a segment that lies between two major bifurcations.

Furthermore, most of the proposed tortuosity measures are constructed of

a combination of a limited number of features, such as the estimate of the curvature

of the segment, segment length, etc. Although some of these measures reported

good results, the majority have been found to capture only partial aspects of this

condition. For example, distance approach measures only capture the relative length

increase of the vessel arc by comparing it with its chord. They give the same results

for a segment with a smooth curved vessel, as they do to visually more curved

segment of the same length. Consequently, these measures were deemed unable to

capture the twists of the blood vessel segments, [see Figure 4.1]. On the other hand,

despite ability of curvature measures to pick up on where distance based measures

failed, this approach was also found unable to capture some of the important aspects

related to blood vessels walls or boundaries such as aneurysms [5].

Based on the above, I propose a tortuosity evaluation framework that takes

into consideration most of the structural changes in retinal blood vessel structures.

This framework also includes various tortuosity evaluation methods, taken from

some of the best proposed in the literature, as well as a group of new features

proposed in this study. The next section provides an insight to this evaluation tool.

81



Figure 4.1: Two different vessels with the same tortuosity value using Arc over

Chord tortuosity measure, (A): Vessel segment tortuosity =1.6, (B): Vessel segment

tortuosity =1.6

4.2 Methodology

4.2.1 My new features

As previously indicated that, up until now their is no universally accepted tortuos-

ity estimation measure. In addition, through the course of the literature review it

become clear that one of the main reasons for that is the ambiguity of tortuosity

definition and the subjective clinical tortuosity estimation without standardised de-

scriptions. Therefore, I propose a suite of thirty five tortuosity estimation features,

which can be classified into three groups as follow: A) Vessel structural properties

(five features) B) Constructed features (six features), C) Features based on signal

processing (twenty four features). The next sections describe and list some of these

features.

Vessel structural properties:

This group of features provides number of properties along a blood vessel segment

in terms of its structure. The group include five features (S1, S2, S3, S4, S5), these

features are:

S1 (Sub-curves number), in case of a tortuous segment, this represent the number

of sub-curves exist along a single segment.

S2 (Number of maximum points), this is the number of high points along a blood
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vessel segment.

S3 (Number of minimum points), this is the number of low points along a blood

vessel segment.

S4 (Sum of spaces under sub-curves), this is the sum of areas under sub-curves

along a single blood vessel segment.

S5 (Sum of sub-curves Heights), this is the sum of all individual heights of sub-

curves along a single blood vessel segment.

Constructed features:

Features in this group resulted from combining between some of the existing and

new features, specially features of the previous feature group(Structural properties)

with the aim of finding a robust feature with high tortuosity estimation capability.

This group include six features(C1, C2, C3, C4, C5, C6). Descriptions of these

features are as follow:

C1 (Vessel profile 1), this features results from the addition of the path over chord

tortuosity measure (L5) and the sum of the spaces under sub-curves (S4).

C2 (Vessel profile 2), this feature results from the addition of the path over chord

(L5) and the sum of the heights of sun-curves along a single blood vessel

segment (S5).

C3 (Path over chord times maximum points), this feature results from the mul-

tiplication of the path over chord tortuosity measure (L5) and the number of

maximum points (S2).

C4 (Arc over chord times maximum points), this feature results from the multipli-

cation of the arc over chord tortuosity measure () and the number of maximum

points (S2) along a blood vessel segment.

C5 (Path length added to sub-curves numbers), this results from the addition of

the path length (L3) of a blood vessel segment and the numbers of sub-curves

(S1) along that segment.
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C6 (Absolute of slopes differences and unsigned curvature), this feature results

from the addition of the unsigned curvature (L24) and the absolute slope

differences at each point along a blood vessel segment.

Features based on signal processing:

These twenty four features were derived from Fourier transform analysis. Four forms

of values along the blood vessel segments, represented as functions of spaces, were

used as an input in this analysis. For each of these four forms, six features of the

frequency domain or signal spectrum elements were derived. Some of these features

were derived by combining other features. The functions of space representing blood

vessel segments, which was used as an input to the Discrete Fourier analyses were

as follows:

1) The displacement distances between the blood vessel segment and its underlin-

ing chord, which are the distances that resulted from the differences between

each point along the blood vessel segment and the equivalent point in the un-

derlining chord of the same segment; given that the blood vessel segments were

all horizontally positioned in a 2D plane. See Figure 4.3 for an example of the

calculated displacement points, and figure 4.2 for Fourier transform analysis.

2) The first derivatives of the x axis of the segment centreline points.

3) The second derivatives of the x axis of the segment centreline points

4) The signed curvature at each point along the blood vessel segment, which is

calculated by equation 2.8.

The built in Matlab Discrete Fourier Transform function was used to analyse these

functions of spaces, which represent the same retinal blood vessel segments, but in

different ways. The DFT of a vector x of length n is another vector y of length n

and is given by equation 4.1.

The output features of the conducted Fourier analysis are as follow:

1) The power of the signal or function in the place of analysis.

2) The sum of magnitudes of the resulted sine/cosine waves.
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3) The sum of the signal spectrum phases normalised by the path length of the

blood vessel segment.

4) The sum of the magnitudes of the resulted sine/cosine waves normalised by

the path length of the segment;

5) The ratio between the segment’s chord and path lengths multiplied by the sum

of the resulted magnitudes.

6) The unsigned total curvature multiplied by the sum of resulted magnitudes.

Figure 4.2: A diagram shows Fourier transform analysis

yp+1 =
n−1∑

j=0

w
jpx(j+1) (4.1)

Where w is a complex nth root of unity: w = e−2πi/n Here i refers to the imaginary

unit, and p and j are for the indices that run from 0 to n–1. The indices p+ 1 and

j+ 1 run from 1 to n, corresponding to ranges associated with Matlab vectors. The

features of this group are as follow:

F1 (DFT measures and path over chord using displacement points), this is the

sum of the magnitudes of the DFT analysis of the displacement points, then

multiplied by the length difference between the path and chord lengths (L7).
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Figure 4.3: Example of a blood vessel segment and its calculated displacement points

F2 (DFT measures and curvature using points displacement), this is the sum of

the magnitudes of the DFT analysis of the displacement points, then multiplied

by the unsigned total curvature (L24).

F3 (DFT Measure using path over chord and xPrime), this is the sum of the

magnitudes of the DFT analysis of the first derivatives of the X axis, then

multiplied by the length difference between the path and chord lengths (L7).

F4 (DFT Measures and curvature using xPrime), this is the sum of the magnitudes

of the DFT analysis of the first derivatives of the X axis of the blood vessel

segment, then multiplied by the unsigned total curvature (L24).

F5 (DFT Measures and path over chord using xsec), this is the sum of the magni-

tudes of the DFT analysis of the second derivatives of the X axis of the blood

vessel segment, then multiplied by the length difference between the path and

chord lengths (L7).
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F6 (DFT Measures curvature using xsec), this is the sum of the magnitudes of

the DFT analysis of the second derivatives of the X axis of the blood vessel

segment, then multiplied by the length difference between the path and chord

lengths (L7).

F7 (DFT Measures and path over chord using curvature), this is the sum of the

magnitudes of the DFT analysis of the curvature at each point along the blood

vessel segment, then multiplied by the length difference between the path and

chord lengths (L7).

F8 (DFT measures and curvature using curvature), this is the sum of the magni-

tudes of the DFT analysis of the curvature at each point along the blood vessel

segment, then multiplied by the curvature calculated by the length difference

between the path and chord lengths (L7).

F9 (Sum of DFT Mag using points displacement), this is the sum of the magni-

tudes of the Discreet Fourier Transform of the displacement points along the

blood vessel segment.

F10 (The sum of DFT Mag normalised By path length using displacement points),

this is the sum of the magnitudes of the Discreet Fourier Transform of the

displacement points along the blood vessel segment, then normalised by the

path length (L3).

F11 (DFT Power norm by path length using displacement points), this is the power

of the DFT analysis of the displacement points along the blood vessel segment.

F12 (DFT Power using xprime), this is the power of the DFT analysis of the first

derivatives of the X axis points along the blood vessel segment.

F13 (DFT Mag using xprime), this is the sum of the magnitudes of the Discreet

Fourier Transform of the first derivatives of the X axis points along the blood

vessel segment.

F14 (DFT Power using xsec), this is the power of the DFT analysis of the second

derivatives of the X axis points along the blood vessel segment.
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F15 (DFT Mag xsec), this is the sum of the magnitudes of the DFT analysis of the

second derivatives of the X axis points along the blood vessel segment.

F16 (DFT Power using curvature), this is the power of the Discreet Fourier Trans-

form of the curvature at each single point along the blood vessel segment.

F17 (DFT Mag using curvature), this is the sum of the magnitudes of the DFT

analysis of the curvature values at each single point along the blood vessel

segment.

F18 (Sum of signal phases norm by path length using displacement points), this is

the sum of frequency phases of the DFT analysis of the displacement points,

then normalised by the path length (L3).

F19 (Sum of the signal phases norm by path length using xPrime), this is the sum

of frequency phases of the DFT analysis of the first derivatives of the X axis

points along the blood vessel segment, then normalised by the path length

(L3).

F20 (Sum of Mag norm by path Length using xPrime), this is the sum of the

magnitudes of the DFT analysis of the first derivatives of the X axis points

along the blood vessel segment, then normalised by by the path length (L3).

F21 (Sum of phases norm by path length using xsec), this is the sum of frequency

phases of the DFT analysis of the second derivatives of the X axis points along

the blood vessel segment, then normalised by the path length (L3).

F22 (Sum of Mag norm by path length using xsec), this is the sum of the magni-

tudes of the DFT analysis of the second derivatives of the X axis points along

the blood vessel segment.

F23 (Sum of signal phases norm by path length using curvature), this is the sum

of frequency phases of the DFT analysis of the curvature at each single point

along the blood vessel segment, then normalised by the path length (L3).

F24 (Sum of Mag norm by path length using curvature), this is the sum of the

magnitudes of the DFT analysis of the curvature values at each single point

along the blood vessel segment, then normalised by the path length (L3).
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4.2.2 Features derived from the literature

This section highlights the most frequently used tortuosity estimation features in

the literature. This group include thirty one features (from L1 to L31) chosen to be

incorporated in the proposed tortuosity evaluation framework. Detailed description

of these features and references are found in Section 4.2.4 These features are:

L1 Segment chord length.

L2 Segment arc length.

L3 Segment path length.

L4 Arc over chord.

L5 Path over chord.

L6 Length difference between arc and chord.

L7 Length difference between path and chord.

L8 Grisan’s tortuosity measure.

L9 Rashmi’s tortuosity measure.

L10 Tortuosity coefficient.

L11 Unsigned tortuosity slope.

L12 Signed tortuosity slope.

L13 Mean direction angle change.

L14 Inflection count metric using arc length.

L15 Inflection count metric using path length.

L16 Total signed curvature.

L17 Total signed curvature over path length.

L18 Total signed curvature over arc length.

L19 Total signed curvature over chord length.
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L20 Total squared signed curvature.

L21 Total squared signed curvature over arc length.

L22 Total squared signed curvature over path length.

L23 Total squared signed curvature over chord length.

L24 Total unsigned curvature.

L25 Total unsigned curvature over path length.

L26 Total unsigned curvature over arc length.

L27 Total unsigned curvature over chord length.

L28 Total squared unsigned curvature.

L29 Total squared unsigned curvature over path length.

L30 Total squared unsigned curvature over arc length.

L31 Total squared unsigned curvature over chord length.

4.2.3 My proposed framework

some researchers found that some of the tortuosity estimation features are not able

to capture all forms of tortuosity. For instance, distance measures, which are the

measures that based on taking the ratio between the chord and curve lengths, were

found not able to capture tight coils and curves [29, 48]. Likewise, curvature mea-

sures, which are the measures that estimate curvature at each single point along

a curve, were found unable to capture some of the important aspects related to

blood vessels walls or boundaries such as aneurysms [5]. Consequently, since their

is no universally accepted tortuosity measure with suitable combination of tortuos-

ity features that are able to capture all forms of tortuosity with high accuracy, I

propose a tortuosity estimation framework that include 66 features, which cover a

broad range of vessels structural changes. The framework originally consisted of 74

features. Eight were later excluded, due to fundamental flaws and redundancy. The

selection criteria of the framework’s features were mainly based on three aspects:
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A) The features should reflect various aspects of structural changes in blood vessels,

in particular changes due to pathologies or their complications such as diabetes and

hypertension retinopathy. B) The characteristics of the dataset to be used in the

features evaluation, plays a significant role in the types of chosen features, in terms

of vessel segment types and the available data about these segments. If the width

of the segments are needed, characteristics such as the availability of the coordi-

nates within points of blood vessel segments’ walls are required. C) The feasibility

of the implementation of the measures and properties is related to given available

resources, such as 2D images or 3D images. Sections 4.2.2 and 4.2.1 provides list of

the features that were selected from the literature as well as a list of the new ones.

4.2.4 Framework features’ grouping and implementation

This section provides an overview of the implementation of the 66 features of the

proposed framework. These features are organised into five groups: 1) Structural

properties, 2) Distance approach features, 3) Curvature approach features, 4) Com-

bined approach features, 5) Signal approach features. The grouping is mainly based

on similarities. Implementations in this section were carried out, on the RVTDS

using Matlab R2014a, for all feature groups except signal features which are already

discussed in section 4.2.1.

Structural properties features

This includes five features, which represent some aspects that describe the structural

nature of blood vessels. The greater are the values produced by these features, the

more tortuous the segment would be and vice versa. These features are implemented

as follows:

Maximum and minimum points along a blood vessel segment (S2, S3)

These are the highest and lowest points along a blood vessel segment. If a blood

vessel segment S is represented as a function of x, f(x), where x = [0, 1, ..., N ], then

the minimum and maximum points along this segment can be identified by using

the derivatives rules of: if f ′(xi) > 0 and f ′(tx+1) < 0, which checks if the function

is increasing to the left side of xi and decreasing to the right side of xi; if true, then
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f has a local maximum point at x, and if f ′(xi) < 0 and f ′(ti+1) > 0 , which checks

that if the function is decreasing to the left side of xi and increasing to the right

side of xi; if true in this case the function has a local minimum at xi,nsee Figure

4.4. As shown in the figure, after applying these rules along a blood vessel segment,

the points that satisfy the conditions are shown, in this case, two close maximum

or minimum points can be produced. However, this can be resolved by checking the

distances between those points and ignoring one of these points if they are found to

be too close.

Figure 4.4: Minimum and maximum points along a blood vessel segment

Sub-curves number (S1) This can be identified by an algorithm that inspects

the high and low points along the vessel segment. Using these points sub-curves

can be identified by each of two or three consecutive points along a blood segment.

For example, a minimum, maximum and minimum sequence will indicate a concave

down sub-curve, and a maximum, minimum and maximum sequence will indicate
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and a concave up sub-curve whereas two points indicate a half sub-curve.

The sub-curves heights (S5) The heights of sub-curve segments were calculated

by measuring the length between the sub-curve highest or lowest point and the

underling chord, which is the straight distance between the two end points of the

sub-curve.

The sum of areas under sub-curves (S4) The spaces under the sub curves

were calculated through integration as shown in figure4.5.

Figure 4.5: Estimation of the area under curve

Distance approach features

These are seven length related features. With this group, the blood vessel segments

are measured by two different methods: The segment path length measure (L3) 2.5,

and the segment curve or arc length measure (L2) 2.6. Most of these features’ ways

of evaluating tortuosity are based on the ratio between the curve/path lengths and

the chord length, which is the length between the two end points of the blood vessel

segment. Since the proposed tortuosity evaluation framework in this project is an

automated system, the measures which should be included under this category have

to be automated too. Therefore, the relative length variation has been excluded from

the evaluation framework. Most of the mathematical implementations examples
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shown in this section were carried out on two vessel segments (an artery and a vein)

from the Retinal Vessels Tortuosity Dataset described in chapter 3. Figure 4.6 shows

a JPG image of the artery and vein segments used (as an example). The distance

features were as follow:

Figure 4.6: A marked artery segment on the left, and a marked vein segment on the

right

Segment arc length and Segment path length (L2, L3) Segment path length

is simply the measurement of the length of the blood vessel segment. The path length

Equation 2.5 was used to estimate this length, which calculates the length of the

blood vessel segment using the vessels’ centreline points xn, yn. Where n ⊂ R, by

summing the geodesic distances along the curve or the vessel segment.

Segment arc length is another method of measuring the segment length.

The segment arc length is calculated, using Pythagoras theory, by estimating the

integral of the differential distance of all points along the blood vessel segment, 4x,

and 4y, see Equation 2.6.

These methods produce measurements with relatively small variations when

implemented on the same blood vessel segment. This is considered to some extent a

useful aspect, since variance between blood vessels segments measurements is seen as

an important aspect, when it comes to the process of vessels classification given that

the gold standard dataset segments have the same length and calibre, See Figure

4.7, which shows an artery segment and its calculated length using both methods.

The implementation code is in Appendix .2, section .2.1.

Chord length (L1) This is the measurement of the length between the two end

points of a blood vessel segment, as in Equation 2.7. The Pythagorean theorem is
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Figure 4.7: An artery segment normalised length measurements; path length = 0.204

and Arc length = 0.230

used to calculate this length using the two end points of each segment, see code in

Appendix .2, section .2.1.

The ratio of arc and chord length Features (L4, L5, L6, L7) These are a

group of four similar features. These features are:1) The ratio of the arc length and

the chord length minus one. 2) The ratio of the path length and the chord length

minus one. 3) The ratio of the arc length and the chord length 3) The ratio of the

path length and the chord length. The first two features are as in equations 2.3 and

equation 2.4 respectively. They should give a value of zero if the segment is straight

and a positive increasing value if it is tortuous. Whereas Features 3 and 4 will give

a value of one if the segment is straight and positive increasing value if tortuous.

These were used with other features to generate new ones, refer to section 4.2.4.

Curvature approach features

This group includes twenty two features. For implementation purposes features

of this group were grouped into smaller subgroups based on their similarity and

overlapping mathematical implementations. See all implementation code of this

group in Appendix .2, section .2.2. These features are as follow:

1) Group A: This group includes four features: 1) The total signed curvature. 2)

The total unsigned curvature. 3) The total squared signed curvature. 4) The

total squared unsigned curvature. Most of the curvature measures were imple-
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Figure 4.8: An example of an artery with centreline points

Figure 4.9: An example of a vein with centreline points

mented using numerical differentiation. The first and the second derivatives at

each point along the blood vessels were calculated. Backward differentiation

was used to calculate the derivatives of end points in vessel segments.

The signed curvature of blood vessels segments were calculated at each point

along the blood vessels using the first and the second derivatives as in Equation

2.8, and shown in figure 4.10, which shows the signed curvature values at each

point along a blood vessel segment. The unsigned curvature was calculated

by taking the absolute values of the signed curvature, as in Equation 2.9. The

sum of the signed and unsigned values of curvature along vessels segments

provided the total signed and unsigned curvature of each segment, as given

by Equations 2.10 and 2.11. These totals were then doubled to calculate the
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total squared signed curvature and the total squared unsigned curvature.

Figure 4.10: Signed curvature at each point along blood vessel segment

2) Group B: This group includes twelve features: 1) The total signed curvature

normalised by the segment chord length. 2) The total signed curvature nor-

malised by the curve length. 3) The total signed curvature normalised by

the path length 4) The total unsigned curvature normalised by the segment

chord length. 5) The total unsigned curvature normalised by the curve length.

6) The total unsigned curvature normalised by the path length.7) The total

squared signed curvature normalised by the segment chord length. 8) The

total squared signed curvature normalised by the curve length. 9) The to-

tal squared signed curvature normalised by the path length. 10) The total

squared unsigned curvature normalised by the segment chord length. 11) The

total squared unsigned curvature normalised by the curve length. 12) The

total squared unsigned curvature normalised by the path length. These fea-

tures were generated by normalizing the previous curvature groups’ features,
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each by the chord, curve and path lengths respectively, equation are in section

2.8.2, and implementation code in Appendix .2, section .2.2.

3) Group C: This group includes five features: 1) Tortuosity coefficient. 2) The

signed tortuosity using the gradients along blood vessel segment. 3) The un-

signed tortuosity using the gradients along blood vessel segment. 4) Rashmi’s

measure of tortuosity. 5) Mean direction angle change. The implementation

of the Tortuosity coefficient feature was based on the second differences of the

coordinates of the vessel mid-line. After calculating the differences between

each of two successive gradients, the absolute sum of these differences were

calculated and then divided by the sampling interval since the measure de-

pends on the vessel length or the segment sampling interval P , see equation

2.18. The signed and unsigned tortuosity features were estimated by calculat-

ing the slopes or the gradients along each blood vessel segment. The sum of

the absolute slopes differences were taken to estimate the unsigned tortuosity,

and the sum of the slopes differences to estimate the signed tortuosity.

Rashmi’s measure of tortuosity is similar, in implementation, to the previous

feature. The tortuosity here is calculated by taking the differences of the slopes

along the blood vessel segment, see equation 2.17.

In the execution of the Mean direction angle change (MDAC) feature, for each

point p, along the blood vessel segment two vectors [p+step] and [p−step] were

formed. The step value is governed by the length of the segment. Then, each

vector is normalised by its norm. Consequently, the angle theta (θ) between

those two vectors is computed using the dot products, θ = arccos(v1.v2), Then

tortuosity can be calculated using Equation 2.22.

4) Group D: This group includes one feature, which is the total sum of the com-

bined unsigned curvature along blood vessel segment and the absolute differ-

ences of gradients along blood segment. This feature results from the combina-

tion of the previous measure, Rashmi’s measure of tortuosity, and the unsigned

curvature. In this measure the absolute values of the slopes differences along

a blood vessel segment were added to the equivalent curvature values at each

point, then the sum of those values were calculated.
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Combined features

These features were built with the intention of capturing more of the vessels curva-

ture. Various features and evaluation techniques were included in this group. Some

blood vessels features were thoughtfully combined with other features to form, as

indicated by their proposers, powerful tortuosity measures. This category includes

eight features. Five features were from the literature and the rest are proposed in

this study. See code in Appendix .2, section .2.4. This group features are as follow:

1) Grisan’s tortuosity measure: This was proposed by Grisan et al. [43, 28, 44].

Their methods used spline interpolation to estimate the curvature of retinal

blood segments. Although their own techniques, code and dataset were used,

their results were unreproducible. Consequently, a similar approach was fol-

lowed using their own theory, which is a tortuosity estimation algorithm that

calculates the number of sub-curves in the blood vessel segment, and its tortu-

osity estimation. In addition to the length of the segment. Numerical differen-

tiation and derivatives rules were used to identify the sub-curves in each blood

vessel segment, as described in detail in section 4.2.4, then the ratio between

each sub-curve and its underlining chord was calculated, which represents the

tortuosity value of that particular sub segment. Finally, the integrals of these

sub-curves tortuosities were calculated to estimate the tortuosity of the blood

vessel segment as in Equation 2.30.

2) Inflection count metric one and two: Inflection count metric is proposed by

Smedby [83] and extended by Elizabeth Bullitt [13, 27]. The measure originally

counts the inflection points along each space, plane or curve and multiplies this

number, plus one, and the total segment curve length divided by the chord

length as in equation 2.26. The number of sub-curves were used, as they

indicate the turning points along blood vessels segments. There were two

tortuosity features produced by this measure because there were two methods

of estimating the curve length.

3) Arc over chord combined with the number of maximum points along a blood

vessel segment, and the Path over chord combined with the number of max-

imum points along a blood vessel segment: These are examples of the new
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features, which resulted from the combination (multiplication) of each of the

path length and the arc length of the blood vessel segment, and the number

of the maximum points along the blood vessel segment plus one.

4) Path length combined with the sub-curves numbers along blood vessel seg-

ment: This estimates the curvature of the blood vessel segment by adding up

the segment path length and the number of sub-curves or segments in a single

segment. The code is found in Appendix .2, section .2.4.

5) Vessel profile features one and two: Vessel profile feature one is formed by

adding up the path over chord feature, discussed in section 2.8.1 and the sum of

all sub-curves under spaces, which is one of the structural properties features.

Vessel profile feature two is constructed by adding the path over chord to the

sum of the sub-curves heights. The main reason behind the construction of

these features is to capture more aspects of the vessel tortuosity. The code is

in Appendix .2, section .2.4.

4.3 Data analysis using the retinal vessel tortuos-

ity dataset

Several statistical analyses were used to analyse the framework features. IBM SPSS

(21) and Matlab R2014a software were used interchangeably in these processes. This

section starts by analysing the proposed tortuosity evaluation framework features

using basic descriptive statistics. This is to identify any differences and similarities

between the set of artery and vein segments and to monitor the range and distribu-

tion measurements of individual features. These are important factors especially in

classification. Correlation analysis was then conducted to examine the strength of

the relationship between the framework features and the clinical order of the seg-

ments. This was followed by regression analysis to identify the best set of features

that could accurately predict the clinical order. In addition, further analyses meth-

ods from machine learning were utilised in an attempt to obtain higher performance

level of grading blood vessel segments’ tortuosity. The next sections provide an

overview of the implementation of these statistical methods and the results analysis
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Table 4.1: This table shows the descriptive statistical analysis of the structural

properties features of the arteries

Descriptive Statistics

Feature N Minimum Maximum Mean Std. Deviation Variance

S1 30 .000 1.000 .36250 .235232 .055

S2 30 .000 1.000 .44545 .275689 .076

S3 30 .000 1.000 .43939 .271243 .074

S4 30 .000 1.000 .43411 .229984 .053

S5 30 .000 1.000 .37146 .259718 .067

Valid N (listwise) 30

using RVTDS, described in section 3.3, and the new tortuosity dataset built in

chapter 3.

4.3.1 Descriptive statistical analysis

Descriptive statistical analysis of the structural properties features on

artery and vein segments

The descriptive analysis results of the five structural properties features of the vein

and artery segments groups, revealed that there is no significant variances when

it come to the structural properties between the two groups. However the arter-

ies group showed a small increase in variability compared to veins. The standard

deviations of the two groups also showed small differences between the veins and ar-

teries segments, See Tables 4.1 and 4.2 for the veins and arteries descriptive analysis

respectively.

Descriptive statistical analysis of the distance approach features on artery

and vein segments

The basic descriptive analysis results of these seven features, revealed that most

means of the features of the arteries were slightly higher than those in the veins.

This observation supports the fact that the arteries are more elastic and flexible in

nature compared to veins, as discussed in details in Sections 2.5.1 and 2.6, hence

the segments tend to become tortuous in a smooth manner. The variability of the

two groups’ tortuosity grades appeared increasingly different especially with Arc
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Table 4.2: This table shows the descriptive statistical analysis of the structural

properties features of the veins

Descriptive Statistics

Feature N Minimum Maximum Mean Std. Deviation Variance

S1 30 .000 1.000 .47043 .219015 .048

S2 30 .000 1.000 .48118 .216997 .047

S3 30 .000 1.000 .39817 .218649 .048

S4 30 .000 1.000 .45072 .260388 0.68

S5 30 .000 1.000 .42839 .295839 .088

Valid N (listwise) 30

Table 4.3: This table shows the descriptive statistical analysis of the distance ap-

proach features for arteries

Descriptive Statistics

Feature N Minimum Maximum Mean Std. Deviation Variance

L1 30 .000 1.000 .72805 .243215 .059

L2 30 .000 1.000 .39726 .275272 .076

L3 30 .000 1.000 .38930 .276223 .076

L4 30 .000 1.000 .36028 .285869 .082

L5 30 .000 1.000 .37073 .277549 .077

L6 30 .000 1.000 .6028 .285869 .082

L7 30 .000 1.000 .37073 .277549 .077

Valid N (listwise) 30

over chord (L4), Path over chord (L5) and the length differences using the ratios of

the path and Arc lengths to chord length features (L6, L7) in the arteries group.

However, the veins showed little variation between the sample data, which indicated

the closeness of the tortuosity grades of this group. The standard deviations of the

two groups also showed small variation between the vein and artery groups, See

Tables 4.8 and 4.4 for the artery and vein segments respectively.

Descriptive statistical analysis of curvature approach features on artery

and vein segments

Examining descriptive results of the twenty two curvature features, of the arteries

and veins showed that the means of the vein segments, especially the signed cur-
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Table 4.4: This table shows the descriptive statistical analysis of distance based

approach features for veins

Descriptive Statistics

Feature N Minimum Maximum Mean Std. Deviation Variance

L1 30 .000 1.000 .71165 .232865 .054

L2 30 .000 1.000 .37925 .236962 .056

L3 30 .000 1.000 .36372 .236436 .056

L4 30 .000 1.000 .25901 .240999 .058

L5 30 .000 1.000 .23326 .244366 .060

L6 30 .000 1.000 .07282 .218917 .048

L7 30 .000 1.000 .25901 .240999 .58

Valid N (listwise) 30

vature (L16) and the unsigned tortuosity measure combined with the slope (L11),

were slightly higher than those in the arteries. Both groups’ features’ showed small

variations. See Tables 4.5 and 4.6 for the descriptive analysis of the artery and vein

segments respectively.

Descriptive statistical analysis of the combined features on artery and

vein segments

The statistical analysis of the eight combined features showed that, in general, the

means of the veins segments were slightly higher than those in the arteries group.

Both groups showed small standard deviation values, which indicated the closeness

of these groups’ features to their means values; this is also supported by small

variations values reported between the values of both groups’ tortuosities grades,

with the vessel profile 2 (C2) feature reporting the highest variance value of 0.078

in the veins group. Refer to Table 4.7 for the descriptive analysis of this group.

Descriptive statistical analysis of Fourier Transform based features on

artery and vein segments

The statistical analysis revealed that the variance among the artery segments’ mea-

surements was higher than that in the veins. This was to some extent, backed up by

the standard deviation values which showed a slight increment among these groups,
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Table 4.5: This table shows the descriptive statistical analysis of curvature based

approach features of arteries

Descriptive Statistics

Feature N Minimum Maximum Mean Std. Deviation Variance

C6 30 .000 1.000 .27875 .197663 .039

L9 30 .000 1.000 .13996 .240689 .058

L10 30 .000 1.000 .35111 .201801 .041

L11 30 .000 1.000 .39413 .219804 .048

L12 30 .000 1.000 .49125 .183666 .034

L13 30 .000 1.000 .57299 .232864 .054

L16 30 .000 1.000 .37631 .230296 .053

L17 30 .000 1.000 .38261 .212677 .045

L18 30 .000 1.000 .38384 .213556 .046

L19 30 .000 1.000 .38524 .225672 .051

L20 30 .000 1.000 .11746 .230892 .053

L21 30 .000 1.000 .11076 .218684 .048

L22 30 .000 1.000 .11014 .217918 .047

L23 30 .000 1.000 .11682 .228682 .052

L24 30 .000 1.000 .32583 .236547 .056

L25 30 .000 1.000 .35217 .246913 .061

L26 30 .000 1.000 .35120 .246639 .061

L27 30 .000 1.000 .33425 .239573 .057

L28 30 .000 1.000 .17101 .210083 .044

L29 30 .000 1.000 .18233 .217231 .047

L30 30 .000 1.000 .18191 .216848 .047

L31 30 .000 1.000 .17455 .211717 .045

Valid N (listwise) 30

whereas there were no significant differences between the means values of the two

groups. See Table 4.9 and Table 4.10 for the descriptive analysis of the artery and

vein segments respectively.

Descriptive statistics results

The descriptive statistical analysis, in general, showed that the means of the artery

segments of the Fourier Transform, and the distance approach features were slightly

higher than those in the vein segments. However, the means of the structural,
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Table 4.6: This table shows the descriptive statistical analysis of the curvature based

approach features of veins

Descriptive Statistics

Feature N Minimum Maximum Mean Std. Deviation Variance

C6 30 .000 1.000 .15922 .208878 .044

L9 30 .000 1.000 .10273 .272136 .074

L10 30 .000 1.000 .36152 .243251 .059

L11 30 .000 1.000 .48108 .240448 .058

L12 30 .000 1.000 .24323 .185960 .035

L13 30 .000 1.000 .59759 .259724 .067

L16 30 .000 1.000 .57023 .228564 .052

L17 30 .000 1.000 .57401 .225507 .051

L18 30 .000 1.000 .58064 .224314 .050

L19 30 .000 1.000 .56841 .239255 .057

L20 30 .000 1.000 .13512 .249541 .062

L21 30 .000 1.000 .14121 .255229 .065

L22 30 .000 1.000 .14315 .257881 .067

L23 30 .000 1.000 .14092 .258454 .067

L24 30 .000 1.000 .28933 .269886 .073

L25 30 .000 1.000 .29097 .258172 .067

L26 30 .000 1.000 .29218 .260825 .068

L27 30 .000 1.000 .27967 .270718 .073

L28 30 .000 1.000 .16695 .259324 .067

L29 30 .000 1.000 .16810 .249723 .062

L30 30 .000 1.000 .16610 .245823 .060

L31 30 .000 1.000 .16479 .257662 .066

Valid N (listwise) 30

curvature and combined approach features, of the veins, were all higher than the

means of the artery segments. This indicates that, in this sample, the vein segments

are more tortuous than the arteries.

In terms of the distribution of individual values in feature groups, the

standard deviation of the distance and the structural approach features, of the artery

segments, were slightly higher than those in the veins. On the contrary, the standard

deviation of the curvature approach features, of the veins, were higher than those

in the arteries. However both Fourier Transform and combined approach features
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Table 4.7: This table shows the descriptive statistical analysis of the combined

approach features of the artery segments

Descriptive Statistics

Feature N Minimum Maximum Mean Std. Deviation Variance

C1 30 .000 1.000 .43411 .229985 .053

C2 30 .000 1.000 .37149 .259729 .067

C3 30 .000 1.000 .22970 .228617 .052

C4 30 .000 1.000 .37585 .245740 .060

C5 30 .000 1.000 .38716 .274516 .075

L8 30 .000 1.000 .28582 .233175 .054

L14 30 .000 1.000 .33706 .226965 .052

L15 30 .000 1.000 .33417 .225131 .051

Valid N (listwise) 30

Table 4.8: This table shows the descriptive statistical analysis of the combined

approach features of the vein segments

Descriptive Statistics

Feature N Minimum Maximum Mean Std. Deviation Variance

C1 30 .000 1.000 .45750 .261814 .069

C2 30 .000 1.000 .41753 .279961 .078

C3 30 .000 1.000 .21133 .244939 .060

C4 30 .000 1.000 .53641 .238824 .057

C5 30 .000 1.000 .36878 .230261 .053

L8 30 .000 1.000 .29044 .283506 .080

L14 30 .000 1.000 .45677 .206628 .043

L15 30 .000 1.000 .43133 .222297 .049

Valid N (listwise) 30

showed small variance in standard deviation between arteries and veins.

4.3.2 Correlation analysis

Correlation analysis, as defined by Gosling [39] is concerned with determining the

extent to which the variables of interest are related. It is a procedure that provides

a measure of the relative strength of the relationship between features. The most

popular correlations are: Pearson’s Correlation Coefficient, which is a measure of
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Table 4.9: This table shows the descriptive statistical analysis of the Fourier Trans-

form analysis features of the artery segments

Descriptive Statistics

Feature N Minimum Maximum Mean Std. Deviation Variance

F1 30 .000 1.000 .354 .248 .061

F2 30 .000 1.000 .208 .221 .049

F3 30 .000 1.000 .195 .185 .034

F4 30 .000 1.000 .246 .242 .059

F5 30 .000 1.000 .134 .176 .031

F6 30 .000 1.000 .155 .200 .040

F7 30 .000 1.000 .212 .199 .040

F8 30 .000 1.000 .214 .200 .040

F9 30 .000 1.000 .385 .246 .060

F10 30 .000 1.000 .430 .242 .059

F11 30 .000 1.000 .319 .385 .031

F12 30 .000 1.000 .353 .257 .066

F13 30 .000 1.000 .207 .180 .033

F14 30 .000 1.000 .068 .180 .032

F15 30 .000 1.000 .133 .176 .031

F16 30 .000 1.000 .105 .181 .033

F17 30 .000 1.000 .214 .201 .041

F18 30 .000 1.000 .265 .413 .171

F19 30 .000 1.000 .659 .205 .042

F20 30 .000 1.000 .227 .175 .030

F21 30 .000 1.000 .603 .438 .192

F22 30 .000 1.000 .147 .175 .031

F23 30 .000 1.000 .270 .421 .177

F24 30 .000 1.000 .203 .194 .038

Valid N (listwise) 30

the tendency of two variables to rise and fall in relation to each other; and Spear-

man’s Correlation Coefficient, in which the rank of data is calculated, and then the

correlation is taken from the ranked data instead of the real data. Since the tortu-

osity grading is ranked from non to most tortuous, the latter analysis was used. The

next sections detail the Spearman’s Rank Correlation Coefficient analysis between

the groups’ features and the clinical order of tortuosity.
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Table 4.10: This table shows the descriptive statistical analysis of the Fourier Trans-

form analysis features of the vein segments

Descriptive Statistics

Feature N Minimum Maximum Mean Std. Deviation Variance

F1 30 .000 1.000 .281 .247 .061

F2 30 .000 1.000 .160 .241 .058

F3 30 .000 1.000 .273 .253 .064

F4 30 .000 1.000 .217 .261 .068

F5 30 .000 1.000 .271 .231 .054

F6 30 .000 1.000 .203 .257 .066

F7 30 .000 1.000 .260 .276 .076

F8 30 .000 1.000 .256 .273 .075

F9 30 .000 1.000 .312 .250 .063

F10 30 .000 1.000 .375 .272 .074

F11 30 .000 1.000 .205 .258 .067

F12 30 .000 1.000 .448 .282 .080

F13 30 .000 1.000 .416 .254 .065

F14 30 .000 1.000 .291 .242 .058

F15 30 .000 1.000 .341 .252 .064

F16 30 .000 1.000 .161 .237 .056

F17 30 .000 1.000 .263 .274 .075

F18 30 .000 1.000 .583 .424 .179

F19 30 .000 1.000 .551 .199 .039

F20 30 .000 1.000 .460 .265 .070

F21 30 .000 1.000 .415 .454 .207

F22 30 .000 1.000 .371 .260 .068

F23 30 .000 1.000 .552 .432 .187

F24 30 .000 1.000 .237 .246 .061

Valid N (listwise) 30

Spearman’s rank correlation coefficient of the structural properties fea-

tures and the clinical order

This is the Spearman’s Rank Correlation Coefficient of the structural properties

features of the arteries and veins segments, and the clinical order. It reveals that

the arteries group were more correlated to the clinical order values, than the veins.

The sum of the sub-curves heights (S5) was the highest positive correlated feature
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Table 4.11: Spearman’s rank correlation coefficient of the structural properties fea-

tures of the artery and vein segments

.

Measure Arteries Veins

Sub-curves numbers (S1) .550 .478

Number of maximum points (S2) .615 .494

Number of minimum points (S3) .597 .355

Sum of sub-curves under spaces (S4) -.466 -.309

The sum of sub-curves heights (S5) .826 .589

in both groups with RHO = .826 (p < .05) and RHO = .589 (p < .05) for the

artery and vein groups respectively. The number of the maximum points along a

blood vessel segment was also highly, positively correlated with the clinical order in

the arteries. However it was moderately correlated in the veins group. See Table

4.11 for the Spearman’s Rank Correlation Coefficient of this group and the clinical

order.

Spearman’s rank correlation coefficient of the distance approach features

and the clinical order

In general, the arteries measures were more correlated to the clinical order, compared

to the veins. In the arteries group the following features: length differences between

path and chord length (L7), length differences between arc and chord length (L6),

Arc over chord length (L4), path over chord length (L5), segment arc length (L2)

and segment path length (L3), were highly positively correlated with the clinical

order with RHO = .853 (p < .05), RHO = .816 (p < .05), RHO = .816 (p < .05),

RHO = .853 (p < .05), RHO = .729 (p < .05) and RHO = .739 (p < .05)

respectively. Whereas the same features analysed using the veins’ measurements,

showed weak to moderate correlations except of the length difference between the

path length and the chord length (L7) with RHO = .608 (p < .05), see Table 4.12

for the Spearman’s coefficient rank correlation between the distance based features

and the clinical order.
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Table 4.12: Spearman’s rank correlation coefficient of the distance approach features

and the clinical order of the artery and vein segments

.

Measure Arteries Veins

Segment chord length (L1) -.478 -.233

Segment arc length (L2) .729 .265

Segment path length (L3) .739 .266

Arc over chord length (L4) .816 .608

Path over chord length (L5) .853 .630

Length differences between arc and chord length (L6) .816 .761

Length differences between path and chord length (L7) .853 .608

Spearman’s rank correlation coefficient of the curvature approach fea-

tures and the clinical order

Both groups were found to be correlated to the clinical order. In the artery group,

Rashmi’s Tortuosity measure (L9), total squared unsigned curvature over chord

length (31), total squared unsigned curvature (L28), mean direction angle change

(13) and the total unsigned curvature over chord length (27) were highly correlated to

the clinical order with RHO = .898 (p < .05), RHO = .736 (p = .44), RHO = .731

(p < .05), RHO = −.707 (p < .05) and RHO = .724 (p < .05) respectively. The

remaining features showed moderate to weak correlations with the clinical order. On

the other hand, the Abs slope difference and unsigned curvature (C6), total squared

unsigned curvature over the chord length (31) and Rashmi’s Tortuosity measure (L9)

were the highest correlated features in the vein group with RHO = .810 (p < .05),

RHO = .793 (p < .05) and RHO = .800 (p < .05) respectively, [for more details

see Table 4.13].

Spearman’s rank correlation coefficient of the combined approach fea-

tures and the clinical order

Both groups showed various strength of correlations, however the path over chord

times number of maximum points feature (C3) reported the highest correlation value

in the artery group with RHO = .920 (p < .05). Whereas, the path length and sub-
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Table 4.13: Spearman’s rank correlation coefficient of the curvature approach fea-

tures and the clinical order of the artery and vein segments

.

Measure Arteries Veins

Total signed curvature (L16) .144 -.145

Total squared signed curvature (L20) .230 .126

Total unsigned curvature (L24) .731 .789

Total unsigned curvature over Path length (L25) .659 .766

Total squared signed curvature over arc length (L21) .212 .117

Total unsigned curvature over arc length (L26) .673 .765

Total squared signed curvature over path length (L22) .212 .177

Total unsigned curvature over chord Length (L27) .724 .797

Total squared signed curvature over chord Length (L23) .230 .139

Tortuosity coefficient (L10) .506 .399

Unsigned tortuosity slope (L11) .485 .028

Signed tortuosity slope (L12) -.257 .391

Mean direction angle change (L13) -.707 -.727

Rashmi’s Tortuosity measure (L9) .898 .800

Total signed curvature over Path length (L17) .134 -.140

Total signed curvature over Arc length (L18) .134 -.147

Total squared unsigned curvature (L28) .731 .788

Total squared unsigned curvature over path length (L29) .710 .778

Total squared unsigned curvature over arc length (L30) .704 .780

Total signed curvature over chord length (L19) .144 -.154

Total squared unsigned curvature over chord length (L31) .736 .793

Abs slope difference and unsigned curvature (C6) .385 .810

curves number (C5) reported the highest correlation in vein group with RHO = .739

(p < .05). C3 is the highest correlated feature, to the clinical order, among all other

tortuosity evaluation approaches for the artery segments. [For more details see Table

4.14].
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Table 4.14: Spearman’s rank correlation coefficient of the combined approach fea-

tures and the clinical order of the artery and vein segments

.

Measure Arteries Veins

Tortuosity measure by Grisan (L8) .752 -.233

Inflection Count Metric using arc length (L14) .406 .265

Inflection Count Metric using path length (L15) .405 .266

Vessel profile 2 (C2) .826 .608

Arc over chord times number of maximum points (C4) .651 .630

Path length and sub-curves number (C5) .743 .761

vessel profile 1 (C1) -.466 .608

Path over chord times number of maximum points (C3) .920 .608

Spearman’s rank correlation coefficient of the Fourier Transform ap-

proach features and the clinical order

Both group showed various strength of negative and positive correlations to the

clinical order. The highest correlated features in both groups were the DFT measures

and curvature using points displacement (F2) with RHO = .804 (p < .05) for the

arteries and the DFT Measures and curvature using xPrime (F6) with RHO =

.752(p < .05). [For more details see Table 4.15].

Spearman’s correlation results

The Spearman’s correlation analysis revealed a number of strong features, that were

able to predict the clinical order with very high performances. At the level of the

features groups, the combined approach features included the highest performed

for the arteries, with feature C3 reporting 92%. On the other hand, the curvature

approach features included the highest performed feature for the veins, C6 reporting

.81%. During the course of this statistical analysis, it has been observed that most of

the framework features did not perform equally for arteries and veins. In particular,

most features reported high performances with the arteries, however, they drastically

underperformed with the veins. This is also has been noticed with previous studies

in the literature, refer to Section 2.7. I believe this is very interesting marker that
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Table 4.15: Spearman’s Rank correlation coefficient of the Fourier Transform fea-

tures and the clinical order for the artery and vein segments. DFT: Discrete Fourier

Transform, Mag: Magnitude, xPrime: The first derivatives of the x axis, xSec: The

second derivatives of the x axis, Norm: Normalised

Measure Arteries Veins

DFT Measures and Path Over Chord using displacement points (F1) .747 .600

DFT measures and curvature using points displacement(F2) .804 .728

DFT Measure using Path Over Chord and xPrime (F3) .740 .538

DFT Measures and curvature using xPrime (F4) .749 .729

DFT Measures and Path Over Chord using xsec (F5) .607 .673

DFT Measures curvature using xsec (F6) .751 .752

DFT Measures and Path Over Chord using curvature (F7) .599 .667

DFT Measures and curvature using curvature (F8) .600 .661

Sum of DFT Mag using points displacement (F9) .711 .597

The sum of DFT Mag norm By Path Length using displacement points (F10) .661 .606

DFT Power norm by path length using displacement points (F11) .333 .482

DFT Power using xprime (F12) -.502 -.725

DFT Mag using xprime (F13) .649 .492

DFT Power using xsec (F14) .005 -.071

DFT Mag xsec (F15) .527 .656

DFT Power using curvature (F16) .635 .619

DFT Mag using curvature (F17) .612 .666

Sum of signal phases norm by path length using displacement points (F18) .042 -.414

Sum of the signal phases norm by Path Length using xPrime (F19) -.189 .220

Sum of Mag norm by path Length using xPrime (F20) .426 .442

Sum of phases norm by path length using xsec (F21) -.298 -.051

Sum of Mag norm by path length using xsec (F22) .652 .386

Sum of signal phases norm by path length using curvature (F23) -.107 -.297

Sum of Mag norm by path length using curvature (F24) .547 .673

leads to the fact that, there are differences with the arteries and veins, especially

in tortuosity. In conclusion, comparing my proposed features’ performances to the

literature ones, four out of five best performed features, for the veins, were proposed

in this study (S5, C6, C5, F6), and three out of five best performed, for the arteries,

were also proposed in this study (F2, C3, S5).
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4.3.3 Regression analysis

In statistics, regression is a technique for estimating the relationship between two

or more variables. It is used to examine the nature of a relationship between a

dependent and an independent variable. It can also be used to predict the dependent

variable when the independent variable is known.

Linear regression is normally used to model the relationship between two

continuous variables. This relationship might be positive, negative or non-relational.

The strength of the relationship is usually reported as weak, moderate or strong.

However, in multiple regressions as described by [34] a number of independent vari-

ables are used to predict the dependent variable. In this study, all the tortuosity

framework’s features were used to predict the clinical order of vessels tortuosity; the

regression analyses methods used were stepwise, backward and forward feed anal-

ysis. These analyses were conducted separately for the artery and vein groups as

following:

Stepwise analysis

A multiple linear regression using stepwise analysis was run for both arteries and

veins groups to predict the clinical order, using the proposed framework features,

which consists of over 60 features. The arteries test revealed that the path over

chord (β = .836, p = 0.00), DFT power using xprime (β = −.329, p = .001) and

the tortuosity coefficient (β = 0.324, p = .009) were the only significant predictors.

The stepwise analysis of this group produced three models, which showed a strong

multiple correlation of R = .836, R = .893 and R = .919; and coefficient of de-

termination of R2 = .698, R2 = .797 and R2 = .844 by model one, two and three

respectively. Model three indicated that around 84% of the variation in the clinical

order (the ophthalmologist grading order), could be accounted for or predicted by

combining the three significant predictors. [See figure 4.11 for the model summary].

Whereas the mean direction angle change and the sum of sub-curves under spaces

with (β = −.710, p = 0.00) and (β = −.327, p = 0.009) were the only significant

predictors in the veins group. The overall models fit of the veins segments were

R2 = 0.533, and R2 = 0.639, and multiple correlation of R = .730, R = .800 for

resulted models one and two respectively. [See Figure 4.12 for the model summary
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].

Figure 4.11: Model summary of a multiple linear regression stepwise analysis-arteries

Figure 4.12: Model summary of a multiple linear regression stepwise analysis-veins

Forward feed analysis

The model summary of the multiple linear regression using forward feed analysis,

on the framework, of the arteries segments showed a strong multiple correlation;

three models were produced of R = 0.836, R = 0.893 and R = 0.919; and coefficient

of determination of R2 = .698, R2 = .797 and R2 = .844 respectively. The third

summary indicated that around 84% of the variation in the clinical order (the oph-

thalmologist grading order), could be accounted for or predicted by each of the path

over chord feature, (beta = .495, p = 0.00), DFT power using xprime (beta = −.472,

p = .000) and the tortuosity coefficient (beta = .324, p = .009) which were the only
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significant predictors. [See figure 4.13 for the model summary]. The forward feed

analysis of the veins segments produced two models; the first model consisted of a

single feature, which is the mean direction angle change, whereas the other model

included the mean direction angle change combined with the sum of sub-cures under

spaces as the only significant predictors. The overall models fit of the veins segments

were R2 = .533, and R2 = .639 and multiple correlation of R = .730 and R = .800

for model one and two respectively. [See Figure 4.14 for the model summary].

Figure 4.13: Model summary of a multiple linear regression forward feed analysis-

arteries

Backward feed analysis

Multiple linear regression using backward feed analysis applied to the proposed

tortuosity evaluation framework, to predict the clinical order, revealed that there

are twenty nine significant predictors in the arteries group. The model summary

of the arteries showed a strong multiple correlation of R = 1.000; and coefficient

of determination of R2 = .698. The model summary indicated that 100% of the

variation in the clinical order (the ophthalmologist grading order) could be accounted

for or predicted by combining the twenty nine identified significant predictors from
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Figure 4.14: Model summary of a multiple linear regression forward feed analysis-

veins

the proposed framework. See figure 4.15 for the model summary. In the vein group a

different set of twenty nine features were also identified as significant predictors using

backward feed analysis. The overall model fit of the veins segments was R2 = 1.000,

and multiple correlation of R = 1.000. See Figure 4.16 for the model summary.

4.3.4 Machine learning analysis

Introduction

The issue is to predict the order of number of blood vessels that have been previously

ordered, in increased tortuosity, by an expert ophthalmologist, given a number of

blood vessels features. In other words, is to predict some output y (the clinical

order) given an input x (the framework features) The objective of this, is to identify

best feature/features that are good at estimating tortuosity.

Data

Data is very important factor when it comes to models training in various machine

learning approaches. In this analysis, 66 tortuosity estimation features of 30 artery

and 30 vein segments (RVTDS) were used to train the ANN and RF models. Since

the input (66 features) and the output (Clinical order) are known, this is considered
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Figure 4.15: Model summary of a multiple linear regression using backward analysis-

arteries

as a supervised classification problem. Most of the classification attempts in the

literature, whether were supervised or unsupervised learning, were based on two or

three class classification, such as tortuous and non-tortuous. [See Section 2.10 for

data analysis methods used to grade and test tortuosity]. The features are scaled

to take values between 0 and 1. The next sections detail the building of the ANN

and RF models.

ANN analysis

ANN structure The following are the elements of the ANN structure: A) The

ANN used was constructed of an input layer, that includes 66 inputs xi. B) an

output layer that include 30 outputs ŷi, which is an estimate of y. C) a single

hidden layer that include 30 hidden units. D) neurons are activated by a logistic
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Figure 4.16: Model summary of a multiple linear regression using backward analysis-

veins

activation function. [See Figure 4.17 for an example of a neuron].

ANN model analysis At the input layer the neurons take the weighted sum of

the inputs xi, which are the blood vessel segments’ measurements 30x66. These

are then passed into the activation function to produce a predicted grade of these

segments. In order to obtain an accurate tortuosity prediction for the blood vessels

segments, a learning algorithm is needed. This algorithm will modify the weights

of the connections according to the input patterns which the neuron is presented

with. Backpropagation with the gradient descent learning rule, as an optimization

method, is used in the learning of the neuron. Given the type of the dataset,

the learning was supervised. Generally, in artificial neural networks, there are two

different approaches to models training. 1) On-line training mode; here the weights

are optimized in each case and in each epoch. On-line training mode characterised
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Figure 4.17: This graph shows a single node structure

by its speed and also found to be less prone to local minima. 2) Patch mode,

in which at each epoch the weights are adjusted once at the end of the epoch.

Given the nature of the available dataset, patch mode was used in the learning

of the neuron (Training testing and validation are in section 4.3.4). As previously

indicated the backwards propagation of error (Backpropagation) algorithm was

used in the neuron learning. This performs a gradient descent within the solution’s

vector space, which is the clinical order, towards a minimum error. Initially, the

learning of the neuron starts with initial random weights for each input. Since

the target output (The manual clinical grading) is ranked the Spearman’s Rank

Correlation Coefficient was used to test the performance of the neuron. Spearman’s

Rank correlation analysis was conducted between the first predicted output, which

is calculated using the initial random weights, and the targeted or desired output

(the clinical grading) to assess the initial performance of the neuron. Subsequently,

the predicted output is passed through the optimization algorithm (the gradient

descent learning rule) to minimize the error, which is the difference between the

desired and predicted output. The neuron learning continues, with optimizing the

weights to reduce the error.

Leave-One-Out cross validation (L-O-Out) method was used to test and

validate the model. This approach was adopted because of the small size of the
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used dataset, which is not sufficient for training and testing. By doing so, model

over-fitting can be avoided. Over fitting is the case when the whole data is used to

fit the model and used at the same time to assess the model. Therefore, since the

number of the cases (segments) in the dataset for each group (veins and arteries)

are thirty segments; the training and testing using leave-one-out cross validation

was conducted as follows: It starts by; isolating one of the thirty segments to be

used at the end of the training for testing. The remaining twenty nine segments are

used for learning or training of the neuron. The training runs through n number

of epochs, in which the gradient descent, learning algorithm, runs for 29 times, on

the 29 segments. At each cycle (epoch) a learning rate was used. Twenty nine

weights are produced by this stage. These weights are then averaged and saved to

be used as initial weights for the next cycle of training. These average weights are

also used to calculate the predicted output of the left out input (segment) by taking

Spearman’s Rank Correlation between the desired output of the isolated segment

and its calculated predicted output. The average weights and the Spearman’s Rank

Correlation results (RHO) of all the epochs cycles for the segment were saved, to

be used at the final testing phase. The learning rate is reset at the end of each

epoch. At the end of the epoch cycles the maximum reported RHO is identified

as well as its equivalent weights, which are then used in the testing of the left-out

case to calculate the predicted output. This process continues until all the left-out

segments are tested, by using the produced best weights in the training process.

Finally, all of the predicted output of the left-out cases will be tested with regard

to their desired outputs using Spearman’s Rank Correlation Coefficient to produce

the final performance of the neuron. See Appendix .3, section .3.2 for the learning

algorithm.

ANN analysis results The proposed framework was trained and tested using

leave-one-out cross validation. The analysis initially was performed on the five

feature groups discussed above. The combined and distance approach features of the

arteries group, reported the highest performance of RHo = .8611, Error = .0297

and RHo = .8611, Error = .0328 respectively. Whereas the Fourier Transform

features reported the lowest performance of RHo = .7076 and Error = .057. See

figures ?? and 4.19 for the combined and distance approach features analysis using
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Leave-One-out. On the other hand, in the veins group the curvature approach

features and the proposed features reported the highest performance of RHo = .7307

with Error = .0467, and RHo = .7124 with Error = .0.0683, respectively; whereas

the distance approach measures reported the lowest performance of RHo = .5754

with Error = .0676, (refer to table 4.16 for more details).

Figure 4.18: This graph shows ANN training and testing using the leave one out cross

validation of the structural properties features: Coloured lines represent segments,

and stars represent performances on training cycles.
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Figure 4.19: This graph shows ANN training and testing using the leave one out cross

validation of the distance approach features: Coloured lines represent segments, and

stars represent performances on training cycles.
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Figure 4.20: This graph shows ANN training and testing using the leave one out cross

validation of the combined approach features: Coloured lines represent segments,

and stars represent performances on training cycles.
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Table 4.16: The artificial neural network analysis of the proposed tortuosity evalu-

ation framework features groups

.

Feature group Arteries Error Veins Error

Structural Properties 0.765 0.0531 0.5818 0.0699

Distance approach 0.861 0.0328 0.5754 0.0676

Curvature approach 0.738 0.0446 0.7307 0.0497

Combined approach methods 0.861 0.0297 0.6241 0.6241

Fourier Transform features 0.707 0.057 0.7124 0.0683

Random Forests analysis

RF structure and analysis Random Forests analysis for regression was con-

ducted using Matlab fitensemble function. The function takes the input features

xi, desired outputs yn, the method of classification, learning cycles and trees spec-

ifications. Random number of trees were used to analyse the proposed tortuosity

framework features to assess their ability to accurately estimate the degree of retinal

blood vessel segments increased tortuosity. similar to ANN, at the end of training

and testing Spearman’s rank correlation is conducted between the predicted and

desired output.

RF analysis results The analysis was conducted first for all feature groups in

the proposed tortuosity framework. Then, Random Forests analysis was carried

out on best feature subsets that are selected through feature selections from the

proposed framework. In both groups (Arteries and Veins) the combined approach

methods reported the highest performance among the framework’s feature groups

with RHO = .814. The structural properties reported the highest performance in

the veins group with RHO = .689, whereas the curvature and the Fourier Transform

features were among the highest performers in the arteries group with RHO = .748

and RHO = .780 respectively. [See figures 4.21 and 4.22]. On the other hand, the

distance approach measures reported the lowest performance in both groups with

RHO = .664 for the arteries, RHO = .285 for the veins. [Refer to table 4.17 for

more details].
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Figure 4.21: This graph shows RF training and testing using the leave one out cross

validation of the combined approach features of the arteries

Table 4.17: Randome forest analysis of the proposed tortuosity evaluation frame-

work’s features

.

Features group Arteries Veins

Structural properties features 0.7059 0.689

Distance approach features .664 .285

Curvature approach features .748 .507

Combined approach features .814 .517

Fourier Transform features .780 .536

126



Figure 4.22: This graph shows RF training and testing using the leave one out cross

validation of the structural properties features of the veins

4.3.5 Feature selection

Feature selection, or subset selection, is a process used in machine learning, in which

a subset of the whole available data is selected for application of learning algorithm.

It is one of the model construction stages in which a subset or subsets are selected

for the use of training and testing of the model. The best subset contains the

least number of dimensions that mostly contribute to accuracy. The remaining

unimportant dimensions are then discarded [78].

Feature selection methods

There are three general approaches in feature selection: Filter methods, Wrapper

methods and Embedded methods. 1) Filter methods select subsets of variables or

features as a pre-processing step, independently of the chosen predictor. Examples of

these methods include Information gain, Chi squares test and Correlation Coefficient
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scores. 2) Wrapper methods utilize the learning machine of interest as a black box

to score subsets of variables according to their predictive power, such as recursive

feature elimination algorithms like forward and backward passes to add and remove

features.3) Embedded methods perform variable selection in the process of training

and are usually specific to given learning machine. Example of these methods are

Ridge Regression and Elastic Net[45].

Feature selection implementation

To take advantage of the different available tortuosity features in an effective way,

and to reduce the risk of over fitting the model from the large number of features a

feature selection mechanism is needed. This mechanism is intended to sift through

features to identify the strongest feature or sets of features, by which features di-

mensionality can be reduced and classifiers performances (ANN and the Random

forest) could be improved. Two approaches of feature selection were used; Forward

selection and Backward selection. Forward selection starts with no variables and

adds them one by one at each step, adding the one that decreases the error the

most, until any further addition does not significantly decrease the error; whereas

Backward selection starts with all the variables and removes them one by one, at

each step removing the one that decreases the error the most, or increases it only

slightly, until any further removal increases the error significantly. To reduce over

fitting, the error referred to above is the error on a validation or testing set that

is distinct from the training set [78]. SPSS Linear regression using Backward and

Forward feed was used to select the feature subsets for the purpose of training and

testing classifiers to evaluate tortuosity. To avoid bias in these processes , for ex-

ample using the whole data to select subset of features, the following steps were

followed:

• Using the 30 segments of arteries and 30 segments of veins in the RVTDS

dataset; 30 sets of features for each group were selected using Leave-one-out,

(this means that a set of features would be selected without one of the segments

in each cycle). This has been done to avoid bias in the feature selection.

• These sets of features or variables, were then used to train the ANN and

RF, using Leave-one-out cross validation, to test the performances against the
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clinical order. These tests were performed by Spearman’s Rank Coefficient

Correlation. Using artificial neural networks, the training and testing of the

feature sets selected through forward feed analysis for the arteries group re-

ported high positive correlation of RHO = 0.981, Error = 0.193, whereas,

for the veins, it achieved RHO = 0.904, Error = 0.120. The variable sets

selected through backward feed analysis for the arteries and veins showed

positive correlation of RHO = 0.770, Error = 0.306 and RHO = 0.838,

Error = 0.283 for the artery and vein groups respectively. On the other hand,

the Random Forests analysis of the selected features reported various strength

of positive correlations among both groups. The features of the forward-feed

for the arteries reported a positive corroboration of RHO = 0.707 and re-

ported RHO = 0.533 for the veins, whereas the features of the backward-

feed reported a positive correlation of RHO = 0.761 for the arteries and

RHO = 0.629 for the veins. In addition, the most selected features in the

artery group among the feed forward features reported a high correlation of

RHO = 0.8750, Error = 0.037 and mean performance of five neurons of

RHO = 0.8633, Error = 0.038; same feature group of the veins reported

moderate correlations of RHO = 0.656, Error = 0.070 and mean performance

of five neurons of RHO = 0.590, Error = 0.075, whereas the most selected

features in the backward feed of the artery showed strong to moderate corre-

lations of RHO = 0.749, Error = 0.0419, which is the best performance of

five neurons, and average performance of RHO = 0.500, Error = 0.107; same

features in the vein group reported moderate correlations of RHO = 0.653,

Error = 0.050, the best performance among five neurons and reached average

performance of RHO = 0.519, Error = 0.119. On the other had, using RF

analysis, the most selected features of the forward feed of the arteries reported

RHO = 0.870, which is the best performance for this set, whereas it reported

RHO = 0.571, as the best performance. The RF analysis of the most selected

features of the backward feed reported RHO = 0.828 and RHO = 0.663 for

the arteries and veins respectively, as best performances. [See 4.18 for more

details of the classifiers analysis of the selected features sets].

• Another set of features were extracted from these subsets of features, by
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Table 4.18: Neural network and Random Forests analysis of the selected sets of

features using Linear Regression

.

ANN RF

Features group Arteries Error Veins Error Arteries Veins

Forward Feed 0.981 0.193 0.904 0.120 0.707 0.533

Backward Feed 0.770 0.306 0.838 0.283 0.761 0.629

Table 4.19: Neural network and Random Forests analysis of the intersected features

of the selected features using Linear Regression

.
ANN RF

Features group Arteries Error Veins Error Arteries Veins

Forward-Feed(intersected features) 0.853 0.079 0.615 0.075 0.731 0.597

Backward-Feed(intersected features) 0.848 0.047 0.622 0.05 0.724 0.557

Forward-Feed(most selected features) 0.8750 0.0370 0.659 0.070 0.870 0.571

Backward-Feed(most selected features) 0.749 0.041 0.653 0.050 0.828 0.663

identifying the common features among these subsets of features (intersected

features), which are in Appendix .3, section .3.3. These features were then

analysed using the neural network and random forest. The ANN analyses of

the forward-feed intersected features of the arteries and veins group showed

positive correlation of RHO = 0.853, Error = 0.079 and RHO = 0.615,

Error = 0.283, whereas the RF analysis for the same features and groups

reported RHO = 0.731 and RHO = 0.597 for the arteries and veins respec-

tively. On the other hand, the analyses of the intersected features of the

backward-feed feature selection reported RHO = 0.848, Error = 0.0471 and

RHO = 0.622, Error = 0.059. The random forest analysis for this group

reported positive correlations of RHO = 0.724 and RHO = 0.557. [see table

4.19 for details.
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Table 4.20: Spearman’s rank correlation coefficient of the structural properties fea-

tures of the artery and vein segments and the clinical order-new datasets

.

Measure Arteries Veins

Sub-curves numbers (S1) .3677 .478

Number of maximum points (S2) .3685 .494

Number of minimum points (S3) .3685 .355

Sum of sub-curves under spaces (S4) .1756 -.309

The sum of sub-curves heights (S5) .3973 .589

4.4 Data analysis using the new tortuosity dataset

This section highlights some of the statistical analysis of the application of the pro-

posed tortuosity evaluation framework to the new tortuosity dataset. It starts by

providing the basic statistics, to identify any differences and similarities between the

set of artery and vein segments in the dataset, and to monitor the measurements of

individual features’ measures since this dataset is characterized by segments with

different lengths and calibres and to monitor their ranges and distributions. The

analysis extends to include artificial neuron analysis and Random Forests. Pre-

viously trained classifiers will also be used to analyse the new tortuosity dataset

data.

4.4.1 Correlation analysis

Spearman’s Rank Correlation Coefficient of the structural properties fea-

tures and the clinical order-new dataset

The correlation analysis between the group features and the manual clinical order,

in general, was weak. The sum of sub-curves heights reported the highest correlation

score in both groups with RHO = .589 and RHO = .3973 for the veins and arteries,

respectively. [See table 4.20].
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Table 4.21: Spearman’s rank correlation coefficient of the distance based features of

the artery and vein segments-new datasets

.

Measure Arteries Veins

Segment chord length (L1) 0.176 -0.073

Segment arc length (L2) 0.244 0.083

Segment path length (L3) 0.237 0.086

Arc over chord length (L4) 0.697 0.793

Path over chord length (L5) 0.676 0.800

Length differences between arc and chord length (L6) 0.6971 0.793

Length differences between path and chord length (L7) 0.676 0.800

Spearman’s Rank Correlation Coefficient of the distance approach fea-

tures and the clinical order-new dataset

This group showed a number of strong correlations with the manual clinical order.

The Arc over chord length, Path over chord length, Length differences between

arc and chord length and Length differences between path and chord length of the

vein group were the highest correlated features with RHO = 0.793, RHO = 0.800,

RHO = 0.793, RHO = 0.800 respectively, whereas the Arc over chord length and

the Length differences between arc and chord length were the highest correlated for

the arteries with RHO = 0.697 for both. [see table 4.21]

Spearman’s Rank Correlation Coefficient of the curvature approach fea-

tures and the clinical order-new dataset

The correlations of this group features were noticeably weaker compared to the same

group performance on the RVTDS. The Total unsigned curvature over chord Length

recorded the highest performance for the veins reaching RHO = 0.450 and the Total

unsigned curvature reporting RHO = 0.458, which was the highest correlation in

the artery group. [See table 4.22].
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Table 4.22: Spearman’s rank correlation coefficient of the curvature approach fea-

tures - of the new tortuosity dataset

.

Measure Arteries Veins

Total signed curvature (L16) 0.139 0.044

Total squared signed curvature (L20) 0.338 0.280

Total unsigned curvature (L24) 0.458 0.406

Total unsigned curvature over Path length (L25) 0.418 0.397

Total squared signed curvature over arc length (L21) 0.328 0.275

Total unsigned curvature over arc length (L26) 0.419 0.398

Total squared signed curvature over path length (L22) 0.331 0.305

Total unsigned curvature over chord Length (L27) 0.445 0.450

Total squared signed curvature over chord Length (L23) 0.331 0.305

Tortuosity coefficient (L10) 0.203 0.209

Unsigned tortuosity slope (L11) 0.286 0.175

Signed tortuosity slope (L12) -0.1433 -0.002

Mean direction angle change (L13) -0.179 -0.041

Rashmi’s Tortuosity measure (L9) 0.300 0.339

Total signed curvature over Path length (L17) 0.128 0.025

Total signed curvature over Arc length (L18) 0.128 0.025

Total squared unsigned curvature (L28) 0.4582 0.406

Total squared unsigned curvature over path length (L29) 0.434 0.423

Total squared unsigned curvature over arc length (L30) 0.434 0.423

Total signed curvature over chord length (L9) 0.123 0.038

Total squared unsigned curvature over chord length (L31) 0.447 0.452

Abs Slops Difference and unsigned curvature (C6) 0.418 0.318

Spearman’s Rank Correlation Coefficient of the combined approach fea-

tures and the clinical order-new dataset

This group features also revealed weak correlations with the clinical order. In the

artery group the Path over chord times number of maximum points feature showed

the highest correlation of RHO = 0.673, whereas it reported 0.633 for the vein. [See
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Table 4.23: Spearman’s rank correlation coefficient of the combined approach fea-

tures and the clinical order of the artery and vein segments of the new tortuosity

dataset

.

Measure Arteries Veins

Tortuosity measure by Grisan (L8) 0.435 0.54

Inflection Count Metric using arc length (L14) 0.240 0.088

Inflection Count Metric using path length (L15) 0.248 0.088

Vessel profile 2 (C2) 0.464 0.477

Arc over chord times number of maximum points (C4) 0.352 0.244

Path length and sub-curves number (C5) 0.244 0.086

vessel profile 1 (C1) 0.248 0.107

Path over chord times number of maximum points (C3) 0.633 0.673

table 4.23].

Spearman’s Rank Correlation Coefficient of the Fourier Transform fea-

tures and the clinical order-new dataset

This group also revealed large number of features with weak correlations to the

clinical order, with DFT measures and curvature combined with the displacement

points feature reporting RHO = 0.470, which is the highest correlation score in

both artery and vein segments. [See table 4.24].

4.4.2 Artificial neural network analysis

The framework features were applied on the new dataset. The machine learning anal-

ysis results of the resulted data on the ANN built in section 4.3.4 were as follow: The

performances of the all groups on the new dataset were noticeably weaker compared

to the RVTDS. The distance approach features reported the highest performance in

both groups of RHo = .0.775, Error = .044 and RHo = .0.641, Error = .057 for

the arteries and veins respectively, refer to table 4.25 for detailed results.
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Table 4.24: Spearman’s rank correlation coefficient of the Fourier transform features

and the clinical order for the artery and vein segments of the new dataset. DFT:

Discrete Fourier transform, Mag: Magnitude, xPrime: The first derivatives of the x

axis, xSec: The second derivatives of the x axis, Norm: Normalised

.
Measure Arteries Veins

DFT Measures and Path Over Chord using displacement points (F1) 0.386 0.299

DFT measures and curvature using displacement points (F2) 0.470 0.393

DFT Measures using Path Over Chord and xPrime (F3) 0.325 0.302

DFT Measures and curvature using xPrime (F4) 0.421 0.356

DFT Measures and Path Over Chord using xsec (F5) 0.324 0.302

DFT Measures of curvature using xsec (F6) 0.420 0.352

DFT Measures and Path Over Chord using curvature (F7) 0.428 0.422

DFT Measures and curvature using curvature (F8) 0.422 0.422

Sum of DFT Mag using points displacement (F9) 0.381 0.319

The sum of DFT Mag norm By Path Length using displacement points (F10) 0.381 0.319

DFT Power norm by path length using displacement points (F11) 0.264 0.175

DFT Power using xprime (F12) 0.298 0.245

DFT Mag using xprime (F13) 0.295 0.250

DFT Power using xsec (F14) 0.292 0.268

DFT Mag using xsec (F15) 0.292 0.250

DFT Power using curvature (F16) 0.412 0.372

DFT Mag using curvature (F17) 0.411 0.341

Sum of signal phases norm by path length using displacement points (F18) -0.204 -0.024

Sum of the signal phases norm by Path Length using xPrime (F19) -0.263 0.0183

20 Sum of Mag norm by path Length using xPrime (F20) 0.282 0.275

Sum of phases norm by path length using xsec (F21) -0.204 -0.035

Sum of Mag norm by path length using xsec (F22) 0.271 0.267

Sum of signal phases norm by path length using curvature (F23) -0.130 0.167

Sum of Mag norm by path length using curvature (F24) 0.400 0.377
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Table 4.25: The mean performance of five artificial neurons analysis of the proposed

tortuosity evaluation framework features groups on the new general dataset

.

Feature group Arteries Error Veins Error

Structural properties features 0.252 0.0921 0.363 0.13

Distance approach features 0.641 0.057 0.775 0.044

Curvature approach features 0.369 0.076 0.348 0.225

Combined approach features 0.375 0.073 0.457 0.065

Fourier Transform features 0.321 0.0807 0.362 0.0805

Table 4.26: Classifiers performances on the new dataset

.

Classifier Performance

Intersected features Feed forward-arteries 0.676

Intersected features Backward-Feed arteries 0.434

Intersected features Feed-forward-veins 0.0413

Intersected features Backward-Feed-veins 0.408

4.4.3 Classifiers performances

The classifiers in section 4.3.5 were evaluated using the new tortuosity dataset. The

resulted weights from the trained neurons were used to calculate the predicted output

of the new dataset segments. The intersected features using forward feed of the

arteries reported the highest correlation performance between the predicted output

and the manual clinical order of RHO = 0.676, whereas the intersected features

using feed forward of the veins reported the lowest performance of RHO = 0.0413.

[See table 4.26]. On the other hand, there were a number of high positive correlations

when the classifiers were tested on the RVTDS. The most selected features of the

feed forward reported RHO = 0.911 for the arteries, and the most selected features

of the backward feed reported RHO = 0.805 as the highest performance for the

veins. [See table 4.27 for more details].
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Table 4.27: Classifiers performances on the Retinal Vessel Tortuosity Dataset

.

Classifier Performance

Intersected features Feed forward-arteries 0.853

Intersected features Backward-Feed arteries 0.885

Intersected features Feed-forward-veins 0.691

Intersected features Backward-Feed-veins 0.758

Most selected features Backward-Feed arteries 0.805

Most selected features Feed-forward-arteries 0.911

Most selected features Backward-Feed veins 0.805

4.5 Results and discussion

Broadly, there were variances between the framework features in terms of tortuosity

evaluation performance against the clinical evaluation. The Spearman’s correlation

coefficient exposed a number of strong features across all feature groups. In the

structural properties, the sum of sub-curves heights (S5) was the highest performed

feature in both arteries and vein segments with RHO = .826 and RHO = .589

respectively, whereas in the distance approach features the path over chord ratio (L5)

and the length differences between path and chord length (L7) reported the highest

performance accuracy for the arteries with RHO = .853 for both features. However,

the length differences between the arc and chord length feature (L6) reported the

highest performance among the vein features with RHO = .761. Here, It has been

observed that the measurement method of the segments length plays a significant

role in tortuosity estimation accuracy, especially with the use of arc length, as found

in equation 2.6. It has been noted that the performance has increased for the veins

while it decreased for the arteries, and by using the path length measure the opposite

occurred, [see Equation 2.5]. In the curvature approach features Rashmi’s tortuosity

measure (L9) [88], showed a noticeably high correlation to the clinical order in both

artery and vein groups with RHO = .898 and RHO = .800 respectively. However,

the absolute slopes differences and the unsigned curvature feature (C6) reported the
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highest positive correlation among all the framework features with RHO = .810 in

the vein group. This is a new feature proposed in this study, which is generated

by combining the absolute differences of the slope along the blood vessel segment

and the unsigned curvature at each single point. The Fourier Transform approach

features have performed relatively well with the highest correlated feature for the

arteries, which is the path over chord times the number of maximum points (C3)

reporting RHO = .920, and the veins by the absolute slopes differences and the

unsigned curvature (C6) with RHO = .810 both being from the new proposed

features. The group of the Fourier transform analysis was slightly low compared

with the other group, with the DFT measures and curvature using displacement

points feature (F2) reporting RHO = .804 for the arteries and the DFT measures

and curvature using the second derivatives of the x axis feature (F4) reporting

RHO = .729.

The highest prediction accuracy reported with the multiple linear regres-

sion analysis on the framework, was with the backward feed analysis. The model

summary of both groups showed that 100% of the variations in both groups can

be accounted for or predicted with a different set of 29 features for each group.

However, those results were biased since the same dataset (segments) were used for

feature selection and testing.

With the machine learning, in general the ANN performed better than

the RF analysis. With the individual groups, the distance approach features and

the combined approach features reported the highest performances for the arteries,

whereas with the RF the combined features and the Fourier Transform features

were the highest performers. For the veins in the ANN the curvature approach

features were the highest, whereas the structural properties were the highest with

RF. However with feature selection, these performances were significantly improved

especially with ANN.

Based on our observations, the statistical analysis on the RVTDS revealed

some differences between the tortuosity estimation accuracy results of the arteries

and veins. In other words, most of the tortuosity evaluation features tend to work

better on grading the tortuosity of the arteries group, as opposed to veins. In

addition, most of the distance approach and the combined approach features showed
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the highest tortuosity evaluation accuracy compared to the rest of the feature groups.

The curvature approach features and, to some extent, the combined measure showed

relatively high tortuosity estimation accuracy for the vein segments.

Looking closely, it has been noticed that the veins and arteries have dif-

ferent types of tortuosities.By examining the structural properties measurements of

the arteries and veins it has been observed that the means of the vein sub-curves

numbers and the sum of these sub-curves under spaces and their heights are slightly

higher than those in the arteries. [See tables 4.1, and 4.2]. Bearing that in mind,

it appears that both types of blood vessels have different degrees of tortuosity. In

other respects, based on conducted analysis, the veins are slightly more tortuous

than the arteries and they tend to be tortuous in a rigid way since the only high

performance feature reported for this group is the curvature features group which

is characterised by measuring the local curvature of each point along the blood ves-

sel segment. In contrast the arteries become tortuous in a smooth manner, which

can easily be estimated by the distance measures, such as arc over chord ratio, as

proven in figure 4.1. Consequently, I believe these differences can be attributed to

the anatomical structures of both blood vessel segments, given that the arteries are

more elastic and flexible than the vein. [See section 2.5.1]. I also consider these

differences are possibly related to the causes of disease which I believe, has not been

investigated before. The analysis conducted on the new tortuosity dataset showed

noticeably poor correlations results in almost all aspects of the analysis. From the

researcher’s point of view, that is due to the grading system used and the large

number of instances in the new dataset.

4.6 Conclusion

A tortuosity evaluation framework is proposed. It consists of over 60 features, which

are classified in five groups (Structural properties; Distance approach features; Cur-

vature approach features; Combined approach features; Fourier Transform features).

The framework includes some of the strongest tortuosity estimation features that

were proposed in the literature, as well as those proposed in this study. The sta-

tistical analysis of the proposed framework revealed some strong features that were
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highly correlated to the clinical order, such as the path over chord times the number

of maximum points (C3) with RHO=92% for the arteries and the absolute slopes

difference and unsigned curvature (C6) with 81% for the veins. Both of these fea-

tures were proposed in this study. Using feature selection methods, the best set

of features were selected. Consequently, improved performances were recorded, for

example the ANN analysis of the forward-feed of the most selected features reported

RHO=87% for both arteries and veins, and the forward feed group features reported

RHO=98% and RHO=90% for the arteries and veins respectively.

Differences in tortuosities between the arteries and veins were unexpectedly

observed during the course of the research. Veins proved to be slightly difficult

to accurately estimate their tortuosity in order to match the clinical order. The

structural properties of the veins showed that those segments are slightly more

tortuous than the arteries. These differences in tortuosity were clearly shown in the

correlation analysis, which showed that the majority of the framework features were

able to pick up the tortuosity in arteries.
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Chapter 5

Investigating tortuosity differences

in hypertensive and diabetic

retinopathy

This chapter investigates the tortuosity differences between diabetic and hyperten-

sion retinopathy, in terms of retinal vessels morphological changes. The first section

provides an introduction about the two vascular diseases under investigation, and

description of their clinical examination and diagnosis methods. The following sec-

tions detail the methodology used in the investigation, followed by the statistical

analysis and results. The chapter concludes by discussing the obtained results and

reflects on main findings of this chapter.

5.1 Introduction

Hypertension and diabetic retinopathy are diseases that affect the retina, and they

can lead to devastating outcomes, such as losing eye sight. (Discussions about the

association between these diseases and retinal vessels tortuosity are found in sections

2.6 and 2.6). Thought-provoking facts regarding how these diseases affect the retina

occur frequently in reviewing the literature. In clinical examinations, retinal arterial

attenuation is one of the major indicators of hypertensive retinopathy. Whereas,

retinal venous dilation or tortuosity in general are the common signs of diabetic

retinopathy [54]. This indicates that the retinal structure, especially retinal blood
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vessels, reacts differently to these diseases. As a result, I strongly believe that, there

are differences in tortuosity patterns between diabetic and hypertensive retinopathy.

To demonstrate this I have applied the framework to the pathology datasets, to

detect any of these differences. The next sections details these steps.

5.2 Method

5.2.1 Hypothesis

The Hypothesis is, is there any tortuosity or structural differences between blood

vessels in diabetic and hypertensive retinopathy?

5.2.2 Features identification

The type of features used in the investigation were derived from the symptoms of

these diseases. In the case of hypertensive retinopathy, symptoms include decrement

in the arterial width. This suggests that there will be minor changes in the structure

of arteries. However, in diabetic retinopathy, venous dilation and tortuosity are the

major symptoms. This indicates that the vessels should have a form of tortuosity

beside veins structural changes. Based on that, the structural properties feature

group in our proposed framework has been used to see if there are any significant

changes in vessels structures in these conditions.

5.2.3 Analysis

The independent sample t-test was used to test the hypothesis. It compares the

means of two independent groups by reference to the same continuous, dependent

variable to determine whether there is statistical evidence that the associated pop-

ulation means are significantly different. It is a parametric test, [32]. There certain

assumptions which have to be met before commencing the test. These assumptions

are:

1) The dependent variable should be continuous.

2) The independent variable should be categorical.
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3) The cases should have values on both the dependent and independent variables.

4) The samples or groups be independent.

5) The sample of data has to be randomly taken from the population.

6) Normal distributions of the dependent variable for each group.

7) Homogeneity of the dependent variable for each group.

8) No outliers.

One hundred and thirty one segments from 17 images of diabetic and hypertensive

retinopathy patients were used in this analysis. The dependent variables are the

structural properties features. IBM SPSS (21) software was used to analyse the

measurements of the two groups in two stages, firstly all segments (all veins and

arteries) grouped by disease (hypertension and diabetes) and secondly all segments

grouped by disease and vessel type as vein and artery.

5.3 Results

5.3.1 Sample characteristics

Sample (All segments grouped by disease) A Shapiro-Wilk’s test (p < .05)

[79] and a visual inspection of their histograms, normal Q-Q plots and box plots,

showed that the sum of sub-curves heights were not normally distributed for both

hypertensive and diabetic retinopathy, with skewness of 1.053 (SE = .274) and

kurtosis of .071 (SE = .541) for hypertensive retinopathy, and skewness of .356 (SE

= .327) and a kurtosis of -1.326 (SE = .644) for the diabetic retinopath, [18] and [24].

The test also showed that most features in this group are not normally distributed,

refer to Figure 5.1 for the normality test results of this group’s features.

Sample (All segments grouped by disease and vessel type) A Shapiro-

Wilk’s test (p > .05) [79] and a visual inspection of their histograms, normal Q-Q

plots and box plots showed that the sum of sub-curves heights and the sum of sub

curves under spaces were not normally distributed for both arteries and veins, with

skewness of .056 (SE= .316) and a kurtosis of -1.296 (SE = .623) for arteries and
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Figure 5.1: Normality test of the structural features: All segments grouped by

disease

1.137 (SE= .281) and a kurtosis of .233 (SE=.555) for the veins [18] and [24]. refer

to Figure 5.2 for the normality test results of this group’s features.

Figure 5.2: Normality test of the structural features: All segments grouped by

disease and vessel type

5.3.2 All segments grouped by disease

The hypertension retinopathy segment group (N = 77) was associated with a sum

of sub-curves heights along blood segments (M = .236, SD = .284). By compari-
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son, the diabetic retinopathy group (N = 53) was associated with numerically larger

sub-curves heights (M = .369, SD = .351). To test the hypothesis that diabetic and

hypertensive retinopathy are associated with statistically different mean sub-curves

heights along blood vessels segments, a t-test was performed. As can be seen in 5.3,

diabetic and hypertensive distributions were sufficiently normal for the purposes of

conducting a t-test (i.e., skew < |.752| and kurtosis < | − .730| [77]. Additionally,

the assumption of homogeneity of variance was tested and satisfied via Levene’s F

test, F (128) = 5.497, P = .021, normality test was also conducted as described in

Section 5.3.1. The Mann-Whitney test was associated with statistically significant

effect; (U=1566.0, P < 0.05). Thus diabetic retinopathy was associated with sta-

tistically larger mean sub-curves heights than hypertensive retinopathy. The test

also revealed that the sum of sub-curves under spaces in hypertensive retinopathy

patients were significantly higher than those in the diabetic retinopathy (U=1566.0,

n1=77, n2 =53, p < 0.05). [See Tables 5.4, 5.5 and 5.6].

Figure 5.3: Distribution test of the sum of sub-curves heights feature

5.3.3 All segments grouped by disease then by vessel type

Mann-Whitney test was conducted to test the hypothesis that diabetic and hy-

pertension retinopathy are associated with statistically different sub-curves heights

in vein segments (N = 34) and (N = 39) respectively. There was a significant

difference in the measurements of the sub-curves heights in diabetic retinopathy pa-

tients (M = .346, SD = .330) and hypertensive patients (M = .157, SD = .242);
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Figure 5.4: Independent t-test of group means

Figure 5.5: This figure shows the Mann-Whitney test statistics

(U = 429.500,p ¡ 0.05). These results suggest that retinal veins of patients with

diabetic retinopathy really do structurally differ compared to hypertensive patients.

Specifically, our results suggest that when veins in diabetic patients become tortu-

ous, it will be shown in the increment of sub-curves heights. [See Tables 5.7, 5.8

and 5.9]. The test also revealed that the veins in hypertensive retinopathy were

associated with statistically larger sum of sub-curves under spaces and sub-curves

numbers with (U = 303.00, p < 0.05), and (U = 480.00, p < 0.05) respectively.

5.4 Discussion

The non-parametric t-test was applied to the new tortuosity dataset. Features of

the structural properties were chosen based on the hypothesis, that the retinal ves-

sels in hypertensive patients are different in structure compared to diabetic patients.
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Figure 5.6: This figure shows the Mann-Whitney test ranks

The results showed that diabetic retinopathy was associated with statistically larger

mean sub-curves heights than hypertensive retinopathy, especially in vein segments.

The possible justification of these results can be observed from the symptoms of

these diseases. As stated earlier, the main diagnostic features of diabetic retinopa-

thy are venous dilation and tortuosity. Higher curves indicate tortuosity, therefore

this supports the statistical analysis results. On the other hand, the test revealed

that the veins in hypertensive retinopathy characterise with statistically significant

sum of sub-curves under spaces and sub-curves numbers comparing to those in dia-

betic retinopathey. Given the main diagnostic feature of hypertensive retinopathy,

which is decrement in arterial width, these results are very interesting and further

investigations are suggested.

5.5 Conclusion

Based on my observations I suspected that diseases affect retinal structure dif-

ferently. One of these changes that might affect the retinal vessels are abnormal
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Figure 5.7: Independent t-test of group means of vein segments

Figure 5.8: This figure shows the Mann-Whitney test statistics of the sample

grouped by disease and vessel type

tortuosity. I tested the hypertension retinopathy and diabetic retinopathy on the

structural features of blood vessels. The sum of sub-curves heights in the diabetic

sample was statistically higher than those in the hypertensive retinopathy. The test

also revealed that the sum of sub-curves under spaces in hypertensive retinopathy

patients were significantly higher than those in the diabetic retinopathy. Based

on these results, there is potential of building an automated tool that can inspect

retinal vessels and provide the type of the disease that affect the structure.
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Figure 5.9: This figure shows the Mann-Whitney test ranks of the sample that is

grouped by disease and vessel type
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Chapter 6

Discussion, contribution and

future work

This chapter discusses the results obtained, presents plans for future work and out-

lines the contributions of this research. The chapter starts by an introduction to

the main objectives of this thesis and proceeds to provide brief description of each

of which and discusses results obtained. The subsequent sections outline the con-

tributions made, and provide plans for future work. The last section concludes this

chapter.

6.1 Introduction

In this thesis I have proposed and validated a framework for evaluating the tortuosity

of retinal blood vessels. In addition, specialised tortuosity datasets have also been

built and tested during the project and a comparative study conducted on the newly

built datasets to inspect tortuosity differences between diabetic and hypertensive

retinopathy. The following sections provide a summary of the results obtained and

a brief discussion of those results.

6.1.1 Tortuosity evaluation framework

Tortuosity properties of retinal vessels, their types and definitions were deeply inves-

tigated at the start of this project. Consequently, a framework that consists of over

60 tortuosity features was proposed. The framework was tested first on the RVTDS.
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Two of our newly proposed features showed a high correlation with the clinical order

with RHO = .920 and RHO = .810 for the arteries and veins respectively. Using

recursive feature elimination algorithms, backward and forward feed, best sets of

features were identified. In Random Forest analysis the classification accuracy of

the forward feed selection using leave-one-out for feature selection as well as with

the classifiers training and testing of the arteries and veins, has achieved RHO =

.707 and RHO = .533 and for the backward selection, has achieved RHO = .761

and RHO = .629, for the arteries and veins respectively. However, using an artifi-

cial neuron, the accuracy of the correlation against the doctors order using forward

selection has increased to RHO = .981 and RHO = .904 for the arteries and veins

groups respectively, while it achieved RHO = .770 and RHO = .838 for the arteries

and veins groups using the backward feature selection.

Sets of features were selected by performing the union (U) between the

thirty sets of features in addition to identifying the most selected features for both

groups (arteries and veins). The implementation of these sets using RF and ANN

showed promising results. It is believed that the framework includes a good variety

of features, so that all that is required is a robust feature selection mechanism to

select the best combination of features for optimum performance.

The application of the framework in the context of the new dataset showed

a relatively weak performance compared to the RVTD. This, it is believed was due to

the ranking grading system used, given the large number of instances in the dataset.

Better performances are believed to be achievable if the second grading system is

used.

Although our Fourier Transform based features did not record the highest

correlations to the clinical order, they were the only group of features that were able

to capture the degree of tortuosity of vein segments.

6.1.2 Tortuosity differences in hypertensive and diabetic retinopa-

thy

Various forms of tortuosity have been reported in clinical investigations, most com-

monly curving/curling, angulation, twisting, looping and kinking [47]. The re-

searcher believes that these morphological changes differ from one disease to another
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and that these changes can be more accurately identified and quantified. Con-

sequently tortuosity was investigated from the diabetic and hypertensive point of

view searching for these anomalies. The investigations conducted on a sample of

retinal vessels segments, revealed that in general the veins of the diabetic patients

are the most tortuous. In addition, the independent t-test conducted revealed that

diabetic retinopathy is associated with statistically larger mean sub-curves heights

compared with hypertensive retinopathy.

6.1.3 Contributions

The major contributions that are presented in this thesis are as follows: 1) The

proposition of a number of tortuosity evaluating features. 2) The proposition of tor-

tuosity datasets with two manual grading systems and different pathologies. 3) The

investigation of the tortuosity differences in hypertensive and diabetic retinopathy.

4) The proposition of a tortuosity evaluation framework.

All framework features were validated on the gold standard dataset for

tortuosity (RVTD) resulting in performances that are to some extent comparable

to those achieved by retinal experts. The main advantage of this framework is

that it includes a variety of tortuosity features that cover broad aspects of vessels

tortuosity. In addition the pathological based dataset provides a window through

which to investigate and observe tortuosity forms and types in different diseases.

6.2 Future work

This section highlights areas that need improvement and further development. Plans

for future work can be grouped as follows:

6.2.1 Framework

A sophisticated feature selection mechanism is needed to improve the performance

of the features of the framework and as a result, build robust classifiers to grade

tortuosity of all types of vessels.
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6.2.2 Datasets

Desired improvement in this area is mainly in conducting a test on the general

dataset using the second grading system (The group classification). In addition,

performing another grading on the pathology dataset, because the initial grading

was only conducted on the general dataset, which was later divided into two to

form the pathology datasets. This separation has led to huge gaps in both grading

systems of the pathology datasets.

6.2.3 Tortuosity differences in hypertension and diabetic

retinopathy

Improvements suggested in this area include: 1) The investigation of differences

based on tortuosity degree. 2) The development of classifiers for retinal vessels

based on type of retinopathy disease.

6.3 Conclusion

In conclusion, the main aim of conducting this thesis is to find a tortuosity esti-

mation feature/features that are accurate and robust. However, during the course

of the research, the definition of vessel tortuosity and the type of vessels to be

measured for tortuosity, were questioned. The literature revealed that there is no

universal definition of tortuosity, nor specific rules for types of vessels to be used for

tortuosity estimation, and also there is lack of public specialised datasets for tortu-

osity. Consequently, I propose a tortuosity estimation framework that includes 66

features, some of which were also proposed in this project. These features capture

various aspects of vessels tortuosity, such as structural features and different meth-

ods of tortuosity estimation features. Prior to that, a number of ophthalmologists,

who were consulted throughout this research, indicated that they are certain condi-

tions, regarding vessel types, that should be met before estimating tortuosity such

as vessels locations, bifurcations and tributaries. As a result specialised tortuosity

dataset was built and proposed in this study. This dataset was used to asses retinal

blood vessels structural differences between hypertensive and diabetic retinopathy,
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surprisingly conducted tests revealed that their are structural differences between

the two retninopathies. As indicated in this chapter the proposed framework and

some of the newly proposed features, performed exceptional well compared to those

in the literature. However, improvement were suggested for the grading system of

the new tortuosity datasets.
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venous tortuosity correlates with facioscapulohumeral muscular dystrophy sever-

ity. Journal of American Association for Pediatric Ophthalmology and Strabis-

mus, 14(3):240–243, 2010.

[63] W Lotmar, A Freiburghaus, and D Bracher. Measurement of vessel tortuosity

on fundus photographs. Albrecht von Graefes Archiv für klinische und experi-

mentelle Ophthalmologie, 211(1):49–57, 1979.

[64] T. T. Nguyen C. Y. Cheung J. E. Shaw & J. J. Wang. M. B. Sasongko, T.

Y. Wong. Retinal vascular tortuosity in persons with diabetes and diabetic

retinopathy. Diabetologia, 54(9):2409–2416, 2011.

[65] Rodriguez Z Martin, P Kenny, and L Gaynor. Improved characterisation of

aortic tortuosity. Medical Engineering & Physics, 33(6):712–719, 2011.

[66] Maciej Matyka and Zbigniew Koza. How to calculate tortuosity easily? arXiv

preprint arXiv:1203.5646, 2012.

[67] R Mielke and W-D Heiss. Positron emission tomography for diagnosis of

Alzheimer’s disease and vascular dementia. Springer, 1998.

[68] Tom M Mitchell. Machine learning. 1997. Burr Ridge, IL: McGraw Hill, 45,

1997.

[69] Vahid Mohsenin Mohsenin, Amir and Ron A. Adelman. Retinal vascular tor-

tuosity in obstructive sleep apnea. Clinical ophthalmology (Auckland, NZ),

7(Null):787, 2013.

[70] Dr. Ted Montgomery. Anatomy, Physiology and Pathology of the Human Eye

process of vision, 1998.

[71] A. Oppelt. Imaging Systems for Medical Diagnostics: Fundamentals, Technical

Solutions and Applications for Systems Applying Ionizing Radiation, Nuclear

Magnetic Resonance and Ultrasound. Wiley, 2005.

161



[72] Christopher G Owen, Richard SB Newsom, Alicja R Rudnicka, Sarah A Bar-

man, E Geoffrey Woodward, and Tim J Ellis. Diabetes and the tortuosity of

vessels of the bulbar conjunctiva. Ophthalmology, 115(6):e27–e32, 2008.

[73] Niall Patton, Tariq Aslam, Thomas MacGillivray, Alison Pattie, Ian J Deary,

and Baljean Dhillon. Retinal vascular image analysis as a potential screening

tool for cerebrovascular disease: a rationale based on homology between cerebral

and retinal microvasculatures. Journal of anatomy, 206(4):319–348, 2005.

[74] Niall Patton, Tariq M Aslam, Thomas MacGillivray, Ian J Deary, Baljean

Dhillon, Robert H Eikelboom, Kanagasingam Yogesan, and Ian J Constable.

Retinal image analysis: concepts, applications and potential. Progress in retinal

and eye research, 25(1):99–127, 2006.

[75] Waldir L Roque, Katia Arcaro, and Angel Alberich-Bayarri. Mechanical compe-

tence of bone: a new parameter to grade trabecular bone fragility from tortuosity

and elasticity. Biomedical Engineering, IEEE Transactions on, 60(5):1363–

1370, 2013.

[76] Joseph R Sadek and Thomas A Hammeke. Functional neuroimaging in neurol-

ogy and psychiatry. CNS spectrums, 7(04):286–299, 2002.

[77] Emanuel Schmider, Matthias Ziegler, Erik Danay, Luzi Beyer, and Markus

Bühner. Is it really robust? reinvestigating the robustness of anova against vio-

lations of the normal distribution assumption. Methodology: European Journal

of Research Methods for the Behavioral and Social Sciences, 6(4):147, 2010.

[78] Martin Sewell. Feature selection. Online http://machine-

learning.martinsewell.com/feature-selection, 2007.

[79] Samuel Sanford Shapiro and Martin B Wilk. An analysis of variance test for

normality (complete samples). Biometrika, 52(3/4):591–611, 1965.

[80] Patrick E Shrout and Joseph L Fleiss. Intraclass correlations: uses in assessing

rater reliability. Psychological bulletin, 86(2):420, 1979.

[81] Phil Simon. Too Big to Ignore: The Business Case for Big Data. John Wiley

& Sons, 2013.

162



[82] Pattheera Panitsuk Sinthanayothin, Chanjira and Bunyarit Uyyanonvara.

Automatic retinal vessel tortuosity measurement. Electrical Engineer-

ing/Electronics Computer Telecommunications and Information Technology

(ECTI-CON),International Conference on IEEE, 2010.
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Abstract—Tortuosity of retinal blood vessels has been iden-
tified as one of earliest indicators to a number of vascular
and nonvascular diseases; therefore, early detection and grading
blood vessel tortuosity could help for early diseases prevention
of further complications. There have been many attempts to
develop an accurate automated tortuosity grading measure or
system. These attempts have varied, from classifying vessels as
either tortuous or non-tortuous or classifying/grading a number
of retinal vessels in increased tortuosity, to evaluate the collective
tortuosity of a whole vascular tree. Yet, seem none of these
systems has gained a universal acceptance. This paper provides
an overview of systems and measures, either automatic or
manual, which are most proposed, to quantify tortuosity, and to
critically evaluate the strength and limitations of those systems
and measures; also it shed light on problems encountered by
researchers in this field, such as the absence of unified, publicly
available datasets and the limitations of the existing ones in terms
of datasets sizes, variety based on pathologies and the suitability
of vessels segments used in these datasets.

Keywords—Tortuosity measurement; retinal blood vessels; cur-
vature; vascular diseases.

I. INTRODUCTION

The retina has been described as the window of the
brain, that because of the close analogy between the retinal
vasculature and the cerebral circulation; and it is also the
only place where blood vessels can be directly visualized non-
invasively in vivo. It provides an easy access for studying
the microcirculation and the haemodynamic of blood flow in
human body. Normal retinal blood vessels are straight or gently
curved, but they tend to dilate and start to become tortuous
with age and a number of retinal diseases. Tortuous definition
according to Oxford dictionary is full of turns and twists [1],
which is not quite a useful definition when it comes to describe
retinal blood vessels tortuosity, bearing in mind that the blood
vessels are spread in a semi spherical shaped eye, and they are
already slightly curved and twisted. Ophthalmologists seem
to do not have a precise universal or standard description of
abnormal retinal blood vessels’ tortuosity, or vessels’ tortuosity
in general. Usually they describe it based on experience,
by identifying relative characteristics such as differences to
normal healthy vessels, in term of length, width, location, type
and number of twists.
Abnormal retinal tortuosity occurs due to accumulations of
curvature along the blood vessels. Ophthalmologists attribute
these buildups to the natural capabilities of the blood vessels to
avoid or to adapt to certain changes in the body, due to factors

such as age and diseases [2]–[5]. Accordingly, tortuosity of
retinal blood vessels can be defined as the abnormal curvy,
loopy or kinky shapes of vessels extending from the optic disc
to the peripheral without bifurcation or between two major
consecutive bifurcations. These tortuosity resulted from the
ability of the blood vessel to dilate, gain more length and
become more curvy and twisty to an abnormal state. Tortuosity
can be focal, occurs only in a small region of the retinal vessel
tree; or general, involving the whole retinal vascular tree [6].
In recent years, tortuosity of the retinal vessels is considered
one of the earliest medical indicators to a number of vascular
diseases, including but not limited to Diabetic Retinopathy
Hypertensive Retinopathy, Retinopathy Of Prematurity (ROP),
facioScapuloHumeral Muscular Dystrophy (FSHD) and Coats
diseases [7], [8].
Currently, ophthalmologists rely on an ophthalmoscope, which
is an instrument used to manually examine the interior of
the eye or retinal fundus images; then abnormalities may be
indicated and qualitatively evaluated. With improved image
processing software, accurate results can be obtained and
further complications and misdiagnosis can be prevented.
Moreover, vessels tortuosity in general, not just in the retina,
has been associated with diseases presents, for example in
abdominal arterial tortuosity and compression of the spine
a study conducted by [4] proved that there is significant
correlation between the tortuosity of the abdominal aorta and
subjects age. Another example, blood vessels tortuosity also
has been found as a detector of beginning of malignant tumours
in the human brain [9], [10].
The rest of this paper is structured as follows: Section II
includes most of the tortuosity measures proposed in the litera-
ture, datasets used in these studies are discussed in Section III,
and Section IV conclude the paper by outlining the problems
encountered researchers in this field.

II. MEASURES AND SYSTEMS FOR EVALUATING
TORTUOSITY

Although ophthalmologists fail to agree on a universal defi-
nition of vessels tortuosity, they seem to agree on what a tortu-
osity measure should satisfy to become clinically meaningful.
They suggested that tortuosity measures should be invariant
to translation rotation and scaling; also the position and the
orientation of the vessel should not affect the perception or
the degree of tortuosity. Currently, there is a great number
of tortuosity measures that have been proposed within the
last 42 years. These measures are claimed to accurately able

www.conference.thesai.org 687 | P a g e



Science and Information Conference 2015
July 28-30, 2015 | London, UK

to quantify tortuosity either as independent vessel segments
or as a whole vascular tree [6]. Meanwhile, the literature
has revealed and reinforced the strong connection between
retinal vessels’ tortuosity and vascular diseases [11]–[13].
These findings have urged the need for an accurate automated
tortuosity measure. The literature included different types of
tortuosity measures, used to quantify vessels tortuosity, either
as individual segments or as whole vascular tree, some of these
measures have been improved to incorporate features associ-
ated with blood vessels’ structure such as thickness, width and
number of twists and their heights and amplitudes or to satisfy
the clinical perception of tortuosity. The literature also included
attempts of building automated and semi-automated integrated
systems that segment, classify and measure blood vessels
features respectively such as Retinopathy Of Prematurity Tool
(ROPtool) [14] and Computer Assisted Image Analysis of the
Retina(CAIAR) [15]. The following sections document the
most frequently used tortuosity measures in the literature.

A. Distance approach

These measures are mainly focused on evaluating tortuosity
by computing the length of the blood vessel segment or curve,
or the length of the path that the blood vessel takes, known
as the Arc and denoted by LC ; and the length of the straight
line between the two end points of the blood vessel segment
or curve, known as the Chord and denoted by LX , then
tortuosity is mainly estimated by taking the ratio between those
two lengths. The next sections provide some of the tortuosity
measures that are based on this method.

1) Relative length variation: This was the first distance
based measure. It was introduced first by Lotmart Freiburghaus
[16], and altered later by Bracher [17]. The measure subdivides
a vessel segment into series of single arcs with curves heights
hi, and chord lengths li, then tortuosity is estimated as the
relative length variation 1, where L is the length of the blood
vessel. The approximation is derived using a sinusoidal model
of a blood vessel segment. Unfortunately, the technique is not
fully automated and it requires manual selection of points on
the fundus photograph to divide the vessel into a series of
single arcs. Using this measure as a part of a suite of tortuosity
measures, 91% was achieved in the classification of segments
as tortuous or non-tortuous and 95% in the classification of a
whole vascular tree [18] on a private dataset with no particular
disease.

RLV =
LC

l
≈ 8

3

n∑

i=1

(
hi

li
) (1)

2) Arc over chord ratio: This is the most simple, basic and
most used distance based tortuosity measure, it is introduced
by [6]. Given the blood vessel segment as a curve (S), and the
length of the curve as ( LC), 3 or 4, and the straight distance
between the two end points of the blood vessel segment, known
as the chord length as (LX ) equation 5. This measure simply
examines how long the curve is, comparing with the straight
distance between its two end points. The measure has zero
value for straight vessel segments and increasing positive value
for segments as they become tortuous. It is also free of any
manual manipulations or interactions, see Equation 2.

AOC =
LC(S)

LX(S)
− 1 (2)

Fig. 1: Two different vessels with the same tortuosity value
using Arc over Chord tortuosity measure, (A): Vessel segment
tortuosity =1.6, (B):Vessel segment tortuosity =1.6

.

LC =
n−1∑

i=1

√
(xi − xi+1)2 + (yi − yi+1)2 (3)

,

LC2 =

∫ t1

t0

√
x′(t)2 + y′(t)2 (4)

,
LX =

√
(xn − x1)2 + (yn − y1)2 (5)

This measure found to work very well with short segments;
however it assigns the same tortuosity value for a long nicely
curved vessel as to a very twisted similar length segment, See
figure 1. To sum up, Distance based measures have failed on
evaluating retinal vessels tortuosity and that as explained by
Emmanuel Trucco [19] that the ratio between the curve and
the chord is simply a measure of deviation from a straight line,
which is more of a global measure, whereas tortuosity seems
more directly related to local measures such as curvature. See
Table I for some of the implementations, datasets used and
performances achieved using distance approach measures.

B. Curvature approach

Curvature, in mathematics, is the amount by which a
surface deviates from a straight line. This deviation or twist can
be measured in many ways, it can be measured, geometrically,
for each point along a curve by calculating the magnitude of
rate of change of angle theta θ, which is the angle made by the
tangent line and the positive x-axis, with respect to the curve
length or by the measurement of geometrical changes along a
blood vessel such as angles between consecutive tangents lines
and changes in concavity, such as the Sum Of Angles Measure
(SOAM) Equation 15 and the Inflection Count Metric (ICM)
Equation 21; or algebraically, by finding the physical rate of
change along the blood vessel or the derivative of a function at
each point, which it provides a close estimation of curvature
at each point along the curve or the blood vessel segment.
The curvature measures proposed to estimate tortuosity in the
literature were varied between these methods, the following
sections are some of the curvature measures discussed and
examined in the literature:

1) Curvature at a single point a long a blood vessel:
Given a blood vessel segment (S), as a plane curve, where
S is represented by centre line points represented by S =
[(x1, y1), (x2, y2), .., (xn−2, yn−2)), (xn−1, yn−1), (xn, yn)],
and given parametrically in the Cartesian coordinates as
(t) = (x(t), y(t)), The curvature C at point t, C(t), can be
estimated as follows:

C(t) =
x′(t)y′′(t)−y′(t)x′′(t)

[x′(t)2+y′(t)2]
3
2

(6)
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TABLE I: Some of the Implementations, Datasets and Performances achieved using Arc Over Chord Lengths Ratio: (1) as one of
suite of measures they achieved 91% for classifying individual segments; (2) 95% for the classification of whole retinal vascular
trees as tortuous or non-tortuous; (3) Spearmans Rank Correlation with the clinical order, using numerical differentiation;(4)
Spearmans Rank Correlation with the clinical order; (5), using K-nearest neighbour classifier; 6 Comparative study between
ROP patients with pre and post treatment.

Implementation Dataset Performance
William E Hart (1997) [6] Private Dataset Has a classification rate of 91% ∗1 and 95%∗2 as one of 7 measures.

Conor Heneghan (2002) [13] Private Dataset Average increase in tortuosity with the severity of the disease(ROP).

David Wallace (2003) [14] Private Dataset 80% sensitivity and 91% specificity.

Elizabeth Bullitt (2003) [9] Private Dataset It does not differentiate between tight coils and smooth curves.

Julien Jomier (2003) [20] Private Dataset (ROP) 80% sensitivity and 92% specificity in the
prediction of retinopathy compared to experts

Enrico Grisan (2003) [21] Retinal Vessel Tortuosity DataSet(Public) Arteries P =0.857, and veins P= 0.036 ∗3

Enrico Grisan (2006) [22] Retinal Vessel Tortuosity DataSet(Public) Arteries P= 0.792, and veins P= -0.656∗4.

Enrico Grisan (2008) [23] Retinal Vessel Tortuosity DataSet(Public) Arteries P= 0.792, and veins P= -0.656. ∗4

Crystal S. Y. Cheung etal (2011) [24] Private Dataset Significant reductions in all vascular measurements were observed
compared to pre-treatment∗6

Rashmi Turior (2012) [25] Private Dataset Achieved a classification rate of 73% ∗5

Arunava Chakravarty (2013) [26] Retinal Vessel Tortuosity DataSet(Public) It can distinguish between the relative size, shapes and orientations of vessel bends.

Amir Mohsenin (2013) [27] Private Dataset 80% sensitivity and 92% specificity in predicting retinopathy .

2) Total Curvature of a blood vessel segment: Given the
previous curve (S), and the xn, yn points representing the
centre line points. The total curvature of this segment is the
integral curvature along the blood vessel segment with respect
to it’s length expressed as follows:

TC(S) =

∫ tn

t0

C(t) (7)

3) Total Squared Curvature of a blood vessel segment:
Given the same blood vessel segment S tortuosity as the total
squared curvature is estimated as :

TSC(S) =

∫ tn

t0

C(t)2 (8)

4) Total curvature normalized by the blood vessel arc
length: Tortuosity here is estimated by normalizing the total
curvature by the blood vessels’ arc length as:

TC normlized by LC =
TC(S)

LC(S)

(9)

5) Total squared curvature normalized by the blood ves-
sels’ arc length: Tortuosity here is estimated by normalizing
the total squared curvature by the blood vessel arc length as:

TSC normalized by LC =
TSC(S)

LC(S)

(10)

6) Total curvature normalized by the blood vessels’ chord
length: Tortuosity here is estimated by normalizing the total
curvature by the blood vessel arc length as:

TC normalized by Lx =
TC(S)

LX(S)

(11)

7) Total squared curvature normalized by the blood ves-
sels’ chord length: Tortuosity here is estimated by normalizing
the total curvature by the chord length between the two end
points of the blood vessel segment

TSC normalized by LC =
TSC(S)

LX(S)

(12)

8) Tortuosity Coefficient: This measure proposed by Ge-
offrey Dougherty [4]. It is based on the second differences of
the vessel mid line. Tortuosity is estimates by summing the
absolute values of these second differences , represented by
δi which are the differences between the gradients between
two successive segments, then it divided by P which is the
sampling interval. The measure is claimed that it could easily
be converted and generalized to the use of three dimension
measurements. The measure mathematically is expressed as
follows:

Tortuosity Coe = {
N∑

j=1

|δi|}/P (13)

9) Tortuosity based on Chain code: The Slope Chain
Code tortuosity measure is a measure built on a chain code
called Slope Chain Code (SCC). The measure is proposed
by Ernesto Bribiesca [28], it is simply based on converting
a continuous curve to a discrete one by placing straight-line
segments of constant length around the curve (the end points
of the straight-line segments always touching the curve), and
calculating the slope changes ai between contiguous straight-
line segments scaled to a continuous range from −1 to +1.
The SCC of a curve is independent of translation, rotation, and
optionally of scaling, which considered an important advantage
for computing tortuosity, for the mathematical representation
of this measure see Equation 14.

T SCC =
n∑

i=1

|ai| (14)
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10) Sum of angles metric(SOAM): This measure proposed
by Semdby, [29] and improved by Elizabeth Bullitt et al.
[9], [10]. It measures tortuosity through evaluating the angles
between consecutive trios of points along the space curve
represented by vessel skeleton, then normalized by path length.
Results are in a form of radians/cm. Vessels of high curvature
have been noted to have elevated SOAM values. The measure
has been found as an effective tool in detecting high-frequency,
low-amplitude coils or sine waves. See Equation 15.

SOAM =

∑n−3
k=1 CPk∑n−1

k=1 |Pk − P(k−1)|
(15)

11) Mean Curvature(MC): This measure is proposed by
Chanjira Sinthanayothin et al. [30], The main principle of MC
is fitting circles that fit curves or sub-curves perfectly along a
curve. Then radiuses of all circle representing curves will be
obtained for the tortuosity of the image to be calculated as the
mean curvature (MC). Where 0 is image with low tortuosity
and close to 1 is high tortuosity, See Equation 16.

MC = AV G[
n∑

i=1

1

ri
] (16)

12) Mean direction Angle change (MDAC): This measure
proposed by Chandrinos et al. [31]. It measures tortuosity
by averaging the change of angles calculated at reasonable
discrete steps along the blood vessel. The measure works by
considering two centerline pixels, P-s and P+s for each pixel
indicated in the track list, P, pixels that lie ahead and after
P, respectively. Consequently two vectors (P-s,P) and (P,P+s)
are formed and normalized by dividing each with its norm.
Lastly, the dot product is calculated and the inverse cosine
of this product. Then MDAC is estimated by averaging those
angles over the number of points used along the vessel track.
This measure does not work with short segments for instance
segments with 10 or less points.

MDAC =
1

(tlength−2∗step)
tlength−step∑

n=step

arccos(UV (Pn−step),Pn).UV (Pn,Pn+step)

(17)

13)Absolute direction Angle change (ADAC): This measure
proposed by K. G. Goh, et al. (2001) [32]. It is based
on tracking vessel centreline and accumulates any direction
change along the path of the vessels. At the end of this
tracking, the number of changes in direction will indicate how
tortuous the segment of the blood vessel is?

ADAC =

N−n∑

i=i+1

(θ(i) ≥ π

6
) (18)

14)Fast Fourier transform based methods: Recently Martin
Rodriguez et al. [33] introduced a different approach for
evaluating tortuosity; the fast Fourier transform of the vessel’s
curvature is used as an evaluating method for tortuosity. The
method computes the angle variations in three dimensions

along the path of the vessel, and then each angle θc is divided
by the Euclidean distance Dc between the two points.

θC = Cos−1(
−−−→
TC−1

−−−→
TC+1

|−−−→TC−1||
−−−→
TC+1|

) (19)

The overall TC in rad/mm is calculated as the sum of
curvatures at each centroid as follows:

TSCC =
∑

C

θC

DC

(20)

The amplitude spectra obtained clearly showed differences
in tortuosity for the two segments. However, The TSCC
obtained for two different tortuous segments were similar
although they were completely different in shape. Measures
expressed by equations [(6) to (12) were proposed by William
E Hart et al. [6]. These measures combined together were able
to achieve a classification rate of 91% for the classification
of a group of independent retinal blood vessels’ segments
and achieved 95% for the classification of the whole vascular
tree of independent retinal images. The total squared curvature
measure was recommended as best measure. See table II for
some of the curvature and mixed methods implementations.

C. Mixed methods

These are the methods that combine two or more of the
previous methods, some of these methods also might incorpo-
rate other blood vessel features such as thickness, width, and
inflection points counts.

1) Inflection count metric (ICM): This measure is pro-
posed by Smedby for 2D curves [29] and extended by Eliz-
abeth Bullitt [9], [10] to be implemented on 3D images or
space curves. This measure counts “inflection points” along
each space or plane curve and multiplies this number (plus one)
times the total curve length and then divides by the distance
between endpoints, see equation 21.

ICM = (nic+1
)
LX
LC

(21)

2) Tortuosity based on curvature and improved chain
code (TCCC): This measure proposed by Danu Onkaew et
al. [34], it is an automatic tortuosity measure that classifies
retinal images as tortuous and non-tortuous. It is based on
the curvature calculated from improved chain code algorithm
and the number of inflection points. Where, nic and L are
the number of inflections and arc length respectively. This
measure evaluates vessel tortuosity by summing curvature at
every pixels of vessel and also consider number of inflection
point at each sub-vessel. This formula has a dimension of
1=L and thus may be interpreted as a tortuosity density. So
it can be compared on vessels that have a different length.
The advantage of this formula is that it does not depend on
segmentation of the vessel tree.

TCCC =
(nic+1)

nic

1

L

n∑

n=1

K(Pi,K) (22)
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TABLE II: Some of the curvature and the mixed tortousity measures’ implementations

.

Measure Implementations
Total curvature (TC) Enrico Grisan [21]–[23], Chanjira Sinthanayothin (2010)

, Rashmi Turior (2012), Arunava Chakravarty (2013).
Total squared curvature (TSC) Enrico Grisan(2003, 2006, 2008), Arunava Chakravarty (2013).

Total curvature normalized by arc length Enrico Grisan(2003, 2006, 2008), Arunava Chakravarty (2013).

Total squared curvature normalized by the arc length Enrico Grisan (2003, 2006, 2008).

Total curvature normalized by the chord length Enrico Grisan (2003, 2006, 2008), Arunava Chakravarty (2013).

Total squared curvature normalized by the chord length Enrico Grisan (2003, 2006, 2008)

Tortuosity Coefficients Geoffery Dougherty (2000).

Sum of Angles Metric (SOAM) Enrico Grisan (2006), Elizabeth Bullitt (2003, 2005),
Sodi A,(2013), Arunava Chakravarty (2013).

Inflection count metric (ICM) Elizabeth Bullitt (2003, 2005), Arunava Chakravarty (2013)

Mean direction angle change (MDAC) Conor Heneghan (2002),Enrico Grisan (2003, 2006, 2008)
, Arunava Chakravarty (2013)

.

Absolute Direction Angle Change (ADAC) Enrico Grisan (2006) [22] Arunava et al. (2013) [26] .

Tortousity based on curvature and improved chain code (TCCC) Onkaew et al. (2011) [34], Abbadi et al. (2013) [35] .

Mean Direction Angle Change (MDAC) Enrico Grisan (2003, 2008) [21], [23], Conor Heneghan et al. (2002)
[13], Arunava et al. (2013) [26]

.

3) Sub-curves and distance based measurers: Enrico Gri-
son proposed a new tortuosity measure and improved it over
the years [21]–[23]. The algorithm based on the partitioning
of each vessel into segments of constant-sign curvature and
on the combination between the number of such segments
and their curvature values. However, this measure requires
manual vessel extraction and inflection point placement, the
following are the three equations in which the measure has
been improved.

T1 =
n−1
LC

n∑

n=1

[
LCSi

LXSi
] (23)

,

T2 =
n−1
LC

1

LC

n∑

n=1

[
LCSi

LXSi
] (24)

,

T3 =
n−1
n

1

LC

n∑

n=1

[
LCSi

LXSi
] (25)

where n is the number of curves in a segment.

4) Tortuosity index (TI): This measure proposed by [8]. It
evaluates tortuosity by identifying the number of changes in
curvature sign. Where n is the number of segments in a single
vessel, m represent the angles of curvature θi, length of the
respective area is denoted by LC and the length of the chord
is represented by LX .

TI = [
(n+ 1) ∗ [∑m

i θi] ∗ [
∑m
i

LCi

LXi
]]

Lc ∗m ∗m
] (26)

5) Tortuosity based on vessel wall thickness: This mea-
sure proposed by Hind Azegrouz et al. [36] and extended
by Emanuele Trucco and Hind Azegrouz [19], it combines
curvature and thickness. It is defined as a weighed Minkowski
norm of the curvatures along the vessel boundaries, and is an
increasing function of vessel diameter (Thickness).

TW = (
N∑

n=3

|KB1(n)
|+ |KB2(n)

|
2

)
1
P (27)

6) Automatic tortuosity image classifier: :
This algorithm can automatically classify images as tortuous
or non-tortuous, where nic and L are the number of inflection
points and arc length respectively. This measure evaluates
vessel tortuosity by summing curvature at every pixels of
vessel and also consider number of inflection point at each sub-
vessel. This formula has a dimension of 1 = L and thus may
be interpreted as a tortuosity density. So it can be compared
on vessels that have a different length. The advantage of this
formula is that it does not depend on segmentation of the vessel
tree [25], [34].

D. Tortuosity Grading Systems

These are the automatic or semi-automatic systems that,
to some extend, segments, extract and classify or measure
retinal blood vessels respectively [20]. Examples of these
systems are: The ROPTool which is a computer program that
traces retinal blood vessels of premature infants and mea-
sures their retinal vessels’ tortuosity [14], [37], [38]; Another
example is the Computer Assisted Image Analysis of the
Retina(CAIAR)which measures width and tortuosity of retinal
vessels [15].
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TABLE III: Some of the tortuosity datasets used in the literature
.

Author Pathology /feature measured Availability Nature of the dataset
Kagan et al.(1976) [39] ROP/Tortuosity (segments and whole tree) Private Not available

William E. Hart (1997,1999) [6], [18] Not particular (segments and whole tree ) Private 20 retinal images

Geoffrey Dougherty (2000) [40] Abdominal Arterial/ Tortuosity Private Aortograms of 82 patients

Conor Henghen (2002) [13] ROP/Width and tortuosity Private 23 subjects

Elizabeth Bullitt (2003) [9] Brain tumours/vessels Tortuosity Private 11 normal and 6 patients

Elizabeth Bullitt (2005) [10] Brain tumours/vessels Tortuosity Private 34 Healthy subjects and 30 patients

Enrico Grisan (2003, 2006, 2008) [21]–[23] Not particular/Tortuosity Public 60 images of retinal vessels
from normal and hypertensive patients.

Christopher G. Owen (2008) [12] Diabetes/Tortuosity Private 53 patients and 60 controls

Sodi A(2013) [41] Fabry disease/Tortuosity + width Private 35 patients

Susannah Q. Longmuir, et al. (2010) [8] FSHD /Tortuosity Private 7 patients

Amir Mohsenin (2013) [27] ROP/Tortuosity Private 9 patients and 7 healthy

III. RETINAL VESSEL TORTUOSITY DATASETS

One of the tortuosity evaluation main problems is the
availability of free public datasets for retinal blood vessels’
tortuosity evaluation. Although there are few datasets, the
BioImLab Retinal vessel tortuosity dataset appears to be the
only publicly available one [23]. Both public and private
datasets they differ in sizes, type of segments, segments length,
segmentation techniques and the pathologies that affect pa-
tients at the moment of screening. Thus comparative tortuosity
studies and providing feasible accurate results are proven to be
quite surreal given previous circumstances. See table III for
some of the tortuosity datasets used in the literature

IV. CONCLUSION

The literature has proved over and over the strong correla-
tion between some of the vascular and non-vascular diseases
and the abnormal tortuosity of retinal blood vessels. Conse-
quently, there is an urgent need for an accurate robust tortuosity
measure for early detection and hence diseases prevention.
Although there is a healthy number of tortuosity measures
proposed in the recent years, non has obtained full-scale
acceptance. In our review we came across a few problems
that we think might greatly affected the progress of finding
such measure, these problems are:

• The ambiguity of tortuosity definition, which has led
to the confusion of what to measure and for which
disease; for instance: in hypertension tortuosity is
associated with Arterial Attenuation, which is decre-
ment in the arterial width or narrowing, while in the
other hand the major change associated with diabetes
presences is venous dilation or increased tortuosity [7].

• We noticed the absence of unified public datasets
for tortuosity, such as the gold standard for retinal
vessels segmentation. Even with available datasets,
public or private, we observed the differences in the
segmentation techniques for extracting blood vessels,
lengths and sizes of these segments.

• Sizes of tortuosity datasets, whether they are private or
public, most of these datasets fall in the small size side
which reflect negatively on the tortuosity measures
validations process.

• The majority of tortuosity datasets are private and are
not publicly available. Refer to table III.

• Pathologies specialized tortuosity datasets, we believe
that different diseases have different tortuosity effects,
therefore studying retinal vessel tortuosity from each
particular disease point of view is essential.

• Most tortuosity grading algorithms are dependent on
one or two factors, factor such as curvature or number
of twists. However, retinal blood vessel tortuosity
sometimes associated with dilation, elongation and so
on, so incorporating measures for these factors in the
evaluating process might increase evaluation accuracy.

Given those problems, we suggest and urge the formation of
a public and freely available unified datasets. These datasets
should cover all main sorts of pathologies associated with
retinal vessels tortuosity, with variety of vessels types based
on size and the geometric location on the retina, the type
of segmentation techniques, information of the imaging tool
used to acquire these images and quality. Our future work
will be focused on building a robust framework for evaluating
tortuosity incorporating the most accurate of the proposed
measures in detecting tortuosity.
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.2 Appendix B: Implementation

Matlab R2014a was used to implement all framework features. The retinal vessels

tortuosity dataset RVTDS described in Section 3.3, was used to test the performance

of these features. The number of the blood vessel segments in this dataset are 30

arteries and 30 veins represented as (SN), where N ⊂ R, and each S is represented

by given n centreline points expressed as

S = [(x1, y1), (x2, y2), .. . . ., (xn−2, yn−2)), (xn−1, yn−1), (xn, yn)]. The blood vessel

segments were sampled, by defining each of which by a series of points with even

spacing, by a given parameter. A spline curve was then fitted to the points, and re

sampled along the length using a simple piece-wise linear approximation, generating

enough spline points to make this reasonably accurate.

.2.1 Distance approach features

Path length:

%Path length

n=length(x);

x1=(x(2:end));

x2=x(1:end-1);

y1=y(2:end);

y2=y(1:end-1);

def_x=(x1-x2);

def_y=(y1-y2);

for i=2:n

seg_length_item=(power((((x(i)-x(i-1))^2)+(y(i)-y(i-1))^2),1/2));

seg_length=[seg_length seg_length_item];

end

segmentlength=sum(seg_length);

Curve or arc length measurement:

% Curve or Arc length measurement

Arc_length=sum(sqrt((xprime.*xprime)+(yprime.*yprime)));
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Chord length measurement:

% Chord length measurement

x_length=length(x);

x_one=x(1);

x_n=x(x_length);

y_one=y(1);

y_n=y(x_length);

C_length=abs(sqrt(((x_n-x_one)^2)+((y_n-y_one)^2)));

.2.2 Curvature approach features

Curvature along segment length:

%Signed curvature for each point a long the segment

Signed_curvature =((xprime.*ysec) - (xsec.*yprime))./ ...

power(((xprime.*xprime) + (yprime.*yprime)), 3/2);

%The total signed curvature

signed_total_curvature=sum(Signed_curvature);

%Unsigned curvature

unsigned_curvature=abs(Signed_curvature);

%Total unsigned curvature

unsigned_Total_curvature=sum(unsigned_curvature);

%Total squared unsigned curvature

tsusc=unsigned_Total_curvature*unsigned_Total_curvature;

%Total squared signed curvature

tsc=signed_total_curvature*signed_total_curvature;

% Total curvature normalized by arc length1 and total curvature

% normalised by arc length2

total_unsigned_c_over_seg_Pathlength=unsigned_Total_curvature/...

seg_Pathlength;

total_signed_c_over_seg_Pathlength=signed_total_curvature/...

seg_Pathlength;

total_unsigned_c_over_arcLength=unsigned_Total_curvature/...

175



Arc_length;

total_signed_c_over_ArcLength=signed_total_curvature/...

Arc_length;

%Total squared signed/unsigned curvature normalised by arc length

%total squared signed/unsigned curvature normalised by arc length

total_squared_signed_curvature_over_PathLength=tssc/...

seg_Pathlength;

tsusc_over_pathLength=tsusc/seg_Pathlength;

total_squared_signed_curvature_over_arcLength=tssc/Arc_length;

tsusc_over_ArcLength=tsusc/Arc_length;

% Total curvature normalised by chord length

total_unsigned_c_over_chordLength=unsigned_Total_curvature/...

Segment_chord_Length;

t_signed_c_over_cl=signed_total_curvature/Segment_chord_Length;

%Total squared curvature/chord length

tssc_over_cl=tssc/Segment_chord_Length;

tsusc_over_cl=tsusc/Segment_chord_Length;

Tortuosity coefficient:

for i=2:p-1

p= length(x);

Tort_Coefficient_item=sum(abs((y(i)-y(i-1))-(y(i+1)-y(i))));

Tort=[Tort Tort_Coefficient_item];

end

Tort_Coefficient=sum(Tort)/p;

end

The Signed and unsigned tortuosity using the gradients along blood vessel segments:

n=length(x);

M=[];

%x values

x1=x(1:n-1);

x2=x(2:n);
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%y values

y1=y(1:n-1);

y2=y(2:n);

%Slopes

M=y2-y1/x2-x1;

L=length(M);

m1=M(1:L-1);

m2=M(2:L);

%The sum of the differences and the absolute

differences of slopes

unsign_Tort_Slope= sum(abs((m2-m1)));

sign_Tort_Slope=sum(m2-m1);

Rashmi’s measure of tortuosity:

%Calculation of the gradients along blood segments

m=(y2-y1)./(x2-x1);

ml=length(m);

m1=m(2:end);

m2=m(1:ml-1);

%Estimation of the segment tortuosity

Rashmi_Tortousity=sum(abs(m1-m2));

Mean direction angle change:

%Identifying two vectors for each point along the segment

%(before and after the point)

vector_before(1)=x_points(i);

vector_before(2)=x_points(i-step);

vector_after(1)=x_points(i);

vector_after(2)=x_points(i+step);

%Normlization of the two vectors

vec_b_N =((vector_before-min_b_vec)./(max_b_vec-min_b_vec));

vec_a_N =((vector_after-min_a_vec)./(max_a_vec-min_a_vec));
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%Estimation of the angle Theta (the dot product of vector_before and

%vector_after, then taking the acos to estimate the angle)

dot_product_b_a=dot(vec_b_N, vec_a_N);

%Mean Direction Angle Change of a blood vessel segment

MDAC=(1/Arc_length-2*step)* sum(dot_product_b_a);

.2.3 Combined approach features

Grisan’s tortuosity measure:

Tort_Grisan = ((all_sub_curves_no -1)/(all_sub_curves_no))*...

(1/Arc_length)*(sum(all_subcurves_tortousity));

Inflection count metrics:

all_sub_curves_no=sum(concaved_up_curves_No+...

concaved_down_curves_No+uncurvedCurved_NO);

ICM1=(all_sub_curves_no+1)*(Segment_chord_Length/Arc_length);

ICM2=(all_sub_curves_no+1)*(Segment_chord_Length/seg_Pathlength);

.2.4 My combined approach features

Arc over chord and the number of maximum points:

ArcOverchord_times_Maximapoints=(Arc_length *...

(maximapoints_no+1));

%Path over chord and the number of maximum point

PathOverChord_maximapoints=(path_over_chord *...

(maximapoints_no+1));

Path length and the sub-curves numbers:

path_length_and_curvesNum=(seg_Pathlength + Subcurves_no) ;

Vessel profile features one and two:

vessel_profile2=(path_over_chord + sumSubCurveHeights);

vessel_profile1=(path_over_chord + sum_all_subcurvesspace);
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.3 Appendix C: Statistical analysis

.3.1 Regression analysis

.3.2 ANN learning

% Initial random weights for a model features

Weights=rand(1,size(model6,2));

% The predicted output

for i=1:size(Features,1)

FTW = sum(Features(i,:).* Weights(1:end));

predicted_output(i)=(1/(1+ exp(-FTW)));

end

%Initial performance test of thee neuron

[RHO,~] = corr(desired_output,predicted_output,’Type’,’Spearman’);

.3.3 Feature selection

The intersected features of the backward-feed analysis of the arteries

include:

1) Segments chord length

2) Tortuosity coefficient

3) Signed tortuosity slope

4) Tortuosity by Grisan

5) Rashmi’s tortuosity measure

6) Abs of slopes differences and unsigned curvature

7) Sum of DFT Magnitudes using slopes

8) DFT Magnitudes using xprime

9) Sum of the signal phases norm by path length using xPrime’

10) Sum of Magnitudes normalised by path length using xPrime’
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11) Sum of Magnitudes normalised by path length using curvature’

The intersected features of the backward-feed analysis of the veins in-

clude:

1) Tortuosity by Grisan

2) Number of minimum points along a segment

3) Sum of sub-curves under spaces

4) Rashmis tortuosity measure

5) Abs of Slops Differences and unsigned curvature

6) The sum of sub-curves heights

7) Sum of DFT Magnitudes using slopes

8) DFT Magnitudes using xprime

9) Sum of the signal phases normalised by path length using xPrime’

10) Sum of Magnitudes normalised by path length using xPrime’

The intersected features of the forward-feed analysis of the arteries in-

clude:

1) Path over chord

The intersected features of the forward-feed analysis of the veins include:

1) Mean direction angle change
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