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ABSTRACT 

This thesis presents an original extension of 

the geometric theory of linear multivariable systems. 

The theory is developed for the case when feedback 

control for the system concerned is restricted to be 

derived from only the observable outputs of the system. 

The main results obtained are in the field of non-

interaction for linear multivariable systems, the chief 

application of the geometric theory introduced by 

Wonham and Morse, and described in the thesis. Necessary 

and sufficient conditions are obtained for the existence 

of decoupling controls, and a method of constructing a 

dynamic controller of low order is given for the case 

when it is not possible to obtain non-interaction by 

non-dynamic output feedback. 

A further extension is made in the case of pole 

assignment by output feedback, and for the less stringent 

condition of system stabilisation, a theorem providing 

a sufficient condition for stabilising a system by 

output feedback is proved using the geometric theory. 

Additional topics concerned with output feedback control 

are discussed including the geometric theory of observers. 
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NOTATION 

Capital letters denote matrices; underlined capital 

letters denote linear vector spaces. The same symbol, 

e.g. A, is used to denote both a matrix A and its map, 

e.g. A: X 	X. The superscript T, e.g. AT, is , s used to 

denote the transpose of a matrix. The zero space is de-

noted by 0 and the empty space by 0. The dimension of a 

space V is denoted by dim(V), the rank of a matrix A by 

rank(A), and the range of A by A or [As. 

The sum of two spaces, i.e. the space spanned by 

the union of their bases, is denoted by +, that of 

several spaces byZ. Their direct sum is denoted by(19. 

The orthogonal complement of a space V is denoted V . 

A-1V denotes the inverse image of V under A, or the set 

,3c: Axe 16 of vectors x of appropriate dimension. The 

null space of a map A is denoted by N(A). The restriction 

of a map A to a subspace V is denoted by AI V, and tAIV 

denotes the subspace defined by V + AV + 	+ An-1V, 

where A is a matrix with n columns and dim(V) 6 n. 

For k a fixed positive integer, k denotes the set 

1,112,...,k1, and a set of k subspaces R. , iek, is denoted 

by i R 	 . Also, ko  = 

If a(s) is a polynomial in st  a
+
(s), a(s) are used 

to denote its factors with roots in the open. right half 

or closed left half of the complex plane, respectively. 

For b(s) another polynomial, a(s)lb(s) is read as "a(s) 

divides b(s)". 
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CHAPTER ONE 

Introduction 

1.1. Introduction 

The problems of analysis and design of linear 

multivariable control systems have received considerable 

attention over a period of at least the past twenty years. 

This is not surprising since many physical systems can be 

approximated closely by systems of this type, though, for 

. ease of analysis, a single predominant input only was 

often considered and utilised for control, with only a 

single output chosen to be controlled. Much work has been 

devoted recently however to extending results which have 

been obtained for single input, single output systems to 

the multivariable case, and ways have been found for using 

classical design techniques to deal with multivariable 

system design in the frequency domain (R1, M1), where the 

system is expressed usually in the form of a transfer 

function matrix. The technique of optimal control theory 

(AF1)(13111) has been shown to be directly applicable to 

multivariable systems, the representation of the system 

in this case being in state variable form. However, this 

approach does not seem to solve many practical engineering 

problems. It appears therefore that no entirely satis-

factory technique exists for overcoming the design problems 

inherent in multivariable systems. 
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In the last few years some attention has been 

devoted to the inherent structure which exists in a 

multivariable system. It is perhaps because insufficient 

regard is paid to this structure that the previously 

mentioned methods have not been entirely satisfactory. 

The module-theoretic treatment (K2) of the minimal realis-

ation problem by Kalman demonstrated how a fundamental 

algebraic treatment of the structure of dynamical systems 

leads to a clear understanding of the problems of realis-

ation and the development of successful algorithms (HK1). 

This theory has not however been shown to have an extension 

to the problems of control. The possibility of a useful 

geometric treatment of the structure of multivariable 

systems with direct application•to control problems has 

been introduced by Wonham and Morse (WM1). This has been 

shown to give a precise interpretation of the problems of 

disturbance localization and decoupling, leading to a 

transparent explanation of the difficulties involved in 

achieving these design constraints. Further applications 

of this theory are being discovered in multivariable track-

ing (W2), (BhP1), observer theory (W3) and canonical 

representations of linear multivariable systems (WM2). 

At present the geometric approach to such problems 

has been concerned with the case where no limitation is 

imposed on Which states of the system are employed for 
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feedback control. In this thesis, the restriction is 

made that feedback control may only be implemented from 

the system outputs, which are linear combinations of 

the states, and from which the states themselves cannot 

be directly measured. From an engineering viewpoint, 

output feedback is often the only case considered for 

practical reasons. 

1.2. Outline of the thesis and on final contributions 

The multivariable control problem with particular 

reference to output feedback is introduced in Chapter 

Two. Also in this chapter, the basic geometric concepts 

of invariant subspaces and controllability subspaces 

of (A,B) are defined and their properties examined. 

In Chapter Three the general problem of decoupling 

a linear time-invariant multivariable system, without 

the use of additional dynamics in the form of compensators, 

is considered using the geometric concepts of Chapter 

One. The whole of Section 3.3. is an original contribution 

to this problem. In particular, Theorem 3.3.1. establishes 

new necessary and sufficient conditions for a set of 

controllability subspaces to form a solution to the 

output feedback decoupling problem in its geometric 

interpretation. In the particular case when the number 

of inputs equals the number of output blocks to be 

-10- 



decoupled, Theorem 3.3.2, provides new necessary and 

sufficient conditions for the existence of a solution 

to the output feedback decoupling problem. 

The introduction of additional dynamics, and the 

solution of the resulting decoupling problem is con-

sidered in Chapter Four. The output feedback decoupling 

problem in this case is the subject of Sections 4.2 - 4.5, 

which represent an original contribution to the subject. 

Theorem 11.2.1. provides a necessary and sufficient con-

dition for the existence of a dynamic output feedback 

decoupling control, and Theorem 4.3.1. establishes necessary 

and sufficient conditions for the existence of such a 

control using additional dynamics of low order, and such 

that complete controllability of the augmented state space 

is preserved in the decoupled system. In addition the 

proof of this theorem contains a new and original procedure 

for constructing a solution to the output feedback 

decoupling problem. The controllability subspaces so 

constructed moreover form a solution for which the 

augmented state space is completely spanned by the direct 

summation of these subspaces. This procedure is compared 

with existing methods using alternative approaches in 

Section 4.6. 

The problem of pole assignment in multivariable 

systems is considered in Chapter Five. The output feedback 



pole assignment problem is approached using geometric 

ideas in Section 5.2., and Theorem 5.2.2. presents a new 

necessary condition for complete pole assignment in this 

case. Section 5.3. considers existing work on output 

feedback pole assignment and a new, but unproven, method 

is put forward for determining in a simple manner an 

output feedback matrix such that the closed loop system 

has a cyclic state space. Section 5.4. is concerned with 

the problem of stabilization of a multivariable system 

by output feedback. A geometric approach is used in 

Theorem 5.4.2. to provide a new concise proof of a 

recently established result, Theorem 5.4.1.. The re-

mainder of this chapter is concerned with the addition of 

dynamics to achieve complete pole assignment by output 

feedback. In particular, Section 5.6. describes the 

geometric approach to observer theory, from which the 

concept of a dual observer follows clearly, the precise 

demonstration of this being original. 
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CHAPTER TWO 

Feedback control and basic geometric concepts 

2.1. Mathematical description of linear time-invariant 

multivariable systems  

There exist in common usage three main ways in 

which the dynamical behaviour of a linear time-invariant 

multivariable, or multiple input, multiple output, system 

is described. 

(i) state space description: 

x(t) = Ax(t) + Bu(t) 

y(t) = cx(t) 

where u(t) is an m-vector of controlled inputs, y(t) is 

a p-vector of measured outputs, x(t) is an n-vector of 

state variables and A,B and C are matrices with real, 

constant elements. 

(ii) weighting function matrix description: 

Y(t) = ./W(t s)u(s)ds 
	

( 2.1.3 ) 
0 

where W(t,$) is a matrix of weighting functions. 
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(iii) Laplace or Fourier transform description: 

Y(s) = G(s)u(s) 	 (2.1.!k) 

or 

L(S)y(s) = M(s)u(s) 	 (2.1.5) 

where G(s) is a matrix of rational transfer functions, 

L(s) and M(s) are matrices of polynomials in s. 

Of course, explicit relationships exist between these 

three descriptions, (ii) and (iii) in particular being 

equivalent descriptions in the time and frequency domains 

respectively. The equations of (i) differ in their use 

of the concept of state variables x(t), where x(t) E X, 

the state (vector) space. In general, X = Rn, and this 

will be true in the following. A large proportion of the 

study of linear, time-invariant multivariable systems has 

made use of the state space formulation W I  and its 

mathematical properties are only now beginning to be fully 

understood (K1), (Pol.). The results described in this 

thesis will be predominantly concerned with this formulation. 

Let U denote the space of m-vector valued functions 

that are defined and continuous on T = (0,T). Consider 

the state evolution map F: TXXXU---) X. This is 



given by the equation 

3,0) 	
t eAt x(t) 	eA(t-s)Bu(s)ds 

(1.  

(2.1.6) 

which defines the trajectory of the state x(t), 0 < t < T, 

under the influence of the control u(t), 0 < t < 

starting from an initial condition x(0). 

2.2. Feedback  control 

From a practical viewpoint, the most useful form of 

control is that which is generated by feedback from 

information related to the behaviour of the system. Owing 

initially to the popularity of the linear quadratic optimal 

regulator problem (AF1), the most widely studied form of 

feedback is that described by 

u(t) = Fx(t) 	 (2.2.1) 

Since, in general, C A  I in most practical situations, 

a control of this form cannot be directly implemented. 

This may be overcome in one way, by implementing (2.2.1) 

in the form 

u(t ) = F;40 
	

(2.2.2) 

-15- 



where X(t) denotes an estimate of the state vector 

x(t), the determination of which may be based upon avail-

able information from the input u(t1) and output y(t1), 

0 < t1  < t. The determination of 2(t) takes the form of 

a dynamical system, termed as either an "observer" 

(L1),(BG1) in the deterministic case, or a "filter" 

(KB1),(B1) in the stochastic case. 

In many cases it may be possible to choose F in 

(2.2.1) such- that 

F = KC 	 (2.2.3) 

for some matrix K. The following lemma provides a 

necessary and sufficient condition on F for this to be 

possible. 

Lemma 2.2.1. 

A solution K to the matrix equation 

F = KC 	 (2.2.3) 

where K is m X p, C and F are p x n and in X n, and p 

and m, respectively 'are their ranks, exists if and only 

if 

N(c) C N(F) 
	

(2.2.4) 
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Proof: Assume N(C) C N(F). Taking orthogonal complements 

T T F C C (2.2.5) 

Since. FT  is spanned by the 	 Ill= 	E m of FT, thus 

f. = CTk. 	 (2.2.6) 

for some k. E RP I  i E m. Writing 

km) 

yields the required solution. 

Assuming K exists, transposing (2.2.3) 

FT = CTKT  

(2.2.7) 

(2.2.8) 

Thus 

C 
	

(2.2.9) 

or 

N(C) C N(F) 	 (2.2.10) 
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If it is not possible to obtain a closed loop 

system with the required properties using a control where 

F satisfies (2.2.3), then it may be possible to define, 

by a suitable extension of the state space, a higher 

order system with the required closed loop properties and 

for which F satisfies (2.2.3). This approach has been 

termed "dynamic compensation" (P1),(PD1),(BP1). A 

specific form of state space extension developed by Morse 

and Wonham (MW1) will be used extensively in the following, 

and is described here. 

2.3. State space extension 

Let X denote an n-dimensional extension of the 

state space X. Denoting the extended state space by X, 

then 

(2.3.1) 

Denoting the input and output spaces by U and Y respectively, 

the extended input and output spaces are defined by 

1.1 = U ® U 	 (2.3.2) 

and 
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y 
	

(2.3.3) 

The system (2.1.1),(2.1.2), and the additional dynamic 

elements 

S(t) = 

Za."-(t) 

where u E U, y E Y, can be described in the extended 

space by 

x(t) = Ax(t) 

c(t) = CR(t) 

where x(t) = 	x(t) , ;;.(t) = 	y(t) ] , fl(t) = 	u(t) , 
x(t) Ls(t) 	Lu(t) 

A= FAO] , B = rB 0 , 1 	= rc 01  . 
Lo oi 	LO 	LO 

In general, B and -6 'will be chosen so that 
N 	kyr 

B = C = I,. n (2.3.8) 
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G
2 	

K
21 K

22 

G = [G1] , 	= [K11 K12] (2.3.11) 

the S X n identity matrix. 

Consider now a feedback control described by 

u( t ) = 	+ Zv(t) 	 (2.3.9) 

where F can be expressed as 

^ 
F = KC 
	

(2.3.10) 

^ ^ 
and G, K have the partitioned forms 

Applying this control to the system (2.3.6),(2.3.7), 

and forming the closed loop transfer function between 

Y(s) and v(s), yields 

Y(s) = (I - G(s)H(s))-1G(s)K(s)v(s) 	 (2.3.12) 

where H(s) = K
11 

+ K12(sI - K22)-1K21 

K(s) = a1 	K
12(sI - K22

)-1G
2 

G(%) = C(si 

This is therefore a more restrictive form of dynamic 

compensation than that considered by Rosenbrock (R1), where 
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H(s) and K(s) are not constrained to have the same 

characteristic polynomial, i.e. the determinant of 

(sI - K22). However, its consideration does con-

veniently restrict the choice of compensators K(s), H(s) 

to be both physically realizable, and, if K22 is chosen 

accordingly, asymptotically stable. 

2.4. Invariant and controllability subspaces of(A,B) 

The development in this section is due to Wonham 

and Morse (WM1), who introduced the concept of an 

invariant subspace of (A,B). This is a natural extension 

to the feedback situation of the concept of simple invari- 

ance, i.e. a subspace U C.  is said to be A-invariant, 

if AU C:U for some map A: X--> X.. 

Definition 2.4.1. 

A subspace V C:X is called an invariant subspace 

of (A,B), if it is (A + BF)-invariant for some F, i.e. 

if the set of matrices 

F(V) = 	F: (A + BF)V CV 

is non-empty. 

Lemma 2.4.1. 

The set F(V) defined above is non-empty if and only 

if 
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AV CV + B 
	

(2.4.1) 

Proof: Necessity follows simply, since by definition 

B + IA + BF)v D AV 

A + liF)V C v 

which implies (2.4.1). For sufficiency, let Xi  be any sub-

space of X such that 

VG x1  = X 	 (2.4.2) 

and define Q: X--:›Xi  as the projection of X onto X1  along 

V. Then, from (2.4.1) 

QAV (=GIB 	 (2.4.3) 

or, writing V and B as basis matrices for V and B, 

QAV = QBZ 	 (2.4.4) 

But, by Lemma 2.2.1, Z can be written as 

Z = 	 (2.4.5) 
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since N(V) = 0 by choice of V as a basis matrix. Thus, 

(2.4.4) becomes 

Q(A + BF)V = 0 
	 (2.4.6) 

or, since N(Q) = V by choice of Q 

(A + BF)V C V 
	

(2.4.7) 

The second important geometric concept introduced 

by Wonham and Morse is that of a controllability subspace. 

Definition  2.4.2.  

A subspace R CX is called a controllability subspace 

of (A,B) if for some F 

+ BF InnBI = R 
	 (2.4.8) 

Lemma 2.4.2. 

Given A,B, and a subspace R C:X, R is a controllability 

subspace of (A B), if and only if 

AR CR B 
	 (2.4.9) 

and 
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R = lim Sj 	j = 0,1,... 	(2.4.10) 

	

where S
o = 0, S 	(ASS  AS + B) n R. 

Proof: From (2.4.8), R is an invariant subspace of (A,B) 

since 

(A + BF)R =(A + BF)Jk + BpsiBr)R1 

= (A + BFkar1 B... 	(A + BF)n(R(1B) 

Ca 

Therefore, by Lemma 2.4.1., F(R) is non-empty if and only 

if (2.4.9) is true. Let 

+ BF IBrIRI = R 

Then F E F(R). Define, for j c n 

j-1 
Pi  = 2: (A BF)i(B(l R) 

i=0 

Then 

= (APj-1 	wrIR 	 (2.4.11) 
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For the proof of equation (2.4.11), it is easily seen 

that Pi  can be written, from its definition, as 

Pj (A BF)0-1  + BnR 

t-. 	(A + BIpi-1 + Eon R 	j E n 	(2.4.12) 

.for, since Pi-1  C R, j E n, it follows that (A + BF)P C R 

But  

j-1 
B 	(A + BF)P3-1  = 13 + AP 

which, used in (2.4.12), yields (2.4.11). 

Thus 

n-1 
R = 	(A + BF)i(BnR) 

i=1 

= pn 

= lim Si 	j = 0,1,... 	(2.4.13) 

Conversely, if R = lin Sj, j = 0,1,..., then 

R = Sn  

= Pn  
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A + BF I B (-)1/ 	 (2.4.14) 

The following fact follows immediately from the proof 

of this lemma. 

Corrollary to Lemma 2.4.2. 

If R is a controllability subspace of (A,B), then 

+ BF IBniq =R 

for all F e F(2.),, i.e. such that (A + BF)R CR. 

For a more intuitive viewpoint, it is worth con-

sidering the concepts of invariant and controllability 

subspaces of (A,B) in the following way. Consider the 

equation describing the state trajectory for the system 

(2.1.1),(2.1.2), i.e. 

x(t) = eAtx(o) +f
t 

eA(t-s)Bu(s)ds 
	

(2.4.15) 
0 

where x(o) is the initial state at time t = 0. An in-

variant subspace V of (A,B), by using the result of 

Lemma 2.4.1., can then be viewed as a set of x(0), such 
4.01-eaAlx0) 

that for some u(tk, t > 0, then x(t) E V, for all t > 0. 

Note that the state trajectory can start at any vector 

x(0) contained in V, the criterion being that x(t) will 

range only over V. 
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The concept of a controllability subspace of (A,B) 

can then be regarded as a natural step from this, by 

forming the controllable subspace R C:V1  i.e. 

R=Bnv+ (A--+ BF)B n v 	(A + BF)n-1Bn  v 

= 	A + 13F I Brivl 
	

(2.4.16) 

where F is chosen such that that (A + BF)V C V. Equation 

(2.4.16) will later be shown to be equivalent to (2.4.8) 

for R C=V (Theorem 3.2.1.). 

Alternatively, R can be considered in a reachability 

context as the set of x(t) which are reachable from the 

origin, x(0) = 0, by trajectories entirely contained in 

V, i.e. 

x(t) 	e 
t 

A(t-s)Bu(s)ds 
0 

E V 	 (2.4.17) 

for some control u(t), t > 0. Note here that, in contrast 

to the case of invariant subspaces of (A,B), the system 

state is constrained to start from the origin x(0) = 0, 

and range entirely in connected invariant subspaces of 

(A,B) to form a controllability subspace of (A,B). 
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2.5. Algebraic properties of invariant subspaces of (A,B) 

In this section, the special algebraic properties 

of invariant subspaces of (A,B), which were noted (WM1) by 

Wonham and Morse, will be presented in greater detail. The 

majority of the definitions following have been taken from 

Birkhoff and Bartee (BB1). 

Definition 2.5.1. 

A partially ordered set is any set S with a binary 

relation < which is reflexive, antisymmetric, and transitive, 

i.e. which satisfies 

(i) X .<,X, for all X E S, 

(ii) X _< Y and Y X imply X = Y, and 

(iii) X < Y and Y -‹ Z imply X <1Y, for X,Y, and Z e S. 

Definition 2.5.2. 

A lower bound of a partially ordered set S is an 

element X of S satisfying X <Y, for all Y E S. A greatest 

lower bound P is any lower bound P such that Q < P for any 

other lower bound Q of S. 

Clearly, greatest lower bounds are unique by (ii) of 

Definition 2.5.1. A similar definition obviously exists 

for upper bounds, and least upper bounds, which are similarly 

unique. 

Definition 2.5.3. 

A lattice is a partially ordered set in which any two 

elements X, Y.have a greatest lower bound, X A Y, and a 
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least upper bound, X V Y, where the binary operations 

A and V satisfy the idempotent, commutive, and associative 

identities: 

Ll. XAX= X 	XVX = X 

L2. XAY=YAX 	XVY=YVX 

L3. X A (Y A Z) = (X A Y) A Z 

X V (Y V Z) = (X V Y) V Z 

for all X, Y, and Z contained in the set. 

From these definitions, it is clear that the set of 

all subspaces of a linear vector space X is a lattice, and 

in this case, the operations V, and A above are +, and r) 

respectively. 

In any lattice, the semi-distributive laws hold: 

	

(X A Y) V (X A Z) ( X A (Y V Z) 	 (2.5.1a) 

	

X V (Y A Z) ( (X V. Y) A (X V Z) 	 (2.5.1b) 

In the case of linear vector subspaces, therefore, the 

relation < becomes C and (2.5.1a,b) can be written 

n y) 	(x n z) c x n (Y +z) 	 (2.5.2a) 

	

x (Y n z) C (X + y) n (x z) 
	

(2.5.2b) 
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The following important fact holds in particular 

for invariant subspaces of (A,B). 

Assertion 2.5.1. 

The sum of two invariant subspaces of (A,B), V1  + V2, 

is also an invariant subspace of (A,B). The intersection 

of two invariant subspaces of (A,B), Tin v2, is not in 
general an invariant subspace of (A,B). 

Proof: For the first statement, this follows trivially 

from (2.4.1) and the associative property of the operation 

+. The second statement is a consequence of (2.5.2b) since 

E 	n -Y2) C  (-Y1 + .L3) n (-Y2 + B) 

D AV n AV 
1 —2 

A(V1  n V2) —2 (2.5.3) 

with equality in the first relationship not holding in 

general. 

Definition 2.5.4. 
qk 

A semilattice is a set with an idempotent, commlive, 

and associative binary operation. 

Clearly, any lattice is a semilattice under A and under V. 

From the foregoing Definitions and Assertion, it is 

now a simple matter to identify the set of subspaces defined 
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by 

T = V : AV CV + Bi  V C W C X 

as a semilattice, partially ordered by C, with binary 

operation +, under which it is closed (WM1). 

The following assertion can now be seen to hold for 

the set T. 

Assertion 2.5.2. 

The set T defined by 

T= V : AV CV + B, V cw cx1 
has a least upper bound contained in T, which is unique. 

Proof: This follows directly from the above definitions 

and Assertion 2.5.1. 

The following lemma relates to the construction of 

the least upper bound VM  of the set T, a subspace which 

will prove to be of importance in the following. 

Lemma 2.5.1. 

The least upper bound YM  of the set T of subspaces 

V defined in Assertion 2.5.2., is given by Vp, where 

p = dim(W) and 

V = 

14+1 = W  n A -1(0 + B) 
■ ••• 	 •■•• 

j = 0,1,... 

Proof: The equivalence of the sequence 
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vo 	= yin A-1(vJ + B) 	(2.5.6) 

to that defined by (2.5.4), (2.5.5) is first established. 

From (2.5.6) 

j 1  + B) = A-1 ( (On A-1(V + B)) + B ) 

C A-1(vi + B) 	 (2.5.7) 

Thus 

A-1(Vj+1  + B) CA-1(Vj  + B) C 	CA-1(li B) 

(2.5.8) 

The equivalence of the sequences can now be made clear 

by expanding the first few terms of (2.5.6). The equival-

ence is trivial for V°  and VI. For V2, from (2.5.6), 

v2 = v11 	1(v1 	B)  

= V°(-) A-1(V°  + B) it A-1(V1  + B) 	(2.5.9) 

Since, by (2.5.8), A-1(V1 	B) CA-1(V°  + B), it follows 

that 



vo r) A-1(v° fon A-1(v1 B) = von A-1(v1 B) 
(2.5.10) 

which equals V2  by (2.5.5). This process can be repeated 

for V', j > 2. 

Now, let vN  be the least upper bound contained in 

T. Since AVM  C VM  B, it follows that 

vm = vmn A-1(vm B) 	(2.5.11) 

Assume VM  (O. Then 

vm  c vi n A-1(vi + 13) 

= kel 
	

(2.5.12) 

Hence, since YM(= 	VM CO, for all j. Therefore, i m  
.t 

since if, by (2.5.6), 0+1  C 	dim(0+1) < dim(T3  ihen )4  

the known existence of VM  and the fact that VM  C Vj, for 

all j, implies that there exists a finite integer k such 

that 	= Vk, for all j > k. 

Since YM  C Vk, and 

Vk = vkn A-1( vk B) 
	

(2.5.13) 
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or 

AVk  (- Vk  + B 
	

(2.5.14) 

by uniqueness of the least upper bound in T, it follows 

that Vk  = VM. Clearly, since p = dim(W) = dim(V0), and 

the sequence V3, j = 0,1,..., is monotonically decreasing, 

k < p. Hence 

VP = Vk  = VM 
	

(2.5.15) 

and the lemma is proved. 

In the following, VM  C W C X, will be termed the 

maximal invariant subspace of (A,B) 'contained in W, a 

subspace of X. 

2.6. Properties of controllability subspaces of (A,B). 

The following theorem (1011) presents an important 

property of controllability subspaces. 

Theorem 2.6.1. 

Given a controllability subspace R C X of (A,B), 

dim(R) = p, let a(s) be an arbitrary monic polynomial 

of degree p. Then FE F(R) can be chosen so that the 

characteristic polynomial of (A + BF)IR is a(s). Further, 

for any non-zero vector b G Rn B, F can be chosen such 

-34- 



that 

A + BF I b• =R 
	 (2.6.1) 

Proof: Choose F1  E F(R) arbitrarily, and denote (A + BF1) 

by A1. Let b1 E R n B, and p1  be the largest integer such 

that 
p1-1

b b1, A b ... Al  1/  1 1  
are linearly independent. Set r1  = b1  and ri  = 	+ bi, 

j = 2,...,p1. Then the ri , i E 	are independent and 

ri  E R, i E 24. If p1  < p, choose b2  e R n B, independent 

of the set of ri , i c 24. Repeating the procedure for b2, 

setting rp1+3.  . = A1rpi+1-1 + b2, i E 22, and repeating for 

i  etc., a set of r 	= 1, ... s p is obtained, which are 

independent and in R, with the property 

ra..+1  = AI3.  r. + b. 	i E 2=1 	 (2.6.2) 

where bi  E R n B. Choosing F2  E F(R) so that 

BF2r = 
bi 
	E 	(2.6.3) 

with b arbitrary, then 

ri=1 = (A1  + BF2)r 	i E p-1, 	 (2.6.4) 
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A solution F2 to (2.6.3) is guaranteed by Lemma 2.2.1. 

By independence of the ri, therefore 

Al  + BF2  1E11 = R 	 (2.6.5) 

Thus, an m-vector f can be found so that the characteristic 

polynomial of (A1 + BF2 + r1  f
T) IR is a(s).(WI 

An alternative viewpoint for showing the pole assign-

ment properties of controllability subspaces will assume 

the following result. 

Lemma 2.6.1.  (W1) 

A pair (A,B) is controllable if and only if, for 
fi 

every choice of a symmetric set of complex numbers A , 

there is a matrix F such that (A + BF) has A'for%its set 

of eigenvalues. 

Proof: For this proof, reference should be made to 

Wonham (W1). 

Assuming this, write X = R®Lfor some subspace 

L C:X, and let P be the projection of X onto R along L. 

Choose F E F(R), and let A be the restriction of (A + BF) 

to R. Applying the projection P to the equations 

i(t) = (A + BF)x(t) + BW(t) 	(2.6.6) 

where G is defined by BG = RnB 
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yields 

R(t) = WR(t) 	av(t) 	 (2.6.7) 

where. R = Px E R, P(A + BF) = AP, and PB = W. The 

controllability matrix H for this system is then 

n-1_ 
H = [13G ZIG 	A -  BG] 

= P [B (A + BF)B ... (A + BF)n-1B 	(2.6.8) 

Assuming G is chosen to be of full rank, it is easily 

seen that if (A,B) is a controllable pair, then rank (H) = 

dim(R) and (K,TG) is a controllable pair. Complete 

eigenvalue assignability then follows immediately from 

Lemma 2.6.1. 

The concepts and properties of invariant and con- 

trollability subspaces of (A,B) which have been established 

in this chapter will now be applied to some problems in 

multivariable system theory, with particular emphasis 

being placed on the output feedback solution, i.e. when 

the state feedback matrix F can be written, for some matrix 

K, as 

F = KC 
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It will be shown that many of these problems have clear 

and elegant solutions when formulated in the geometric 

terms developed in this chapter, and useful insight is 

gained into the problems. 
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CHAPTER THREE  

Decoupling by output feedback: restricted case  

3.1. The state feedback decoupling problem 

Consider a general partitioning of the output equation 

(2.1.2) given by 

[ 
yk(t)_ 	Cl  k 

x(t ) 	 ( 3.1.1) 

 

where yi(t) is a pi-vector. To avoid trivial cases, it 

is assumed that the subspaces C2, i , E k, are mutually 

independent, i.e. 

i E k 	(3.1.2) 

and that C
T 
 , 0, C

T / Rn,  i C k. Consider the state 

feedback control 

u(t) = Fx(t) + 	G.v.(t) 	(3.1.3) 
iek 1  

The state feedback decoupling problem is then to chose a 

control of the form (3.1.3) such that vi(t) completely 
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controls yi(t), i E k, without affecting yj(t), j / 

j E k. Here "completely" is used in the same sense as 

complete controllability, and in the following, it will 

be assumed that in (2.1.1) the pair (A,B) is completely 

controllable, i.e. that 	A I BI = X = Rn. 

The decoupling condition can be stated more formally 

asfollows.Forv.(t)tocontrol yi(t) completely requires 

that 

C. c A + BF I iBG. 	= C. 
—2 i e k 	(3.1.4) 

and for vi(t) to leave y.(t) unaffected requires that 

C. 
3 
	A+ BF I BGi 	= 0, j 	i, j E k 

	(3.1.5) 

To obtain the geometric formulation of the problem, consider 

a set tail k  of controllability subspaces such that 

t A+ BF 1 iBG.
3. 	

= R.
3. 	i e k 	(3.1.6) — 

and where G., :LE k is chosen such that i 

s 
BG.2 = B n R- 	 (3.1.7)  — 

yielding for (3.1.6) 
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+ BF I R.n B 	R 
) 	—1. i E k 	(3.1.8) 

Restricting these subspaces to be controllability su.6sfacQ-s 

ensuresthatthecbmarniceffectofeachAr.(t) is contained 

within the subspace, and that the whole subspace is 

reachable. From (3.1.4) it now follows that 

C.R. = C. 	i E k 	 (3.1.9) 

or, denoting N(C.) by N., 

R. + N. = X —1 	— i E k 	 (3.1.10) 

must hold. From (3.1.5) it follows trivially that 

R. c n N. j/i J i E k 	 (3.1.11) 

isnecessarytarestricttheinnuenceofv
31.
.(t) on y.(t), 

j / i, to be zero. 

In its geometric formulation, the problem thus becomes 

one of determining a set [RjA k  satisfying (3.1.8), (3.1.10), 

and (3.1.11) with the additional requirement that 

n Fm.) / 0 	 (3.1.12) 
iElc 
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Here, F(Ri) is defined as the set of matrices F such that 

(A + BF) R,
1 

CR.
1- 
 as in Chapter Two. This requirement  

ensures that there exists an F which will "-work" for all 

the R., i E k. 

This problem has been termed (MW2) the "restricted 

decoupling problem", or RDP, and will be referred to thus 

in the following. 

3.2. Existence of state feedback solutions to RDP  

The requirements of (3.1.10) and (3.1.11) indicate 

that R must be large enough to satisfy (3.1.10), whilst 

small enough such that (3.1.11) holds. For this reason, 

a reasonable approach is to consider the set of maximal 

(least upper bound) controllability subspaces IR.
2 k  of 

(A,B), such that R. C. r) N i E k. The following theorem 
Jai 

(WM1) defines the maximal controllability subspace Rm of 

(A,B) contained in a given subspace W of the state space 
X • Frtm4 not') on 1 Eli 	 it 614615 L decL;v4ct sud, 	c n 

3  
Theorem 3.2.1. 

.Let vM  denote the maximal invariant subspace of (A,B) 

contained in W C.  Then the maximal controllability 

subspace R of (A,B) contained in W is given by 

= A + BF I n y_m 	 (3.2.1) 



for any F E F(VM). 

Proof: Let R c w, and 

1.A + BF I R n B1 = R 	 (3.2.2) 

Since R is an invariant subspace of Yd, then R C=VM. Let 

VM  = RED V, for some V C.  Choose F2  such that F2R = FIR 

and 

(A + BF V-112  )V C V-11   — — (3.2.3) 

Then F2  E F(VM) and 

R = A 4- BF2  B n 

CIA BF21 Bnoi 	4$F2 +QnRM sc,ce. gny= 

= RM 	 (3.2.4) 

M MKS 1:21, VS 0, COV161:11al,  sL410,sp,ace.  1.4„ -Dracev, 2.1-, 2. avui 	 . 
Existence of F2 such that F2R= FR and (3.2.3) holds,  

follows from the construction procedure of Lemma 2.4.1. 

The following lemma now provides a simple necessary 

- condition for the existence of a solution to RDP. 

Lemma 3.2.1. 

A solution to RDP exists only if 

	

I V1A-C. 	Ca"' S«tce e n vmc RM L;43Cs.z.61 L g r1 \PC g n RM , Mso, 	- 

	

s6Ace. 	C 	 KMc S Vm -rt,„, 	n 	11 y." . 



R. -I- N = X 
—' i k 	(3.2.5) 

Proof: It is clear that if LEJ k  is a solution to RDP, 
then R.2  satisfies (3.1.11). Then by the maximality of 

R2  ., R. C R. and (3.2.5) follows from (3.140. —-2 —2 

Therefore, if (3.2.5) holds and 

r) F(0) A 0 	 (3.2.6) 
iEk 

then LRi i k  is certainly a solution to RDP. However 

(3.2.6) is not a necessary condition for the existence 

of a solution, and there may in fact exist a set of smaller 

R.
2  CR. such that — —2 

r) Fold ,( 0 
iek 

(3.2.7) 

although (3.2.6) does not hold. In the following two 

cases however, under certain restrictions, 
0Mis.,can  be —1  

shown to provide a solution to RDP. 

(i) rank (G) = rank (G
1...G) = m. Under this condition, 

the following lemma (MW2) is applicable. 

Lemma 3.2.2. 

A solution to RDP, such that rank (G) = m, exists if 

and only if 
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B = EBnRb.f 	 (3.2.8) 
iEk—  

in which case L44.1 k  is a solution. 

Proof: If rank (G) = m, then if (Ili k, is a solution 

B = BG = BZ G. 	B C 	n R. C B . 	— iek 
(3.2.9) 

since G. is chosen such that BG. =- B n R-2, i E k. Therefore —2 — — 

B= z B n R. 	 (3.2.10) 
k— 

and by the maximality of R., 

B = 	Bn Rm. 	 (3.2.11) 
161J- 

Proof of sufficiency requires showing that (3.2.8) implies 

that r) FIRM) 	0, and 
iEk 

R. + N. = X —2 —2 i E k 	 (3.2.12) 

Since the proof of this is fairly involved and requires 

additional concepts which will not be needed elsewhere, 

it will be omitted here. 

(ii) rank (B) = k. Under this condition the following lemma 

(WM1) applies. 



Lemma 3.2.3. 

A solution 	t to RDP where rank (B) = k, exists 

if and only if 

B= ZBnR 	 (3.2.13) 
ick- -1  

Moreover, k  is, in this case, the only solution.  

Proof: For necessity, define Bi, i E k, by 

B n R. = (B n Ri f   E R.) 41) B. -2 	 2 (3.2.14) 

The B.1.  will now be shown to be mutually independent. By ••••• 

definition of B., B. C Bn R., and hence 

B. n 	B. C B. 1) Z (B n  R.) 
-2  vi  -J  

But, 2: (B n R. 	
J

) C B n 	R., and B. = B. -3. --i 

by (3.2.14). But this implies that 

(3.2.15) 

R. since B. C.  R. -1 -3. 

Bi n  z (B n R.) C B. n n 	n z R. 	(3.2.16) ./. J 

which intersection is zero, by definition of B.. Hence, 

it follows from (3.2.15) that the Bi  are mutually in-

dependent. Now, for F E F(Ri), 
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Ri  = A + BFIBn Ri  

= A + 

from (3.2.14), 

BFI 

where, 

Bi 	+ Ri  

since B n R. C B. R , j/i j 

(3.2.17) 

R. CIA + BFI 	R. 
j/1 7j  

R 
VC' 

C: 	 (3.2.18) 

using the fact that F E fl F(R.), and R. C: 	N,. Therefore, 
ick 	-s j/i j 

X = R. 4. N. — —1 -s 

= 1A + BF I -3.  + R. + N. -.3.  —3. 

= to 	BF1 -•• 	+ Ni 	 (3.2.19) 

by (3.2.18). Hence, since Ni  / X, then B. l 0, i E k. 

Furthermore, consideration of (3.2.14) yields that Bn B. 

equals B., i E k. This, together with the existence of the 

k non-zero mutually independent subspaces Bi, yields that 
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B = W B. 
i€k 1 (3.2.20) 

Since B.2  C B R. C.  Bn R., (3.2.13) follows immediately. 

( M 
k' 

For uniqueness of the solution 	observe that a  

(3.2.20) and the fact that Bi  , 0, i E k, imply that 

dim (Bi) = 1, i E k. Assume, as 6an-be- prove- d 

that the subspaces BrI R.2, ie. k, are independent. Then, — - 

by (3.2.13), it follows that 

dim (B n 	= 1 	 i E k 	(3.2.21)  

Thus, since Bn Ri  CB n R., and dim (B f1 Ri ) = 1, 

B n R. = B n Rm. 	
i E k 	(3.2.22) 

Let 	 M 	.....• 	...... 
2 	2 	2. such 

that F.R. = FR., for F e F(R.), and 22-2 -2  

(A + BF.)14. 	R. 3. 2 2 (3.2.23) 

This is always possible by 	Lemma 2.4.1. Thus 

Fi e F(wrl F(2). Then 

R. = [ A + BF3..  I B •-• 
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= A + BF. I B 

R. 	 (3.2.24) 

proving uniqueness of the solution [126. The proof that 

the subspaces Bn R., ie k, are independent, will be 

omitted here for the sake of brevity, and since it will 

be of no further use. 

The proof of sufficiency follows similar lines to 

that for Lemma 3.2.2. and will also be omitted here. 

In these special cases therefore a solution to RDP 

can be readily obtained using the procedure of Lemma 2.5.1. 

	

to obtain [4 3  k, 	N., and then determining RM. k 
jAjTj  

using the result of Theorem 3.2.1. Systematic procedures 

for determining general solutions to RDP, if they exist, 

when 

r) m 

	

F(R.) = 0 	 (3.2.25) 
lE k 

are as yet unknown. 

3.3. Existence of output feedback solutions to RDP. 

Consider that, in addition to the decoupling require-

ments (3.1.6),(3.1.10) - (3.1.12), it is required that 

there exists a solution K to the equation 
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F = KC 
	

(3.3.1) 

for some F e r) F(R.). Such an F will not in general 
iEk 

exist. The following theorem provides necessary and 

sufficient conditions for the existence of some F E r)F(R.) 
iEk 

such that (3.3.1) holds. The case is considered when 

the pair (C,A) is observable. (D1) 

Theorem 3.3.1. 

For the system described by (2.1.1), (2.1.2), given 

(C,A) observable and Otil k, a solution to RDP, there exists 
■••••• 

an F c n F(Ri) such that F = KC for some K, if and only if 
iek 

(i) R = r) 	R.) = 0 
iEk j/i J  

(ii) A(Ri n N(0)) c: Ri 	i E k 

Proof: Necessity of (i) is first established. For any 

two linear vector subspaces V and W, and a map A, it is 

easy to show that A(Vnli) (=AV n AW, and A(V + W) = AV + AW. 

Using these results it can be seen that, for all F E r)F(R.) 
iek rl  

(A + BF)R*  = (A + BF) rI (z.-  R.) 
iEk jai 3  

c n (A + BF) E R. 
iEk 	j/i—J 
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= r) (Z (A BF)R.) 
ick jAi 	-0 

c n (z R.) 
ick jai 3  

* 
= R (3.3.4) 

Thus, R is an invariant subspace of (A,B). Also, from 

(3.1.11) 

R = n 	R.) 
iEk j/i—J  

C n 	(n N) 
J.Ek j/i s/i 

s. 
-. 

C 
 kNi  

= N(C) 
	

(3.3.5) 

Assume F = KC for some F G r) F(R.). Then, from (3.3.5), 
ie k 

since CR = 0, 

(A + BKC)R
* = AR* 
	

(3.3.6) 

and by (3.3.4) it follows that 

* 	* 
AR C R 
	

(3.3.7) 
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Thus, from (3.3.5), 

C(AIR 	= 0 	 (3.3.8) 

contradicting, if R / 0, the assumption that (C,A) is an 

observable pair. To establish necessity of (ii), assume 

F = KC for some F E r) F(R.). Then 
lek 

(A + BKC)Ri  C Ri 	 i e k 	(3.3.9) 

or 

R. C (A + BKC) -1R 
	i E k 	(3.3.10) 

Using the easily proved result that for any subspace V and 
_ L 

a map A, (A 1V) = A
T
V, taking orthogonal complements of 

both sides of (3.3.10) yields 

_L 
(A
T 

CTKTBT) I  R. C R. i E k 	(3.3.11) 

By Lemma 2.4.1, it then follows that 

1_ 
ATRs  . C: R. + C

T 
-■ i E k 	(3.3.12) 

Taking orthogonal complements again yields (ii). 
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For sufficiency, assume (i) and (ii) are satisfied 

for 	 41 k, a solution to RDP. For each i E k, define 

R. C X by —a. — 

- (R. n N(c)) 	. 	 (3.3.13) 

Then, by (ii) and the construction of Lemma 2.4.1, it 

followsthatthereexistsan.F.EF(R.) such that 

+ BFi)RiC Ri 	 (3.3.14) 

and 

Fi(Ri  n N(C)) = 0 
	 (3.3.15) 

This implies that 

(Ri n 11(0) C  N(ri) 	 (3.3.16) 

Writing Ri  as a basis matrix for R., it follows therefore 

from (3.3.16) that 

N(CR.) = R.-1  (R. r) N(C)) 

•C R71N(ii ) 
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= R.-  (R. n N(F.)) 

= N(F .R. ) 	 (3.3.17) 

By Lemma 2.2.1, therefore, there exists a solution Ki  

to the equation 

KiCRi 
= F.R. 	 ( 3.3.18 ) 

Hence 

(A + BK.C)R. CR. 	 (3.3.19) 

or K.C, E F(121), i E k. Now R = 0 implies that the tH.1 k  

are mutually independent. Define Pi  as the projection of 

X onto R. along 6) R*1  and let 

KC = E K.CP. 	 (3.3.20) 
i6k 1 1  

Since R. C. nN 	(3.3.20) becomes j/i7j1  

KC = Z K..C.P. 
ie k 11 1 1  

= 	K..C. 11 3. iCk 
(3.3.21) 
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where Ki  = [Kil  Ki2  ... Kik]•Hence, K defined by 

K = [K11  K22  ... Kkk] 
	

( 3.3.22) 

is such that 

(A + BKC)R.= (A + 	BK.CP.)R. 
—2 	1 I  iek 

= (A + BK.C)R. 1 

C R. i k 	(3.3.23) 

or KC E r) F(R.), proving  sufficiency. 
i€k 

It is interesting  to note that for the case k=2, 

condition (ii) of Theorem 3.3.1. implies condition (i). 

Recalling  the second special case of the previous 

section, i.e. when rank(B) = k, the following  theorem 

establishes necessary and sufficient conditions for the 

existence of an output feedback solution to RDP in this 

case. 

Theorem 3.3.2. 

An output feedback solution to RDP, where rank(B) = k, 

and when (C,A) is an observable pair, exists if and only if 

-1  k 
(i) (A = n z R/‘!) = 0 	(3.3.24) 

iEk j/ij 

• 
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(ii) A(RMn N(C)) CRM 
	

i G  k 	(3.3.25) 

Moreover, tpti lk  is the only such. solution. 

Proof: This follows directly from Theorem 3.3.1., and 

Lemma 3.2.3. which establishes uniqueness of the solution 

to RDP in this special case. 

For the first special case of the previous section, 

i.e. when rank(G) = m, since the solution Wk  is not 

unique, it may be possible to find a solution [Rik  which 

satisfies (3.3.2),:(3.3.3), although (RM)*  / 0. In this 

special case therefore, (3.3.24).and (3.3.25) are only 

sufficient conditions for the existence of an output feed-

back solution to RDP when rank(G) = m. If they are fulfilled, 

then tRd k  is certainly a solution. 

As a result of the following lemma, however, it is 

possible to say something further about this special case. 

Lemma 3.3.1. 

For the special cases (i) and (ii) of section 3.2., 

if tQ k  is a solution to RDP, then 

2..": R. = X -2 ik 
(3.3.26) 

Proof: From the initial assumption that 

= 
	 (3.3.27) 
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it follows that 

zt A n 	= iGk 
(3.3.28) 

since, from the proofs of Lemmas 3.2.2. and 3.2.3., 

B= zBn R. 	 (3.3.29) 
ie k  

if rank(G) = m, or rank(B) = k. From a result due to 

Wonham (W1) that controllability is unaltered by state 

feedback, then 

ie k 
t A + BF I nRi  = 	 (3.3.30) 

for any F. The result follows if F E r) F(R.). 
ick 

The following theorem can now be stated. 

Theorem 3.3.3. 
If the Ri1k  are independent, i.e. (RM)t = 0, an output 

feedback solution to RDP, where rank(G) = In, exists if and 

only if 

mei n N(C)) c Rii 	
k 	(3.3.31) 

Moreover, [R.I is the only such solution. 

Proof: Sufficiency follows directly from Theorem 3.3.1. 
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For necessity and uniqueness, assume (3.3.31) does not 

hold, but that there exists a solutiona k  to RDP such — 

that R.a  , R
m i E k, and 

A(Ri  n N(c) C Ri 	i E k 	(3.3.32) 

Since the R., i E k, are independent however, 

R. / 	R. = X 
i6k 1  iEk 

(3.3.33) 

which, by Lemma 3.3.1., implies thata k  is not a solution 

to RDP. This contradiction proves necessity and uniqueness. 

For these special cases therefore, the set tRiik  

can be constructed using the result of Theorem 3.2.1. 

and tested as to whether or not it provides an output 

feedback solution to RDP by the results of the foregoing 

theorems of this section. In the general case, however, 

and where t4k  does not satisfy (3.3.2) and (3.3.3), no 

systematic method is known for generating tRil k, if it 

exists, which satisfies (3.3.2) and (3.3.3) and is a solution 

to RDP. This restriction is shared by state feedback 

solutions to RDP, as was pointed out at the end of section 

3.2., since there also in the general case, if {ail k  does 

not provide a solution, only intuition can derive a set 

of non-maximal controllability subspaces which will be 
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a solution. 

If it is the case that the taii k  does not provide 

a solution, the decoupling problem can be solved if an 

extension of the state space is permitted, i.e. dynamic 

compensation is used. This subject will be dealt with 

in detail in the next chapter. Before this, however, it 

is of interest to consider the problem of pole assignment 

in the decoupled system. 

3.4. Pole assignment in the decoupled system. 

The problem of the extent to which it is possible 

to arbitrarily assign the poles of the decoupled system 

is now considered. This problem has been thoroughly 

investigated by Morse and Wonham (WM1),(MW2), in the case 

of state feedback solutions to RDP, and the theory will 

be reviewed here. 

The structure of the decoupled system is first con-

sidered. Let i Rik  be a solution to RDP, and assume that 

ER. = X. Define 
iEk 

E= R = r) (z R.) -0  
iek j/i—J  

(3.4.1) 

and let E. be chosen such that -a 

R. = E. ED (R. -2 R ) i e k 	(3.4.2) 



Figure 3.4.1.  The three circles represent contr- 

ollability subspaces Ri, i = 1, 2, 3. The subspaces 
. 	* 

E3. .C: R.-are indicated, E = R being the shaded  —0 
area, and can be seen to be independent. 

-6o 



For the case k = 3, these subspaces are represented 

diagramatically in Figure 3.4.1. to assist in clarifying 

the arguements used in proving the following results. The 

next lemma exhibits the properties of the subspaces Ei, 

i E k 
—o 

Lemma 3.4.1. 

The subspacesE
1'  ieko, have the properties — 	— 

*t) Y. = 
'Lek 
	X I 

(i) 6) Ei  = X 
i€k --0 

(3.4.3 ) 

(ii) (A + BF)Ei CE. + E0 	E k 
	(3.4.4 ) 

for all F E r) F(R.). 
isk 

Proof: Clearly, from the choice of the E., i 8 k , o 

E n 	E. = 0 
0 

iek-3. 
(3.4.5) 

For i e k, by the definition of the Ei, 

R. n 	R = (E.® (R. n R »n 	(E153) (R n R ))) —% 
j/i 	j/i 	—J 

(3.4.6 ) 

But, by linearity 
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7: (E. + (R.(-) R )) = 7.3 E. + 272(R.(1 R ) 	13.4.7) 
-j 	j/j--j  jii - 

Hence, by (3.4.6), 

E-C (E. + (R. n R*) n (z E. + 	n R*))j/f-j 	-2 	-2 - 	
siA-j 

	

= ( E.J. 	n 	(E„ + (R. n R*))) 

= R 	Rj  j/f 2  (3.4.8) 

But, R, r) z R. C R*  , and E. r) z E . C E. implying, by j/fj 	-a j/i j -2 

(3.4.8) that 

E. rl 	E . (= E. n R j/fj -2 - 
* 

=o 	 (3.4.9) 

which follows from the construction of the E., i E k. -2 

Thus the E.,iEkol are independent. Also, - 

X = E.  R. = 	E. + 	(R. n R ) 
k-71  iE k-1  ie k 1  

• CZ. E. + R = E.  E. - 	- iE k-2 	iE k 1  -o 
(3.4.1o) 

proving (3.4.3). 
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It has already been shown in Theorem 3.3.1. that 

(A + BF)R*(: R* 	 (3.4.11) 

for all F E r) F(Ri). Hence, (3.4.4) for i = 0, follows 
1.1c 

from (3.4.1). —Since, from (3.4.2), E
a  .(= R., i E k, then — —a 

(A + BF)Ei C:(A + BF)Ri  

cp_i  E0 	i E k 	(3.4.12) 

for all F E r) F(Ri), proving (3.4.4) for i E k, and 
iEk 

completing the proof of the lemma. 

In order to describe the structure of the decoupled 

system in terms of the subspaces E1/  iEko, the following 

lemma is necessary. 

Lemma 3.4.2. 

Define P., i E k 
o, as the projection map of X onto 

E along 	E . For all F E r) F(R.), there exist maps A. 
jAri 	iEk 

such that 

A.P. = P.(A + BF) 1 i E k 	(3.4.13) 



In addition, 

C. .= C.P. 	 k 	(3.4.14) 

and, if Gi  is chosen so that BG. = B r)(Ei  

and 

P.BG. ,= 0 3. —.1 / il j6k l iEk 	(3.4.15) 

iPi(A + BF) IP.BG.1 = E. 1 i 6 k 	(3.4.16) 

Proof: Since N(P.) = 22 E 	and by Lemma 3.4.1., — 	
.i/ri 

Pi(A + BF) E. CP.Z E. 

= 0 	i E k 	(3.4.17) 

therefore 

N(P.) = 2: E. C N(P.(A + BF)) i E k 	(3.4.18) 1 	j/i—j — 1 

implying the existence of the Ai, i e k, in (3.4.13). 
• 

From (3.4.2), Ei  + E0  = 	, and since, as has been*.. 

shown previously, R C N(C) C=N(Ci), i E k, it follows that 
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C. E. —j = C.1(R. + R ) —3 — 

= 0 	 k 	(3.4.19) 

Thus, since by Lemma 3.4.1., 7.2 E. = X, and P. = E 
i' iek 

—o 

Ci  = C.( Z P-) 
iek  1 . 

= C.P. 1 1 i E k 	(3.4.20) 

proving (3.4.14). Equation (3.4.15) follows simply from 

the choice of G., since BGj  C:Ej  + E0 	1 CN(P.), 	/ i. — —  

For (3.4.16), since 

R. C: E + E C: N(P
1
. ) —j —0   

E k 	(3.4.21) 

it follows that 

E. 	a = P.X = P. 
jek
(Z  R) = P.R. .— 	— j i E k 	(3.4.22) 

Also, Pi(A + BF)Ei  CPI.(Ej  + E0), j/ i, j E k, iE k, 

which implies that Pi(A + BF) = Pi(A + BF) 	P. = Pi(A + BF)Pi. 
j6k 

Thus, from (3.4.22), for i E k, 

E. = P. 	+ BF = t P. (A + BF) IP.BG.I 	(3.4.23) 1 
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This lemma shows that the decoupled system can be 

represented as (k + 1),4k independent,subsystems. This 

is best demonstrated in matrix form. For i E k 
o, write 

P.1  in some basis as the product of two full rank matrices, 

P. ..,1.,./C l  ariddefineAi =.(AM
1 	+ BF)L., B. = M.BG., 1 1 	 1 	m 	1 

and Ci  = C.L.. For 	define Aoi  = Mo(A + BF )1, and 1 1 	 1 

B = M BG.. The following properties now follow directly of 	o 

from the results of Lemma 3.4.2. 

M(A + BF) = A.M. 1 

C. = C.M. 
3. 

M.BG. = 0 j  

i E k 	(3.4.24) 

i E k 	(3.4.25) 

j i,jEk l iEk (3.4.26) 

and (A1,B1), i G k, are completely controllable. It 

is now possible to describe the decoupled system by 

the set of equations 

xi(t) = A.x.(t) + B.1v.(t) m 1 	3. 

yi(t) = Cixi(t) 

i E k 	(3.4.27) 

i E k 	(3.4.28) 

xo(t)  = 2 A oi  .x.(t) + A 	(t) + E B 
01 .v.(t) (3.4.29) I 	. 	ox  o 	m 1.6.k 	 i6k 
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where xi(t) = M.x(t), 	k o. The (k + 1)th. subsystem, 

described by (3.4.29), has state space Eo  and therefore 

has no effect on the output y(t) since E0  C:N(C)9 
and for 

all F E r) F(R.), (A + BF)E0 C:E0. Furthermore, by 
iEk 

(3.4.27), the i th. completely controllable subsystem is 

driven only from the i th. input vi, with output yi, i E k, 

by (3.4.28), whilst the (k + 1)th. subsystem may be driven 

by all the inputs vi, i c k. 

From this structure the solution of the pole assign-

ment problem is clear. From Theorem 2.6.1., it follows 

that the eigenvalues of (A + BF) restricted to El, i E 

can be arbitrarily assigned, for F restricted to being 

contained in r) F(R.). Furthermore, R is an invariant 
iek 

subspace of (A,B) and it is possible, by Theorem 3.2.1., 

to find the maximal controllability subspace R of (A,B) 
* 

contained in R , i.e. 

R= A+ BF B n R*1 	(3.4.30) 

where F E r) F(R.). Since R is a controllability subspace, 
i€k 

the eigenvalues of (A + BF) restricted to R can also be 

arbitrarily assigned. Thus, the only fixed eigenvalues 

are those of the restriction of (A + BF) to the subspace 

of R which remains after removal'of R i.e. R where 
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= R 	 ( 3 . 4 . 3 1 ) 

Consider now the output feedback case. Of necessity, 

if an output feedback solution to RDP exists, and (C,A) 

is observable, by Theorem 3.3.1., R = O. Thus, in the 

foregoing development, E0  = 0, and Ei  = Ri, i E k. Let 

xi(t) = M.x(t), i E k, where now Po, and hence Mo 
equals 

zero. Then, by the results of Lemma 3.4.2., 

xi( t ) = A.1x.1(t) + B.v.(t) 
	

i E k 	(3.4.32) 

yi(t ) = c .1x.1(t ) 
	

i E k 	(3.4.33) 

The eigenvalue assignment problem becomes therefore 

the problem of assigning the eigenvalues of (Ai  + BiKiCi) 

by choice of Ki, for i E k. For each of the k subsystems 

the problem is then simply the general output feedback 

eigenvalue assignment problem. This problem will be con-

sidered in a later chapter. It may be noted however, 

that 	(C.,A) are observable pairs with respect to each 

R.
3.
, i E k. This follows because the decoupled system is 

completely observable, as observability cannot be destroyed 

by output feedback and therefore, since the system is 

entirely composed Of the k independent subsystems, each 

subsystem must be completely observable. 
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CHAPTER FOUR 

Decoupling by output feedback: extended case  

4.1. The extended decoupling problem 
iS 

The situation 	now considered 1.& when itoecessary 

to introduce some form of dynamic compensation in order 

to achieve a required decoupling control. The method 

considered here for introducing dynamics into the system 

will be that described in section 2.3., whereby the state 

space X is extended to form a larger state space X. In 

the extended space, the system is described by the equations 

S1(t) = 7&(t) 

;( t) = CS1(t) 

where A = EA 01, B = 	 0 a = -0 01, and X(t) = ix(1, 

LO OA 	0 I 	LO I 	x(t) 

u(t) = u(t) , y(t) = y(t) . The extension is denoted by 

[ u(t) 	'̂(t) 

3% and thus 

X = X® X 
111••• 	 0111113 	 mmEll 

e, 
The dimension of X is denoted by n. 

(4.1.3) 
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R. + N. + X= X 	i E k 

c(n N .) + 
j/i 

k 

Consider now the decoupling problem in the extended 

state space. The outputs to be decoupled remain unaltered, 

i.e., 

yi(t) 	[ci  o];(t) = rij4 t ) 	E k 	(4.1.4) 

The feedback control is described by the equation 

ix(t ) 	2:1-1.
1
v. (t) 

iEk 1  

Note that, if Ni  = N(C.), for ie k, then 

AI 
=N. + X 

— 

(4.1.5) 

(4.i.6) 

from the structure of C. given in (4.1.4). Hence the 

decoupling problem can now be seen to be that of finding 

A. A a set 1.R1 k  of controllability subspaces of (A,B) such that 

and 

n 	0 
	

(4.1.9) ie k 
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corresponding to the conditions (3.1.10)-(3.1.12) for 

RDP. This problem has been called the "extended decoupling 

problem", or EDP, (MW1)(MW2). The additional freedom 

introduced in EDP over RDP is the dimension 31 of the 

extension X. In all other respects, the problem formulated 

here is identical to RDP. 
^ 

Let P be defined as the projection map of X onto 

X along X. Then for the map A: st-)2, corresponding to 
^ ^ ^ 

the matrix a in (4.1.1) , and for the map B: U X, cor-. 
^ 

responding to the matrix B in (4.1.1), the following can 

be seen to be true for the maps PA, AP, PB, 

.pl = ap = A, PB =B 
	 (4.1.10) 

where A and B are now regarded as maps from X into X. This 

is consistent since clearly 

can be written as P = 	I 	0 

	

[ 0 	0 

X C:X. 	In matrix form P. clearly 

..... 	." 
, an n x 	matrix in which n 

I is n x n. It follows that the null space of P is X. 

The following lemma will be useful in proving necessary 

and sufficient conditions for the existence of a solution 

to EDP. 

Lemma 4.1.1. 
^ 

Let U and V be any two subspaces such that X CU CX 
.^ 

and X CV CX. Then 
OM■ 
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p(u n v) 	PU n PV 	 (4.1.11) 

Proof: It is known (MW1) that for any U, V and map P, 

p(unv)cPUnPV 	 (4.1.12) 

with equality if and only if 

(u v) n N(P) = UnN(p) 	vn N(p) 	(4.1.13) 

It has already been seen that in this case N(P) = X, 

and, by assumption X CU and X CV. Hence for these 

subspaces and projection P, (4.1.13) holds, and the lemma 

is proved. 

The following theorem now establishes a necessary and 

sufficient condition for the existence of a solution to 

EDP (MW1). 

Theorem 4.1.1. 

A solution to EDP exists if and only if 

R. + N. = X —2 —2 --- i E k 	(4.1.14) 

Proof: Define the projection map P as above, and let 

(RIk be a solution to EDP, for some n _>• 0. Then, for E k, a  

since ai  is a controllability subspace of (A,B), 
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AR. C  a. -s — 

Then, by linearity, 

PAR.a  C PR.a 
 + PB — 	— 

or, defining Ri  = PRi, and from (4.1.10), 

AR.0 R. + B —1 	— 

(4.1.15) 

(4.1.16) 

(4.1.17) 

showing Rili c k, so defined, to be an invariant sub-

space of (A,B). 

To show that R. is, in fact, a controllability sub-

space of (A,B), recall that, by Lemma 2.4.2., since Ri  is 

a controllability subspace of (A,B), 

(4.1.18) R. = lim -2 	-2 j = 0,1,... 

where= 0, 	= (IV-1  + 13)n lz 	Define Si  = p2i  
••1- 	

Si 	 41 

j = 0,1,.... Then, using Lemma 4.1.1.,and (4.1.10), 

Si - = P((AS.j 1  + B) (m) R.a) —a — — 

= P(AS- 	+ B) 	PR. "i 
1-1 	

-•`3. 
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= (APV-1  + B)(-) R. 
3. 

= (AS2-1  + B) 
r) R.  -2 (4.1.19) 

Also, by definition, 

R. = PR. = P(lim 	= lim P i  = lim Si 
-2 (4.1.20) 

where S. 	Pei  = 0,. and SI = (A§1-1 
	

n Ri, by (4.1.19). 

This, together with (4.1.17), ensures , by Lemma 2.4.2., 

that R. is a controllability subspace of (A,B). This is 

true for all i E k. 

To show necessity of (4.4.14) it remains only to 

show that 

R. = pa. c 13( n N. + X) = n N. 
 Ji j/i j  

by (4.1.8), and that 

R. + N. = pa .4. N. + 	= pa = 
-1 	 _„ 

(4.1.21) 

(4.1.22) 

by (4.1.7). Then, since Ri  is the maximal controllability 

of (A,B) contained in r) N., by (4.1.21), 
j/i j  

R.2  C R. - -2 (4.1.23) 
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and therefore, by (4.1.22). 

R. + N. = X —a —a — k 

proving necessity. 

For sufficiency, assume that (4.1.14) holds. Let 

X be defined with dimension n = E dim(RM.) Define the 
iEk 

maps 	X X C X, i E k, such that 

R.M  r) wm.) = 0 - i E it 	(4.1.24) 

M. = M.R. 	i E k 	(4.1.25) —a 

and such that the M., i e k, are mutually independent. For 
,... 
X of such a dimension, the M. clearly exist. For example, 

 
let k = 2.. Then in X, Ri

m 
 and R2  have basis matrices of the 

[

form Ri  and R2  . Now, let the n x n matrices corresponding 

to the maps M1  and M2 be given by 

M1  = [RT 0] , M2  = [0 0] 1 

R 0 0 T 0 2 

(4.1.26) 

T " 	m 1 
Noting that N(Mi) = N(Ri) + X = (Ri) + X, (4.1.24) clearly 

follows; (4.1.25) can also be seen to hold. 

0 	0 

-75- 



Returning to the proof of sufficiency of (4.1.14), 

define 

Ri  = (P + M.)R. 	i E k 	(4.1.27) 

For the example above, the map (P + M1) has the matrix 

form ea x1r1) 

P M
1 
 = I 0 

RT 0 
1 

0 0 

(4.1.28) 

. 
and similarly for i = 2. Then, using (4.1.10) and noting 

that M. C 3E, it follows that, in X, 

AR.2  = A(P + M.3.)R. 

= ARM 
—2 

C B 

INO 

CR. + B + 
•• 

^ 
= R. + B 

— (4.1.29) 
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Thus, the R.2  are invariant subspaces of (A,B), and, since 
^ 

the M. were chosen independent, the R.
2  are also independent. 

It remains to show that .1-q 
k  so constructed, is a 2  

solution to EDP, i.e. that they are controllability subspaces 

and satisfy (4.1.7)-(4.1.9). To show that they are controll-

ability subspaces of (A,B), set, for i 6 k, 

and 

^ 
S. = 0 9  S' = (AS:' 	+ B M .  -^• 	—1 

S. = 0, 	= (AS-:
i-1 

 + B) 	R. 
--1. 

(4.1.3o) 

(4.1.31) 

0 0 Clearly, (P + M.)S
i  C:S . It will now be shown by induction 3.- -4 

	

Si, 	-1 that (P + M.)S 	j = 1 2 	• assume (P + N. CS • •I 	- 1,2,...; -•d. 	 1 •••■•i. 

Then 

ssf2  D(A(P + m.)sq-1  + B + X) 11 (P + M.)R. - 

= (AS4-1  + B + X) rl (P 14.)0 1 -2 

(P + M.)((A0 -1  + B + X)(-) R1.12) 3. 2 	- - 

(P + 14. )s4 
1 —2 (4.1.32) 
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as required. 
‘ 

Since R. = 	Si, R. D 1* $" 	
M A 

	

 lm • 	m(P+ M05.1=  "-•1. 	 1  -A. -1 ) 
^1 j  

	

therefore, Ri  = lim SI, 	= 0,1,..., i E k, proving  that 
n n 

the R1, i C k, are controllability subspaces of (A,B). 

To show that r) F(Ri) 0, define Pi  as the projection 
n 	n 	iEk 

	

n 	n 	n 
of X onto R. along S R.. Then for F. E F(R.), i E k, —3. 

it is easy to see that 

F = 2_, F.P. e n F(R.) 
iek 1  1  iek a  

(4.1.33) 

Finally, to show that (4.1.7) and (4.1.8) hold, it 

follows from the structure of the R. that 

M " Ric R. + X C n N. + X 
J/1 

(4.1.34) 

and, by (4.1.14), 

(P + mi)RT + (P + Mi)Ni  = (P + mi)X 	(4.1.35) 

yielding  

.ev 	N 	.0•■ 
R. N. +X=X+X= X —1  —1  (4.1.36) 

This completes the proof of Theorem 4.1.1. 
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This theorem shows that it is always possible to 

decouple a linear multivariable system by state feedback, 

provided (4.1.14) holds, if dynamics of sufficiently 

high order are adjoined to the system. Moreover, since 

the RI k  which form a solution to EDP can be made 

independent, by the results of Section 3.4., arbitrary 
^ ^^ 

assignment of all the eigenvalues of (A + BF) is always 

possible. In fact, to satisfy these properties it is not 

necessary to use an extension of as large an order as 

Edim(R.). A full development of this may be found in 
iek 
Mo7se and Wonham (MW1), (MW2). 

The possibility of the existence of output feedback 

solutions to EDP is now considered. 

4.2. Existence of an output feedback solution to EDP. 

An important application of the technique of 

extending the state space will now be shown to be that of 

obtaining an output feedback decoupling control, for a 

system for which a solution ( Ri  k  to RDP cannot be found 

to satisfy the conditions derived in Section 3.3., i.e. 

R = 0 

n N(C)) C Ri 	i E k 
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The following lemma provides a basis for the 

development of a procedure for constructing a set of 
^ 

controllability subspaces R. 31k of (A,B) which are an 

output feedback solution to EDP. 

Lemma 4.2.1. 

Given a set of controllability subspaces tRilk  

of (A,B), such that 

ED R. = x 
iek-1  (4.2.3 ) 

	

^ 	^ 
suppose there exist Fi E F(R.), i E k such that 

^ ^ 
N( CRi) C N( 	) 
	

i E k 	(4.2.4) 

^ 
Then, there exists F E r)F(R.) such that 

iEk 

N(Z) C N(F ) 	 (4.2.5) 

^ 	 .^. 
Here R., ie k denotes basis matrices for R., that is 1 	— —3. 

matrices whose columns span the subspace. 
^ 	 ^ 	^ 

Proof: Define P
1., i e k as the projection of X onto R. 

•••••1. 
.... ^ 	 n 

alongtOR_ForF.EF(R.), i E k, such that (4.2.4) 
jAi  

holds, let 

F = Z F . P. 	 (4.2.6) 
iEk 
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Then 

	

n 	nes ,s 	n 	 PS  PS 
(A + BF)R. = (A + BZ,F.P.)R. 

1 	 3_ —1. iEk 1. 
 

= (A + BF.)R. 

C R. 

Now, (4.2.4) implies that 

N(c) n Ri  C N(Fi) 

or,taking orthogonal complements 

	

"T 	T F. C R. + C 

• e k 	(4.2.7) 

• k 	(4.2.8) 

• E k 	(4.2.9) 

Taking orthogonal complements of (4.2.6) also yields 

^T"T FT = 	 P2.F. -1 iek 
(4.2.10) 

^is" 	." 
and since P.R. = 	R.) = (X) 	= 0, it follows from —2 

(4.2.9) that 

7,1%  z 7cT 
CT 
	

(4.2.11) 
iE k  



since 	P. = I. Taking orthogonal complements of (4.2.11) 
ik 

yields (T.2.5) a:Id proves the lemma. 

From this lemma it is clear that in order to obtain 

an output feedback solution to EDP it is sufficient to 

provide a construction procedure which will yield a set 

of controllability subspaces [R. 
1k 

for which (4.2.3) 

and (4.2.4) are true. Before establishing such a construction 

procedure, it is necessary to include the following lemma. 

Lemma 4.2.2. 

Given R C:X, a controllability subspace of (A,B) with 

X=Xel then 

- 
R = R 	U 
	 (4.2.12) 

^ ^ 
where U C:X is also a controllability subspace of (A,B). 

Proof: Since R is a controllability subspace of (A,B), 

by Lemma 2.4.2., 

K = lim 
	j = 0,1,... 	(4.2.13) 

,^  where e = 0, Sj 	tA = 	Sj-1 B)r) R. Let 

SO  = 0, 	63j-1 ibn 
•■• 	 ••■•• 

Then 

• -82- 

(4.2.14 ) 



"1  
S = BnR 

= (B + x)n(n +U)  
••••• 	 •■••• 

+ U 

Further, if IV = 

2J+1 = 	a 

= (Tv i)n -R) 

= (Asj 	To 

- = sJ+1 u 

 

(4.2.15) 

U 

U 

(4.2.16) 

By induction therefore,.  

= 	u = lim 	+ U = lim gj 	 (4.2.17) 

Also 

AR=ARCR+BCR+B 
	(4.2.18) 

which, by Lemma 2.4.2., completes the proof. 
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Using this lemma and Lemma 4.2.1. a necessary and 

sufficient condition for the existence of an output feedback 

solution to EDP can be established. 

Theorem 4.2.1. 

Given A, B and N., i E k, let R. be the maximal 

controllability subspace of (A,B) contained in r)N l iE k. 
j/i j  

Then, there exists a solution Ocl k  to EDP such that 

n nn 
F = KC 
	

(4.2.1) 

for some F E fl F(Ri), if and only if 
iek 

R. 	N. =X 
	

i E k 	(4.2.20) 

Proof: Necessity follows immediately from Theorem 4.1.1., 

which establishes (4.2.20) as a necessary condition for 

()F(l.) ' 0 , where tail k  is any solution to EDP. 
lek 

For sufficiency, if "E dim(R.)< n, choose n = n, 
iek 

ti 
and if E dim(R1‘.1) >n, choose n = 	dim(0). It is clear 

iek 	 iek -1 
 

•■•■ 	 ■•■•■• 

that for such a large extension it is possible to choose 

maps N.: X 	i E k, as in Theorem 4.1.1., such that 

the subspaces 

L. = 	+ M.)R. 
1 ••1. i E k 	(4.2.21) 

-84- 



0 0 (4.2.2j) R = A  1 

0 1 0 

0 

0 0 0 

0 0 

are independent, and moreover 

11(C1 ) = 0 - i E k 	(4.2.22) 

where L. is a basis matrix for L., i 6 k. To clarify 

this consider the following example. 

Example 4.2.1. 

For 

A = 0 1 0 0 0 B = 0 0 0 

0 0 0 0 1 0 1 0 

0 0 1 0 1 1 0 0 

0 0 0 0 0 1 1 0 

0 0 0 0 0 0 0 1 

C
1 
 = [ 0 	1 	0 	0 	0) 	C

2 = 0 	0 1 0 	0 

0 	0 0 1 	0 

the maximal controllability subspaces R1, 

easily determined as 

i = 1,2, can be 
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and M2 such that 

L
2 
 = (P + M2 Rm  

2 - Off , 
o 

'o 
0 

s 

1 0 
0 1 
o 0 
0 0 
o 0 
0 0 
1 0 
0 1 

am 
0■•• 0_ 

_ 0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
1 _ 

(4.2.26) 

 

O', 
	 (4.2.24) 

0 

1 

Since 	dim(R.) = 6 > n = 5, choose n = 6. It is then 
i=1 

possible to choose M
1 
 such that 

' L
1 
 = (P + M

14  
)R - 
 - 

1 	 o' 
1 
0 

o o 
o o 
1 	0 

0 
0 
0 

0 	4. 0 

 

(4.2.25) 
0 
O 

0 
0 
1 
0 
0 
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Operating C = IC 01 on 21  

(4.2.22) holdsP it) 

Returning to the proof 

that, by the same argument-

the C Li  so constructed arek  
(A,B) and form a solution to 

is required for Lemma 4.2.1. 

extension of the state space 

possible to choose subspaces 

and R2  will illustrate that 

of Theorem 4.2.1., it is clear 

as in the proof of Theorem 4.1.1., ._41 2  

controllability subspaces of 

EDP. However 0) L. / X, which 
i€k 1  

to be applied. Since the 

is so large, however, it is 

U.3. C X, i E k, such that •"° 

N. n . = 0 -3. -3. i 6 k 	(4.2.27) 

and to be independent, and of sufficient dimension that, 

setting R. = Li  + Ui, i E k, 

et. 
®R. = X 
	

(4.2.28) 
iE k 

To see this, for Example 4.2.1., choose 

u1 =  -0 
0 
0 
0 
0 
0 
0 
0 
1 
0 

0 

0 
0 
0 
O 
0 
0 
1 
o_ 

(4.2.29) 
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U 	= —2 
(4.2.30) 

0 0 
0 

0 
0 0 

1 0 0 

O 1 0 

O 0 1 
0 0 
o 0 

0 0, 

It is then simple to verify (4.2.27). 

Using Lemma 4.2.2. shows that the Pil k  so constructed 

are controllability subspaces of (A03). Also 

R. + N. = L. + U. + N. + —a —a —a —a 

= L. + 

= .Z 	 (4.2.31) 

and 

R. = L. + U. —a —a —a 

„, 
cn N. + X 

nrf. 
j/i-°  (4.2.32) 
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Therefore, the tR.1 k  forms a solution to EDP. From 

(4.2.27) and (4.2.22), it follows that 

N ( CR ) = 0 1  i E k 	(4.2.33) 

Using this together with (4.2.28), by Lemma 4.2.1. the 

/
RIk so constructed form an output feedback solution to -s  

EDP, completing the proof of sufficiency for Theorem 4.2.1. 

From Example 4.2.1., it can be seen that the dimension 

of the extension X is, in this case, much larger than 

necessary. Consider the following controllability subspaces 

in place of those constructed in the foregoing: 

—1 0 
0 
O 
o 

I 
r0  

O 
0 
O 

0 
0 
O 

(4.2.34 ) 

1 0 0 
_o _1 

•••• 	• 

—2 0 
0 

, 0 
o 

, 0- 
o 

t 
00  

(4.2.35) 
1 0 0 O 
o 1 0 0 
o 0 1 0 
o 0 0 -1 
Q ,..0., r -1 0, 

Operating C on these subspaces clearly shows that they 

satisfy (4.2.6), and in fact form an output feedback 

solution to EDP. 
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4.3. Extension of low order for output feedback decoupling  

As in the case of the general extended decoupling 

problem of Section 4.1., it is not necessary to use an 

extension of such a large dimension as max(E dim(R.),n) 
iek 

in order to obtain an output feedback solution to EDP (D3). 

The following theorem provides a sufficient dimension of 

low order, and the proof of the existence of (111k  which 

solves the output feedback EDP will be by a refined version 

of the construction used in the proof of Theorem 4.2.1. 

Theorem 4.3.1. 

Given A, B, and Ni, .i G k, let WI% be the set of 

maximal controllability subspaces of (A,B) such that 

L, R. = X 
ie 09" 

R. c n N. -2 
JF1  

R. + N. = X —i —i — 

• E k 

• E k 

(4.3.1) 

(4.3.2) 

(4.3.3) 

If n = no+ v, where 

no = (Zdim(R.) iek 

and v = dim(V), for any subspace V such that 
• 

(4.3.4) 
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N(c) = v ®(R14 ) * 	 (4.3.5) 

then a solution Ri k 
 to EDP exists such that F = KC, —2  

^ 	^ 
for some F E r) F(R.). 

iek 
Proof: The proof of existence of an output feedback 

,^. 
solution tEit ic  to EDP under these conditions will use 

the following construction. This derives from the set 

141k, a seta k  of independent controll&bility sub-- 

spaces of (A,B), each member Ri  of the set having the 

property that 

R. n N(c) = 0 	 (4.3.6) 

.......". 	 ^ 	... 
or N(CR.) = 0, and also that 6)R.3.  = X. Then, by . 	— lEk 	n. 	 .....". 	^ 
Lemma 4.2.1., there exists a matrix K such that KC E n F(R1). 

„ iek 1  
The method of construction moreover ensures that (RA 3. k 
forms a solution to EDP. 

Intuitively, it can be seen that the extension of 

the state space by dimension no  defined in (4.3.4) ensures 

that the R.a  can be made independent, and the extension by 

dimension v = dim(V), where V is defined in (4.3.5), ensures 

* that (4.3.6) can be made to hold. Obviously, if (R M) 	N(C), 

then the further extension dimension v equals 0, but both 

requirements can still be fulfilled. 



Construction procedure: Defining V as in (4.3.5), where 

(21)*  = r) 1: z",  let R., V be basis matrices for R., 1 
iek jai 

V, i E k, respectively; that is, the columns of Ri  span 

R. i E k, and are independent, and similarly for V. 

Construct the partitioned n X (n + n) matrix R given by 

R = [R1 	Rk  V] 
	

(4.3.7) 

and define the n X n + n) matrix M such that 

NT = N(R) 	 (4.3.8) 

where M = [M1  ... Mk  Mk+1], the partitioning being consistent 

with that of R in (4.3.7). Set the (n + 	(n + 	matrix 

F7 as 

R = [R] 

(4.3.9) 

Then (4.3.8) ensures that R has full rank equal to (n +70 

Define 
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R. -1 

Then, 

(a) if V = 

R. 	= R. -1 	-a. 

0, 	set 

i E 

i E 

k 

k 

(4.3.10) 

(4.3.11) 

(b) if V / 0, find linearly independent subspaces R. C 

for i 6 k C:k, such that 

N(c) r) (F,E. + R.) = 0 
	

i E k 
	(4.3.12) 

and 

11) R. = M. 	 (4.3.13) 

I. 
k The existence of t R.V- will be established in the proof -3.  

of the theorem. 	Now, 

^ 

set 

R. -1 = R. + -a R. -1 E k (4.3.14) 

^ 
R. = 1W. iE k- k (4.3.15) -3. -3. 

In order to prove Theorem 4.3.1., it will now be shown 

that the set of R., i e k, as defined by (4.3.11) or 
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(4.3.14) and (4.3.15), is a solution to EDP such that 

F = KC for some F e r)F(R.). For simplicity, R.2  is iek 
written for Ri, i e k, and R for (R 

M)
* 
in the following. 

For i E k, by construction 

1 •Ri  (R + V) C M. 	 (4.3.16) 

for this not being true implies that, for i E k there 

existssomevectorx./0, of appropriate dimension, such 

that 

* R.x. E R + V, x4 M. 
1 — — 

Since R = r) z R.), this implies that 
iEk j/i J  

R.x. ZR.+V 

(4.3.17) 

(4.3. i8) 

Thusthereexistsvectorsx"j/iandx—such that 

R.x. + 	R.x. + Vx_ := 1 3. 	j/i  (4.3.19) 

which implies that for x = (xi 	xkx_ )
T 
, the elements 

of which are defined above, 

x e N(R) 	 (4.3.20) 
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T 
But M 	= N(R) and 

is true. 	Then, 

R.1(N(C)) C:14. 

Now, 

N(CR.) = N — 

by 

a 

[CR.] 

M. 

x4 M. contradicts i 	-a 

(4.3.5), 

iE 

this; 

k 

k 

hence (4.3.16) 

(4.3.21) 

(4.3.22) 

and N(CR1) / 0 implies that there exists a vector x / 0, 

1 such that xE R.-  N(C), and x E N(M.). But (4.3.21) implies  

that x6 M.T  = NI  (M.). Hence x = 0, and 

N(CRi ) = 0 	 E k 	 (4.3.23) 

Noting that R. has the form (P + L1)R1, Li  C X, i E k, and 

using the same arguments as the proofs of Theorem 4.1.1., 

and Theorem 4.2.1., it can be shown that the set 07.,1,_ 

forms a solution to EDP. Also, if V = 0, 	R. = X, which, 
iek 

together with (4.3.23) and Lemma 4.2.1., proves that F = KC 

can be satisfied for some F E rl F(R.). Thus the theorem 
iek 

is proved in this case. 

If V , 0, 
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v telc i 1/4- '...1c4.1 
	 (4.3.24) 

for, if not, assume there exists a vector xvsuch that 

Vx-fr € 	xcf Eic+i lek 
(4.3.25) 

This implies that there exists xi, i E k, such_that.)! 

1/.3c- 	= 1 iEk 
( 4.3.26) 

and hence x = (xl...xkx_)T is contained in N(R) = MT. 

But xvi lik+1  contradicts this, proving (4.3.24). Now, 

by (4.3.1) and (4.3.24) 

= 1r-12i Clik+i 	 (4.3.27) 

where Rir  is the entire linear vector space of dimension v. 

Hence, since M. 	= N 	) -1c+1 	x+1 

N
_L 
 (mk+i )D RV 
	

(4.3.28) 

But, since the number of columns of Mic+1  equals v, then 

11.(Mk4-1) C Rv, implying by (4.3.28), that 

N(N.1.1 ) = 0 	 (4.3.29) 
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Therefore sufficient non-zero independent subspaces R. (-Ilk  +1 
can be chosen such that,: forsome k Clk 

Ulla R. = 
iek 

(4.3.3o) 

and 	dim(%) = v. 
iek 
It will now be shown how the subspaces Ri, i E k, can 

be chosen so that (4.3.12) is satisfied, by partitioning 

blic+1  according to the-  following scheme. Write, for some 

s 

	

[

v 1= vi 	vsi  

	

Mk+ j [141 	MsJ 

(4.3.31) 

such that for each j E s, there exists R., i E k, for 

which 

v.n R. = 0 -a (4.3.32) 

This partitioning is always possible, subject to possible 

rearrangement of the columns of [ V 	1  since for some V., 
J 

• 

let 

Z . = V 	R. 
-a i E k 	 (4.3.33) 

Mk+1 

-97- 



If Z. 1  0, for all i E k, and the Zi  are independent, 

V. can be further partitioned 

Vj  = [z1 	Zk] 	 (4.3.34) 

Then, for m 	i, i. e k, m e k 

Z 3.  . (-1 	= V. n R.3.  r) R - —In 	— —In 

= ( i  n 	n ty:j  n 

= Zin An  

= o 	 (4.3.35) 

If the Z., i E k, are assumed to be not independent, then 

Z*  n zi) 
iEk j/i7; 

/ o 	 (4.3.36 ) 

and by (4.3.33), Z*(= R* n V, which is a contradiction, 

by construction of R and V, defined in (4.3.5). 

Now, for i, j such that (4.3.32) holds, set 
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and 

R. —1 

R. 

= M. 

= —1 

= R. 

+ R. —1 

i E 

i E 

iE 

k 

k 

k- k 

(4.3.37) 

(4.3.38) 

(4.3.39) 

Following the proof of Theorem 4.2.1., it is clear that 

fiijk so defined forms a solution to EDP. It must now be 
proved that 

N(Cic) = 0 

Writing, for 

CR. = [CR. 0 3- 	1 

k (4.3.40) 

(4.3.41) 

it can be seen that N(CR.) A 0 implies the existence of 

a vector x 0, such that x E [Ri  0]-1N(C) and xE NE11.1. M.3. 

However, similarly to (4.3.16) , by construction, for i E k, 

r.DER. V.]-1(R + 	V ) 1 	""' 
MT 	 Aj 
MI 

( 4.3. 4 2) 
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Butt  by (4.3.32), 

[R. V.]- (R
* 
+ EX' 

— 	1/i  
= R- 1(R*  + E V, ) 

1/j —L  

V3
1  (Rs 

v (R*  + Zvi) 
lij 

D 1171(R*  + 	vi ) 
lij 

-1 * = R. (R + V) (4.3.43) 

Thus, 

[R.0]-1N(C) C: [MT] 

^'T 

r = N LMi  

which implies that x = 0, or (4.3.40) holds. 

Since mai, c N(cRi), it follows that 

0) R. = X 
i 

(4.3.44) 

(4.3.45) 

and application of Lemma 4.2.1., completes the proof of 

Theorem 4.3.1. 
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4.4. Example of construction procedure  

The following example will be used to illustrate 

the construction procedure described in the proof of 

Theorem 4.3.1. 

Consider the system described by 

where 

(2.1.1), (2.1.2), 

A = 0 1 1 0 0 B - - 0 	0 0 (4.4.1) 

0 -1 0 0 0 1 	0 1 

0 1 -2 1 1 0 	0 1 

0 1 .  0 -2 1 0 	0 0 

1 0 1 0 -1 0 	1 0 

Ci  [ = 	10000 1 C2  = [ 0 0 0101 (4.4.2) 

0 1 1 0 0 

Using the procedure of Lemma 2.5.1. and the result of 

Theorem 3.2.1., the set tR3,, k = [1, 21, can be con-

structed  as 

RM = 
—1 o 

 
1 	s RN  = 

2 o o- 	(4.4.3) 
0 1 0 1 0 0 

0 0 1 -1 0 0 

0 0 0 0 1 0 

- -1_ 0 0 1 
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It can then be seen that 

(RM)* 	o 	0 -in 	(4.4.4) 

and since (C,A) is an observable pair, the system does 

not fulfill condition (i) of Theorem 3.3.2. for existence 

of an output feedback solution to the restricted decoupling 

problem. It can be easily verified that condition (ii) 

of that theorem is also not satisfied. 

However, since Ri  Ni  = X, i = 1, 2, for this example 

an output feedback solution to the extended problem does 

exist. Moreover, since R1 	2 
R = X, the conditions of — — 

Theorem 4.3.1. are fulfilled, and an extension of dimension 

given by (4.3.4), i.e. n = 2, is sufficient. 

To proceed with the construction of the solution 

Wk  to the problem, let 

= [ 0 	0 	O 	o 	Ti 	 (4.4.5) 

Then (RM)41 49 V = N(C). Constructing R yields 

R = [ R1  R2 
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' o 0 0 1  0 (4.4.6) 

1 0 	1  1 0 0 0 

0 0 1 -1 0 0 i 0 

0 0 0 0 1 0 0 
I I 

0 -1 0 1 0 0 1 1 1 _ 

0 
0 
0 
0 
0 
1 

-1 

for which 

N(R) 

1 

-1 
0 
1 
0_ 

(4.4.7) 

Thus 

= 1 
0 

0 

o 
0 

0 

o 

1 

0 

o 
-1 

1 
0 

t 
0 1  

I 
1 	1 

1 
o ' 1 

I 
0 1 

--I 
-11 1 

1 01 

0 

1 

-1 

- o 

0 

-1 
0 

o ' 
1  0 

0 

0 

1 

0 

0 
0 

'0 
1 

0 1 
I 

0 1  1 

o 1 
I 

1 	1 
I 

1I 1 
1 

1 1 

1 0 ,  

0 

0 

0 

1 

0 

-1  
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1 I 0-  0 

0 1 0 

0 0 1 

0 0 0 

0 -1 0 

0 -1 

0 0 0 

        

(4.4.9) 2 

   

0 

0 

 

O 

0 

0 

0 

1 
1 

   

 

0 

0 

  

 

o_ 

 

     

     

R2 

M
2 

(4.4.8) 

Since V / 0, and Rip V = 0, choose 

Using the procedure contained in the proof of Lemma 2.4.1., 

the feedback matrices Fi  e F(R), i = 1, 2, can be determined. 

It can be easily verified that N(CR.) = 0, i = 1, 2, where 

0 0 0 0 0 0 (4.4.1o) 

1 1 0 0 0 0 

0 0 1 0 0 0 

0 0 0 0 1 0 

0 0 0 0 0 1 

and that R4 
 9 R

2  = X. Therefore, the output feedback — — 

decoupling matrix K can be determined, and found to have 

c= 1 

0 

0 

0 

0 

  



the general form 

 

(4.4.11) 

	

K = k11 	
k12 	k13 	0 	1 

	

k21 	
k22 	k23 	-4 1 

-1-k11-k21 	k12 k22 -1-11c13 	
1 -2 

	

kil 	i+k12 	
i+k2,1k 3 	i 	-- 	1 

	

_ k51 	k52 	k23 	4 -1 

 

wherekkkkkkkand k52 are k11, k12, k13, k21, k22, k23, k51,  

arbitrary. Also, it is easy to verify that 

R. 17. = X -2. —3. - 

R. C N. 
g—2 — 

where 

= [0 0 0 1 0 

i = 	1, 2 (4.4.12) 

= 	1, 2 (4.4.13) 

0 (4.4.14) 

0 

0 0 (4.4.15) 

0 0 0 0 

1 1 0 0 

4.5. Pole assignment in the extended decoupled system  

The decoupled system in the extended state space can 

be described by 
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x(t) . 	+ g. )54 t) + 	 (4.5.1) 
iek 1  

Yi(t) = 	 i E k 	(4.5.2) 

It has been seen in the foregoing that the state space 

of the original system (2.1.1), (2.1.2), can be extended 

so that, for W k  a solution to EDP, R = 0. Sufficient 

dimension for such an extension is given by (MW2) WI  where 

= :Edim(R1.1) - dim(:Es 0). In this case, similar argu-
iEk  

ments to those used in Section 3.4. lead to a representation 

of (4.5.1), (4.5.2), in the form 

xi(t) = . 
3. 1 

Yi(t) = E31.
3.
(t) 

E k 

E k 

In the case of state feedback, therefore, the pole 
^ ^ 

assignment problem has an easy solution, since (A.,B.), 
3. 1 

i E k, are controllable pairs. That is, full pole assign-

ment is possible in the extended decoupled system. In fact, 

a smaller extension than that mentioned above can be shown 

to be sufficient (MW1). 

In the output feedback case, the construction procedure 

of the previous section will also lead to a representation 

of the form (4.5.3), (4.5.4), for the decoupled system. 
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However, feedback in each of the k subsystems is restricted 

to be from the output yi(t), and controllability of (4.5.3) 

is not sufficient in this case for complete pole assignment. 

Also, a further extension of the state space of dimension 

equal to dim(V), where .V was defined in Section 4.3., over 

that for the state feedback case, is not in general suff-

icient to allow complete pole assignment. Therefore, this 

problem falls inside the general problem of obtaining pole 

assignment by output feedback, a problem to which the next 

chapter will be devoted. 

4.6. Alternative techniques for output feedback decoupling  

It was pointed out in Section 2.2. that techniques had 

already been determined for the implementation of state 

feedback using output information, that is, the Luenberger 

observer (Li), ,and the technique of dynamic compensation 

due to Pearson et al. (P1), (PD1),(BP1). In the following, 

it will be shown how these techniques can be applied in 

the decoupling problem. 

Consider first the possibility of using a Luenberger 

observer to implement a state feedback decoupling control 

(D2). The control has the form 

u(t) = Fx(t) + EG.vi(t) 
iEk 

(4.6.1) 
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and the Luenberger observer is described by the equations 

e(t) = Felt) + Hx(t) + Lu(t) 
	(4.6.2) 

2(t) = Nx(t) + Me(t) 	 (4.6.3) 

^ 
where e(t) is an r-vector, and x(t) is an n-vector estimate 

of x(t). The conditions relating the system and observer 

parameters are 

L = TB 	 (4.6.4) 

TA - FT = H = a 
	

(4.6.5).  

I - MT = N = NC 	 (4.6.6) 

for some T, H and N. If (C,A) is observable, then solutions 

to (4.6.4) - (4.6.6) exist, for r.= n.- p. Introducing 

x(t) for x(t) in (4.6.1) yields the composite closed loop 

system 

[i(t)] = A + BFN BFM 	x(t) 	[BGil vi(t) 
iek 

e(t) 	H + LFN 	+ LFM e(t) 	LG. 

(4.6.7) 
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y(t) = [C 	0] x(t) 
	 (4.6.8) 

e(t)] 

These equations will be denoted by 

x(t) = 7X(t) + Ev(t) 
	 (4.6.9) 

y(t) =r5i(t) 	 (4.6.10) 

Forming the controllability matrix P for this system 

= [15. 	-A-n+r-1TS]s 	 (4.6. ii) 

using the relations (4.6.4) - (4.6.6), P can be shown to 

have the form 

= [Il [ P 	Ph] 
	

(4.6.12) 
T 

where P
1 
 = [(A + BF )nBG ... (A + BF)n+r-lBG], and P is the 

controllability matrix for the state feedback decoupled 

system 

P = [BG 	(A + BF)BG ... (A + BF)n-lBG 	(4.6.13) 
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It is evident from (4.6.12) that the system (4.6.9) is 

not completely controllable, because of the block dyadic 

nature of P. It can also be shown that if (Rjk  is the 

set of maximal controllability subspaces of (A,B), then 

W k, where 

= 	

[

11.1‘1 

TR. 

i E k 	(4.6.14) 

is the set of controllability subspaces for the composite 

decoupled system (4.6.9), (4.6.10), i.e. 

= Ri 
	 i E k 	(4.6.15) 

[ where B = B . Consideration of 01-il k  shows that it forms 
L 

a solution to the decoupling  problem. 

It is not required that the W., i e k, be independent. 

However, for full pole assignment in the decoupled system, 

additional dynamic compensation may be required as described 

in Section 4.5. Extra dynamics will also be necessary if 

r) Fm.) = 0, in which case a solution to EDP must be found, 
iEk 
and then implemented using  the observer. 

The essential difference between using  an observer, 
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and the technique developed in Section 4.3., is that, in 

the latter case, the whole extended state space X is 

decoupled into independent controllability subspaces, and 

the output performance of the system is entirely predicted 

by its transfer function matrix. This is not true for an 

observer, for which the uncontrollable modes may appear 

at the output. 

The second alternative to be considered is that proposed 

by Howze and Pearson (HP1). Their main theorem states: 

"Assume (A,B) controllable, (C,A) observable, and (the 

system) (A,B,C) can be decoupled by state.feedback. It 

is possible to compensate the system by means of a compensator 

of order (mq + no) such that decoupling and arbitrary place- 

ment of (n + mq + no) poles can be achieved with output 

feedback". Here, q is the smallest non-negative integer 

such that 

CA 

CAq 

that is, (q - 1) is the system observability index. The 

method used, is based upon earlier developments of Pearson 

rank = n 	 (4.6.16) C 



et al. concerning the use of dynamic compensators for 

optimal control and pole assignment (P1), (PD1), (BP1). 

The results in (HP1) are obtained only for the special 

case of RDP where rank(B) = k = p, i.e. rank(Ci) = 1, i E k, 

however further generalisation would not appear to present 

additional problems. 

Obviously, mq> n - p 	which implies that in 

general the dimension of extension using this method will 

be larger than that for the method of Section 4.3. Also, 

the compensator presented by Howze and Pearson requires 

that r) F(R.) ( 95, or, by Lemma 3.2.3., B = 27:Bri R..  iEk 	 ick 
This is not necessary for the method of Section 4.3. The 

latter method, however, does not in general result in full 

pole assignment being possible as previously remarked. 
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CHAPTER FIVE 

Pole assignment by output feedback  

5.1. The state feedback pole assignment problem  

Consider the system described by equations (2.1.1), 

(2.1.2), which are repeated here for convenience 

;c(t ) = Ax( t) + Bu(t) 

y( t) 	Cx(t) 

A problem which has been widely studied is that of 

determining a feedback matrix F such that the eigenvalues 

of (A + BF) correspond to a set A of predetermined values, 

the only restriction on which is that complex members of 

the set should occur in conjugate pairs. 

The existence of some F corresponding to any set 

was first established by Wonham (W1) in the following 

theorem. 

Theorem 5.1.1. 

The pair (A,B) is controllable if and only if, for 

every choice of the set A , there is a matrix F such that 

(A + BF) has A for its set of eigenvalues. 

Proof: The result obtained in Theorem 2.6.1., concerning 

the eigenvalue assignment properties in controllability 

subspaces provides a simple proof of Theorem 5.1.1., For, 
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if R = X 

AR C  R + B 	 (5.1.3) 

holds automatically, and 

A ) anal =a 	 (5.1.4) 

is equivalent to complete controllability of (A,B). 

A less restrictive condition than the ability to assign 

arbitrarily the eigenvalues of (A + BF) was introduced by 

Wonham (W1). This is the requirement that the eigenvalues 

of (A + BF) should have negative real parts, or that 

(A + BF) should be stable. A weaker condition than con- 

trollability can then be defined as follows. 

Definition 5.1.1. 

The pair (A,B) is said to be stabilizable if there 

exists an m X n matrix F such that (A + BF) is stable. 

Let a(s) be the minimal polynomial of X with respect 

to A. Then a(s) can be factorized into its stable 

( a-(s)) and unstable ( a-As)) parts, that is 

a(s) = a(s) a:7(s) 	 (5.1.5) 

Define the subspace X+(A) C X by 



e(A) = 	x : a4"(A)x = 0, x e X1 	(5.1.6) 

The following theorem can then be stated. 

Theorem 5.1.2. 

The pair (A,B) is stabilizable if and only if 

e(A) CEA IR\ 
	

(5.1.7) 

Proof: Intuitively, (5.1.7) implies that the unstable 

modes of A are controllable, and the result follows. The 

complete proof may be found in Wonham (WO. 

Neither of these theorems consider any restriction on 

the state feedback matrix F. In the following, the concepts 

of pole assignment and stabilization will be considered 

in the context of output feedback, where a solution K to 

the equation 

F = KC 
	 (5.1.8) 

must exist. 

5.2. Pole assignment by output feedback: existence of a,  

feedback matrix.  

In certain cases it may be possible to obtain arbitrary 

eigenvalues by output feedback. For example, it is possible 
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for the system described by equations (5.1.1), (5.1.2) 

where 

 

A= 0 

-1 

1 

-1 

-2 

0 

-2 

0] 

0 

B= 

2 

3 

1 

1 

2 

C= 0 0]  

0 

(5.2.1) 

as was pointed out by Pearson and Ding (PD1). As yet no 

necessary and sufficient existence conditions are known 

which a system has to satisfy for this property to hold 

although such a result would clearly be of interest. A 

. possible approach to this problem would appear to be 

through the study of the canonical forms of equations 

(5.1.1), (5.1.2), (L2), (K1), (PI), (WM2). In the follow- - 

ing, the next theorem due to Wonham and Morse (WM2) is 

used in considering the problem. 

Theorem 5.2.1. 

Let [A B1 = X, dim(B) = m. There exist controllability 

subspaces Ri, i C  m of (A,B) such that 

dim(B (l Ri ) = 	 m 	(5.2.2) 

and 

R ED R e 	= X I -2 	-m - (5.2.3) 
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If the R. are ordered so that dim(R.) > dim(R. ). 
.1. 	 3. 	 1 w 

i e m-1, then the list of integers c.  dim(R.3.), i E In 1 

uniquely characterizes the orbit of (A,B) under T where T 

is the group of transformations 

(A,B) 	(T(A + BF)T-1, TBG) 	(5.2.4) 

Proof: The proof of this theorem (WM2) is long and will 

not be included here. 

It is of interest however to consider the algorithm 

for constructing the controllability subspaces Ri, i e m, 
which is as follows. Write 

X0  = 0, X. = B + AB + 	+ Aj-1B 	j 6 n 	(5.2.5) — 	-- 

and define 

pi  = min ij : j E n, AjB C:X.1 
	

(5.2.6) 

Let x
i be any vector such that 

x1 — 6 B, Aix1 
 it X. • j E 111-1 	(5.2.7) 

    

For x EB re i-1, write 



B. 	 (5.2.8) 
--1 	

xi_l 

and define 

= min ( j : j e n, AjB CX. + AjB. 
—J 

(5.2.9) 

Choose d.3.  e B and e. 	B. 	such that -• 	1 B.  

Ai, 
di  ft Bi_11  A (di  - ei) E XPi 	 (5.2.10) 

Set xi  = di  - ei, Bi  = 	Bi_l, xi'  , to complete the 

recursive determination of the Ai  and xi, i E m. To 

construct the 21, i e m, choose zij e B, i e m, j e Ai  

so that 

•Ai 	 A.-1 
A x. = z

i1 	
zi2  + A 	+ 	+ A 	z. 

Write 

eij = Aj-lxi  - Aj-2z. • - 
Ai  

(5.2.11) 

(5.2.12) 

and then cyclic R., i e m are defined by 

= m 	e 	S.., e. 3.  Ai  . (5.2.13) 
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Consider constructing (R.a
1 	for the example above, - m 

where A,B and C are given in (5.2.1). In this case m = 2, 

and 

—1 	
1 , 

[32I 

1 

-12 

17_ 

R
2 
 = 5 

-4 

1 

(5.2.14) 

can be constructed using the algorithm. For N(C) = 

(0 0 1)11 , it is immediately apparent that 

R3. 
. (--) N(c) = 0 I  i = 1,2 	(5.2.15) 

Based on this observation, the following theorem is 

put forward as a necessary condition for pole assignment 

by output feedback, in the case when A can be decomposed 

into m subsets A i of size equal to dim(R1), i E m, and 

in each A . complex elements occur in conjugate pairs, 

otherwise denoted as being symmetric. 

Theorem 5.2.2. 

Given (A I B/ = X, dim(B) = m and any set A capable 

of being decomposed as described above, there exists a 

matrix K such that the eigenvalues of (A BKC) = A = U A., 
iem I  

only if 
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A(R.C1N(C)) CR. 	 (5.2.16) 

Proof: For F = KC such that spectrum (A + BF) = A let 

F 6 r) F(R.) and 
iem 

A_ = spectrum (A + BF I R.) 
	

i E m 	(5.2.17) 

since R., i E m, is a controllability subspace of (A,B). 

Also, since F is such that the Ri  i E m are cyclic, and, 

from (4.2.2), dim(Bn Ri) = 1, F is uniquely determined 

by [Ai) m. But by assumption F = KC. Hence KC 6 r) F(Ri) 
i€m 

and (5.2.16) follows since 

(A + BKC)Ri CRi 	 m 
	(5.2.18) 

As a further example, consider the system described 

by 	(5.1.1),(5.1.2) where 

.11.• 

A = 0 1 0 0 0 B= 0 0 0 (5.2.19) 

0 0 1 0 0 1 0 0 

0 0 0 0 0 0 1 0 

0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 1 

C= 1 0 0 0 0 (5.2.20) 

L.0 0 0 1 0 
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In this example 

—1 

the R., i E m 

I R  —2 - 

may be 

1 

constructed as 

0 0 1 0 
1 0 0 1 

1 0 0 -1 
.-1 0 

= ([0 	0 	1 	0 	01T1 	 (5.2.21) 

It is evident that 

A(Ri n N(C)) cZRi 	i = 1,2,3 	(5.2.22) 

and, in fact, complete pole assignment cannot be achieved 

for this system using output feedback. 

5.3. Pole assignment by output feedback: a lower bound. 

Jameson (J1) and Davison (Dal)(DaC1) have considered 

the problem of pole assignment by output feedback, and a 

lower bound on the number of eigenvalues of (A + BKC) that 

can be arbitrarily chosen, for some K, has been established. 

The original theorem (Dal) considered the case when the 

state space X is cyclic with respect to A. 

Theorem 5.3.1. 

If (A,B) is a controllable pair, C has rank p S  n, and 
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the state space X is cyclic with respect to A, then a 

matrix K can be found such that p eigenvalues of (A + BKC) 

are arbitrarily close (but not necessarily equal) to p 

predetermined values, chosen such that complex values 

occur in conjugate pairs. 

Proof: The proof (Dal) of this theorem, which is algebraic 

in nature, will not be included here. 

This theorem has been extended (DaC1) to the case 

where X is not cyclic, by using the result of the following 

theorem, which was first established by Brash and Pearson 

(BP1). 

Theorem 5.3.2. 

Given a system described by (4.1.1), (4.1.2), where 

(A,B) is a controllable pair, there exists a matrix K such 

that the state space X is cyclic with respect to (A + BKC). 

Proof: The proof of this theorem (BP1) is of a fairly 

complicated algebraic nature and will not be included here. 

The following is put forward as a possible simple 

method of constructing the matrix K of Theorem 5.3.2. 

Consider the decomposition of the state space X studied 

IDYKalman(K1).11ritel3=(bi b2...bid,whereb.is the 

ith. column of B, i E m. Construct the following m columns 

of n vectors: 

-122- 



= b. 

6) U. = X iem 

u. n 

(5.3.2) 

i e m 	(5.3.3) 

b1 b2 ... bm 
	 (5.3.1) 

Ab1 	Ab2 	Abm 

A
2
b1 

A2b2... A
2bm 

etc. 

such that a vector in a particular row and column is 

included only if it is linearly independent of the other 

vectors in that row, and all the proceding rows, and 

every vector above it in the column is included. Now 

write the subspace U. C X as the span of the vectors in 
•'"•• 

the ith. column of the vector array (5.3.1), i E. m. It 

can be shown that 

if (A,B) is controllable, and rank (B) = m. Let pi  = dim(Ui). 

For some ordering of the Ui  set 

r
1 

= b 	r
4-  . = Ar. 1' 11 i = 1, 	p1-1 

rp1 +1.+1 = Ar P 	
if rp

1
+i E N(C) 

1  

= Arp1+i  b2 if rpi+i  N(C) 

i = 13111' 00.11 p2-1 
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rp2+i+1 = ArP2ti if rp2+i 
 6 N(C)  — 

= Ar e 
Pi + b3 

if r
ei  P 	

N(C) 

= P2 t ...1 p3-1 

andsoon,until .E. pi  = n vectors r. are obtained such 
iEm 

 

that, for b. E B 

r.m+1 = Ar. + b. 	i E n-1 	(5.3.4) 

Choose K such that 

BKCr. = b. 	 (5.3.5) 

where lb. = 0 for all r.E N(C) by construction. Hence K 

will always exist. Substituting (5.3.5) in (5.3.4) yields 

r.x+1 = (A + BKC)r. i E n-1 	(5.3.6) 

   

showing that X is cyclic with respect to (A + BKC), or 

tA + BKC I ril = X 	 (5.3.7) 

Whether this construction of K works depends heavily 

on the choice of the order in which the U. are taken. 
—1. 

In particular, it will fail if for some choice of order, 
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any of r l i.Em-1 2 are contained in N(C). It has not Pi  

been possible to find any criterion for the choice of 

the order of the U.%  which will guarantee that the con-

struction will work. If this were possible itwoulaprovide 

a simple proof for Theorem 5.3.2. The example of Section 

5.2, -where A,B and C are given by (5.2.19), (5.2.20) is 

used here to demonstrate the construction. The U. can 
-1. 

be simply determined as 

          

U . 

   

U2 =  3 = 

  

I 

 

      

   

0 

0 

0 

0 

 

0 0 

 

0 

0 

       

     

0 

0 

  

         

          

           

           

           

(5.3.8) 

Choose r1 = b3  E N(C). Hence r2 = Ar1  = -0 N(C) 

0 
0 
1 
0 

Choosing therefore r3•= Ar2 + b1 
= 0 6 N(C), then 

1 

0 

0 

0 
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r4  can be chosen such that r4  = Ar3  = 1 
O 

0 

0 

0 

A N(C), and 

   

r5  = 	+ b2  = 0 . The matrix K is 

0 

1 

0 

as satisfying 

0 

BKCr2  = b1, BKCr4  = b2  

Such a K is given by 

K = 	0 1 

1 0 

0 0 

then determined 

(5.3.9) 

(5.3.10) 

It is simple to check that (5.3.7) holds. It is worth 

noting that the procedure will also work if r
1 

= b
1, 

and 

r3  = Art + b31  but not if r1  = b2  is chosen. 

The approach to the output feedback pole assignment 

problem described in this section gives little indication 
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as to which (n - p) eigenvalues cannot be altered by 

output feedback. If any of these eigenvalues are in the 

right half complex plane, then this approach cannot yield 

a stable closed loop system. The following section goes 

some way towards answering this question. 

5.4. Stabilization by output feedback. 

In many cases where it is not possible to achieve 

arbitrary pole placement by output feedback, it may be 

possible to arbitrarily alter those eigenvalues which are 

unstable and hence stabilize the closed loop system. 

Consider the system described by equations (5.1.1), 

(5.1.2) which is.assumed to be controllable and observable, 

and define the subspace V C:X, as the smallest A-invariant 

subspace containing N(C), that is, V is the smallest 

subspace such that 

AV CV, N(C) CV 

From this, it can be seen that 

T -L
C: 	

T 
AVV, Vc -C 

(5.4.1) 

(5.4.2) 

and V1. is maximal with these properties. Recalling the 

construction of maximal invariant subspaces in Chapter Two, 
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1 	_21. 
it is easy to see that V is given by V = v—, where 

v° = CT, vi+1  = CT ri (AT)-1Vj 	(5.4.3) 

Taking orthogonal complements it is easy to see that 

V = N(C) + AN(C) + 	+ An-1N(C) 	(5.4.4) 

The following theorem was recently presented by Li (Lil). 

Theorem 5.4.1. 

There exists a matrix K such that the eigenvalues of 

(A + BKC) are stable if the eigenvalues of A I V (A 

restricted to V) are stable. 

Proof: The proof presented by Li (Li1) is complex, and 

will not be included here. The result however can be 

shown to be a special case of a result obtained by Wonham 

(W2) in relation to the multivariable tracking problem, 

and will be proved as a direct result of the following 

theorem (D4). 

Define aF(s) as the minimal polynomial of X with 

respect to (A + BF), and a
+
(s) ac(s) as its unstable and 

stable factors respedtively. For F = 0, define a(s) = 

a
+
(s)a(s) similarly. Denote 

e(A + BF) = N(apA + BF)) 	(5.4.5) 



X+( A) = N(a+( A)) 	 ( 5.4.6) 

V is defined as above. 

Theorem 5.4.2. 

There exists F with 

V CN(F) 
	

(5.4.7) 

such that (A + BF) has stable eigenvalues, if and only if 

e(A).n V = 0 	 (5.4.8) 

Proof: F can always be chosen so that 

V CN(F) 	 (5.4.9) 

Let x. be any vector such that x E e(A + BF) r) V. Then 

aF(A + BF)x = 0 
	

(5.4.10) 

and, since x E V, and AV C:V, 

a;(A + BF)x = a;(A)x 	 (5.4.11) 

Let b(s) be the minimal polynomial of x with respect to 

A. Then (5.4.10) and (5.4.11) imply that b(s) 14(s) 
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+ , (b(s) divides aF(s)). Hence b(s) must have only unstable 

roots. By definition of a(s) as the minimal polynomial 

of X with respect to A, it follows that b(s) la(s), and 

hence b(s) I a+(s). Therefore 

a (A)x = 0 	 (5.4.12) 

or x E X+(A)r) V.• Hence 

X+(A + BF) (1 V ceoon v 	(5.4.13) 

By a similar argument, the reverse inclusion holds, and 

therefore 

e(A BF)(1  V = x+(A) 	v 	(5.4.14) 

For sufficiency therefore, assume (5.4.8) holds. Then, 

from (5.4.14) 

e(A + BF)() V = 0 	 (5.4.15) 

, 
and since X =X+ (A + BF)(D X-(A + BF), it follows that 

V C:X-(A + BF) 	 (5.4.16) 
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Since the system is assumed to be controllable, F can 

therefore be chosen to satisfy (5.4.7) such that (A + BF) 

has stable eigenvalues. 

Necessity is proved by noting that (A + BF) having all 

stable eigenvalues implies that 

X4-(A + BF) = 0 
	

(5.4.17) 

and hence (5.4.8) follows from (5.4.14). 

The result of Theorem 5.4.1 can now be obtained directly 

from Theorem 5.4.2 by noting that 

N(C) C V CN(F) 	 (5.4.i8) 

implies that a solution K exists to F = KC. 

These results obviously hold also for the dual system 

described by the equations 

z z = ATz + CTw 	 (5.4.19) 

v = BTz 	 (5.4.20) 

where, in place of V, the subspace of the dual state space 

Z considered is W, where W is the smallest AT-invariant 

subspace of Z containing N(BT). Since the eigenvalues of 
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(A + BKC) and (A + BKC)T  are the same, the following 

theorem can be stated (Li1). 

Theorem 5.4.3. 

The controllable and observable system described by 

(5.1.1), (5.1.2) is stabilizable by output feedback if 

eigenvalues of A I v n  eigenvalues of AT  I WI contains 
only stable eigenvalues. 

Proof: This follows simply from Theorem 5.4.1 and its 

dual. 

5.5. Pole assignment by output feedback: extension of 

the state space  

Two ways exist of achieving complete pole assignment 

by output feedback using an extension of the state space, 

these being the dynamic compensator of Brasch and Pearson 

(BP1) and an observer (L1), (W3). 

Considering first the dynamic compensator, this involves 

the determination of a sufficient dimension for an extension 

of the form described in Section 2.3. Brasch and Pearson 

(BPI) have shown that for a controllable and observable 

system, as described by (5.1.1), (5.1.2), a sufficient 

dimension for such an extension is equal to min(pc,p0), 

where pc  and pc  are the smallest integers such that 

P 
rank (B AB ... A -

, 
B) = n 	 (5.5.1) 
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and 

rank (C
T
,A
T 	

...,(A) = n 	(5.5.2) 

Their approach is a complex algebraic one, which does 

not readily lend itself to the determination of the minimal 

order for such an extension, an unsolved problem. However, 

the geometric approach also has not been fruitful in 

respect of this problem in the absence of any sufficient 

condition for pole assignment by output feedback. A 

possible approach to this problem may be by consideration 

of Ri m  constructed in Section 5.2. 

The pole assignment properties using observers (L1) 

are well known and will not be pursued here. It is of 

interest however, to consider the geometric approach to 

dynamic observers which is described in the following 

section. 

5.6. Geometric theory of observers  

This theory (W3),(WN2) is based upon the geometric 

concept of a cover. Let Z be any subspace of X such that 

Zn B = 0. 

Definition 5.6.1. 

A subspace V C:X is a cover for Z, relative to the 
pair (A,B) if 
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AV CV + B, V + BD Z 
	

(5.6.1) 

The cover index of Z is the smallest integer v with the 

property that for every symmetric set A of v numbers, 

there exists a cover V of Z with dim(V) = v, and an F 

such that 

(A + BF)V C V, spectrum(A + BFI V) = A 	(5.6.2) 

Consider now the 02.
).
1 111, the construction and properties •-•"  

of which were described in Section 5.2. Define 

7 = max 1 : Z CL1 + Ri  + 	+ 	+ R 	(5.6.3) 

In the general case for Z C:X, the determination of 

v and corresponding V for various A is an unsolved problem. 

For the case when dim(Z) = 1, however, it can be shown (WM2), 

assuming the pair (A,B) is controllable, that v = dim(R7) - 1. 

An observer can now be demonstrated as the dual structure 

of a cover. Assume that the pair (C,A) is observable, or 

dually, (AT,CT) is controllable. Let X' denote the dual 

state space. 

Definition 5.6.2. 

A subspace V' C X' is an observer for VC X', relative 
to (C,A), if 
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ATV' C: V' 
	

V' + CTD zi 
	 (5.6.4) 

The observer index of Z' is the smallest integer w having 

the property that for every symetric set r of w numbers, 

there exists an observer V' for Z' with dim(V') = w, and 

an F such that 

T T T 	 T T T 
(A +CF)V'C V' 	 I spectrum(A + 	VI ) = r 

(5.6.5) 

The relationship of this definition of the geometric 

concept of an observer to that described by Luenberger (L1), 

is immediately made obvious by considering (5.6.4) in 

matrix terms. In particular, let dim(W) = 1, and let 

zT be a basis vector for Z'. Similarly, let VT be a basis 

matrix for V'. Then (5.6.5) implies that a w X w matrix T 

exists such that 

(AT 4.  cTFT)vT VTTT 	
(5.6.6 ) 

or 

V(A + FC) = TV 	 (5.6.7) 

Also, (5.6.4) implies that 
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N 

 

(5.6.8) 

   

or 

ZT = MC + NV 
	 (5.6.9) 

for some M and N, and spectrum(T) = r, by (5.6.5). The 

relationship to the form of a Luenberger observer des-

cribed by 

e(t) = Te(t) 	VFy(t) 

2(t) = Ne(t) + My(t) 

which estimates the single 

u(t) = zTx(t) 

by 

u(t) = zTx(t) = MY(t) 

+ VBu(t) (5.6.10) 

linear functional 

(5.6.11) 

(5.6.12) 

+ Ne(t) (5.6.13) 

is now clear. The error (e(t) - Vx(t)) is then governed 

by the dynamics 
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(;(t) - Vi(t)) = T(e(t) - Vx(t)) 
	(5.6.14) 

and, as has been shown, the eigenvalues of T are arbitrary. 

The concept of a dual observer, introduced by Brasch 

(Br1), and described by Luenberger (L3), is now straight-

forward, and leads to an interesting new approach.:7:In a 

similar fashion as for the observer, from the definition 

of a cover, it follows that there exists a v X v matrix S 

such that 

(A + BF)V = VS 	 (5.6.15) 

from (5.6.2), or 

AV - VS = BFV.  

Also, from (5.6.1), 

N 

 [

VT] CN(ZT) 

BT 

or 

(5.6.16) 

(5.6.17) 

Z = VM BN 
	 (5.6.18) 
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and spectrum(S) =A. The dual observer can be described 

as a special form of controller which permits an approx-

imation to complete freedom as to how input is made to 

the system. For example, if the output y(t) were to be 

introduced into the system in the form 

x(t) = Ax(t) + Ky(t) 	 (5.6.19) 

then the eigenvalues of the system, i.e. of (A + KC), 

could be arbitrarily assigned by choice of K, if the 

system were observable. 

The dual observer takes the form described by 

;(t) = Se(t) + Mw(t) (5.6.20) 

w(t) =.y(t) 	+ CVe(t) (5.6.21) 

u(t) = FVe(t) + Nw(t) (5.6.22) 

where AV - VS = BFV, K = VM + BN, from (5.6.16) and 

(5.6.18). A straightforward development then yields 

that 

X(t) + Ve(t) = A(x(t) + Ve(t)) + VMw(t) + BNw(t) 
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= A(x(t) + Ve(t)) + Kw(t) 

= (A + KC)(x(t) + Ve(t)) 	(5.6.23) 

from 0.6.20)-(5.6.22). Thus the eigenvalues of (A + KC) 

can be chosen arbitrarily, if the system is observable, 

as can those of S if V is chosen such that dim(V)>v, 

where v is the cover index of K. 

The problem of determining the minimal order for 

an observer or its dual is therefore that of determining 

the cover index for a subspace Z C:X, or the observer 

index for Z' C X', which in the general case is an 

unsolved problem. 
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CHAPTER SIX 

Conclusions and areas of further research  

6.1. Conclusions  

The intention of this thesis has been to extend the 

theory relating to linear multivariable systems using the 

geometric approach, by considering the related concepts 

of invariant and controllability subspaces. This extension 

has been obtained in the field of output feedback control, 

an area of obvious practical significance. 

The theory relating to the main application of this 

geometric approach, that is, decoupling, has been extended 

in the non-dynamic feedback case to provide a useful 

necessary and sufficient condition for a solution to the 

decoupling problem to be implemented by output feedback. 

In the special case, when the number of system inputs 

equals the number of sets of system outputs to be decoupled, 

the case which is most generally treated in the literature, 

a necessary and sufficient condition has been established 

for the existence of any output feedback solution to the 

decoupling problem. 

Consideration of the case when the control is permitted 

to contain dynamic elements has led to a necessary and 

sufficient condition for the existence of an output feed-

back decoupling control of this form. For economic reasons, 

it is of importance to minimise the order of the additional 
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dynamics required. As a contribution towards achieving 

this, a constructive method has been presented for obtain-

ing an output feedback solution to the decoupling problem 

which requires• in general a small order of dynamic 

compensation relative to the order of the system dynamics. 

It has not been possible, however, to show if this order 

is minimal, or if not to discover other ways of achieving 

a minimal order. 

Also of interest in multivariable design is the problem 

of pole assignment by output feedback. This is an entirely 

new area for application of the geometric concepts which 

have been considered here, and this application has proved 

as yet to be of limited success. The discovery of a 

necessary condition for pole assignment by output feedback 

has perhaps pointed the way to the existence of more useful 

results in the case of non-dynamic feedback. Certainly 

the geometric ideas utilised here have provided a simple 

proof concerning the stabilizability of multivariable 

systems by output feedback. In the dynamic control case, 

a geometric theory of pole assignment compensators, though 

intuitively its existence is apparent, has proved difficult 

to formulate. In contrast, the geometric theory of dynamic 

observers is well developed and has been shown to exhibit 

clearly the concept of a "dual observer", and open an 

interesting new approach to the problem of minimizing 
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observer order. 

An assessment of the value of the geometric theory 

presented here in relation to the continuously expanding 

store of information concerning the analysis and design 

of multivariable systems is difficult to make. That it 

is most suited to problems involving "hard" design con-

straints is emphasised-by its success in dealing with the 

decoupling problem. However, it has been shown that some 

extension is possible into the field of "soft" constraints, 

such as pole assignment, stabilization and observer theory. 

Additional application has been found in the field of 

multivariable tracking systems. 

6.2. Suggested areas of further research  

As has been pointed out elsewhere, the general decoupling 

problem is as yet unsolved. .The solution to this lies in 

the ability to systematically generate non-maximal invariant 

or controllability subspaces. This fact is equally 

applicable to the case of output feedback decoupling, where 

it would be of interest to establish a systematic procedure 

for determining invariant subspaces of (A,B), maximal or 

not, which can be generated by output feedback, that is, 

which are (A + BKC)-invariant for some K. A search over 

all such subspaces, together with Theorem 2.3.1 would then 

yield a complete solution to the existence of a non-dynamic 



output feedback control for decoupling. 

In the field of dynamic decoupling control, the 

remaining interest lies in determining minimal order 

dynamics. 

. In the general field of linear multivariable design 

theory, the opportunities for further research are vast. 

The problem of pole assignment by output feedback alone 

requires intimate insight into the structure of a multi-

variable system. This may or may not be provided by the 

geometric approach, perhaps requiring more powerful tools 

such as multilinear algebra or affine geometry. A possible 

approach to the general multivariable design problem may 

be through a "softening" of the constraints in the decoupling 

problem. Basically, this would require an effective method' 

of measuring the "distance" between two vectors, or vector 

subspaces, a concept which is open to development. 

Finally, it would be of interest to explore the com-

putational aspects of the geometric approach described here. 

Some aspects of this have been considered (MW2), and the 

basic vector space operations expressed in terms of matrix 

computations. 
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