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ABSTRACT

This thesis presents an original extension of
the geocmetric theory of linear multivariable systems.

The theory is developed for the case when feedback
control for the system concerned is restricted to be
derived from only the observable outputs of the system.

The main results obtained are in the field of non-
interaction for linear multivariable systeﬁs, the c%ief
application of the geometric theory introduced by
Wonham and Morse, and described in the thesis. Necessary
and sufficient conditions are obtained for the existence
of decoupling controls, and a method of constructing a
dynamic controller of low order is given for the case
when it is not possible to obtain non-interaction by
non-dynamic output feédback.

A further extension is made in the case of pole
assignment_by output feedback, and for the less stringent
condition of system stabilisation, a theorem providing
a sufficient condition for stabilising a system by
output feedback is proved using the geometric theory.
Additional topics concerned with output feedback control

are discussed including the geometric theecry of chservers.
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NOTATION

Capital letters denote matrices; underlined capital
lefters denote linear vector spaces. The same symbol,
e.g. A, is used to denote both a matrix A and its map,
e.ge A: X X. The superscript T, e.g. AT, is used to
denote the transpose of a matrix. The zero space is de=
noted by O and the empty space by B. The dimension of a
spaceiziis denoted by dim(V), the rank of é matrix A by
rank(A), and the range of A by A or {A}.

The sum of two spaces, i.e. the space spanned by
the union of their bases, is denoted by +, that of
several spaces byZ . Their direct sum is denoted by ®:.
The orthogonal complement of a space V is denoted‘!L.
A-{K denotes the inverse image of V under A, or the set
ix: Axe.xg of vectors x of appropriéte dimension. The
null space of a map A is denoted by N(A). The restriction
of a map A to a subspace V is denoted by A|V, and {A|V}
denotes the subspace defined by V + AV + ... + An'?x,
where A is a matrix with n columns and dim(V) < n.

For k a fixed positive integer, k denotes the set
{1,2,...,k§, and a set of k subspaces%ﬁﬁ y ieck, is denoted
by it_rg]}é . Also, k_ = §0,1,00.,k}.

If a(s) is a polynomial in s, a'(s), a (s) are used
to denote its factors with roots in the open.right half
or closed left‘half of the complex plane, respectively.
For b(s) another polynomial, a(s)lb(s) is ;ead as "a(s)

divides b{s)".



CHAPTER ONE

Introduction

1.1. Introduction

The problems of analysis and design of linear
nultivariable control systems have received considerable
‘attention over a period of at least the past twenty years.
This is not surprising since many physical systems can be
approximated clesely by systems of this type, though, for
ease of analysis, a single predominant input only was
often considered and utilised for control, with only a
single output chosen to be controlled. Much work has béen
devoted recently however to extending results which have
been obtained for single input, single output systems to
the multivariable case, and ways have been found for using
classical design techniques to deal with multivariable
system design in the frequency domain (R1, M1i), where the
system is expressed usually in the form of a transfer
function matrix. The technique of optimal control theory
(AF1)(BH1) has been shown to be directly applicable to
multivariable systems, the representation of the system
in this case being in state variable form. However, this
approach does not seem to solve many practical engineering
problems, It appears therefore that no éntirely satis-
factory technique exists for overcoming the design problems

inherent in multivariable systems.



In the last few years some attention has been
devoted to the inherent structure which exists in a
multivariable system. It is perhaps because insufficient
regard is paid to this structure that the previously
mentioned methods have not been entirely satisfactory.

The module-theoretic freatment (K2) of the minimal realis-
ation problem by Kalman demonstrated how.a fundamental
algebraic treétment of the structure of dynamical systems
leads to a clear understanding of the problems of realis-
ation and the development of successful algorithms (HK1).
This theory has not however been shown to have an extension
to the problems of control. The possibility of a useful
gecmetric treatment of the structure of multivariable
systems with direct application-to control problems has
been introduced by Womham and Morse (WMi). This has been
shown to give a precise interpretation of the problems of
disturbance localization and decoupling, leading to a
transparent explanation of the difficulties involved in
achieving these design constraints. Further applications
of this theory are being discovered in multivariable track-
ing (w2), (BhP1), observer theory (W3) and canonical
representations of linear multivariable systems (WM2).

At present the geometric approach to such problems
has been concerned with the case where no limitation is

imposed on which stafes,of the system are employed for



feedback control. In this thesis, the restriction is
made that feedback control may only be implemented from
the system outputs, which are linear combinations of
the states, and from which the states themselves cannot
6e directly measured. From an engineering viewpoint,
output feedback is often the only case considered for

practical reasons.

1.2, Outline of the thesis and original contributions

-The multivariable control problem with particular
reference to output feedbaclk is introduced in Chapter
Two. Also in this chapter, the basic geometric concepts
of invariant subspaces and controllability subspaces
of (A,B) are defined and their properties examined.

In Chapter Three the general problem of decoupling
a linear time-invariant multivariable system, without
the use of additional dynamics in the form of compensators,
is considered using the geometric concepts of Chapter
One. The whole of Section 3.3. is an original contribution
to this problem. In particular, Theorem 3.3.1. establishes
new necessary and sufficient conditions for a set of
controllability subspaces to form a solution to the
output feedback decoupling problem in its geometric
interpretation. In the particular case when the number

of inputs equals the number of output blocks to be
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decoupled, Theorem 3.3.2. provides new necessary and
sufficient conditions for the existence of a solution
to the output feedback decoupling problem.

The introduction of additional dynamics, and the
solution of the resulting decoupling problem is con-
sidered in Chapter Four. The output feedback decoupling
problem in this case is the subject of Sections 4.2 -~ 4.5,
which represent an original contribution to the subject.
Theorem k.é.l. provides a necessary and sufficient con-
dition for the existence of a dynamic output feedback
decoupling control, and Theorem %4.3.1. establishes necessary
and sufficient conditions for the existence of such a
control using additional dynamics of low ofder, and such
that complete controllability of the augmented state space
is preserved in the decoupled system. In addition the
proof of this theorem contains a new and original procedure
for constructing a solution to the output feedback
decoupling problem. The controllability subspaces so
constructed moreover form a sSolution for which the
augmented state space is completely spanned by the direct
summation of these subspaces. This procedure is compared
with existing methods using alternative approaches in
" Section L.6.

The problem of pole assignment in multivariable

systems is considered in Chapter Five. The output feedback



pole assignment problem is approached using geometric
ideas in SectionA5.2., and Theorem 5.2.2, presents a new
necessary condition for complete pole assignment in this
case.i Section 5.3. considers existing work on output
feedback pole assignment and a new, but unproven, method
is put forward for determining in a simple manner an
output feedback matrix such that the closed loop system
has a cyclic state space., Section 5.4. is concerned with
the problem of stabilization of a multivariable system
by output feedback. A geometric approach is used in
Theorem 5.4.2. to provide a new concise proof of a
recently established result, Theorem 5.4.%i.. The re=-
mainder of this chapter is concerned with the addition of
dynamics to achieve complete pole assignment by output
feedback. In particular, Section 5.6. describes the
geometric approach té observer theory, from which the
concept of a dual observer follows clearly, the precise

demonstration of this being original.
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CHAPTER TWO

Feedback control and basic geometric concepts

2.1. Mathematical description of linecar time-invariant

multivariable systems

There exist in common usage three main ways in
which the dynamical behaviour of a lineaf time-~invariant
multivariable, or multiple input, multiple output, system
is described,

(i) state space description:

x(t)

Ax(t) + Bu(t) | (2.1.1)

y(t) = Ccx(t) (2.1.2)
where u{t) is an m-vector of controlled inputs, y(t) is
a p-vector of measured outputs, x(t) is an n-vector of
state variables and A,B and C are matrices with real,
constant elements,

(ii) weighting function matrix description:

t

y(t) = JfW(t,s)u(s)ds - (2.1.3)
0

where W(t,s) is a matrix of weighting functions.

-13-



(iii) Laplace or Fourier transform description:

y(s) = G(s)ﬁ(s) (2.1.4)
or

L(S)y(s) = M(s)u(s) | » | (2.1.5)

where G(s) is a matrix of rational transfer functions,
L(s) and M(s) are matrices of polynomials in s.

Of course, explicit relationships exist between these
three descriptions, (ii) and (iii) in particular being
equivalent descriptions in the time and frequency domains
respectively. The equations of (i) differ in their use
of the concept of state variables x(t), where x(t) e X,
the state (vector) space. In general, X = R%, and this
will be true in the following. A large proportion of the
study of linear, time-~invariant multivariable systems has
made use of the state space formulation (i), and its
mathematical properties are only now begihning to be fully
understood (K1), {(Po1). The results described in this
‘thesis will be predominantly concerned with this formulation.

Let U denote the space of m-vector valued functions
that are defined and continuous on T = (0,T). Consider

the state evolution map F: T X X X U — X. This is

-14a



given by the equation
At t A(t-s)
x(t) = e*%x(0) + [ e Bu(s)ds (2.1.6)
which defines the trajectory of the state x(t), 0< t < T,
under the influence of the control u(t), 0 < t < T,

starting from an initial condition x(0).

2.2. Feedback control’

From a practical viewpoint, the most useful form of
control is that which is generated by‘feedback from
information related to the behaviour of the system. Owiﬁg
initially to the popularity of the linear quadratic optimal
‘regulator problem (AF1), the most widely studied form of

feedback is that described by

u(t) = Fx(t) _ (2.2.1)
Since, in general, C # I in most practical situations,
a control of this form cannot be directly implemented.
This may be overcome in one way, by implementing (2.2.1)

in the form

u(t) = FX(t) ' (2.2.2)

-15~



where X(t) denotes an estimate of the state vector
x(t), the determination of which may be based upoh avail-
able information from the input u(ti) and output y(ti),
0 < tig t. The determination of %X(t) takes the form of
a dynamical system, termed as either an "“observer"
(L1),(BG1) in the deterministic case, or a "filter"
(KB1),(B1) in the stochastic case. |

In many ;ases it may be possible to cﬂoose F in

(2.2.1) such- that

for some matrix K, The following lemma provides a
necessary and sufficient condition on F for this to be
possible,

Lemma 2.2.1,

A solution K to the matrix equation

F = KC (2.2.3)

vhere K is m X p, C and F are px n and m X n, and p
and m, respectively, are their ranks, exists if and only

if

N(c) C N(F) (2.2.4%)

-16-



Proof: Assume N(C) CC N(F). Taking orthogonal complements
EFcc | o (2.2.5)
Since,E? is spanned by the columns fi’ ie m, of FT, thus
f. = Ck | (2.2.6)
fo? some kie _EP, ie¢ m. Writing

T R
K* = (ki... km) (2.2.7)

yields the required solution.

Assuming K exists, transposing (2.2.3)

F' = C'K (2.2.8)
Thus

et | (2.2.9)
or

N(c) C N(F) ‘ (2.2.10)

-17=



If it is not possible to obtain a closed Ibop
system with the required properties using a control where
F satisfies (2.2.3), then it may be possible to define,
by a suitable extension of the state space, a higher
order system with the required closed loop properties and
for which F satisfies (2.2.3). This approach has been
termed ‘dynamic compensation" (P1),(PD1),(BP1). A
specific form of state space extension developed by Morse
and Wonham (MW1) will be used extensively in the following,

and is described here.

2.3. State space extension

Letjz'denote an n-dimensional extension of the

Ly

state space X. Denoting the extended state space by X,

then

[»?
0
=<
®
[

(2.3.1)

Denoting the input and cutput spaces by U and Y respectively,

the extended input and output spaces are defined by
” Pacd .
U=UoTu - _ (2.3.2)

‘and

-18-



(2.3.3)

[=>
=R

=Y®

The system (2.1.1),(2.1.2), and the additional dynamic

elements
%(t) = Bu(t) | (2.3.4)
F(t) = TE(t) (2.3.5)

~r

where u e U, Y& Y, can be described in the extended

space by
Rt) = AR(t) + Bale) ‘ (2.3.6)
F(t) = cR(t) | (2.3.7)

[y(t)] , alt) = [u(t) ,
F(t) %(t)]
A= [A o],iS: [B o],’é:[c o].

0 0 o B o T

”~

In general, B and € will be chosen so that

where %x(t) = [x(t)] , y(t)

*(t)

B =C = Iﬁ . (2'3’8)

-19-



the T X1 identity matrix.

Consider now a feedback control described by
~ APN A‘
a(t) = Fy(t) + Gv(t) (2.3.9)

7\
where F can be expressed as

A

? KC (2.3.10)

~
s K have the partitioned forms

’~ ~\
G = [Gl] , K = [K11 K12] . (2.3.11)
G K21 %o

Applying this control to the system (2.3.6),(2.3.7),

o2

and

and forming the closed loop transfer function between

y(s) and v(s), yields

y(s) = (I - G(s)H(s)) ta(s)K(s)v(s) (2.3.12)

; , _ -1
where H{s) = K11 + Kiz(sI - Kzz) K21
_ -1
K(s) = G1 + Kiz(fl - K22) Gz
G = c(sT-AYR

This is therefore a more restrictive form of dynamic

compensation than that considered by Rosenbrock (R1), where

-20-



H(s) and K(s) are not constrained to have the same
characteristic polynomial, i.e. the determinant of

(sI - X,,). However, its consideration does con-

22
veniently restrict the choice of compensators K(s), H(s)
to be. both physically realizable, and, if K22 is chosen

accordingly, asymptotically stable.

2.4, Invariant and controllability subspaces of(A,B)

The development in this section is due to Wonham
and Morse-(WMi), who introduced the conéept of an
invariant subspace of (A,B). This is a natural extension
to the feedback situation of the.concept of simple invari-
ance, i.e. a subspace U (CX is said to be A-invariant,
if AU CU for some map A: X — X.

Definition 2.4.1.

A subspace V (CX is called an invariant subspace
of (A,B), if it is (A + BF)-invariant for some F, i.e.

if the set of matrices
F(¥) = { F: (A + BR)Y CV}

is non-empty.

Lemma 2.4.1.

The set F(V) defined above is non-empty if and only

if

21



AVCV + B | : (2.4.1)
Proof: Necessity follows simply, since by definition
B+ (A + BF)_\{DAK

(A+BRYCY

which implies (2.4.1). For sufficiency, let X, be any sub-

1
space of X such that

YOX, =X (2.4,2)

and define Q: _)_{_*-9_}21 as' the projection of X onto '}_(_1 along

V. Then, from (2.4.1)

QAY (C OB | (2.4.3)
or, writing V and B as basis matrices for V and B,

QAV = QBZ | : « (2.4.4)
But, by Lemma 2.2.1, Z can be written as

Z =A -FV . - . (20405)

P 32 1



since N(V) = O by choice of V as a basis matrix. Thus,

(2.4.4) becomes

Q(A + BF)V = 0 (2.4.6)

or, since N(Q) = V by choice of Q

(A+BR)YCY (2.4.7)

The second important geometric concept introduced

by Wonham and Morse is that of a controllability subspace.

Definition 2.4.2,

A subspace R (U X is called a controllability subspace

of (A,B) if for some F
{A+Br|RNBY} =R . (2.4.8)

Lemma 2.4.2.

Given A,B, and a subspace R (UX, R is a controllability

subspace of {(A,B), if and only if

AR CR + B ' (2.4.9)

and

~23-



R = 1im Y j = 0,1,... (2.4.10)

where 8° = 0, s¥*1 = (as? + BYNR.
Proof: From (2.4.8), R is an invariant subspace of (A,B)

since
(A + BF)R =(A + BM{ A + BF | BNR}

= (A + BFYRNBY + ... + (A + BF)n(Bﬂé)

CR

Therefore, by Lemma 2.4.1., F{R) is non-empty if and only

if (2.4.9) is true. Let

{a + BF | BNR} =R

Then F ¢ F(R). Define, for je¢ n

i-1

g‘j = = (A+ BF)i(gﬂ R)
i=0
Then
»d = (apI"1 4 BNR - (2.4.11)

- -24-



For the proof of equation (2.4.11), it is easily seen

that PJ can be written, from its definition, as

(o + BR)P"' + BOR

Y
.
i

{ (A + BF)f_j"i + B R jen (2.4,12)

: ) i1
fov, since 2‘] 1C§_, j e n, it follows that (A+BF‘)2 C B

But

- -1
B + (A + BR)pI-? =B+ A

which, used in (2.4.12), yields (2.4.11).

Thus
n-1 i
R= 2" (A + BF) (B R)
i=1
= gn
= lim -S_J j = 0,1,.-. (204013)

€onversely, if R = 1im 5%, j = 0,1,..., then

R=s"

-25=



= {Aa+ BF‘EﬂB_% (2.4.14)

The following fact follows immediately from the proof
of this lemma.

Corrollary to Lemma 2.4,2.

If R is a controllability subspace of (A,B), then

{a+BF|BNRY =R

for all F € F(R), i.e. such that (A + BF)R CR.

For a more intuitive viewpoint, it is worth con-
sidering the concepts of invariant and controllability
subspaces of (A,B) in the following way. Consider the
equation describing the state trajectory for the system

(2.1.1),(2.1.2), i.e.

' t
x(t) = eAtx(o) +f, eA(t"S)Bu(s)ds (2.4.15)
0
where x(o) is the initial state at time t = O. An in-

variant subspace V of (A,B), by using the result of

Lemma 2.4.1., can then be viewed as a set of x(0)}, such
for eadn x(0)

that for some u(t&, t > 0, then x(t) € V, for all t > 0.

Note that the state trajectory can start at any vector

x(0) contained in V, the criterion being that x(t) will

range only over V.

-26-



The concept of a controllability subspace of (A,B)
can then be regarded as a natural step from this, by

forming the controllable subspace R (CV, i.e.

BV + (A~+ BF)B{1YV + voo + (A + BF)n-i_B_ﬂ_\[_

I
[

{(a+5F | BNV] | (2.4.16)

where F is chosen such that that (A + BF)V (C V. Equation
(2.4.16) will later be shown to be equivalent to (2.4.8)
for R (CV (Theorem 3.2.1.).

Alternatively, R can beAconsidered in a reachability

context as the set of x(t) which are reachable from the

origin, x(0) = 0, by trajectories entirely contained in
vV, i.e.
t
x(t) =f Alt=5)p,(s)ds
0
€y (2.4.17)

for some control u(t), t > 0. Note here that, in contrast
to the case of invariant subspaces of (A,B), the system
state is constrained to start from the origin x(0) = O,
and range entirely in connected invariant subspaces of

(A,B) to form a controllability subspace of (A,B).

-27-



2.5. Algebraic properties of invariant subspaces of (A,B)

In this section, the special algebraic properties
of invariant subspaces of (A,B), which were noted (WM1) by
Wonham and Morse, will be presented in greater detail. The
majority of the definitions following have been taken from_

Birkhoff and Bartee (BB1).

Definition 2.5.1.

| A partially ordered set is any set S with a binary
relation < which is reflexive, antisymmetric, and transitive,
i.e. which satisfies |
(i) x <X, for all X ¢ S,
(ii) X. €Y and Y < X imply X = Y, and |
(iii) X £ Y and Y < 2 imply X <Y, for X,Y, and Z € S.

Definition 2.5.2.

A lower bound of a partially ordered set S is an
element X of S satisfying X <Y, for all Y € S, A greatest
lower bound P is any lower bound P such that Q@ < P for any
other lower bound Q of S. .

Clearly, greatest lower bounds are unique by (ii) of
Definition 2.5.1. A similar definition obviously exists
for upper bounds, and least upper bounds, which are similarly
unique.

Definition 2.5.3.

A lattice is a partially ordered set in which any two

elements X, Y have a greatest lower bound, X A Y, and a

=28~



least uppér bound, X V Y, where the binary operations

/A and V satisfy the idempotent, commutive, and associative

all X, Y, and Z contained in the sect.

X

XVX=X
XVY=YVX
(XAY)AZ

(XvyY)vz

Y

From these definitions, it is clear that the set of

identities:

Li. XAX=X

L2. XAY =YA

L3. X A(Y A 2)
XVvI(YV 2)

for

all

subspaces of a linear vector space X is a lattice, and

in this case, the operations \/, and A above are +, and N

respectively.

In any lattice, the semi-distributive laws hold:

(XAY)V (XNZ) CXAN(YV Z)

XV (YA Z) <(5cv.Y)/\(xvz)

(2.5.1a)

(2.5.1b)

In the case of linear vector subspaces, therefore, the

relation ¢ becomes (C and (2.5.1a,b) can be written

(XNY) +(xXN2)CXN(Y +2)

X +(YN2)C((X +Y)N (X +2)

-29-
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The following important fact holds in particular
for invariant subspaces of (A,B).

Assertion 2.5.1.

The sum of two invariant subspaces of (A,B),'zi + Y,
is also an invariant subspace of (A,B). The intersection
of two invariant subspaces of (A’B)’.X1[W.22s is not in
‘general an invariant_subspace of (A,B).

Proof: For the first statement, this follows trivially

from (2.4.1) and the associative property of the operation

++ The second statement is a consequence of (2.5.2b) since
B+ (Y,NY) CW,y + BN W, +B)
DAY, Ay,
DAy, Ny, (2.5.3)
with equality in the first relationship not holding in

general.

Definition 2.5.4.

at

A semilattice is a set with an idempotent, commutive,

~ and associative binary operation,

Clearly, any lattice is a semilattice under A and under\V .
From the foregoing Definitions and Assertion, it is

now a simple matter to identify the set of subspaces defined

-30-



by

T={V:AVCY+B YC¥CX}
as a semilattice, partially ordered by C, with binary
operation +, under which it is closed (WM1).

The following assertion can now be seen to hold for

the set T.

Assertion 2.5.2,

The set T defined by

T=4{Y:aCY+B YCHCX]
has a least upper bound contained in T, which is unique.
Proof: This follows directly from the above definitions
and Assertion 2.5.1.

The following lemma relates to the construction of
fhe least upper bound X# of the set T, a subspace which
will prove to be of importance in the following.

Lemma 2,.5.1.

The least upper bound X# of the set T of subspaces
V defined in Assertion 2.5.2., is given by XP, where

p = dim(¥) and

v -y | (2.5.4)
vittownaiwId + B j=o0,1,... . (2.5.5)

Proof: The equivalence of the sequence
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vO = w, vt o v Al < B) _ (2.5.6)

to that defined by (2.5.4), (2.5.5) is first established.

From (2.5.6)

At g = At I AN e B £ B)
C a~Yvd + B) (2.5.7)

Thus

Al e et e B Cl Catl + B

(2.5.38)

The equivalence of the sequences can now be made clear
by expanding the first few terms of (2.5.6). The equival-

ence is trivial for !O and yf. For !2‘ from (2.5.6),

v =y Na ! + )

XA s p Nattt . B) (2.5.9)

Since, by (2.5.8), A"l(_\_/_1 + B) CA—i(y_O + B), it follows

that
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VNt ennatiatep =N Attt s B

(2.5.10)

which equals y_z by (2.5.5). This process can be repeated
for VJ, j » 2.
Now, 1let EM be the least upper bound contained in

T. Since AlMCXM + B, it follows that
LA AW NLT A ) | (2.5.11)
Assume XM Cl‘j. Then

Yiernatyl +p

B (2.5.12)

Hence, since _\_{MC y_o, Y_MC_\[J, for all j. Therefore, {
*1 -y j*1 55X
since if, by (2.5.6), ¥V Cy, dim(¥'" %) < dim(V )Athen
the known existence of _Y_M and the fact that XMCY_‘], for
all j, implies that there exists a finite integer k such
that ¥ = v*, for al1 j 2 k.

Since _\LM C y_’k, and

vE = v At + B) | (2.5.13)
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or
AV CY +B | (2.5.14)

by uniqueness of the least upper bound in T, it follows
that XF = !y. Clearly, since p = dim(¥W) = dim(x?), and
the sequence.zg, J=0,1,¢0¢y is monotonically decreasing,

k < p. Hence

eyt ey (2.5.15)
and the lemma is proved.
In the following, XM C ¥ CX, will be termed the

maximal invariant subspace of (A,B) ‘contained in W, a

subspace of X.

2.6. Properties of controllabilitv subspaces of (A,B).

The following theorem (WM1) presents an important
property of controllability subspaces.

Theorem 2.6.1.

Given a controllability subspace R C X of (A,B),
dim(R) = p, let a(s) be an arbitrary monic polynomial
of degree p. Then F€ F(R) can be chosen so.that the
characteristic polynomial of (A + BF)|§_ is a(s). Further,

for any non-zero vector be R()B, F can be chosen such
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_that
(A+5pF|B} =R (2.6.1)

Proof: Choose F, € F(R) arbitrarily, and denote (A + BFi)
by A1. Let b1 ¢ R B, and p, be the largest integer such
that

byy Abgreaey Ay by

are linearly independent. Set ry = b1 and r\_j = Airj—i + b1,
J = 2,.00,py- Then the r;» i € p; are independent and

r; € R, i€ By Ir P, < P, choose b, ¢ R () B, independent
of the set of Ty i € Ry- Repeating the procedure for bz,

setting r_ =

p1+i Airp1+i-1 + bz, i €<Rg' and repeating for

b3, etc., a set of Tis i = 1lyeseyp is obtained, which are

independent and in R, with the property
”~
r. ., =A,;r. + b, ie p=1 (2.6.2)

where %ie R B. Choosing F_, ¢ F(R) so that

2

BF,r; = b, iep (2.6.3)

with bp arbitrary, then

r iy = (A1 + BFz)ri ie p-1 (2.6.4)

~35«



A solution F, to (2.6.3) is guaranteed by Lemma 2.2.1.

By independence of the i therefore

Thus, an m-vectbr_f can be found so that the characteristic
polynomial of (Ai + BF, + rlfT) |R is a(s).(m\

An alternative viewpoint for showing the pole assigne
ment properties of controllability subspaces will assume
the following result.

Lemma 2.6.1. (W1)

A pair (A,B) is controllable if and only if, for
every choice of a symmetrié*set of complek numbers A
there is a matrix F such that (A + BF) has A for its set
of eigenvalues.,

Proof: For this proof, reference should be made to
Wonham (W1).

Assuming this, write X = R® L for some subspace
L CX, and let P be the projection of X onto R along L.
Choose F € F(E), and let A be the restriction of (A + BF)

to R. Applying the projection P to the equations
x(t) = (A + BF)x(t) + BGv(t) (2.6.6)

where G is defined by BG = RN B

~35-
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yields

-

X(t) = AX(t) + Bav(t) (2.6.7)
where X = Px ¢ R, P(A + BF) = AP, and PB = B. The
controllability matrix H for this system is then

n-1
[Ba ABG ... A Ba]

=
]

P[B (A + BF)B ... (A+ BF)™'B]a (2.6.8)

Assuming G is chosen to be of full rank, it is easily
seen that if (A,B) is a controllable pair; then rank (H) =
dim(R) and (A,BG) is a controllable pair. Complete
eigenvaliue assignability then follows immediately from
Lemma 2.6.1.

The concepts and properties of invariant and cone
trollability subspaces of (A,B) which have been established
in this chapter will now be applied to some problems in
multivariable system theory, with particular emphasis
being placed on the output feedback solution, i.e. when
the state feedback matrix F can be written, for some matrix

K, as
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It will be shown that many of these problems have clear
and elegant solutions when formulated in the geometric
terms developed in this chapter, and useful insight is

gained into the problems.
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CHAPTER THREE

.Decoupling by output feedback: restricted case

3.1. The state feedback decoupling problem

Consider a general partitioning of the output equation

(2.1.2) given by

- -

Ty, (6)] = e, ] =(¢) (3.1.1)

_yk(t)_ c

vhere yi(t) is a p;-vector. To avoid trivial cases, it
is assumed that the subspaces EE, i€ k, are mutually

independent, i.e.

=

T T |
c. N jz;_gj =0 ie (3.1.2)

T
and that < £ 0, Qz £ EF, i € k. Consider the state

feedback control

u(t) = Fx(t) + = G.v.(t) (3.1.3)

. i i
1@5

The state feedback decoupling problem is then to chose a

control of the form (3.1.3) such that vi(t) completely
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controls yi(t), i € k, without affecting yj(t), j# i,
J € k.o Here, "completely" is used in the same sense as
complete controllability, and in the following, it will

be assumed that in (2.1.1) the pair (A,B) is completely

controllable, i.e. that { A | B} = x = R".

The decoupling condition can be sfated more formally
as follows. For vi(t) to control yi(t) completely requires
that

C; { A+ BF l {BGiH =C. iek (3.1.4)
and for vi(t) to leave yj(t) unaffected requires that

c;{ A+ BrF | {Bad} =0, 3414, jek (3.1.5)

To obtain the geometric formulation of the problem, consider

a set {f%}‘g of controllability subspaces such that
{ A+ Br | {Ba}} = R; ie k (3.1.6)
and where Gi, i€ k is chosen such that

BG, = B[R, : (3.1.7)

yielding for (3.1.6)
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{ A"+ BF Igiﬂg_§ = iek | (3.1.8)

R,
s

Restricting these subspaces to be controllability &ﬂﬁfmas
ensures that the dynamic effect of each vi(t) is contained
within the subspace, and that the whole subspace is

reachable. From (3.1.4) it now follows that

C.R.

i=—i -c-i ie .l.c. (3-109)

or, denoting N(C;) by N,,
+N. =X ie€ek (3.1.10)
must hold. From (3.1.5) it follows trivially that

R, CNN, i€k (3.1.11)
L =] -
J#i
is necessary to restrict the influence of vi(t) on yj(t),
j £ i, to be zero.
In its geometric formulation, the problem thus becomes
one of determining a set {2%315 satisfying (3.1.8), (3.1.10),

and (3.1.11) with the additional requirement that

N F(R) # 8 o (3.1.12)

‘iek
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Here, F(Ei) is defined as the sét of matrices F such that
(A + BF)‘Bi(:;gi, as in Chapter Two. This requirement
ensures that there exists an F which ﬁill Mwork" for all
the B—i’ ie€ k.

This problem has been termed (MW2) the "restricted
decoupling problem''y or RDP, and will be referred to thus

»

in the following.

3.2, Existence of state feedback solutions to RDP

The requirements of (3.1.10) and (3.1.11) indicate
that B& must be large enough to satisfy (3.1.10), whilst
small enough such that (3.1.11) holds. For this reason,

a reasonable approach is to consider the Set of maximal
(1least upper bound) controllability subspaces {Bgi x °f
(A,B), such that _I}_:_‘C 'Q'E'j' i € k. The following :heorem
(WM1) defines the maxigtall- controllability subspace _FEM of
(A,B) contained in a given subspace W of the state space

M "
2{_. From now on &i uol“ C\\wc\ﬁs La Aeg-mgcQ ‘i»u,cl\ tk&l" Bic JQiN.L’\r

Theorem 3.2.1.

) .
- Let z? denote the maximal invariant subspace of (A,B)
contained in W (CX. Then the maximal controllability

subspace By of (A,B) contained in W is given by

5M={A+BF|§HXM§ (3.2.1)



for any F ¢ F(_‘{_M).

Proof: Let R (C W, and
{a+nr |RNB}=R (3.2.2)

Since R is an invariant subspace of W, then R CXM. Let

__!M = R® V, for some V (CX. Choose F, such that F,R = F R

and

M

(A + BF,)V CV (3.2.3)

Then F,_ ¢ F(_\:M) and

2

R={Aa+BF, | BN R}

Cla+or,| 3N ={a+8R|8 NR™ swe BOYSRN

- R (3.2.4)

T"\us R S a Con\"rcuaL U— suLspace. L -Deg-f\ 4.2, a.ml “\O»Xum:& \A/

Existence of F, such that F,R = FIR and (3.2.3) holds,
follows from the construction procedure of Lemma 2.4.1.
The following lemma now provides a simple necessary

condition for the existence of a solution to RDP,

Lemma 3.2.1.

A solution to RDP exists only if

-43_
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+ N. = X, iek (3.2.5)

Proof: It is clear that if {R)

then R. satisfies (3.1.11). Then by the maximality of

RY, R, C R} and (3.2.5) follows from (3.1.10).

Therefore, if (3.2.5) holds and

is a solution to RDP,

NFERD 42 (3.2.6)
iek
then { g}f} , is certainly a solution to RDP. However
(3.2.6) is not a necessary condition for the existence
of a solution, and there may in fact exist a set of smaller

M
R; CR; such that

NFR,) # ¢ (3.2.7)
ick '

although (3.2.6) does not hold. In the following two
cases however, under certain restrictions, {g?;kcan be

shown to provide a solution to RDP,

(i) rank (G) = rank (Gl'°'Gk) = m. Under this condition,

the following lemma (MW2) is applicable.

Lemma 3.2.2.

A solution to RDP, such that rank (G) = m, exists if

and only if

Y



B= ZBNE, , (3.2.8)

iek

in which case {B_f} - is a solution.

Proof: If rank (G) = m, then if {R1} . is a solution

B=BG=BZGa. C ZB(\R.CB (3.2.9)
iek © iek T : |

since G; is chosen such that BG, = gﬂ_gi, i € k. Therefore

B = BNR, ' (3.2.10)
iex ¢ .

and by the maximality of B_i‘,

(<<

B = BNR: (3.2.11)
ick

Proof of sufficiency requires showing that (3.2.8) implies

that () F(_I_l_?) £ #, and

ielc_
RN =x i k ' | (3.2.12)
R, +X§; =X, €k -2.

Since the proof of this is fairly involved and requires
additional concepts which will not be needed elsewhere,

it will be omitted here.

(ii) rank (B) = k. Under this condition the following lemma

(WM1) applies.
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Lemma 3.2.3.

A solution {_13.1}5 i to RDP wvhere rank (B) = k, exists

if and only if

AP

B= 2B/ (3.2.13)

Moreover, {_Iilrg is, in this case, the only solution.

k

Proof: For necessity, define -lii’ i€ k, by

BN = (BMR; N T R.)S B, (3.2.14)

R.
—i =i

The _@_i will now be shown to be mutually independent. By

definition of gj’ Ej C BN Bj’ and hence

B. > B. C B. = (B(YR.) (3.2.15)
'"“nj;!i"’ C""mj#i" - | ’

But, jzicgnaj)cgngigj. and B, = B; M R; since B; C By

by (3.2.14). But this implies that

BNZ BNRICEBNENE N Z R, (3.2.16)
Jj#i j#i
which intersection is zero, by definition of gi' Hence,

it follows from (3.2.15) that the §_1 are mutually in-

dependent. Now, for F € F(Bi),
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R, = {4+ BF BN RY
={A+BF|B]} +§i o (3.2.17)

from (3.2.14), where, since BNER, C§i® > R,

3#i 9
R, C{a+8r| SR}
3#i 9
C =&,
by
Cxy (3.2.18)

using the fact that F € [ F(R;), and R, C QEJ Therefore,
Jj£i

iek

X = R, + N,

X=R + X

={A+BF|§i§+§i+_1g_1

={a+mr|Bl + N, (3.2.19)

by (3.2.18). Hence, since N, # X, then B; #0, i€ k.

Furthermore, consideration of (3.2.14) yields that _Ejﬂ_l}_i

equals B,, i€ k. This, together with the existence of the

k non-zero -mutually independent subspaces Qi’ yields that
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B = B.
= gt | (3.2.20)
Since B, CBN R, CBN B?, (3.2.13) follows immediately.

For uniqueness of the solution {RM} observe that

Sifk?
(3.2.20) and the fact that B, # 0, ic k, imply that
dim (_l}_i) = 1, 1 € kK. Assume, as c¢anhe proved :(WM1i), : !,
that the subspaces Em .131;1, i€ k, are independent. Then,
by (3.2.13), it follows that

dim (gﬂgf) =1 ie (3.2.21)

I=

Thus, since B(\R; CBN R}, and dim (BNR,) = 1,

M .
BMR; = BNR; i€k (3.2.22)

X
?
H

Let R, = R. @ R., for some R., i€ k, and choose F, such
=i T =iV =i —-i - : i

that F;R, = FR., for F e F(R,), and

~ M .
(A + BF )R, C R, » (3.2.23)
This is always possible by Lemma 2.4.1. Thus

M
Fie F(B_i) N F(Ei). Then

B, ={a+pr, | BNR}
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1}

(a+or | 2NES

- RI (3.2.24)
=i .
proving uniqﬁeness of the solution.{gggk. The proof that
the subspaces gﬂg_’i‘, i€ k, are indepe;dent, will be
omitted here for the sake of brevity, and since it will
be of no further use.
The proof of sufficiency follows similar lines to
that for Lemma 3.2.2. and will al1so be omitted here.

In these special cases therefore a solution to RDP

can be readily obtained using the procedure of Lemma 2.5.1.

k! —i

. . 1 - .. M
to obtain {ff% v CjQiﬂj' and then determining {Bi\g K
using the result of Theorem 3.2.1. Systematic procedures
for determining general solutions to RDP, if they exist,

when

NrEH = 2 | (3.2.25)

iek

are as yet unknown.

3.3. Existence of output feedback solutions to RDP.

Consider that, in addition to the decoupling require-
ments (3.1.6),(3.1.10) - (3.1.12), it is required that

there exists a solution K to the equation
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F = KC ' (3.3.1)

for some F ¢ fj F(R;). Such an F will not in general
exist. The foii%ﬁing theorem provides necessary and
sufficient conditions for the existence of some F ¢ fﬁ F(gi)
such that (3.3.1) holds., The case is considered wher];EE

the pair (C,A) is observable. (D1)

Theorem 3.3.1.

For the system described by (2.1.1), (2.1.2), given
(C,A) observable and {2&315' a solution to RDP, there exists

an F e [) F(R,) such that F = KC for some K, if and only if

ick
(i) gf = M(ZR,) =0 ‘ (3.3.2)
iek jAi 9 ) :
(ii) A(R; N N(C)) C R, ie x (3.3.3)

Proof: Necessity of (i) is first established. For any

two linear vector subspaces V and W, and a map A, it is
easy to show that A(V (W) C AV () AW, and A(V + W) = AV + AW.
Using these results it can be seen that, for all F ¢ r]F(Bi)

iek

(A+BF)R = (A+ BF) N (ZR.)
: iek j#i Y

C (A + BF) Z) R,

i€k jéi™d
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= ﬂ(z(A+BF)R)

iek j#i -
c N R,)
iek jAi Y
=R (3.3.4)
Thus,_g* is an invariant subspace of (A,B); Also, from
(3.1.11)
R'= N(=R)
ick jéi 9
C N nNan
iek jéi S£J
C NN
J.ek
= E(C) (303.5)

Assume F = KC for some F ¢ [) F(R.).
ieE

*
since QB = 0,

* *

and by (3.3.4%4) it follows that

* *

AR CR

51w

Then, from (3.3.5),

(3.3.6)

(3.3.7)



Thus, from (3'3.5),
*
cfa|r} =o | (3.3.8)
2
contradicting, if R # 0, the assumption that (C,A) is an

observable pair. To establish necessity of (ii), assume

F = KC for some F ¢ () F(gi). Then

iek
(A + BKC)R, CR, iek (3.3.9)

or
R, C(a + BKc)"Bi iek | (3.3.10)

Using the easily proved result that for any subspace V and
- L L
a map A, (A %z) = A?X s taking orthogonal complements of

both sides of (3.3.10) yields

L L
(a" + ¢"&"BhR, C R, i€ k (3.3.11)
By Lemma 2.4.1, it then follows that
L n
ATR, C R, + CT ie k (3.3.12)
—j. _j. -— — L ] -

Taking orthogonal complements again yields (ii).
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For sufficiency, assume (i) and (ii) are satisfied

for {Bi‘ﬂ:’ a solution to RDP. For each i € k, define

Ei CX by
R, = (R, N(C)) @ R, | (3.3.13)

Then, by (ii) and the construction of Lemma 2.4.1, it

follows that there exists an.F, € F(R,) such that

(A + BFi)B_iC"Bi ' (3.3.14)
ahd

F, (R, (\ N(E)) = O (3.3.15)
This implies that

(R; N N(c)) C N(F,) (3.3.16)

Writing Ri as a basis matrix for‘gi, it follows therefore

from (3.3.16) that
-1
N(CR;) = R; (R, () N(C))

. -1 :
C R 'N(F,)
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-1
Ry (R, M N(F,))

N(F,R,) | ' (3.3.17)

By Lemma 2.,2.1, therefore, there exists a solution Ki

to the equation

K,CR. = F.R, (3.3.18)
Hence
(A + BK,C)R. C R, (3.3.19)

. - ' )
or K.C € F(Bi), i€ k. Now R = O implies that the {B_l} K
are mutually independent. Define Pi as the projection of
X onto R, along j%igj, and let

KC = _kaiCPi (3.3.20)
1€

Since R, (_ (I N., (3.3.20) becomes
Th T34

i%:kxiicip i

KC

2. K..C (3.3.21)

N ii i
1€E
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where Ki =»[Ki1 Ki2 ces Kik}' .Hence, K defined by

K =[K;; Koy ooe K] (3.3.22)
is such that
(A + BKC)R, = (A + X BK.CP )R,
ick
= '(A + BKiC)Bi
CRy ie vg:_ (3.3.23)

or KC € f\ F(Bi), proving sufficiéncy.
It iZEinteresting to note that for the case k=2,
condition (ii) of Theorem 3;3.1. implies condition (i). -
Recalling the second special case of the previous
section, i.e. when rank(B) = k, the following theorem
establishes necessary and sufficient conditions for the
existence of an output feedback solution to RDP in this

case,

Theorem 3.3.2.

An output feedback solution to RDP, where rank(B) = k,

and when (C,A) is an observable pair, exists if and only if

{&?)&k \:S a 30‘& ioy\ {'5 Rb‘P o.v\A .
(1) EH' = N(=EH -0 (3.3.24)
iek jAi Y
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I~

(i1) AN N(c)) C RY ie (3.3.25)
-1 1L

Mofeover, {B?z is the only such solution.

k
Proof: This f:llows directly from Theorem 3.3.1.; and
Lemma 3.2.3. which establishes uniqueness of the solution
to RDP in this special case. |

For the first special case of the pre#ious section,
-i.e. when rank(G) = m, since the solution {ngk is not
unique, it may be possible to find a solution.{éigk which
satisfies (3.3.2),.(3.3.3), although (Ey)‘ £ 0. iz this
special case therefore, (3.3.24).and (3.3.25) are only
sufficient conditions for the existence of an output feed-
back solution to RDP when rank(G) = m. If they are fulfilled,
then {3555 is certainly a solution.

As a result of the following lemma, however, it is

possible to say something further about this special case.

Lemma 303.10

For the special cases (i) and (ii) of section 3.2.,

if {R.} _is a solution to RDP, then

=i} k .
=X (3.3.26)
Proof: From the initial assumption that

falB=x | (3.3.27)
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it follows that

Z{alBNRY =2 - (3.3.28)
ick .
since, from the proofs of Lemmas 3.,2.2. and 3.2.3.,

B = BNR; (3.3.29)
iek
if rank(G) = m, or rank(B) = k. From a result due to
Wonham (W1) that controllability is unaltered by state

feedback, then

Z{a+BF|BNRY =X | (3.3\.30)

ieg

for any F. The result follows if F & [ F(Ei).
iek -
The following theorem can now be stated.

Theorem 3.3.3.

M . . M, *
If the S.Bi}k are independent, i.e. (R) = O, an output
feedback solution to RDP, where rank(G) = m, exists if and

only if
M M ..
A(R; M N(C)) CR; iek (3.3.31)

Moreover, {Bﬁ}k is the only such solution.

Proof: Sufficiency follows directly from Theorem 3.3.1.
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For necessity and uniqueness, assume (3.3.31) does not

hold, but that there exists a solution {R}, to RDP such

that R, # B_M,-i ¢ k, and

AR, M N(C)) C R, i€ k (3.3.32)
Since the B_I:, i€ k, are independent however,
£ Mo x (3.3.33)

R.
ik * dek &

which, by Lemma 3.3.1., implies that {§£§k is not a solution
to RDP., This contradiction proves necessity and uniqueness,

For these special cases therefore, the set {ngk

can be constructed using the result of Theorem 3.2.1.
and tested as to whether or not it provides an output
feedback solution to RDP by the results of the foregoing
theorems of this section; In the general case, however,
and where {B?}k does not satisfy (3.3.2) and (3.3.3), no
.systematic meézgd is known for generating igi}k’ if it
exists, which satisfies (3.3.2) and (3.3.3) aQ; is a solution
to RDP, 'This restriction is shared by state feedback

~ solutions to RDP, as was pointed out at the end of section
3.2., since there also in the general cése, if‘ig?}k does

not provide a solutipn, only intuition can derive ;—set

of non-maximal controllability subspaces which will be
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a solution.

If it is the case that the %ngk does not provide
a solution, the decoupling problem ;;; be solved if an
extension of the state space is permitted, i.e. dynamic
compensation is used, This subject will be dealt with
in detail in the next chapter. Before this, however, it
is of interest to consider the problem of pole assignment

in the decoupled system.

3.4, Pole assignment in the decoupled system.

The problem of the extent to which it is possible
to arbitrarily assign the poles of the decoupled system
is now considered. This problem has been thoroughly
investigated by Morse and Wonham (WM1),(MW2), in the case
of state feedback solutions to RDP, and the theory will
be reviewed here.

The structure of the decoupled system is first con-
sidered. Let {2%3]{ be a solution to RDP, and assume that

> R. = X. Define
jek *

E.=R = (=R, (3.4.1)
=0 = iek jAi 9

and let E; be chosen such that

R, =E.® (.r_z_iﬂg') iek (3.4.2)



Figure 3.4.1. The three circles represent contr-

ollability subspaces.gi, i=1, 2, 3. The subspaces

. *
Ei(:.gifare indicated = R being the shaded

) o
' 29

area, and can be seen to be independent.
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For the case k = 3, these subspaces are represented
diagramatically in Figure 3.4.1. to assist in clarifying
the arguements used in proving the following results. The
next lemma exhibits the properties of the subspaces'gi,
ieg 50.

Lemma 3.4.1.

The subspaces Ei’ ie 55, have the properties

§ 2R = X ket

ek
(i) ® E, =X (3.4.3)
iek
Zo
(ii) (A + BF)E; CE, + E, ie _150 (3.4.4)

for all F ¢ [) F(R.).
iek -
Proof: Clearly, from the choice of the Ei’ ie 50,

Eo V2 E; =0 (3.4.5)
For i ¢ k, by the definition of the _I_‘)_i,
Eiﬂ;i?i_gj = (E;® (R; MR )N (;_Zi(gjea (R, R

(3.4.6)

But, by linearity
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> (g, + (B, E") = EE . Z(R NRY  (3.4.7)
J#i J J£1 j#i

Hence, by (3.4.6),

sz C (B +(R mR)ﬂ(ZE +2(R ﬂR))
3Ai9 AT i

(B; + RN R >ﬂ(2(E + (R.NR )
J#i J

N ?:;!._Igj (3.4.8)
j#i

R.
=i

But, R. ﬂZRJCR, and E. ﬂZE CE s implying, by
Ai jAi 9

(3.4.8) that
EENSE,CENER
J#i
= o ’ (304.9)

which follows from the construction of the.Ei, i€ k.

Thus the E. i ie k s are 1ndependent. Also,

iek - . ('3-4.10)
w

proving (3.4.3).
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It has already been shown in Theorem 3.3.1. that
* * :
(A + BF)R CR ' (3.4%.11)

for all Fe [) F(_I_l_i). Hence, (3.4.4) for i = 0, follows
iek '
from (3.4.1). " Since, from (3.4.2), E;CR;, i€ k, then

(a4 + BF)E; (C (A + BF)R;

CEi + .1.3.0 i€k (3.4.12)

for all F € {W F(Bi)’ proving (3.4.4) for i.elg, and
completing tizkbroof of the lemma.

In order to describe the structure of the decoupled
system in terms of the subspaces‘gi, ie 55, the following

lemma is necessary.

Lemma 3.4.2.

Define Pi’ j.e'hh, as the projection map of X onto
E; along 3% _I_S_j. For all F € [) F(Bi), there exist maps A,

Jj#i i€k
such that

A;P, = P.(A + BF) ie k (3.4.13)



In addition,

C, = C,P i€ k C(3.4.14)

and, if G; is chosen so that BG, = B N (§i + EO)’

PiB_(_i_j =0 : j i, je k,iek (3.4.15)
and

{p,(a+BF)|PBG} = E, iek (3.4.16)

Proof: Since N(P,) = 2 E;s and by Lemma 3.%.1.,
. j#i

P, (A+BF)EE Cr, E:n

Jti T
= 0 i€ k (3.4.17)
therefore
N(P,) = & E; CN(P;(A + BF)) ic k (3.4.18)
gAY

implying the existence of the A, i€ k, in (3.4.13).
- .
From (3.%4.2), E;, +E, =R, + R, and since, as hds been ..

. »
shown previously, R (C N(C) C_l\l(ci), i€ k, it follows that
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A4
1l
(@]

L)
s}
+

I

N’

jAi, jyiek (3.4.19)

I
o

Thus, since by Lemma 3.4.1., > E; =X, and P, = E,

AN |
ick *
-0
C. = C.(ZP)
* tiiek
—o
= C,P, i€k (3.4.20)

proving (3.%4.14). Equation (3.4.15) follows simply from
the choice of G;, since B_G_j C_E_:.j + _E_:_Oc_l\l(Pi), J £ i.

For (3.4.16), since

. . N(P, 11 ie : .
RyCE; + EgCN(R)  j#1 dek (3.4.21)
it follows that
E; =P X=P (2R, = PR, ie k (3.4.22)

Also, P (A + BF)_lfs_j Cpi(gj +E))y jJ#i, je k, ie k,

which implies that P, (A + BF) = P.(A + BF) 2 P,

Pi(A + BF)Pi.

i€k
Thus, from (3.4.22), for i e k, o
E, = P.{A + BF | Ba} - {P, (a+ BF) |PiBG} (3.4.23)

E; i
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This lemma shows that the decoupled system can be
) wi&\\
represented as (k + 1)’Kk independent,subsystems. This

is best demonstrated in matrix form. For i E‘Eo,'write
Pi in some basis as the product of two full rank matrices,
P, = L .M., and define A, = M.(A + BF)L_,, B, = M.BG,,
i ivi i i i i i1
and C, = C.L.. For i€ k, define A . = M (A + BF)L. and
i i7i - oi o i
Boi~= MoBGi' The following properties now follow directly

from the results of Lemma 3.4.2. -

R . -

M, (A + BF) = A M, ie k (3.4.24)
C, = C,M, iek (3.%.25)
MiBGJ. =0 i#Ai, je k,iek (3.4.26)

and (Ai,Bi), i€ k, are completely controllable. It
is now possible to describe the decoupled system by

the set of equations

x;(t) = A;x.(t) + B.v. (t) iek (3.4.27)
y;(£) = C x, (¢) i€ k (3.4.28)
x () = 2 A x.(t) + A x (t) + Z B v,(t) (3.4.29)

ek _ iek
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where x,(t) = M,x(t), 1& k . The (k + 1)th. subsystem,
described by (3.4.29). has state space E; and therefore
has no effect on the output y(t) since E, CXN(c), and for
all F ¢ iQkF(B_i), (A + BF)_I_E_O C E,. Furthermore, by
(3.4.27), the i th. completely controllable subsystem is
driven only from the i th. input vi‘, wi£h output Yy ie k,
by (3.4.28), whilst the (k + 1)th. subsystem may be driven
by all the inputs v,, ic¢ k.

From this structure the solution of the pole assign-
ment problem is clear. From Theorem 2.6.1., it follows
that the eigenvalues of (A + BF) restricted to E;y» 1€ K,
can be arbitrarily assigned, for F restricted to being

®
contained in ) F(B-i)' Furthermore, R is an invariant

iek
subspace of (A,B) and it is possible, by Theorem 3.2.1.,
to find the maximal controllability subspace R of (A,B)

contained in _1_2-*, i.e.
R={a+BF|BNR"} (3.4.30)

where F € () F(Bi). Since R is a controllability subspace,
) iek
the eigenvalues of (A + BF) restricted to R can also be

arbitrarily assigned. Thus, the only fixed eigenvalues
are those of the restriction of (A + BF) to the subspace

*x
of R which remains after removal of R, i.e. E where



*

R =R®R (3.4.31)

R

Consider now the output feedback case. Of necessity,
if an output feedback solution to RDP exists, and (C,A)
is observable, by Theorem 3.3.1.,3_’.l = 0. Thus, in the
foregoing development, EO ; 0, and Ei =.Bi’ i€ ke Let
_xi(t) = Mix(t), i€ k, where now P , and hence M equals

zero. Then, by the results of Lemma 3.4.2.,

x;(t) = A;x.(t) + B,v. (t) ie k (3.4.32)

e
m

y; (t) = C.x; (¢) k (3.4.33)
The eigenValue.assiénment problem becomes therefore
the problem of assigning the eigenvalues of (Ai + BiKiCi)
by choice pf Ki’ for i € k. For each of the 'k subsystems
the problem is then simply the general output feedback
eigenvalue assignment problem. This problem will be con-
sidered in a later chapter. It may be noted however,
that (QPAQ are observable pairs with respect to each
E%} i € ke This follows because the decoupled system is
completely observable, as observability cannot be destroyed
by output feedback and therefore, since the system is

entirely composed 6f the k independent subsystems, each

subsystem must be cohpletely observable,
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CHAPTER FQUR

Decoupling by output feedback: extended case

4,1, The extended decoupling problem

is
The situation ~ now considered 1s when itAnecessary

to introduce some form of dynamic compensation in order

to achieve a required decoupling controi. The method
considered here for introducing dynamics into the system
will be that described in section 2.3., whereby the state
space X is'extendeq to form a larger state spaceli. In

the extended space, the system is described by the equations

%) = A%(t) + Ba(e) (k.1.1)

cx(t) (4.1.2)

where A =_[A o] [B o] [c o],‘and x(t) = [x(t)],
0 0 I 0o I - Lx(t)

AUt) = [f(t)] F(t) = [:(t)] The extension is denoted by
x(t)

F(t)

u(t)

»~
X, and thus

(4.1.3)

154>
1R

- xX®

P d
The dimension of X is denoted by'x.



Consider now the decoupling problem in the extended
state space. The outputs to be decoupled remain unaltered,

i.e.,
y.(t) =[c, o]k(t) = T .X(¢t) i€ k (k.1.4)
i i i” = v
The feedback centrol is described by the equation
~ [aFS ~
u(t) = Fx(t) + = Givi(t) (4.1.5)
ik
Note that, if N, = N(C.), for ie k, then

N. =N, + X ~ (4.1.6) -

from the structure of E%'given in (4.1.4). Hence the
decoupling problem can now be seen to be that of finding

a set {Eigk of controllability subspaces of (K,ﬁ) such that

R,+N +X=X ie k (%.1.7)
R C( Nx) + X i€ k (4.1.8)
Jj#i
and
NFE) £¢ . (4.1.9)
iek o
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corresponding to the conditions (3.1.10)-(3.1.12) for
RDP, This problem has been called the "extended decoupling
problem", or EDP, (MW1)(MW2). The additional freedom
iﬁtroduced in EDP over RDP is the dimension T of the
extension z. In all other respects, the problem formulated
here is identical to RDP,

Let P be defined as the projection map of i onto
X along g. Then for the map A: g—)g, corresponding to
the matrix A in (4.1.1), and for the map B: i}_—)g, cors .
responding to the matrix B in (4.1.1), the following can
be seen to be true for the maps PK, ’RP, P%,

PA = AP = A, PB = B , (4.1.10)
N ”~
where A and B are now regarded as maps from X into X. This
is consistent since clearly X C_;E. In matrix form R clearly
can be written as P = I O}, an a x?x matrix in which
.U [O O]

I isnxn., It follows that the null space of P is g.

The following lemma will be useful in proving necessary
and sufficient conditions for the existence of a solution

to EDP.

Lemma 4.1.1.

Let U and ¥V be any two subspaces such that X CU Cg,

~s Wal .
and X C VY (CX. Then
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P(UMNYV) = PUN PV (4.1.11)
Proof: It is known (MW1) that for any U, V and map P,

P(UNYV)CPUNPFY © (h.1.12)
with equality if and only if

(U + V)N N(P) = UNN(P) + VN N(P) (4.1.13)

It has already been seen that in this case N(P) = g,
and, by assumption g CU and g (CY¥. Hence for these
subspaces and projection P, (4.1.13) holds, and the lemma
is proved.

The following theorem now establishes a necessary and
sufficient condition for the existence of a solution to
EDP (MW1).

Theorem 4.,1.1.

A solution to EDP exists if and only if
R/ +N =X ie k (4.1.1%)

Proof: Define the projection map P as above, and let
Fa)
{Bigk be a solution to EDP, for some T > O. Then, for i€ k,

ol . y Pa i
since R. is a controllability subspace of (A,B),
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>

AR. C R, +B (4.1.15)

Then, by linearity,

laYal

PAR, C PR, + PB ,  (4.1.16)
or, defining R, = PR.,, and from (4.1.10),
! —i —-i

showing Bi,i € k, so defined, to be an invariant sub-
space of (A,B).
To show that.gi is, in fact, a controllability sub-
o)

space of (A,B), recall that, by Lemma 2.4.2., since R, is

Pa el
a controllability subspace of (A,B),
~ j .
B‘i = 1lim _S_.’ J = 0,1,0.. (4.1.18)

~ N5 A~ S L ”~ ~ . As
where S? = 0, sJ = (asd 1, B)(1 R.. Define SY = PSY
—=i s =i - - —-i

_it

J =041i,ee.. Then, using Lemma %4.1.1..and (4.1.10),

j _ A/\J'_i N ~
s8] = P((as™" + B) R;)

AN~ 5 ”~
P(a53-1 + B) N PR,
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(APS;™" + B) N R;

j-1
(asd "'+ BN R,

(4.1.19)
Also, by definition,
R, = PR, = P(1im SJ) = 1im PSJ = 1im SJ (4.1.20)
=i =i =i =i =i

where §g = Rgg = 0, and'§2'= (A§g-1 4_9)(W,gi, by (4.1.19).
This, togéther with (4.1.17), ensures, by Lemma 2.4.2.,
that R. is a controllability subspace of (A,B). This is
true for all i € k.

To show necessity of (4.4.14) it remains only to

show that

R, =PFR, CP(NN. +X) = NX (4.1.21)
* * j#L Y jAL I
by (4.1.8), and that
B'i + Ei = P(.B.i + Ei +X) =PX =X (4.1.22)

by (4.1.7). Then, since Rl is the maximal controllability
of (A,B) contained in () N., by (4.1.21),
.#.""J
j#i
M
R, CR; (4.1.23)
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and therefore, by (4.1.22),

ie

I=

proving necessity.

For sufficiency, assume that (4.1.14) holds.

Let
~ ~ M .
_E be defined with dimension n = Es'dim(gi). Define the
maps Mi: X—X C_JS, i € k, such that
M .

R,NMNNM) =0 i€ k (4.1.24)

M, = M.RY ie k (4.1.25)

=1 i—i

Fad

and such that the Ei’ i€ k, are mutually independent. For

X of such a dimension, the Mi clearly exist.

For example,
Fay
let k = 2.. Then inng,.gﬁ and‘B_2 have basis matrices of the
form R1 and R2 » Now, 1let the 1 X n matrices corresponding
o 0]

to the maps M1 and M2 be given by

T .
M, =Ry O, M, =|0 O (4.1.26)
T
0 0 R2 0
T ~ M.+ ~
Noting thatIE(Mi) =‘E(Ri) + X = (Bi) + X, (4.1.24) clearly
follows; (4;1;25) can also be

seen to hold.
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Returning to the proof of sufficiency of (4.1.14),

define

~ M .
R, = (P + M,)R, ie (4.1.27)

I

For the example above, the map (P + Ml) has the matrix

form (n x 1)

P + M1 =[I 0 (4.1.28)
T
R, ©
0o O

and similarly for i = 2., Then, using (4.1.10) and noting

~ N
that ﬂic_}g, it follows that, in X,

AR. = A(P + M,)RM
-1 : b B o B

= AR
“1
M
C:Bi + B

N
I
P-
+
[}
+
142

(4.1.29)

]
|
+
jo >
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Thus, the'/_Iii are invariant subspaces of (R,IE\S), and, since
the -Mi were chosen independent, the :Ii_i are also independent.
ItAremains to show that ig)}k so constructed, is a
solution to EDP, i.e. that they ;;e controllability subspaces
and satisfy (4.1.7)-(4.1.9). To show that they are controll-

Pa S aN
ability subspaces of (A,B), set, for i € k,

/\o _ Aj _ Ahj_i ”~ ~
S; =0, 85 = (A5;7" + BIN R, (4.1.30)
and
0 _ ~ oJ-_ j-1 M
5; =0, 8y = (a5;7" + B)) _13_1. (4.1.31)

Clearly, (P + M, )5] C32. It will now be shown by induction,
PN jul — Dje
that (P + M)S] C5J, j = 1,2,...; assume (P + M )s)" C sl 1
Then
a1 P -4 ~;
J j=-1 M
S; D (AP + M)577" + B+ X) N (P + MR/
= (as3"1 4+ B + %)fﬁ (P + M.)RM
23 2+2X iR

D(p+u)asit + B+ DN ED

= (P + Mi)_S_g . (4.1.32)
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as required.

Since RI‘.'I
—i

It

; i Q. A : ] noA
lim S., RiD lim §i311m (P-’r Mi) §i= (p+ Mj_\gl-':— R,
therefore, ’B\-i = l1lim E‘J]_, J = 041,ee., 1€ k, proving that

N ~N N
the _Iii, i € k, are controllability subspaces of (A,B).

”~
To show that () F(:ﬁ_i) # §, define P, as the projection
~ ~ iek ~ A~ v
of X onto R, along @ R.. Then for F_ € F(R.), i€ k,
= =i 5419 i —i -
it is easy to see that
”~ AN ~
F=2 FP. e (F(R,) (4.1.33)
iek iek

Finally, to show that (4.1.7) and (4.1.8) hold, it

’~

follows from the structure of the Bi that

”~ M ~ ~
R, CR; +XCN, +X (4.1.34)
J£i
and, by (1*-1011*),
>

(P + MORY + (P + MIN, = (P + M)X (4.1.35)
yielding

N fad ~ A

R, +N; +X=X+X=X (4.1.36)

This completes the proof of Theorem 4.1.1.
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This theorem shows that it is always possible to
decouple a linear multivariable system by state feedback,
brovided (4.1.14) holds, if dynamics.of sufficiently
high order are adjoined to the system. Moreover, since
the {R3} which form a solution to EDP can be made
independegz, by the results of Section 3.4., arbitrary
assignment of all the eigenvalues of (2 + %%) is always
possible., In fact, to satisfy these properties it is not
necessary to use an extension of as large an order as
;E:dim(gg). A full dévelopment of this may be found in
ﬁzgﬁe and Wonham (Mwi), (MW2).

The possibility of the existence of output feedback

solutions tb EDP is now considered.

4,2, Existence of an output feedback solution tc EDP.

An important application of the technique of
extending the state space will now be shown to be that of
obtaining an output feedback decoupling control, for a

system for which a solution {”Eiz to RDP cannot be found

k

to satisfy the conditions derived in Section 3.3., i.e.
R =0 (4.2.1)

A(R, N N(C)) C R, ie (4.2.2)

=
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The following lemma provides a basis for the
‘development of a procedure for constructing a set of

~ AN
controllability subspaces i;gigk of (A,B) which are an
output feedback solution to EDP,

Lemma 4.2.1.

e
Given a set of controllability subspaces g;gigk

A A
of (A,B), such that

e ’~
@ B‘l = 2‘_ (40203)
i€k
. A A
suppose there exist F, € F(B-i)’ i € k such that
AN NN ’ ’
N(CR;) C N(F,R,) i€ k (&.2.4)
N
Then, there exists F € () F(R.) such that
iex *t
”~ N
N(c) C N(F) , (4.2.5)

~ ~
" Here Ri’ i€ k denotes basis matrices for -B-i’ that is
matrices whose columns span the subspace.
”~

/™ Pa
Proof: Define Pi’ i € k as the projection of X onto Bi

e ™~ ~
along ®© R.. For F. € F(_E_z_i), i € k, such that (4.2.4)

: jAid
holds, 1let
~ AN (4 6)
F = F.P. : 020
i€k iti
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Then

7~ NN A ) Pa Y AN el
(A + BF)R. = (A + B F.P.)R.
—-—i . i if=i
1€_}g
Vel Faval
= (A + BF.)R
”
C R;

or,taking orthogonal complements

AT 3+ T
F;CR, + ¢

ie x (4.2.7)
ie k (£.2.8)
i€ k (4.2.9)

Taking orthogonal complements of (4.2.6) also yields

Pa YA
FLo= SSELRL
-— K i=i
1;5
/\T/\'i‘ ~oan L ~ 1
and since P.R. = (P, °R.) = (X)
i=1i i—i -

(4.2.9) that
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~
since jZ:Pi I. Taking orthogonal complements of (4.2.11)
iek .
vields (%.2.5) and proves the lemma.

i

From this-lemma_it is clear that in order to obtain
an output feedback solution to EDP it is sufficient to
provide a construction procedure which will yield a set
of controllability subspaces {gizk for which (4.2.3)
and (4.2.4) are true. Before estéglishing such a construction
procedure, it is necessary to include the‘following lemma.

Lemma k.2.2.

-— ! A
Given R (T X, a controllability subspace of (A,B) with

~ ~
z =-}£®_¥_, then

+ U ' ' (4.2.12)

ER
ft
[k

~ NN
where U (CX, is also a controllability subspace of (A,B).

NN
Proof: Since R is a controllability subspace of (A,B),

by Lemma 2.4.2.,

R = 1im §J 3= 041,00 (4.2.13)
where _§_O = 0, EJ = (ng-i + :1\2)('] ;‘_2._. Let

_o, 8- Gt DNE O (hezead)

Then
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”~ N
s'=BNR

B+ X)N(R + 1)

(BNR) +U (4.2.15)

23 _ =i
Further, if S° = S° + U,

/s\j+1 _ AA S

= ( (X_-S:‘j +BNR +3
-si*l.y (4.2.16)
By induction therefore,.
A -_— —j Aj
R=R+U-=1im ' + U = lim § (4.2.17)
‘Also
faYal A -— ~ ’”~ ’”~
AR=ARC R+BCR+B (4.2.18)

which, by Lemma 2.%.2., completes the proof.
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Using this lemma and Lemma 4.2.1. a necessary and
sufficient condition for the existence of an output feedback
solution to EDP can be established.

Theorem 4.2.1.

Given A, B and N. y 1 € k, let thi be the maximal

controllability subspace of (A,B) contained in () N ie€ k.

i
Then, there exists a solution { % i to EDP such that

F = KE (h.2.19)

for some F e N F(R }, if and only if
1ek

Rl +N =X i€ k (&.2.20)

Proof: Necessity follows immediately from Theorem 4.1.1.,
which establishes (4.2.20) as a necessary condition for

N F(R ) £ #, where { 1 X is any solution to EDP.
iek

For sufficiency, if 2, dlm(R )< 'n, choose 1 = n,
iek
and if & dlm(R )>n, choose 1 = 2, dlm(R ). It is clear
i€k iek
that for such a large extension it is possible to choose

7~ ”~
maps M. : X —X, i € %, as in Theorem 4.1.1., such that

the subspaces

(P + Mi)_lfid i€

=

(4.2.21)
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are independent, and moreover
o
N(cLy) = 0 i€k (4.2.22)
wvhere L, is a basis matrix for L., i € k. To clarify

this consider the following example.

Example 4.2.1.

For

A=[]0o 1 0o o o] B= [0 0 0]
0 0 0 0 1 0 1 0
0 0 1 0 1 1 0 O
0 0 0 0 O 11 0
0 0 0 0 0 [0 0 1]

c,=[0o 1 0o 0o o] c2=[oo1oo]

0O 0 0 1 O

the maximal controllability subspaces B?, i= 1,2, can be

easily determined as

B_If = 1], o1, [o] , (4.2.23)
ol |1] |o
ol lo| |o
ol lo| Jo
0] Ney | 1
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R) = 07, {07, [o] (4.2.24)
0 0 0
1 0 0
0 1 0
o] |O] 1)
2 M _ _
Since ,dim(R.) = 6 > n = 5, choose n = 6. It is then
- i=1 i ¥
possible to choose Ml such that
M - .7 A ] :
L, = (P + 1»11)3_1 = 1], [o], [0 (4.2.25)
, 0 1 0
0 0 0
0 0 (o]
0 0 1
1 0 o]
0 1 0
0 0 1
0 0 0
0 0 0
0] 1[0} O
and M2 such that
vy P I % B e | '
L, = (P + M,)R, = o}, o], [o (4.2.26)
0 0 0
1 0 o]
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
L 0J L0 L1
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Operating C = [C 0 ] on 31 and _léz will illustrate that
(4.2.22) holds:® %

Returning to the proof of Theorem 4.2.1., it is clear
that, by the same argument’. as in the proof of Theorem 4.1.1.,
the {-I'-iigk so constructed are controllability subspaces of
(K,’é) an-c; form a solution to EDP. However @ L, £ _3(;, which
is required‘ for Lemma 4.2.1. to be applied.lle-lssince the

extension of the state space is so large, however, it is

~ .
possible to choose subspaces _Ili CX, i€ k, such that
MNU =0 ie k (k.2.27)

and to be independent, and of sufficient dimension that,

N
setting R, = -1-'i + Uy i e, k,

”~ ’~
DR, =X (4.2.28)
i€k
To see this, for Example 4.2.1., choose
Hi = [ 0] ] [ 0] (4.2.29)

OCOmOOQOO0OO0OO0O00O0

[l

OROOOOCO0OOO

r
A\
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L
1
J
1

OC000O0OROO00O0O0,

(4.2.30)

OQ0O0O0ORrROQOQOO0OOO0O0

it
‘OOOHOOOOOOO

)
~

-

It is then simple to verify (4.2.27).

B ~
Using Lemma 4.2.2. shows that the gf%}]{ so constructed

. AN
are controllability subspaces of (A,B). Also

~ — ~
R, + N, = + U, + N, + X
i =i =i =i =i =
= + -ﬁ.
=l -1
/N
= X (4.2.31)
and
R. = L. + U
-1 bt K -1
C:F\E, + X
jAITY
= NN,
ALY (4.2.32)



N
Therefore, the {Bi;k forms a solution to EDP., From

(4.2.27) and (4.2.22), it follows that

I=

N(CR,) = O ie (4.2.33)

Using this together with (4.2.28), by Lemma 4.2.1. the
{g&gk so constructed form an output feedbaék solution to
EDP;—completing the proof of sufficiency for Theorem 4.2.1.

From Example 4.2.1., it can be seen that the dimension
of the extension g is, in this case, much larger than

necessary. Consider the following controllability subspaces

in place of those constructed in the foregoing:

N - r Y
R, = 1}, [o}, |O (4.2.34)
0 1 o}
0 0 o}
0 0 0
L O 0 1
1 0 0
o] lol L1]
° S [ A7 r ) " A
R, = o], o}, fol, o (4.2.35)
0 ol Jo 0
1 o} 0 0
0 1 0 0
0 0 1 0
0 0 ol (-1
Lol o) 1] | o

~
Operating C on these subspaces clearly shows that they
satisfy (4.2.6), and in fact form an output feedback

solution to EDP,
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4.3, Extension of low order for output feedback decoupling

As in the case of the general extended decoupling
problem of Section 4.1., it is not necessary to use an
extension of such a large dimension as max(g: dim(ﬁ?),n)
in order to obtain an output feedback soluti%% to EDP (D3).
The following theorem provides a sufficient dimension of
low order, and the proof of the existence of'{éi%k which
solves the output feedback EDP will be by a refigza version

of the construction used in the proof of Theorem 4.2,.1.

Theorem 4.3.1.

Given A, B, and N., i € k, let {R}

-1

}k be the set of ..

maximal controllability subspaces of (A,B) such that

_Zk_rff = X (4.3.1)

1e

M .

R; CNX, iek (4.3.2)
AL | :

M )

.55_ + Ei =X iek (4.3.3)

If n = n_+ v, where
. M
n = (zdlm(_lzi)) e ¢ 1 (4.3.4)
° iek .

and v = dim(V), for any subspace V such that
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® .
N(c) = y_@(_rgM) : (4.3.5)
”~ . ~ Lo Vo
then a solution {Eikk to EDP exists such that F = KC,
~ ~ -
for some F € ) F(Bi).
iek
Proof: The proof of existence of an output feedback
P
solution {R}, to EDP under these conditions will use
the following construction. This derives from the set
M ~ o o '
{Bi}lﬁ' a set {Bi}lh of independent controlldbility sub-

~ N N
spaces of (A,B), each member Bi of the set having the

property'that'
R, NNE©) =0 (4.3.6)

FaYal ”~ ~
or E(CRi) = 0, and also that & R. = X. Then, by

ie }_Cl_l ~ AN ~
Lemma 4.2.1., there exists a matrix K such that KC ¢ [ F(Bi).

ieg

Fal
The method. of construction moreover ensures that {EJ} X

forms a solution to EDP,

Intuitively, it can be seen that the extension of
the state space by dimension n_ defined in (4.3.4) ensures
that the gi can be made independent, and the extension by
dimension v = dim(V), where V is defined in (4.3.5), ensures
that (4.3.6) can be made to hold. Obviously, if (R = N(C),
then the further extension dimension v équals 0, but both

requirements can still be fulfilled.

~91.



Construction procedure: Defining V as in (4.3.5), where

*
(B_M) = N (2_13}.1), let R;, V be basis matrices for _131:,
iek j#i
V, i € k, respectively; that is, the columns of Ri span
_Iff, i€ k, and are independent, and similarly for V.

Construct the partitioned n X (n + n) matrix R given by

R = [R1 cee R v] (L.3.7)

. ~ ~ .
and define the n Xy(n + n) matrix M such that

M. = N(R) , (4.3.8)

where M = [M1 e Mk Mk+13, the partitioning being consistent

with that of R in (4.3.7). Set the (n + n) X (n + 1) matrix

jﬁ as
R =[R
M
= R1 ese Rl( v (4.309)

My eoe M Moy

" Then (%.3.8) ensures that R has full rank equal to (n + n)

Define



R. = R, i€k (4.3.10)
M,
Then,
(a) if V = 0, set
PaN —— . . If )
Bl = Ei 1 Eé _]5 ( 03¢11

(b) if V # 0, find linearly independent subspaces R; C Moy
?

for i € :l:c’_ Ck, such that

NE) N (F; +R) =0 iekX  (k.3.12)
and
j?k-R—i = -}11(.'.1 ! (4-3.13)

”~
The existence of { R4 will be established in the proof

‘of the theorem. Now, .set

R, = R, + R, ie k (4.3.14)
R, = R, ' i€ k-k (4.3.15)

In order to prove Theorem 4.3.1., it will now be shown

Pa)
that the set of R., i€ k, as defined by (4.3.11) or
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(L.3.14) and (4.3.15), is a solution to EDP such that

Fal FaYel Fal Fal - .
F = KC for some F € () F(R,). For simplicity, R, is

M ik . M, * .
written for R,, i€ k, and R for (R’) in the following.

For i e k, by construction

-1, * T

RTT(R + VICM, (4.3.16)
for this not being true implies that, for i € k there

exists some vector X, # 0, of appropriate dimension, such

that
. T :
Rx; € R +V, x,; ¢ M | (4.3.17)
*
Since R = () (Z R.), this implies that
iek jAi Y

R,x; € 2o R. + ¥V (4.3.18)

Thus there exists vectors xj, J # i and X5 such that

R.x, + Z.ij. + Vx_ = 0 (4.3.19)

which implies that for x

(%, ... xkxi.,)T, the elements

-~

of which are defined above,

x € N(R) o S _ (4.3.20)

Y.



T
But M = N(R) and xi¢ _bgz contradicts this; hence (4.3.16)

is true. Then, by (4.3.5),

R‘i'l(_l\_x_(c)) Cﬂ’i | i€ k (4.3.21)
Now,
N(CE,) = N [cR; i€ k (4.3.22)
M,
l.

and E(eﬁi) # 0 implies that there exists a vector x £ 0,

such that x ¢ R'i'l_lg(c), and x € N(M;). But (4.3.21) implies

1
that x ¢ E’i = N (Mi). Hence x = 0, and

A\

N(CR;) = 0 ie k (4.3.23)

— fad
Noting that R, has the form (P + Li)B-i' L, CX, ic k, and
using the same arguments as the proofs of Theorem 4.1.1.,

and Theorem 4.2.1., it can be shown that the setigi;k

forms a solution to EDP. Also, if V=0, @R, - X, which,
together with (4.3.23) and Lemma 4.2.1., p;z%es that F = KC
can be satisfied for some F € .ﬂ F(Ei). Thus the theorem |
is proved in this case. 1ex

IfV £ o0,



-1 T
v ;E;BiCZE%»i - (4.3.24)

for, if not, assume there exists a vector x‘_rsuch that

vioe TR, xd M (4.3.25)

ik v

This implies that there exists X5 ie€¢ k, such that.): 1+

1&5 :
and hence x = (x x_)T is contained in N(R) = ML,

But x‘_r¢ _l*_Il’I;+1 contradicts this, proving (4.3.24). Now,
by (4.3.1) and (4.3.24) '

X CM o q (4.3.27)

where R° is the entire linear vector space of dimension v.

Hence, since y;iﬂ = _I\_I-L(Mk_‘_i)
N, )DR (4.3.28)

But, since the number of columns of Mk+1 equals v, then

_ _lg(Mkﬂ)Cg", implying by (4.3.28), that

N(M_ ,) =0 | (4.3.29)
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. Fad
Therefore sufficient non-zero independent subspaces Bi C_I~_1k+1

~
can be chosen such that,! for some k (k,

ﬁe,fczi =M ., o | (&.3.30)

Patd
and > dim(gi) = Ve
ick.

It will now be shown how the subspaces E&, ie y Can

1=

be chosen so that (%.3.12) is satisfied, by partitioning

Mk+1 according to the following scheme, Write, for some

s £ k,
V = v1 s o0 vs (403031)
}11{4. . bfl eecs MS

such that for each j € s, there exists Bi’ ieg k, for

which
n R, = 0 ' (403032)

This partitioning is always possible, subject to possible

rearrangement of the columns of |V s Since for some Vj‘

Mee1

let

(4.3.33)

PQ
m
1=
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If zZ, # 0, for all i€ Kk, ‘and the Z; are independent,

VJ. can be further partitioned
VJ. = [21 e e Zk] (403034)
Then, for m # i, i€ k, me€ k

Z;NR, =L, NE{NER,

&
2
éN

=0 (4.3.35)

If the gi,_ie k, are assumed to be not independent, then

z2 = N(Zz)
iek jAi Y
AO (4.3.36)

* *
and by (4.3.33), Z CR () V, which is a contradiction,
*
by construction of R and V, defined in (4.3.5).

Now, for i, j such that (4.3.32) holds, set
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=M, ie k (4.3.37)

and
R. = R, + &, ie % (4.3.38)
-1 —-i -1 -
R, = R, ie k~k (4.3.39)

Following the proof of Theorem 4.,2.1., it is clear that

N\
{B-i‘gk so defined forms a solution to EDP, It must now be

proved that
N(CR,) = © ie k (4.3.40)

Writing, for i € k

[cni, 0. ] . (4.3.41)
M., M,
J

AN
it can be seen that E.(CRi) Z O implies the existence of

AN

CR,
i

Cad
a vector x # 0, such that x €[R, 0]7'N(C) and x¢ N[, M.

However, similarly to (4.3.16), by construction, for ié€ Zc_,

M1 D[R, v.]7UR + T ¥)) o (h3.42)
g J 14j .
Mj '
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But, by (4.3.32),

-1, * =1 %
= RS v
[®, vj] (R + 5{‘:‘) R;' (R + Z V)

145
-1,.*
+ VI (R + 2 V.)
J 175
OrIIR + T y,)
= R;MR + W) (4.3.43)
Thus,
-1 T
[r; o]7'N(c) C [Ml]
Wt
J
L ~ -
which implies that x = 0, or (4.3.40) holds.
Since y_(ﬁi) C_l‘{(elﬁi), it follows that
®R =X (k.3.45)
ieg_l

and application of Lemma 4.2.1., completes the proof of

Theorem 4,3.1.
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b,4, Example of construction procedure

The following example will be used to illustrate
the construction procedure described in the proof of
Theorem 4. 3. 1'

Consider the system described by (2.1.1), (2.1.2),

where
A=f0o 1 1 0o o],B=[0 0 o] (L.4.1)
0-1 0 0 O 1 0 1
0 1 -2 1 1 0 0 1
0 1 0-2 1 0 0 O
1 0 1 0 -1 0 1 o
- o - -
¢c,=[1 00 0 0],c,=[0 0 0 1 0](kt.2)
' 0 1.1 0 O

Using the procedure of Lemma 2.5.1. and the result of
M
Theorem 3.2.1., the set LEi;E"E = {1, 23,_can be con-

structed as

R = 1{,] ol, 10 » B, =[] of, o], |o (4.4.3)
0 1 0 1 0 0
0 0 1 -1 0 0
0 0 0 o 1 0
0} {-1] Lo} L 0o} Lo} |1]
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It can then be seen that
SN ={[ 0O 1 -1 O -1]T} | (h.b.4)

and sinée (C,A) is an observable pair, the system does
not fulfill condition (i) of Theorem 3.3.2. for existence
of an output feedback solution to the restricted decoupling
problem, It can be easily verified that condition (ii)
of that theorem is also not satisfied.

Howevér, since B: +'§&'='§, i=1, 2, for this example
an output feedback solution to the extended problem does
exist. Moreover, sincelgf + Eg

Theorem %4.3.1. are fulfilled, and an extension of dimension

= X, the conditions of
given by (4.3.4), i.e. n = 2, is sufficient.
To proceed with the construction of the solution

{BJE to the problem, let

v={[o o o o 1:|T} | (k.4.5)
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(4.4.6)

— - e am e e —

for which

(4.4.7)

N(R) =

Thus

1
© O O O =, 0 1_..
|
—— e — g -
© O o © -
|
© O O « © "nu (o]
1
(=] Lol d (o] (o] ".1 o
e S
©Q O = O 0, d
1
!
Q - O © - O
i
|
- (@) (@) Q @] "0 o
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= | R R \'s (4.4.8)

Since V # 0, and Eiﬂ V = 0, choose

R, = 11,[ o1, o1,T ol\, _ﬁz ={[ o}, ’_o‘, C o0y (4.4.9)
0 1 0 0 1 0 0
0 0 1 0 -1 ) 0
0 0 0 0 ) 1 0
of |-1 0 ) ) 0 1
0 1| -1 0 -1 0 1
(0] [ o] [ of [-1] L o} Lol [ 1]

Using the procedure contained in the proof of Lemma 2.4.1.,

~ ~
the feedback matrices F. € F(}_{i), i =1, 2, can be determined.

”~
It can be easily verified that N(CR,) = 0, i = 1, 2, where

=1 o o o o o0 o (4.4.10)
0o 1 1 0 0 0 o
o o 0o 1 0 o0 o
o o o O o0 1 O
0o 0o o ‘0 0 O 1|

”~

”~ N
and that 31@ X. Therefore, the output feedback

Bz=

”
decoupling matrix K can be determined, and found to have
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the general form

r -

K= { k,, C kg, kyg o 1 (d.4.11)
K24 LD ko3 -+ 1
ik yymkyy  mRekgpekg, etk g 1 -2
3
kg, %+k12 %+k23-%k13 -5 1
| ¥s54 K52 ka3 3 -1
where kll’ k12’ k13, k21, kzz, k23, k51, and k52 are
arbitrary. Also, it is easy to verify that
~ — ~ . .
R, +N, =X i=1,2 | (d.4.12)
_iCEj jégi, i=1, 2 (L.4.13)
where
E’i: [1 0O 0 o0 o0 o o] (4.4.14)
0O 1 1 0 O o0 o
c,=[0 o o 1 o o o] (&.4.15)

4,5, Pole assignment in the extended decoupled system

The decoupled system in the extended state space can

be described by
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%) = R+ BOHRE) + BTG v, (¢) (4.5.1)
iek

y; (£) = TR(¢) ie k (4.5.2)

It has been seen in the foregoing that the state space

of the original system (2.1.1), (2.1.2), can be extended
~ A%

so that, for {R} a solution to EDP, R = 0. Sufficient

dimension for such an extension is given by (MWZ)‘%, where

T = z\dim(_&?) - dim( ZB};). In this case, similar argu-
iek ick
ments to those used in Section 3.4. lead to a representation

of (4.5.1), (4.5.2), in the form

2, () = RE0) + B, (6) iek (4.5.3)
y;(t) = “c'~i§i(t) - ie k. (4.5.4)

In the case of state feedback, therefore, the pole
assignment problem has an easy solution, since (Ki,ﬁi),
i€ k, are controllable pairs. That is, full pole assign-
ment is possible in the extended decoupled system. In fact,
a smaller extension than that mentioned above can be shown
to be sufficient (MW1).

In the output feedback case, the construction procedure

of the previous section will also lead to a represeatation

of the form (4.5.3), (4.5.4), for the decoupled system.
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However, feedback in each of the k subsystems is.restricted
to be from the output yi(t), and controllability of (4.5.3)
is not sufficient in this case for complete pole assignment.
Also, a further extension of the state space of dimension
equal to dim(V), where.V was defined in Section 4.3., over
that for the state feedback case, is ﬁot in general suff-
icient to allow complete pole éssignment. Therefore, this
problem falls inside the general problem of obtaining pole
assignment by output feedback, a problem to which the next

chapter will be devoted.

4,6, Alternative techniques for output feedback decoupling

It was pointed out in Section 2.2. that techniques had
already been determined for the implementation of state
. feedback using output information, that is, the Luenberger
observer (L1), .and the technique of dynamic compensation
due to Pearson et al. (P1), (PD1),(BP1). 1In the following,
it will be shown how these techniques can be applied in 7
" the decoupling problem,

Consider first the possibility of using a Luenberger
observer to implement a state feedback decoupling control

(D2). The control has the form

u(t) = Fx(t) + T 6,v,(¢) (4.6.1)
| iek
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and the Luenberger observer is described by the equations

e(t) = Fe(t) + Hx(t) + Lu(t) ' (4.6.2)

() = Nx(t) + Me(t) (4.6.3)

where e(t) is an r-vector, and X(t) is an n-vector estimate
of x(t). The conditions relating the system and observer

parameters are

L = TB (Lk.6.4)

TA - FT = H = HC (4.6.5)
I -M =N =NC ' (4.6.6)

for some T, H and N. If (C,A) is observable, then solutions
to (4.6.4) - (4.6.6) exist, for r:= n:- p. Introducing

%(t) for x(t) in (4.6.1) yields the composite closed loop

system
x(t)| =|A + BFN BFM x(t)|+ 2 (BG, v, (t)
. - iekf *
e(t) H+ LFN F + LFM] [e(t)] LGi

(4.6.7)
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y(t) =[¢c o] [x(¢t) (4.6.8)
e(t)

These equations will be denoted by

2(6) = BR(H) + Bv(e) | (4.6.9)
y() = TE(¢) L (5.6.10)

Forming the controllability matrix P for this system
P-[3 B ... ™ 5], (4.6.11)

using the relations (4.6.4) - (4.6.6), P can be shown to

have the form

P - [1 [? &) © (k.6.12)
- .

where P = [(A + BF)"BG ... (A + BF)™¥"15g], and P is the
controllability matrix for the state feedback decoupled

system

P=[Ba (A+ BF)BG ... (A + BF)™ 15g] (4.6.13)
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It is evident from (4.6.12) that the system (4.6.9) is

not completely controllable, because of the block dyadic
nature of P. It can also be shown that if {B?zk is the
set of maximal controllability subspaces of (A;g), then

{E; K? where

R = ([rY ick (4.6.1%)
TR
1

is the set of controllability subspaces for the composite

decoupled system (4,6.9), (4.6.10), i.e.

1R

{Z|ENE] -E, 1€k (4.6.15)

L

where B = | B}. Consideration of {E\gk shows that it forms
~L

a solution to the decoupling problem.

It is not required that the Ei, i € k, be independent.
However, for full pole assignment in the decoupled system,
additional dynamic compensation may be required as described
in Section 4.5. Extra dynamics will also be necessary if

!j F(E?) = #, in which case a solution to EDP must be found,
:i% then implemented using the observer.

The essential difference between using an observer,
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and the technique developed in Section 4.3., is that, in
the latter case, the whole extended state spacelg is
decoupled into independent controllability subspaces, and
the output performance of the system is entirely predicted
by its transfer function matrix, This is not true for an
observer, for which the uncontrollable modes may appear
atithe output.

The second alternative to be considered is that proﬁgsed
by Howze and Pearson (HP1),. ‘Their main theorem states:
"Assume (A,B) controllable; (C,A) observable, and (the
system) (A,B,C) can be decoupied by state.feedback, It
is possible to compensate the system by means of a compensator
of order (mgq + no) such that decoupling and arbitrary place-
ment of (n + mq + no) poles can be achieved with output

feedback". Here, q is the smallest non-negative integer

such that
rank[C J=n (4.6.16)
CA
[ cA9]

that is, (g - 1) is the system observability index. The

method used is based upon earlier developments of Pearson
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et al. concerning fhe use of dynamic compensators for
optimal control and pole assignment (P1), (PD1), (BP1).

The results in (HP1) are obtained only for the special

case of RDP where rank(B) = k = p, i.e. rank(Ci) =1, i€ k,
however further generalisation would not appear to present
additional problems,

Obviously, mg> n - p > v, which implie‘s that in
~general the dimension of extension using this method will
be larger than that for the method of Section 4.3. Also,
the compensator presented by Howze and Pearson requires
that [ F(B_?) # 8, or, by Lemma 3.2.3., B = E_B_ﬂ_l-}?.

iek ick
This is not necessary for the method of Section %4.3. The

latter method, however, does not in genéral result in full

pPole assignment being possible as previously remarked.

~-112-



CHAPTER FIVE

Pole assignment by output feeﬁback

5.1. The state feedback pole assignment problem

Consider the system described by equations (2.1.1),

(2.1.2), which are repeated here for convenience

%(t) = Ax(t) + Bult) (5.1.1)

y(t)

cx(t) _ | (5.1.2)

A problem which has been widely studied is that of
determining a feedback matrix F such that the eigenvalues
of (A + BF) correspond to a set A of predetermined values,
the only restriction on which is that complex members of
the set should occur in conjugate pairs,

The existence of some F corresponding to any set
was first established by Wonham (W1) in the following
theorem.

Theorem 5.1.1.

The pair (A,B) is controllable if and on1'y if, for
every choice of the set A», there is a matrix F such that
(A + BF) has A for its set of eigenvalues.

Proof: The result obtained in Theorem 2.6.1., concerning
the eigenvalue assignment properties in controllability

subspaces provides a>simp1e proof of Theorem 5.1.1.. For,
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if R = X

ARCR + B o ' (5.1.3)

holds automatically, and

{a]BNR} =R | (5.1.4)
is equivalent to complete controllability of (A,B).

A less restrictive condition than the ability to assign
arbitrarily the eigenvalues of (A + BF) was introduced by
Wonham (W1). This is the requirement that the eigenvalues
of (A + BF) should have negative real parts, or that
(A + BF) should be stable. A weaker condition than con-
trollability can then be defined as follows.

Definition 5.1.1.

The pair (A,B) is said to be stabilizable if there
exists an m X n matrix F such that (A + BF) is stable.

Let a(s) be the minimal polynomial of X with respect
to'A. Then af(s) can be’ factorized into its stable

( aZ(s)) and unstable ( at(s)) parts, that is
a(s) = al(s) a7(s) f (5.1.5)

Define the subspace §+(A) C X by
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xt(a) ='{ x : at(A)x =0, x € Xg | (5.1.6)

The following theorem can then be stated.

Theorem 5.1.2.

The pair (A,B) is stabilizable if and only if

x*a) C {a | B} | (5.1.7)
Proof: Intuitively, (5.1.7) implies that the unstable
modes of A are controllable, and the result follows. The
complete proof may be found in Wonham (W1).

Neither of these theorems consider any restriction on
the state feedback matrix F., In the following, the concepts
of pole assignmént and stabilization will be considered
in the context of output feedback, where a solution K to

the equation
F = KC (5.1.8)
must exist.

5.2. Pole assignment by output feedback: existence of a

feedback matrix.

In certain cases it may be possible to obtain arbitrary

eigenvalues by output feedback., For example, it is possible
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for the system described by equations (5.1.1), (5.1.2)

where
A=f0 -1 0], B-= 1 17, C = 1 0 0] (5.2.1)
-1 =2 =2 2 1 0 1 O
1 0 0 3 2

as was pointed out by Pearson and Ding (PD1). As yet no
necessary and sufficient existence conditions are known
which a system has to satisfy for this property to hold
although such a result would ciearly be of interest. A
possible approach to this problem would appear to be
through the study of the canonical forms of equations
(5.1.1), (5.1.2), (L2), (K1), (P1), (WM2). In the follow- -
ing, the next theorem due to Wonham and Morse (WM2) is

used in considering the problem. |

Theorem 5.2.1.

Let {A ‘_Q} = X, dim(B) = m. There exist controllability

subspaces R;, i € m of (A,B) such that

dim(BN R;) = 1

iem (5.2.2)
and
516 326 o oo @gm = _x. (5-2.3)
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If the R, are ordered so that dim(gi) > dim(R. ),

i+1
i g m-1, then the list of integers {dim(gi), ie m}
uniquely characterizes the orbit of (A,B) under T where T

is the group of transformations

(A,B) — (T(a + BF)T™!, TBG) (5.2.4)

Proof: The proof of this theorem (WM2) is long and will
not be included here.

It is of interest howefer to consider the algorithm
for constructing the controllability subspaces _131, ie m,

which is as follows. Write

X =0,X. =B+AB+ ... +aA1B jen (5.2.5)
and define
— 3 3 .. 4 'j
B, = min {J : j€ n, A'B C%} (5.2.6)

Let X4 be any vector such that

j .
x,€ B, Ax ¢ X, - jE p-1 (5.2.7)

For x _e B, re i-1, write
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B. , = i:xl,...,x. 1} (5.2.8)

and define

= mi s . i J J
ug = min {3 : JeE,A_B_Cgc_j+A§i_1§ (5.2.9)

Choose die B and eie Ei-l such that

By
d; ¢ B, ;. A (4, -e)e Xy (5.2.10)

Set x. = d. - e.
1 s

i -Ei = { Bi-l’ xi} s to complete the

recursive determination of the By and X, i€ m. To

construct the Bi’ i € m, choose zije By ie m, j€ u,

so that
By _ “123

A X, = 25, ¥ Aziz + eee + A zi“i (5.2.11)

Write
_ ad=1 j-2

eij = A xi A ziﬂi eoe zi(#i—j+2)
and then cyclic R, i€ m are defined by

Ei = i eil, LI IR eiﬂ } (502013)
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Consider constructing {5a§ mi for the example above,

where A,B and C are given in (5.2.1). In this case m = 2,

and
R, = 1], 1}) , R, = 5 (5.2.14)
2| |-12 -4
3) 117 1

can be constructed using the algorithm. For N(C) = .

o 1T}, it is immediately apparent that
ging(c) =0 i=1,2 (5.2.15)

Based on this observation, the following theorem is
put forward as a necessary condition for pole assignment
by output feedback, in the case when A can be decomposed
into m subsets A; of size equal to dim(gi), i€ m, and
in each Ai" complex elements occur in conjugate pairs,
otherwise denoted as being symmetric.

Theorem 5.2.2,

Given {A | B} = X, dim(B) = m and any set A capable
of being decomposed as described above, there exists a

matrix K such that the eigenvalues of (A + BKC) = A = U 4,

only if
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AR, N N(C)) CR; ' (5.2.16)

Proof: For F = KC such that spectrum (A + BF) = A let
Fe (] F(R,) and

iem

A, = spectrum (A + BF | R.) iem (5.2.17)

since R,;, i € m, is a controllability subspace of (A,B).
Also, since F is such that the Bl i€ m are cyclic, and,
from (41.2.2), dim(EﬂEi) = 1, F is uniquely determined
by {Ai} o’ But by assumption F = KC. Hence KC ¢ N F(Ei)

iem
and (5.2.16) follows since

(A + BKC)R, C R, iem (5.2.18)

As a further example, consider the system described

by (5.1.1),(5.1.2) where

A=§o 1 o o 0}],B= [o 0o o] ‘ (5-.2.19)
00 1 0 O 1 0 0
0 0 0 0 O 0 1 0
0 0 0 0 1 0 0 O
o0 0 0 0 O] [0 0 1]

C = [1 0 0 0 O (5.2.20)
lo o 0o 1 o}
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In this example, the‘gi, i € m may be constructed as

R, = 0] ,Jo1\s R, = C o] 1
) 0 1 0
1 0 0 1
1 0 o| |-1
0] 11 -11 L o]
Ry ={[0 0o 1 o o]} (5.2.21)

It is evident that

A(R, N N(C)) ¢_131 i=1,2,3 (5.2.22)

and, in fact, complete pole assignment cannot be achieved

for this system using output feedback.

5.3. Pole assignment by output feedback: a lower bound.

Jameson (J1) and Davison (Da1)(DaCi) have considered
the problem of pole assignment by output feedback, and a
lower bound on the number of eigenvalues of (A + BKC) that
can be arkitrarily chosen, for some K, has been established.
The original theorem (Dai) considered the case when the
state space X is cyclic withrrespect to A.

Theorem 5.3.1.

If (A,B) is a controllable pair, C has rank p < n, and
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thé state space X is cyclic with respect to A, then a
matrix K can be found such that p eigenvalues of (A + BKC)
are arbitrarily close (but not necessarily equal) to p
predetermined values, chosen such that complex values

occur in conjugate pairs.

Proof: The proof (Dal) of this theorem, which is algebraic
in nature, will not be included here.

This theorem has been extended (DaC1) to the case
where X is not cyclic, by using the result of the following
theorem, which was first established by Brash and Pearson
(BP1).

Theorem 5.3.20

Given a system described by (4.1.1), (4.1.2), where
(A,B) is a controllable pair, there exists a matrix K such
that the state space X is cyclic with respect to (A + BKC).
Proof: The proof of this theorem (BP1) is of a fairly
complicated algebraic nature and will not be included here.

The following is put forward as a possible simple
method of constructing the matrix K of Theorem 5.3;2.
Consider the decomposition of the state space X studied
by Kalman (K1). Write B = (b, b,...b ), where b, is the
ith. column of B, i € m. Construct the following m columns

of n vectors:
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b, b ees b (5.3.1)

1 2 m
Ab1 Ab2 coe Abm
Ao, APb,... A%p
etc,

. such that a vector in a particular row and column is
included only if it is linearly ;ndependent of the other
vectors in that row, and all the proceding rows, and
every vector above it in the column is included. Now
write the subspace HIC_}_C' as the span of the vectors in
the ith. column of the vector array (5.3.1), i€ m. It

can be shown that

-

By -x . (5.3.2)

U, NB=h (5.3.3)

1]
.
m

i

if (A,B) is controllable, and rank (B) = m. Let p; = dim(gi).

For sorme ordering of the;gi set

ry = b1, Fiei = A?i i=1, ey p1-1
Tpy+irt = ATpai M Tp 4 € N(c)
= Arp1+i + b, if rp1+i9£‘ N(C)

i = pi,'.oo, p2-1
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r . = Ar . if r -ey_(c)
p2+1+1 pzj; p2+1

= Arp2+i + by if rp2+i¢' N(C)

i =p2, ee ey p3-1

and so on, until 'Z:pi = n vectors r, are obtained such
A ~ iem
that, for b; e B

r, = Ar, + b, i€ n-1 (5.3.4)
Choose K such that
BKCr, = by (5.3.5)

where b, = 0 for all r, € N(C) by construction. Hence K

will always exist. Substituting (5.3.5) in (5.3.4) yields
r. = (A + BKC)ri v ie n-1 (5.3.6)

i+1 —

'showing that X is cyclic with respect to (A + BKC), or
{a+mkc |2} =X (5.3.7)
Whether this construction of K works depends heavily

on thé choice of the order in which the‘I_Ji are taken,

In particular, it will fail if for some choice of order,
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any of r_ , i€ m=-1, are contained in N(C). It has not
been possiﬁle to find any criterion for the choice of

the order of thelI_J_i which will guarantee that the con-
struction will work. If this were possible it would provide
‘a simple proof for Theorem 5.3.2. The example of Section
5.2, where A,B and C are given by (5.2.19), (5.2.20) is

used here to demonstrate the construction. The'gi can

be simply determined as

u, = (o], [1] » Uy = [ [o] » Uy = [T0] . [0]
1 0 0 0 0
0 0 1 0 0
0 0 0 b 1
o] lo o (1] Lol
(5.3.8)
Choose r, = by € N(C). Hence r, = ar = [0]§ N(C)
0
0
1
.0
-Choosing therefore ry = Ar, + b1 = [07le N(C), then
1
0
0
L O
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r, can be chosen such that ry = Ary = (1] ¢ N(C), and
| 0
0
0
L O
rs = Arh + b2 = [0] . The matrix K is then determined
o .
1
0
| O
as satisfying
BKCr, = b,, BKCr, = b, ' (5.3.9)
Such a‘K is given by
K= J[o 1 (5.3.10)
1 o)
o 0

It is simple to check that {5.3.7) holds. It is worth

noting that the procedure will also work if r_ = b and

1

is chosen.,.

1’
ry = Aré + b3, but not if ry = b2
The approach to the output feedback pole assignment

problem described in this section gives little indication
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as to which (n - p) eigenvalues cannot be altered by
output feedback. If any of these eigenvalues are in the
right half complex plane, then this approach cannot yield
a stable closed loop system. The following section goes

some way towards answering this question.

5.4, Stabilization by output feedback.

In maﬁy cases where it is not possible to achieve
arbitrary pole placement by output feedback, it may be
possible to arbitrarily alter those eigenvalues which are
unstable and hence stabilize the closed loop system.

Consider the system described by equations (5.1.1),
(5.1.2) which is-assumed to be controllable and observable,
and defing the subspace V Ciﬁ, as the smallest A-invariant
subspace containing N(C), that is, V is the smallest

subspace such that
AVCV, N(C)C Y (5.4.1)

From this, it can be seen that

T L L 4 T

AV CY, ¥YvC¢ (5.4.2)

i
and V is maximal with these properties. Recalling the

construction of maximal invariant subspaces in Chapter Two,



4 1
it is easy to see that V is given by V = E?, where

ve = cT, vi*t - T aT)-1yd ' (5.4.3)

Taking orthogonal complements it is easy to see that
V = N(C) + AN(C) + ... + A™In(0) (5.4.4)

The following theorem was recently presented by Li (Lit).

Theorem 5.4.1.

There exists a matrix K such that the eigeﬁvaiues of
(A + BKC) are stable if the eigenvalues of A LX (A
restricted to V) are stable. '
Proof: The proof presented by Li (Li1) is complex, and
will not be included here. The result however can be
shown to be a special case of a result obtained by Wonham
(W2) in relation to the multivariable tracking problem,

and will be proved as a direct result of the following

" theorem (Dy).

Define ap(s) as the minimal polynomial of X with
respect to (A + BF), and a;(s), a;(s) as its unstable and
stable factors respectively. For F = 0, define a(s) =

a*(s)a™(s) similarly. Denote

X'(A + BF) = N(ag(A + BF)) (5.4.5)
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x*(a) = NGa*(A)) (5.4.6)

V is defined as above.

Theorem 5.4.2.

There exists F with

vV CN(F) | _ ' (5.4.7)
such thaf (A + BF) has stable eigenvalues, if and only if

xf(aynv=o0 | ' fs.&.a)
Proof: F can always be chosen so that

VY CN(F) | (5.4.9)
Let x be any vector such that x € X' (A + BF) V. Then

az(A + BF)x = 0 (5.4.10)
and, ‘since xe V, and AV (CV,

a;(A + BF)x = a;.(A)x (5.4.11)

Let b(s) be the minimal polynomial of x with respect to

A. Then (5.4.10) and (5.4.11) imply that b(s) a;(s)
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(b(s) divides a;(s)). Hence b(s) must have only unstable
roots. By definition of a(s) as..the minimal polynomial
of X with respect to A, it follows that b(s) |a(s), and
hence b(s) | a*(s). Therefore
+
a(A)x =0 . (5.4.12)
or x € X'(A) V.. Hence

X(a+ BNV C XNy (5.4.13)

By a similar argument, the reverse inclusion holds, and

therefore
X(a+ BNV =xANY (5.5.14)

For sufficiency therefore, assume (5.4.8) holds. Then,

from (5.%.14)
X'(A+ BNV =0 (5.4.15)
and since X =X'(A '+ BF) @ X (A + BF), it follows that

v Cx7(A + BF) (5.4.16)
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Since the system is assumed to be controllable, F can
therefore be chosen to satisfy (5.4.7) such that (A + BF)
has stable eigenvalues.

Necessity is proved by noting that (A + BF) having all

stable eigenvalues implies that
x*(a + BF) = 0 (5.4.17)

and hence (5.4.8) follows from (5.4.14).
The result of Theorem 5.4.1 can now be obtained directly

from Theorem 5.4.2 by noting that
N(C) CY CN(F) ' (5.4.18)
implies that a solution K exists to F = KC.

These results obviously hold also for the dual system

described by the equations

2=4ATz + cTw | (5.4.19)
v = Bz (5.4.20)

where, in place of V, the subspace of the dual state space
Z considered is W, where W is the smallest AT-invariant

subspace of Z containing‘ﬁ(BT). Since the eigenvalues of
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(A + BKC) and (A + BKC)T are the same, the following
theorem can be stated (Lit).

Theorem 5.%4.3.

P

The controllable and observable system described by
(5.1.1), (5.1.2) is stabilizable by output feedback if
{ eigenvalues of A ly_%ﬂ { eigenvalues of AT ‘ y_} contains
only stable eigenvalues. |
Proof: This follows simply from Theorém 5.4.1 and its

dual.

5.5. Pole assignment by output feedback: . extension of

the state space

Two ways exist of achieving completé pole assignment
by output feedback using an extension of the state space,
these being the dynamic compensator of Brasch and Pearson
(BP1) and an observer (L1), (W3).

Considering first the dynamic compensator, this invblvés,
the determination of a sufficient dimension for an extension
of the form described in Section 2.3. Brasch and Pearson
(BP1) have shown that for a controllable and observable
system, as described by (5.1.1), (5.1.2), a sufficient
dimension for such ar extension is equal to min(pc,po),

where P, and p, are the smallest integers such that

. p : .
rank (B AB ... A °B) = n (5.5.1)
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and
P_.
rank (CT,ATCT; ...,(AT) oCT) =n (5.5.2)

Their approach is a complex algebraic one, which does
not readily lend'itself to the determination of the minimal
order for such an extension, an unsolved problem. However,
the geometric approach also has not been fruitful in
respect of this problem in the absence of any sufficient
condition for pole assignment by output feedback. A
possible approach to this problem may be by consideration
of {5:3 m constructed in Section 5.2,

The pole assignment properties using observers (L1)
are well known and will not be pursued here. It is of
interest however, to consider the geometriq approach to
dynamic observers which is described in the following

section.

5.6, Geometric theory of observers

This theory (W3),(WM2) is based upon the geometric
concept of a cover. Let Z be any subspace of X such that

ZNB = o.

Definition 5.6.1.

A subspace V (X is a cover for Z, relative to the

pair (A,B) if
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AVCV+B, V+BD2Z ~ | (5.6.1)
The cover index of Z is the smallest integer v with the
property that for every symmetric set A of v numbers,
there exists a cover V of Z with dim(V) = v, and an F

such that

A (5.6.2)

"

(A + BF)V CV, spectrum(A + BF [ V)

Consider now the {.13_1} m? the construction and properties

of which were described in Section 5.2. Define
7=max{1=—Z-C§+-I3-i+gi+1+”'+3mz (5.6.3)

In the genefal case for Z (CX, the determination of
v and corresponding X'for various A is an unsolved problem.
For the case when dim(2) = 1, however, it can be shown (WM2),
assuming the pair (A,B) is controllable, that v = dim(g.y) - 1-..

An observer can now be demonstrated as the dual structure
of a cover. Assume that the pair (C,A) is observable, or
dually, (AT,cT) is controllable. Let X' denote the dual
state space.

Definition 5.6.2.

A subspace V' (C X' is an observer for Z2' (C X', relative

to (C,A), if
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Alvicy + cT, o vroe T 20 (5.6.4)
The observér index of Z' is the émallest integer w having
the property that for every symetric set I of w numbers,

there exists an observer V' for Z' with dim(V') = w, and

an F such that

(A? + CTFTl!'C:lU ’ Spectrum(AT + CTFTI_!') =T
(5.6.5)

The relationship of this definition of the geometric
concept of an observer to that described by Luenberger (L1),
is immediately made obvious by considering (5.6.%4) in
matrix terms. In particular, let dim(Z') = 1, and 1let
2" be a basis vector for Z'. Similarly, let VT be a basis
matrix for V'. Then (5.6.5) implies that ; w A w matrix T
exists such that
(AT + cTFT)vT = vTrT (5.6.6)

or

V(A + FC) = TV (5.6.7)

Also, (5.6.4) implies that
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§ [c]Cnzh) ; (5.6.8)
LA
or

Z° = MC + NV - (5.6.9)

for some M and N, and spectrum(T) =T, by (5.6.5). The

relationship to the form of a Luenberger observer des-

cribed by
e(t) = Te(t) ~ VFy(t) + VBu(t) (5.6.10)
x(t) = Ne(t) + My(t) (5.6.11)

which estimates the single linear functional

u(t)

z x(t) (5.6.12)

ult) = z0%(t) = My(t) + Ne(t) (5.6.13)

is now clear. The error (e(t) - Vx(t)) is then governed

by the dynaﬁics
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(e(t) - Vvx(t)) = T(e(t) - Vx(t)) (5.6.14)

and, as has been shown, the eigenvalues of T are arbitrary.
The concept of a dual observer, introduced by Brasch
(Br1), aﬁd described by Luenberger (L3), is now straight-
forward, and leads to an interesting new approach., =In a
similar fashion as for the observer, from the definition
of a cover, it follows tﬁat there exists a v X v matrix S

such that

(A + BF)V = Vs (5.6.15)
from (5.6.2), or

AV - VS = BFV | (5.6.16)

Also, from (5.6.1),

N [vF ] cnezh | (5.6.17)
sT
or
Z = VM + BN . (5.6.18)
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and spectrum(S) =A. The dual observer can be described
as a special form of controller wﬂich'permits an approxe
imation to complete freedom as to how input is made to
the system. For example, if the output y{t) were to be

introduced into the system in the form
x(t) = Ax(t) + Ky(t) (5.6.19)

then the eigenvalues of the system, i.e. of (A + KC),
could be arbitrarily assigned by choice of K, if the
system were observable.

The dual observer takes the form described by

e(t) = Se(t) + Mw(t) (5.6.20)
w(t) = y(t) + CVe(t) (5.6.21)
u(t) = Fve(t) + Nw(t) (5.6.22)

where AV - VS = BFV, K = VM + BN, from (5.6.16) and
(5.6.18). A straightforward development then yields

that

x(t) + Ve(t) = A(x(t) + Ve(t)) + VMw(t) + BNw(t)
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A(x(t) + Ve(t)) + Kw(t)

(A + KC)(x(t) + Ve(t)) (5.6.23)

from (5.6.20)-(5.6.22). Thus the eigenvalues of (A + XC)
can be chosen arbitrarily, if the system is observable,
as can those of S if V is chosen such that dim(V) > v,
where v is the cover index of K. |

The problem of determining the minimal order for
an observer or its dual is therefore that of determining
the cover index for a subspace Z (CX, or the observer
index for Z' (_ X', which in the general case is an

unsolved problem.
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CHAPTER SIX

Conclusions and areas of further research

6.1. Conclusions

The intention of this thesis has been to extend the
theory relating to linear multivariable systems using the
geometric approach, by considering the related concepts
of invariant and controllability subspaces. This extension
has been obtained in the field of output feedback control,
an area of obvious practical significance.

The theory relating to the main application of this
geometric épproach, that is, decoupling, has been extended
in the-non;dynamic feedback case to provide a useful
necessary and sufficient condition for 5 solution to the
decoupling problem to be implemented by output feedback.

In the special case, when the number of system inputs

equals the number of sets of system outputs t§ be decoupled,
the case which is most generally treated in the literature,
a necessary and sufficient condition has been established
for the existence of any output feedback solution to the
decoupling problem.

Consideration of the case when the control is permitted
to contain dynamic elements has led to a necessary and
sufficient condition for the existence of an output feed-
back decoupling control of this form. For economic reasons,

it is of importance to minimise the order of the additional
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A dynamics'required. As a contribution towards achieving
this, a.constructive method has been presented for obtain-
ing an output feedback solution to the decoupling problem
which requirés'in general a small order of dynamic
compensation relative to the order of the system dynamics.
It has not been possible, however, to show if this order
Ais mini@gl, or if not to discover other ways of achieving
a minimal order,

Also of interest in multivariable design is the problem
of pole assignment by outpﬁt feedback; This is an entirely
new area for application of the geometric concepts which
have been considered here, and this application has proved
as yet to be of limited succeés. The discovery of a
necessary condition for pole assignment by output feedback
has perhaps pointed the way to the existence of more useful
fesﬁlts in the case of non-dynamic feedback. Qertainly
the geometric ideas utilised here have provided a simple
proof concerning the stabilizability of multivariable
‘systems by output feedback. In the dynamic control case,

a geometric theory of pole assignment compensators, though
intuitively its existence is apparent, has proved difficult
to formulate. In contrast, the geometric theory of dynamic
observers is well developed and has been shown to exhibit
clearly the concept of a "dual observer", and open an

interesting.new approach to the problem of minimizing
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observer order.

An assessment of the value of the geometric theory
presented here in relation to the continuously expanding
store of information concérning the analysis and design
of multivariable systems is difficult to make. That it
is most suited to problems involving "hard" design con-
sffaints is emphasised by its success in dealing with the
decoupling problem. However, it has been shown that some
extension is possible into the field of "soft" constraints,
such as pole assignment, stabilization and observer theory.
Additional application has been found in the field of

multivariable tracking systems.

6.2. Suggested areas of further research

As has been pointed out elsewhere, the general decoupling
problem is as yet unsolved. .The solution to this lies in
the ability to systematically generate non-maximal invariant
or controllability subspaces. This fact is equally
‘applicable to the case of output feedback decoupling, where
it would be of interest to establish a systematic procedure
for determining invariant subspaces of (A,B), maximal or
not, which can be generated by output feedback, that is,
which are (A + BKC)-invariant for some K. A search over
all such subspaces, together with Theorem 2.3.1 would then

yield a comﬁlete solﬁtion to the existence of a non-dynamic
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output feedback control for decoupling.

In the field of dynamic decoupling control, the
remaining interest lies in determining minimal order
dynamics.

. In the general field of linear multivariable design
theory, the opportunities for further research are vast,
The problem of pole assignment by output feedback alone
requires intimate insight into the structure of a multi-
variable system. This may or may not be provided by the
geometric approach, perhaps requiring more powerful tools
such as multilinear algebra or affine geometry,. A possible
approach to the general multivariable design problem may
be through a "softening” of the constrainfs in the decoupling
problem. Basically, this would require an effective method’
of measuring the "distance!" between two vectors, or vector
subspaces, a concept which is open to development.

Finally, it would be of interest to explore the com-
putational aspects of the geometric approach described here.
"Some aspects of this have been considered (MW2), and the
basic vector space operations expressed in terms of matrix

computations.
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