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ABSTRACT 

The use and usefulness of computer simulation models 

in applied ecology are discussed; there appear to be two 

distinct types of model, one of which seeks to provide 

precise, quantitative answers to economic problems, and the 

other to give qualitative understanding of the ecological 

behaviour of managed ecosystems. This distinction has not 

been made explicit in the past, but it is of fundamental 

importance. 

Using the modelling techniques described, I have 

analysed the complex problem of determining the biological 

attributes of a predator species which would maintain 

populations of Aphis fabae Scopoli at a level which causes 

no significant economic loss of beans in a crop of Vicia  

faba L. To do this, three models are discussed; a model of the 

growth of the bean plant under aphid attack: a model of the 

growth and feeding of an aphid population under various 

predation regimes: and a model relating the biological 

attributes of a predator species to its performance in 

reducing and stabilizing aphid numbers. The attributes of 

this optimal predator are listed, and some of the known 
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predators of Aphis fabae are evaluated by comparison. 

Finally I discuss the relationship between the complexity 

of a model (how much biology there is in it) and how useful 

it is (how well it answers the question). 
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GENERAL INTRODUCTION 

The specific task of this thesis will be to investigate 

the use of biological simulation models in problem-solving. 

First of all, however, I will make clear what is meant by 

'biological simulation models', and precisely which. types of 

problem I shall be attempting to solve. 

Models are simply reconstructions of nature for the 

purposes of study (Levins, 1968); they are simplified and 

abstract by necessity, but presume to represent the 

fundamental aspects of reality in an unmodified form. Of 

the numerous types of model (see Chapter I), biological 

simulation models are those which consider the detailed 

operation of biological processes by means of a set of 

equations amenable to numerical (rather than analytical) 

solution. 

The class of problems to which such models are best 

applied concern the effects of manipulations or disturbances 

in ecological systems. Such problems typically occur in a 

resource management context, with the need to trace the 

direct effects and secondary repercussions of novel 

management policies. This is not to say that simulation models 

are valueless in theoretical studies, but rather that their 

benefits are greater in tackling applied problems (Chapter VI). 
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A problem has been chosen from the field of biological 

control to serve as an example of the use and usefulness of 

biological simulation models. This choice is based on the 

fact that biological control is typical of many management 

practices in that it involves the purposeful alteration of 

the distribution and abundance of species popUlations, and 

second, that the problems raised in biological control are 

often sufficiently complex as to defy solution by other 

means (mental reasoning or algebraic analysis). 

Specifically, I have chosen to tackle the problem of 

determining the optimal biological attributes of a predator 

species which could maintain populations of Aphis, fabae 

below the level at which significant economic loss of broad 

beans (Vicia faba L.) would occur. This problem is particularly 

interesting since it involves three species (a predator, an 

aphid and a plant) and three different spatial scales. Yield 

in the crop plant is determined essentially by_ physiological 

processes operating at particular nodes (determining the 

number of flower buds, flower survival, pollination, seed-

fill, and so on), whereas the aphid population acting to 

reduce bean yield is distributed over whole plants. The set 

of processes affecting the pest population must therefore 

be broader than, but inclusive of, those acting on the plant. 

Finally, the predator population is distributed over rather 

large areas of the crop between points of different prey 

density, and will, in consequence, be affected by a still 

wider set of processes. This relationship is shown in Fig. 1. 

The body of the thesis is divided into six chapters. In' 

the first, I examine the types of model which are in current 

use in various branches of applied ecology, and detail the 
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PREDATOR APHID PLANT 	BEAN 
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alisisstawswomer 

Figure 1. The three components of the problem of determining 
the attributes of the ideal predator for Aphis fabae on beans 
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procedure by which biological simulation models are designed 

and constructed. The pest control problem is then investigated 

to assess the variables which influence bean yield and the 

effectiveness of biological control, and to estimate the type 

and amount of data which will be necessary to quantify the 

model. 

In the following chapters I shall consider the question 

in three broad sub-sections. First, I shall deal with the 

effects of Aphis fabae upon its host plant; as an agency of 

drain on the net production of dry matter, and as an influence 

upon the pattern of distribution of this dry matter between 

the plant organs, especially into the fruit. This section 

comprises chapter II, an experimental investigation, and 

chapter III which considers a simulation model of the growth 

of Viola faba under an aphid infestation. 

The second section consists of an analysis of the growth 

and feeding of an aphid population, with particular reference 

. to the effects of age-selective predation on these parameters. 

Again, a simulation model is presented which has been built 

to consider the question "which strategy of predation 

results in the most efficient reduction in aphid feeding 

(and hence minimises damage to the host plant) ?" The 

efficiency of predation has been defined as the grams of 

plant dry matter saved per gram of aphid eaten; in other words, 

the extent to which unit feeding by the predator benefits 

plant yield. 

Chapter V deals with the relationship between the biol-

ogical attributes of a predator species (its fecundity, sex-

ratio, searching efficiency, voracity, dispersive abilities, 

and so on) and its efficiency as an agent of biological 
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control against aphids. A model of predation is presented 

which incorporates the functional responses of the species 

to prey density, and the numerical responses to changes in 

this density. The numerical response is considered as 

affecting, on the one hand, the survival rate and fecundity 

of the predator and, on the other, the pattern of dispersal 

of the species over the area occupied by the prey. 

The final chapter investigates the relationship between 

the complexity of a simulation model and its utility, and 

discusses the merits and limitations of modelling in 

assessing problems in resource management and in theoretical 

studies of population behaviour. Criteria are suggested for 

deciding the degree of complexity necessary to solve a given 

problem, and the use of models for purposes other than direct 

prediction are discussed. 
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CHAPTER I 	BIOLOGICAL SIMULATION MODELS IN 
• , 	

PROBLEM SOLVING 

Introduction.  

There is currently a rather wide discrepancy between 

the complexity of information which is available concerning 

the behaviour of ecological systems, and the highly 

simplified abstractions from this body of knowledge which 

are used as a basis for answering practical questions of 

resource management. As the pressure on renewable resources 

increases, it becomes progressively more important that we 

understand both the extent to which proposed management 

practices will have effect, and the secondary repercussions 

which they might instigate. It is clear that in order to 

fulfil these requirements we must give attention to the 

complexities of the interaction between the resource and its 

environment. The conceptual models which for so long have 

acted as the backbone of decision-making have only a limited 

scope for such development. The need is for mathemati6a1 

models which permit the inclusion of relatively complex 

biological information, and facilitate the derivation of 
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realistic solutions to particular problems of management. 

Modelling  

A mathematical model is built by observing the real 

system to discover those aspects of its structure which are 

measurable. Looking at a forest, we can measure the weight of 

the trees, the depth of the soil, the number of pigeons, 

and the daily rate of precipitation. These measurable entities 

we call the parameters of the system (or the 'state variables' 

in systems analysis terminology). From this list of parameters 

it is then possible to define which of them are, for particular 

purposes, constants, and which are variables. Next, it is 

necessary to consider each variable in turn, and to suggest 

the processes which act to change its value; photosynthesis 

is the process acting to increase the weight of the trees, 

while birth and-death rates affect the number of pigeons. 

Each process which can be recognised as causing 

important changes in the listed variables is then examined, 

and the factors which affect its rate or intensity are noted. 

Light intensity and air temperature affect the rate of tree 

photosynthesis, while the availability-of food affects the 

birth rate of the pigeons. The relationship between a given 

factor and the process which it affects is then qUantified 

by supplying a data-set to describe it. The data set can be 

in the form of a graph or a table, or an equation which 

summarizes either of these; it is obtained by experiment 

or from the literature, We can picture the chain of events 

in rnr,a,-1-blilr3 iIng as a flow-diagram representing the 

sequential definition of the different aspects (Fig. 2). 

The variables are now represented by symbols, which can 
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NATURE 

MEASURABLES 

PARAMETERS 

CONSTANTS 	VARIABLES 

FACTORS -40E--- PROCESSES 

DATA SETS 

)0/ \ 
EQUATIONS 	GRAPHS/TABLES 

Figure 2. The chain of events in modelling. The choice of 

which parameters to measure, and the number of parameters 

which are necessary, is made in relation to the needs of the 

problem being  tackled. 
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be verbal (e.g. "the weight of trees"), written abbreviations 

(e.g. WTTR as used in many computer languages), or single 

algebraic symbols (e.g. 'w'). These symbols then represent 

the numerical value of the variable at any time. Relationships 

between the factors operating in the system and the variables 

we have isolated (the processes) are then expressed as functions. 

A function describes the way in which a variable X maps onto 

a new value under the operation of the process; we say that 

Xv--- f(X), where f(X) - read as f of X - is the function 

describing the effects of the process on X. We can write 

functions without specifying their precise form, as 

= f(X) 

or we can state the shape of the function, and write, for 

example, 

2 
Y = 1 +2X 

With the variables and functions so specified, it is 

possible to build the mathematical model. We express the 

change in each variable as a function of those factors which 

affect it, and so, if we supply starting values for each 

variable, it should be possible to trace the course of the 

system components through time. The equations of change can 

be written as differentials; e.g. 

dW 
= (1 - b)W 

dt 

or as differences, which express the values of the variable 

at a number of discrete times; for example, today's weight is 

a function of yesterday's 
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r 
= W .e 

t-1 

We shall examine these aspects in more detail later. 

There are two main reasons for building a model of a 

system. The most common usage is in assessing the extent to 

which the synthesis of hitherto fragmentary information on 

the behaviour of individual variables and processes gives a 

realistic picture of the dynamics of the whole system. We can • 

call such models 'comparative' because the behaviour of the 

real system is known and the model strives to mimic this 

behaviour (see, for example, many of the papers in modelling 

symposia like Jeffers, 1972; Patil et al., 1970). Second, 

models can be built to investigate the effects of different 

types of intervention on the behaviour of a system. These 

models are concerned with the response of the system to stress, 

and with the types of stress to which systems are most 

sensitive; we can call these 'manipulative' models (e.g. 

Forrester, 1961; Goodall, 1967; Crawley and Westoby, 1970). 

Here, the outcome is not generally known in advance, and the 

model is used to investigate the effects of the manipulation 

as best it can with the information currently available. The 

fundamental distinction between the two types of model is that 

the former tends to deal with systems at or near 'equilibrium', 

while the latter (because it considers the effects of stress) 

tends to deal with extremes. 

Examples of manipulative models are fewer than examples 

of comparative models, but it is not possible to say whether 

this reflects a real imbalance of effort, or rather a feeling 

that manipulative models are somehow less scientific (either 
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because they are directly useful in management - too applied - 

or based on the synthesis of processes and data sets which 

are not fully understood - too speculative). 

The structure of a problem-oriented, manipulative model 

should be related to the type of solution required; a problem 

demanding accurate numerical predictions will be modelled 

differently from one aiming at a qualitative or synthetic 

understanding of the problem. This distinction is expanded in 

Chapter VI. 

Types of Model  

Having made the decision to investigate a problem by 

modelling, the biologist is faced with numerous types of model 

from which to choose. Every model has four basic attributes: 

namely its form, its time-base, its units, and its determinism. 

Each attribute can be tackled in a variety of ways, and one 

model can be described in terms of the method used in each of 

these classes. 

Model form refers to the way in which the structure of 

the real system has been represented. In ecology the most 

common forms are algebra and digital simulation. Analogue 

models have been used, but their applicability is rather 

limited (Denmead, 1972). 

The majority of ecological problems are concerned with 

changes through time. In nature some changes are continuous 

(e.g. the variations in air temperature), and others are 

discrete (like the occurrence of rain). A model can simulate 

the passage of time as a continuous process by using differential 

equations, or as a discrete process (such as the succession 

of weeks in a year) by employing difference eauations. 
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The elements which make up an ecological system can be 

modelled in two ways. They can be considered as individuals 

or as assemblages, and we might build a model to consider the 

behaviour of each animal in a population, or consider the 

population as a whole. The former would be a 'one-to-one' 

model and the latter 'statistical', in the sense that it 

considers population-means rather than individual values. 

Finally, a model can be built in a deterministic fashion, 

so that each cause has a unique, invariant effect, or it can 

be made stochastic or probablistic, in which case a particular 

cause only produces a given effect with a certain probability. 

This distinction is very important when small populations are 

considered. The types of model attribute are summarized in 

Table 1. 

a) Analytic and Simulation Models  

Analytic, algebraic models possess a number of advantages 

over simulation models both with regard to their construction, 

and the analysis of their behaviour. Terms are grouped and 

expressions simplified, so that the model is more simple in 

appearance than its simulation counterpart. From the simplified 

structure the effects of a given variable on the output can 

often be seen at a glance, and the conditions which exist 

at the limits will be easily determined. The cost of this 

simplification lies in the necessity of algebraic specification 

of the shapes of the included functions. To keep the algebra 

at a tractable level, it is usual to fit only the simplest 

curves; linear, exponential and logistic are the most 

commonly used. This means that the resulting conclusions 

depend for their validity on the extent to which the curves 

employed faithfully represent the data sets from which they 
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PROPERTIES 

FORM TIME BASE UNITS DETERMINISM 

Algebraic Continuous One-to-one Deterministic 

Digital 
simulation 

Discrete Statistical Stochastic 

Analogue 
simulation 

Table 1. The attributes of model structure. A model consists 
of one attribute from each property; for example we can have 
a discrete-time, one-to-one, stochastic simulation, and a 
continuous, statistical, deterministic analytical model. 
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were drawn. With few variables the errors involved may be 

completely negligible for all reasonable purposes, and in 

such a case it should be unnecessary to resort to simulation. 

As the logical structure of the problem increases, so 

does the difficulty of treating it compehensively by analytical 

means. Again, it may be that the type of solution required 

o, 	allows such a treatment, by demanding relatively little in 

the way of qualitative understanding, and seeking only 

straightforward quantitative predictions. If, on the other 

hand, the solution demands the consideration of large amounts 

of biological detail in the form of functional relationships 

and complex data sets, then the algebra may become completely 

daunting if not insoluble. In this case, simulation models 

with their almost limitless capacity for logical structuring, 

and their highly flexible facilities for dealing with functions, 

limits, discontinuities and time-lags become more appealing 

(Holling, 1965a; de Wit, 1970). 

Added to this is the ease with which field biologists 

can master the basics of simulation, even without a formal 

mathematical training. Fundamental biological ideas in the 

form of causal mechanisms and graphs can be synthesized into 

models quite readily. The main disadvantage of simulation 

models is that once constructed, they are singularly difficult 

to solve. Thet generate what Holling and Ewing (1970) have 

called a 'response-space', which has as many axes as there 

are variables in the model. To understand the shape of this 

response space (how the model output behaves under a whole 

range of conditions) necessitates many runs of the model, 

each contributing a single point to the map of the response 

surface. Points of equal output value can then be joined to 
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give a contoured outline to the surface, but in practice 

of course, this is only possible with one or two of the 

variables at a time (since we can olny visualize three- 

dimensional spaces). It is far more difficult to obtain 

general results with a simulation model because there are so 

many potential runs which could be made (see below); similarly, 

the behaviour of the model at the limits of the different 

variables must be determined by trial and error. The choice 

to work with an analytical or a simulation form should be 

made in relation to the extent to which the advantages of one 

approach outweigh its disadvantages. 

Ecological systems posses a set of properties which act 

in addition to the sheer number of factors and processes 

involved to complicate both our intuitive understanding and 

our modelling efforts. Holling (1966b) lists these system 

properties as spatial and historical effects coupled with 

the existence of thresholds, limits and discontinuities in 

the operation of many of the consituent processes. His thesis 

is that the existence of these complexities argux'es for the 

use of simulation, rather than analytical models of system 

structure. This assertion is not particularly robust, however, 

since many of the best models of spatial and historical 

effects in ecology are analytical (see, for example, Skellam, 

1951, on dispersal and Bailey, 1964, on historical effects 

in epidemics). It is certainly true that simulation models 

can deal with almost any type of systemic complexity, but it 

is far more realistic to suggest the use of one particular 

type of model in relation to the problem in hand, rather than 

to some preconceived idea that some models can handle complexity 

and others can not. 
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b) Continuous and Discrete-Time Models  

Within an ecological system, the chain of events which 

constitutes its temporal behaviour shows both continuous and 

discrete elements. For example, the generations of many 

insect species are discrete, but within each generation the 

animals behave continuously from birth to death. In such a 

situation, it is clear that neither a wholly discrete, nor a 

wholly continuous model will perfectly describe the time-

course of the system. 

Models which use a continuous time scale are typically 

constructed from sets of differential equations; each 

equation describes the rate of change in one variable as a 

function of the current levels of a number of other variables. 

The equations are then integrated, and can be solved to give 

the levels of each variable at a given time. Examples of models 

of this kind can be found in Volterra (1926, 1931) and Lotka 

(1923, 1925). 

If the differential equations can not be integrated then 

it may be possible to solve the model by resorting to 

difference equations, which specify a sequence of discrete 

numbers, and from which the nth term of the sequence may be 

computed once the first term (u ) has been specified; e.g. 
0 

Jeffrey, 1969 writes 

	

u = 2u 	+ 1 
n 	n-1 

which can be solved to express u in terms of u by 

	

ii 	Tl 
u = 2 u + (2 - 
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Analogous to this type of solution is the pseudo-

continuous evaluation of a mixture of differential and 

difference equations by means of one of the special 'continuous' 

computer compilers like DYNAMO or CSMP. These systems give 

the appearance of producing continuous solutions without the 

modeller having to solve the differential equations himself, 

by employing numerical approximations (see, for example, IBM, 

1969). 

Despite the advantages of these languages (de Wit, 1970) 

the discrete time-base is the most frequently used in ecolog-

ical studies. A time unit is chosen applicable to the problem 

under consideration, and each parameter is updated once per 

interval. If the output changes in response to the manipulation 

over a period of several decades, then a year might be an 

appropriate interval, while if the changes are observed after 

a few hours, a minute might be the best unit. It is necessary 

to bear in mind the assumptions which are implicit in 

discrete-time simulation, since, under certain circumstances, 

they will affect the way in which model behaviour must be 

interpreted. 

First, it is assumed that those processes which operate 

quickly relative to the chosen time-unit are in an equilibrium 

state, the level of which during any given time period being 

determined by the factors in operation. Second, those processes 

which change slowly are assumed to be constant (Levins, 1970). 

Third, and of considerable interest, is May's observation (1973) 

that a continuous and a discrete time model of the same 

process may have completely different stability properties. 

Care must be taken, therefore, that the stability properties 

of the real system are not masked by the effects of the time-

base. 
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c) One-to-one and Statistical Models 

A population of animals can be represented in a model in 

two ways. First, one can store the information relating to 

each animal separately (its age, sex, weight, physiological 

condition, position in space, etc.); this is the one-to-one 

type of model, and each individual animal is represented by 

a set of variables within the computer. 

The alternative is to consider the population as a unit, 

with a given abundance (the total number of individuals), and 

to supply mean values for the parameters of interest. This 

approach is much more economical in terms of computer storage 

space and ease of computation. It is, in addition, more 

theoretically appealing in many cases, because one-to-one 

simulations tend to represent specific, unique instances of 

a general theory which could be more lucidly stated in a 

statistical model. 

As a general rule, it can be said that in those circum-

-stances where there exists a credible, well-tried general 

theory for some aspect of population behaviour then this 

should be included, and the population modelled as a unit. If, 

on the other hand, we have several independently derived 

hypotheses concerning the behaviour of individuals within the 

population, and the theoretical implications of their synthesis 

are not immediately obvious, it may be useful to incorporate 

these hypotheses into a one-to-one model. After a series of 

runs with the simulation, it may be posible to generalize 

the results of the individual cases into a single regression, 

and, from this, to suggest a theory relating the new hypotheses 

(theory in the sense of meta-hypothesis). In later runs the 

one-to-one situation can be replaced by the newly discovered 

statistical relationship. 
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There are several cases, however, where one-to-one 

models are the more useful form. The commonest of these 

concerns situations in which some form of heterogeneity is 

being considered. We might have similar animals experiencing 

different conditions at the same time, by virtue of their 

spatial separation in an heterogeneous environment, or 

alternatively, dissimilar animals which behave in a qualitat-

ively different way under the same conditions (i.e. where 

there is no 'mean behaviour'). 

d) Stochastic and Deterministic Models  

Variability is one of the most characteristic aspects 

of biological data. The variation observed in most experiments 

and field trials originates from the genetic differences 

between individual organisms, and from the effects of environ-

mental heterogeneity on their developmental processes. The 

decision which must be made in instigating a modelling effort 

is whether this variability should be included as part of the 

model structure, or whether the mean values of the parameters 

will suffice. The first choice will lead to the development 

of a stochastic or probability model, while the second 

involves the production of a deterministic set of equations. 

The mathematics of stochastic theory are singularly 

complex (see, for example, Doob, 1953), but an introduction 

to the subject for the reader interested in its applications 

can be found in Bailey (1964) and Feller (Vol. II, 1957). 

In general, the need to employ a probability treatment of 

population behaviour only becomes critical either when the 

population is small, or one must deal with queues or the 

initiation of epidemics (Bailey, 1964). In most cases when 

the population is relatively large, the mean of the stochastic 
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output will approximate the result gained from a deterministic 

- treatment. 

Deterministic models are much simpler to construct, 

because one event inevitably produces the same result under 

given conditions. It is a philosophical point whether any 

events in an ecosystem are truly random (i.e. causeless), 

and it depends entirely on the problem under consideration 

whether we decide to model certain events as 'causeless', or 

model the mechanisms by which they are caused. Typically 

one treats sources of variation as random if they originate 

beyond the bounds of the system involved in the model; in 

ecology these are often the climatic inputs of radiation, 

air temperature and precipitation. While the main body of 

the model might be deterministic, it is quite common that 

a stochastic system of climatic driving variables is employed. 

The advantage of this approach is that the effects of the 

random inputs - the noise in the system as they are sometimes 

- known - can be readily appreciated in terms of their quant-

itative and qualitative influence on the output. 

This type of stochastic element is relatively simple 

to include in a model. One first specifies the shape of the 

probability function associated with a particular variable at 

a given time. The two most commonly used shapes are the 

rectangular and normal distributions shown in Fig. 3. Next, 

the range of variation is stated, either in absolute units 

or as some fraction of the supplied mean. The probability 

distribution is then superimposed on the degree of variation, 

to give a graphical representation of the likelihood of 

appearance of any value of the parameter. A random number 

between 0 and 1 is then used to point out a particular value 
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Figure 3. The rectangular and, normal probability distrib-
utions. The probability of observing a particular value 
is proportional to the height of the curve above X. 
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from the range of possibilities so that with the rectangular 

distribution all values are equally likely, and with the 

normal distribution a particular will be chosen with a 

likelihood of 

-1 	r__ 1112  1 a 27r exp[ _ 
2,r2  J 

from Kingman and Taylor (1966), where a and m are the 

standard deviation and mean respectively, Most computer systems 

have built-in functions for evaluating the level of Y when 

supplied with the mean and standard deviation; for IBM machines 

these are RANDU and GAUSS, and for CDC systems, RANF and GAUSS. 

In much the same way, it is possible to build structurally 

stochastic simulation models, by overlaying probability 

distributions on the included data sets. Instead of picking 

random variables to 'drive' the model, each function is 

given a random element, so that instead -of writing 

Y = M*X+C 

as in the deterministic case, we specify the mean of the 

function by this equation, and select an actual value by 

using a random number to point to a particular deviation. In 

Fig. 4 we see the curve Y = M*X+C with the probability 

distribution superimposed; the random number R points to a 

deviation of +12% so 

Y = Y * 1.12 

or, in general, 

I 	y * (1 + Dev) 

where Dev is the deviation indicated by the random number R. 
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•1  

Figure 4. The probability distribution P is superimposed 
on the function Y=M*X+C to account for variability in the 
data. A value is selected at a given X by computing mean 
Y then using a random number R to select a deviation. Then 
Y = Y * (1 + Dev) 
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Stochastic simulations are quite straightforward in 

their construction, but again, they only produce particular 

solutions for given values of the random numbers used. To 

obtain a picture of the behaviour of the model under a range 

of conditions it is necessary to run the simulation with 

several sets of"random numbers. Fig. 5 shows an hypothetical 

case, with the deterministic output compared with a number 

of stochastic runs. The output from analytical stochastic 

models are 'expectations' for the value of the variable, 

while simulated stochastic systems produce a range of numerical: 

values which could, if sufficient runs were made, be 

considered as a graphical. representation of the expectation 

function. 

Biological Simulation Models  

A biological simulation model consists of a set of 

difference equations (or, less commonly, differential equations) 

which are amenable to numerical solution, and which deal with 

the mechanisms of the biological processes operating in the 

system to some degree of detail. We shall now investigate 

their structural properties and how they are built, and their 

quantitative properties and how the behaviour of the model 

can be assessed and applied. 

A. Structural Aspects  

1 Problem Definition  

Probably the most important aspect of biological 

the fiefinition of the problem. to be 

solved (or investigated) by the model. A model built to 

tackle a precise problem will have the inputs and outputs 

specified, and the range of conditions under which its 
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x 

Figure 5. The outcome of an hypothetical deterministic 
model (thick line) compared with a number of stochastic 
outputs. Curves A and B show the extremes of the range 
of possible stochastic effects. 
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behaviour might be expected to apply defined. In contrast, 

a model defined to tackle a rather loosely defined problenc 

will be vulnerable to misuse both with respect to input 

changes for which no suitable mechanisms have been included, 

and to use under conditions which it is not structured to 

consider. 

r. 	A precise problem definition must, therefore, specify 

the inputs and outputs of the model, and the range of cond- 

itions under which the inputs bring about changes in the 

outputs. In this type of model, the inputs are generally 

the manipulations involved in a particular management 

practice, and the outputs are the aspects of the system of 

economic or social importance which the manipulation is 

designed to alter. The range of conditions specify the 

spatial, temporal and climatic constraints on the applicability 

of the model, and are therefore a measure of its generality. 

In general, the problem can be stated as 

What is the effect of X on Y when (constraints) ? 

or, more broadly, 

What are the effects of PO on IY t when (constraints) ? 
where IX } is a set of manipulations and {Y } is a set of 

output variables. The list of constraints can be omitted 

from the question and included with the list of assumptions 

under which the model will be built; this will then serve 

as a frame of reference in interpreting model behaviour and 

applicability. 

In the following chapters I shall consider the problem, 

of determining the biological attributes of a predator species 

which is capable of reducing and maintaining populations of 

Aphis fabae at a low level so that no significant economic 
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loss of broad beans (Vicia faba L.) occurs. Here, the manip-

ulations are the biological attributes of the predator species 

(its fecundity, dispersive abilities, voracity and so on), 

and the output is bean yield. Implicit in the question is the 

constraint that any conclusions emerging from the model 

should be applicable to the field-crop situation. 

There are two ways in which we could tackle this problem. 

We could be completely empirical, and perform field trials 

with all the available species which predate upon Aphis fabae 

to determine the most effective. This would be precise, but 

the solution would lack generality, and it would give us 

rather little insight into rya the optimal predator species 

was the best. The alternative is to consider the biological 

components of the problem and to deduce from the information 

available those attributes which might be expected to be most 

important under most circumstances. This method lacks precision 

but it is general in the sense that it forms the basis of 

a synthetic understanding of the processes of yield maintenance 

by predatory natural enemies. I have adopted the latter 

approach not only in an attempt to solve the particular problem, 

but also to investigate the potential of this type of model-

building exercise in producing suggestions and explanations 

which are of direct value in applied ecology. The rationale 

is that field experiments will tend to be more effective in 

situations where the synthetic nature of the system is 

appreciated. 

The second aspect of problem definition involves the 

selection of the variables to he included in the model. As 

we shall see, this process is of critical importance to the 

fulfilment of the stated objectives. The set of variables 
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should be sufficiently large that all important sources of 

variation in the output are considered, and yet small enough 

that analysis and interpretation are not hampered. Clearly 

the success of the exercise will depend upon the definition 

of what constitutes 'important variation' in the output; this 

in turn depends'upon the clarity and precision of the question. 

One of the most powerful tools in deciding which variables 

to exclude from consideration in any particular question is 

the flow-diagram of cause and effect. 

To produce a flow-diagram, we draw the manipulation(s) 

to the left of a page and the output(s) to the right; e.g. 

Now consider each of the manipulations (X) in turn and write 

those variables which are directly affected by changes in the 

manipulation to its right, joining them: to it by arrows. 

The arrow should point from affecting to affected, so the 
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arrow can be read as "X affects A" or "A is a function of X" 

(i.e. A = f(X)). Then, moving to the other side, we draw in 

those variables which directly affect the output to its left, 

and join them to it by arrows. 

Taking each of the newly defined variables on the left, 

the procedure is repeated; those variables which they affect 

directly are drawn adjacent to them. If any of the variables 

affect oneanother, arrows are drawn between them, indicating by 

the direction the affecting and the affected. After a time, 

the variables from the left (in which, changes will be induced 

by the manipulation) will link directly to variables which 

have ramified from the right (which, when altered, will affect 

the final outcome Y). 

This procedure requires an understanding of the variables 

which are, or are likely to be, important in a given context. 

It is carried out by combining the experience of all inter-

ested parties; variables are included which are known to be 

affected by the manipulation, as are variables which are 

suspected as being important. The flow diagram at this stage 



/1 	A 	 F 

• 

   

	VS 

             

                

                  

                  

                 

J 

                 

                 

                   

therefore represents a broad, qualitative synthesis of all 

the analytical understanding of the system relevant to the 

problem, irrespective of whether the relationships are proven. 

Usually, there will be more inputs to the circumscribed 

system than the manipulation alone, and these must be added 

to the flow-diagram and connected to those variables which 

they affect. In ecological systems these driving variables 

(above) are typically meteorological; their variation is 

independent of the manipulation, but their effects may be 

profound. 

The next step in the simplification procedure consists 

of isolating those limbs of the flow-chart which are 'dead-

ends'; finding those variables which affect none of the 

included compartments. These variables, and the processes by 

which they are changed (the arrows leading to them) can be 

ignored in future considerations. For example, if we have drawn 



w z 

.144. 

then because no arrows originate from V (it affects no other 

variables of interest), it can be struck out. We now notice 

that T need no longer be considered, and so it too is removed, 

leaving the simplified scheme 

■ 101. U 

Further simplifications can be made by considering the 

time scale of the problem. Suppose that the question involves 

process which occur in the course of one year (say the growth 

of an annual crop). Then if one of the variables changes over 

a period of decades (or longer) we can consider it to be 

constant during any one year, and ignore the processes which 

change it. In the following flow-diagram we notice that I 

changes only very slowly, and so remove the arrow leading to 

it. Having done this, G and J become redundant (as above), so 

the flow chart simplifies to 
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Similarly, some variables in the sub-system may change 

very rapidly in relation to the time scale of the question. 

In this case we can consider that the variable is at an 

equilibrium le:vel determined by its inputs, and remove the 

variable from the-flow chart (instead of removing the process 

as above). The arrows leaving the compartment are joined to 

those entering it to produce the final flow-diagram. Suppose 

that Q changes in a cycle of an hour or so, depending on the 

level of S; 

then we assume that Q is in equilibrium and imply that T is 

determined directly by S. 

These time-scale simplifications should reduce the system 

to manageable proportions, and the question can be said to be 

defined. It will be clear, however, that the omission of 

processes and variables on the grounds of their rates of 

change limits the use to which the problem definition can be 

put. If, to return to the example, we were interested in the 

long-term effects on the ecosystem of repeated manipulations, 
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then it would not be valid to omit those processes which 

affected I (or any other slowly operating process). Equally, 

if we required to know the detailed day-to-day dynamics of the 

system under the manipulation, then we should have to 

include the variable Q (and all other rapidly changing 

variables). 

The complete flow-diagram for the question considered 

in the following chapters is shown in Fig. 6. Its spatial 
scale ranges from the whole field to the node of the plant, 

and its time-base is the day. Changes within a day are not 

considered, and the model describes the system in terms of 

between-day variations. 

This whole procedure operates by the erection of a set 

of hypotheses concerning each compartment; we isolate the 

variables which affect it, and those which are affected by it. 

In ecology, as compared to industrial dynamics (Forrester, 1961) 

for example, it is unusual that all the causes and effects 

are known, and very unlikely that they are all understood. 

Therefore the hypotheses incorporated into the problem-def-

inition (which compartments are included and which arrows 

drawn) will only be as sound as the breadth of experience of 

the investigators. One of the main reasons for the discrepancy 

between the amount of information which is known and the 

amount which is used in solving management problems, centres 

about the difficulty of using material which is 'patchy' in 

relation to the question as a whole. The need is for a means 

of including. and recognising the effects of including, 

tentative and speculative information in the model so that 

the network of cause and effect is maintained intact, and 

along with this, the integrity of its behaviour as a system 

(Weiss, 1969). 
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Figure 6. Flow diagram 
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In addition to isolating the processes which occur in 

the model system, it is necessary to consider the way in 

which they interact with oneanother in those cases where one 

variable is seen to be a function of two or more factors. 

The flow-diagram Must be scrutinized to assess the number of 

such interactions, and each examined in turn. If the diagram 

shows 

we can write 

D = f(L,M,N) 

In this general form it is not necessary to specify the 

degree to which the levels of L, M, or N affect the value 

of D, but neither is it possible to predict a value for D. 

To do this we require two more operations. First, we must 

suggest the effects of each variable upon the level of D 

by writing 

D = f(L), g(M), h(N) 

Then it must be stated how these three functions interact, 

so that given three values for f(L), g(M), and h(N) we can 

calculate D. This is where the principal difficulty lies. 

The simplest procedure is to define the maximum level for 



the response of D for just one of the functions, say, 

D 	= f(L) 
max 

and then plot g(M) and h(N) on relative scales, so that when 

M and N are optimal for D we put g(M) and h(N) = 1, and when 

M and N are at levels which are minimal with respect to 

change in D we- put g(M) and h(N) = 0. For example, if L is 

such that D 	will be 6.0, we might have levels of M and N 
max 

of 20.6 and 0.007 respectively, so that when M has this value 

D can achieve 76% of its maximum defined by f(L) when h(N) = 1, 

and when N = 0.007, D can reach only 98% of its maximum when 

g(M) = 1. 

Clearly, since the levels of M and N are both sub-optimal 

for D the actual value of D will be less than D. ; i.e. less 
max 

than 6.0. The problem which must be confronted is whether 

D responds to M and N such that only the least optimal factor 

is important (Liebig's 'law of the minimum'; see Odum, 1959); 

= f(L) * min( g(M), h(N) ) 

	

= 	6.0 * 	0.76 
	

4.56 

or whether D is reduced to an extent determined by the mean 

sub-optimality of the two factors; 

D = f(L) * ( g(M) + h(N) )/2 

	

= 	6.0 * (0.76 + 0.98) /2 = 5.22 

or, finally, whether both factors interact so that D is 

reduced proportionately by both g(M) and h(N); 

D =. f(L) * g(M) * h(N) 

	

D = 	6.0 * 0.76 is 0.98 	= 4.46 

The only way of choosing one procedure over the others 



is to examine the data rather carefully; as the factors 

become increasingly sub-optimal so does the difference between 

the three treatments. 

In some circumstances it may be possible to employ the 

results of a multiple regression directly in the model, so 

we could write 

• . 
D =- a + bL + cM + dN 

where a, b, c and d are the constants fitted to the data in 

a linear regression, or 

2 	3 
	 4 

= a + bL + b'L + B''L + 	+ 	+ d'''N 

in the case of a polynomial multiple regression. If this 

method is employed, the limitations which apply to multiple 

regression models must be borne in mind (Mead, 1971; Watt, 

1968; Yarranton, 1971). 

2 Coding  

To make the flow-diagram of system structure comprehen-

sible to a computer it must be translated into a set of 

instructions. Typically, these instructions or 'statements' 

are written in one of the modern 'high-level' computer 

languages, which allow the programmer to indicate quite 

complex computational procedures very simply. Two types of 

computer language are currently available. The first, 

represented by FORTRAN, ALGOL and PL/I are discrete-time 

computer languages which operate by a stepwise, updating 

of variables. The second type of language is less widely used 

(see de Wit, 1970), and treats time in a pseudo-continuous 

fashion. CSNP (Continuous System Modeling Program) and 

DYNAMO have the built-in ability to solve integral and 
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differential equations, as well as a very simple scheme of 

input and output. I shall restrict further discussion to 

the discrete-time languages, and to FORTRAN in particular, 

as this is by far the most commonly used computer code in 

biological work. 

a) Variables  

Each variable in the system to be modelled is represented 

by a box in the flow-diagram. To each we must now assign a 

unique name; in an algebraic model this would usually be 

a single, lower case Latin or Greek letter, but in FORTRAN 

we are allowed to use words of up to seven letters in length. 

It is useful if the variable name can be made to spell the 

variable it represents, or to act as a mnemonic for its name, 

because the comprehensibility of the computer code will be 

greatly enhanced. Some examples are shown in Table 2. 

VARIABLE 

Aphid dry wt. 

Day-length 

Probability of 
rain 

ALGEBRA 

w 

p 

FORTRAN 

APHWT 

HDAYL 

PRAIN' 

Table 2. A comparison of variable names and their intel-
igibility in algebra and FORTRAN. 

b) Vectors  

It is often found that several variables can be grouped 

into a vector. For example, the number of aphids of one clay 

old, two days, three days, and so on, can be grouped into a 

vector a being the number of aphids in the ith day-class. 



.49 

In FORTRAN vectors are represented by arrays; each array has 

a unique name of the same type as the scalar variables, but 

it also has a specified length - the size of the array. The 

names of arrays and their specific dimensions are declared at 

the beginning of the model as 

DIMENSION APHID(25), DENSITY(5,5) 

This dimension statement sets aside storage within the 

computer for 25 age classes of APHIDS, and creates a matrix 

(a two-dimensional array) of 5 rows and 5 columns to store 

information on aphid DENSITY. 

Arrays are used by making specific reference to their 

individual elements in turn, If I is an integer whose value 

lies in the prescribed range of the array we can write 

APHID(I) = 100. 

B = APHID(I) * FR 

In other words, we can perform arithmetic with or upon any 

element of an array, as long as we specify the subscript I. 

c) Processes  

By supplying names for the variables and vectors employed 

in the flow-diagram we have specified the bones of the model. 

It remains to inform the computer of the nature of the 

processes by which changes in the variables come about. We 

know from the preliminary analysis those variables which 

influence the behaviour of others, and we can formalize this 

somewhat by expressing each variable as a function of the 

names of its affecting factors. We can translate the flow-

diagram quite literally, then, into an ordered set of equations, 

• . 



.50. 

in which all factors appearing to the right of the equals 

sign (=) have a known value. For example, 

AGE = 10 

FECUND = f(AGE) 	• 

EGGS = f(FECUND) 

BIRTHS = APHIDS(AGE) * EGGS 

is such a string of descriptive ordered equations leading to 

the calculation of the number of births from the tenth age 

class of aphids. The processes are expressed here in a purely 

descriptive way; we are saying that fecundity is a function 

of age, but not whether it increases or decreases, nor what 

the actual numerical values will be. This aspect is covered 

in part B of this section. 

d) Timing  

Most models dealing with ecological problems are 

concerned to trace the effects of a manipulation through time. 

It is necessary, therefore, to decide upon a standard time 

interval in which to code the model. Generally, the nature 

of the problem itself will guide this choice; for instance, 

the effects of shading a leaf on its rate of photosynthesis 

will be manifest within a minute, whilst the effects of 

building a dam upon the avifauna of adjacent areas may not be 

felt for decades. 

In choosing a particular time interval we must bear in 

mind two points. First, that too large an interval will lead 

to considerable errors, because the model will make great 

leaps in its state from one time unit to the next, and second, 

that choosing too small a time scale will involve the 

consideration of processes whose operation is essentially 

irrelevant to our problem because they operate so quickly 
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relative to the processes of primary concern. 

For many management problems, especially those to do with 

annual crops, a time interval of one day or one week is ideal. 

If important changes occur within each week, then a day will 

be the best unit, while in those cases where changes are most 

obvious between weeks, time intervals of one week should be 

6, 	used. The processes occurring within the model system can 

then be assigned units for their rates of operation; we 

express mortality as the fraction of the population dying per 

day, or in another model, precipitation as mm. per week. Once 

this has been done it will be clear at what frequency to 

collect any data which are required. 

B. Quantitative Aspects  

1 Data  

Central to the ideal of simulation modelling is the 

relationship between the qualitative assessment of system 

- structure, and the quantitative understanding of its behaviour. 

The qualitative information consists of an understanding of 

what affects what within the system, and by what means; it 

is the recognition of the processes which operate, and those 

factors which affect their rate of operation. The quantitative 

information, on the other hand, consists of an understanding 

of the extent to which changes in a factor affect the rate 

of the processes it controls. Normally, it is possible to 

produce a model structure which incorporates far more 

qualitative information than can be backed up with real data; 

more simply, our understanding of ecological systems is 

,largely intuitive. In addition, it is unlikely that even 

our qualitative information is complete; we do not recognise 
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all the factors which can affect a specific process, and we 

may be unaware of certain interactions between compartments 

of the system. The benefit of using a computer to tackle 

complex problems lies in the ability of the machine to assess 

the consequences of a particular manipulation through many _-_ 

hundreds/of simultaneous assumptions, a feat which is not 

possible in the human brain. It is reasonable to assert, 

therefore, that a computer model could take more aspects of 

the problem into account in arriving at a solution strategy 

than could a man faced with the same information. The fact 

that the information is patchy for a computer model does not 

make it any the less so for a meAntal deductive model. 

Probably the most severe draw-back to the useful implem-

entation of simulation models at the moment, seems to rest 

in our inability to make objective decisions as to the nature 

of information which it is fruitful to include, and that 

which tends to be superfluous. 

Amount of Data  

As we have seen, there are at least as many data sets 

necessary to quantify the model as there are processes 

(arrows in the flow-diagram). For some of these, information 

will already be available in the literature, or in the 

unpublished files of workers in the subject, The data will 

exist in one of two forms. Raw data, presented in graphical 

or tabular form, display the results of experiments or 

observations unmodified. These can be used in a model directly 

when thene is no ,-epli""tion 	when there is simply ^ 

sequence of observations at different times, or at different 

levels of the independent variable). The process then reduces 
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to a string of values for the dependent variable, and the 

process can be coded by writing 

= X(I) 

where X is an array of data points, and I indicates the level 

of the independent variable. If the data represent replicated 

• results (and hence we observe different values of Y at the 

same X) we can either summarize the data by some statistical 

technique (regression or other means of curve fitting), or 

by fitting a curve by eye. The curve is then expressed as an 

equation relating X and Y, and the process is coded as 

2 
Y = a + bX + cX 

where a, b and c are the constants of a polynomial regression. 

Alternatively, the data may have already been refined into 

arpquation which can be incorporated directly into the model 

(this should only be done after careful consideration of the 

. implications of the equation; see chapter V). 

The procedure of statistical curve fitting is often 

time-consuming, and can, if high order polynomials are 

employed, be quite misleading (Watt, 1968). It is usually 

much quicker, and just as precise, to fit a curve to the raw 

data by eye and, instead of trying to find an equation to 

describe the curve, to calculate the value of I by interpolation. 

This can be achieved most simply by drawing the curve as a 

number of straight lines, and specifying the X and Y co-

ordinates of each change in slope. The more straight lines 

employed, the better the fit of the curve will be Fig. 7 

illustrates the procedure. 

The value of Y is then calculated for any X by finding 

the straight line below which the X value falls. 



X1 	X2 	X3 	X4 X5 X6 X7 

X 

Figure 7. A scheme of curve fitting for linear inter-
polation. The open circles represent the raw data, and 
the solid circles the points selected to indicate gradient 
changes in the fitted curve. 
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Having done this, we have X as the greatest specified X 
N 

value less than X, and X 	as the smallest X value greater 
N+1 

than X. We then look up Y and Y 	associated with these 
N 	N+1 

points, and determine the gradient of the curve at this point 

by writing 

Y 	- Y 
m =  N+1 N 

•. 	 X 	- X 
N+1 N 

The intercept of this curve on the Y axis (c) is given by 

c - m.X 
N 

so we can calculate the actual value of Y at X from 

Y = m,X + c 

For the remaining chapters I have assumed that this 

procedure is specified as a computer routine called 'F'. With 

this we can describe the quantitative behaviour of the 

processes in.the model quite simply by writing 

Y = F ( X, XVAL, YVAL, NP ) 

Here, F is the name of the routine to perform linear inter-

polation, X is the value of the independent variable, XVAL 

and YVAL are arrays containing the points of gradient change 

on X and Y respectively, and NP is the number of points 

supplied. This is just a formal statement of our initial 

descriptive assessment of the process Y = f(X). The biology 

is quite unambiguous, and the precision of the representation 

can be judged by comparing the curve given by XVAL and YVAL 

with the original data. We do not have the problem (often 

associated with polynomial multiple regressions) of attempting 
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4 
to supply some biological meaning to an X term appearing 

in a regression equation. 

There will be some processes in the flow-diagram, 

however, for which no data exist. Before initiating experiments 

to collect these missing data, it is often useful to build 

the model with intuitive data sets, and to rank the priorities 

of data collection in relation to the sensitivity of the 

output to changes in the values supplied. If small changes 

in a particular data set produce large changes in the output, 

it will be clear that not only should these data be collected 

by experimentation, but also that a high degree"of precision 

should be associated with the estimation. For example, we 

may know that the generation survival of an insect from egg 

to adult is 20%. If the duration of this period is 50 days 

we can write 

50 
0.20 = 	jI S 

1=1 i 

or, assuming that the daily survival S is constant from day 

to day, 

50 
0.20 = S 

We can calculate the value of the daily survival rate which 

would give this result from 

S = antilog ( log 0.20 / 50 ) 
10 

which gives us S = 0.968324. We can now examine the effects 

of the precision of our experimental estimate of S on the 

final overall survival we would achieve. Suppose we could only 
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estimate S to two places of decimals; we should then have 

S = 0.97 which gives a generation survival of 21.8%; i.e. 

9% out. The errors associated with each decimal place are 

shown in Table• 4, and can be seen to increase exponentially 

as the precision decreases. 

It is clear from Table 4 that intuitive data sets must 

be used with great care, especially if they are involved in 

multiplicative or power series, because very small changes in 

Such data produce large changes in output. 

In those cases in which the flow diagram contains many 

interactive processes, we need to know not only how each factor 

affects the end result, but also the extent to which the level 

of one factor affects the way in which the dependent variable 

responds to another. This type of data will require more 

sophisticated experimental and statistical techniques for 

its collection (see Section 2.d below). 

An examination of the processes involved in the model 

will tend, therefore, to bring to light a continuum of data 

quality; some processes will be well understood, and there will 

be accurate quantitative information on their behaviour under 

a number of factors, while others will have information on 

only a 'limited array of parameters. To categorise the patch-

iness of information in the model we can draw a histogram 

showing the relative frequencies of a number of data types; 

let us say 'well understood', 'passably understood', 'poorly 

understood', and 'guessed' (see Fig. 8). Intuitively we 

could suggest that the more left-skewed the distribution in 

Fig. 8, the more confidence we might place in the predictions 

from the completed model. We are, however, interested in more 

than just the quantitative accuracy of the output, and 
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Estimate 
of S 

+ 1 Place 
- 1 Place 

.968325 

Estimate 
of G 

.200012 

Error of 1 
place (%) 

+ .006  

.968324 .200002 + .001  

.968323 .199992 - .004 

.96833 .200064 + .032 

.96832 .199961 - .019 

.96831 .199858 - .071 

.9684 .20079 + .105 

.9683 .19975 - .125 

.9682 .19873 - .635 

.969 .20170 + 3.550 

.968 .19668 - 1.66o 

.967 .18678 - 6.610 

.98 .36417 + 82.085  

.97 .2180o + 	9.0 

.96 .12988 - 35.060 

1.0 1.00000 + 400 

.9 .00515 - 97.425 

.8 .000014 - 99.993 

Table 4.. The effects of 1 decimal place of error in the 
estimate of the daily survival rate S on the estimate of 
the generation survival G, at different precisions of the 
daily estimates (from six to one place of decimals). The 
true value of G is .2000000. 
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II 	III 	IV 
Weil-known system 

II 	III 	IV 
Poorly-known system 

Figure 8. Hypothetical histograms for well-known (top) 
and poorly knrvern (Tower) systems. I=good; IV=guessed. 
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understanding the overall behaviour of the system in its 

response to certain classes of manipulation may be our 

principal aim. In this case it may not be the number of well-

known parameters which is most important, but rather which 

specific relationships have been guessed. Here again, we 

need some guide-lines as to the classes of parameters which 

are most important in allowing realistic simulation of system 

behaviour. 

2 Data Quality  

We can define the quality of a data set in terms of 

four properties. 

a) Fit  

Fit is the attribute of a data set describing the degree 

of scatter of the raw data points about some fitted curve. 

If the curve has been determined by regression methods, then 

the fit can be said to increase as the sum of squares of the 

deviations of the individual datum points from the curve 

decreases. With an eye-fitted curve the estimate will be 

subjectibe; e.g. good, passable, poor. 

In the model, the better the fit of a data set, the 

greater the confidence which can be placed in the prediction 

of Y from X. Similarly, a good fit suggests that the behaviour 

of Y in response to changes in X is well described by the 

equation, and hence our confidence in the qualitative 

behaviour of the model is enhanced. It is possible, for 

example, to draw many shapes of curve through a data set 

with a high degree of scatter, and although statistical tests 

may show these curves to account equally for the observed 
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variation, the model might behave quite differently 

depending upon the particular shape chosen. 

If it is thought that the variation in the data set is 

attributable to more than sampling error (i.e. there is 

another causal process in operation), we can either perform 

an experiment to determine the effects of the suspected 

factor on Y, or simply superimpose a suitable distribution 

on the fitted curve, and select a particular Y value by 

using a random number to indicate a deviation from the expected 

value (Stochastic Models, above). 

b) Range  

The range of a data set describes the fraction of the 

X axis which is covered by observed values. Many data sets 

obtained from the literature cover too limited a range to be 

used directly in the model, and we must decide whether it is 

permissible to extrapolate beyond the measured range, and, 

if so, to what extent. 

Clearly, the precision of extrapolated graphs is determ-

ined in part by their fit. If.the fit is good, then the curve 

is more likely to represent the true relationship, and there-

fore extrapolation will be more justified. Extreme caution 

must be exercised, however, as can be seen from Fig 9 in which 

all four curves fit the existing data well, but lead to 

widely divergent predictions when extrapolated (from Riggs, 

1963). 

Occasionally, we have information on a data set from 

beyond the specified range. In Fig 10, for example, we might 

know that the curve must pass through the origin. Do we join 

the lowest value of the curve to the origin directly with 

straight line (A), or do we draw in some smoothed (though 
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Time (hrs) 

20 40 60 80 

Time (hrs) 

I 

0 

4 
Figure 9. The dangers of extrapolation; all curves fit 
existing data well but lead to divergent extrapolations. 
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• 

equally artificial) curve (B) ? 

Again, we might know that Y has some maximum value 

which holds for all high values of X, but are not certain at 

what X value this maximum is first reached. We can not omit 

this information from the model, otherwise the extrapolated 

values of Y would become absurdly high, so some decision must 

be taken. The least dangerous approach is to extend the curve 

until the maximum value is reached, and then make Y indepen-

dent of further increases in X (C). 

In any event, all these alterations will tend to reduce 

the quality of the data set. The more constraints which we 

have to add artificially, and the further beyond the range 

we must extrapolate, the lower can be our confidence in the 

behaviour of the process within the model. 

c) Conditions of Applicability  

In many cases the data which are available to describe 

a process have been collected under different conditions from 

those in which the model will apply them. Perhaps they refer 

to a different species of the same genus, or to the same 

species in another part of the world. Certain processes, 

however, are rather robust, in the sense that most species 

in most areas follow similar trends. The general shape of 

the data set might well be applicable under almost all cond-

itions, but could be x-shifted or y-shifted from one particular 

instance to another. We can define an x-shift as a variability 

in the position of a curve of fixed shape relative to the 

x axis, and a y-shift of a curve relative to the y axis. This 

is shown in Fig. 11. - 

When there is no indication whether the available data 
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Figure 10. An example of a data set of limited range. 
The curve is known to pass through the origin (options 
A and B), and to reach a constant maximum value (D and 
C). 
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Figure 11. The idea of x-shift and y-shift in data sets 
of fixed shape. Different mean temperatures might bring 
about a y-shift, while different species in the same 
genus might show x-shifts. 
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set should be x- or y-shifted to bring it into line with our 

specific conidtion requirements, the data set should be left 

alone. In this case, its quality declines in relation to the 

difference between the conditions of collection and application. 

d) Number of Interactions  

Much of the information available in the literature 

comes from controlled experiments; all factors of the envir- 

onment are held as constant as possible while X is varied, 

and the response in Y noted. The very fact that the experiments• 

must be controlled shows how many other environmental 

parameters affect the level of Y. 

I have already discussed the problem of representing 

the interaction of several factors in affecting the rate of a 

single process (Problem Definition, above). If we know that 

f(X), g(W), h(Z) 

and we have controlled experiment data for each of these three 

effects on Y, then we can build some sort of model. The 

quality of the data, however, would be greatly increased if 

factorial experiments had been performed so that we could see 

the extent to which X, W and Z interact with oneanother. We 

can state that, in general, the quality of interactive data 

sets increases with the number of factorial combinations for 

which data have been gathered. 

With a factorial data set of Y on X, W and Z our problems 

of modelling the interaction are significantly reduced. It 

should be possible in this instance to set up a four-dimen-

sional array from the tabular data, and to perform multiple 

interpolation to obtain a value for I, just as we did by one- 
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dimensional interpolation in the earlier example (Fig. 7). 

These ideas about data quality can be synthesized in 

tabular form (Table 5). Here I have assigned a subjective 

rating to each aspect of data quality on a scale 3=good, 2= 

passable, and 1=poor. Summing over the four attributes, and 

dividing by four gives us the mean quality of a given data 

set. For example, if we have a data set with a fit (i.e. 

significance) of 90%, a range of 75% including the lower 

limit, collected for a different species in a different 

environment, but having no interaction associated with it, 

we score 

Quality = (2 + 2 + 1 + 3)/4 = 2.0 

While this classification is completely arbitrary, it may 

help us decide which data are contributing to the solution 

of the problem, and which are simply getting in the way. 

Taking the model as a whole, we require a means of 

discovering the implications of patchy data quality on the 

way the model behaves, and on the measures we adopt to improve 

its behaviour. This involves some form of sensitivity analysis 

on the model. In the next section the topic of numerical 

sensitivity analysis will be discussed, but there is an 

important aspect of this procedure which can be carried out 

with the flow-diagram and the data sets alone. 

Once the model has been read into a computer, the 

quality of a data set is no longer taken into account, since 

all data arc treaten in exactly the same way. This is un-

important as long as the data set is correctly descriptive of 

the process represented, but we must know at the outset which 

data are more likely to be both important and incorrect, as 
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ASPECT 	 QUALITY 

HIGH (3) 	PASSABLE (2) 	POOR (1) 

FIT 	More than 95% 	More than 90$ 	Less than 
confidence 	confidence 	90% 

RANGE 	100% 	80% including 	Less than 
one extreme 	70%; neither 

limit 

CONDITIONS Same species, 	Same species 	Different 
same environment different 	species and 

environment 	environment 

INTERACTIONS None 
	One 	More than 1 

Table 5. A summary of the different aspects of data quality. 
For an example see text (page 67). 
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these may influence our entire assessment of model behaviour. 

The initial sensitivity analysis consists of drawing out 

more or less discrete sections of the flow-diagram in a new 

form. Instead of drawing a chain of variables, we draw a chain 

of graphs, so that the dependent variable on one graph is the 

independent variable on the next. 

It is then possible to make certain observations on the 

required precision and quality of the data sets graphed. 

First, the data sets making up a chain which ends in a rather 

flat relationship need be of relatively low precision, since 

large changes in any of the other factors will affect the 

output variable only slightly. We can only have confidence in 

Z 

Y 	 z 
this assessment, however, when the quality of the terminal 

data set is relatively high (i.e. we know it to be flat, 

rather than merely suspecting this). This constraint applies 

throughout, but can be minimized by choosing higher quality.  

data sets to act as the end-point of chains. 

The more likely observation is that the terminal data 

set is steep, or rather steep, and that the output will respond 

to changes in the shape of other graphs in the chain. When 
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this is the case, the data sets can be ranked in terms of 

their maximum gradients, so that effort should be expended 

in increasing the quality of a graph in relation to its 

importance ranking. 

  

A 

  

  

x 

   

The analysis is complicated by the fact that many of the 

data sets in the model are not linked together as chains, but 

as networks. It is possible, therefore, that the quality of 

a data set may be unimportant in one context but have consider-

able influence in another. Care must be taken that all the 

effects of a particular variable are considered in assessing 

the sensitivity of the output to changes in its affecting 

data set. • 

When a number of high-gradient relationships appear 

adjacent to oneanother in a chain or network it will be more 

important to have high confidence in all of them than would 

be the case if any of them were followed by a flatter relation-

ship. This will be particularly important when the data sets 

are additive rather than opposed (compare (a) and (b) below). 
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X 	Y 
(b) (a) 

In summary, we can make three points; 

a) data sets appearing at the termination of sub-chains 

should be of the highest possible quality in relation to their 

gradients; 

b) data sets appearing on the causal side (as compared to the 

caused side) of low gradient relationships need be of relatively 

low quality; 

c) it is more important to expend effort in improving the 

quality of those relationships which are steep and have many 

ramifications, than those which are flat and have few effects. 

3) Running and Interpretation  

Synthesis of the structural code and the available data 

gives us a complete simulation model. This can now be run on 

the computer, and errors in typing and program logic gradubily 

ironed out - a procedure affectionately known as de-bugging. 

When the computer finally accepts the model as being written 

correctly we must determine whether it still represents the 

system in the desired way. It is often found that after all 

the programming errors have been corrected some logical 

inconsistencies remain. These errors are not recognised by 

the machine, which obeys our instructions to the letter, 

however absurd they may be in biological terms. It is essential 

to check the translation of the flow-diagram into computer 

code to ensure that the computer has been programmed to do 
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exactly what is required of it. 

Following on the debugging procedure, we can begin to 

explore the quantitative behaviour of the modelled system. 

This should be approached methodically because there is an 

almost limitless number of runs which could be performed. For 

instance, if there are 30 independent variables in the model, 

and we wish to test the effects of 5 levels in each on the 
30 

behaviour of the output, there will be 5 possible different 

runs. 

For comparative purposes, we should first make some 

kind of control run by specifying average or standard values 

for all the input parameters. The manipulation is then set 

to zero and the model run over the requisite time period, 

to see the extent to which it mimics the behaviour of the 

real system. If the model gives a reasonable representation of 

reality we can proceed to investigate the effects of the 

manipulation under these average or 'normal' conditions. Clearly, 

to get this far we must have some set of criteria by which to 

judge when the behaviour of the model under control conditions 

is good enough to allow further investigation; we must, in 

other words, be able to validate the behaviour of the model, 

The idea of validation with regard to computer simulations 

has been widely discussed (Goodall, 1971; Naylor and Finger, 

1967; NcKenney, 1967). The general points which emerge are 

that first, an independently collected set of data must exist 

with which to compare the model output, and second that 

numerical agreement between the modelled and real systems 

under one set of conditions does not imply that the model is 

valid for all conditions. There is consequently a risk that 

even though our model behaves well in the control runs it 
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may not respond to the manipulation in the same way as would 

the real system. It is obviously impractical to collect 
30 

validation data for all 5 possible states of the model, and 

so some aspects of model behaviour must be taken on trust. 

The important decision in designing a large-scale data collect-

ion project is which data to collect. Here again, the model 

can be of use, in showing those data sets to which the output 

is most sensitive, and hence those runs which can be most 

profitably validated. 

The primary behaviour of the model is determined by 

running the simulation with increasing levels or intensities 

of the manipulation (unless, of course, it is an either/or 

decision, in which case one run will suffice). The output 

can be graphed simply as numbers (Fig. 12) or converted into 
■■■ 

economic units and plotted as return against expenditure. 

From Fig. 13 we can see at what level of manipulation the 

profit is maximised (the difference between the cost and 

return curves), and the level up to which a profit is possible 

(the point at which the curves intersect). 

In many problems, it is of interest to know not only 

how the manipulation affects the specified output, but also 

the way in which other aspects of the system are affected. 

We can gain a limited view of these secondary effects by 

observing the values of a number of other variables which are 

internal to the model structure. The limitation to this part 

of the analysis stems from the fact that the model was built 

to tackle the one specific question, and hence variables which 

affect the dynamics of the secondary outputs may have been 

omitted. Predictions about the dynamics of secondary variables 

should therefore be interpreted with caution. 
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0. 

0 

Manipulation 	- 
Figure 12. The output of a model plotted as a function of 
the intensity of the manipulation. 

Manipulation 
Figure 13. Model output plotted in economic terms as a 
function of the intensity of the manipulation. The cost 
of the manipulation is compared with the return produced. 



The second phase of model running consists of a deter-

mination of the effects of different (i.e. non-average) 

conditions on the response of the output. Models tend to work 

rather well near their average values, because the quality 

of their component data sets is highest in this region. When 

the system is under some kind of stress (extreme shortages 

of some components, or extreme abundance of others), the 

behaviour of the model tends to be less representative. In a 

problem-oriented model of the type described here, those 

extremes which result directly from, or interact strongly with, 

the manipulation should have been considered in detail, and 

so the model should still behave realistically. It is not 

possible under most` circumstances, however, to gather data on 

the effects of extremes in all the variables alone and in 

combination, and so here again, the output must be interpreted 

with caution. 

Generally, the effects of climatic variables are assessed 

first. We might run the model with high and low yearly 

average temperatures, and then under conditions of drought and 

deluge, and assess what effects these variables have on the 

effectiveness of the proposed management strategy. If it is 

robust '(it works in the same way, and to more or less the same 

,extent under all conditions), then we can move on to test its 

sensitivity to other variables. When the output appears very 

sensitive to some particular condition (say, for example, 

the manipulation did not increase yield in very wet years), 

then we should go back to the flow-diagram and look for the 

cause of this behaviour. We may find, quite simply, that we 

have made a mistake, and left out a process which with hind-

sight we can see to be important (soil drainage, in the example). 
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Alternatively, the result could be quite appealing, and 

again with hindsight, we might wonder why we had not thought 

of it before.. It is here, in the production of what Forrester 

(1961) has called counter-intuitive results, that one of the 

great values of simulation modelling lies. The model highlights 

effects which are implicit in the interaction of our assumpt-

ionsbut which we have never considered. Before these 

results appear, however, we must ask questions of the model, 

and unless the model is structured to consider precisely those 

questions asked of it, the results which emerge will be in 

doubt. 

When we are satisfied that sufficient runs have been made, 

and that we understand the behaviour of the system under a 

range of conditions, the initial question can be evaluated. 

The evaluation should be made in terms of both the numerical 

and the economic behaviour of the system, and it should be 

possible to state those conditions under which the proposed 

management policy would be effective. Care must be taken to 

stress that this is the way that the model behaves, and not 

necessarily the way in which the real system would respond 

to the manipulation. Since, however, the model represents the 

synthesis of all our qualitative and quantitative under-

standing of the resource system, the output is the best 

possible guess we can make. It remains for the management 

policy to be tried in pilot field experiments before any 

specific recommendations can be made to resource managers. 

There are a number of problems which, while they can be 

modelled, can not be validated under field conditions. These 

may be purely speculative (e.g. how would a particular area 

look after a nuclear blast ?), or involve such a drastic 

change in the environment that the validation test becomes 
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infeasible (what will be the effects of building the next 

London airport at Foulness ?). In the first case, validation 

and field tests are irrelevant as the manipulation is specul-

ative. In the latter, however, the model can take on immense 

significance, because it is the only, means of prediction 

available to us. 

4 Sensitivity Analysis  

In addition to determining the effects of the manipulation 

on the output, and upon certain intermediate variables, it is 

possible to investigate the overall sensitivity of the model 

to a selected number of its data sets. The procedure acts to 

substantiate the qualitative assessment of sensitivity made 

earlier, and also to search for interactions which were 

previously overlooked. 

We define an insensitive data set as one which has no 

appreciable affect upon the output, irrespective of changes 

which might be made to its shape. This aspect of sensitivity 

is rather different from our earlier definition, since it 

rests upon the position of the data set within the model 

structure, and on the shape of the data sets adjacent to it. 

We should look for sensitivity in three aspects of the data 

set; sensitivity to changes in gradient (discussed earlier), 

to changes in base position (x-shift), and to changes in 

height (y-shift). 

To carry out these tests, we remove the original data set 

from the model and replace it by a sequence of test attributes. 

First, we make Y independent of X (a completely flat relation-

ship), and observe the output at different constant levels 

of Y. This will show the response of the system to the level 

of Y, and also the effects of uncoupling X and Y. Next, we 
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can take the shape of the original data set and test x- and 

y-shifts. Fig. 14 shows some different curves we might try. 

The sensitivity of the data set in this case can be stated as 

the proportional change in the output arising from a given 

proportional change in x- or y-shift (i.e. d/Rx and dilly in 

the figure). From these tests it will be possible to suggest 

those aspects of the data set which must be given precedence 

in an experimental study. 

There are limitations to this sort of sensitivity analysis. 

The method works well for mathematical models in which the - 

structure is simple and unequivocally defined (see, for example, 

Chapter TV), but it can be misleading when applied to 

structurally complex, data-patchy biological simulations. 

This is because we can test the sensitivity of only one 

relationship at a time, and the incorrect shapes of other low 

quality data sets may completely obscure the true behaviour 

of the tested parameters. Similarly, unless the model has been 

validated under a number of conditions, it is not possible 

to state with any conviction that all the important processes 

have been included. In this event, we are not testing the 

sensitivity of the data set in the context of a complete model 

system, and may run into considerable interpretive errors. 

5 Data Collection  

If the models forms part of a large-scale investigation 

into the problem in hand, it can be employed as a means of 

directing data aquisition. From the runs and sensitivity 

analyses it will have become plain at which points high 

quality data are required, and where experimentation will be 

most rewarding. To improve the problem-solving potential of 

the model we should aim to collect data which meet a number 



.79. 

Figure 14. The family of curves which can be used to test 
the sensitivity of model output to this data set. 1 control; 
2 +ve y-shift; 3 -ve y-shift; 4 -ve x-shift; 5 +ve x-shift. 
Proportional change in the data set is defined as the shift 
(d) divided by the range of the data; i.e. as d/Rx or 
d/Ry.. 
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of requisites. 

a) They should replace low quality data; 

b) they should be of high gradient and show high sensitivity; 

c) they should be at key positions within the model structure 

(at the end of causal chains, or at nodes in a network); 

d) they should be involved in 'interesting' causal chains 

(this will increase their value in purely scientific terms). 

C. Criticism of Models  

The criticism of simulation models is rarely constructive, 

and generally consists of an assessment of whether the model 

is good or poor based solely upon the agreement between the 

output and real system behaviour. This, as we have seen, is 

only a part (and in many studies only a small part) of the 

value of a simulation model. 

Analytical, algebraic models, in contrast, are criticised 

far more on their structure, and there seems to be more 

tolerance of disagreement between the output and validation 

data. A typical criticism of an algebraic model (and one which 

has frequently been leveled against the models of Lotka 

and Volterra - see, for example, Watt, 1968) is that its 

structure is over-simplified, or that the assumptions made 

are more or less non-biological. It is interesting to examine 

the possible reasons for this discrepancy in critical assess-

ment. 

Simulation models are usually written up in the literature 

in a format which gives the impression that the modelling 

itself can be taken for granted (see for instance Hughes and 

Gilbert, 1968; Gilbert and Hughes, 1971; Gilbert and Gutierrez, 

1973). There is a statement of the biology which is imoortant 
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in system structure, but little consideration given to the 

parameters which have been omitted, nor to the reasons why 

those which have been included were so. Again, it is assumed 

that this aspect is obvious. In effect, the results of the 

model runs are presented as a fait accompli, and the only 

basis open to the reader is to criticise the model with regard 

to its mimicking real system behaviour. Since the model 

structure is not elucidated, it is rarely clear why the model 

behaVed in a particular way to a given manipulation, and this ' 

means that the model (while the builder himself may feel it 

to be biologically sophisticated) appears to the reader as a 

black-box; he can see the inputs and outputs, but can only 

guess at the internal structure. 

The presentation of analytical models is markedly different. 

At the outset each variable is defined, and the model is 

presented in a step-wise fashion, so each equation is accom- 

panied by an explanation of its implicit assumptions and 

limitations. The attention of the reader is therefore 

focussed squarely on the biology of the system and the way in 

which it has been interpreted. Similarly, because the model 

structure is laid bare, it is possible to check the algebra 

for one's self, and, in the process, either enhance one's 

understanding of the model, or highlight the errors which 

make it behave in the way it does. Having seen the bones of 

the model, the critic is likely to be far less interested in 

the agreement between observed and predicted results. 

For these reasons, I shall adopt the method of present- 

ation used in algebraic models even though, because there tend 

to be more variables in simulation models, this might become 

space-consuming. If a model does nothing else, it can at least 

focus attention on biological processes which are thought to 
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be understood, but which, on quantitative scrutiny, appear 

in a different light (see Chapters III, IV and V). 

Discussion  

I have briefly reviewed the types of model which are 

available in ecology, and explained in detail the approach 

which I have adopted to biological simulation modelling. The 

ideas and methods outlined here will be used in the remaining 

chapters to construct a set of models to investigate the ideal 

predator for Aphis fabae on beans. 

One of the most important points which must be borne in 

mind when building and evaluating simulation models is that 

they are not capable of producing general solutions. They 

rely entirely upon numerical methods for the evaluation of 

the functions and expressions incorporated. It is never 

possible under these circumstances to say that one completely 

understands a simulation model (unless it is very simple 

-indeed), but only that one knows why it behaved in the way it 

did for those runs which were performed. When we remember 

that the number of possible runs is given by 

(Number of Variables) 
= (Number of states) 

it is clear how little we can actually discover. 

If generality is required, then the model must be stated 

in algebraic terms so that the response of the system to each 

variable can be seen for all conditions, and the state of the 

system at its limits can be determined. Unfortunately it is 

rarely possible to combine the degree of biological realism 

required of many management problems with the mathematical 

tractability demanded for analytical solution. 
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The lack of generality in simulation models is compen-

sated by the fact that in many algebraic models the degree 

of simplification required for their construction has made 

the generality of their form meaningless because it is un-

realistic. Holling (1966b) suggests that models should be 

built to maximise simultaneously precision, realism and 

generality, but, since simulation models can not be general, 

and analytical models are rarely realistic, this would not 

seem to be possible. 

Not only is it important to choose the type of model 

in relation to the question under scrutiny, but also to gear 

the study to the type of answer required. Models which require 

accurate numerical predictions should be built with as 

simple a structure as possible commensurate with the precision 

required. The ultimately simple model is clearly a regression 

of the output on the intensity of the manipulation; if the 

fit of this relationship is good over a wide range of cond-

itions, then this would be the best model for predictive 

purposes. If, on the other hand, the main concern of the model 

is to make qualitative predictions about the behaviour of the 

system under the manipulation, then more detail will be 

required in model structure. The more variables which are 

considered, the more complete will be the understanding which 

could be gained, but the more difficult will be the inter-

pretation. A model with too few variables will tend to behave 

unrealistically, while a model with too many may obscure the 

interesting behaviour of the system in a cloud of detail. 

The problem T 	to  tackle in the  forthcoming 

chapters requires a qualitative solution; the aim is not to 

predict how any particular predator species will affect bean 
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yield in a particular case, but rather to understand those 

aspects of the biology of the plant, its pest, and the 

potential predator which influence the degree of control 

achieved. To do this we must determine first that pattern 

of aphid feeding which can be tolerated by the plant without 

significant crop loss; second, the pattern of predation which 

will keep the damage caused by an aphid population below this 

specified limit; and third, that combination of behavioural 

and physiological attributes in a predator species which 

will bring about the necessary pattern of aphid consumption. 

The initial problem is therefore to assess the effects of 

feeding by Aphis fabae on the growth and fruit development 

of Viola faba. 
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• CHAPTER II 

	

	THE EFFECTS OF INFESTATION BY APHIS FABAE  

SCOPOLI ON THE GROWTH PATTERN OF VICIA 

FABA L. 

Introduction.  

The quantitative aspects of growth and fruit production 

in the broad bean, Vicia faba, have been described by Ishag 

(1969), and the population dynamics of its principal insect 

pest (Aphis fabae) are well documented (Kennedy and Booth, 

1954; Way and Banks, 1967, 1968; Way, 1967, 1968). Rather 

less attention has been given to the precise ways in which 

aphid infestation affects the growth of the host plant, or 

to the effects of various plant attributes on the performance 

of the aphid population. While there do exist bodies of data 

describing in broad terms the relationship between the number 

of bean stalks infested and the ultimate yield of beans (e.g. 

Rothamsted, 1971), and between the varietal resistance of the 

host plant to aphid attack and the morphological changes 

occurring under infestation r_rprol-v-Ty^he and Kennedy, 1958), 

there is little information relating the size of the aphid 
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infestation to the rate of dry matter production in the crop, 

or to the pattern of dry matter distribution between the 

plant organs. A destructive sampling experiment has been 

performed to investigate these two effects, and to provide 

data for a simulation model of the growth of Vicia faba 

under aphid attack (Chapter III). 

Materials and Methods  

Fifty Garton's Spring Tick field beans were weighed 

fresh, and then oven dried at 70'C for 48 hours to obtain 

a regression of seed dry weight on fresh weight (Fig. 15). 

Two hundred more seeds for use in the experiment were then 

weighed fresh, and their dry weights interpolated from the 

regression. These seeds were placed in numbered positions 

on damp blotting paper, and allowed to germinate in a warm 

dark cupboard. After one week the radicles were fully emerged 

and plumule development had just begun. At this stage the 

plants were placed individually in six inch plant pots at a 

depth of 2 cm below the surface of John Innes No. 1 potting 

mixture. The pots were then set - out in galvanized trays in 

a greenhouse under a 16 hour photoperiod at 15'C (+/_ 3'C). 

Each week the position of the pots was randomized within the 

trays to minimise the effects of differences in the aerial 

environment between different parts of the greenhouse. After 

two weeks the very large and very small plants were dis-

carded, leaving a relatively homogeneous population of 144 

plants. 

Each week two plants were selected at random from the 

population and analysed as controls. After seven weeks, when 

the average height of the plants was 11 cm and they had four 

leaves expanded (the lowest two nodes in V. faba do not 
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GMS FRESH WT 

Figure 15. The regression of bean dry weight on bean fresh 
weight.'r = 0.9995; b = 0.871. Mean bean weight is 0.377 gms 
dry weight and mean water content is 12.9% 
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generally bear leaves), the plant population was divided 

between two greenhouses, again choosing individuals at 

random. Each plant in the treatment greenhouse was infested 

by placing six apterous, fourth instar larvae of A. fabae 

in the terminal cluster of leaves. This procedure is known 

to produce rapid population build-up (Way and Banks, 1967). 

From the eighth week onwards, two plants were harvested 

from both the treatment and the control greenhouses. The 

plants were watered as regularly as necessary to keep the 

soil surface damp to the touch. 

The plant seeds were obtained commericially, and the 

aphids were taken from a long-standing clonal laboratory 

population bred in 20'C controlled temperature rooms (Milne, 

1971). 

Analysis  

Each plant was analysed as follows. Starting with the 

lowest leaf-bearing node (the third), each leaflet was cut 

from the petiole and placed under a 3D microscope. The 

number of alate and apterous aphids was determined, and the 

leaflet then wiped clean. of insects and honeydew and weighed. 

Its perimeter was then traced so that leaflet area could 

later be determined with a planimeter, after which the leaf 

was placed in a numbered paper bag for oven drying. All the 

leaves were treated in this way until only the tight-knit 

group of leaves around the terminal meristem remained. This 

was treated as a single unit (hereafter called the terminal 

cluster); the aphids living within the curled leaves were 

counted and removed before the fresh weight was determined. 

Next, the stem was cut just above the third node, in 

such a way that the stipule and the petiole remained attached 

to the top of the internode (see Fig. 16). The aphids 
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Figure 16. The parts into which the stem was divided. One 
node is assumed to consist of an amount of internode, 
petiole, leaf and reproductive tissue (flowers or fruits). 
The root is taken as consisting of a tap section with a 
certian weight of laterals, and the stem is completed by 
a terminal cluster. 
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feeding or walking along each petiole and stem section were 

counted and the stalk then washed clean of insects and 

honeydew. Each stem section was cut just above the stipule, 

and the petiole severed where it joined the stem. The lengths 

of the petiole and stem sections were then determined to the 

nearest mm and each part placed in an individual bag for 

drying. 

The root system was collected by inverting the pot 

over a fine sieve and gently crumbling away the soil. The fine 

root fragments were collected with forceps and placed in a 

beaker of water, Once the bulk of the soil was removed, the 

root system was washed in_ a larger sieve under a running tap 

and dried on blotting paper. Each lateral root was cut from 

the tap-root and cleaned of any remaining sand or leaf mould. 

The smaller root sections were removed from the beaker, dried, 

and cleaned in the same way. All the lateral roots were placed 

in one bag, and the tap-root in another. Finally, the remains 

of the seed were cut from the base of the lowest two stem 

sections, and each part bagged and committed to the oven. 

The analysis of control plants differed only in that they 

did not need to be examined for aphids or washed before being 

cut up. The data collected are summarized in Table 5. 

Results  

1 Qualitative Effects  

a) Aphid Infestation  

The infestation was initiated by placing six apterous 

fourth inQtor 	the  curled 1,.P.11,..s of the 

terminal cluster. This differs from the field situation in 

that natural infestations are typically started by alate adults, 
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Organ 	.Dry Wt. Fresh Wt. Length Area Aphids 

Lateral Roots 

Tap Root 
3 

Internodes 
3 

Petioles 
3 

Leaflets 
3 

Flowers 
3 

Pods 
3 

Fruits 
1 	2 

Parent Seed 

Table 5. The data collected from each plant harvested. The 

dry weight of the parent seed (1) is determined after the 

plant is cut down, and its fresh weight (2) at planting. The 

dry weight at planting was interpolated from Fig. 15. Those 

data marked (3) were collected at each node of the plant. 
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which fly into the crop from their winter host plant (the 

spindle bush, Euonymus europaeus L.). The experiment assumes 

that only six of the progeny of the immigrant alatae 

survive to adulthood, and that they remain in the terminal 

cluster for this period (this is borne out by field observation 

Kennedy and Stroyan, 1959; Way, 1967). 

The progeny of these initial aphids colonized lower 

leaves on the plant by walking down the stem and out along 

the petiole. After settling on a new leaf an adult aphid 

would produce young over an extended period; these juveniles 

would not move far away from their mother, and so dense 

aggregates of aphids developed after a time. Aggregates 

were first observed on progressively lower leaves after 

the times shown in table 6; these data were obtained from 

different plants. 

Weeks after infestation 
to first observation 

Nodes from the top 
of the plant 

1 0 

2 1 

3 

4 5 

* 5 7 

6 8 (all leaves) 

Table 6. The appearance of aphid aggregates on progressively 
lower leaves of the plant. 

Initially, the aphids clustered in the folded upper 

surfaces of very young leaves. As these leaves opened and 

expanded, the aphids moved to their preferred position on the 
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underside, while some moved up the stem to infest the fresh 

leaves in the terminal cluster. Once established on a leaf, 

the aggregates grew rapidly in size (the number of aphids), 

but only gradually in density (the number of aphids per cm 

of leaf vein), spreading slowly along the main leaf veins. 

The rate at which apterae walked off the leaf to establish 

new aggregates elsewhere is probably related to the density 

and the extent of the leaf colony, but could not be measured 

in this experiment (see Chapter IV). 

A continuous redispersal within the plant was therefore 

observed, some apterae climbing to reinfest the leaves above 

their aggregate, including those which had recently opened 

and may have escaped attack, and some walking down the stem, 

either to infest lower leaves (which might be nutritionally 

less desirable (Kennedy and Stroyan, 1959; Ibbotson and 

Kennedy, 1951), but more expedient in terms of current aphid 

density), or to emigrate from the plant completely and search 

out a new host plant. 

Aphid aggregates also developed on stems and, to a 

lesser extent, on petioles. Here the density of animals per 

unit area tended to be even higher than on the leaves, upon 

which the aphids are confined to the rather widely spaced 

veins. The striking feature of the distribution of stem 

aggregates was the consistency of their position relative to 

the top of the plant. There appears to be a well-defined 

threshold of stem age above which few aphids are found feeding. 

This effect may well be due to the unavailability of phloem 

vessels in the outer layers of the older stem tissues 

within feeding range of the aphid stylets (Kennedy and liittler, 

1953). Fig. 17 shows the frequency of feeding alatae on stems 
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1 

2 4 6 8 10 12 14 

Nodes from top of plant 

Figure 17. The total number of aphids observed to be feeding 
at different heights on the plant stem from all harvested 
plants. There is a distinct threshold between 4 and 5 
nodes from the top. 
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of different ages; there is a distinct preference for younger 

internodes (i.e. stem. sections closer to the top of the plant). 

Six weeks after aphid infestation all the leaves were, 

or had been attacked (Table 6). At this stage there was very 
little upward dispersal; the aphids were restless, and few 

were feeding. The rate of emigration from the plant was very 

high as evidenced by the number of apterae on the rims of the 

plant pots. As the infestation aged, the proportion of adults 

with wings increased (Lees, 1966; Hille His Lambers, 1966). 

On emergence from the fourth instar the majority of the adult 

alatae flew off, and left the greenhouse through the vent-

ilation system. Some, however, remained on the plants (as 

Shaw, 1968, noticed in his experiments); indeed the last 

aphids observed on some of the dying plants were adult alatae. 

Clearly in this case reproduction had ceased, and all the 

remaining apterae had walked away. 

• b) Plant Phenology and Damage 

Viola faba usually develops a single, unbranched stem 

unlike the wild British species of this genus, V. cracca and 

V. sativa. In those cases where branches do develop, they 

tend to arise at the first and second (leafless) nodes. Leaves 

appear in an opposite pattern as the stem elongates, and 

consist of two leaflets at the lower nodes, increasing to 

five or six leaflets per leaf above the sixteenth node. The 

plants never achieved more than twenty two nodes in height at 

maturity. 

Flower buds appear in the leaf axils above the ninth node, 

but only a fraction of the buds produced develop into flowers 

(Ishag, 1969). The flowers are zygomorphic, fragrant, and 

require cross pollination by insects (usually by bees in the 
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crop situation); pollination was performed with a fine paint 

brush in the experiment. Some of the pollinated flowers then 

develop into pods which contain three or four seeds on average. 

Visible effects of the aphid infestation on the well-

being of the bean' plants were first observed three weeks 

after the apterae were introduced. There was a light covering 

of honeydew and cast exuvia on the upper surfaces of the 

fully opened leaves, and several of the younger leaves were 

curled upward, and a little yellow. After four weeks the plants 

were very sticky with honeydew and the four topmost leaves 

were curled and wilted; two weeks later, many of the leaves 

showed a characteristic 'burn' on their upper surfaces 

caused by the germination of the chocolate spot fungus, 

Botrytis fabae in the honeydew substrate (M. J. Way, pers. com), 

and all but the lowest leaves were curled and wilted. 

The stem too was scarred and blackened, particularly at 

the upper internodes where aphid aggregates had been dense. 

There was very little increase in height by the plants after 

this time (6 weeks), and no new leaves were formed. Nine weeks 

after aphid infestation, the majority of the treatment plants 

were dead. Very few had flowered, and none had set any pods. 

2 Quantitative Effects  

a) Dry Matter Production  

The pattern of dry matter accumulation in the control 

plants over the course of the experiment is shown in Fig. 18. 

Had the experiment continued up to senescence, then the 

curve of dry weight would have been more sigmoidal in appear-

ance, as dry matter production slowed and eventually ceased. 

The aphid population acts to change this pattern of 
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2 4 6 8 10 12 14 16 18 

Plant age (weeks) 
Figure 18. The pattern of dry weight increase in control 
plants. Plant age is in weeks since germination. 
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Figure 19. The pattern of dry weight increase in infested 
plants. No growth occurs after the 14th week; aphids 
arrived at the beginning of the 8th week. 
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growth in three ways. First, by removing photosynthates from 

the phloem vessels the amount of dry matter available for 

growth is reduced, Second, by reducing this growth, the rate 

of appearance of new leaves, and the rate of expansion of 

existing leaves are both decreased, and so the plant's 

potential for subsequent photosynthesis is reduced. Finally, 

the aphids damage the plant in a number of ways over and above 

tapping off a fraction of its photosynthates. The epidermis 

is punctured by stylets (which are often left inseted after 

the aphid dies), and covered with honeydew. This latter forms 

an ideal substrate for the germination of parasitic fungi 

like Botrytis fabae, and may also inhibit gas exchange by 

blocking the stomata. In addition, chemicals injected into 

the plant in aphid saliva may interfere with the normal 

physiological processes of the leaf (Miles, 1968). Fig. 19 

demonstrates the pattern of dry matter increase in infested 

plants, and shows the cessation of growth at 14 weeks. 

b) Production of New Leaves  

The most obvious effect of the aphid infestation was in 

slowing the rate of leaf production. Reserves channelled to 

the apical meristem are removed by the aphids feeding in the 

terminal cluster at a sufficiently high rate to affect the 

incorporation of photosynthates into new tissues. The side 

effects of aphid presence (tissue damage and saliva injections) 

may also act to reduce the potential of the meristematic 

tissues to produce new leaves. Figure 20 compares the number 

of leaves expanded in treatment and control plants of the 

same age. 
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Figure 20. The number of leaves expanded in control (V) 
and treatment (0) plants at different plant ages. Aphid 
infestation began at the start of the 8th week. The 
infested plants did not actually decrease in height; the 
points in this figure are for individual plants. 
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c) Growth of Individual Leaves  

The leaves of a growing plant can be considered in two 

broad categories as experiencing either a net import, or a 

net export of photosynthesized reserves. These are referred 

to as 'sink' and 'source' leaves respectively. An aphid 

aggregate established on a source leaf will reduce the amount 

o. 	of reserves available for growth in those parts of the plant 

to which reserves are transported from the node in question'. 

It should not have any significant effect on the rate of dry 

matter increase of the source leaf itself, if only for the 

reason that the leaf will be at, or near, its maximum weight 

already (Fig. 21a). Aphid-  feeding on sink leaves, however, 

can drastically affect their rate of growth. In effect, the 

aphids compete with the growing cells for the available 

reserves, but have an advantage in that they remove the photo-

synthates from the pipeline before the material reaches the 

cells. The result of this competition is that the reserves 

are incorporated into aphid body tissues or excreted as honey-

dew, and the demand of the growing leaf for reserves (its 

sink strength) is unabated. The aphids benefit in consequence, 

because the rate of flow of photosynthates is maintained. If 

the reserves had been incorporated into leaf tissue, the sink 

strength would have been reduced, and the leaf would eventually 

become a source (i.e. an exporter of material). In Fig. 21b 

the growth of a sink leaf (the eleventh) is compared for 

treatment and infested plants. 

Fig. 21 backs up the assumption that aphid feeding affects 

source (a) and sink (b) leaves differently; there is no sign-

ificant difference between the weight of the seventh (source) 

leaf, but the eleventh leaf is significantly smaller in 
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treatment plants. 

In addition to the removal of carbohydrates and amino 

acids, aphid feeding can account for a substantial water loss 

. (Wearing, 1972). Depending upon the extent to which the plant 

can compensate for this loss by increased transpiration and 

osmosis from adjacent cells, the rate of photosynthesis 

within the leaf will be detrimentally affected (Jones, 1973). 

It was not possible to guage this effect directly in the 

experiment, but it was clear that leaves bearing large aphid 

aggregates contained less water per gram dry weight than did 

leaves of the same age from control plants (Fig. 22). 

The effects of cuticle damage by stylet insertion, and 

the blockage of stomata by honeydew could alter both the 

water balance of the leaf and the rate of gas exchange. Again, 

the quantification of this effect is impossible from the= 

experiment, but the amount of honeydew and aphid debris on 

leaves were clearly inversely correlated with leaf 'health', 

at least on a visual assessment. The other unknown quantity 

in understanding the effects of aphid infestation on leaf 

growth is the extent to which the growth of fungal and virus 

species affects the rate of photosynthesis, and the incorpor-

ation of imported reserves into leaf tissues. 

d) Stem and Petiole Growth  

Although the stems and petioles of Viola faba do contain 

chloroplasts, it is thought that these organs contribute 

only slightly to overall plant growth (Ishag, 1969); they can 

therefore be considered as sink tissues. The analysis is 

complicated by the fact that reserves flow through stems and 

petioles on their way to and from other organs, and so aphid 

feeding might act as on source leaves to reduce the amount of 

material available in other parts of the plant. Unless the 



3 4 5 6 7 

Leaf age (weeks) 
10 

.103. 

Figure 22. The water content of leaves (grams of water 
per gram leaf dry weight) of different ages from control 
(solid curve) and treatment (dashed curve) plants. 
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aphids feeding on a particular internode or petiole were 

tapping those photosynthates specifically destined for the 

dry matter increase of these organs, we should not expect the 

presence of an aphid aggregate to affect the growth of the 

stem or petiole relative to other parts of the plant. The 

picture is again complicated by the possible effects of tissue 

damage and saliva injection. It could be that the relative 

growth of an internode is unaffected by the amount of reserve 

passing through its phloem vessels, and that any reduction 

in growth rate relative to other less heavily infested 

internodes is due entirely to surface damage effects. To test 

this hypothesis we can plot the growth of one stem section 

relative to another for infested and control plants (Fig. 23). 

The null hypothesis is that the number of feedin9aphids has 

no effect on relative stem growth, but simply reduces overall 

growth; the gradient of the curve for the growth of the 10th 

(more heavily infested) internode relative to the 7th should 

be the same for control and treatment plants. There is an 

indication in Fig. 23 that the relative growth of the more 

heavily infested stem section is reduced, and therefore, that 

the null hypothesis of overall reserve reduction is not 

applicable. It seems, in other words, that the relative 

growth of a stem section is determined (at least in part) 

by the number of feeding aphids upon it. 

e) Root Growth  

Aphis fabae does not feed on the roots of Viola faba 

nor were any other insects seen to fir, so'  in  thi s  

Any reduction in root growth in the treatment plants can 

therefore be ascribed to either the reduction in the amount of 
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reserve available, or to the injection of chemicals affecting 

the pattern of dry matter distribution between the root and 

shoot system. As material is removed from the above ground 

parts of plants it is commonly found that reserves are 

mobilized from the root in compensation (Cavers, 1971). Other 

plants may reduce the fraction of current production flowing 

to roots (Crider, 1955; Brouwer, 1963; Schuster, 1964; Das 

Gupta, 1968). 

The weights of the root systems of treatment and control 

plants are compared in Fig. 24. Because the amount of reserves 

removed by the aphids in feeding, and the amount of material 

they might inject into the plant via their saliva are so 

closely correlated, it is not possible to state whether the 

observed reduction in root growth is due to either one of 

these causes, or to a combination of them both. In any event, 

it is unlikely that the size of the root system will limit 

plant growth in this experiment, because all the effects of 

aphid feeding are experienced first in the shoot, and the 

plant itself responds by reducing the rate of root growth. It 

would presumably be possible for the plant to make good any 

excessive reductions in the relative amount of root, should 

the shoot recover sufficiently to merit it. 

f) Pattern of Dry Matter Distribution  

Not only does aphid feeding reduce the rate of growth of 

the plant, but it also affects the pattern of distribution 

of such dry matter production as occurs. I have already 

discussed the possible effects of aphid feeding in competing 

with sink organs for the reserves available, and the potential 

-effects of aphid damage on the relative growth of one organ 

over another. 
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Figure 24, The pattern of root growth in control (* ) and 
treatment ( 0 ) plants. 
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Figure 24 shows that less growth occurs in the roots of 

infested plants, but it can be redrawn to establish whether 

the proportion of net production channelled into root growth 

has been altered. We assess this effect by comparing changes 

in the fraction of plant dry weight in roots at different 

plant ages between treatment and control plants (Fig. 25). 

The observed reduction in the relative growth of roots 

suggests that the plant compensates for dry matter losses 

occurring in the shoot by increasing the fraction of dry 

matter production channelled into shoot growth. 

The main interest in the effect of aphid infestation 

on the pattern of dry matter distribution centres on the 

shoot, and on the fraction of production going into fruit 

growth in particular. Unfortunately, all the treatment plants 

died prior to seed set (the infestation was made too early), 

and so we can gain no insight into this aspect of the 

process. It is interesting, however, to observe the effects 

of aphid feeding on the relative growth of leaves, stems and 

petioles. 

Fig. 26 shows the distribution of leaf weights between 

different nodes of the plant at three ages (11, 13 and 15 

weeks) in infested and control plants. The control plants 

have more leaves expanded, and more leaf dry weight per node 

than their infested counterparts. The gross pattern of leaf 

distribution with height is more or less similar, however, 

with the maximum leaf weight occurring mid-way between the 

highest and lowest leaf-bearing nodes,. 

We can now compare the distriblItion of dry matter within 

a node between leaf, stem and petiole tissues, Consider the 

fate of the first leaf produced after the aphid infestation 
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(the seventh). This leaf will have been affected by the aphids 

from its appearance, because the aphids were introduced into 

the terminal cluster of leaves. In the controls, the proportion 

of nodal biomass in stem increases as the node ages; the 

seventh is an essentially structural node (it does not bear 

flowers), and the stem elongates and thickens considerably. 

In the treatment plants, on the other hand, stem elongation 

is negligible, due not only to a reduction in the growth of 

the whole node, but also to a reduction in the proportion of 

dry weight allocated to the stem (Fig. 27). 

The relative growth of the organs in a node formed after 

aphid infestation is different. In the control plants, stem 

fraction remains rather constant, and the decrease in the 

fraction of leaf is matched by an increase in the fraction 

of fruit (Fig. 28). Infested plants, in contrast, show the 

same pattern as before, with an increase in the fraction of 

leaf relative to stem. 

Finally, we can compare the relative growth within a 

node formed before aphid infestation (the fifth). Here, 

the fractions of leaf and stem are constant in the infested 

plants, but stem comprises a much higher fraction of nodal 

weight in the control plants (Fig. 29). 

The causes of these differences seem to be threefold. 

First, by reducing the size of the infested plants, the aphids 

reduce the 'need' of the plant to allocate reserves to 

structural thickening of the lower stem sections; there is 

less shoot for them to support. Second, by reducing the amount 

of reserve available for growth at each node, the aphids 

are capable of suppressing flower production (Fig. 28). Third, 

aphid feeding on leaves may reduce leaf growth less than 
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aphid feeding on stems reduces stem growth. The possible 

mechanisms for this effect remain to be elucidated. 

g) Aphid Population  

At each node of the plant the course of aphid population 

change was of a similar pattern; a spell of immigration from 

other nodes was followed by a rapid build-up in numbers, then 

a steep decline occurred, associated with both apterous and 

alate emigration. The nodal populations, however, were out 

of phase with one another, so that aggregates were declining 

in size at some nodes, while increasing at others. The 

population build-up on the entire plant is shown in Fig. 30, 

and the pattern at different nodes in Fig. 31. 

Few predators and parasites entered the experimental 

greenhouse, and so the majority of aphid deaths must be 

ascribed to occidents, old age, starvation, and losses during 

dispersal. The reproductive rate of individual virginoparae 

was not measured, but several estimates exist in the literature 

(Banks and Macaulay, 1964; Milne, 1971; Sharma, 1971). From 

these we can calculate the potential increase rates of the 

population at different mortality patterns. Using the simple 

model of aphid population growth described in Chapter IV 

(used in determining the reproductive values of aphids under 

different predation regimes) it is possible to plot the 

numerical increase which would be observed with different 

birth and death rates. These are compared with the experimental 

outcome in Fig, 32;  Clearly, the greenhouse population 

increased at a lower rate than it might have done under optimal 

conditions. Since mortality and emigration appeared to be 

negligible in the early stages, it is likely that this 
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Figure 32. The actual population build-up observed 
compared with three calculated curves based on the 
data of Banks and Macaulay (1964) and assuming 95% 
80% (2) and 70% (3) daily survival. 
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reduction is due to a depression of individual reproductive 

rates. This could be brought about by the effects of high 

or low density (Way, 1968), or by the sub-optimal nutritional 

condition of the plant (Auclair, 1963). Because the population 

grew less quickly than predicted by the accepted fecundity 

and survival values it is clearly unwise to use these directly 

in pest control decisions; they would lead to a consistent 

over-estimation of aphid damage (see Chapter IV). 

The distribution of aphid numbers over the whole plant 

changed as the infestation progressed. In the early stages, 

the uppermost leaves and stems bore the densest aphid aggreg-

ates, as shown for the curve for 10 weeks in Fig. 33. At 12 

weeks the aphids were more numerous on all nodes, but the peak 

numbers occurred lower down the plant. Between the 12th and 

14th weeks the aphid populations on the lower leaves decreased, 

while numbers on the higher nodes increased, and later still, 

as the population crashed, the distribution of aphids with :” 

height became much more even, and all aggregates were reduced 

to very low numbers (curve 16 in Fig 33). 

h) Damage  

The simplest representation of the damage caused by the 

aphid infestation is a plot of the difference between the 

dry weights of control and treatment plants against time 

(Fig. 34). From this figure, it is clear that there is a 

rather abrupt threshold between 13 and 14 weeks, after which 

plant damage increases very rapidly with time. This is due to 

the cessation of grcwth in most of the  treatment plants after 

14 weeks. Up to-this point, however, the plant seems to be 

affected rather little by the aphid infestation, and it is 

interesting to investigate the damage (in terms of dry weight 
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difference) caused by unit aphid feeding. Let us assume that 

the amount of food, removed from the plant per day by the 

'average aphid' can be considered as a constant, and also that 

the effects of aphid feeding are additive through time. If 

these assumptions are robust, then we should expect a linear 

relationship between yield reduction and the total number of 

feeding-days experienced by the plant (hereafter called aphid-

days). We therefore replot Fig. 34 using the number of aphid-

days on the x-axis; the figure for aphid-days is the approximate 

integral of the aphid abundance curve (Fig, 30) up to the 

mid-point of the week in question. Fig. 35 shows that the null 
hypothesis of constant damage per aphid-day does not hold, 

rather the curve seems to consist of three sections. There is 
-3 

an initial phase of quite_high damage per aphid-day (0.34 10 
-1 

gms aphid-day ) followed by an extended period when the 
-3 	-1 

damage is far lower (0.0061 10 gms aphid-day ). Finally, 

when the accumulated aphid population reaches 25,000 aphid- 
-3 

days the damage function again becomes quite steep (0.33 10 
-1 

gms aphid-day ). The discrepancy between the experimental 

results and the null hypothesis could be due to the inapplic-

ability of the assumptions, but it could equally well be 

brought about by compensation for food removal in the mature 

plant. 

To investigate the possibility of plant compensation we 

can compute the mean weekly rate of dry matter production per 

sq. cm. of leaf in control and treatment plants (Fig. 36). 

We should expect that the unmodified results show a lower 

unit leaf rate in the treatment Plants, because of the dry 

matter removed by the aphids. This is what we observ. If, 

however, we can estimate the actual amount of food removed 
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Figure 36. The relationship between leaf area and dry weight 
increment of the plant (the unit leaf rate, ULR). The ULR 
of treatment plants is rather lower than that of the controls 
(compare 0 and 0 ). When estimated food removal is added to 
the treatment dry weight increments (A) the points are 
generally higher than the controls (0). This suggests that 
the plant has some ability to compensate by increasing its ULR 
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per aphid-day from an independent set of data, then it should 

be possible to suggest whether the plant can compensate 

for aphid feeding by increasing the rate of dry matter prod-

uction. Banks and Macaulay (1964) calculate that the mean 

weight of sap removed by Anhis fabae in its lifetime is in 

the order of 30.0 mg. Now if the aphid lives 25 days (same 

data) we have a mean daily intake of 30/25 = 1.12 mg of sap, 

and taking the dry matter content of phloem sap to be 15% 

by weight (Auclair, 1963), we have a dry weight removal rate 

of 0.18 mg per aphid-day, and hence of 1.126 mg per aphid-week. 

If we can approximate the number of aphids feeding for 

a whole week from the mean; i.e. 

A 	(APHID + APHID ) / 2 
t 	t+1 

then the total dry weight removed by aphid feeding during the 

week will be 1.126 * A mg. By adding this to the weekly 

production of the treatment plants we can recompute thier 

unit leaf rate from 

ULR = (P + 1.126 * A) / LA 

where P is the actual dry matter production and LA is the 

leaf area. If the plant is compensating for aphid feeding, 

then the plot of net production with aphid feeding added 

against leaf area should have a gradient greater than the 

curve for the control plants (Fig. 36). If the curves are of 

equal gradient, then the plant is producing dry matter at 

exactly the same rate with and without aphid feeding, while 

if the adjusted unit leaf rate of the treatment plants is 

lower than that of the controls we could suggest that the 

aphids were inhibiting the productive process. The data in 
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Fig. 36 are inconclusive for the most part, but there is a 

suggestion that some compensation occurs, especially at 

intermediate leaf areas (which match the period of low damage 

per aphid-day in Fig. 35). In any event, the compensation 

was quite insufficient under such intense aphid infestation 

as the plants experienced in the greenhouse, and all the 

treatment plants died. In the field, however, where the aphid 

populations might be considerably lower (predation, parasitism, 

rain, frost and so on), and peak density could occur much 

later in plant development, plant compensation could act as 

an important mechanism in defraying bean yield losses. 

All the conclusions emerging from this experiment must 

be considered in relation to its several shortcomings. 

Principal amongst these is the lack of statistical rigour 

arising from the very low replication of each observation. 

It would be advisable to have at least four replicates of 

control and treatment plants at each harvest instead of the 

two used here; although the labour and greenhouse space would 

be doubled, the precision would be greatly enhanced. 

Again, only one time of infestation was studied, and 

this turned out to be rather early, since almost all the 

treatment plants died before flowering. It would be interesting 

to know how the date of infestation affected both the rate of 

dry matter production and its pattern of distribution between 

the organs of the plant, and particularly the effects of aphid 

feeding on seed-fill. On altering the date of infestation in 

a model of the growth of Vicia faba (Chapter III) it has been 

observed that yield increases asymptotically with the time 

lag between sowing and infestation (Fig. 37), and it would be 

useful to validate this result with real bean plants. 

A number of factors in the greenhouse environment will 



B
E

A
N

 Y
IE

L
D

 (M
I S

) 

12 

10 

8 

6 

4 

2 

021110' 	 .4iEMMZIZZIP, 	 A 

.122. 

30 	 50 	 70 	 90 	 110 
SOWING TO INFESTATION PERIOD (DAYS) 

Figure 37. The output gained from a model of Viola growth 
(Chapter III) which shows the importance of the date of 
aphid infestation relative to crop development in affecting 
final yield. In all cases a total of 14 gms of material were 
removed from the plant. 



.123. 

have affected the course of dry matter production and 

distribution differently than would the same factors in the 

field. Fluctuating light and temperature conditions, for 

example, are known to affect photosynthetic rate and aphid 

reproduction in the field (McCree and Loomis, 1969; Strain 

and Chase, 1966). 

Discussion 

Plants infested with aphids showed a lower rate of dry 

matter increase than the controls. First, the aphids removed 

a certain amount of photosynthate directly (about 0.18 mg 

per aphid-day), and second, by reducing the rate of appearance 

of new leaves, they lowered the potential for future dry 

matter production. The aphids may also have acted to affect 

the rate of photosynthesis by injecting chemicals with their 

saliva (Miles, 1968), or by damaging the surface of the leaves, 

but this can not be shown from the present experiment. 

The pattern of dry matter distribution was also affected 

by aphid feeding. The roots of infested plants grew relatively 

less (Fig. 25), and, while leaf weight showed the same overall 

distribution with plant height (Fig. 26), it formed a larger 

fraction of nodal biomass than in the controls (Figs. 27, 28, 

and 29). This could be because a) infested plants are smaller, 

and their stems, having less shoot weight to support, need 

not be so thickened, or b) aphid feeding on leaves reduces 

leaf growth less than aphid feeding on stems reduces stem 

growth. The growth of stems is affected by the number of 

aphids feeding directly upon them (Fig. 23), which suggests 

that they are affected as if they were sink organs (and not 

merely pipelines through which reserves travel to other parts 

of the plant). 
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The leaf water content of aphid infested leaves is 

lower than that of leaves of the same age from control plants 

(Fig. 22); this suggests that the plant is unable to compensate 

for high rates of water removal, and this, in turn, might 

have a detrimental effect on the rate of dry matter production 

(Brix, 1962; Troughton and Slatyer, 1969). 

• Flower production was inhibited in infested plants (Fig. 

28); this could be due to their reduced stature (Fig. 19), or 

to the indirect effects of aphid feeding (leaf damage, 

injections, and so on). 

The ability of Vicia faba to compensate for aphid feeding 

appears to be rather limited when the aphid infestation 

begins as early as it did in this experiment (Fig. 36). There 

is a period, however, between about 5,000 and 25,000 aphid-

days, when the rate of damage to the plant is less than the 
-3 	 -3 

rate of feeding (0.0061 10 compared with 0.180 10 	gms 

per aphid-day; see Fig. 35). Under field conditions, when 

aphid populations would be lower, and infestation occur later, 

this compensation ability may buffer losses in yield to a 

significant extent. In general, it should be possible to 

tell whether a plant is compensating or not from quite 

straightforward data. If we plot estimated aphid dry matter 

removal as one block of a histogram and compare this with the 

corrected net production of the plant (net growth plus aphid 

feeding) we would obtain one of the cases shown in Fig. 38. 

The type of response might change through time, associated 

with changes in the sensitivity of different phenological 

conditions of the plant, and different intensities of aphid 

feeding. 

In terms of pest control, it will be more important to 

slow down the rate of aphid feeding when the plant is under- 
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Figure 38. A simple means of demonstrating plant compensation. 
The stippled columns represent plant yield reduction; the open, 
aphid food removal. 
I. Damage equal to feeding, the null case 
II. Damage less than feeding, compensation occurring 
III. Damage greater than feeding, a run down in the productive 

processes themselves. 
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compensating (i.e. when it is suffering damage in excess of 

aphid food removal due to a run-down of the photosynthetic 

machinery), than when the unit leaf rate has been increased, 

and the plant is suffering less dry matter loss than occurs 

through aphid feeding. The mechanisms of this compensation 

response are discussed in the following chapter. 

Similarly, because the plants appear to be very 

sensitive to the time of infestation, the necessity for 

pest control measures increases with the earliness of aphid 

arrival in the crop. Control measures must be related to the 

intensity of the infestation as well as the time of its 

occurrence, because it would be unrewarding (not to say 

wasteful) to spray an entire field, or release a costly batch 

of natural enemies, when only one or two aphids are observed 

in the crop at an early date. Ideally, there should be some 

experimentally determined threshold density of aphids related 

both to the time of year and to the developmental stage of the 

plant, below which pest control can be said to be unnecessary, 

and above which an economic return is likely (through 

enhanced yield defraying the costs of the control measures). 

This experiment shows us how Vicia faba responds to 

Aphis fabae infestation under one set of greenhouse conditions. 

Our main objective, however, is to discover the pattern of 

aphid feeding which can be tolerated before a significant 

economic loss of beans occurs under a range of field conditions. 

To increase the generality of the findings, I shall now discuss 

a simulation model of Vicia growth, which uses information 

from uninfested plants (oollertted by Ishag, 1969) to predict 

the potential bean yield under different conditions, and upon 

which we can superimpose a number of different models for the 
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effects of aphid feeding on plant growth. I can then use the 

results of the present experinlent to suggest which of the 

models of aphid feeding produces the most realistic responses 

in the model plant. 
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CHAPTER III 	,A SIMULATION MODEL OF THE GROWTH AND FRUIT 

DEVELOPMENT OF AN ANNUAL PLANT UNDER 

APHID ATTACK 

Introduction  

The effects of phytophagous pest insects are generally 

assessed in terms of the yield reduction they cause. In any 

given situation, however, it is difficult to predict the 

degree of damage with any precision because the regression 

of damage against insect numbers often shows only a poor fit 

(see Stern, 1973; Hussey and Parr, 1963). In designing 

strategies of integrated and biological pest control it is 

important to know not only how to reduce pest numbers, but 

also the response of the crop to various levels of attack at 

different stages in its development. It may be that the most 

effective control (the economic optimum) does not involve a 

minimization of total pest numbers, but rather a course of 

control related to the sensitivity of the plant to damage at 

different times. 

The present model has been developed to investigate 
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the effects of different levels of feeding by Aphis, fabae on 

the growth and seed yield of the broad bean, Vicia faba. The 

model deals with the effects of the timing of aphid infestation 

relative to plant development, and with the effects of 

different spatial distributions of aphid feeding within the 

plant canopy and between the plant organs. By determining 

the periods during which the plant is most sensitive to damage 

by aphid feeding, and the quantitative responses of bean 

yield to aphid numbers, it should be possible to suggest the • 

basis of a rational and biologically feasible strategy for 

aphid control on this crop. 

It seems to be a sound generality that the value of an 

ecological model increases in relation to the precision with 

which its objectives are explicitly stated. There are two 

principal reasons for this. First, a rigid definition of the 

problem- to be tackled allows us to make a clear and concise 

delimination of the structural aspects of the sub-system to 

be modelled. Second, a clear picture of the objectives is 

invaluable once the model has been built, in deciding on the 

set of runs to perform (Chapter I). 

Plant Growth Models  

Plant growth models generally consist of two sections; 

one concerned with predicting the rate of net biomass increase, 

and another with determining the pattern of distribution of 

this net production between the different plant organs. There 

has been a tendency in the past to build models which concen-

trate on one aspect of the problem, and to treat either the 

processes of photosynthesis and respiration (Anderson, 1968, 

1970; Connor and Cartledge, 1970; Gaastra, 1959, 1963; Lake, 
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1967; Monteith, 1963, 1966; Neals and Incoll, 1968; Pearce, 

1967; Ross, 1964, 1966, 1970; Tooming, 1970), or the pattern 

of dry matter distribution (Monsi and Murata, 1970; Brouwer, 

1962; Davidson and Milthorpe, 1965; Alberda and de Wit, 1961) 

in relatively greater detail. A number of rather complex 

simulation models do exist in which both net production and 

dry matter distribution are described in detail, notably 

ELCROS (the Elementary Crop Growth Simulator) from the Dutch 

school of de Wit and his colleagues (de Wit and Brouwer, 1968; 

Brouwer and de Wit, 1968; de Wit et al., 1970). 

1 Net Production  

The processes which are normally considered as acting to 

affect the rate of net production are diagrammed in Fig. 39. 

The interception of light has commanded considerable attention 

in the literature (Alberda and de Wit, 1961; Anderson, 1964, 

1968; Black, 1963; Cowan, 1968; Donald, 1961; Kriedman et al., 

1964; Loomis et al., 1968; McCree and Troughton, 1966; 

Monteith, 1965; Saeki, 1963). The variables of importance are 

the intensity of the incident radiation in the photosynthetic 

wavelength spectrum, its duration (photoperiod), and the 

amount and spatial disposition of leaf tissue available to 

intercept it. The relationship between the actual amount of 

leaf present, and the effective leaf area is complex, and 

depends upon the angles of the leaves relative to the sun 

(Loomis et al., 1968; Monteith, 1965), the depth of the canopy 

(Anderson, 1968; Ross, 1970), and the degree to which the 

leaves shade one-nether (Donald, 1961). The concept of leaf 

area index (LAI) (Watson, 1947; 1958), which expresses the 

area of leaf surface relative to the area of ground covered 
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Figure 39. A flow diagram of the factors envisioned as 
affecting the rate of net production in many plant growth 
models 
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by the canopy, has been usefully employed in applied studies 

of agricultural producion to subsume the effects of individual 

leaf angles and variations in leaf distribution through the 

canopy (e.g. Black, 1964). 

The conversion of a given flux of radiation into a store 

of potential energy in carbohydrates occurs when water and 

carbon dioxide are combined in photosynthesis. A model of 

this process can operate by considering the proportional 

efficiency of the'leaf in accumulating energy, or by calcul- 

ating the rate at which CO is fixed, in a given light intensity. 
2 

Both models ignore the fact that the products of photosynthesis 

are converted into compounds of different calorific values 

and carbon contents, and that the proportion of any one type 

of compound in the plant might well change with time. A 

regression of the dry weight of organic material incorporated 

into the plant against either the energy fixed, or the weight 

of CO assimilated, will therefore show an imperfect fit to 
2 

empirical data. 

Much of the detail in models of net production centres 

about those factors which affect the rate of photosynthesis, 

and, in particular, the effects of light intensity, air 

temperature, and CO concentration (Gaastra, 1963). Fig. 40 
2 

shows the interaction between these three primary factors. 

In addition, experimental work has clearly shown the depend-

ence of photosynthetic rate upon leaf age (Treharne et al., 

1968), soil water availability (Schroder, 1966), stomatal 

aperture (Gaastra, 1963), and the level of accumulated reserves 

in the leaf (Meals and Incoll;  1968). 

It would be difficult, not to say impractical, to 

incorporate these factors in the algebraic models of canopy 



P
h

o t
o

sy
n

th
e

s
is

  

.133. 

Light 

Figure 40. The interaction between temperature and carbon 
dioxide concentration in affecting the relationship between 
light and photosynthetic rate (after Gaastra, 1963). 
The upper figures are temeratures in centigrade, and the 
lower are CO2 concentrations in ppm 
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structure and photosynthesis (e.g. Tooming, 1970; Acock et 

al., 1970), but simulation models do hold the potential to 

deal with such complexity (see de Wit et al., 1970). The 

level of complexity at which a problem is tackled depends, 

however, not so much on the types of model available, as on 

the purpose to which the model will be put. It is quite 

clear that of a family of models which fulfil a given purpose 

the most useful is that which is conceptually most straight-

forward. Because our aim is to understand the dynamics of 

plant growth under aphid attack, we shall have to consider 

more variables than in prediction of yield reduction were 

our sole objective. 

Gross production is computed as a function of those 

variables of crop architecture, plant physiology and environ-

ment which are relevant to a particular problem, In order to 

predict the amount of photosynthate available for growth 

(net production), it is necessary to calculate the loss of 

reserves through respiration, The classical picture is that 

presented by Davidson and Philip (1958), and shown in Fig. 41. 

This model assumes that respiration is proportional to the 

weight of leaves present, and that there is an optimal leaf 

area at which the difference between photosynthesis and 

respiration is maximal. The photosynthesis curve is asymptotic 

because of mutual shading of the leaves as the leaf area 

increases above a certail threshold (the optimum leaf area), 

As de Wit et al. (1970) point out as a result of their 

simulations, and NcCree and Troughton (1966) and Treguna et al. 

(1964) have shown experimentally. the respiration rate of 

crops is not proportional simply to some measure of above 

ground biomass, but is much more closely related to the 
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Leaf area 
Figure 41. The classical picture of the relationship between 
leaf area and net production (see text) 

E 

Leaf area 
Figure 42. The modern picture (after McCree and Truoghton, 
1966) including photorespiration (see text) 
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photosynthetic rate of the crop surface (see Fig. 42, after 

McCree and Troughton, 1966). The practice in models such 

as ELCROS (de Wit et al., 1970) has been to define a 

respiration coefficient which is expressed as the weight of 

dry matter which is lost during the synthesis of one weight 

unit of structural material. To this synthetic respiration 
• 	

must be added the loss of material necessary to sustain the 

productive machinery of the plant; the maintenance respiration. 

Using such a model de Wit has been able to produce simulated 

experiments whose results are in close agreement with the 

available data. This agreement is not possible when the 

assumption of simple weight dependence in respiration rate 

is employed in the model (loc. cit.). 

The general practice in simulating photosynthesis is 

to assume that in optimal light conditions, the amount of 

dry matter produced is a function of the area of leaf avail-

able to intercept radiation (references above)* If L is the 

weight of leaves, and d is the maximum rate of biomass accrual 

per unit leaf weight, we can assume that leaf area bears some 

linear relation to leaf weight and write 

NP = d.L   (1) 

where NP is net production. As the models become more sophis-

ticated, the constant term d is expanded to account for the 

effects of temperature, leaf age, reserve levels, and so on, 

while the area of leaf (or its weight equivalent L) is sub-

divided into strata to allow for light variations within the 

canopy: Conslderinz photosynthesis within one stratum;  we 

can put 

• d 	= f (TEMP, LEAF AGE, RESERVES)   (2) 
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The light at this level in the canopy will be some reduced 

fraction of the radiation incident at the crop surface. If 

L is the accumulated leaf biomass above the ith layer, we 

can state that the light intensity I will be 

n 
I f ( 	L ) 	 00000 (3) 

I being the incident radiation. It is often assumed that 
0 

L) decreases exponentially with the depth in the canopy 

(e.g. Monsi and Saeki, 1953). 

Photosynthesis can then be given by 

	

= d.L. I   (4) 

for the ith layer, and for the plant as a whole by 

n 
P = E P 

1 i 

where n is the number of layers in the canopy. 

Taking respiration to consist of two aspects, maintenance 

and photosynthetically coupled, we can follow McCree and 

Troughton (1966) and write 

	

R = aP + bW   (6) 

which states that the total dry weight loss through respiration 

(R) is simply a photosynthetic component (of value aP) added 

to a maintenance component (bW) determined by plant weight (W). 

This very simple model assumes the two aspects to be indepen-

dent, but, more importantly, assumes a linear relation 

between photosynthetic rate and photorespiration, and between 

plant weight and maintenance respiration. Also implicit is 

(5) 
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the assumption that maintenance respiration is independent of 

temperature, and photorespiration only temperature dependent 

to the extent that the rate of photosynthesis itself is 

affected by temperature. It is probably better to use a more 

general model form, and write 

f(P). f'(T) 	+ g(W). g' (T) 

where T is air temperature, and f'(T) does not necessarily 

equal g'(T). Here, no assumption is made about the shape of 

f(P) or g(W); these can be stated independently for a given 

plant species using real data. 

Net production is now, quite simply, 

NP = P   (8) 

and if the plant has lost no biomass through death or abscis-

sion, the new plant weight can be incremented by NP 

2 Distribution of Dry Matter  

For some purposes it may be quite sufficient to specify 

that a constant fraction of net production is channelled into 

leaf growth, and to simulate dry matter distribution simply 

by incrementing leaf weight by that fraction of current 

production; i.e. 

WTL 	= WTL + f . NP 
t+1 	t 	1 

where WTL is the dry weight of leaf, f is the distribution 
1 

fraction to leaf, and NP is net production. 

Alternatively, if the pattern of dry matter distribution 

varies with time in a consistent fashion, it will be possible 

to set up a vector of distribution fractions describing the 

(7) 
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proportion of net production added to leaves at each age of 

the plant; i.e. f where t is plant age. 
It 

In the context of relating aphid feeding to bean yield 

we must consider rather more detail. We need to know the 

fraction channelled into fruit growth as well as into leaf, 

and also the effects of aphid feeding on this pattern. Aphid 

infestation may well alter the growth of some organs relative 

to others (Chapter II), in much the same way as grazing alters 

the distribution of dry matter in grasses (Troughton, 1960; 

Alberda, 1966). 

Monsi and Murata (1970) review the environmental factors 

affecting the pattern of dry matter distribution (with 

emphasis on light and soil-water conditions). They point out 

that the distribution fractions to different organs are quite 

responsive to external conditions; for example, transferring 

young soybean plants from a moist to a dry environment caused 

a doubling in the fraction of photosynthates incorporated 

into roots (20 to 40%). In ELCROS de Wit and his colleagues 

simulate dry matter distribution in relation to the relative 

growth rates of the organs. They assume a constant rate of 

leaf appearance, however, and this is unsuitable in the 

present model because aphid infestation is known to slow the 

rate of new leaf formation appreciably (Chapter II). 

I h.ave assumed that each organ of the plant at each node 

competes for the reserves available, and that dry matter is 

distributed in relation to the relative competitiveness of 

each organ. I have considered dry matter distribution as a 

net effect, so that a leaf which is importing more reserves 

than it exports has been designated a 'sink' leaf, while an 

organ exporting more reserves than it imports has been 

defined as a 'source'. In order to simulate the distribution 
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of net production it is necessary to quantify the competitive-

ness of each organ; that is, to determine its relative sink 

strength. This has been achieved by assuming first, that 

each plant organ at each node has some maximum weight which 

would be reached -under optimal conditions for the growth of 

the species, and second, that in an undisturbed plant in a 

constant environment, this maximum weight would be approached 

in a logistic fashion. 

If we let the maximum dry weight of the organ be K gms, 

the potential rate of dry matter accumularion be r, and the 

initial weight be W , then the weight of the organ at time t 
0 

will be (using the integral equation for the logistic curve) 

K 
	 (9) 

t 	-r.t [K - W 
1 + e 	W 

0 

If we now express the logistic as a difference equation, we 

can compute the increase in dry weight over a given time 

interval (one day perhaps) from 

K - W 
r. 	t-1 

W = W .e 	K 
t 	t-1 

.... (10) 

and the weight increase is clearly W - W 	. Now if this is 
t 	t-1 

the potential weight increase of the organ under optimal 

conditions, it is also an indication of the sink strength of 

the organ, and so, even if the dry matter production of the 

whole plant (DM) is less than the total potential growth 

which all the organs W 	(i=1,2,... n; where n is the number 
it 

of organs) could make; i.e. 

n 

112 
DM < 	(W 	-W 	) 

it 	it-1 
.... (II ) 
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we might still expect the dry matter to be distributed in 

proportion to relative sink strength. That is, 

(W 	W 	) 
jt 	jt-1  

F = n 	 .... (12) 
/2(W 	W 	) 
1 it it-1 

where F is the fraction of current production channelled into 

the jth organ. Clearly, then, the actual weight increase of 

the jth organ will be F .DM, and so its new weight becomes 

W: = W 	+ F .DM 
jt jt-1 

.... (13 ) 

In many cases the most important aspect of dry matter 

distribution is the extent to which it is affected by variations 

in the environment, both natural and man-induced. In a grazing 

model, for example, it will be necessary to relate the fraction 

of net production channelled into leaf growth to the amount 

of leaf removed through grazing, and to the general run-down 

of the plant through trampling, fouling and the like. To 

model such effects we can define a variable E which lies in 

the range 0 to 1, and expresses the degree to which the 

growth .(and hence the sink strength) of an organ is reduced 

at a particular time. When E = 0 the organ does not grow, 

and growth is unaffected when E = 1. We then calculate a 

value for E in relation to the relative sub-optimality of all 

those environmental factors tending to alter the pattern of 

plant growth. Rewriting equation (10) to give the potential 

dry matter increment, A, we have 

. K - W 
r. 	t 1 

K 
A = W 

t-1 
e 1 
	

(1 4 ) 
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to which we can add the E term by assuming that it effects 

a reduction in the exponent term in the same overall way as 

the proportional departure from maximal weight (K-W)/K. Now 

we can calculate the potential dry matter increment in a 

sub-optimal envirbnment as 

= W 	e 

K - W 
r.E.(-t 1 

K 
.... (15) 

and the fraction of dry matter partitioned into the growth 

of the jth organ will be 

A 
J  

n 
 A 
1 i 

00.0 (16) 

The new weight of the organ can then be calculated from 

equation (13) as before. A family of curves showing the growth 

of an organ with different values of E is shown in Fig. 43. 

THE MODEL 

The precise problem to be tackled here is to determine 

the effects of the timing and intensity of an aphid infest-

ation on the yield of beans from Viola faba. As in most plant 

growth models this involves a consideration of two sets of 

processes; the production of dry matter and the distribution 

of a fraction of this production into seed. Both will be 

affected to a greater or lesser extent by aphid infestation. 

Fig. 44 plots the variables which have a significant effect 

upon bean yield under aphid infestation in flow-diagram form. 

This constitutes the structural aspect of the model, and 

embodies those biological properties of the plant which are 
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Time, t 

Figure 43. Logistic, or sigmoid growth, assuming that E in 
Equ. 15 has constant value 1 	decreases (--), or 
increases linearly with time, t 
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considered to be relevant to the question in hand. 

For the purposes of this model the plant is envisioned 

as consisting of a root system, and of a shoot which is 

divided into a number of nodes. In Viola faba one leaf is 

produced at each node in an opposite pattern, and the stem is 

usually unbranched. Older plants occasionally produce branches 

at the first and second nodes where leaves are absent. Each 

node consists of a length of stem (the internode), a stipule, 

a petiole arising at the junction of the stipule and the stem, 

a number of leaflets attached to the petiole, and at the 

higher nodes of older plants a cluster of flowers or pods. 

The plant parts, and their relative dispositions are shown 

in Fig. 45. 

New nodes arise in the apical meristem by the production 

of leaf primordia, but are not considered as contributing to 

the physiological behaviour of the plant until they reach 

a certain threshold size. Up to this time all the leaf 

primordia, young leaves and the meristem itself are considered 

as a single functional unit, the terminal cluster. 

Each of the tissues within a node consists of three types 

of carbohydrate. There are structural carbohydrates like 

cellulose and hemicellulose which we can consider as fixed 

pools of reserve. In addition, there are water insoluble carb-

ohydrateS such as starch which form reserve pools from which 

material can be mobilized under certain conditions. Finally, 

there are water soluble carbohydrates represented by the 

sugars, and by sucrose in particular, forming a mobile reserve 

pool within each tissue. Clearly, each type of tissue will 

contain these carbohydrates in different proportions; a stem 

will contain proportionately more cellulose than a leaf, and 

a fruit will often contain more starch than a stem. The 
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Figure 45. (a) Diagrammatic representation of a plant of 
Viola faba as envisioned by the model. This plant has five 
nodes expanded which, including the two leafless nodes, means 
that NODES = 7 

(b) A single node expanded to show its component 
parts. If and when flowers are produced, they appear in 
the axil of the leaves, at the junction of the petiole and 
internode 
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question to be asked is whether it is necessary in the context 

of simulating the effects of aphid feeding to consider the 

dynamics of the three carbohydrate types within each organ. 

Aphid feeding acts to reduce the amount of soluble 

carbohydrate in the phloem vessels (Kennedy and Mittler, 1953). 

The simplest assumption is that the aphids do not affect the 

partitioning of reserves between the three carbohydrate types, 

and that the removal of a certain amount of sucrose from the 

phloem will reduce the rate of increase of each type equally. 

A model built on this assumption would only have to consider 

a single measure for the total amount of carbohydrate in 

each organ. Typically, this would be its dry weight. 

The alternattire treatment would consider aphid feeding 

as affecting only the amount of soluble carbohydrate in each 

tissue (Fig. 46). A source leaf would therefore export less 

material, but sink organs such as young leaves and all other 

plant parts requiring more assimilate than they produce (stems, 

roots, petioles and fruits), would have to be considered 

differently. In these cases, the pool of mobile reserves is 

reduced, but the model would have to consider the possibility 

of mobilization of stored carbohydrates in compensation. These 

might come from the organ itself, or be translocated from 

other parts of the plant. Similarly, the rate of incorporation 

of mobile reserves into new structural material would have 

to be considered in relation to the relative sizes of the 

three pools within the tissue. While it would be possible to 

model this process by calculating net flow rates between the 

three  coments, there are no data available, and if seems  

reasonable to build a model assuming a constant partitioning 

in the first instance, and only move to the more detailed 
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SINK 

A SOLUBLE CARBOHYDRATES 
B INSOLUBLE STORAGE CARBOHYDRATES 
C STRUCTURAL CARBOHYDRATES 

F 	RESERVE INFLOW 

F 	RESERVE EXPORT.  
J 

H RESPIRATION 
P PHOTOSYNTHESIS 

SOlgiCEE 
Figure 46. The pattern of reserve movement in source and 
sink tissues. Aphid feeding probably affects the internal 
carbohydrate balance of source leaves relatively little 
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consideration if the model behaves unrealistically (Chapter 

VI). Consequently no allowance has been made in the present 

model for the mobilization of reserves in compensation for 

high rates of carbohydrate removal by the aphids. 

Consider the plant as being divided into above and 

below ground parts, and let these be called SHOOT and ROOT 

respecively. The ROOT can be considered as a single unit of 

biomass, while the shoot consists of a number of NODES at 

any time. Each node of the plant includes a length of inter-

node, a petiole, a leaf, and a number of flowers or pods. 

Let WTS(N), WTP(N), WTL(N) and WTF(N) be the dry weights of 

these organs in the Nth. node. Finally, let the weight of the 

terminal cluster be TCWT grams. Therefore, at any given time, 

the shoot weight is given by 

NODES 

SHOOT 	(WTL(N) + WTS(N) + WTP(N) + WTF(N)) 

1 
	

TCWT 

and the whole plant weight by 

PLANT = SHOOT + ROOT 

1 Germination and Establishment 

Let the weight of the planted seed be PBWT, and the dry 

weight of reserves mobilized from it on any one day be PBRES. 

Now let the rate at which these reserves become available be 

a function of soil temperature (Smoliak and Johnston, 1968), 

which is to say 

PBRES = f (SOILTMP) 

then, at the end of the day, the seed weight will be 
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PBWT = PBWT - PBRES 

Plant weight is therefore incremented by PBRES daily (ignoring 

respiration atthis stage), and if OPTRPR(1) is the fraction 

of dry matter channelled into root growth in a plant of 1 

node in size, we can increment root weight by 

• ROOT = ROOT + OPTRPR(1) * PBRES 	.... (17) 

and the shoot weight by 

SHOOT = SHOOT + (1. - OPTRPR(1)) * PBRES, . (18) 

When the shoot has increased in size to a specified 

threshold weight, an initial distribution of stem tissues is 

set up; the stem is divided into two nodes (leafless), and a 

terminal cluster containing the shoot apex and the leaf 

primordia. At this stage, the weight of the whole plant is 

PLANT = ROOT + WTS(1) + WTS(2) + TCWT 	(19) 

The terminal cluster then grows .(as described later) 

until the first leaf is sufficiently large as to be considered 

separately. There are three nodes at this stage, and, in 

addition to the reserves from the seed, photosynthate becomes 

available for growth and maintenance. When the seed has 

reached a specified low weight (representing the weight of 

the seed-coat plus any non-mobilizable material in the coty-

ledons), or such time elapses as would account for the rotting 

of the seed, then these reserves are permanently cut off, 

and the plant continues to function solely from its photo-

synthates. 

2 Photosynthesis and Respiration  

Assume that photosynthesis only occurs to a significant 
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extent in leaves, and that the amount of photosynthesis is an 

increasing function of leaf area. It is quite straightforward 

to include stem photosynthesis in the model should it be 

required. The basic model is therefore 

PHOTO = f (LA) 	 .... (20) 

where PHOTO is the gross production in grams of carbohydrate, 

and LA is the area of green leaf. We can consider two 

sections to this equation; a section dealing with the rate 

of photosynthesis per unit leaf area, and another concerned 

with the effects of canopy structure on the environmental 

conditions experienced by different leaves in the crop. 

To achieve this we divide the canopy into strata, in 

this case defining each node of the plant as a discrete layer. 

Now assume that a leaf of Vicia faba has a maximum potential 

rate of photosynthesis which we can call PEFFIC (photosynthetic 

efficiency), expressing the rate of accumulation of carbo-

hydrate by one sq. cm. of leaf in completely optimal conditions. 

The actual rate of photosynthesis will therefore be some 

fraction, usually less than 1.0, of this maximum rate. The 

first section of the photosynthesis model must determine the 

value of this fraction in terms of the current levels of 

the factors which affect it. 

The primary factors affecting the rate of photosynthesis 

are light intensity, air temperature, and CO concentration 
2 

(see Gaastra, 1963). For the purposes of this model it is 

possible to assume that CO concentration is constant from 
2 

day to day;  although it may well vary within a day (Monteith 

et al., 1964). We then provide data sets describing the 

effects of air temperature and light intensity on the fraction 
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of PEFFIC which is achieved under controlled conditions; these 

might be of the form shown in Figs. 47 and 48. The actual 

contribution of each factor to the actual photosynthetic 

rate is then determined by interpolation (Chapter I), writing 

RT = F (TEMP) 

and 	RL = F (LIGHT) 

where F is the routine of interpolation, and RT and RL are 

the fractions of PEFFIC which would be achieved if all other 

factorS were optimal. From Fig. 40, above, it is clear that 

light and temperature interact with one another, so we can 

write RTL, the fraction at a given light and temperature, as 

RTL = RT * RL 

This means that if LIGHT was such that RL was 95% maximal, 

and TEMP was too low, so that only 75$  of the maximal rate 

of photosynthesis was possible, we should observe 

RTL = .75 * 095 = 0.7125 

or actual photosynthesis of 71.25% PEFFIC. 

Other factors affect the realized fraction of PEFFIC 

under most circumstances. We know that the age of the leaf 

tissue affects its rate of photosynthesis (e.g. Treharne et 

al., 1968), so we can draw a graph of the relative rate of 

photosynthesis against leaf age (Fig. 49). The maximum rate 

at a given leaf age, LFAGE, will then be 

= F (LFAGE) 

The effects of accumulated leaf reserves (Nealls and Incoll, 

1968), and the effects of leaf water content (Catsky,J965; 

Troughton and Slatyer, 1969) can be calculated in a similar 
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TEMP 
Figure 47. The effects of air temperature (TEMP) on relative 
photosynthetic rate, RT 

CC 

 

	3insamsamolaussmasow. 	 1110191131100:111 

 

LIGHT 
Figure 48:  Theeffects of light intensity on the relative 
photosynthetic rate, RL 
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cc 

70 

LFAGE 
Figure 49. The effects of leaf age (LFAGE) on relative 
photosynthetic rate, HA 

10 

MAT E R 
Figure 50. The effects of leaf water content (LWATER) on 
relative photosynthetic rate, RW 
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fashion to give 

RR = F (CHO) 

RM.. = F (LWATER) 

where CHO is the carbohydrate level in the leaf and LWATER is 

the leaf water content (Fig. 50). The problem is then to 

calculate the actual fraction of PEFFIC which is realized 

under a particular set of values for each factor. We could 

(see Chapter I) either model the process by assuming that the • 

lowest of the fractions limited the rate of photosynthesis 

(Liebig's law); i.e. 

RATE = min (RA, RR, RW, and so on) 	(22) 

or we could suggest that like light and temperature they 

interact with one another; i.e. 

RATE = RA * RR * RW 	.... (23) 

In the absence of data from factorial experiments, it is not 

possible to determine which approach is the most realistic. 

For this model I have assumed that the effects are multiplic-

ative, and so, for all factors we can write the actual rate as 

AEFFIC = PEFFIC * RT * RL * RA * RR * RW .. (24) 

The factors have no depressive effects on photosynthesis when 

their levels are optimal since, by definition, 

1 = F (optimal value) 

The second aspect of the photosynthesis model deal with 

the conditions prevanient at each node of the plant. We know 

that light intensity decreases through the canopy because 

the upper leaves shade the lower: To model this we write I 
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the light intensity in the ith layer of the canopy, as 

 

LA). I 
0 

...e (25) 

  

where ELA is the accumulated leaf area above the ith node, 

and I is the incident radiation. It is commonly assumed 
0 

• 
	that this decay in light intensity is exponential (e.g. Monsi 

and Saeki, 1953), but we can supply the model with graphical 

data from field measurements without specifying the precise 

mathematical form (Fig.51). The actual light is then given 

by interpolation; 

LIGHT = F (ALA) * IO 	0011118 (26) 

ALA being the accumulated leaf area, and IO the incident light. 

If we know the weight of leaves at each node of the 

plant to be WTL(N), and the age of these leaves to be LFAGE(N), 

we can determine the leaf area at each node by dividing the 

leaf weight by the leaf density (which is a function of leaf 

age). That is, setting K = LFAGE(N), 

AREAL(N) = WTL(N) / WTSQCM(K) 	041, 00 (27) 

-2 
where WTSQCM(K) is the density in gms cm of a k-day-old 

leaf. Summing leaf area from the ith node to the top of the 

plant gives ALA; 

NODES 
ALA = 

	

	AREAL(N) 	.... (28) 

N = 

and the actual light conditions are calculated from equation 

(26). Actual gross production at each node is therefore 

GPROD(N) = AREAL(N) * LIGHT-•* AEFFIC 	(29) 
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where AREAL(N) is known, and AEFFIC is obtained from equation 

(24). Summing over all nodes gives the total gross photosynth-

esis, PHOTO, as 

NODES 
PHOTO = 2] GPROD(N) 

N = 3 
00 011 (30) 

Finally, we can allow that the rate of gross production 

is affected by the availability of soil water and nutrients. 

There are two ways in which such a shortage might occur; 

a) the-situation in which there is too little root biomass 

to take up enough water or nutrients to make good the demands 

of the shoot'system,, even at maximal uptake rates: 

b) those cases where the density of water or nutrient ions in 

the effective vicinity of the root system is so low that the 

demand can not be fulfilled at the necessary rate. 

Let the fraction of the shoot's demand which a given 

root biomass can fulfil be UPFRAC, and the optimal proportion 

of roots for a plant of size NODES be OPTRPR(NODES). If there 

are sufficient roots, that is if 

OPTRPR(NODES) 	ROOT / PLANT 

then UPFRAC = 1. Otherwise, let us define a new term SRAT, 

being the optimal ratio of shoot to root; this is given by 

SRAT = [1 / OPTRPR(NODES)] - 1 	0000 (31) 

since OPTRPR(NODES) = ROOT/(ROOT+SHOOT) in optimal conditions. 

Then if the actual shoot/root ratio is more than SRAT 

SHOOT / HOOT > SEAT 

there is too little root to supply the shoot. We then make 

UPFRAC some decreasing function of the difference between 
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SHOOT/ROOT and SHAT. A simple linear model of this is given 

by 

UPFRAC = 1. - ((SHOOT/SRAT)-ROOT)/(SHOOT/SRAT)(32) 

and the relative root shortage can be computed as a function 

of this value of UPFRAC 

• 
ROOTF = F (UPFRAC) 

Now if the relative availability of water and nutrients • 

in the vicinity of the root system is SOILF, and the ammount 

available is SUPPLY, we can determine whether gross product-

ion will be limited by these factors. The amount of water 

and nutrients removed from the soil on a given day will be 

a function of the root biomass and ROOTF; for example 

UP = ROOT * ROOTF 	.... (33) 

then if SUPPLY < UP there is too little water and nutrient 

to fulfil demand. SOILF will be a decreasing function of the 

difference between UP and SUPPLY which can be modelled by 

SOILF = 1. - ((UP-SUPPLY) / UP) 	0000 (34) 

The revised level of gross production is computed by multip-

lying the shoot potential PHOTO by these two fractions; 

PHOTO = PHOTO * ROOTF * SOILF 	.... (35) 

Respiration, as indicated earlier, can be considered as 

comprising a maintenance and a photorespiratory component. 

The general model can be written as equation (7) which, 

in our model symbolism, is 

• TRESP = F(PHOTO)*F(TEMP) + F(PLANT)*F(TEMP) 	(36) 
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We must supply four data sets, then, to allow interpolation 

of the actual dry weight loss through respiration. The shapes 

of the functions for PHOTO and PLANT are shown in Figs. 52 

and 53; these are intuitive, based on the results of McCree 

and Troughton (1966). As with photosynthesis, it is simplest 

to specify the actual respiration rate at a given temperature 

• 	 as some fraction of its maximum rate.. To do this the 

temperature functions are plotted on a.relative scale, assuming 

a doubling in respiration for each 10.0 rise in temperature. 

The weight loss data in Figs 52 and 53 are expressed at 20'C 

and multiplied by the temperature fraction (which in this 

case can exceed unity) to give the actual respiratory loss. 

Net production is the calculated by subtracting the total 

respiration TRESP from gross production; i.e. 

PRODNET = PHOTO - TRESP 	.0.. (37) 

5 Dry Matter Distribution  

a) Root Growth  

Assume that at a given height, NODES, and phenological 

condition, COND, the plant has an optimal root proportion 

OPTHPH. Dry matter is distributed between root and shoot 

such that OPTRPR is approached; if the root is relatively 

light, then proportionately more of the net production is 

channelled into root growth, and if the root is too heavy, 

more reserves are allocated to the shoot. 

After the net production has been distributed, the new 

plant weight will be 

PLANT = PLANT + PRODNET 

• and from this, the optimal root weight will be 
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Canopy depth 

Figure 51. The relation between canopy depth (in nodes) and 
light intensity. In the model light intensity is plotted 
against accumulated leaf area above a point, to allow for 
variation in the leaf area for a given height of the whole 
plant 
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PHOTO 
. Figure 52. The relationship between photosynthetic rate (PHOTO) 
and photorespiration (PRESP) 

0 

LU cr 
2 

PLANT 
Figure 53. The relationship between plant dry weight (PLANT) 
and maintenance respiration. 
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OPTRUT = PLANT * OPTRPR(NODES) 	0.1141.0 (38 ) 

If the current root weight is less than OPTRUT, root growth 

occurs as follows; 

PROD11 = PRODNET - (OPTRUT - ROOT) 	(39) 

so PROD11 is the dry matter incrmement remaining after root 

growth has occurred. Now if PROD11 > O. then we set 

ROOT = OPTRUT 

and 	SHOOTIC = PROD11 

where SHOOTIC is the shoot dry weight increment. 

If, on the other hand, the root is so light that all 

today's production can not bring it back to OPTRUT, then 

PROD11 < 0. 

and 	ROOT = ROOT + PRODNET 

so 	SHOOTIC = O. 

Again, if the root is already large enough and 

ROOT > OPTRUT 

then 	SHOOTIC = PRODNET 

and all net production is channelled into shoot growth. 

b) Shoot Growth  

The shoot is made up of a number of tissue types 

distributed vertically through a number of nodes. Root.  gowth 

was simulated simply as an increment to a single below-ground 

biomass; for the shoot, on the other hand, the distribution 

of the dry weight increment SHOOTIC is more complex. It must 

be partitioned between nodes, and between the tissues within 
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a node. 

To compute these distribution fractions, assume that 

each tissue (steml lamina, petiole, flowers anf fruit) has 

a maximum obtainable dry weight at any given node, and that 

it grows towards this weight according to an equation of the 

form (explained,in Distribution of Dry Matter, page 138) 

• 
(GR. E. (K-W)/K) 

W 	= W . e 	 0 ,0* (40) 

t+1 

where K is the maximum attainable weight, GR is the growth 

rate describing the rate of approach of W to K, and E is 

a variable whose value lies in the range 0 to 1 constituting 

an integration of the various deleterious environmental 

effects tending to reduce the growth rate. If aphid feeding 

affects not only the amount of dry matter produced, but also 

the pattern in which the remainder is distributed, then E 

would contain an estimate of the relative feeding intensity 

at each node. 

Next, let the potential dry matter increment represent 

the strength of the sink created by the growth of a tissue 

at this node; that is, for leaves, 

SINKL(NODE) = WTL(NODE) * 

[EXP((K 	WTL(NODE))/K * GR * E) - 1.] 	(41) 

By summing the leaf sinks for all parts of the plant we 

obtain the total leaf sink, TSINKL 

NODES 
TSINKL = 

	

	SINKL(NODE) 
1 

This procedure, when repeated for each tissue type, gives a 

• value for the total shoot sink strength of 
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SIGSINK = TSINKL+TSINKP+TSINKS+TSINKF+TCSINK 

TCSINK, the sink created by the growth of the terminal cluster, 

is calculated in the next section. 

The dry weight increment of any tissue type in the 

shoot is therefore (again using leaves as an example) 

LEAFING = SHOOTIC * TSINKL / SIGSINK 	.. (42) 

.and, to determine the growth of lamina at any given node we 

have 

WTINCL(NODE) = LEAFINC * SINKL(NODE)/TSINKL 

The weight of the organ is then updated 

WTL(NODE) = WTL(NODE) + WTINCL(NODE) 	.... (43) 

and the new leaf area will be 

AREAL(NODE) = WTL(NODE) / WTSQCM(K) 	.... (44) 

wnere K = LFAGE(NODE), the age of the leaf in days. 

c) Height Growth and Leaf  Production 

The pattern of appearance of new leaves in a single 

stemmed plant like Vicia faba is generally a sigmoidal function 

with time, as shown in Fig. 54 from Chapter II and Ishag (1969). 

The rate of leaf production is therefore an N-shaped curve 

approaching zero as the plant approaches its maximum node 

number (Fig. 54). To model this, assume that the terminal 

cluster has a maximum weight at which a leaf is on the 

threshold of becoming photosynthetically independent, and a 

minimum weight representing the dry weight of the stem apex 

and the smaller leaf primordia. Reference to Fig. 55 (from 

• 
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time 

time 

nodes 
Figure 54. The observed patterns in the number of nodes (top) 
and rate of node production (centre). The lower relationship 
is used in the model to mimic these effects without relying 
on a time-based curve. 
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cv 
a) 

time 
Figure 55. Generalized growth curve for a leaf. Up to the point 
• T. growth can be assumed to follow an exponential curve 

x 
2 

z 
C) 

time 
Figure 56. The pattern of dry weight change in the terminal 
cluster as new nodes are produced (see text) 
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Ishag, 1969) shows that the weight increase of a single leaf 

can be approximated by a sigmoid curve, and that up to a 

threshold size T, the pattern of growth is more or less 

exponential. So let the strength of the terminal cluster 

sink increase exponentially with time 

TCNEW = TCWT * EXP(GHT(NODES) * E) 	*1100 (45) 

TCSINK = TCNEW TCWT 

where GRT(NODES) is the potential rate of growth, and E is 

the integral of the environmental factors tending to reduce 

this growth. Unlike the growth rates of the other stem organs, 

that of the terminal cluster varies in an N-shaped fashion 

with the size of the plant (Fig. 54). From this assumption, 

the time taken for the terminal cluster weight to increase 

from minimum to maximum changes as the inverse to the curve; 

i.e. in a U-shaped fashion. A graph of TCWT against time 

is therefore of the form shown in Fig. 56. 

Given the relative sink strength of the growing apex 

(TCSINK) we calculate the biomass increase as 

TCINC = SHOOTIC * TCSINK / SIGSINK 	.... (46) 

and the new weight is therefore 

TCWT = .TCWT + TCINC 

Now if TCWT 	TCMAX a new leaf will be produced, and NODES = 

NODES + 1. The weight of the new node is 

WTNEW = TCWT - TCMIN 

and the terminal cluster returns to its basal weight, 

TCWT = TCMIN 
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Depending upon the current height (NODES) of the plant, and 

its phenological condition (COND), the biomass of the new 

node is distributed between the four tissue types; 

WTL(NODES) = WTNEW.* FRACTL(COND, NODES) 

WTP(NODES) = WTNEW * FHACTP(COND, NODES) 

and so on, for the other tissues. 

The age of the new leaf is assigned a starting value of one 

. day which will be incremented every day of its life; 

LFAGE(NODES) = 1 

Leaf age is included in the model as affecting photosynthesis 

(equation 23), leaf density (equ. 27), and leaf water content 

(next section). On reaching the maximum age for which a leaf 

at a given node can actively photosynthesize, the tissue is 

assumed to die and no longer to contribute any photosynthate 

to the pool of gross production. We write 

IF (LFAGE(NODE).GT.MAXAGE(NODE)) LIVE(NODE) = 0 

where LIVE(NODE) has a value of 1 for living tissues. Then 

a leaf only respires or photosynthesizes if LIVE(NODE) = 1; 

similarly, leaves which are senescent do not give rise to 

active sinks, so that 

IF (LIVE(NODE).EQ.0) SINKL(NODE) = 0 

The weight of dead leaves held on the plant is assumed to 

decrease exponentially according to the equation (computed 

daily) 

IF (LIVE(NODE).EQ.0) WTL(NODE)=WTL(NODE)*DECAY 

where DECAY is a constant describing the rate at which material 
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is leached or withdrawn actively from the leaf. 

This treatment of height growth allows that the observed 

pattern of leaf production will be observed under control 

conditions, and also that the rate of appearance can be 

affected by aphid feeding (as observed in Chapter II). The 

aphids act to slow the production of new nodes by reducing 

the amount of reserve available (PRODNET), and also by 

damaging the tissues of the terminal cluster, thereby reducing 

E and hence the relative competitiveness of the terminal 

cluster sink. So both the amount of carbohydrate- available, 

and the fraction of the pool incorporated is dependent upon 

aphid feeding. 

4 Leaf Water Content 

Leaf water content plays two crucial roles in the model. 

First, it affects the rate of photosynthesis in the leaf; 

the mechanism is not specified, but reductions in water 

content are taken as being indicative of a general lowering 

in photosynthetic potential (Troughton and Slatyer, 1969; 

Jones, 1973). Second, leaf water content affects the rate 

at which the aphids feed, and the desirability of a given 

leaf for aphid colonization.(Wearing, 1966, 1972). 

In turn, leaf water content is decreased by aphid feeding 

when the rate of water removal exceeds the rate at which the 

leaf can compensate by increased transpiration, and by low 

soil water availability. 

Let the weight of water held per gram of leaf dry weight 

at full turgor, vary with the age of the leaf (Chapter II, 

Fig. 22). This curve represents the optimum leaf water content 

for leaves of any age; departures from this optimal will affect 

the rate of photosynthesis and the rate of aphid feeding. 

For any leaf, then, we can calculate the optimum weight of 
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water per gram dry weight by interpolation from Fig. 22; 

OPTWAT = F (LFAGE(NODE)) 

and we can define a proportional water deficit DIFWAT as being 

DIFWAT = LWATER(NODE) / OPTWAT 

where LWATER(NODE) is the current water content. To account 

for daily variations in this parameter, water losses must be 

balanced against the current ability of the plant to compensate 

by enhanced uptake. Assume that the value SOILF (above) 

represents the extent to which water can be taken up by the 

root system under a given set of atmospheric conditions. 

Now, allowing that the amount of water removed from a leaf 

during feeding is a function of the amount of food taken 

by the aphids at a node, we can put 

APHWAT = F (APHFEED(NODE)) 

This feeding accounts for a proportion of the water content 

of the leaf at any instant, and although compensation by the 

plant to water loss is a continuous process, we can approximate 

by stating that the overall reduction in the course of a day 

will be related to the ratio of the total water removed with 

the food per gram of water in the tissue at equilibrium. 

The maximum weight of water available in the leaf is given by 

WATER = LWATER(NODE) * WTL(NODE) 

The actual water holding potential, however, is a function of 

the balance between soil and atmospheric conditions, and the 

stature and uptake potential of the plant. We can write, 

therefore, 
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ACTWAT = F (SOILF) * WATER 

where the fraction SOILF lies in the range 0 to 1, and the 

function is of the general form shown in Fig. 570 Here, 

a threshold of dehydrating factors has been assumed, above 

which ACTWAT = WATER. The relative intensity of water removal 

is then 

WATRAT = APHWAT / ACTWAT 

and the effects of this intensity on the new value of 

LWATER(NODE) will be 

APHWF = F (WATRAT) 	0 < APHWF < 1 

If SOILF is above the threshold shown in Fig. 57 we can allow 

the tissue to increase in water content as long as LWATER 

is less than or equal to OPTWAT (i.e. DIFWAT < 1). The extent 

of this compensation is related to DIFWAT by 

COMP = F (DIFWAT) 

and the function is graphed in Fig. 58. The new values of 

leaf water content is then calculated; 

LWATER(NODE) = LWATER(NODE) * APHWF * COMP 

5 Phenological Condition  

Four phenological conditions of the plant are recognised 

in the current model, though any number could be incorporated 

quite readily. These conditions are germinating, vegetative, 

early reproductive and late reproductive. In each;  the pattern 

of dry matter distribution is different. The germinating 

plant develops an anchoring and absorbing root with which to 
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SOILF 
Figure 57. The relationship between soil water availability 
(SOILF) and the relative ability of the plant to make good 
water losses 

WW1' 
Figure 58. The relationship between the sub-optimality of 
leaf water content (DIFWAT) and compensation ability (COMP) 
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supply the necessary materials to allow elongation of the 

shoot and the production of the first leaves. The energy 

source for this activity is derived principally from the 

parent seed. The vegetative phase of growth consists of an 

overall increase in stature and photosynthetic productive 

power to supply the energy and nutrient needs of the early 

reproductive stage, when flower buds are produced and developed. 

The materials for this growth are, in the main, photosynthetic 

products. Towards the end of the life of an annual plant, 

reserves are mobilized from the older leaves whose photo-

synthetic function is now obsolete, to augment the flow of 

energy-rich materials into seed production; this late repro-

ductive phase is the fourth condition dealt with in the model. 

Changes from one condition to another occur at three 

thresholds which are modelled as follows. I assume that the 

germinating plant becomes vegetative when it has produced 

three nodes; it has, in other words, one leaf fully opened. 

We write 

if 	NODES > 3 then COND = 2 

Similarly, if shoot weight exceeds the minimum stature 

necessary for flowering, and the daylength exceeds the flow-

ering photoperiod, the plant becomes reproductive; 

if 	DAY 	PHOTER and SHOOT ?_ SHTNIN 

then COND = 3 

Finally, when the shoot weight exceeds another threshold, 

THR4, the plant begins to channel all its net production 

plus whatever reserves can be mobilized from dyning tissues 

into seed-fill; 
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if SHOOT ?. THR4 	then 	COND = 

Clearly, the values of these three thresholds will be 

related to a number of environmental parameters (including 

the intensity of aphid feeding), and they can readily be 

made responsive to such factors in the model. In the present 

version, however, they are included as constants, because 

they are no data available. 

6 Flowering and Fruiting 

The precise time of flower initiation in most annual 

plants is under a complex of controls including temperature, 

photoperiod, plant stature and general physiological condition. 

Evans (1959) describes the environmental factors important 

to Vicia faba, and emphasises the variability in regard to 

flowering time between phenotypes of this species. All these 

controls affect the time at which CON) changes from vegetative 

to reproductive (from 2 to 3) and the flow of dry matter into 

flowers begins (previous section), 

Suppose that the plant has just entered the reproductive 

phase. An initial distribution of floral primordia must be 

set up, so that their relative sink strengths approximate the 

relative growth of flower buds in real plants. In V. faba 

the lowest flowering node is generally the ninth, but this 

varies with the variety of the plants and with crop density 

(ishag, 1969). We therefore write NOFI) = 9, and, because 

the lowest nodes flower first in this species, we assign 

a relatively large flower bud to this node; 

WTF(NOFLO) = WTINIT(1) 

where WTF(NOFLO) is the weight of the flower bud at the NOFLOth 
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node, and WTINIT is a vector.of initial bud-weights reflecting 

both the decreasing weights of the higher nodes, and the more 

advanced development of the floral primordia on the lower 

nodes. The increments, WTINIT, are made up from today's 

photosynthesis. So incrementing all the nodes higher than 

NOFLO which are expanded when flowering begins, we have 

Do 10 NODE = NOFLO, NODES 

N = NODE - NOFLO + 1 

10 WTF(NODE) = WTINIT(N) 

After this time, all the nodes developing from the terminal 

cluster will include a flower bud (page 168). 

Let each flower have a maximum weight, WTFLOWR, and let 

the initial number of flowers at each node be FLOWRS(NODE). ' 

The maximum weight of flowers will therefore be 

WTFLMAX = FLOWRS(NODE) * WTFLOWR 

The flowers are assumed to increase exponentially in weight 

up to pollination, with the rate of growth determined by 

aphid feeding, temperature, and any other deleterious factors. 

SINK(NODE) = WTF(NODE) * (EXP(GRF * E) - 1.) 

where GRF is the growth rate of flowers, and E describes 

the intensity of the adverse factors at the node. The total 

flower sink of the plant is 

NODES 
TSINKF = >2 SINK(NODE) 

NOFLO 

so the fraction of the shoot weight increment incorporated 

in flower growth will be TSINKF/SIGSINK, and the flower weight 

increment at a given node will be 
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WTF(NODE) = WTF(NODE) + SHOOTIC * SINK(NODE)/SIGSINK 

In Vicia faba there is a high flower mortality (Evans, 

1959; Ishag, 1969), which is simulated by assuming that when 

the flowers have reached their maximum weight, and are 

pollinated (or not), then a fraction of the FLOWRS(NODE) are 

lost. The fraction of flowers surviving to become pods at 
• 

a given node is FLOSURV(NODE) which is supplied as data. 

The number of pods is then given by multiplying the 

initial number of flowers by the survival rate (to obtain 

the number of mature flowers), and then by the plooination 

rate; 

PODS(NODE) = FLOWRS(NODE) * FLOSURV(NODE) 

* POLLEN(IWEEK) 

The rate of pollination is assumed to vary with time (related 

to bee activity) and to be constant between nodes. Next, 

the weight of pods is computed by multiplying the weight 

of mature flowers by a similar fraction; 

WTF(NODE) = WTF(NODE) * FLOSURV(NODE) 

* POLLEN(IWEEK) 

and the biomass of dead flowers is lost to the plant. 

The pOds are assumed to grow sigmoidally according to 

the equation 

SINK(NODE) = WTF(NODE) * (EXP(G * A * E) - 1.) 

where G is pod growth rate, E summarizes the deleterious 

effects of environmental factors on pod growth, and A is the 

fraction of unfulfilled growth as follows; 

• PODIL4X = PODS(NODE) * WTPOD, 
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so PODMAX is the weight limit of logistic growth (the product 

of the number of pods and their individual weights), and 

= (PODMAX - WTF(NODE)) / PODMAX 

Summing theipod sinks over all nodes bearing pods we 

obtain TSINKF, and hence the total pod weight increment 

FRUTINC = (TSINKF / SIGSINK) * SHOOTIC 

The pod weight increment at a given node is therefore 

FRUTINC 	SINKF(NODE) / TSINKF 

When the weight of pods at a given node reaches a threshold, 

THRMORT, there is a further loss to the plant through pod 

mortality. That is, 

if WTF(NODE) THRMORT 

then PODS(NODE) = PODS(NODE) * FRUSURV 

and WTF(NODE) = WTF(NODE) * FRUSURV 

where FRUSURV is the fraction of pods surviving to maturity. 

After a prescribed period, or when the plant is fully grown, 

the crop is harvested. The yield of beans is given by 

NODES 

YIELD = BPOD * 	WTF(N) 

N=NOFLO 

where BPOD is the fraction of the reproductive tissue which 

is beans (rather than shells or stalks). 

ChanesJJL.LhAErijaejL Sap 

To the aphid feeding on the leaf or stem, the most 

profound changes in diet quality occur as a result of switches 
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in the physiological state of the plant, which manifest 

themselves in rearrangements of the proportions of the various 

chemicals making up the nutritious fraction of the phloem sap. 

The effects of such changes in diet quality can have signif-

icant effects on the rate at which the aphids feed (Auclair, 

1963), their rate of development (Banks and Macaulay, 1965; 

Mittler and Dadd, 1966), and their reproductive rate (Lees, 

1966; van Emden, 1969). Nutritional changes in the plant 

have also been invoked as one of the factors affecting the 

production of alate morphs (Lees, 1966; Hille His Lambers, 

1966), 

Let us assume that phloem quality (with respect to the 

aphid) is a function of plant phenological condition, and 

reflects changes in the amount of soluble nitrogen available. 

This will give us four basic values showing the differences 

in nutritional quality of germinating, vegetative, early 

reproductive and. later reproductive plants (Kennedy, 1958). 

At any given node, however, food quality will also be a function 

of leaf age (Kennedy, 1958; Wearing, 1966; van Emden, 1969), 

so that young and senescent leaves give a higher diet quality 

than mature tissues. Now if we allow that FOODQU(COND) is 

the maximum phloem quality attainable in a given phenological 

condition, then the actual quality is given by 

QUAL = FOODQU(COND) * F (LFAGE(NODE)) 

This measure of food quality can then be used in those 

Processes involving aphid physiology (feeding rate, population 

increase. and so on). Lowering the quality of the phloem sap 

to the aphid pest can act as a powerful tool in reducing crop 

loss, especially in the breeding of 'resistant' varieties 
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(van Emden et al., 1969). 

Running the Model  

There are'three principal sets of tests which we must 

make with the model in order to observe the effects of each 

component of the aphid feeding process on bean yield. 

a) We must observe the response of the modelled system to 

the removal of photosynthate, and to the temporal pattern of 

this removal: 

13) we must assess the effects of leaf water reduction on 

yield, accounting for the temporal pattern of feeding and the 

spatial distribution of attack within the plant (what is the 

difference between lowering the water content of young and 

mature leaves ?): 

c) finally, since it is known that aphid infestation affects 

the pattern as well as the amount of growth (Chapter II), we 

must determine the effects of different distributions of 

aphid feeding on the relative growth rates of different organs. 

For comparison with the output of these tests, a 'control' 

run is described; this traces the development of an uninfested 

plant through the same environmental conditions as will 

later be used with infested plants. 

1 Control  

Assume that the plant lives for two hundred days from 

planting to harvest, and that, for this period, we have 

weekly means of air temperature, radiation, soil moisture, 

and soil nutrient availability. The weight of the planted seed 

is supplied as input, and the total weight of beans, and 

their distribution with height appear as output (Fig. 59). 
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Figure 590 The final distribution of bean weights with height 
in a control run of the model 
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Figure 61. The pattern of shoot dry weight accumulation over 

the course of a control run 
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In addition to this, we can plot changes through time in the 

proportional make-up of plant biomass in the shoot between 

leaf, stem, petiole and fruit (Fig. 60), and the pattern of 

dry matter accumulation over the growing period (Fig. 61). 

These results agree quite well with the data given by 

Ishag (1969) for the growth of Vicia faba in the field. Since 

several of his data sets were used in the construction of the 

simulation, this agreement does not constitute a validation 

of the model, but it does show that the several intuitive 

data sets, included to make up for the more important data 

shortages, have not grossly distorted the behaviour of the 

model. From this starting point it seems reasonable to proceed 

with the manipulatory runs, bearing in mind that the similarity 

in behaviour between the model and real systems under control 

conditions does not necessarily mean that the results of the 

model experiments will be realistic (Chapter I, VI). 

2 The Removal of Photounthate  

The first set of manipulatory runs consideres the effects 

on plant growth of the removal of photosynthate alone; the 

pattern of aphid feeding between the nodes, and the effects 

of leaf damage are ignored. Clearly these runs can not be 

validated directly, as the experiments involved are impossible 

(that is, with real aphids we can riot have a reduction in 

photosynthate without the other effects). To model this 

process we specify a particular time-pattern of feeding 

(Fig. 62) which is equivalent to an increase in aphid numbers 

followed by a population crash (Chapter II, Fig. 30). The 

intensity of the infestation is then altered by changing the 

height of the curve and keeping the overall shape and position 

the same. The integral of this curve is then an index of the 

damage done to the plant; it is the total dry weight of 
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DAYS AFTER I 	STATION 

Figure 62. The time pattern of aphid food removal used in 
the model to mimic the effects of aphid population growth 
and decline. It is necessary to specify the integral of the 
curve (the total food removed), and the date upon which the 
infestation begins 
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2 	4 	6 	8 	10 - 12 	14 	16 	10 	20 
RESERVES FIE MOVED (WAS) 

Figure 63. The relationship between the total weight of 
reserves removed by the aphids during the growing season 
and the final yield of beans 
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photosynthate removed over the feeding period. In Fig. 63 

we plot the predicted yield of beans against the intensity of 

the aphid infestation, and note that up to a point (about 

10 gms) there is no net loss of beans (indeed, there is a 

slight increase), but that after this point, yield falls off 

rapidly with increases in the weight of food removed. 

Now, selecting a sequence of starting dates for the 

infestation, we can test the sensitivity of bean yield to 

removal of the same weight of photosynthate (say 14 gms) at 

different stages in plant development. This effect is graphed 

in Fig. 64, which shows bean yield rising asymptotically as 

the time lag between germination and infestation increases. 

2.  Leaf Water Reductions  

The water content of individual leaves is maintained as 

a balance between losses occurring through evapotranspiration 

and aphid feeding, and gains occurring through osmosis and 

transpiration. The rate of aphid feeding and the drying 

ability of the air (wind speed, temperature and humidity) 

affect the rate of water loss, while the availability of 

soil water and the extent of the root system influence the 

rate of water replacement (Kozlowski, 1968). 

The model has been built on the assumption that leaf 

water content can affect both the rate of photosynthesis and 

the sink strength of a growing leaf (above). Fig. 65 shows 

the response of leaf water content through time to two constant 

rates of sap removal. Because the curves are qualitatively 

different, the effects of leaf water reduction on the rate 

of photosynthesis will depend upon the absolute distribution 

of aphid feeding between different leaves; in other words, 
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Figure 64. The relationship between the length of the time 
lag between sowing and aphid infestation and the final bean 
yield. The total food removal by th aphids was 14 gms. 
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there is no mean effect, and 100 aphids on one leaf will 

affect the plant differently than 10 aphids on 10 leaves. 

Since the leaves differ in their ages, and in the light they 

receive, the pattern of aphid feeding will be important in 

assessing the effects of unit leaf water reduction on net 

production. 

When the available data show that the sink strength of 

the growing leaf is reduced by lowering its water content, 

then the process can be modelled by making the environmental 

parameter E in equation 41 a function of leaf water. Fig. 66 

plots an hypothetical graph of E against LWATER in which it 

is assumed that leaf growth ceases (i.e. E = 0) before the 

leaf is entirely dessicated (i.e. LWATER >0) The results of 

running the model with different rates of water loss are 

shown in Fig. 67 where bean yield is plotted against removal 

rate, and Fig. 68 where the growth curves of control and 

water-reduced plants are compared. 

4 Pattern of Dr, Matter Distribution 

There are two ways in which we can alter the pattern 

of dry matter distribution in the model. The first is to 

consider that the reserves taken during aphid feeding are 

removed from the sink of the organ itself, rather than from 

the total pool available to the plant (as in section 2, above). 

In this case, sink tissues will grow in proportion to the 

number of aphids feeding upon them, and source leaves will 

export less material. In particular, if we have a sink tissue 

of weight W and maximum weight K then, by our previous defin-

ition, the fraction of the shoot weight increment which will 

pass into its sink is given by 
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15 
DAYS OF FEEDING 

Figure 65. The effects of aphid feeding on leaf water content 
at two rates of removal 

LWATER 
	 10 

Figure 66. Hypothetical relationship between leaf water content 
and relative leaf growth rate (E) 

15 

LLI 
5-7  

2 
REMOVAL RATE 

Figure 67. The relationship between leaf water removal rate 
and the final yield of beans from the model plant 

•.- 

TIME 

Figure 68. The time pattern of dry matter increase in control 
(C), 1.5 (1), and 1.8 (2) water removal rates. 
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r  
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and the actual weight by 

WSINK 	= 	SHOOTIC 	* 	f 

Then, by this first system of considering aphid feeding, the 

actual weight increase will be this input less the dry weight 

removed by the aphids; i.e. 

WTINC = WSINK - APHFEED(NODE) * FAF(NODE,J) 

where APHFEED(NODE) is the weight of food removed by the 

aphid population at this node, and FAF(NODE,J) is the fraction 

of the aphids feeding at this node on the Jth tissue. The 

final growth of the tissue is therefore 

= W + WTINC 

Source organs are defined as being leaves over 20 days 

in age, and these are treated differently. Since they are net 

exporters, their production is simply reduced in relation to 

the number of feeding aphids, so if the leaf at the Nth node 

produces PRODN grams of carbohydrate there will be 

PRODNEX = PRODN - APHFEED(N) * FAF(N,J) 

grams to export. Of this amount, however, the leaf removes 

some material for its own growth 

PRODNEX = PRODNEX WTINCL 

and so the total amount of reserve available to the plant is 
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GPROD = 	PRODNEX 

the exportable material summed over all source leaves. 

The second option open to us in modelling changes in 

dry matter distribution can be used with either pool- or 

tissue-specific reserve removal. It consists of making the 

sink strength of the tissue dependent upon the number of 

feeding aphids, so that the tissue is 'damaged' and its 

growth impaired. The method is described in equations 10 

to 16 in the introduction, and the model is run by specifying 

the relationship between the number of aphids feeding on the 

tissue (APHFEED(N) * FAF(N,J) as above) and the value of E, 

the relative reduction in sink strength. Fig. 69 shows two 

typical curves of E against feeding; the upper curve assumes 

that only at very high levels of reserve removal is the 

relative growth of the organ affected, and at no time do the 

aphids stop growth completely (i.e. E 	0), while the lower 

curve describes the situation in which aphid feeding accounts 

for quite dramatic reductions in sink strength, and the tissue 

stops growth completely above certain levels of feeding (E = 0). 

This treatment of dry matter distribution has the most 

profound effects upon bean yield, depending upon the shape 

of the function employed (Fig 69). This aspect of model 

structure was not included to deal with the direct effects of 

carbohydrate removal, but rather to consider the effects of 

tissue damage on reserve distribution. We should therefore 

plot the value of E not against current feeding, but against 

the total number of aphid-days experienced by the tissue. This 

allows that the damage effects +.►ill be cumulative (as they 

would be in real plants; see Chapter II). A better picture 
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U.! 

feeding 
Figure 69. Two possible relationships between the amount of 
aphid feeding an the relative growth of the host organ (E) 

total aphid days 
Figure70.Relativetissuegrowthas - function of total damago 
(measured as aphid days) 
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of the overall effect of aphid infestation on dry matter 

distribution is gained by employing the first system of 

aphid feeding (direct subtraction from the sink of each 

tissue), and allowing that the strength of each sink is 

determined by the damage it has experienced (Fig. 70). Under 

this regime, the growth of a tissue would only be reduced 

by the amount of reserve removed when the infestation was 

young (and E = 1 in Fig 70), but would suffer a reduction in 

sink strength as well as a direct removal of carbohydrate 

as the infestation aged, and the effects of damage became 

more prevalent (and E becomes significantly lower than 1). 

Discussion 

The purpose of this model is to investigate the relation-

ship between aphid feeding and bean yield. Three critical 

aspects of the problem have emerged during the study; the 

timing of the aphid infestation relative to crop establishment 

and to flowering: the numerical pattern of aphid feeding 

over the period of infestation: and the distribution of aphid 

feeding and tissue damage between the different nodes and 

organs of the plant. 

Timing 

Aphids arrive in a bean crop as alatae. These animals 

are produced during the early spring build-up of numbers on 

the primary, over-wintering Host plant, Euonymus europaeus, 

and they fly off to find new host plants either when their. 

density on spindle becomes intolerably high, or a specific 

photoperiod is reached. Way and Banks (1964, 1968) describe 

the biology of this spring phase of the life cycle of Aphis 
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fabae. Because of the duality in the mechanisms causing alatae 

to emigrate from the winter hosts, there is a wide range of 

time over which this dispersal can occur. If spring conditions 

are such that the eggs laid on spindle hatch rather early, 

then the available area of leaf on which feeding can occur 

is minimal, and crowding will rapidly bring about alate 

production. Under these conditions, however, aphid survival 

is likely to be rather poor, and so a small early infestation 

is likely on the bean crop. 

If spring conditions delay egg hatching, the spindle 

bushes will have developed a considerable leaf area by the time 

that larval feeding reaches its peak. In this case, the popul-

ation can build up to high levels before crowding becomes 

important, and the emigrants will be more numerous. It is 

possible, however, that emigration is delayed so long that the 

bean plants in the crop are no longer attractive to the aphids, 

and infestation might be slight. 

The density of eggs laid in the autumn will also affect 

the timing of the spring emigration. At low egg densities 

crowding will occur later in the season (if at all), while 

high egg densities will tend to give rise to crowded conditions 

and alate production relatively early. Here again, the precise 

effect will be modified by the time of hatching in relation 

to leaf expansion in Euonymus. 

The model suggests (Fig. 64) that aphid infestations 

of moderate intensity can not be tolerated by the plant 

if infestation occurs much before the 40th day after germina-

ttone It is not the purpose of the model to attach any 

particular significance to this number, but rather to show that 

there is a critical threshold in the time of infestation, 
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below which yield reduction will be highly significant. The 

model behaves in this way for two main reasons. First, in 

small plants the aphids are relatively more clustered in the 

terminal leaves around the meristem, and by their feeding 

and damaging effects, slow down the rate of leaf production 

significantly. Second, smaller plants have proportionately 

less potential to compensate for carbohydrate losses; their 

leaf area is lower, and a greater fraction of it is directly 

affected by the pest. Additionally, in very young plants 

the bulk of the reserves used in growth originate from the 

seed, and if this material is channelled into aphids rather 

than new leaves, the plant will be doomed as soon as the seed 

reserves are exhausted. 

A second aspect of the timing of the aphid-plant inter-

action concerns the duration of the infestation. As we have 

seen, the initiation of the aphid population is under a 

comples control; so it is with the termination. It is possible 

to enumerate a set of factors which bring about the downfall 

of the pest population, some of which are more desirable 

than others. In the undesirable claSs we can place plant death 

and, in most circumstances, the mass emigration of aphids 

due to crowding (because this crowding will usually have 

been associated with significant plant damage). If the aphids 

arrived on the plant relatively late in the season, or the 

crop was planted late, it is possible that the aphids emigrate 

because of decreasing photoperiod (Lees, 1966) before causing 

significant damage to the crop. Finally, we can terminate 

the aphid infestation by management intervention, but in 

this case the costs and the benefits must be carefully weighed. 
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b) Number of Aphids  

The model was run by specifying a pattern and intensity 

of aphid feeding for each simulation (Fig. 62). In the field, 

however, there is a feed-back between the plant and the 

number of aphids feeding upon it. Various aspects of plant 

quality (nitrogen content, water content, genetic resistance, 

and so on) affect the developmental and reproductive rates 

of the animals (thereby affecting the number of feeders), 

and their growth and feeding rates (thereby altering the 

extent to which each aphid damages the plant). This model 

does not attempt to simulate these interactions, but incorporates 

their effects directly in the shapes of the exploitation 

curves (Fig. 62). The mechanisms by which these processes 

act, and their relative effects on total aphid feeding, are 

considered in Chapter IV. 

From Fig. 63 it seems that the plant can tolerate total 

dry weight removals of up to about 10 gms without suffering 

any significant loss in bean yield (as long as infestation 

occurs late enough; see above). The mere presence of aphids 

on the plant is therefore not necessarily a justification for 

employing control measures; it also means that biological 

control is a possibility because the plant can sustain 

a number of aphids, and hence a number of predators, without 

an economic loss. 

The variable of principal concern is not the number of 

aphids, but rather the rate of dry matter removal (the product 

of the number of aphids and their individual feeding rates); 

similarly, the need for pest control measures is not only the 

rate of food removal, but the rate of food removal relative to 

the stature and developmental stage of the plant. 
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c) Pattern of Feeding Within the Plant  

As.shown in Chapter II, the aphid population is distri-

buted non-randomly over the plant surface; some nodes are 

preferred to others, and the tissues within each node bear 

aphid aggregates of different densities. This being the case 

we should expect that the pattern of growth of aphid infested 

plants differs from the controls, and that the relative growth 

of a tissue is a function of the number of aphids feeding on 

it. 
Runs of the model have shown that it is possible to mimic . 

the type of response observed in the experiment (Chapter II) 

only by removing reserves. directly from the sink tissues, and 

by considering the effects of tissue damage on sink strength. 

There are no data available to suggest that the rate of 

feeding by Aphis fabae differs with the tissue type, and so 

we must assume that the amount of food removed bears a 

consistent relation to the number of feeding aphids for all 

tissue types. This rules out the possibility of simulating 

the observed relative decrease in stem growth simply by direct 

removal of reserves, since fewer aphids fed on the stems than 

on the leaves. It is essential to consider the effects of 

aphid presence on the sink strength of the tissue to obtain 

model output which agrees with the experimental results. We 

should take care, however, to ensure that the model.does not 

simply become a crude means of curve fitting; with so many 

effects it would be quite simple to juggle the parameters in 

the damage sub-model to fit any set of validation data. 

The important point is that the model shows great c.,,nsit-

ivity  to the gradient of the relationship between the damage 

variable E and aphid numbers, and also to.the system by which 

reserves are removed (either from a central pool, or from the 
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sinks of the tissues directly). Data on these effects have 

never been collected, and the model does suggest some 

potentially rewarding experiments; the difficulty, of course, 

would arise in attempting to damage tissues in an aphid-

like way without:removing carbohydrate. 

d) Plant Compensation  

While allowance has been made in the model for recovery 

of leaf water content after aphid feeding (Fig. 54), no 

specific mechanism for compensation in net production has been 

included. The results of the experiment in Chapter II do 

suggest, however, that the plant has some ability to compen-

sate for carbohydrate removals, particularly in the late 

vegetative stage. We defined this compensation by graphical 

means in Fig. 38; if yield reduction and aphid feeding are 

equal then there is neither positive nor negative compensation, 

while yield reductions greater than or less than food removal 

demonstrate negative and positive compensation respectively. 

The mechanisms by which positive compensation might occur 

could be through the-removal of photosynthesis-limiting 

build-ups of carbohydrate (Maggs, 1964; Neals and Incoll, 1968), 

or through a redirection of reserve translocation towards 

the shoot and away from the root (Davidson and Milthoroe, 1965; 

Marshall and Sagar, 1965; Thrower, 1962). Similarly, reserves 

may be mobilized from a storage tissue to redress the balance 

(Cavers, 1971). 

Negative compensation would occur if the feeding aphids 

inhibited the process of photosynthesis directly, as they 

might by injecting saliva (Dixon, 1970; Miles, 1969; Mittler 

and Dadd, 1960, or by damaging the leaf surface (Chapter II). 
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The model does include an aspect of this effect, in making 

the rate of photosynthesis a function of the proportion of 

stomata blocked by honey-dew, and of leaf water content 

(equ. 24). The're is an element of passive compensation in the 

model in so far as the rate of root growth is coupled to the 

rate of shoot growth by means of the optimal root proportion 

parameter (OPTRPR), and so reductions in shoot weight will 

lead to a relative increase in the amount of reserve channelled 

into the shoot. The potential to make the rate of photosynthesis 

an increasing function of the rate of carbohydrate use, and 

hence allow for real positive compensation, is included in 

the model as a relationship between photosynthetic rate and 

the amount of free reserves in the leaf (CHO on page 155), but 

since the decision was made not to consider the separate 

types of carbohydrate, this process is redundant. In order 

to model compensation realistically, it would be essential to 

model the dynamics of the soluble carbohydrate pool. 

e) Control Recommendations 

The collected attributes of an aphid infestation which 

would cause no significant loss of beans can be determined 

from the simulation runs. The aphids should arrive late in the 

crop and stay for a brief period. The rate of damage per 

aphid should be as low as possible, which will occur with 

minimal individual feeding rates and maximum plant tolerance 

of feeding. There will be a threshold between these effects 

related, but not identical to the economic threshold (Stern, 

1973); an example is given in Fig. 71 for a plant with maximal 

resistance just.prior to flowering. 

Low aphid feeding rates will be associated with low 

individual growth rates and low temperatures (Chapter IV), 
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Figure 71. The relationship between plant tolerance (solid 
curve) and aphid food removal rates (hatched lines) showing 
how the rate of aphid population growth can affect the time 
at which damage is felt (T' versus T). Clearly increasing 
the steepness of the plant tolerance curve would have the 
same desired effect 
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but the net effect will depend upon whether photosynthetic 

production and aphid feeding are affected to the same extent 

by changes in temperature. In addition, the rate of aphid 

population increase should be slow; this would be affected 

by the nutritional quality of the plant, by weather conditions, 

and by the abundance and synchrony of natural enemies. These 

effects are considered in detail later (Chapters IV and V). 

Finally, the damage to the plant will be minimized for any 

given time and intensity according to the pattern of feeding 

within the plant. Feeding should be minimal on very young 

leaves and on the terminal cluster in particular, since the 

rate of new leaf production is critical to final bean yield, 

Feeding on mature leaves tends not to affect the pattern of 

growth of the plant, but only its rate „while senescent leaves 

contribute rather little to plant groWth and consequently 

aphid feeding at the older nodes is less damaging. In the 

field, however, the inverse of these ideal feeding arrangements 

is observed, with aphids concentrating (at least initially) 

on the youngest leaves. It seems that what is worst for the 

plant is best for the aphid. 

We can summarize the relative importance of pest control 

measures in relation to the time of infestation and the rate 

of increase of the aphid population. 

RATE OF TIMING 
INCREASE 

EARLY MID-SEASON LATE 

LOW 0 0 0 

MED 1 1 0 0 

MED 2 2 1 0 

HIGH 3 2 1 
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Here 0 indicates no control necessary and 3 indicates that 

pest control would be economically advisable. 

Assessment of the Model  

The simplest model which could be employed to predict 

the effects of an aphid infestation of given size on the 

ultimate yield of beans from the crop might consider the 

plant as a single unit of biomass, which increases in weight 

under the control of a simple growth equation like the logistic. 

Our only biological parameter would be W, the dry weight of 

the plant, and we should need two constants to describe the 

maximum weight of the plant (K) and the rate of approach of 

W to K (r). The weight at any time is then given by 

-r.t[K - W 
W = K / (1 + e 

o 

The growth occurring in a finite time interval is therefore 

the difference equation 

If data were available describing the pattern of dry matter 

accumulation of aphid infested plants it would then be possible 

to fit another parameter to the equation to describe the 

deleterious effects of aphid feeding. If we call this 

parameter A, and rewrite the difference equation as 

K W 
ro A [-t 
t K 

W o e 
t+1 
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it will be possible to compute a set of values for A at each 
t 

time t so that the pattern of growth fits any observed data. 

Fig. 72 shows the growth of an hypothetical plant under 

control and infested conditions, and shows the pattern of 

values for A necessary to fit the model to the lower curve. 
t 

The problem involved in this approach (which is no more 

than a curve-fitting procedure) is the extent to which changes 

in the aphid population are related to changes in the value 

of A . For the model to have biological as well as applied 
t 

value it must be possible to calculate A given the number 
t 

of aphids N. Fig. 73 shows the model which might be fitted to 

the data in the first instance, namely a linear decreasing 

curve of A on N. Depending upon the fit of the data points 

to the curve employed, we can guage whether this model accounts 

for sufficient variation to meet the needs of the problem in 

hand. If the main objective is to obtain quantitative predictions 

of yield reduction under different patterns of aphid feeding 

this approach could be very powerful, but if, as in the 

present context, the principal aim is to assess the qualit- 

ative effects of the biological interactions involved, the 

method falls short, because it considers so few of the 

processes occurring. In particular, a linear regression of 

A on N assumes that 
t 
a) the aphid population feeds at a rate which is directly 

proportional to its size (i.e. that it has a stable age 

distribution, and constant rates of feeding at each age): 

b) the plant is affected to the same degree by unit aphid 

feeding at all stages in its development: 

c) the position of aphid feeding within the plant does not 

affect the final yield of beans: 

d) the plant does not compensate for aphid feeding: 
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Figure 72. The growth of control and infested plants. The lower 
curve is developed by assuming values of A of 1,.7,.5,.3,.08, 
.03, and'.0008 at times 15, 20, 25, 30, 35, 40 and 45. 

Figure 73. An idealized model of the relationship between 
numbers and the relative azorwth rate reduction (A). 

prey 
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e) the effects of aphid feeding are not compounded through 

damage to the plant's productive processes: 

f) the aphid population does not affect the pattern of dry 

matter distribution, or that the pattern of dry matter 

distribution does not affect bean yield. 

All these effects would tend to increase the scatter of the 

data points about the curve fitted between A and N. 

The present model has been built to consider these effects, 

and to gain qualitative insight into their interaction. The 

model does not represent the most efficient means of-predicting 

the actual weight of beans lost under a given aphid infestation 

(this could best be achieved empirically), but it is a step 

towards understanding the effects of sap-feeding insects on 

plant growth and crop yield. 

The only strategy which can emerge from the simple model 

is that pest control consists of a reduction in the number 

of feeding insects; the present model investigates the pattern 

and timing of infestation which has least depressive effect 

on bean yield, and hence allows the formulation of control 

strategies which relate the benefits of increased yield to 

the costs of killing the insects at different stages of plant 

growth. This fundamental distinction between models designed 

to produce accurate numerical answers, and models designed 

to investigate the behaviour of complex processes is considered 

in Chapter VI. 

The difference between the two approaches lies in the 

number of variables considered. Instead of treating the plant 

as a single unit of biomass, I have divided the plant into 

tissues and nodes, to allow for changes in the distribution 

of dry matter between the organs, and variation in the 

intensity of aphid feeding beLween nodes. The model is not 
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phrased in terms of internal equilibria; if the aphids were 

removed from the simple model (i.e. A were set to 1) the 
t 

plant would eventually reach its maximum weight, and the 

aphids, in effect, only slow down the rate of growth. In the 

present model, on the other hand, the effects of aphid infest-

ation are lasting, in that the plant would not reach its 

potential maximum weight if the aphids were removed; tangible 

damage is done to each of the plant organs infested, and so 

long as the rate of new leaf production is slowed down 

sufficiently that the existing leaves age (and hence loose 

photosynthetic capacity) more rapidly than leaves are produced, 

the plant will never recover. 

Because the number of variables included is limited by 

the demands of the problem under scrutiny, the present model 

is not a particularly sophisticated representation of the 

current state of plant physiology (see, for example, Evans, 

1972). Each plant physiological process modelled could have 

been stated in more detail, but every process must be 

considered in relation to the likelihood that aphid infestation 

would affect its operation, and to the availability of data 

to describe these effects. The fact that data are available 

does not argue for the inclusion of a process which can not 

be shown to be important in model structure however. 

There remain several obstacles to the construction of 

realistic plant growth models, not the least of which is 

the relationship between the three types of carbohydrate, 

and the translocation and incorporation of assimilates in 

different parts of the plant. Because of this, and the 

problems associated with obtaining data on individual processes, 

there have been few attempts to model the effects of grazing 

on plant growth. As i have suggested, it is very difficult 
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to separate the interacting effects of carbohydrate removal, 

leaf water reductions, surface damage and saliva injections 

on the rate of photosynthesis and the sink strength of 

growing tissues. These problems will only be solved by 

sophisticated and carefully designed experiments. 

The aim of this model was to suggest the pattern and 

intensity of aphid feeding which we should aim to achieve 

by biological control. The properties of the aphid feeding 

pattern which emerged can now be used to determine the 

strategy of predation necessary to maintain bean Yields in 

a model population of Aphis fabae. 
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CHAPTER IV 	A SIMULATION MODEL OF THE GROWTH AND 

FEEDING OF AN APHID POPULATION 

Introduction  

The simplest mathematical description of the growth of 

an animal population is the exponential, or Malthusian 

equation. This expresses the number of animals after time t 

(N ) in terms solely of the initial population size (N ), and 

the potential rate of increase, r. We have, therefore, 

r.t 
N 	= N . e 

and, for any particular time interval, we can write the 

difference equation 

r 
N 	= N . e 
t+1 

• If the animal population is restricted in its growth 

• 

• 
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so that the environment can support a maximum of K individuals 

(because of space shotage, or lack of resources), then the 

equation Can be modified to the form suggested by Verhulst; 

the well-known logistic function. Here, the number of animals 

at time t will be 

-r.t 	- N 
= K / (1 + e 	

•  0 ) 

after Pielou (1969), setting her constants a/b = K, a = r. 

The logistic can equally be presented as a difference 

equation, so that 

N 	= N 
t+1 

K N 
r [-t 

K 

The abundance of many animal populations is related to 

the abundance of their competitors and natural enemies, and 

to model this phenomenon Lotka (1923) and Volterra (1926, 1931) 

independently developed equations expressing the rate of 

increase in numbers as a function of the density of competing 

or predating species (see Chapter V). 

These elementary models of population growth are ideally 

suited to demonstrating the importance of the number of 

animals relative to the environmental capacity, and the number 

of animals relative to the abundance of their natural enemies, 

in affecting the pattern of numerical change. They have, in 

consequence, been usefully employed in tackling problems in 

which such considerations take precedence (species diversity 

(MacArthur, 1972), biogeography (MacArthur and Wilson, 1967; 

Simberl off, 1969), and studies on the population-structure 
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of ecosystems (Gallopin, 1971; May, 1971) for example). 

Many ecological problems, however, involve variables 

and processes which it would be difficult to express in a 

form as analytically attractive as these examples. This is 

particularly true when applied ecological problems are 

considered, in which it is necessary to investigate the effects 

of man-induced changes to the system, and to assess their 

effects not only on the numbers of animals present, but also 

on the permanence or stability of the system after inter-

vention. In such cases it is often useful to resort to 

simulation modelling, since this approach facilitates the 

construction of a model which is oriented towards the specific 

problem in hand, and which can be structured to consider as 

many variables as are known to affect the behaviour of the 

system to an important extent. 

In this Chapter I shall discuss a simulation model of 

an aphid population (Aphis fabae Scop.) designed to invest-

igate the effects of different strategies of predation on the 

damage done to the host plant (Vicia faba L) by aphid feeding. 

The model differs from the examples given above because it 

must consider the effects of prey selection by age and size, 

and the aphid population must be divided into age classes. 

The age structure of the population (the fraction of the total 

number of animals in each age class) may not be stable, and 

so we must consider birth and death processes as time-related. 

Again, the rate of food removal from the plant will not be a 

linear function of total aphid numbers when the age structure 

is non-stable, and so this too must be determined in more 

detail. The dynamics of the predator population are not 

considered in detail in this particular model, since the 
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strategies of predation can be defined simply as a set of 

rates of aphid-kill per age (or size) class, independent of 

the precise patterns of numerical change in the predator 

species (these are discussed in Chapter V). 

The Model  

In Chapter III the attributes of a population of Aphis, 

fabae which would cause no significant economic damage to a 

crop of broad beans were defined. The problem to be tackled 

here is to decide on the strategy of predation which most 

effectively brings a model population of aphids to this 

tolerable level of abundance. 

A strategy of predation can be defined in terms of three 

attributes; the number of aphids eaten, the time-pattern of 

attack, and the proportion of aphids of different ages (or 

sizes) killed. The input to the model will therefore need to 

state these three parameters. 

As output from the model we have the parameters of aphid 

infestation defined in Chapter III; late development, short 

duration, low peak numbers, low individual feeding rates, and 

so on. With the inputs and outputs defined in this way, we 

can draw a flow-diagram of cause and effect between the 

strategy of predation, and the amount of feeding by the aphid 

population (Fig. 74). The variables included in this flow-

diagram will then form the structure of the model. 

A search of the literature, supplemented by information 

collected during the experiment (Chapter II) will then supply 

the data necessary to quantify the relationships represented 

by the arrows in the flow-diagram. Where no data exist, but 

the relationship is thought to be importantly affected by 
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the strategy of predation, then intuitive data sets have 

been included (Chapter I). 

Consider 'the aphids living within a meter-square of crop 

as representing a population unit, and let the total number 

of aphids present by TOTAPH. Now let the population be 

divided into a number of age classes, and let the number of 

apterous (wingless) aphids of any particular age in days be 

APTERAE(I), where I takes any value between 1 and the maximum 

age to which an individual of Aphis fabae can live. This 

population vector will then form the backbone of the model, 

and we shall consider in detail the processes which act to 

increase aphid numbers (birth and immigration), and those 

acting to decrease abundance (death and emigration, with 

special emphasis on death by predation). 

1 Rate of Development  

The single most important factor in affecting the rate 

of development of an insect from birth to maturity is 

temperature. In order to include this effect in their model 

of aphid population growth, Hughes and Gilbert (1968; Gilbert 

and Hughes, 1971) assumed that the most crucial aspect of the 

process was the number of day-degrees experienced by the 

insect above its emergence threshold (the lowest temperature 

at which development is possible). Further, by assuming that 

each larval instar of the aphid was of the same duration at 

constant temperature, they could run the model using a 

'physiological time-scale', namely instar-periods (see Hughes, 

1963). 

There are three main draw-backs to this approach. First, 

if the model is to consider more than one species (a predator 
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as well, for example) then both species must have the same 

temperature thresholds of emergence, and a constant relation-

ship between the duration of their respective instars and 

temperature. Second, all the instar periods are assumed to 

be of the same duration, and, while this may hold for 

Brevicoryne brassicae in Australia, it does not apply to 

Aphis fabae under British field conditions (Milne, 1971). 

Third, all the time units of the model (instar periods, or, 

in Hughes and Gilbert (1968), quarter-instar-periods; quips) 

are assumed to be similar. If we consider a particular aphid 

instar which lasts two days at a given temperature (say 15'C), 

then the quarter-instar-periods (the quips) can not possibly 

be similar, since each quip is roughly equal to half a day 

in real time units. Hence, if the quips are related to noon 

and midnight, the morning quip will be longer than the 

afternoon quip (because the mean morning temperature is lower), 

and if they are related to sunrise and sunset, then one will 

be in darkness and the other in light. 

To avoid these shortcomings, the current model runs with 

real time units (days), and simulates the effects of temp-

erature on development rate by assuming that each instar 

lasts for a certain number of day-degrees above the temperature 

threshold. This threshold can differ from species to species. 

Now, we'define DAYDEG(I) as the total number of day-degrees 

above the threshold experienced by an aphid of age I days 

since its birth. This is updated each day so that 

DAYDEG(I) = DAYDEG(I) + TEMP   (1) 

where TEMP is the mean temperature for the day less the 

development threshold (net day-degrees). 
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Let INSTAR(I) be the instar in which the aphids of age 

I are currently disposed, and let DEGTHR(K) be the number of 

day-degrees which must pass before an aphid in the Kth instar 

passes into the K+1th. Setting K = INSTAR(I), we can write 

if DAYDEG(I) 	DEGTHR(K) 

then 	INSTAR(I) = INSTAR(I) + 1   (2) 

In this way, the duration of a given instar (at a mean 

temperature T) will be given by 

IDUR(K) = (DEGTHR(K+1) 	DEGTHR(K)) / T 	(3) 

where IDUR(K) is the duration of the Kth instar in days. 

The fundamental assumption of this approach is that the 

insects take a constant number of day-degrees for development 

irrespective of mean temperature. To test its validity we 

can compare the model output with real data presented by 

Sharaf Eldin (1970) for Myzus persicae (Sulz.). He measured 

the time taken in days for the animals to develop from birth 

to adulthood at five temperatures. Multiplying the time in 

days by the temperature in Centigrade gives us the total 

number of day-degrees in development. This number varies 

from 198 day-degrees at 10°C to 145 at 29'C; taking the mean 

over all temperatures (160) and using this in the model, 

so that -development time is 160/T, we obtain good agreement 

between model and observed values (Fig. 75). 

The course of development in Aphis fabae is as follows. 

Animals are born (i.e. larviposited) as active first instar 

larvae, produced within the mother by parthenogenesis. All 

births occurring on the bean plant are of females, and the 

larvae pass through four instars before becoming adult. The 
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Figure 75. A comparison of the output of the aphid development 
sub-model (0) and data on a real population of Myzus, persicae  
(o) given by Sharaf Eldin (1970) 
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omission of a dormant egg or pupal stage from the life cycle 

makes for very rapid potential population increase, and it 

can take as little as eight days to develop from birth to 

sexual maturity for this aphid at 20'C (Milne, 1971). Adult 

life extends over a period determined by air temperature, and 

each adult deposits larvae for most of her life (Kennedy and 

.Stroyan, 1959; Dixon and Wratten, 1971; Way, 1968; Banks and 

Macaulay, 1964), 

2 Growth and. Feeding. 

Let us assume that individuals of Aphis fabae have a 

maximum dry weight, which they attain after the final moult 

under completely optimal conditions. This value might be of 

the order of 0.93 mg (Banks and Macaulay, 1964), and we can 

write it as W 	. Further, let us allow that this maximum 
max 

weight is achieved during larval growth in a logistic form 

under ideal conditions; this pattern has been observed in 

Acyrthosiphon pisum (Murdie, 1965; his Fig, 30), and Aphis  

fabae (Banks and Macaulay, 1964; their Fig. 2). At any time 

before maximal weight is achieved we can threfore write 

the current weight, W by the difference equation 
t 

W 	- W 
r max t  

W 	= W . e 	max 
t+1 

where r describes the maximum rate of weight increase. 

When the environment is sub-optimal in some respect, we 

can allow that the rate of weight increase is reduced by 

defining a variable E to describe environmental clemency. 

This has the value 1 in an optimal environment, and 0 in an 

environment allowing no growth; if the environment is so poor 
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that the aphid actually loses weight, then E will become 

negative. We now put 

W 	- W 
r. E  max 	t  

W 
= W . e 	max 

t+1 

and define E as a function of those factors tending to 

reduce growth (temperature, crowding, nutritional condition 

of the phloem sap, and so on). 

E = f (TEMP, CROWD, FQUAL) 

We can obtain graphs for.the relative effects of the different 

factors from a number of sources. Murdie (1965) found that 

the adults of Acyrthosiphon pisum were smaller at high 

temperatures than at low, and we can graph this effect in 

Fig. 76. Similarly, Auclair (1963) and Banks and Macaulay 

(1964) have shown that aphid growth increases with plant 

nutritional quality, so using FQUAL (Chapter III) we can draw 

Fig. 77. The effects of aphid density (the number of animals 
2 

per cm within an aggregate or cluster of individuals) have 

been shown to affect the growth of Aphis fabae by Way and Banks 

(1967), from whose description Fig. 78 is drawn. 

These three graphs define the effects of the different 

factors on aphid growth rate. We can synthesize the information 

they contain to give an estimate of the growth rate at any 

particular temperature, food quality and aphid density by 

interpolation from the three curves 

TGF = F (TEMP) 

QGF = F (FQUAL) 

CGF = F (nENSTTy) 

(4)  

(5)  
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• TEMP 

Figure 76. The relationship between air temperature and 
relative aphid growth rate 

U. 
a 
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FQUAL 

Figure 77. The relationship between plant food quality (e.g. 
nitrogen content) and relative growth rate 

DENSITY 

Figure 78. The relationship between aphid density and relative 
aphid growth rate 
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where TGF, QGF and CGF lie in the range 0 to 1. The actual 

growth rate depression can then be determined by assuming 

only the minimum factor to be important 

	

E = min (TGF, QGF, CGF)   (6) 

or that the factors interact with one another (Chapter I) 

E = TGF * QGF * CGF 

Now let the dry weight of the APTERAE(I) be SIZE(I), 

and their maximum size be SIZEMAX(I); this will be determined 

by the weight of the aphid at birth (Murdie, 1965; see below). 

The proportion of unrealised growth, A, is therefore 

. SIZEMAX(I) - SIZE(I) 
A 

SIZEMAX(I) 

We can now determine the maximum growth rate of the animals 

by fitting equation 4 to data for weight increase in optimal 

conditions (when E = 1); the expression for r has only one 

real positive root. This value is then supplied as GR, and 

with the calculated value of E we can express growth as 

	

SIZE(I) = SIZE(I) * EXP(E * GR * A)   (9) 

To compute the amount of sap removed from the phloem as 

food, let us assume that the aphid feeds at a rate which is 

determined by its size (Auclair, 1963; Banks and Macaulay, 

1964), the water status of the plant tissue (Wearing, 1966, 

1972), the air temperature (I1ittler, 1962), the density of 

aphids in the aggregate (Way and Cammell, 1972), and the 

nutritional quality of the phloem sap (Auclair, 1963). As 

before, we can plot graphs of the relative effects of these 

factors as in Fig. 79. Then, by interpolation, the actual 

(7)  

(8)  
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MATER SIZE( I ) 

DENSITY TEMP 

FQUAL 

Figure 79. The factors which are assumed to affect aphid 
feeding rate in the model and their relative effects. Aphid 
dry weight (SIZE(I)), leaf water content (LWATER), temperature 
(TEMP), aphid density (DENSITY), and plant food quality, 
e.g. nitrogen content (FQUAL) 
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fraction of the maximum potential feeding rate can be 

determined for each age class of aphids in turn. If the 

suffix 'FF°  represents 'feeding factor' we can write 

SFF = F (SIZE(I)) 

WFF = F (LWATER) 

TFF = F (TEMP) 

DFF = F (DENSITY) 

QFF = F (FQUAL) 

for the relative effects of size, water status, temperature, 

density and food quality respectively. If FEEDMAX is the 

maximum possible feeding rate measured in grams dry weight of 

carbohydrate per aphid per day, we can set 

El = SFF * WFF * TFF * DFF * QFF 

or 	El = min (SFF, WFF, TFF, DFF, QFF) 	.... (10) 

and calculate the feeding by any age class of animals from 

FEED(I) = APTERAE(I) * FEEDMAX * El 	O 000 (11) 

and therefore the total feeding by the population will be 

N 
APHFEED = 	FEED(I) 	O080 (12) 

1 

APHFEED is then the measure of daily crop damage, and, 

summed over the period of infestation, will represent the 

total reserves lost to the plant. The effects of this removal 

were covered in Chapters II and III. 

3 Birth and Immigration 

The infestation is started by assuming an influx of alate 

adults into the crop at a specified time after germination. 
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The age of these adults, and the date upon which they arrive, 

can be varied at will. After the initial immigration, 

subsequent arrivals can be dealt with simply by adding the 

number of new aphids to the relevant age class of the estab-

lished population's 

Virginoparae of Aphis fabae reproduce parthenogenetically 

on the broad bean, giving birth to active first instar larvae 

(Kennedy and Stroyan, 1959). The number of larvae deposited 

per day by a single female is a function of her age (Dixon 

and Wratten, 1971), the air temperature (Kenten, 1955), the 

density of the population (Way, 1968), and her nutritional 

history (Banks, 1965). To simulate this process, let the 

vector FECMAX(I) be the maximum rate of larval deposition 

for a female of age I days. Then assume that the .other factors 

act in such a way as to reduce the actual birth rate below 

this level; let PRTEMP be the proportion of the maximum which 

is possible at today's temperature (TEMP). Then 

PRTEMP = F (TEMP) 	Fig. 80 

Similarly, let there be a density-dependent effect, DDFEC, 

whose value is given by interpolation from Fig. 81; 

DDFEC = F (DENSITY) 

where DENSITY is the mean density of aphids in an aggregate. 

Then the total number of larvae born on any given day 

will be 

MAXAD 

BORN = 	(APTERAE(I) * FECMAX(I) * PRTEMP 

MINAD 	 * DDFEC)(13) 

where MINAD and NAXAD are the minimum and maximum ages of 
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Figure 81. The relationship between aphid density and relative 
fecundity 



adults in the population (since adults alone reproduce). 

In Section 1 it was shown that development rate is a 

function of temperature and, this being the case, aphids will 

become adult (reach the fifth instar in the case of Aphis  

fabae) at different times after their birth, as determined 

by weather conditions. In order to take this into account in 

the model, it is necessary to store the age at which each 

age-class of aphids became adult in a vector IAGEAD(I), This 

is computed as follows; 

let K = INSTAR(I), the current instar of I-aged aphids 

then if DAYDEG(I) 	DEGTHR(K) let INSTAR(I) be incremented; 

and if INSTAR(I) now equals 5 then IAGEAD(I) = I 

To determine the number of day classes which are adult, and 

therefore capable of reproduction, the model simply loops 

through I until INSTAR(I) = 5 (at which point, MINAD = I); 

the vector IAGEAD(I) is used within this loop to give a value 

for the maximum fecundity, since this is a function not of 

age since birth, I, but of age since becoming adult, I - IAGEAD(I). 

Now equation 13 becomes 

MAXAD 

BORN = (APTERAE(I) * FECMAX(J) * PRTEMP 

MINAD 	* DDFEC) (14) 

where J = I - IAGEAD(I). By this means we determine the births 

on day t; these animals will be APTERAE(1) on day t+1, 

The problem now arises of determining the mean weight of 

these recruits. Their parents will have been of a broad range 

of sizes and agres, and the weight of the individual progeny 

varies both within and between families. The simplest approach, 

and that employed in the current model, is to assume that for 
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any given female, the weight of her progeny is an experimentally 

determined function of her bogy weight, and the air temper-

ature. These effects are discussed by Murdie (1965) and by 

Banks and Macaulay (1964). 

So let SIZEPRG(I) be the mean progeny size from aphids 

of SIZE(I) (see Fig. 82), giving 

SIZEPRG(I) = F (SIZE(I)) * F (TEMP) 

where the temperature function lies in the range 0 to 1, 

decreasing as temperature rises (Murdie, 1965). The proportion 

of recruits of this mean weight will be the proportion of 

births from adults of this age; i.e. 

MAXAD 

P = BORN(I) / 	BORN(J) 

MINAD 

so the overall mean weight of the progeny from all adults will 

be 

MAXAD 	MAXAD 

PRSIZE = 2::(BORN(I)*SIZEPRG(I)) / 	BORN(I) 

MINAD 	 MINAD 

As stated earlier, the weight at birth determines the maximum 

potential weight at adulthood; we therefore write 

SIZEMAX(1) = F (PRSIZE) 

and determine the value by interpolation from Fig. 84. 

LP_Plortality  and Emir_rration 

Aphids die from a host of causes. Biological factors 

including predation by coleopteran, syrphid, neuropteran, 

and cecidomyid larvae, parasitism by numerous hymenoptera, 
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SIZE(t) 

Figure 82. The relationship between the size of an adult aphid 
and the relative size of her progeny 

0 	TEMP 	30 

Figure 83. The relationship between air temperature and 
relative progeny size (after Murdie, 1965) 

•5 	PRSIZE 	1 

Figure 84. The relationship between relative progeny size and 
maximum potential adult size (SIZEMAX). 
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bacterial and virus diseases, and starvation can act in a 

density dependent fashion under certain circumstances (see 

Solomon 1949) while abiotic (and typically density indep-

endent) mortality factors can eliminate a considerable 

fraction of the population through frost, high winds, heavy 

rain, and so on. 

The practice in many models (e.g. Gilbert and Hughes, 

1971) is to assume that these factors can be taken as 

contributing to a constant age-dependent survival rate 

('background mortality'), while one particular agency of 

mortality is considered in more detail (parasitism in 

Gilbert and Hughes' model). This treatment overlooks the 

possibility that several of the biotic mortality factors 

interact with one another, so that, for example, as the rate 

of predation increases, the rate of parasitism might decrease 

(Flanders and Badgely, 1960). In the current model the 

abiotic factors are treated as a deterministic survival rate, 

while the modeller himself acts as the agency of all biotic 

factors by 'predating' from the population under different 

strategies. 

If the age-specific survival rate is SURV(I), then 

APTERAE(I) = APTERAE(I) * SURV(I) - 'predation' (16) 

In other words, the survival rate is applied to the population 

before predatory loss is simulated. This is arbitrary, but 

it makes little difference if the treatment is consistent 

throughout. As an example, if the population 	100, and the 

and Predation  rates are .9 and .1 respectively, then 

predating first we have 100 * 0.1 = 10 individuals eaten, 

whereas applying the survival rate first gives us 100 * 0.9 
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= 90; 90 * 0.1 = 9 individuals predated. In both cases, of 

course, there are 81 survivors. 

The factor which complicates the modelling of aphid 

populations is their polymorphism. The infestation is started 

by immigrant alatae whose progeny are generally apterous 

virginoparae. As the infestation continues, an increasing 

proportion of the aphids become alatae and fly off to find 

new host plants on becoming adult. Coupled with this, there 

is an increasing rate of apterous emigration in which the 

aphids walk down the stem and over the soil surface in search 

of fresh plants. 

The great variety of factors which can induce an apterous 

mother to produce predominately alate progeny, and which can 

act to cause an aphid destined to become alate to revert to 

an apterous form (before the third instar), are reviewed by 

Lees (1966) and Hille His Lambers (1966). 

Despite the large number of factors which have been 

suggested as affecting the rate of alate production, the 

overriding concensus is that 'crowding' of the aphids is of 

paramount importance (Awram, 1968; Kawada, 1964, 1965; Lees, 

1961, 1966, 1967; Johnson, 1965, 1966a, b; Shaw, 1968; Toba 

et al., 1967; Way, 1968). It is frequently observed that 

the proportion of fourth instar larvae with wing pads 

increases with time as in Fig. 85. On becoming adult, a 

proportion of these alatae will leave the plant (Shaw, 1968), 

and the population is reduced in consequence. Also, the 
2 

density of aphids in an aggregate (the number per cm ) tends 

to decrease as the total number of animals in the aggregate 

increases (Way, 1968; and Fig. 86), so that the rate of 

increase in aggregate area exceeds the rate of increase in 
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Figure 85. The observed pattern in the frequency of alate 
fourth instar aphids. This pattern is often attributed to 
the effects of aphid density. 

LOG NUMBER IN AGGREGATE 

Figure 86. The density of aphids has been shown (Way, pers. 
comm.) to decrease in certain cases as the number of aphids 
increases. The aggregate becomes thinner on the ground as it 
ages, in other words 

TIME 

Figure 87. The consequence of assuming that % alate is a 
direct function of density. Density decreases through alate 
emigration and by the effect in Fig. 86, so each day there 
will be a lower rate of alate production. This is not observed 
in field or laboratory experiments 
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numbers. From these observations it would be incorrect to 

model the increase in the proportion of alatae as caused by 

increasing aphid density. Indeed, a model based on this 

assumption would show a trend as in Fig. 87; the opposite of 

the real situation. The alternative simple suggestion would 

be that more alatae were produced as density decreased, but 

this, of course, is not borne out by experimental results 

(Lees, 1966). 

The process is clearly time-based, to a certain extent 

at least, since the proportion of alatae continues to 

increase even as the number of aphids per plant decreases 

(Figs. 85 and 86). It is likely, therefore, that some 

historical or cumulative effect is operating. This could be 

the result of a general run-down in the suitability of a 

particular area of the plant related to cumulative aphid 

presence; decrease in leaf turgor, increase in honey-dew, 

exuviae, inserted stylets and the like. This in turn might 

lead to an increase in the restlessness of each individual, 

causing the rate of encounter between aphids (and hence 

mutual stimulation) to increase. 

The current model is based on this premise, and uses the 

total number of aphid-days experienced by the plant as the 

measure of the historical factor; this increases monotonically 

with time 

ADAYS TOTAPH 

1 

The actual cause of alate production is then assumed to be the 

summation of all those cumulative and density-related factors 

subsumed into a single variable called FILTH. This is an 
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expression of the degree of exploitation per unit area of 

plant surface; in other words 

FILTH = F (ADAYS / TOTAREA) 

The variable FILTH tends to increase as the number of aphid-

days experienced by the plant increases, and to decrease as 

the surface area of the plant increases by growth (TOTAREA). 

In order to mimic the effects observed in the field, and in 

many laboratory experiments (e.g. Way, 1968; Shaw, 1968) the 

variable FILTH must be related to the proportion of the 

population becoming alatae so that the observed trend (Fig. 

85) is realized. Clearly there is a threshold value of FILTH 

below which very few alatae are produced (Chapter II), and, 

since the proportion of fourth instar alatae does not decrease 

once the population decline has begun, the function must be 

monotonically increasing. This is shown in Fig. 88. 

In addition to the functionally important increases in 

the proportion of alatae in the population, there is a purely 

arithmetic reason for part of the effect. Since the wings 

only open when the aphid becomes adult, all losses to the 

population through flight emigration are of adults, and hence 

the rate of production of young by the whole population falls. 

This means that the younger age classes form a smaller 

proportion of the whole population and, therefore, that the 

fourth instar forms a larger part (see Fig. 89). This effect 

is further accentuated by the reduction in the size of the 

adult age group through emigration. 

Tt iq not completely  clear from experimental work at 

which stage in the life history the alate morph is determined 

(Lees, 1966). There is evidence that crowded mothers produce 
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Figure 88. The relationship included in the model to predict 
the proportion of the population which will become alate. 
The derivation of the variable FILTH is explained in the text 
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Pigilve 89, The reason why tie_ fraction of the population as 
fourth instars increases after adult emigration; with fewer 
adults, fewer young are produced 
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alatae progeny (i.e. that the determination occurs before 

birth), but other evidence points to the ability of young, 

pre-third instar larvae to revert to the apterous form if 

the conditions in which they are reared are suitable (i.e. 

that determination is not absolute until the third instar). 

The sudden beneficial changes in the local environment which 

are necessary for this reversion are not likely to occur in 

the field, however, and so it will not be particularly 

important to the behaviour of the model whether one assumes 

wing morph determination in relation to the conditions 

experienced by the mother, or by her progeny at the second 

instar stage. There will be a time-lag introduced whose 

duration will depend upon temperature, reflecting the length 

of the first and second instars, but because FILTH is a 

continuously increasing function with time the effects of this 

lag on model behaviour will be negligible. 

We let PROP2 represent the proportion of today's second 

instar aphids which tomorrow will be 'alate' third instars 

and write 

PROP2 = F (FILTH) 

and interpolate the value from Fig. 88. In order to accomodate 

the two morphs in the model we require an additional population 

vector to describe the number of alate-determined aphids of 

age I days, ALATAE(I). All the vectors associated with 

APTERAE(I) must be duplicated if the morphs differ signific-

antly in any respect of their behaviour; they are known, for 

example, to develop at different rates under the same 

temperature conditions, and to give birth to different numbers 

and sizes of young (Banks and Macaulay, 1 964). 
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The number of alatae determined on a given day is 

ALES = AL(2) * PROP2 

where AL(2) is the number of apterous second instar aphids. 

This number is then subtracted from the APTERAE(I) and added 

to the ALATAE(I). On becoming adult, the ALATAE(I) are 

capable of emigration by flight. Only a fraction of this 

group actually leave the plant completely, others staying 

in the vicinity and some remaining on the plant to feed and 

produce young (Shaw, 1968). The number of emigrants each day 

is taken to be those aphids who no longer affect the plant or 

the aphid aggregate; i.e. categories one and two above. This 

number, EMIGNO is calculated from 
NAXAD 

EMIGNO = 	(ALATAE(I) * FALEM(I)) 

MINAD 
where FALEM(I) would be an experimentally determined fraction 

of the adult population of age I leaving the plant in one day. 

Those ALATAE(I) which stay on the plant reproduce in the same 

fashion as the APTERAE(I) (equation 14), but a different 

fecundity vector is employed. 

5 Parameter  ppclting. 

All the foregoing processes are simulated once every day. 

Before beginning the next day's calculations, however, the 

aphids, and the parameters associated with them must be 

updated. To 'age' the vectors we loop through their subscripts 

from the maximum age to the minimum, and make 

parameter(I) = parameter(I-1) 

much like the classes in a school are advanced at the end of 

each year. This procedure loses the maximum values (associated 
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with the aphids of maximum age), and these animals are 

assumed to die (or emigrate, or in some other way become 

unimportant to the future functioning of the system). Thus, 

DO 11 I = MAXAGE to 2 in steps of -1 

ALATAE(I) = ALATAE(I-1) 

APTERAE(I) = APTERAE(I-1) 

DAYDEG(I) = DAYDEG(I-1) 

IAGEAD(I) = IAGEAD(I-1) 

INSTAR(I) = INSTAR(I-1) 

SIZE(I) = SIZE(I-1) 

11 SIZEMAX(I) = SIZEMAX(I-1) 

In this way all the first elements of the vectors are left 

vacant; these can now be initialized with constants; e.g. 

INSTAR(1) = 1 

DAYDEG(1) = 0 

ALATAE(1) = 0 

or with values computed earlier in the model 

APTERAE(1) = BORN 

SIZE(1) = PRSIZE 

. SIZEMAX(1) = F (SIZE(1)) 

It only remains now to compute a number of totals; 

TOTAPH = (ALATAE(I) + APTERAE(I)) population 

K 	= INSTAR(I) 

AL(K) = APTERAE(I) instar (apterae) 

ALA(K) = ALATAE(I) instar (alatae) 

TOTAREA = ALEAF + ASTEH 	plant area 
-2 

DENSITY = TOTAPH f  TOTAREA 	aphids cm 
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Any output figures required at the end of each day are 

printed at this stage; food consumed, aphid days experienced 

by the plant, population age structure and so on. 

Output from the Model  

1 Temperature Effects  

Temperature has been included in the model structure as 

affecting the rate of development, the birth rate, individual 

growth rate and feeding rate of the aphids, Its effects on 

the output of numbers and total food removed are therefore 

likely to be complex. Using a standard set of survival rates 

(95% per day), and density independent fecundity values (from 

Banks and Macaulay, 1964) the model was run for 100 days at 

5, 10, 15, 20 and 25'C. The number of aphid-days and the total 

food removed from the plant are plotted in Fig. 90. 

At some temperature higher than 25'C the numbers and 

feeding would decrease, but the model has used data only up 

to this temperature, because it is unlikely that higher field 

temperatures would be encountered in Great Britain. The effect 

of temperature on fecundity is shown in Fig. 91, and the 

development rates are as follows: 

Instar 
	I 	II 	III 	IV 

Day degrees 
from birth to 40 	80 	120 	160 
completion of 
instar, 

In other words, at a temperature of 20'C, each instar would 

last two days. 

By plotting the average food per aphid-day against 

temperature an interesting hypothesis is suggested (Fig, 92), 

namely that at low temperatures the cost-effectiveness of 

pest control measures is higher than at high temperatures. 
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Figure 90. The number of aphid-days ( ) and the weight of 
plant tissue eaten ( ) at different temperatures 
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Figure 91. The effect of temperature on relative fecundity 
included in the model 
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Figure 92. The mean weight of plant tissue eaten per aphid-
day at a range of temperature. For explanation see text 



.237. 

This effect will tend to be of limited importance in the 

field, however, where temperatures will generally exceed 12'C. 

The model produces this result because of the relation-

ships between 'temperature and body weight, and body weight 

and feeding rate, Hurdle (1965).suggests that body size of 

adult Acyrthosiphon pisum decreases with rising temperature, 

and that feeding rate is an increasing function of body size. 

At low temperatures, therefore, body weight and feeding rate 

are both relatively high, so the death of one aphid is more 

effective in reducing the rate of damage to the plant. In 

fact, it may be that as temperature increases, the feeding 

rate per unit body weight increases, and that this compensates 

for the effect observed in the model. The observed increase 

in damage with temperature is due to the rise in the number  

of feeding animals, brought about by increased birth and 

development rates. 

For the purposes of comparison with later tests, the model 

was run under standard conditions (i.e. at 20'C with our 

manipulation (predation) absent). The pattern of numerical 

change is shown in Fig. 93, with aphid numbers increasing to 

a peak and then declining quite rapidly as alatae are produced 

and emigrate from the system. Fig. 94 plots the age structure 

of the population up to the peak in numbers; just as the age 

structure is about to stabilize, large numbers of adults fly 

off, and the number of births is reduced, so the age structure 

begins to destabilize again. 

2 Density Dependent Effects 

Way (1968).  and Way and Cammell (1970) have demonstrated 

the importance of a number of density-related processes 
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Figure 93. The time pattern of aphid abundance in a control 
run. 
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• 

Figure 94. Changes in the age-structure of the aphid 
population up to peak numbers. The infestation began on 
day 0 with 100% adults, and fourth instars do not appear 
at 20tC until day 8. By day 40 the percentage of the 
population th eaah instal` is almost ctonstRnt. 

• 
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in affecting the dynamics of aphid population change. Principal 

amongst these in the host-plant-alternating aphids is the 

density affected emigration rate of apterae and alatae. As 

shown above (Mortality and Emigration) the interpretation 

of this as being a density effect is not strictly correct, 

because as the proportion of emigrants increases, the density 

decreases. 

Density dependence in its strict usage (Solomon, 1949) 

can be applied in the model to both the survival and fecundity 

vectors, and we can observe its effects without necessarily 

specifying the mechanisms by which it operates. For example, 

let the maximum number of aphids which it is possible to 

confine to the habitat unit be 5000. This-number is arbitrary, 

and simply sets the level of population density at which the 

density dependent effects are at their maximal intensity. 

Now consider a parameter DD which behaves in such a way that 

at any DENSITY we have 

DD = F (DENSITY) 

The shape of the function is defined so that F(0) = 1 and 

F(5000) = the maximum degree of density dependence we wish 

to test. If we want to look at the effects of density on 

fecundity, and the minimum fecundity we expect is 40% of the 

maximum; then we set F(5000) = 0.4. Fig. 95 shows this effect; 

we can now say that the "percentage density dependence" is 

DD% = (1 - 0.4) 100 = 60% 

and calculate the actual reduction at any DENSITY from 

DD = 1 - DENSITY * 0.4 / 5000 
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0 	 DENSITY 	5000 

Figure 95. A simple means of representing the intensity of 
a density dependent factor. If DD is reduced to 0.4 at some 
maximum aphid density we say that the intensity of density 
dependence is 60% 

0 
lL 
O 

5 
10 

20 

50 

0 	 DENSITY 	 5000 

Figure 96. The effects of aphid density on relative fecundity 
(DDFEC) at different intensities of density dependence 

Figure 97. The number of aphid days experienced by the plant. 
and the mean weight of food removed per aphid-day plotted 
against the intensity of density dependence in fecundity 
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a) Density Dependent Birth Rate  

The model has been run with maximal density dependence 

in birth rate set at 0, 5, 20, 50, 80 and 100%; the relation-

ships between DDFEC and DENSITY are therefore as shown in 

Fig. 96. On any given day, DDFEC is the proportion of potential 

births realized, so that 

BORN = BORN * DDFEC 

Now, graphing aphid-days after 100 days and total food removed 

after 100 days against the intensity of density dependence 

we obtain Fig. 97; the reduction in aphid days and feeding 

can be seen to be more or less exponential with increasing 

intensity of density dependence, though mean food per aphid 

day increases with intensity, because mean aphid age is 

higher when the birth rate is reduced. 

Way (1968) has shown that in Aphis fabae there is a 

curvilinear relationship between density and reproductive 

rate, so that at very low densities there is a depression 

in the birth rate as well as at very high densities. The 
importance of this effect in the model (Fig. 98) depends 

upon the proportion of the infestation during which the 

birth rate is inhibited by DENSITY being too low; after long 

periods, the population largely compensates for this effect, 

and the model behaves as if the monotonically decreasing 

curve had been employed. 

b) Density Dependent Survival 

Density dependent survival is assumed to act in addition 

to density independent survival. Each element in the basal 

age specific survival vectors AFTSURV(I) and ALASURV(I) is 

multiplied by DDSURV which is computed from the current 
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50 	500 	.5000 
DENSITY 

Figure 98. The relationship between relative fecundity (DDFACT) • 
and aphid density (after Way, 1968) 

0 	% INTENSITY 
	100 

Figure 99. The effects of the intensity of density dependent 
survival on the damage experienced by the plant (aphid days) 
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Figure 100. The effects of the intensity of densiLy dependent 
survival and fecundity on plant damage. Each point represents 
the action of both factors at the same intensity (e.g. 20$ 
survival reduction and 20% fecundity reduction) 
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density level by interpolation. A family of intensity curves 

similar to those used in the birth rate analysis (Fig. 96) 

were employed to investigate the effects of changes in the 

survival rate on numbers and feeding (Fig. 99). 

It can be seen that as the intensity of density dependence 

increases, the population history approaches a limit asymp-

totically. The level at which the number of aphid-days per 

hundred days becomes constant (i.e. independent of changes 

in the intensity of density dependence) is set by the ceiling 

which is placed on density. If, therefore, the population 

were constant and maximal for the full period, we would have 

5 
5000 * 100 = 5.0 10 aphid days 

That the observed asymptote is lower than this level reflects 

the fact that the aphid population was started by only two 

females on day 1. 

This apparent population regulation, however, is only 

approached when very intense levels of density dependence 

are assumed; levels which would be unlikely in most field 

situations. For example, the third point on the graph (the 

first to show a really significant reduction) requires that 

20% of the population is killed each day when aphid abundance 

is near the limit; in other words, the regulation would be 

very violent at density dependent survival intensities of this 

order. In addition, it becomes increasingly difficult to 

postulate mechanisms which might work with the intensities 

modelled (see Chapter V). 

This Is not to say that the stability (in the sense of 

relative numerical constancy) of the population is unaffected 

by low intensities of density dependence. On the contrary, 

any immediate response to density will slow down the rate 
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of increase or decrease in numbers; the stability achieved, 

however, will increase as the intensity of density dependence 

increases (unless, of course, survival rate increases with 

density in which case the opposite is true), In terms of 

pest control we are concerned to minimise the integral of 

the population curve, and not necessarily to increase the 

stability of pest numbers. In practice, of course, the two 

aims are generally quite closely correlated because the 

probability of pest outbreak increases with the amplitude of 

population fluctuations. 

From a comparison of Figs, 97 and 99 it is clear that 

the conditions built into the model are sufficient to back 

up the intuitive suggestion that density dependence of 

survival rate is more effective in bringing about a reduction 

in numbers and feeding than a similar effect on fecundity. 

This is simply due to the fact that fecundity is only a 

property of adult animals, whereas survival rates apply to 

all ages, At any population level, a given change in the 

intensity of density dependent mortality will bring about a 

greater proportional change in abundance than will the same 

change in birth rate. 

In Fig. 100 we plot the output of a set of runs in which 

both birth rate and survival are affected by population density. 

The intensities are the same as before, but each point 

represents the action of two density dependent effects of the 

same intensity (e.g. 20% survival and 20% birth rate). There 

is rather little difference between this combination and the 

effects of survival alone (Fig. 99). This is because reduced 

survival enhances birth rate to a greater extent than reduced 

birth rate increases survival. 

Both factors are powerful agencies in reducing the 
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enormous potential rate of increase of the model population, 

and there is some evidence that they operate in real aphid 

populations (Way, 1968; Way and Cammell, 1970). It is possible, 

however, to cause a model of this type to behave in almost 

any way desired, by a judicious manipulation of these two 

density dependent processes. Until reliable data become 

available it is probably better to investigate the behaviour 

of the model under, at most, rather weak density dependent 

influences, since this allows us to interpret the output in 

terms of the tests applied, rather than having it over-ridden 

by the effects deriving from the shape of the density 

dependent relationships we happen to have included. In 

subsequent runs, both density dependent effects are assumed 

to act at a maximum 5$  intensity (i.e. weakly), taking 

survival as linear, and birth rate as curvilinear functions 

of density (after Way, 1968). 

3 The Effects of  Predation 

The purpose of this set of runs is to determine the 

pattern of predation to which the model population is most 

responsive. Three parameters are of particular importance 

in this context; the predation rate (the proportion of the 

prey population eaten on a given day), the pattern of change 

in the predation rate (reflecting numerical changes in the 

predator population), and the preference of predators of 

different sizes for aphids of different sizes. If there is 

an optimal combination of these parameters in terms%of the 

reduction in food removal from the plant, then it will be 

interesting to see the extent to which real predator populations 

approach such a strategy (Chapter V). 
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a) Predation Hate  

Consider the situation in which predation rate is 

constant with time, equivalent to the aphid being prey to 

a very common, widely polyphagous predator, whose alternate 

prey species have a constant relative abundance. At low rates 

of predation (in the order of 10% per day) the predator has 
• 	

little influence on the damage experienced by the plant 

(Fig. 101) even though, after a time, large numbers of aphids 

are eaten (Fig. 102). In contrast, high predation rates 

(90% per day) will reduce damage considerably and relatively 

few aphids are eaten over an extended period (because the 

reproductive stock is so Aiminished, the high predation rate 

only amounts to the removal of a few individuals). 

In terms of biological control, this simply tells us 

what we knew already, namely that the higher the predation 

rate, the better our damage control. The model also shows 

(though rather incidentally) how we can harvest the maximum 

biomass of aphids from the system, by predating at a rate of 

between 1 and 10% (Fig. 102). 

One of the principal criticisms which can be levelled 

against this model of predation is that it assumes homogeneity 

in the treatment of prey by the predator; prey selection has 

been ignored. 

b) Preference  

In these runs I assume a constant rate of predation, but, 

to highlight the effects of age and size preference. apply this 

predation to only one of the five instars of the aphid life 

cycle. In this extreme situation, where four of the five 

instars escape predation, the effects of nrey selection should 

be exagerated, but not qualitatively distorted, pictures of the 



.248. 

109 

	

w 108 	
21/4 

‘:0 
0 
0 7  

to 
CC 

szt 

	

 

6 	 41 0AN  

0  

A 

\4 

0 	.2 	.4 	06 	.8 
PREDATION RATE (PROP. PER DAY) 

Figure 101. The relationship between the predation rate 
(percent of the prey population killed per day), and the 
damage experienced by the host plant (total aphid-days). 
The graph distinguishes the effects of selecting first 
instar animals (Ai) and adults (0) on the outcome. 
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Figure 102. The relationship between predation rate and the 
number of aphids killed after 100 days. The curve clearly 
must pass through the origin (no predation; no kill). The 
total kill decreases as the predation rate increases because 
the reproductive stock is so diminished that there are 
fewer aphids.from which to select. 
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more realistic case in which preference is a continuous, less 

rigid function of size (Fig. 103). All predators are assumed 

to have similar preferences, irrespective of their size or 

age. 

Figure 101 shows the difference between selecting only 

adults, or only first instar larvae on the number of aphid 

days experienced by the plant. It is clear that selecting 

first instars is advantageous to the plant at all predation 

rates, and that the difference between the two treatments 

increases with the predation rate. This is not intuitively 

obvious, and one might expect that in selecting younger aphids 

the predator is wasting a certain amount of effort on animals 

which would have died before reaching maturity through 

other factors. This wastage of effort applies, of course, 

to our biological control, and not to the predators own 

survival strategy. 

The reason for this counter-intuitive result stems from 

our predating by proportion and not by actual number killed; 

in these runs the food demand of the predator is not fixed 

in any way, and the number of aphids eaten is determined 

comletely by aphid population size. In retrospect, it is clear 

that under such a strategy the most abundant age class (in 

this population, the first instar) will bring about the 

greatest population reduction when predated. This aspect is 

detailed in the next section. 

It is of interest to examine the changes in the efficiency 

of predation which might occur as a result of selective feed-

ina. We can define the efficiency of a biological control 

predator in terms of the reduction in plant damage per gram 

of aphid consumed. Fig. 104 shows that this efficiency 

decreases as larger aphids are selected, and as the predation 



.251. 

-1 
LU 

0 

• 

• 

!II 	IN 

Figure 103. The preference of a predator for different aphid 
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rate decreases. This finding also holds only for proportional 

predation as we shall see. 

4 Numerical Predation 

To simulate predation as the removal of a set number of 

individuals from the model population involves a number of 

problems. First, we must specify a temporal pattern of 

predation, which reflects changes in predator abundance and 

voracity. This may or may not be related to aphid abundance 

(below)9  depending upon whether the predator is relatively 

narrow or relatively catholic in its selection of food species, 

and whether it is highly mobile and has the ability to seek 

out prey in new areas when its current food source is depleted. 

Second, having decided upon the number (or weight) of 

aphids to be taken from the population on a given day, one 

must apportion this predation between age (or size) classes. 

This can be done either by assuming that the predator exhibits 

no selective ability, and eats aphid age classes in the 

proportion in which they occur in the population, or by 

assuming some degree of selective behaviour, and weighting 

the proportion taken from any class of the population accord-

ingly. 

a) Pattern of Predation  

For patterns of predation intensity are examined here; 

these are constant, exponential, logistic, and density-

dependent (Fig. 105). 

The conditions under which a constant number of individup.ls 

are eaten each day are rather difficult to conceive in a 

natural setting, but a monophagous predator with a long 

generation time, and long-lived individuals could approximate 
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Figure 105. Four patterns of numerical predation tested in 
the model. Each pattern is tested at three intensities 
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such a pattern. As one might expect, the degree of control 

• obtained with such a predator at a given level of abundance 

depends entirely upon the stage of the aphid infestation at 

its arrival. If the population is low relative to the predator's 

daily food requirements, then the aphid will be exterminated 

in a short space of time, while if the aphids are significantly 

• 

	

	
more abundant than the daily food requirement of the predator, t- 

hen little control will be exerted. 

Exponentially increasing predation can be simulated by 

allowing that the number of aphids eaten per day (PEED) varies 

as follows; 

PEED 	= FRED * EXP(r) 

• 
	 t+1 

and by specifying an initial predator food demand PEED , and 
0 

the date after the aphid infestation began on which the 

predators arrived in the system we can calculate the number 

of aphids killed on any day. Such a pattern of predation 

might occur given a predator which attacked only the aphid 

in question, and whose searching efficiency was high enough 

to make good reductions in prey abundance which its own 

exploitation brought about (see Chapter V). 

We can also allow that predation is density dependent, 

so that• the rate of increase in aphid consumption (r) is 

a function of aphid abundance, and therefore 

r = F (TOTAPH) 

shown in Fig. 106. Similarly, we can make the density 

dependence delayed by writing 

r = F (OLD) 
• 
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Figure 106. The relationship between the rate of increase 
in aphid consumption (r) and total aphid density (TOTAPH) 
in density dependent predation 

time 
Figure 107. A graphical ropreschtation of a succeF;sion of 
'logistic' predators which might act in biological control 
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where OLD is the aphid abundance at some time (LAG) earlier. 

We can observe the effects of changing LAG on the degree of 

control achieved. 

A logistic change in the rate of prey consumption with 

time could occur when the aphid population is subject to 

attack by a rather specific predator whose own abundance is 

determined by factors other than the abundance of prey (by 

parasites, or the availability of oviposition sites, for 

example). A curve of predation of this type might be expected' 

to be effective in pest control uncer two conditions. First, 

that the timing of the exponential phase of the curve matched 

the period of exponential increase in the prey population 

(the two species are synchronous in their development), and 

second, that the level K at which the predator population 

is limited, is sufficiently high relative to prey density 

at the time that the prey population does not escape control. 

An aphid could clearly be controlled by a temporal sequence 

of predators with logistic population growth curves, so long 

as each predator species overlapped with its neighbour in time, 

such that one species entered its period of rapid growth as 

the other reached its maximum population level (Fig. 107). 

In such a case, it is possible to imagine a large 

increase in the number of predator species which could be 

supported by an aphid resource system, as long as each 

predator species is limited in abundance by factors other than 

prey density (see the discussions by Levins, 1968; MacArthur, 

1972; Pianka, 1966). Here, the abundance of the aphid would 

be greater in the absence of any of the predators, but it is 

not strictly correct to say that these predators regulate 

aphid numbers, because there is no feed-back between prey 
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and predator density. The number• of aphids would vary from 

year to year depending upon those factors which determined 

the K values ofxi  the predator species. If all the Ks were 

low in a particular year, then the aphid could reach outbreak 

abundance; there would be no way for the predators to 

increase in numbers to lessen the damaging effect. 

The results of employing these different patterns of 

predation in the model are shown in Figs. 108, 109, and 110,, 

where aphid numbers are plotted against time. The removal of 

a constant number of aphids per day can be highly effective 

or highly ineffective in reducing the aphid population, and 

the same observation applies to an exponential increase in 

predation (Figs. 108, 109). The effectiveness of control 

achieved is very sensitive to the rate of aphid removal; in 

Fig. 108 removing 175 aphids per day has little effect on 

the total numbers over the season, while a kill of 185 per 

day exterminates the population before the 30th day. The 

reason for this behaviour lies in the relationship between 

the reproductive rate of the aphid and the rate of removal of 

aphids by the predator. Imagine a number of aphids as 

representing the 'reproductive capital' or stock of the system; 

this stock will produce a certain number of aphid progeny 

per day. As long as the predation rate is less than the 

progeny production rate the aphid population will continue to 

increase, but as soon as the predation rate exceeds the 

progeny production rate, the predators will begin to deplete 

the reproductive capital, and the aphid population will 

inevitably become extinct. The only condition of stability 

in this system occurs when the predation rate exactly equals 

the birth rate. But, because the age structure of the aphid 

population is time-variable, the birth rate changes from day 
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Figure 108. Aphid abundance under numerical predation. Constant 
removal rates of 0 (--), 175 (--), 185 (—) and 300 (—) 
aphids per day 
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Figure 109. Aphid abundance under numerical predation. 
Exponential increase in removal rate beginning early (—) 
mid (--) and late in the outbreak. 
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Figure 110. Aphid abundance under density dependent predation. 
The control curve (--), and the 80% intensity curves at two 
density maxima are shown (see Fig. 111) 
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• 

to day, and no constant rate of predation will maintain the 

aphid population at equilibrium. It does not matter whether 

the predation rate increases exponentially or logistically 

with time; the same result will hold as long as the rate 

of aphid kill is Andependent of aphid numbers. 

Fig. 110 demonstrates the effects of density dependence 

in the rate of predation. For these runs, the proportion of 

the aphid population attacked was taken to increase with 

aphid density (Fig. 111), and the different curves represent 

different maxima and different gradients in the density 

dependence of predation. The model now behaves in quite a 

different fashion. First, it is not possible for predation to 

exterminate the aphids, since however few there are left, 

only 10% of them can be killed (Fig. 111). Second, the 

maximum density which can be achieved depends on our choice 

of the density maximum (D1 or D2 in Fig. 111), and no longer 

on the crowding conditions which can be tolerated by the 

aphids. Because of this, the aphid population tends to last 

for a longer period than it does under constant predation, as 

the onset of alate production is delayed. From Fig, 110 it 

is clear that such a predator increases in effectiveness 

(in terms of reducing the integral of the aphid abundance 

curve) by having intense density dependence (eight times 

the predation rate at high than at low aphid densities as 
4 

compared to five times), and a low density maximum (10 rather 
6 

than 10 aphids at maximum predation rate). 

Animals of different ages are likely to contribute in 

different degrees to the future growth of a population. Young 

animals may die before produc;ing any offspring, while older 
• 

b) Reproductive Value and Predator Preference  
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Figure 111. Six strategies of density dependent predation 
tested. Two 'density maxima' and three 'intensities' were 
employed. 
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Figure 112. Fisher's reproductive value curve for Anhls fabac. 
Birth data from Banks and Macaulay (1964) with 95% daily 
survival assumed 
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• 

• 

• 

animals may be beyond reproductive age on a given data. In 

both cases, their future contribution is zero. Between these 

two extremes there must be an age at which individuals cont-

ribute most to the growth of the population, and to determine 

the value of this age, Fisher (1929) proposed_ the equation 

r.x 
e 	-r.t 

e 	. 1 . b . dt 
1 

X x 
t t 

which he called the reproductive value at age x. In this 

equation 1 is the survivorship curve of the population 
x 

(monotonically decreasing), b is the birth rate per head 
x 

in the time interval x to x+1 (which is zero for pre and 

post-reproductive animals), and r is the intrinsic rate of 

increase of the population. 

The limitations applying to this equation are that it 

assumes a stable age distribution, and time-invariant values 

of 1 and b . It is still a potentially useful measure in 
x 	x. 

real populations, since it weights a simple count of heads 

in relation to their potential contribution to future 

generations. Its use has been suggested on these grounds in 

studies of species diversity (Lloyd, 1964) and predation 

(MacArthur, 1960). 

It is intuitively obvious that the optimal strategy 

in reducing a population by predation would be to remove 

those animals with the highest reproductive values. We have 

seen, however, that a proportional treatment of predation 

suggests that taking the youngest (or, in general, the most 

abundant) age class most effectively reduces the population-

integral (but it involves the removal of more animals). If 

we predate numerically, on the other hand, the proportion 
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of the population killed in each time-interval will vary, 

and so the age structure will be disturbed. To determine 

the error involved in predicting the age of optimal prey 

selection by Fisher's reproductive value in non-stable 

age distributions, the following simulations were carried out. 

We must first specify the vectors for survivorship and 

birth with age, 1 and b , and we shall assume that these 
x 	x 

apply to discrete time units (in this case, days). We shall 

therefore have 1 as the fraction of the animals born on 
5 

day 0 alive at the beginning of the 5th day, and b as the 
10 

number of aphids born to a 10-day-old adult. From these 

two vectors we can compute the natural rate of increase,r, 

by numerical approximation. We know that 

ao 
f -r.t 
e 1 	b , dt = 1 

t t 
0 

(Fisher, 1929), and for discrete time intervals we can put 

E -r.t 
e 1 . b 	= 1 

0 

where m is the maximum age at which reproduction occurs. This 

polynomial will have only one real positive root, which can 

be determined quite simply by successive approximation (see 

Fig. 113). The simulations which follow take r to four 

decimal places. Once r is known for a given 1 and b , the 

reproductive value can be calculated. Again, we can approximate 

the integral with a summation over discrete time-units, so 

r.x 
✓ e 	 -7 -r.t 

	

—x 	= -- 2 	 y e 	 1 * b 
.1 ✓ 1 / .i. ,-- 	 4- 4- 

V 	to 

	

0 	 x x 

t t 
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and so on until a satisfactory 
level of accuracy is reached 

Figure 113. A very simple method for calculating r, the 
natural rate of increase, by successive approximation. 

• 
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We now evaluate this expression for each age in the aphid's 

life. We shall use the b data as before (Banks and Macaulay, 
x 

1964), and calculate an 1 curve assuming a constant daily 

survival of 95%; graphing reproductive value against age 

gives us the curve in Fig. 112. 

In order to observe the effects of age-specific numerical 

• 

	

	 predation, we require a simple model of aphid population growth. 

Let A(I) be the number of aphids of age I and let B(I) be 

the age specific birth rate. If S is the daily survival rate 
x 

in the absence of predation, so that 1 = S , we can trace 
x 

the dynamics of the aphid population. Let us begin with a 

population near the stable age distribution; put 1000 aphids 

at age 1 and divide aphids between the other age classes so 
• 

A(I) = A(I-1) * S 

Now we can test the effects of removing a number of aphids 

from the Kth instar (PREDS), writing 

D=0. 
DO 2 'DAY = 1,30 
BORN = O. 
DO 3 I = MINAD, MAXAD 

3 BORN = BORN + A(I)• * B(I) 

to give us the number of births on any day, and 

DO 4 I = 1, MAXAD 
= D + A(I) 

4 A(I) = A(I) * S 

to compute the number of aphid-days (D) and survival respect-

ively. The population reduction due to our experimental 

predation is then 

A(K) = A(K) - PREDS 

• 
and it only remains to update the awe of the animals before 
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simulating another day; 

DO 5 I = I, (mAXAD-1) 
M = MAXAD - I + 1 

5 A(M) = A(M-1) 

and putting the births into the now vacant first age class 

A(1)= BORN 

the cycle is complete. After 30 days we can write out the total 

number of aphid-days experienced by the crop 

2 CONTINUE 
PRINT, D 
STOP 
END 

If Fisher's reproductive value is a robust model, in the sense 

that it gives reasonable predictions even when its assumptions 

are contravened, we should observe a decreasing, linear 

relationship between the number of aphid days in the pest 

outbreak (D), and the reproductive value of the individuals 

of age K which we predated. If the fit of the data to this 

regression is good, then the model is robust, and variations 

in the age structure brought about by removing a given number 

(and hence a variable proportion) of animals from a single 

age class does not importantly affect its behaviour. Since, 

by changing the 1 each day we are also changing the value of 
x 

r (see above), this conclusion would be difficult to prove 

analytically. 

Figure 114 demonstrates such a graph. The two curves 

shown are non-linear because the fecundity curves are non- 

linear with age (the b values). The interesting point to 
x 

emerge from thiS graph is that although the reproductive 

• 
	 value might be the same at two ages (Fig. 112), it is better 
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10 
	

20 

reproductive value of prey 

Figure 114. The relationship between the reproductive value 
of the aphid age class predated and the damage done to the 
crop (expressed as thousands of aphid-days after 30 days) 

• 
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from the point of view of minimizing plant damage to remove 

the younger animals; compare the lower (younger) and upper 

(older) curves. The cause of this difference is, quite simply, 

that the animals spend a certain number of aphid-days on 

the plant between reaching a particular reproductive value 

on the up-slope of the curve (Fig. 112) and reaching it again 

• 	 on the down slope. 

It is also clear from Fig. 114 that the removal of 

individual aphids of maximum reproductive value (i.e. aged 

13 days; Fig. 112) brings about the greatest reduction in plant 

damage. The error introduced by applying Fisher's method to 

a non-stable age distribution were negligible in this context. 

Discussion  

The aim of this model is to determine the strategy of 

predation which constrains the growth of an Aphis fabae  

population in those ways suggested in Chapter III; namely 

late development, low peak numbers, and low overall feeding 

rate. We can consider the predation strategy in relation to 

its timing, its type (proportional or numerical), and its 

age-selectivity. 

1 Timing  

Just as the time of aphid infestation was crucial to the 

degree of plant damage, so it is that the synchrony between 

aphid infestation and the onset of predation determines the 

peak abundance reached by the aphids. 

Most of the predators of Aphis fabae overwinter outside 

the arable areas of farmland, in hedgerows, gardens and 

woodlands. In spring they emerge from their dormant phase and 
• 

typically pass through a number of developmental stages on 
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weeds and wild plants before immigrating into the bean crop 

(van Emden, 1965a, 1965b). If the predators immigrate early, 

then the abundance of aphids may be too low to allow population 

build-up, and the predators may leave the crop rather early. 

This would allow late infesations of aphids to escape control, 

and, depending on the developmental state of the crop plants, 

cause an economic loss in bean yield. Again, if the immigration 

of predators is delayed until aphid numbers in the crop are 

high, the predator may be unable to increase at a sufficient 

rate to subdue the pest population. The model, while not 

simulating the dispersive behaviour of the predators, does 

demonstrate these effects by predicting that early immigrations 

(equivalent to high early predation rates) will lead to aphid 

extinction, and hence to predator starvation or emigration, 

allowing the possibility of reinfestation by alatae. Similarly, 

late immigration (equivalent to low early predation rates) 

tends to be relatively ineffective in reducing aphid numbers, 

unless the predator is highly density dependent in its feeding 

and reproductive behaviour. This is shown in Figs. 108, 109 

and 110. 

In addition, the duration over which the predators feed 

in the crop will clearly affect the level of damage experienced 

by the plants. If the predators emigrate before pod-fill, or 

before the plants become undesirable to the aphids, then late 

season population build-up could give rise to considerable 

yield reductions. The ideal predator will therefore be rather 

tolerant of low aphid densities, so that emigration does not 

occur while a potentially damaging reproductive stock of 

aphids remains on the plant, and rather flexible in the 

mechanisms which cause it to leave the crop in search of 

overwintering sites or new sources of food organisms. A predator 
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which always left the crop on August 1st because of a photo-

periodic response would clearly be less effective than a 

species which stayed on the plant until all the aphids were 

dispersive alatae. 

The desirable attributes of predator immigration are 

rather less easy to define. As I have said, the immigration 

should occur neither too early nor too late, but the difficulty 

is that the precise timing seems to be more a function of 

the conditions of prey availability on the wild host plants 

than of the number of Aphis fabae on the young bean crop 

(R. M. Perrin, pers. comm.). If the aphids are abundant on 

the wild hosts, the predators may not fly into the bean crop 

until Aphis fabae is very abundant and essentially beyond 

their control, whereas low aphid availabilities on the wild 

plants may cause the predators to leave so early that they 

suffer very high mortality in seeking out areas of high prey 

availability, It would seem that unless the predators are 

reared and released into the crop by the grower himself, then 

a certain amount of asynchrony between the predator and the 

pest is inevitable. Depending upon-the extent of the asynchrony, 

additional control measures such as the application of a 

specific aphicide may be necessary. 

2 Numerical versus Pro ortional Predation 

Whether a predator predates numerically or proportionately 

will depend upon the biological attributes of the predator 

species (its size, dispersive ability, and so on), and on the 

availability of the aphid prey. As we have seen, the two types 

of predation can lead to widely divergent consequences in 

terms of aphid abundance and crop damage. Basically, numerical 

predation will be observed In those predator species whose 
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abundance is determined by factors other than the availability 

of Aphis fabae; by the availability of other prey species, by 

parasites or diseases, or by some environmental resource 

like oviposition sites for example. When the predator is 

sufficiently common relative to Aphis fabae then it can exert 

a controlling influence on pest abundance, but, since 

numerical changes in the predator population occur largely 

independently of changes in the number of Aphis fabae, such 

a predator is unlikely to exert a long-term controlling effect. 

As the number of predators of this type in the crop increases, 

however, the mean abundance of the target aphid should be 

reduced. It seems that unless the abundance of the predator 

species is responsive to changes in prey availability then 

the pest will always be likely to escape control when 

environmental conditions (and particularly weather patterns) 

are somewhat atypical. This numerical response is considered 

in Chapter V, and all we require to note at this stage is 

that it can operate either by increased fecundity, reduced 

mortality, increased immigration, or decreased emigration. 

If one or all of these aspects of predator biology is affected 

by the abundance of Aphis fabae then its potential in control 

is increased. 

Density dependent predation requires that the proportion 

of the aphid population eaten per day increases with aphid 

density. In the absence of numerical change in the predator 

population, this could only occur if the daily intake per 

Predator was sufficiently flexible to absorb any net increases 

in aphid abundance occurring within the day. The more likely 

situation is that the predator population responds to changes 

in prey density by the means outlined above. These can act 

quite rap idly (immigration and emigration), but often only 
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after an appreciable time lag (enhanced survival or fecundity). 

Irrespective of whether the proportion of the aphid population 

killed increases with aphid abundance, a predator which 

predates proportionally will be more effective in control 

than a predator which eats a given number of prey each day. 

We can see this best by an example. Let us define three 

• 	 predators; one predates numerically at a constant rate of 

40 aphids per day, the second predates proportionately at 

40%, and the third predates proportionately but in a density- • 

dependent fashion (Fig. 115). Assume that the aphid population 

doubles each day, then, starting with 100 aphids we should 

observe the following; 

• PREDATOR DAY 1 2 3 4 

Aphids 100 60 120 80 160 120 240 200 

1 # Kill 40 40 40 40 

% Kill 40 33 25 17 

Aphids 100 60 120 72 144 86 172 103 

2 # Kill 40 48 58 69 

% Kill 40 40 40 40 

Aphids 100 60 120 67 134 71 142 74 

3 # Kill 40 53 63 68 

$ Kill 40 44 47 48 

To demonstrate the dependence of the number of aphids killed 

on aphid density we need only plot these data (Fig. 116); 

clearly predators 2 and 3 take prey in relation to its 

availability. If we now plot the proportion of the population 

eaten against density (Fig. 117) we see species 2 constant 

(by definition), species 1 a decreasing curve (since births 

exceed 40 per day in this example), and species 3 increasing 
• 	

(again, by the definition of density dependence). 
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Figure 115. Density dependent predation; the fraction of the 
aphids killed increases with aphid density 
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Figure 116. The number of aphids eaten at different aphid 
densities with constant predation (1), proportional predation 
(2), and density dependent predation (3) 
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Figure 117. The proportion of the aphid population eaten at 
different aphid densities. Symbols as above 
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• 

In short, the effectiveness of our predator species 

increases with its ability to adjust its rate of consumption 

of Aphis fabae to the abundance of the pest, and with the 

degree to which it can increase the proportion of the popula-

tion killed as the aphid increases in numbers (i.e. the 

intensity of density dependence). The first criterion is 

quite simple to fulfil; the predator would only have to 

consume Aphis fabae in relation to the proportion of the 

aphids in the environment of this species. The difficulty 

is simply that the food intake capacity of the predator 

population is limited, and so functional responses can only 

be effective up to a certain ratio of aphids per predator 

(see Chapter V). The second criterion requires the predator 

to be rather well adapted to Aphis fabae, and either to 

aggregate in areas of high aphid availability (Hassell and 

May, 1973), or show highly effective numerical responses to 

prey density (Chapter V). 

2AELSellat121-1,yin Predation  

The optimal strategy of prey selection in terms of 

biological control depends upon the way in which a particular 

predator species treats the aphid population. If the predator 

is of such a size, or has such a behaviour pattern that all 

individuals in the aphid population are not equally available 

to it, then we must consider the aphid population as consisting 

of a number of food resources, only a few of which are 

actual target prey. It is possible to imagine an insect 

predator too small to consume aphids larger than the first 

instar, and it is equally possible to think of another which 

would feed exclusively on larger prey. With such a predator 

the same arguments as outlined in the previous section would 
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apply, but feeding would be concentrated in one particular 

size class. In this case we might ask which age class when 

predated proportionally reduces the overall population to 

the greatest extent ? The results of the simulation runs 

showed that this type of predation was most effective when 

applied to first instar aphids. In retrospect it is quite 

straightforward to show that this 'multiple-resource' type 

of preference will be most effective when applied to the 

most abundant age class, since the number killed depends only 

on the product of predation rate and availability. If there 

was no predator species available to attack the entire range 

of aphid sizes, then we should clearly choose that species 

which concentrates on the most abundant size class. In Aphis  

fabae this tends, at most stages of the infestation, to be 

the first instar (see Fig. 94), but, if adult life is rather 

prolonged, and all adults are more or less similar in size, 

a predator concentrating on adults may be almost as effective. 

It would seem intuitively obvious that an ideal predator 

would not be limited tc the consumption of a particular size 

class, but could eat aphids of all sizes. If such a predator 

showed no preference for prey of different sizes, then it 

would kill aphids in the proportion it encountered them, and, 

if the aphids were distributed randomly in space, this would 

be the proportion in which the aphids of a given size occurred 

in the population. We know, however, that Aphis fabae do not 

distribute themselves randomly, but live in very tight-knit 

aggregates (Chapter II; Dixon and Wratten, 1971; Ibbotson and 

Kennedy. 1951). Within an aggregate, on the other hand, most 

age classes are represented, and if the aggregates do not 

differ significantly from one another in terms of their age-

structure, it will be reasonable to suggest that the predator 
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could encounter age-classes in the proportion they occur in 

the whole population. So if A is the fraction of the popula-
i 

tion of aphids in the ith age-class, and D is the fraction 

of this food in the predator's diet, with no preference 

we should observe A = D for all values of 1. 
i 

Now, since the predator can attack aphids of all sizes, 

• 	 and the total intake rate is limited by the number of predators 

and their individual food requirements, the proportional 

strategy of prey selection will not apply. Instead, we should 

ask which age of aphids are most important in pest population 

growth, and which, therefore, will bring about the greatest 

reduction in population increase per individual removed? This 

• 
	 was shown to occur in the model by removing aphids of maximum 

reproductive value (i.e. of age 13 days). We can state that 

the ideal biological control predator which can feed from the 

whole aphid population would eat more individuals of this 

age than of any other. But, since individuals of age 13 days 

are less abundant than all younger age classes, the predator 

must adjust its feeding behaviour to achieve this end; it 

must show positive preference for 13-day-old aphids. 

We can define preference empirically by plotting the 

proportion of a food item in the diet against the proportion 

of the item in the environment. No preference will shown 

when D = A for all i, and positive preference when D 	A 

for all i (Fig. 118). The numerical value of 'preference' 

can be read off from such a curve as follows. If there are 

N types of food item in the environment then 

1 	yD 

• 
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0 .1 .2 .3 .4 .5 .6 .7 .8 .9 
PROPORTION AVAILABLE 

Figure 118. An empirical preference curve. The value of 
preference for the ith food item is read off at A = 1/N; 
in this case at A = .2 (i.e. five items to choose from). 
The relative preference for the ith item is therefore 0.4 
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and when they are all equally abundant in the environment 

we would have 

= 1 / N 

for all i. In this instance, when availability does not affect 

the fraction taken, the proportion of the ith item in the 

diet will be a measure of the preference factor of the 

predator for this food item. We determine its value by reading 

off D at A = 1/N (see Fig. 118). Plotting the curves for all 

N food types will give us N estimates of preference which, 

by definition, must sum to unity. 

The actual number of aphids eaten from each size class 

will depend not only on the preference factor, but also on 

the availability of each size of prey. We can model this by 

assuming that the predator orients its behaviour so as to 

attack prey in relation to the product of preference and 

availability; i.e. 

ENC = PREF * AVAIL 

This assumes that the predator encounters the aphid size 

classes in the proportion they occur in the environment, 

but that it ignores the less preferred types in relation to 

a weighting factor (its preference). It is a statistical 

estimate not designed to predict the type of prey to be 

encountered at any given time, but rather to describe the 

average fraction consumed over a long period. To compute the 

fraction of the ith food type in the proedator diet we simply 

divide the total number of encounters with the ith type by 

the number of encounters with all types, writing 
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PREF * AVAIL 

D 

EPREF * AVAIL 

1 

We can now state the selective strategy of our optimal 

predator in temrs of its preference and the reproductive 

value of the types preferred (Fig. 119). In general, preference 

should be a monotonically increasing function of the repro-

ductive value of the prey; the more right-biased the curve, 

the better the selection strategy (in other words, the more 

the predator prefers high reproductive value prey the better)•. 

4 Predation and Feeding Rate  

Since the model includes aphid size as affecting the 

rate of sap removal from the plant, it is clear that age-

selective predation will alter the mean feeding rate per aphid 

of the population. Each adult aphid killed will reduce the 

immediate rate of removal more than each young aphid eaten, 

but we recognise that to reach a higher age an aphid will have 

consumed more carbohydrate in total. 

Also, by reducing aphid numbers, predation will act 

indirectly. on all those density-related processes affecting 

feeding rate (density itself, leaf water content, food quality; 

see Fig. 79). Because some of these processes act to decrease 

the feeding rate as aphid density increases, it could be 

that predation acts to moderate their effect and so, overall, 

to increase the mean aphid feeding rate. 

The precise recommendations as to the type of predation which 

minimises feeding rate as well as population growth depend 

upon the relationship between aphid size and individual 
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relative preference 

Figure 119. The general (hatched line) and the optimal (solid) 
strategy of prey selection by the predator. Aphids of high 
reproductive value should always be preferred, but, since 
they are typically less abundant than younger aphids, the 
predator should show a proportionately stronger preference 
for them 

• 
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feeding rate. If small aphids feed almost as rapidly as older 

aphids, then the age of optimal predation will be shifted 

below the age of maximum reproductive value, while if old 

aphids feed at a vastly greater rate than the young, then the 

'optimal age for predation may be old-shifted. 

5 Control Strategy 

We can now define the type of predation pattern necessary 

to keep an Labia fabae population below the level at which it 

would cause significant economic loss of bean crop. 

a) The predator should be introduced into the crop after the 

aphids have arrived, but before pest abundance is too high; 

b) ideally, predator immigration should be spread over an 

extended period, since this will minimise the probability of 

aphid reinfestations leading to populations of outbreak level; 

c) the predator should respond to increases in prey abundance 

by increasing its food intake and/or increasing the number 

of predators; 

d) if the available predator species can only handle a limited 

number of aphid size classes, we should choose that predator 

species which concentrates upon the most abundant class (in 

Aphis fabae, the first instar); 

e) if the predator can attack all stages of the pest, its 

preference should be maximal for aphids of maximum reproductive 

value; 

f) the rate of increase in predator numbers should be at least 

as responsive to increases in temperature as the rate of 

increase in aphid reproduction, otherwise high temperatures 

will produce aphid outbreaks (the converse should also hold); 

g) the predator should respond to low prey densities by 

reducing the rate of exploitation: this will increase the 
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stability of the biological control system; 

h) the predator should maximise the plant damage reduction 

per aphid killed, by selecting aphids from the young-side 

of the reproductive value curve (Fig. 114). 

6 Model Evaluation  

The type of answer produced by a model depends on the 

terms in which the question is phrased, and on the way in 

which these terms are incorporated into the model structure. 

For example, van Emden (1966) investigated the effectiveness 

of predators in reducing aphid populations by using a very 

simple, two parameter model attributed to Bombosch (1963); 

n [q 1] 
a = a . q - k q q 

where a and a are the starting and final populations, q is 

the daily multiplication rate, and k the rate of predation. 

When q = 1 then a = a 	k.n . From this model it is clear 

that the voracity of the predators (k) and the reproductive 

rate of the aphids (q) are important; indeed, they could not 

be otherwise, since they are the only parameters in the model° 

The effects of predator synchronization can be demonstrated 

by splitting the right-hand side of the equation into two 

sections, one for pre-predation growth, and another for post-

predation. This gives 

r n-s 	1 
n-s 	[cl- 1 

a 	= a. q 	+ a.q 	- k.q 	 
q - 1 j 

• 
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and by varying the time lag between aphid infestation and 

predator arrival (s) the effects of asynchrony can be observed. 

The purpose of the present model has been to investigate 

the necessary predation pattern for aphid control in more 

detail; by considering more variables, and by considering the 

processes by which the parameters above (and the reproductive 

rate, q, in particular) are affected. Van Emden's model is 

essentially a balance sheet for aphid numbers; so many births, 

so many deaths, and hence net population change. My objective 

has simply been to extend this analysis so that the birth rate 

q is non-constant, and to interpret the effects of this 

variability on predator strategy. 

In terms of form, the present model resembles the simul-

ation program developed by Gilbert and Hughes (1972) in 

several respects. In both models the aphid population is div-

ided into age classes, and many of the population processes 

(birth and death rates, for example) are age-dependent. The 

main difference, however, is that the present model was built 

specifically to consider the problem of optimal predation 

strategy, while Gilbert and Hughes apparently built their 

model to describe the life-system of an aphid (Brevicoryne  

brassicae) in a particular part of Australia, and from the 

completed model went on to make observations on the evolutionary 

adaptation of the principal parasite. 

This distinction may appear rather trivial, but unless 

a model is built to tackle a specific problem, and the problem 

is explicitly stated at the outset, it is very difficult to 

judge the realism of model behaviour (Chapter I). To be 

formally comparable with the present model, Gilbert and Hughes' 

simulation would have to investigate the relationship between 

the number of eggs laid per parasite (its evolutionary 

adaptedness) and the number of parasites produced per season 
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(its fitness) explicitly. This would involve the inclusion 

of more information on parasite life-history (especially on 

survival), and perhaps rather less emphasis on the dynamics 

of the aphid host. 

The features of the present model which are new include 

the time-based treatment of temperature-affected development, 

the relationship between population growth and size growth, 

the effects of predation on feeding rate, and the application 

of reproductive value to non-stable age distributions. As with 

the plant growth model of Chapter III a number of processes 

have been included for which no real data exist, especially 

in the section dealing with the computation of individual 

feeding rates. There is a clear need for experiments to be 

carried out to determine first, whether feeding rates under 

field conditions do vary appreciably, and second, to which 

factors this variability can be attributed. The whole field 

of pest control hinges upon reducing damage to the crop, which, 

when feeding rate and plant sensitivity are variable, may bear 

only a very tenuous relationship to a straightforward reduction 

in aphid numbers. Clearly the predation strategy which minimises 

aphid feeding is more appropriate to pest control than the 

strategy which minimises aphid numbers; without data on the 

factors influencing aphid feeding rates in the field, it is 

not possible to separate one strategy from the other. 
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CHAPTER V 
	

A SIMULATION MODEL FOR INVESTIGATING THE 

POTENTIAL OF INSECT PREDATOR SPECIES IN 

BIOLOGICAL CONTROL 

Introduction  

Parasitism and predation are probably the most modelled 

phenomena in ecology (Royama, 1971; Hassell and May, 1973). 

They possess a set of properties which make them attractive 

subjects for mathematical analysis; first of all, they are 

fundamental ecological processes, considering as they do the 

relationship of one species to another over a period of time. 

Second, it is possible to consider both populations in terms 

of their abundances alone, since the interaction operates (at 

least in the simple case) between an individual parasite and 

an integer number of hosts which it parasitizes. Third, and 

of considerable importance, is the fact that even with a very 

simple set of assumptions, a complex pattern of output can be 

obtained from the model. This means that the model-building 

exercise tends to be rewarding in terms of the number of 

testable hypotheses brought to light, and in the diversity of 
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behaviour :•rhich can be mimicked. 

Most models of predation and parasitism start with the 

basic assumption that the rate of increase in host abundance 

is a decreasing function of the abundance of parasites (e.g. 

Lotka, 1925; Volterra, 1926; Nicholson and Bailey, 1935). 

So, if we have r as the natural rate of increase of the host 

• population (of which there are H individuals), and P active,  

paraSites, we should observe that 

dH 
- f(P) ) 
	

00'000 (1) 
dt 

To simplify the model, f(P) is usually assumed to'increase 

linearly with P (e.g. Lotka, 1925; Volterra, 1926). That is, 
• 

replacing f(P) by c.P in (1), 

dH 

 

- H ( r - c.P ) 00000 (2) 
dt 

where c is a positive constant. 

The parasite population is then assumed to increase in 

relation to the number of hosts available, and to decrease 

exponentially when no hosts are present. The constant r' 

describes this rate of population decline in the absence of 

hosts, and we can write 

dP 

 

P ( - r' + g(H) ) O 0000 (3) 

 

dt 

Again, simplifying g(H) to a linear relationship we gain 

dP 

 

= P ( - r' + a.H ) O 0000 (4) 
dt 

• 	 where a is a positive constant. 
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• 

Pielou (1969) shows that this pair of typical Lotka-

Volterra equations can be solved by putting 

dH 	( r - c.P ) H 

dP 	(-r' + a.H ) P 

and rewriting as 

dH 	dP 
r'.— aedH + re-- c.dP = 0   (5) 

H 	 P 

which integrates to give 

r'. In H a.H + r. In P - c.P = constant (6) 

The solution of this expression yields a family of closed 

curves, with one curve per value of the constant of integration. 

This value in turn depends upon the initial values of H and P. 

There is no damping in this system, and the relative abundances 

of parasites and hosts continue in closed cycles indefinitely, 

unless the starting values were 

H = r'/a 	and 	P = r/c 

in which event the densities of host and parasite are constant 

indefinitely. 

It is rather difficult to increase the biological realism 

of these equations while maintaining their analytical tract-

ability. Consequently, most of the later attempts at modelling 

the predator-prey interaction have abandoned this format, and 

moved instead to a consideration of the number of prey eaten 

(or hosts attacked) at a given abundance of predators and prey. 

The principal objective has been to relieve the constraints of 

linearity and time-constancy in the effect of predation on the 

rate of prey increase, and in the effect of prey density on 

• 

• 
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predator abundance (see equs. 2 and 4). 

In general, we shall be looking for an expression of 

N , the number of hosts attacked, in terms of the parasite 
ha 

density (P), host density (N), and those biological processes 

which affect the interaction. 

Thompson (1924) suggested a model which accounted for 

• 	 the fact that the number of eggs laid per female parasite 

was limited (by her age and reproductive physiology), If each 

parasite laid a constant C eggs, then the population could 

lay C.P eggs. The proportion of the host population affected 

is then C.P/N, and he suggested that the number of hosts 

attacked would be given by 

- C.P/N 
N 

	

	= N ( 1 - 
ha 

00.00 (7) 

assuming that the fraction of hosts escaping attack is given 
-CP/N 

by the zero term of a Poisson distribution (e 	). Some hosts, 

in other words, receive more than one parasite egg, but only 

one adult parasite emerges. 

Nicholson and Bailey (1935) modelled the process in a 

different way; they assumed that the fraction of the host 

population encountered would increase linearly with the number 

of searching parasites, and that the egg-laying potential of 

the parasites did not affect the number of hosts attacked. The 

constant of proportionality describing the rate of encounter 

between parasites and hosts they called the 'area of discovery' 

a, and again assuming random search, they wrote 

- a.P 
N 	= N ( 1 	e 	 4000,A (8) 
ha 

These two models behave differently, in that the number of 

• hosts encountered per parasite increases linearly with host 
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density in Nicholson's model, but is constant in Thompson's 

(Fig. 120). Both models express the number of hosts attacked 

as a fraction (the bracketted term) of the number of host present. 

In 1959 Watt proposed a new equation for the number of 

hosts attacked which included a maximum attack rate (like 

Thompson's model), and a new concept of interference between 

searching parasites (see also Hassell, 1970). Watt's model 

differs from the two previous equations by stating that the 

number of hosts attacked is a fraction of the number of parasite 

eggs available (rather than of the number of hosts). We have, 

therefore, a total of P.0 parasite eggs of which less than 100% 

will find their way into unparasitized hosts. Watt writes 

-0.N.[ 1-1 
N 	= P.0 ( 1 	P 	J) 
ha 

and the bracketted term expresses the proportion of parasite 

eggs which are not laid in hosts as a function of an attack 

coefficient, a', (which is related though not identical to 

Nicholson's area of discovery), and an interference term, 
1-b 
P 	, where b is a constant of interference. Watt's model has 

been criticised by Hassell and Rogers (1972) and by Royama 

(1971). Its general form, however, does seem to be rather 

more meaningful in biological terms, because it puts the 

emphasis. on the parasite population, calculating N as a 
ha 

fraction of the number of parasite eggs available, rather than 

as a fraction of the number of hosts as before. This will tend 

to minimise the risk of looking at parasitism as a means of 

'self-regulation' by the host population, and also allows that 

under many circumstances the rate of parasitism (the fraction 

of available hosts which are parasitized) will be independent 

of host density. There is a danger in the models expressing 



.289. 

Figure 120. The number of encounters per parasite which are 
assumed under Thompson's and Nicholson's models of parasitism 
at different levels of host (prey) abundance 

• 
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the number of hosts attacked as a fraction of the number 

available that density-dependence is implicitly assumed (e.g. 

Nicholson's model in Fig. 120). 

Rolling (1959) considered the effects of predator time-

allocation between various aspects of searching behaviour in 

arriving at his equation. This model, as Rogers (1972) stresses, 

generates the number of prey encountered, but does not predict 

the number attacked, since host exploitation is not considered. 

If T is the total time of exposure between the prey and predator 

populations, and T' is the time taken to pursue and eat an 

individual prey (the handling time), Rolling puts 

N 
—a 
P 

a". T. N 

 

	  (10) 
1 + a". T'. N 

 

■•■ 

  

where a" is yet another attack coefficient. Each predator's 

hunting time is taken as T - T'N and in unit time each 
a 

predator will encounter a".N prey. The number of encounters 

is then a".N(T - T'N ) which can be rearranged to give (10). 
a 

Later (Rolling 1965, 1966a) these temporal aspects were further 

sub-divided to consider the effects of non-feeding activity, 

and the time spent in pursuit, ingestion, and digestion prior 

to initiating another search pattern. Clearly, these parameters 

apply to a predator, but they do have analogues in parasite 

behaviour (duration of oviposition, post-oviposition rest, 

time spent avoiding super-parasitism, and so on). Similarly, 

the attack coefficient was analysed into sub-components 

dealing with the perceptive range of the predator, its speed 

of movement, the prey's speed of movement;  and the capture 

success (measured as the fraction of prey coming within the 

'range' which are successfully captured). 
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Hassell and Varley (1969) modified the basic Nicholson-

Bailey model to account for the observation (e.g. Hassell, 1971) 

that parasite searching efficiency is dependent upon the 

density of searching parasites. The attack coefficient a (the 

area of discovery) was made exponentially dependent upon 

parasite density to account for mutual interference. They set 

a = Q. P 

Q being the area of discovery at P = 1, and the mutual inter-

ference constant, m, being the slope of the linear regression 

of log a on log P. This model is equivalent to Nicholson's 

only when m = 0; otherwise the behaviour is markedly different, 
• 	

especially with respect to the stability of the interaction 

(see Hassell and May, 1973). 

Following on this, Hassell and Rogers (1972) incorporated 

Holling's ideas on the effects of handling time. The number of 

encounters could then be expressed as 

a  

[ a" aP  TN] 

1 + a". T'. N 

-0 

• and the number of attacks (following Rogers (1972) and Royama 

(1971)) can be calculated by substituting N in 
a 

N 
- a 

N 

	

	= N( 1- e N) 	....0 (12) 
ha 
-0 

The term aP 	models the interference component, making the 

time that the hosts are exposed to parasitism dependent upon 

parasite density. 

• 
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Functional Responses  

1) Functional Response to Prey Density  

A predator species can be said to act in a density- 

dependent fashion if the proportion of prey attacked increases 

as prey density increases. The response is said to be 

'functional' if, in Solomon's words (1949), "as host density 

rises, each enemy will attack more host individuals, or it 

will attack a fixed number more rapidly." 

The processes by which functional responses operate tend 

to fall into two categories; behavioural responses relating 

the way in which the predators search for and capture their 

prey, and physiological responses governing the number of 

prey which each individual predator can consume in a given 

time period. 

It is not clear from Solomon's statement that the 

functional response can not be a continuously increasing function 

of prey density, since the number of animals attacked per 

predator has an upper limit in the gut capacity of the 

individual (although it is possible that more prey are killed 

than are eaten), and the rate at which animals are attacked 

has an upper limit in the handling time of each prey item 

(assuming also a limited feeding period). If the handling time 

per capture is HAND, and the time available is TIME, then the 

maximum kill will be 

KILL = TIME / HAND 	90040 (13) 

this being the case when prey are so common that searching 

time approaches zero. 

This limitation to the effectiveness of the functional 

response has been incorporated in several of the predation/ 

parasitism models, and operates to produce an analogue to the 
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economic law of diminishing returns (Nicholson and Bailey, 

1935; Holling, 1959; Ivlev, 1955). The theoretical aspects 

of the assumptions included in these models, and their 

analytical accuracy are reviewed by Royama (1971). 

The fundamental difference between models of predation 

and models of parasitism is that to determine the total number 

• 	 of attacks in a given period of time, rather than simply the 

attack rate, models of predation must account for the removal 

from the pool of available prey of those animals consumed 

prior to any instant of feeding. In the case of parasitism, 

of course, the prey (hosts) do not disappear from the pool 

available once they are parasitized, and remain to be super-

parasitized (unless the species in question avoids super-

parasitism in its oviposition behaviour, in which case the 

model will be of the predation form with an allowance made 

for the time spent in avoidance). In other words, models of 

predation must account for the reduction in prey density 

DURING the time-period modelled. 

The number of prey in a unit area of habitat affects the 

attack success of a given number of predators in two ways. 

First, when prey are very common, the time it takes for a 

predator to search for a prey item becomes relatively low. 

This means that the number of attacks per day can reach the 

maximum possible, which is determined by the handling time per 

capture, and by the gut capacity of the individual. These 

parameters will undoubtedly be inter-related over the course 

of evolution such that at high prey densities the handling 

time necessary to capture sufficient prey for satiation will 

be considerably less than the total hunting time available 

(otherwise the predator would invariably starve I ). This 
• 

means that at high prey density we should observe an attack 
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rate of 

KILL = PREDS * INTAKE   (14) 

if the predators only kill as many prey as they consume. In 

the situation defined, we have INTAKE (the number of prey 

required per predator per day) independent of PREY, and 

• 	affected only by the age, sex, size and physiological condition 

of the predator; i.e. 

INTAKE = f (AGE, SEX, SIZE, etc.) 	Q0000 (15) 

As prey density decreases, however, it becomes progress-

ively more difficult for each individual predator to find 

prey items. The searching time will therefore increase as 

prey density decreases until a point is reached at which there 

is insufficient time to search for and capture enough prey to 

fill the gut, We can now state that under these conditions 

INTAKE = f ( AGE, SEX, etc ), g (SEARCH) 	(16) 

where SEARCH is a measure of the searching time per encounter 

(specifically, the fraction of the hunting time spent in search). 

To observe this effect, we can plot SEARCH as a function of 

prey density (PREY) as in Fig. 121, bearing in mind that when 

SEARCH is less than a threshold (TS) the prey intake rate will 

be unaffected (above). The curve will tend to be of an 

hyperbolic form with 

SEARCH c( 
PREY 

• 

If this is the case, then the relationship will be asymptotic 

to both axes, and it will be necessary to specify a threshold 

of prey abundance below which all hunting time is expended 
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•, 	Figure 121. The relationship between prey density and the 
fraction of hunting time spent in search 

w1 cc 

a. 

w 

z 
a 
0 cc 

0 

Figure 122. The relationship between the fraction of hunting 
time spent in search and the proportion of the food requirement 
which is fulfilled for three types of predator (see text) 

Figure 123. The functional responses of the three predators 
to prey density obtained by combining the two graphs above 

• 
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in searching (T', at which point SEARCH = 1); the threshold 

reflects the relationship between the hunting efficiency of 

the predator and the area over which it must search. Similarly, 

the asymptote as prey become very abundant reflects the 

limit at which edch predator spends no time at all in search, 

and the number of prey killed is limited by the capacity of 

• 	 the gut. If we now suggest that below prey densities of T' 

search is completely unrewarding, we can write 

SEARCH = T' / PREY 	00090 (17) 

and allow that when SEARCH < TS feeding is unaffected by prey 

density (so that in Equ. 16, g(SEARCH) = 1). 

The function g(SEARCH) in Equ. 16 will clearly decrease 

with SEARCH, since it is not possible to increase the rate 

of attack as searching time increases relative to total 

hunting time (it is possible to model this process, but it 

implies having the searching efficiency determined by prey 

density). To determine which particular shape of function 

best describes this relationship, we can examine three possible 

curves (Fig. 122). 

The usual representation of the functional response to 

absolute prey density is given as the number of prey killed 

against the number of prey. This is equivalent to plotting 

g(SEARCH) against PREY, since g(SEARCH) is simply the fraction 

of the maximum possible prey intake which is killed at. any 

given prey density. In Fig. 123 we plot the functional response 

curves derived by adopting each of the three forms for 

g(SEARCH) (from Fig. 122) in turn, and assuming an hyperbolic 

relationship between SEARCH and PREY (Fig. 121). 

The shape of the response chosen in Fig. 122 determines 
• 

how the predator species reacts to changes in prey density. 
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Curve 1 represents an animal which can respond to increases 

in the time it takes to find a prey individual either by 

increasing its rate of search, or by searching more efficiently. 

In consequence, the food intake rate drops rather slowly with 

decreases in prey numbers until very low prey densities are 

reached at which time the functional response curve falls 

steeply. This situation approximates the model adopted by 

Thompson (1924) which can be seen by comparing curve 1 with 

Fig. 120 above; Thompsons 'predators' fed at a rate which was. 

independent of prey density. 

Curve 2 describes the feeding strategy of a predator 

whose hunting behaviour is completely inflexible; it is unable 

to change its attack rate or searching efficiency as prey 

density decreases, and so the relationship between the fraction 

of the diet realized, and the proportion of time spent in 

search decreases linearly. In other words, at prey densities 

such that the searching time per encounter is doubled, the 

prey intake will be halved. This type of behaviour produces 

a functional response curve in Fig. 123 very like Holling's 

disk equation (1959); this is what we would expect, because 

the experimentors in the disc-collecting exercise did not vary 

their rate of search as prey density changed (in fact, since 

they were blindfold, they could not tell whether prey density 

had been reduced). 

The last response we can consider is that in which each 

unit increase in search-time produces a lower reduction in 

food intake, so that the curve falls steeply at first. Such 

a response would be observed in a predator whose presence in 

an area depended upon there being rather high prey densities, 

or by a predator species whose individuals were debilitated by 

starvation. In this latter case, each day spent in sub-optimal 
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prey densities would decrease the animal's performance on the 

following day. The functional response curve for this behaviour 

pattern increases linearly with prey density when curve 3 

is an hyperbola, because Figs. 121 ans 122 cancel to give a 

straight line (SEARCH = T'/PREY; fraction of diet = G/SEARCH; 

therefore fraction of diet = G/T'/PREY which is to say PREY * 

• 	 K where K = G/T'). In general, we could express the relation- 

ship shown in Fig. 122 in terms of two parameters, and write 

F(SEARCH) = 1 - SEARCH 

where v is the coefficient of hunting strategy. Then if v > 1 

we have a response like curve 1; v = 1 a response like curve 2; 

and v < 1 a response such as curve 3. Two parameter equations 

of this type are widely used in predation models (e.g. Hassell 

and May, 1973; Rogers, 1972), and for visualization of the 

equations which follow, a family of curves of the form 
b 	 b 

y = x are shown in Fig. 124, and y = 1 - x in Fig. 125. The 

values of the power coefficients can be obtained from data by 

a regression of log y on log x; the power b is then the slope 
10 	10 

of the graph. 

We can now restate this model of the functional response 

to prey density in the format employed by other ecologists. 

The food requirement is calculated as the product of the number 

of predators (P) and their individual food requirements (C); 

therefore P.0 is the total number of prey which would be taken 

in optimal conditions. When prey density is low, only a fraction 

of this number will be taken, determined by the mean searching 

time per encounter, f(N), and the response of the food intake 

to this searching time g(f(N)); so 

• N 

	

	= P.0 ( g(f(N)) ) 
a 
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0 

= axb 

1 x 
Figure 124. Some examples of curves in the two-parameter 
family with y an increasing function of x. The b values 
giving rise to the particular curves are shown. 

x 
Figure 125. As above, but with y a decreasing function of x 
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and we can specify f(N) as an hyperbola (above), with a 

constant T' being the prey density at which all time is spent 

in search and no kills are made. This, of course, will only 

be an expectation in a stochastic process, because as long as 

N >0 there will be a finite probability that an encounter will 

occur. Now setting f(N) to T'/N we have 

N 	P.0 ( g(T'/N)  ) 
a 

We saw that the fraction of the diet taken could be expressed 

as a two parameter formulation of T'/N, so the equation can 

be completed by writing 

N= P.0 ( 1 - (TI/N) ) 
a 

Altering T' will change the prey density at which the 

functional response curve cuts the prey axis (i.e. there is 

no feeding), while changing v will alter the shape of the 

functional response curve as it increases with prey density. 

2 Functional Responses to Relative Prey Density  

Relative prey density, the number of prey per predator 

(N/P) also has a functional response associated with it. 

Consider the case in which prey are abundant, and therefore 

searching time is non-limiting in determining the number of 

prey attacked. In this case we have seen that the intake of 

prey should be PREDS * INTAKE. But if we now allow that 

predators are also very abundant we might arrive at the absurd 

situation that PREDS * INTAKE > PREY. In this case, it will 

not be the difficulty in finding a prey organism which limits 

the number of prey killed, but rather the difficulty of finding 

a prey which is not already being pursued by a predator. 

(19) 



.301. 

Clearly, in this situation, the predators will have to compete 

with one another for the prey which are available. This 

competition, in turn, will lead to a reduction in the mean 

INTAKE per animal, and to a reduction in the total number of 

prey attacked. 

Competition between predators at low relative prey 

densities will operate in an homogeneous population (where all 

individual predators are alike with regard to their food 

requirements and competitive ability) simply to reduce the 

mean intake per predator. Exploitation of the prey population 

will make the situation increasingly severe so that, in the 

next time interval, the relative prey density is even lower. 

Two factors could act to ameliorate the situation, however. 

First, if prey reproduction is high relative to the food 

requirements of the predator population, and more than matches 

any increase in predator numbers over the same period, then 

competition will be reduced. Second, the predators may respond 

to competition by decreasing their abundance either through 

dispersal of the active stages, or increased mortality amongst 

the more sedentary immatures. This latter response is dealt 

with in the next section, under Numerical Responses. 

If the predator population is heterogeneous, and the 

animals differ from one another in size and voracity, the 

situation will be modified. In this case, certain classes 

of the predator population will be relatively more competitive 

than others, and any food deprivation resulting from compet-

ition will be unevenly distributed over the size classes. 

We might suggest that success in intraspecific competition 

for prey increases with size and mobility, so that the older 

animals can fend off the advances of smaller predators for the 

prey item being pursued. In this case, the model would have to 
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compute a weighting factor describing the distribution of 

unit food deprivation between the instars. A simple model of 

this phenomenon can be given by writing D as the total prey 

deprivation (the number of prey which would have been captured 

had prey density-been optimal, over and above those actually 

captured), and dividing it between the predator size classes 

in relation to their abundance, P , and the weighting factor 

d . Now, assuming that the abundance of the size class and 

the weighting factor interact (so that a small group of large 

predators suffer proportionately less than a large group of 

small predators) we can write the actual food deprivation of 

the ith size class as 

P . d 

FS = D 

. d 
1 

The growth of the individuals in the ith size class can then 

be related to food shortage (FS ). 

We require an equation relating the number of prey attacked 

to the intensity of intraspecific competition. We have already 

defined this competition as a decreasing function of relative 

prey density. Now, expressing competition as the fraction of 

the total fcod demand which is realized, and representing this 

by E we have 

E = f (N/P) 

and, if we can define a limit in the ratio of prey per predator 

at which feeding approaches zero (E--,0) we can specify that 

f(limit) = 0, and defining an upper limit at which feeding 

is unaffected by competition we can put f(upper limit) = 1. 

To do this, it is more meaningful to express the ratio as the 
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number of prey relative to the number of prey required as food. 

Ratio = .N / (P.I) 

where I is the food demand per predator. Clearly, when this 

ratio is less than or equal to unity, all the prey would be 

consumed if no competition occurred. We require a graph of 

• 	 E in terms of Ratio (Fig. 126); we have defined that at an 

upper limit in Ratio (R') E approaches unity, and that at a 

lower limit feeding approaches zero. This lower limit must 

be carefully considered, since, as stated at the outset, 

prey may be abundant in absolute terms, and it would be un-

realistic to suggest that none are consumed simply because the 

predators are competing with one another. To counter this, let 

the graph pass through the origin,,so that no feeding occurs 

when and only when there are no prey. In this case, of course, 

the first functional response would have modelled the phenom-

enon. 

The simplest model is a linear relationship implying 

that intraspecific food competition occurs at a constant rate 

(curve 1 in Fig. 126). It may be, however, that competition 

is at first relatively light, but increases in intensity 

with decreases in the ratio of prey to prey required (curve 2). 

For these two graphs we arrive at terms for E as 

E = Ratio (1/R') 	for Ratio 	R' 
E = 1 	for Ratio R' 

or, for the second case we might write 

- (b/Ratio) 
E = 1 - e 

where b is a positive constant. 

• The general equation is then 

00000 (21) 
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0 RATIO 

Figure 126. Two functional response curves for the effect of 
relative prey availability (RATIO) on the fraction of the 
diet fulfilled (E); see text 

KP2  

Figure 127. Two functional response curves for the effect of 
intraspecific predator contacts (KP) on the fraction of 
hunting time wasted, w 

0 

Figure 128. Two functional response curves for a predator 
species which fed more efficiently in the company of others. 
In this case intake rises as prey density increases 
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• 

N = P.C.E 
a 

where the equation for E is of the form best fitting the data. 

Functional Response to Predator Density  

The final case which must be considered as a component 

of the functional response is the effect of high absolute 

predator densities. One of the possible mechanisms of this 

response has already been suggested in the introduction, in 

discussing the mutual interference between adult parasites 

(Watt, 1959; Hassell and Varley, 1969; Hassell and Rogers, 1972). 

In this instance, the time during which the parasite and host 

populations are exposed to one another depends upon parasite 

density, since time is wasted by adult parasites following 

intraspecific contacts. This effect operates independently of 

host density. The exception to this independence occurs in 

models which account for the distribution of parasites in 

relation to host density, so that differences in host density 

between one area and another can lead to increases in the 

number of intraspecific contacts in those species which tend 

to aggregate over higher relative prey densities (below). 

This time-wasting effect could equally well apply to larval 

forms if they exhibited any form of avoidance or combative 

behaviour with others of their own kind. 

Another mechanism which could act to much the same end 

has been described for Bupalus piniarius by Gruys (1971), in 

which nocturnal contacts between larvae lead to reduced growth 

and subsequent fecundity. This process operates at looper 

densities well below the level at which food competition might 

occur, and could act, therefore, as a preventative mechanism 

reducing the probability of over-exploitation. 
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In this type of functional response we allow that 

= P.C. f(P)   (23) 

so that, in general, f(P) decreases with increasing P. Hassell 

and Varley's (1969) approximation for this function was 
-m 

• Q.P 	(described in the introduction). If the predators 

contact one another due to random motion, then the number of 
2 

contacts should be proportional to P . That is, putting s as 

the number of non-reproductive intraspecific predator contacts, 

2 
s oG P 	 * C O O S (24) 

Following on this, it is necessary to specify the shape of the 

function relating the number of contacts to their effect on 

hunting activity. The simplest model would again be linear; 

i.e. each contact contributing equally to the reduction in 

feeding. In this case we should have a constant interference 

component representing the fraction of hunting time lost per 

encounter; we can call this J. Therefore 

W = J.s 
2 

J.K.P 
	

(from 24) 

where W is the fraction of hunting time lost. 

If the response is non-linear, then we must graph W against 
2 

K.P (Fig. 127). If behaviour was such that the first encounter 

was the most traumatic, after which the animal became used to 
2 

meeting its fellow predators, W would decrease with KP 

perhaps in an exponential manner. More likely, however, would 

be the case in which each encounter reinforced the detrimental 

effects of the last (curve 2 Fig. 127). In any event, we shall 

have 
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2 
W = g(K.P ) 

and hence 

2 
P.0 (1 - g(K.P )) 

a 	2 w 
or 	N 	P.0 (1 - (K.P ) ) 

a 

where w is the coefficient of interference time-loss. 

The functional response to predator density may not give 

rise to a reduction in food intake with increasing predator 

numbers in all species. Over the lower ranges of density at 

least, many predator species are aggregatory, or hunt in packs. 

Here, the functional response curve would be as in Fig. 128; 

curve 1 would be the curve for a species which needed many 

neighbours to allow feeding to occur at its maximum rate, while 

curve 2 describes a species whose feeding only decreases at 

very low predator densities. 

In summary, there are three aspects to the functional 

response; the effects of low prey density upon the searching 

time of individual predators, the effects of low relative 

prey density on intraspecific food competition between predators, 

and the effects of high predator density on mutual avoidance 

behaviour. The conditions under which these three types might 

operate are listed in Fig. 129. 

In the simulation model which follows, allowance has been 

made for the operation of these different aspects, and for a 

consideration of the effects which might result from the 

consequent under-nutrition. The situation differs here again 

between predators and parasites; a predator which does not 

catch its quota of prey will be hungry and, over a period of 

time, will become debilitated. A parasite, on the other hand, 

is less likely to be affected in this way by being unable to 

(25) 
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PREY DENSITY PREDATOR DENSITY TYPE OF 
FUNCTIONAL 
RESPONSE 

LOW LOW 1, 2 

MEDIUM MEDIUM 2 

HIGH HIGH 2, 3 

_LOW HIGH 1,  2, 3 

MEDIUM 

HIGH 

HIGH 

LOW 

2,  3 

LOW 

MEDIUM 

MEDIUM 

LOW 

1, 2 

HIGH MEDIUM 2 

1 = Response to low prey density (N) 

2 = " low relative prey density (N/P.C) 

3 = to " high predator density (P) 

Figure.129. The conditions of prey and predator density under 
which the three types of functional response might be expected 
to operate. 
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lay all its eggs. 

The three responses can be expressed as a single equation 

for comparison with previous models. In the absence of 

exploitation, the number of predator prey encounters would be 

v 	-b.P/N 	2 w 
N 	= P.C. (1 - (T'/N) )(1-e 	)(1 - (K.P ) ) 	(26) 
a 

and, assuming random search we can follow Rogers (1972) and 

Royama (1971) and calculate the number of prey killed from 

- (N /N) 
N 	= N ( 1 	e 	a 	) 
ha 

Numerical Responses  

Despite the extent of the literature on functional 

responses, this aspect of predator behaviour can only exert a 

minor influence on the biological control potential of a species. 

When prey density is high, as we have seen, each predator will 

feed at a maximum rate determined by the capacity of its gut 

and the physiological factors which affect its rate of intake 

(temperature, food digestibility, body size, and the like). 

While the functional responses may act to lend stability or 

permanence to the interaction at low prey densities, it is the 

ability of. the predator species to respond to changes in prey 

density by altering the size of its own population which will 

ultimately determine its potential in biological control. 

We can isolate three mechanisms by which numerical 

responses might occur, and deal with each in turn. These are 

the effect of increased prey density upon enhanced survival 

(particularly of the immature stages) and increased fecundity 

(with more food available for egg production), and the effect 

of increased prey density upon the dispersal behaviour of 

the predator (less tendency to emigrate, or an increased rate 
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of immigration into areas of high prey density). It will also 

be necessary to determine the extent to which the functional 

and numerical responses interact, since, in the case of 

survival and reproductive rates, it is the degree of starvation 

(the intensity of the functional response) which depresses 

the rate of increase in the predator population. 

1 Survival  

In general, numerical responses due to changes in survival 

rate can be visualized as acting to increase the probability 

of death as the degree of starvation increases. If we define 

relative starvation as being a function of the fraction of 

the food intake realized (see Functional Responses, above) as 

in Fig. 130, we can use the value of STARVE to determine the 

magnitude of the numerical response. This approach is based 

on the assumption that numerical responses can not occur unless 

predator and prey densities are such that the actual food 

intake per predator has been reduced because of functional 

responses of one type or another. Survival rate changes under 

the assumption that predators weakened by starvation are more 

likely to fall to diseases, accidents and natural enemies. 

The relationship between relative starvation (STARVE) and 

survival rate can now be supplied graphically, plotting the 

proportional mortality due to starvation-related factors on 

the y-axis (Fig. 131). Given any value of STARVE from Fig. 130 

the new survival fraction can be computed by interpolation 

(Chapter I), and the actual daily survival computed from 

SUVACT = SUV * F (STARVE) 	1, 0 0 64 ( 27 ) 

where SUV is the survival rate with full satiation. The shape 
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w 
cc 

INTAKE REALIZED 

Figure 130. The relationship between the relative intensity 
of the functional responses (the fraction of intake realized) 
and the relative starvation resulting 

Figure 131. The relationship between relative starvation and 
survival rate for three types of predator (see text) 

STARVE 

Figure 132. The relationship between relative starvation and 
relative fecundity for two types of predator (see text) 
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of curve employed in Fig. 131 will reflect the sensitivity 

of the predator species to food shortages; curve 2 would 

apply to a 'starvation-sensitive' predator, while the type 

shown as curve 3 would be capable of withstanding high 

starvation before becoming prone to increased mortality. 

2 Reproduction  

Starvation can also affect the rate of egg production 

by adult predators (Rolling, 1965; Huffaker and Kennett, 1960. 

As in the preceeding section, we can plot relative egg 

production against the degree of food shortage (Fig. 132), 

and obtain the actual value by interpolation. 

If the egg-laying rate of adult predators varies with 

their age, and if the maximum oviposition rate on the Kth day 

of adult life is FEC(K), then the actual rate will be 

EGGS = FEC(K) * F (STARVE)   (28) 

where F(STARVE) is less than or equal to one. This process 

means that as prey density decreases the number of predator 

eggs laid is reduced, and if the predators take a finite time 

from egg laying to the initiation of feeding, then there will 

be a time-lag between the numerical response of the egg layers 

to reduced prey density, and the effects of this reduction in 

terms of lower attack rate. Depending on the duration of the 

non-feeding egg stage, and the time taken to develop to the 

size of maximal prey intake, this time-lag will have more or 

less profound implications. If the period is relatively brief, 

the abundance of the predator population should follow the 

pattern of prey abundance rather closely, while if the period 

is extended, the predator population may become seriously out 

of phase with its prey. In the latter case, there will be too 
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many predators when prey are scarce, and too few when prey 

are abundant, so prey density will tend to vary between rather 

extreme limits. 

3 Dispersal  

The third way in which the predator population can change 

in abundance as a function of prey availability is through 

dispersal. Predators which have been unable to find sufficient 

prey to satiate themselves may, instead of staying in the 

area and starving, depart in search of other areas where prey 

density is higher. This dispersive response can act immediately 

to changes in prey availability (when the predator leaves as 

soon as it can not consume its fill), or after a time-lag 

(in those cases where dispersal is dependent on the achieve-

ment of a certain threshold in starvation). In any event, 

the effect of this aspect of the numerical response on the 

future interaction between predators and prey will depend 

on the particular life-stages of the predator given to 

dispersive behaviour. For example, only the adults of insect 

predator species have wings, and if they are prone to migrate 

under conditions of low prey availability, they can travel 

considerable distances (Johnson, 1969). Dispersal in the 

egg and pupal stages can only be passive, and the movement 

of larvae over long distances may be fraught with difficulties 

(low mobility, exposure to predators, dessication and so on). 

In most cases it will be possible to rank each developmental 

stage of the predator in terms of its tendency to disperse 

under conditions of low prey availability; generally the 

adults will be most responsive, followed by the larval stages 

in decreasing relation to their size. The fraction of each 

instar leaving the area during a specified time-interval 
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can then be set as a function of relative starvation, and so 

the number of predators in the Jth instar remaining will be 

PREDS(J) = PREDS(J) * F (STARVE) 	11, 04, 0 411 (29) 

j 

where the shape of the F reflects the different tendencies 

of each instar to disperse (Fig. 133). 

The Behaviour of Predator-Prey Models 

Models of predator-prey interactions tend to behave in 

one of three ways, depending upon the structure of the model 

and the initial conditions which are supplied; 

1: the prey population becomes extinct through over-feeding 

by the predator population, which, in the absence of food, 

becomes extinct itself; 

2: the prey population, because of under-exploitation and lack 

of density-dependent controls on its own rate of increase, 

becomes infinitely abundant; 

3: both populations persist indefinitely. 

1) Prey Population Becomes Extinct  

This type of result is commonly observed in laboratory 

experiments on competition and predation (Crombie, 1947, for 

a review), essentially because homogeneous environments are 

used. It is very unlikely that one homogeneous environment 

will be optimal for two species in all respects of their 

biology, by merit of the very fact that the species are diff-

erent. Crombie (1945, 1946) has shown that simply through 

making the environment spatially heterogeneous, by placing 

short lengths of fine glass tubing in a flour-wheat medium, 

two species can coexist (Tribolium confusum and Oryzaephilus  

surinamensis) where only one persisted in the homogeneous 
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STARVE 

Figure 133. The relationship between relative starvation 
(STARVE) and the proportion of the predators emigrating 
per day for different predator instars 



.316. 

substrate (T. confusum). The explanation of this result lies 

in the provision of a 'refuge' for the larvae and pupae of 

0. surinamensis from predation by T. confusum. When larger 

bore tubing was used in the medium the predators were able to 

encounter and consume the entire competing population; the 

refuge was no longer effective. 

•• 	Models of predator-prey population dynamics tend to 

behave in a similar fashion when their structure allows that 

the entire prey population is available to the predator. A 

necessary condition for the persistence of the prey (and hence 

of the predator) is that the last prey individual capable of 

reproduction must never be consumed. This can be achieved in 

two ways. 

First, the functional responses to prey density and to 

relative prey density can act to minimise the probability of 

prey extinction. The former response can be especially 

effective if the rate of prey consumption falls to zero at 

prey densities greater than zero (see Fig. 123). The problem 

with including this assumption in the model is that the 

mechanism by which the prey escape predation is not elucidated., 

and we are asked to believe that difficulty in making encounter 

with prey organisms completely curtails feeding. I shall 

return to this point when discussing the running of the model. 

In essence, however, this approach implicitly assumes that 

a certain number of prey are unavailable to the predators; they 

are in a refuge from attack. 

The second possibility open to us in attempting to prevent 

extinction in the prey population is the explicit provision 

of a refuge from predation (Crombie, 1947; Hassell and May, 

1973). The refuge can be visualized in one of two ways. 
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Hassell and May (1973) have allowed that a particular prop-

ortion of the prey population is unavailable because of some 

spatial attribute of the environment which affects the behaviour 

of the predators but not the prey. For example, an avian 

predator might forage only on the outer leaves of an oak tree, 

whilst the caterpillars it feeds upon are distributed through-

out the canopy; similarly, a parasite with a given length of 

ovipositor can only parasitise that fraction of a grain-

dwelling host species which is in the upper layer of the 

substrate, and within range of the ovipositer. The disadvantage 

of this approach is that one must assume continual redispersal 

by the prey individuals so that the proportion of the prey 

population in the refuge is always equal to the proportion of 

the environment which is defined as being refuge. 

An alternative method of modelling a prey refuge is to 

allow that the predator species has access to all the habitats 

occupied by the prey, but that within any habitat type there 

are a finite number of 'hiding places' for the prey. This 

number of refuges need not be constant, particularly if, for 

example, the refuge consists of some part of an annual plant. 

The essential difference between the two treatments is that 

the proportional refuge operates independently of prey density, 

while the finite refuge has a very small effect on predator-

prey interaction at high prey densities and an important effect 

when prey are scarce. If it is assumed that the refuges are 

always filled, then the finite treatment can bring about a 

complete cessation in predator feeding when the number of 

prey is lower than or eaual to the number of refuges. With a 

proportional refuge some prey are attacked however rare they 

become. It is probable that both types of refuge occur in 

nature, but for any particular interaction between two species, 
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one is likely to be of over-riding importance. 

2 Prey Population Becomes Infinitely Abundant  

Under certain sets of input conditions and constraints, 

mathematical models are apt to suggest results which are 

clearly absurd. So it is that some models of predation (e.g. 

Thompson, 1924) predict that the prey population can become 

infinitely abundant. 

There are a number of cases in which natural populations 

of animals have increased very rapidly after a reduction in 

the intensity of predation, notably the Mule Deer on the 

Kaibab plateau (Rasmussen, 1941; Leopold, 1943) and in northern 

• 
	Utah (Doman and Rasmussen, 1944), and many species of pest 

insect after insecticide applications have eradicated their 

natural enemies (Stern et al., 1959), or they have been 

introduced into areas where no natural enemies existed (Elton, 

1958; Lack, 1954). In all these cases, however, the increase 

in numbers has in no sense been infinite (the Mule Deer on 

Kaibab multiplied 25 fold in eighteen years), and it has 

generally been matched by an equally swift decline.• 

3 Both Populations Persist Indefinitely  

The ideal situation for biological control is that 

the predator and prey (pest) persist indefinitely; this will 

reduce the costs associated with continual rearing and release 

of natural enemies, and also reduce the necessity of expensive 

predator monitoring schemes and the possibility of pest out-

break following an un-noticed decline in predator abundance. 

The critical question is what level of pest abundance is 

necessary to maintain a permanent predator population ? If 

the level is too high biological control may be economically 
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to, 

• 

infeasible, and if it is very low there is a possibility that 

chance extinctions of either the predator or the pest may lead 

to subsequent pest outbreak. 

The picture is further complicated when annual crop 

situations are considered, since permanent interaction between 

the predator and prey is not possible (the crop does not exist 

for extensive periods of time). This is especially important 

when the crop is grown in rotation; in this case a predator 

species which overwintered in the soil below the crop would - 

emerge in the following year to discover a completely different . 

set of prey insects. Clearly, the only viable long-term 

permanence in predator-prey interaction on annual crops will 

occur when large, reliable pools of overwintering predators 

exist within reach of the crop area. Coupled with this, there 

must be a well-tuned synchrony between predator immigration 

and prey abundance within the crop (Chapters III and IV). 

The problem in applying most predator-prey models to the 

biological control situation is that they tend to consider 

permanent predation in a single area, while the applied 

situation demands a treatment of discrete predation periods 

in a succession of different areas. It is interesting to note 

that most of the successful applications of biological control 

have occurred with pests of perennial crops (see de Bach, 1964); 

situations to which the established predation models are more 

applicable. Whether the apparent failure of biological control 

in annual crops is a real indication of the improbability 

of the necessary conditions of pool-availability and synchrony, 

or simply reflects a lack of research, must remain to be seen. 

• 
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The Model  

The purpose of the following simulation model is to 

incorporate the ideas presented on the general behaviour of 

predator systems in tackling the question "What collection 

of biological properties in a predator species make it an 

ideal control agent for Aphis, fabae on beans ?" We know from 

• 
	 the model of aphid population growth (Chapter IV) the pattern 

of predation which will be most effective, and we also know 

the rate at which different aphid instars should be attacked. 

It is-  now necessary to investigate the relationship between 

the physiological parameters of the predator and its behav-

ioural responses to prey density, and to determine that 

combination of attributes which defines the optimal predator 

• 	 for this system. The processes which operate can be demonstrated 

by a flow diagram (Fig. 134), linking our inputs (the biolog-

ical attributes of the predator species) to the outputs (the 

pattern of predation defined in. Chapter IV). 

Unlike the models of plant growth and aphid population 

dynamics in the preceeding chapters, the predator model is 

not concerned with any particular species, but rather with 

defining the attributes of an hypothetical optimal predator. 

From these attributes it should be possible to rank actual 

biological control species in relation to their expected 

efficiency when designing field trials to assess their actual 

performance. Because all the biological attributes will be 

manipulated in assessing their effects upon the number of 

aphids attacked, there are no real data included in the model. 

All the graphs are intuitive, but they are constrained by 

the bounds of possibility; for example I shall not consider 

the potential of a species whose individuals can lay 500 eggs 

• 	 per day over extended periods, nor of one whose developmental 
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period is less than one week from egg to senescence. The 

construction of the model, however, and the means of inter-

pretation, are precisely the same as before (see Chapter I). 

The model is built in two parts. The first considers 

the effects of physiological and behavioural attributes of 

the species in determining the number of prey killed and the 

number of predators surviving, while the second is concerned 

with the effects of adult predator behaviour in determining 

the pattern of egg-laying between areas of different prey 

availability, 

1 Population Growth and the Number of Pre Attacked 

Consider the events occurring within a predator population 

during the course of one day. Let the number of predators of 

age I days be PREDS(I), and consider those processes acting 

to alter PREDS(I) within a period of one day (birth and 

immigration, and death and emigration). 

a) Rate of Development  

As with the aphid population in Chapter IV it is necessary 

to deal with the effects of air temperature on the rate of 

development of the insects from oviposition to adulthood. To 

do this, let NINST be the number of instars through which the 

predator must develop before becoming adult. Now if each instar 

lasts for a given number of day-degrees (Hughes, 1963; Chapter 

IV), we can calculate the number of day-degrees experienced 

by each age class of predator from birth by writing 

DAYDEG(I) = DAYDEG(I) + TEMP   (30) 

where TEMP is the mean temperature over the day in excess of 

the development threshold, So, for example, if a given predator 

could not develop below 6'C, and the mean temperature was 15'C 
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we should have TEMP = 15 - 6 = 9 day-degrees of development. 

When DAYDEG(I) exceeds a threshold we can say that the animal 

emerges from the egg to the first larval instar, and write 

IF (DAYDEG(I).GE.DEGTHR(K)) 

then INSTAR(I) = INSTAR(I) + 1 	00000 (31 ) 

• 
	 where INSTAR(I) is the instar in which PREDS(I) are disposed 

(taking a value of 1 for eggs and NINST+1 for adults). K is 

calculated before the conditional statement is evaluated as 

K = INSTAR(I). DEGTHR is a vector of accumulated day-degree 

thresholds marking the transition from one instar to the next. 

This procedure is repeated for each age class of predator, 

and we can compute the mean time for development from egg to 

adult by dividing the NINSTth value of DEGTHRiby the mean 

temperature over the period; i.e. 

DAYS = DEGTHR(NINST) / MEANT   (32) 

The duration of adult life can be specified as a constant 

(the approach adopted here), or allowed to be a function of 

temperature. In the latter case all PREDS(I) for which 

DAYDEG(I).GT.DEATH 

would be assumed to die of old age; DEATH is therefore the 

number of day-degrees from birth to death. 

b) Birth and Immigration  

The population of predators is initiated by allowing 

immigration to occur over a period of IMPER days. Before this 

PREDS(I) = 0 	for all I 

• and to simulate immigration we simply write 



.324. 

IF (IDAY.LE.IMPER) 

then PREDS(I) = PREDS(I) + PIMIG(I)   (33) 

for all ages I. PIMIG(I) is the number of I-day-old immigrants 

on the IDAYth day, and this can be constant or variable (its 

value is read into the model daily). PIMIG will usually have 

the value 0 for eggs and pupae and other immobile stages. 

Population increase also occurs by reproduction; each 

adult female is assumed to lay a certain number of eggs each 

day. If FEC(K) is the maximum potential egg-laying rate of 

an adult K days after its pupal moult, then the total number 

of eggs laid by the population will be given by multiplying 

the total number of fertilized females by their individual 

fecundity rates, and summing over all the reproductive age 

classes. If we let SEXR(I) be the fraction of PREDS(I) which 

are females, and let FERT(I) be the fraction of these females 

which have been successfully mated, then the maximum number 

of eggs which can be laid will be 

EGGS = EPREDS(I)*SEXR(I)*FERT(I)*FEC(K) 	(34) 

summing I over all the adult ages. In order to determine K, 

the age since becoming adult, we must note the day on which 

the PREDS(I) changed from being pupae to first-day-old adults. 

Recall we wrote 

IF (DAYDEG(I).GE.DEGTHR(K)) INSTAR(I)=INSTAR(I)+1 

so now we add 

IF (INSTAR(I).EQ.NINST+1) IAGEAD(I) = 

In other words, if the animal has just become adult (INSTAR = 
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NINST + 1) then the age it is today (I) is the age at which 

it became adult (IAGEAD(I)). With this information we can 

calculate the number of adult days already passed by writing 

= I - IAGEAD(I) 

and determine the fecundity of an adult of this age from FEC(K). 

•. 

	

	Several factors act to reduce the actual number of eggs 

laid to a level below the maximum potential. Principal amonst 

these in the present context are the effects of starvation 

brought about by functional responses to low prey availability 

(see above). This effect is incorporated by setting actual 

reproduction as a function of food shortage experienced by 

an I-day-old adult, STARVE(I). We now write 

EGGS = EGGS * F(STARVE(I))   (35) 

where EGGS is given by Equ. 34, and the function F(STARVE(I)) 

takes a form as shown in Fig. 132. In this way we can make 

a numerical response to prey availability by reducing birth 

rate in relation to starvation. 

c) Death and Emigration  

Only a fraction of the predators alive on one day will 

survive to the next, and the value of this fraction may well 

be a function of the age of the animal. Let SUV(I) be the 

fraction of the animals of age I days surviving to I+1, and 

let the mortality factors bringing about this reduction remain 

unspecified. In addition, however, let survival be a function 

of the degree of starvation, so that numerical responses 

occurring through the reduction of food intake can be simulated. 

To calculate the number of aphids in each age class we there-

fore write 
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PREDS(I) = PREDS(I)*SUV(I)*F(STARVE(I)) 

assuming that starvation-related mortality acts over and above 

basal survival rate. This assumption will only be unrealistic 

at very low predator densities, when it would be more likely 

that the basal survival rate would be increased, with most 

of the individuals which would have been parasitized, predated 

or accidentally killed being taken from those animals destined 

to die of starvation or related causes. 

Emigration can also act as a factor of numerical response. 

There is no need to consider causal mechanisms for emigration 

in as much detail as in Chapter IV since the predators we are 

considering do not undergo wing polymorphism as did the aphids. 

We shall simply state that the tendency of a particular 

instar of the predator to emigrate is related to the degree 

of starvation it experiences, and to its mobility (Fig. 133). 

For each age class, then, we write 

PREDS(I) = PREDS(I) - PEMIG(I) 	(36) 

where 	PEMIG(I) = PREDS (I) * F (INSTAR(I), STARVE(I)) 

d) Growth  

Let the dry weight of an individual in the age class 

PREDS(I) be SIZE(I) gms, and assume, as in Chapter IV, that 

growth occurs in a logistic fashion under optimal conditions 

until a maximum dry weight (SIZEFIAX) is achieved after the 

final moult. 

The growth occurring during one day will then be given 

by the difference equation 

SIZE(I) = SIZE(I) * EXP(GR * A)   (37) 
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where 	A = (SIZEMAX - SIZE(I)) / SIZEMAX 

and GR is the growth'rate (a constant representing the rate 

at which SIZE(I) approaches SIZEMAX). 

When the environment is sub-optimal (because of starvation 

or temperature extremes for example) growth will be reduced, 

and we model this by defining a parameter E to express relative 

environmental clemency. Plotting E against STARVE(I) and 

against air temperature (Figs. 135, 136) gives us an actual 

value_for. E by interpolation; 

E = El #E2 

and a new growth equation of 

SIZE(I) = SIZE(I) * EXP(GR * A * E)   (38) 

Certain of the life stages, of course, undergo no feeding 

or weight increase (eggs and pupae), while the weight of 

adults will fluctuate as they feed and lay eggs. Non-feeding 

instars are treated as follows; 

IF (INSTAR(I).EQ.1.0R.INSTAR(I).EQ.IPUPL) 

then E = 0 

where IPUPL is the number of the pupal instar (from egg = 1). 

With E = 0 these animals will not grow (Equ. 38). 

e) Feeding  

The model assumes that the active stages of the predator 

feed at a rate determined by their body size (Fig. 137),and 

that their food requirement can be expressed as a number of 

calories, FOOD(I). We write, therefore, 
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El 

STARVE 
Figure 135. The effect of starvation on the relative growth 
rate of juvenile predators 

Figure 136. The effect of air temperature on the relative 
growth rate of juvenile predators 
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Figure 137. The relationship between the body weight of a 
predator and the magnitude of its food requirement (in 
calories) required for satiation and maximum growth 



.329. 

IF (INSTAR(I).EQ.1.0R.INSTAR(I).EQ.IPUPL) GO TO 71 

FOOD(I) = F (SIZE(I))   (39) 

and to determine the number of aphids required, we divide 

FOOD(I) by the mean number of calories per aphid eaten by 

predators of SIZE(I). The number of aphids required for 

satiation, NKILL(I), is 

NKILL(I) = FOOD(I) / PREYSZ(I) 	00000 (40) 

and for the inactive stages we put FOOD(I) = NKILL(I) = O. 

f Functional Responses  

As we saw earlier, the actual number of prey eaten is often 

less than the number required for satiation. The functional 

responses which bring about this reduction can be due to low 

prey density, low relative prey density, or high predator 

density, and are caused by difficulty in finding prey, 

intraspecific food competition, and intraspecific interference 

respectively. To model the phenomenon we require three functions 

expressing the fraction of the food requirement which will be 

fulfilled under the prevailing conditions of predator and prey 

abundance. Let us call the potential realizable fractions of 

the food requirement PK, FK, and CK for the three functional 

responses, and plot their values as in Fig. 138. We calculate 

their levels by interpolation as 

PK = F (PREY) 

FK = F (PREY/(PREDS(I)*NKILL(I))) 

CK = F (PREDS(I)) 

and we can suggest that the actual fraction of the food 

requirement which is realized (ACTK) will be 
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Figure 138. The three functional responses included in the 
model. The y-axes show the fraction of the focd requirement 
which can be realized under given conditions 
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ACTK = min ( PK, CK, FK )   (41) 

We assume, in other words, that the three responses do not 

interact with one another which seems reasonable, since they 

are simply three sides of the same problem: how many of the 

food items required can be caught in the time available ? 

The actual number of prey which would be encountered in 

the absence of exploitation will now be given by 

ENC = ACTK * NKILL(I)   (42) 

and the total aphid-consuming potential of the Ith age class is 

KILL(I) = PBEDS(I) * ENC   (43) 

The next problem which must be considered is the way in 

which the predators exploit the prey; we must decide how the 

different age classes of predator compete with one another, 

and how the effects of prey depletion affect the number of 

aphids killed per predator age class. Competition is dealt 

with in a straightforward fashion in the model by assuming 

that the largest predators get 'first pick' of the aphids, 

and the smallest (the young first instars) the last, We assume, 

in other words, that the predator population exhibits ranked 

exclusive competition, with one age class eating its fill 

before the next age class feeds. This is a gross simplification 

of reality, of course, because all instars feed more or less 

continuously with one another, but its purpose is to mimic the 

relative responses of different age classes to food shortages. 

If we wish to consider a different competitive ranking (with, 

say, the youngest adults as the most competitive stage), we 

simply rearrange the order of computation. 

Prey exploitation is modelled by assuming random search 
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by the predators, and allowing that the actual number of aphids 

captured is 

-Na/N 
N. • = N ( 1 - e   (44) 
ha 

as explained in the Introduction. Transferring this to the 

• model notation we have 

P = KILL(I) 

P1 = PREY * ( 1. 	EXP( -P / PREY ))   (45) 

and the corrected number killed will be P1 rounded to the nearest 

integer; i.e. AKILL(I) = P1 + 0.5. The realized calorific 

value of the diet is then 

EATEN = AKILL(I) * PREYSZ(I)   (46) 

and the degree of starvation (used in all the numerical 

responses) can be calculated as 

number eaten 
STARVE(I) = 1 

number required:for-satiation 

AKILL(I) 
= 1 

• 
	 NKILL(I) * PREDS(I) 

-Determining the feeding for each of the day classes in 

decreasing order of size we write 

DO 7 J = 1, NAXAD 
I = MAXAD - J + 1 

compute values for AKILL(I) and STARVE(I) 

PREY = PREY - AKILL(I) 

7 CONTINUE 

which means that each succeeding age class experiences a lower 
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prey density. This implies that in cases where prey density 

borders on the limiting, the young may experience food shortage 

while the adults are satiated, and that the functional 

responses experienced by the young are always stronger than 

those experienced by the old. 

When all feeding life-stages have been considered we 

can compute the total number of prey killed by summing AKILL(I) 

over I to give us the principal output for the model. The 

prey population can then be considered; its dynamics are 

simulated very simply in this model, since a detailed appraisal 

has already been made (Chapter IV). Only two variables are 

included; the net reproductive rate, PREP, and the size of 

the prey refuge, REFUGE (see above). Only aphids in excess 

of the number in the refuge are available for predation, so 

the total prey population size PREY1 is given by adding the 

refuge to the prey left after predation; i.e. 

PREY1 = PREY + REFUGE 

PREY1 is then the reproductive prey population, which will 

increase in size to 

PREY1 = PREY1 * PREP 

in the time interval. At the beginning of the next day there 

will therefore be 

PREY = PREY1 - REFUGE 

aphids available to the predator population. If we wish to 

make the refuge proportional (Hassell and May, 1973; and above), 

we simply write 

REFUGE = PREY1 * HID 
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where HID would be the fraction of the prey population out of 

reach of the predators. 

Updating  

It now only remains to update the predator population 

attributes before simulating the events occurring during 

another day. This is done in precisely the same way as with 

the aphids in the previous chapter (see page 233). 

2 Spatial Effects  

We can use the preceeding model to determine the effects 

of the functional responses, and to investigate the relation-

ship between the reproductive biology of the predator and the 

numerical pattern of prey attacked. It is also of interest, 

however, to suggest the ways in which out optimal predator 

• might respond to patchy prey distributions, since it is known 

(Hassell, 1968, 1969) that several parasites aggregate in 

areas of high host density, and some coccinellid predators 

behave in a similar fashion (Hagen, 1966). 

We can model this process by assuming that the predators 

are mobile and can distinguish the desirability of different 

areas in terms of the availability of aphid prey within them. 

Another section to the model is therefore required; we need 

to consider the population dynamics of the prey in a number 

of areas, and the dispersive behaviour of the predators 

between these areas as relative prey density changes. 

Consider an area of crop, A, whose extent is defined by 

the behaviour of the adult of the predator species in question. 

Assume that any adult can effectively search the area A during 

the course of one day, and relate its pattern of oviposition 
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and feeding (if the adults do feed) to the prey abundances 

which it discovers. Now allow that the predator larvae are 

less mobile than the adults, and define an area B which can 

be searched by a feeding larva in one day. The area A can now 

be divided into trsub-areas where 

= A / B 

and 	A = 

It is known that the larvae of many predator species are 

more mobile when prey availability is low (Wellington, 1957; 

Smith, 1966), so we can suggest that 

= f (PREY ) 
i 

where the function might take the form shown in Fig. 139. For 

the moment, however, let us consider the case in which all 

the sub-areas B are the same size, an assumption equivalent 

to defining the extent of the B by the maximum searching rate 

of the larvae. 

Now for each area B let there be a distinct prey 

population, and a distinct population of immature predators, 

including the egg and pupal stages (if they occur), represented 

by a unique model like that outlined in Section 1, above. In 

addition, let there be a population of adult predators which 

is confined to the area A but which can move freely amongst 

the areas B . Assume that within any B the aphids are dist-

ributed at random, and that differences in prey availability 

are appreciable only between the sub-areas. 

Let the total number of adult predators of age K days be 

PN(K). Their individual dry weight can then be represented by 
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Figure 139. The relationship between the area searched by 
larval predators (Bi) and mean prey availability 

N PROP PREY a 

Figure 140. Two relationships between the proportion of the 
prey population in a sub-area and the proportion of predators 
attracted 
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• 

• 

SIZEAD(K), which changes as some function of the number of 

eggs laid, and the number of prey eaten (if any). Animals 

enter the adult section of the model in two distinct ways. 

Initially, all recruitment is by immigration from adjacent 

areas - from overwintering sites for example - but later 

recruits enter the adult stage from the larval sub-populations 

which originated from the eggs of the immigrants, 

The object of the dispersal section of the model is to 

distribute oviposition and feeding over the areas B in relation 

to the relative availability of prey in each sub-areae.So let 

the distribution of aphid abundances be PREY(I), where I is 

the sub-area (I = 1,2,...,N). The total prey available in the 

area A is therefore 
N. 

TOTPREY = E PREY(I) 

1 

and the mean availability per sub-area 

AM = TOTPREY / N 

Now, as discussed earlier, many predators lay their eggs in 

relation to prey_availability such that at low prey densities 

the eggs are relatively aggregated in areas of higher prey 

density, while at high overall densities the eggs are more 

evenly distributed (Hassell, 1968, his Fig. 2; Hassell and May, 

1973). 

This dispersive behaviour can be most clearly understood 

by plotting the proportion of the adult predator population 

in a particular sub-area against the proportion of the total 

prey in the sub-area. Fig. 140 shows two simple cases; the 

first, in which predators are distributed independently of 

relative prey density, so that given N sub-areas the fraction 

(48) 
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of predators fl is 1/N for all i, and the second case which 

assumes that the predators respond directly to relative prey 

density so 0 	= a for all i. We might expect that the first 

case would be approximated at very high prey densities, and 

the second when prey were rather scarce. The model is not 

particularly general in this form, and we really require a 

• 	 continuous function describing the degree to which the 

predators aggregate in terms of the mean density over all the 

sub-areas (AM). To do this, we can make 0 a curvilinear 

function of a by creating another parameter y to describe 

the degree of aggregation; we then write 

1 

    

0004,0 (49) 

• 
z  y . a 

a 
i 

in which the term 1/EiLj normalizes the values of 0 so that 

= I (Ea = 1 by definition). This equation shows that when 

A = 1 then 0 = a as before, and when 12 = 0, a A 
 = 1 so 

fl 	= 1/N again, as shown in Fig. 140. The curve of 3 on 

a. for values of A greater than 1 (p = 2) and less than 1 

(y = 0.5) are shown in Fig. 141, and correspond to aggregation 

greater than and less than curve 2 in Fig. 140. 

From Fig. 141 it is clear that as p  increases, so the 

proportion of the predator population in relatively high prey 

density areas increases. The limit, when p  is infinitely large 

means that all predators aggregate in the one sub-area of 

highest prey density..In order to mimic the effects reported 

by Hassell (1968) we need only plot the value of the aggregation 

index A against mean overall prey density (AM); this is done 

in Fig. 142. 

On any given day, we calculate a for all the sub-areas; 
• 
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Figure 141. The relationship between the proportion of prey 
in an area ( ) and the proportion of predators entering the 
area ( ) when the aggregation coefficient is greater and less 
than 1. When the proportion of prey is 1/N the proportion of 
predators will also be 1/N. 

LOW 	
MEAN PREY 
	HIGH 

Figure 142. The relationship between predator aggregation 
and mean prey density employed to explain Hassell's observations 
(see text). Predators are assumed here to aggregate strongly 
at low prey densities 
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ALPHA(I) = PREY(I) / TOTPREY   (50) 

and compute mean prey density 

AM = TOTPREY / N   (51) 

Then we obtain a value of log to,  by interpolation from Fig. 142; 
10 

• 	
ULOG = F(AM)  	(52) 

and derive p  as 

U = 10 ** ULOG 	(10 to the power ULOG) 	(53) 

For all sub-areas we can now compute 	using Equ. 49, 
i 

• BETA(I) = SIGALPH * ALPHA(I) ** U 	0,0 .0 (54 ) 

1 
where 	SIGALPH = 

    

(55) 

    

EALPHA(I) ** U 

  

The adult predators are then distributed over the sub-areas 

in relation to the value of BETA(I). When predators are scarce, 

it is unrealistic to distribute the animals themselves over 

the sub-areas, because there may be more areas than predators. 

To avoid this error the total egg-laying potential of the adults . 

is calculated (and their total food requirement) and the eggs, 

rather than the laying adults, are distributed by BETA(I). 

Each day a certain number of adults emerge from the pupal 

stage within each area, and these numbers are recruited to 

the mobile adult population after a time-lag IDISP (the 

threshold time in days between emerging from the pupal moult 

and initiating oviposition). Within the predator sub-models 

we therefore write the number of emigrating adults as 

EMIGAD = PREDS(K) 

where 	K = IAGEAD(I) + IDISP 



and we sum this number over all sub-areas to obtain the total 

number of adult recruits; 

	

ANEW = lEENIGAD(I)   (56) 

1 

The IDISPth age class of the adult population is then set to 

ANEW, and all the other age classes are shifted up one day. 

Since the adult recruits have emerged from heterogeneous 

sub-areas, they will differ in size even though they are the 

same age-since-becoming-adult. It will be necessary, therefore, 

to calculate the mean size of the recruits by writing 

EPREDS(I) * SIZE(I) 
ADSIZE - 	 

ANEW 

so we can set the IDISPth age class of adults to this size 

SIZEAD(IDISP) = ADSIZE 

PN(IDISP) = ANEW 
• 

The total number of eggs produced by the mobile adult 

population is computed just as before 

• EGGS =EPN(K)*SEXR(K)*FERT(K)*FEC(J)*F(STAFiVE(K)) 

	

K=IDISP   (58) 

where J is now given by K - IDISP. The fraction of these eggs 

laid in the Ith sub-area is BETA(I), and the actual number 

	

ELAY(I) = EGGS * BETA(I)   (59) 

so that on the next day, the first age class of eggs in the 

Ith area is set. to ELAY(I) 

• PREDS(1) = ELAY(I) 

• 

• (57 ) 
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In this way we can simulate the third aspect of the 

numerical response through dispersal; eggs are laid in relation 

to mean prey density (as it determines the value of the 

aggregation index /K) and relative prey density (0.. ). 

In those cases when we wish to observe the effect of 

adult feeding as well as oviposition behaviour the model must 

• 	 be a little more complex. In the population growth model we set 

food requirement as a function of body size, FOOD(K) being 

the number of calories required for satiation by each individual 

of age K days. We can do precisely the same for adult feeding 

except that in this case we are calculating the number of prey 

required by the adult population from the entire prey population, 

rather than from one of the sub-populations as was the case 

before. It is reasonable to assume that adult feeding will bear 

a similar relation to prey availability as did oviposition 

behaviour, so having summed the food demand over all adult 

ages 

KILL(K) = FOOD(K) / PREYSZ(K) 

TKILL = EKILL(K) 

we can distribute this potential attack over the sub-areas 

by writing 

ATTACK(I) = TKILL * BETA(I)   (60) 

This potential attack is then used in the individual 

models to calculate functional responses and exploitation 

effects (Section f), and we arrive eventually at an actual 

number killed from which it is possible to calculate the 

degree of starvation experienced by those adult predators 

which chose to feed in each sub-area. Since we have assumed 
• 	

that the adults distribute themselves over prey areas in the 
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same way at all ages, we can only arrive at a mean figure for 

the starvation of the adults from a particular sub-area. At 

the end of the day, the mean starvation of the whole adult 

population earl be calculated by weighting the actual starvation 

experienced by each animal from a sub-area by the number of 

animals which fed in the sub-area. If STARVE(I) is the actual 

starvation for an adult in the Ith area, to which BETA(I) of 

the predators moved, the mean adult starvation will be 

STVMEN = 	STARVE(I) * BETA(I)   (61) 

and this value can be used in calculating their fecundity 

and survival on the next day. 

In short, the two models are run together so that the 

population growth section operates for each sub-area separately 

and deals with the animals only up to adult age, IDISP. From 

the population models a number of adults emerge which then 

form a single population unit capable of ranging over all the 

sub-areas. A prey population is simulated within each sub-area; 

this is decreased by the feeding of those larvae confined to 

its sub-area, and by the feeding of those adults which spend 

the day in the sub-area. The sub-areas can be made hetero-

geneous in three ways. First, the initial distribution of prey 

can be non-regular so that some areas contain more aphids than 

others; second, the rate of aphid increase (PREP) can be set 

to different levels for each sub-area, so that we can assess 

the effects of patchy environmental quality for the prey 

species; third, we can start the simulation with non-regular 

distributions of predator eggs, and examine the ability of the 

model to simulate the recovery of prey equitability between 

the areas. 
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Running The Model  

A) The Population Model  

1 Functional Responses  

The functional responses to prey density, relative prey 

density, and predator density are shown in Fig. 138, and they 

reflect the fraction of the dietary requirement which can be 

satisfied under a given set of conditions. We can now run the 

model using different shapes and combinations of the three 

responses to investigate how they affect the number of prey 

attacked. At first we shall consider their operation in the 

absence of any numerical responses, so in the early runs 

• 
	 predator density is not affected by the number of aphidsc; 

a) Response to Prey Density 

Ih all these tests we shall make the response rather 

extreme so that its effects on the output (number of prey, and 

number of prey killed) are accentuated. For this run we set 

the other two functional responses to unity (so they have no 

effect), and set PK = F(PREY) as in Fig. 138. Now, running 

the model for 50 days we can plot the number of prey and the 

number of prey consumed. A refuge of 5000 aphids has been 

assumed throughout, and since no aphids are eaten below 

densities of 6000 in excess of the refuge (Fig. 138), we should 

expect the system to come to equilibrium at about 11000 prey 

individuals, with a daily consumption equal to the reproduction 

from a stock of this size (i.e. (PREP - 1) * 11000). The 

output is plotted in Fig. 143. 

The curve of prey consumed shows a characteristic lag 

behind the curve of prey numbers (about three days) because 
• 

the response to prey density is not completely immediate. There 
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Figure 143. The patterns of aphid abundance and aphid 
consumption observed when the functional response to prey 
density is included in the model 
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are a number of reasons for this; first, the age structure 

of the predator population changes with time and so, even 

though the predators continue to rise in numbers, the rate 

at which feeding increases is variable. Second, the shape of 

the functional response curve has not been drawn so as to 

compensate perfectly for changes in prey availability; this 

would not be possible in any case, so long as the age structure 

of the predator population varies. 

The prey population is stabilized, however, and at the 

level we predicted (about 11,000 individuals). The functional 

response to prey density is seen to be highly stabilizing, 

but this effect is dependent upon the curve (Fig. 138) bi- 

secting the PREY axis with PREY greater than 0. If feeding is 

not curtailed before prey density reaches zero then the 

interaction will be unstable, and the prey population will 

become extinct. We must also remember that no numerical responses 

are considered at the moment, and it would take a very 

starvation-tolerant predator species to follow the feeding 

curve shown in Fig. 143 without fluctuating in abundance. 

b) Response to Relative Prey Density  

In building the model we made the assumption that below 

a certain threshold in the number of prey per predator, intra-

specific rood competition would begin to limit the rate of 

food intake. In Fig. 138 we graphed the fraction of the diet 

realized against the ratio or prey to reeding predators so 

that above 100 prey per predator reeding is unaffected, but 

that with only 20 prey per predator all the animal's time is 

spent in chasing other predators, and no aphids at all are 

caught. Again, an extreme example has been chosen to highlight 
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the effects of the response; we would not expect a real predator 

species to completely curtail feeding because of intraspeciric 

competition. 

As beror6, the model is run ror 50 days and the number of 

prey, and the number of prey consumed per day are plotted as 

output (rig..144). The first and most obvious difference with 

• 	this functional response is that the peak prey density reached 

is five times higher than that reached with the prey density 

response (200 as compared to 40 thousand). This is because 

absolute prey density does not affect the number of aphids 

killed; in fact, the number of prey killed falls for the first 

15 days, while prey numbers increase continually over this 

period. The response depends upon the rate at which the predator • 
population increases relative to the aphids, and, without any 

numerical responses in the model, this rate will vary, and the 

response will be poorly coupled to prey density. 

The second point to emerge is that this response does not 

stabilize prey density to the same extent as did the first 

response. If the time axes of the graphs were extended further 

large peaks in prey numbers would be observed. This behaviour 

is brought about by the fact that with less than 20 prey per 

predatOr no feeding can occur, and so the predator population 

has to wait until prey numbers have built up to a sufficient 

level so that the ratio of prey per predator again exceeds 20. 

Since, however, the predator population is increasing 

continuously (there being no numerical response) this time 

period in which no feeding occurs can be quite prolonged 

(indeed, if the predator population increased rapidly enough 

there would never be any more feeding, as the ratio of prey 

per predator would decrease continuously). The key point in 

• 	
considering this functional response is the level to which 
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Figure 144. The patterns of aphid abundance and aphid 
consumption observed when the functional response to relative 
prey density is included in the model 
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it could actually reduce food intake at extreme relative 

prey shortages. 

c) Response to Predator Density  

The final functional response concerns intraspecific 

interference (Hassell, 1971), during which feeding time is 

wasted in avoiding (or following) intraspecific contacts. 

To assess the effects of this response on the behaviour of 

the model populations we can plot relative food intake against 

the number of predators of a given age, PEEDS(I) as in Fig. 

138. At most times in the predator population cycle the 

number in any age class will be proportional to the total 

number in the population, and the specific assumption that 

predators only interfere with their contemporaries is not 

limiting to the generality of the model. 

As we might expect, this response is highly destabilizing 

when there are no numerical responses associated with the 

starvation brought about by mutual interference. As predator 

density increases, the number of prey killed per predator falls 

off until no prey are consumed. But the density of predators 

continues to incease, and so the prey multiply unimpeded 

(Figs. 145, 146). 

When these strong functional responses are run in comb-

ination we observe the following. The response to predator 

numbers through interference is of over-riding importance 

in combination with any other, because predator numbers 

increase indefinitely without numerical responses. The 

combination between the prey density and relative prey density 

responses is more interesting. For the early part of the 

interaction the relative prey density response is over-riding, 

but after the population has been reduced to low levels the 
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Figure•145. The pattern of aphid abundance when the functional 
response to predator density is included in the model 

time 
Figure 146. The pattern of aphid consumption observed when 
the functional response to predator density is included 

50 
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absolute prey density response takes over. The relative prey 

density response stops the absolute response from acting to 

its full stabilizing potential, and prey numbers rise to 

much higher leirels in consequence (like Fig. 144). In order 

to observe these effects more realistically, we must move on 

to consider the numerical responses of the predator population 

to starvation. 

2 Numerical Responses  

The model assumes that the degree of starvation experienced 

by an individual predator affects its survival rate, its 

reproductive rate (if it is an adult), and its emigration 

rate. I shall consider the first two effects here, and deal 

with dispersal when running the adult dispersal model (below). 

Since the numerical responses all operate as functions of 

starvation, and there can be no starvation without functional 

responses, it is not possible to observe the effects of the 

numerical responses in isolation. 

a) Effects on Survival Rate  

If we make the probability that an individual will survive 

from one day to the next dependent upon the amount of food the 

animal took in over the previous day (or some more extended 

period) we can employ a graph of survival under starvation like 

Fig. 131. Because adults feed first in the intraspecific 

competition for aphids (see above), they will starve relatively 

less than the juveniles; similarly, because there tend to be 

more juveniles than adults at most stages in population 

development, the reduced survival of young predators will amount 

to a greater net reduction in predator numbers than would the 

application of the same survival rate to the older instars. 
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When both the functional responses to prey and to relative 

prey densities contribute to the starvation mortality we 

obtain output as in Fig. 147. The integral of the aphid 

abundance curve is much lower than was the case when these 

functional responses were run without their effect on survival 

(see Fig. 144), but there are still more prey than occurred 

with the density-dependent functional response alone (Fig. 143). 

Clearly the numerical response in survival rate acts to 

reduce aphid numbers, but it also tends to reduce the period 

of prey oscillation. In Fig. 144 there is only one prey cycle 

per 50 days, while in Fig. 147 there are two. It is also 

apparent from the latter figure that the variations in aphid 

numbers are being damped; they are increased in frequency and 

decreased in apmlitude compared to the curves with no numerical 

response. The curve of prey consumed in Fig. 147 resembles 

that in Fig. 143 (the prey density response) far more than 

it resembles Fig. 144 (the relative prey density response). 

b) Effects on Birth Rate  

We have assumed that the number of eggs produced by an 

adult predator in a day depends upon the number of aphids she 

has eaten, It is therefore possible to plot relative egg-

laying rate as a function of STARVE(I), and to obtain 

particular values by interpolation from Fig. 132. The actual 

number of eggs laid (Equ. 34) is then reduced by this fraction. 

Because the response has been made very strong, and we 

have allowed that no eggs at all are laid by unfed females, 

we would expect prey numbers to be rather well regulated, and 

this is what we observe (Fig. 148). After about 30 days 

numbers remain very stable about their basal level (determined 

by the size of the refuge, and the cut-off point of the prey- 
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time 
Figure 147. The number of aphids and the number of aphids eaten 
plotted against time since predator immigration. The numerical 
response in survival rate alone is included 
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Figure 148. The number of aphids and the number of aphids 
eaten plotted against time since predator immigration. 
The numerical response in birth rate alone is included 
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response curve), and no more peaks in numbers occur. The 

shape of the feeding curve in Fig. 148 resembles the shape 

of that observed when the relative prey density response acted 

alone (Fig. 144), and so we might suggest that under these 

conditions the relative response was more important than 

the response to absolute prey density. Numerical response in 

birth rate would therefore appear to be a potent agency in 

both reducing prey numbers and in maintaining them at a 

constant low level. We can not compare the outcome directly 

with the survival response, because the two effects act with 

different intensities; it would be rather unrealistic to 

assume that all the predators in a particular age class died 

after missing only one day's feeding. The interesting question 

to emerge is whether the response to relative prey density 

is most important when births are limited, or when a complete 

(i.e. 100%) numerical response is allowed ? To test this we 

can run the model with both birth and survival rates dependent 

on feeding success. 

c) Effects on Both Survival and Reproduction  

Figure 149 plots the pattern of prey numbers and the 

pattern of prey consumption when both survival and birth rate 

are made dependent upon starvation. It is quite clear that the 

two curves follow almost exactly the trends shown in Fig. 147, 

and that, therefore, the responses in survival rate tend to 

be of over-riding influence. The peak numbers reached with 

both responses are only fractionally higher than with the 

survival response alone (67,112 and 66,726). In retrospect, 

the reasons for this are clear; first, increases in mortality 

act immediately and so the responses in feeding rate follow 

more closely on changes in food availability, and second, 
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Figure 149. The number of aphids and the number of aphids 
eaten plotted against time since predator immigration. 
Numerical responses in both survival and reproductive rates 
are included 
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all animals can die of starvation (except eggs and pupae, of 

course), while only adults can reproduce. This means that 

the birth response acts on a smaller fraction of the feeding 

population than the survival response and is consequently less 

effective at stabilizing numbers of prey. 

As with the survival response alone, the prey population 

is reduced by a series of asymmetrical damped oscillations, 

and predator numbers follow a similar pattern but with a 

slight time-lag. 

Duration of Non-feeding Periods 

A predator species which spends the greater part of its 

life cycle as an egg or a pupa will tend to be less effective 

in pest control than a predator with very brief non-feeding 

stages. There are two reasons for this; first, the shorter the 

dormant periods, the greater the proportion of the predator 

population which is actively feeding, and second, with brief 

dormant phases development to adulthood can be more rapid, 

which allows for quicker build-up in predator numbers. To 

observe the effects of these two processes I have made three 

runs using different durations of the pupal stage, running 

the simulation for 50 days at 20'C so that the pupal stages 

lasted 3, 7, and 14 days respectively. The pattern of prey 
abundance with these three treatments is plotted in Fig. 150. 

For the first 20 days the functional and numerical 

responses were of over-riding importance as the two populations 

built up towards a more stable age distribution. Once the 

initial population adjustment had occurred it became clear 

that the stability of aphid numbers was very largely dependent 

upon the duration of the predator's pupal stage. As the 

duration decreased, so the frequency of prey oscillations, and 
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Figure 150. The pattern of aphid abundance when the duration 
of the pupal stage was set to 3, 7, or 14 days. Stability 
appears to increase as the duration of the stage decreases. 
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the amplitude of the fluctuations decreased in turn. The 

same effects would be observed if the egg duration were reduced 

but the magnitude would be diminished somewhat by the fact 

that a lower proportion of eggs survive to become reproductive. 

4 Age-specific Fecundity  

The model runs on the assumption that the number of eggs 

laid by a female predator on a given day is a function of her 

age since becoming adult. There are numerous patterns of egg-

laying which we can investigate, but, since the runs performed 

to date have shown the importance of a relatively stable age 

distribution (with no periods when no prey are consumed), I 

shall limit consideration to those patterns of oviposition 

which occur over an extended period. It is quite clear that 

if every female lays all her eggs on one day, and these eggs 

develop in synchrony, the age-structure of the population will 

be completely discrete, with only one instar present at any 

given time; when the population pupates all pest control 

activity will cease and the aphid can multiply unimpeded. 

In Fig. 151 are shown three patterns of age-specific 

fecundity; constant,'decreasing, and increasing with age. They 

all have the same integral of 300 eggs per female over her 

reproductive life-span. In the model, however, the curve 

which allows increasing fecundity with age will tend to give a 

lower total number of eggs per generation, because each female 

has a lower probability of reaching the age of maximum fecundity. 

The pattern of prey abundance resulting from the inclusion of 

each of these three fecundity vectors in turn is shown in 

Fig. 1520 

The pattern of age-specific fecundity did affect the peak 

number of aphids in the initial phase of increase, with the 

L.  
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Figure 151. Three patterns of age-specific fecundity tested 
in the model. All have the same integral of 300 eggs/life 
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Figure 152. The pattern of aphid abundance resulting from the 
inclusion of each of the three fecundity vectors 
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increasing vector bringing about the greatest population 

reduction. This is due to a reduction in predator numbers in 

the early stages, and hence to a lessening of intraspecific 

competition and a consequent rise in the number of prey con-

sumed. After thel)rey had been reduced to a low level, however, 

the situation was changed, and the more young produced by 

younger predators, the lower the fluctuations in aphid abundance. 

From the last two sections it has become plain that the 

degree of control exerted by a predator species can be affected 

by almost every aspect of the animal's reproductive and 

developmental biology, as well as by the more frequently 

discussed attributes of its functional and numerical responses; 

its 'density-dependent properties'. Even with the very strong 

responses incorporated in these runs of the model, there is 

sufficient variation in prey abundance brought about by the 

duration of the non-feeding stages, and by the shape of the 

fecundity curve, to mean the difference between successful 

control and pest outbreak (Figs. 150 and 152). 

B) The Adult Dispersal Model  

If we now take the population model and apply it to five 

areas, each with its own independent prey population, we can 

observe the effects of adult dispersive behaviour on the 

pattern of pest abundance in the different areas. We can 

investigate how heterogeneity in initial prey densities affects 

the pattern of predator attack, and how non-regular predator 

distributions affect the outcome. It will also be possible to 

test the stabilizing effects of predator aggregation reported 

by Hassell and May (1973) when the aggregation index is a 

variable determined by mean prey density (see above). The 

functional responses are included as before, but the inter- 
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ference response is set a very low level because of its 

strong destabilizing effects (Section A, 1c). Adults are 

assumed to leave the sub-areas in which they developed after 

four days of adult life (IDISP = 4), and to spend the remainder 

of their days in the mobile adult population which is confined 

to the total area, A. Only adult emigration from the system 

is permitted, this occurring when prey density becomes uniformly 

low. 

In order to check that the model has not been inadvert-

ently altered by the inclusion of adult dispersal a control 

run was made using the same initial aphid density as had been 

employed previously (35,000). All five prey sub-areas were 

similar, therefore, in all respects, and so there should be no 

predator aggregation (since there are no grounds for.discrim-

ination). In Fig. 153 the pattern of aphid abundance is plotted 

on a log scale against time since predator immigration; the 
10 

output matches that shown in Fig. - 152, and the prey populations 

in each sub-area are equally abundant. We can therefore conclude 

that the model behaves as expected.. 

The initial intention of this part of the model was to 

investigate the relationship between the degree of predator 

aggregation and the level and constancy in prey numbers 

resulting, It was also hoped that the effect reported by 

Hassell (1968), in which aggregation decreased as mean prey 

density increased, could be mimicked. Since the value ofia is 

an indication of the extent to which adult predators prefer to 

feed and ovipOsit in areas of high relative prey availability, 

Hassell's observations were equivalent to the assumption that 

i/A decreased as mean prey density increased. As I had no idea 

which values of /'( should match with a particular level of 

aphid abundance an arbitrary relationship was drawn as a 
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Figure 153. Aphid abundance in five areas against time since 
predator immigration. All areas have the same number of aphids 
in this control run. 

prey 
	 10

5 

Figure 154, Two test patterns of the relationship between 
predator aggregation (u) and mean prey density. Both assume 
that predators are more aggregated at low aphid abundances. 
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starting point (Fig. 154 A). 

The first tests which can be made assess the effects of 

initial prey densities; three sets of conditions were tested 

with (35, 25, 15, 5, 0.5), (20, 5, 1, 0.5, 0.1) and (10, 9, 

8, 7, 6) thousand aphids in sub-areas one to five respectively. 

The pattern of prey numbers with these initial conditions 

is shown in Fig. 155. They are, without exception, both more 

unstable and show higher levels of pest abundance than the 

control in which aggregation is not operating; see Fig. 153. 

There -is rather little to choose between the three runs in 

deciding on the relationship between stability and initial 

prey distribution. 

The aggregation response employed is clearly destabilizing; 

we must determine now whether it was too intense (i.e. gave 

too extreme a range of values for /) or too weak. Since the 

initial range was from 1000 to 0.001 I assumed that the response 

was too intense, and replaced the upper and lower limits on 

by 10 and 0.1 respectively (Fig. 154 B). With the same three 

initial prey distributions as before, we now obtain the output 

graphed in Fig. 156 Stability is greater than before, and 

can be seen to decrease as the difference between the initial 

prey densities increases. 

The general outcome therefore seems to be that the 

aggregation response is destabilizing when made a decreasing 

function of mean prey density (Fig 154); additionally, stability 

of aphid numbers increases with the homogeneity of initial 

aphid distribution. Perhaps predator aggregation would be more 

effective in terms of pest control if it were a constant ? 

Setting /A equal to 6 and running the three initial prey 

conditions gives us Fig. 157, in which stability has again 

improved, and the most unstable case still occurs with the 
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Figure 155. The pattern of aphid abundance in five areas with 
three initial prey distributions (see text). Aggregation a 
strongly decreasing function of prey density 
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Figure 156. The pattern of aphid abundance in five areas with 
three initial prey distributions. Aggregation a weakly 
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Figure 157. The pattern of aphid abundance in five areas with 
three initial prey distributions. Aggregation constant and 
high at 6.0 
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widest difference in initial prey density. 

Assuming still that rt is time invariant, we can set it to 

a lower value and re-run the model (/A = 0.1); the results are 

shown in Fig. 158. In this case all the runs are strongly stab-

ilized, and after 100 days there is little difference in prey 

abundance between sub-areas. The final abundance is related 

to the initial prey distribution, however, 

Apparently stability can be increased by removing the 

prey-density effects on/A, by lowering the mean level of /v. 

(from 6 to 0.1), and by starting with an homogeneous prey 

distribution. These conclusions differ from those of Hassell 

and May (1973) in many respects (see Discussion). Finally, 

we can test the response of the model to the inverse of our 

original assumption; namely that predator aggregation /4 

increases as mean prey density increases. We can use a reversed 

image of Fig. 154 B to calculate/A at each prey density. From 

Fig, 159 it appears that the assumption of increasing predator 

aggregation with increasing mean prey density is highly 

stabilizing. The mean values of/./- during these runs were 

about 0.3, 0.25 and 0.2 respectively; this is what we might 

expect, since the more heterogeneous case again gave rise to 

the highest mean prey abundances. 

Discussion  

. My purpose in this Chapter has been to present a model of 

predation which considers the functional and numerical 

responses of a predator population with overlapping generations, 

and with variable synchrony to its prey. This contrasts with 

the existing models, which tend to treat parasitism rather 

than predation, and to deal with discrete generations of host 

and parasite. The model is designed to investigate how each of 
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Figure 158. The pattern of aphid abundance in five areas with 
three initial prey distributions. Aggregation constant and 
low at 0.1 
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Figure 159. The pattern of aphid abundance in five areas with 
three initial prey distributions. Aggregation an increasing 
function of mean prey density 
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the biological attributes of potentially useful pest control 

predators affects both the number and the time-pattern of 

prey killed. The optimal pattern, and the ideal age-selectivity 

have been specified by running the aphid population model 

described in Chapter IV. 

Predation in biological control, especially of pests of 

annual crops grown in rotation, is somewhat removed from the 

idealized situation of a simulation model. By integrating all 

the available information on potential predator species, how-' 

ever, the model can form a basis for choosing between candidates, 

even if it can not predict with great precision the actual level 

to which a given species.will reduce aphid numbers in a 

particular situation. The latter type of information is best 

gained by direct experimentation, but the model can help in 

this too, by showing which types of experiment are most 

likely to be rewarding. 

1 Functional Responses 

I have used three functional responses which between them 

tend, under most circumstances, to reduce the intake of prey 

per predator below the optimum required for growth and reprod-

uction. Two of the responses (to absolute and to relative 

prey density) tend to stabilize the interaction between the 

predator and aphid numbers, and, depending on the density at 

which prey consumption is minimal, can reduce pest numbers to 

a level at which no economic loss of crop would occur. 

The third functional response concerns the time wasted 

by individual predators in what Hassell (1971) has called 

mutual interference. This response is destabilizing because 

prey intake tends to decrease as predator numbers increase. 

If, then, the high predator numbers were brought about by 
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increasing prey density, the prey will continue to multiply, 

but at an increasing rate (since fewer and fewer are being 

eaten). The only time at which this response could act to 

stabilize the interaction would be when prey were scarce and 

predators were very abundant. In this case, however, the 

functional response to relative prey density would act to 

decrease the feeding rate, and prey numbers could recover. 

This observation is in direct contrast to the observations 

of Hassell and Rogers (1972) and Hassell and May (1973) where 

it was shown that mutual interference was stabilizing under 

most conditions. This discrepancy only highlights the differ-

ences between models of discrete generations with very 

simple numerical responses, and simulations of overlapping 

generations with complex numerical responses. It is clear 

that the indiscriminate incorporation of apparently robust 

theories at one level into models at another level should be 

carefully avoided. This serves to highlight the point (Chapter 

I) that models should not be used to tackle questions they 

were not specifically designed to answer. 

2 Numerical Responses  

The functional responses, by reducing the aphid intake 

of individual predators, act to produce a state of starvation 

which varies in intensity between the different age classes 

of predators (because they are of different sizes, and compete 

for prey with different success). This starvation in turn 

has been assumed to affect the mortality, birth and emigration 

rates; it is responsible for determining the magnitude of the 

numerical response. The three effects act in different ways 

upon subsequent prey population change. The survival response 

can be very important, and strongly stabilizing, depending 
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on the degree to which starvation affects mortality. It also 

acts immediately, since an animal dying today can not feed 

tomorrow, but the synchrony of the response does depend upon 

the number of days of starvation necessary to increase the 

death rate. 

The dispersal response can also act immediately, so that 

adult predators will leave the area if they can not find 

sufficient prey. Redispersal is also associated, however, 

with changes in the pattern of oviposition (see below), and 

the response to decreases in fecundity can only act after a 

time lag. If a starved female lays fewer eggs today, the 

predator population will not exert a reduced feeding pressure 

on the aphids until these eggs hatch into feeding larvae. The 

effectiveness of a numerical response in birth rate will 

therefore depend on the length of the egg stage, as well as on 

the extent to which fecundity is affected by starvation. The 

response can clearly stabilize prey numbers (Fig. 148) but it 

tends to be less effective than the survival response, simply 

because the latter acts on the whole population, while only 

the adults lay eggs. Additionally, because adults are assumed 

to be superior in competition for prey, they tend to starve 

less than the immature stages, and hence the birth response 

tends to be under-compensatory. 

3 Adult Dispersive Behaviour 

The ability of adult predators to discriminate between 

areas of different prey availability has been shown by several 

authors (Hagen, 1966; Hassell, 1968). Hassell and May (1973) 

built a discrete-generation model of the interaction between 

a parasite and its host population, and investigated the effects 

of changing the value of the aggregation coefficient itA. on the 



stability of the system. They came to four conclusions; 

a) that increasing/A increased stability: b) that stability 

increases as the heterogeneity of initial prey distribution 

increases (they wrote "when there are more low host density 

regions"): c) that stability exists in a wider range of 

conditions for Ax about 0.5 than at other levels: and d) that 

stability breaks down as the reproductive rate of the prey 

increases. 

It is interesting that in the first two conclusions 

the present model produces the opposite results (i.e, decr-

easing/A increases stability; compare Figs. 157 and 158; and 

increasing heterogeneity in initial prey distributions can 

decrease stability; see Fig. 157), while both models agree on 

'the last two points. This further emphasizes the difference 

between discrete and overlapping generation models, and, 

perhaps to a lesser extent, between models of predator and 

parasitoid attack. 

The results obtained in the present model can be explained 

in terms of the time lag between oviposition and the onset 

of feeding. When the aggregation response is very strong, 

large numbers of predators are attracted to the regions of 

high relative prey density, where they feed and lay many eggs. 

On the next day, however, the same areas will still be 

attractive because the eggs laid by the adults can not affect 

prey numbers. In this way the same area can remain highly 

attractive until the larvae hatch and begin to feed. Depending 

on the duration of the egg stage, there will be a massive 

over-compensation to prey density with the result that, when 

all the eggs have hatched, there will be a rapid depletion of 

prey followed by predator starvation. High aggregation within 

a generation therefore tends to be destabilizing because it 
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is over-compensatory; the adults do not appreciate the 

starvation they are about to inflict on their progeny. 

This point serves to suggest new ways in which we might 

look at predator aggregation. The behaviour outlined as 

accounting for the results of the simulation would probably 

not be followed by a real predator. In the first place, it 

could 
	sense the number of eggs laid by members of its 

own species in a sub-area, and could well show a tendency 

to avoid heavily attacked prey regions (this would parallel 

Hassell's mutual interference - 1971). Again, because of the 

time lag in feeding response, areas which are initially low 

in prey will be given an extra period after they have become 

attractive, but before feeding greatly increases, in which to 

increase in abundance. This period may be sufficient to allow 

the prey population to escape control (see Figs. 156, 157). 

To return to the original example, the decreasing 

aggregation of Cyzenis albicans with increases in the density 

of its hosts must be explained not as a stabilizing mechanism 

(as I originally suspected), but rather as a straightforward 

reduction in the necessity to aggregate as mean host density 

increases. In other words, when prey are abundant, the 

parasites can afford to be less discerning in choosing areas 

for oviposition. Here again, we highlight the difference between 

what a real species does under natural conditions, and what 

an ideal biological control agent should do in a crop monoculture. 

An improved model of predator aggregation should there- 

fore consider the relative density of prey, but also the 

number of predator eggs already laid. This would involve 

calculating 	as as a function of both mean prey density and 

either the number of predator eggs, or the number of predators 

attempting to oviposit in the area. In this sense, the 
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aggregation model should include an element of intraspecific 

discrimination on the part of the predators, perhaps after 

the fashion of Hassell's mutual interference equation (see 

Functional Responses, above). 

4 Reproductive and Developmental Biology  

A predator species will only be as effective in biological 

control as its ability to increase in numbers parallel to 

pest abundance. While the numerical reponses act to tune the 

rate of predator increase to prey density, they can only 

exert a depressive effect; that is, starvation can only lower 

the number of eggs produced per female. Unless the maximum 

rate of oviposition (in the absence of prey-limitation) is 

sufficient to keep the predator's population within 'reach' 

of the prey the species 'will not be effective in pest control. 

The rate of increase in predator numbers is not determined 

by egg-laying alone, of course, but also by the time it takes 

for eggs to develop into breeding adults. As shown in Section 

B-3 of this Chapter, both egg and pupal durations have a 

significant effect on the pattern of aphid abundance. 

On becoming adult, it is also apparent from the simulations 

that the pattern of egg-laying with age is important to the 

degree of control exerted (Fig. 152). This is unlikely to 

present any problems in reality, since few predators lay more 

eggs as they age (the least effective strategy). 

5 Growth and Voracity  

In general, large animals have large food requirements 

even though, by merit of their relatively low surface area to 

body weight ratio, they may be rather efficient at using the 

food they obtain. The most obvious suggestion for an ideal 
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predator would then be that it should be large (with, by 

implication, a high growth rate), and voracious (e.g. van 

Emden, 1966). The problem with this assertion is that animals 

with high individual food requirements will require higher 

prey densities for satiation; the equilibrium level of pest 

abundance will therefore tend to be higher, and hence more 

damaging to the crop. In addition, because of their high 

demands, large predators will tend to immigrate into the crop 

later in the season, and emigrate from it earlier; both 

conditions which seem to be undesirable (Chapter III and 

It became clear when running the model of aphid population 

growth that the ideal predator should be able to attack all 

aphid instars, and so this constraint sets a lower limit to 

predator size. From this Chapter, however, we have seen the 

importance of being small enough to tolerate rather low prey 

densities. It is clear that our optimal predator must be of 

intermediate size. 

By allowing that the growth rate of the larval predator 

is determined by the number of prey it consumes (as in the 

present model) this size constraint can be somewhat relaxed, 

as it leads to a situation of having large predators when 

aphids are abundant and small predators when they are scarce. 

The ideal species would therefore be able to show a wide range 

of sizes within any instar, depending upon the conditions 

of aphid availability. 

6 Age Structure of the Predator Population  

Population models are often built on the assumption that 

the age structure of the population is constant, and that the 

proportion of the animals in any particular developmental 

stage is invariant. In most field situations where the envir- 
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onment is seasonal this is very rarely the case. Animals 

emerge in the spring from their dormant phase, and at this 

time they are all in the same instar (if they overwinter as 

eggs, they will be first instar larvae, or if as pupae, they 

will be adults). The age structure is therefore discrete; some 

age classes have no individuals in them at all. 

The importance of the age-structure is twofold; first, 

with a discrete structure there are periods of complete 

inactivity during which no prey are killed, and second, there 

are times during which there are no adult insects, and hence 

no reproduction. 

The age-structure will tend to stabilize with time, 

however, under three processes. First, spring emergence is 

not usually completely synchronous, and so some predators are 

just emerging from dormant eggs while others have reached 

maturity. Second, if the adults lay their eggs over an extended 

period rather than in one batch, then more age classes will be 

represented which, on becoming adult in their turn, will continue 

the process of age-stabilization. Finally, in the context of 

an annual crop, the longer the period of adult immigration, 

the more rapidly will the age-structure of the predator 

population stabilize. In terms of field practice this suggests 

that a predator spending its early spring stages on a variety 

of wild plant species will be ideal, as adults will emigrate 

form the different plants at different times. The importance 

of the timing of predator immigration relative to aphid 

population growth has been discussed in Chapter IV. 

7 Polynhagy or Monophmy 2_ 

One question we must ask is whether it is better to have 
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a completely specific predator, or a species which eats many 

types of aphid but prefers Aphis fabae ? Rather few real 

aphidophagous predators are, in fact, monophagous (Iperti, 

1966; Hodek, 1966), but a number of parasites may be 

(Evenhuis, 1966). The model shows that monophagy is desirable 

under all circumstances except those which would otherwise 

cause the predators to emigrate. In other words, our ideal 

animal would feed exclusively on the target species until its 

availability was so low that the predator would normally 

emigrate (thereby allowing the possibility of reinfestation 

and crop loss), at which time it would switch to the 

consumption of other prey living in the same area. This feeding 

i 	strategy is simply the extreme of a straightforward 'attack 

in relation to availability' predator; presumably the target 

pest species is the most abundant animal feeding in the crop 

(if it were not, then the more abundant species would presumably 

be the main pest), and so it will be attacked to a greater 

extent even by polyphagous predators. The main point of concern 

is that the alternative prey consumed are essentially wasted 

in terms of pest control because their populations are below 

the economic threshold. We must bear in mind, of course, that 

the other insect species dwelling in the crop are non-pests 

simply because they are prey to polyphagous predators, and 

that because of this, there may not be sufficient of them to 

support a population of monophagous predators. 

In short, we require a predator which can be monophagous 

at high pest densities and polyphagous when the target aphids 

are rare. Mechanisms for such a switching in predation have 

been discussed by Murdoch (1969). 

• 
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8 Pattern of Mortality  

I have already discussed the effects of starvation on 

mortality, and the contribution which this process makes to 

the numerical response of the predator to prey density. 

Equally important, however, is the magnitude of the non-

starvation mortality, since this will determine the rate at 

which the predator population grows in conditions of optimal 

prey availability. The agencies of mortality of concern here 

are predation by birds and small mammals, attack by insect 

parasitoids, and exposure to extremes of climatic environment. 

They may, in the case of parasitism and predation, act in a 

density-dependent fashion so that as the abundance of our 

predator increased, so would its death rate. This is obviously 

undesirable, since it would act in the same destabilizing way 

as did the mutual interference response in Section A-1c; the 

rate of aphid consumption would decrease as the number of aphids 

increased, and an outbreak would occur. 

In consequence, our predator must suffer low mortality 

rates in general (to allow rapid build-up), and very little 

density-dependence in mortality in particular (to avoid under-

exploitation of the pest aphid). This would be possible if 

our predator remained rather scarce, or developed protective 

devices either by being distasteful, or by mimicking a 

distasteful species. We have already seen, however, that 

abundance is preferable to large size (when a given number of 

prey must be consumed), so the avoidance of density-dependent 

mortality through remaining scarce is not an attractive 

alternative. Our objective, then, is to find a predator which 

is food-limited with regard to its mortality rate, and following 

on the same line of argument used in Chapter IV, mortality 
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should be minimal at the age of maximum reproductive value, 

and maximum at low reproductive values on the 'old side' of 

the optimum (since we would like the predator to have eaten 

many aphids before it dies). This is the converse of the 

mortality pattern we demand in the pest population; there we 

want maximum mortality at maximum reproductive value, and high 

mortality in the young stages so that less damage is done 

to the plant. 

9 Searching Behaviour  

The most efficient pattern of searching behaviour in 

seeking out a prey species which lives in tight-knit aggregates 

is clearly to find an aggregate as quickly as possible (by 

sight or scent), and then to stay in the vicinity until as 

many prey have been consumed as possible. This has been 

demonstrated in model populations (Murdie and Hassell, 1973) 

and with aphid predators in the field (coccinellids by Banks, 

1964; syrphids by Chandler, 1969). Searching efficiency appears 

in the model as the response of the predator to prey density; 

in effect, the steeper the functional response curve in Fig. 

138, the better the predator at discovering, or staying close 

to, having once discovered, aphid aggregates. The processes of 

search themselves, whether they be random walks or klinokinesis, 

are not considered in detail. I do consider, however, the 

response of the more mobile, adult stages to differences in 

prey availability over larger areas. This is not so much a 

Pattern of searching behaviour as it is a dispersive response 

which allows that searching will subsequently be'more rewarding. 

10 The Properties of the Optimal Predator of Aphis fabae  

Having discussed the biological attributes of the ideal 

predator for the biological control of Aphis fabae on broad 
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beans in some detail, we are now in a position to catalogue 

them. The order in which the attributes are listed does not 

signify their relative importance. 

Body Size  

Large enough to attack all sizes of aphid, but small 

enough to tolerate low prey densities without emigrating. 

Growth Rate  

Commensurate with optimal body size; ideally a function 

of food intake so that body size and hence food demand varies 

with prey availability. High prey, high growth rate; low prey 

• low growth rate. 

• Sex Ratio  

As high as possible, constrained by the probability of 

achieving 100% mating success. Sex ratio can be lower if the 

males feed voraciously. 

Fecundity  

As high as possible, and spread over adult life (not a 

single egg batch) to rapidly stabilize age structure. Fecundity 

should decrease with age if only a certain number of eggs can 

be produced, otherwise it should be constant. 

Number of Instars  

Not itself important, but the fewer the better (below). 

Some feeding time is wasted during and immediately following 

each moult. 

Duration of Instars  



.383. 

All instars except the adult should be as brief as 

possible, If the only predator available does not feed on 

aphids as an adult, then rapid progression through the instars 

is less important, as only the larvae act as biological 

control agents (e.g. Syrphidae and Cecidomyidae). 

Dormant Stages  

The duration of non-overwintering egg and pupal stages 

should be as brief as possible; they slow population increase 

and dip not feed. 

Voltinism  

Multivoltine; a univoltine predator can not undergo 

numerical responses within the season. 

Feeding Rate  

In the sense of weight of prey required for maximum 

growth, survival and fecundity. Should be high but flexible 

(see Growth Rate above) and determined by body size. 

Survival Rate  

High; all mortality other than that caused by starvation 

(below) should be independent of predator density. Abiotic 

factors ideal. 

Natural Enemies  

Few; those which do attack should not do so in a density-

dependent fashion. Since the predator will sometimes be 

abundant it should be distasteful, or a colourful mimic, to 

reduce density-dependence in mortality. 
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Functional Response to Prey Density 

Strong; there should be an aphid density greater than 

zero at which no prey are consumed. The shape of the response 

(Fig. 138) affects the frequency and amplitude of prey numbers, 

and the optimal value of v (Equ. 26) depends upon the relation-

ship between the economic threshold and the zero-feeding 

density. 

Functional Response to Relative Prey Density  

Strong; the predators should respond to food competition. . 

When this response occurs it means that the predator is 

doing, or about to do, too well in reducing aphid numbers, 

and runs the risk of eliminating its food source. 

Functional Response to Predator Density  

Very weak or non-existant. This response is highly 

destabilizing, and the only time it might effect a useful 

reduction in predator feeding would be at very low relative 

prey densities. The Relative Response, above, could do this 

equally well. There should, however, be a response in ovip-

osition behaviour such that areas of high egg density are 

avoided. 

Numerical Response in Survival Rate  

Depends upon birth rate; if the fecundity is high then 

this allows a strong, immediate response (the most effective). 

Otherwise a compromise is necessary; either a less strong • 

response , or a strong response after a time lag. The 

situation to be avoided is over-compensation so that starvation-

induced mortality lowers the predator population to a level 

from which it can not control the subsequent prey resurgence. 
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Numerical Response in Birth Rate  

Less important than the above, but still strongly 

stabilizing. If maximum birth rate is high enough to allow 

good recovery; then the response should be strong (e.g. no 

births when STARVE(I) = 1). 

• 	Numerical Response in Emigration Rate  

Depends on the likelihood of re-immigration if prey 

numbers increase; this in turn depends on the minimum number 

of aphids which forms an attractive population. If the 

predators are unlikely to return, the response should be 

slight, especially if the threshold aphid density at which 

• 	they emigrate is high (as it might be if the predators were 

large). Otherwise, if predator return is likely, and the 

emigration threshold density is very low, then the response 

can be strong, and will be immediate and highly stabilizing. 

Polyphagy 

Monophagous at high prey density; polyphagous at low. 

Timing of Immigration 

After the aphids have arrived in the crop and before they 

have built up to high levels. Of crucial importance to the 

effectiveness of control. 

Probability of Immigration  

Dependent on the release of predators from other host 

plants; this aspect is therefore highly probablistic. The 

alternative is costly release of predators by the grower. 

Once released from wild plants the probability of immigration 
• 	

depends on prevailing winds and so on, but also on the 
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threshold density of aphids in the crop necessary for 

attraction. Predators should come from a range of wild plants 

to increase the period of immigration. 

Temperature Threshold of Emergence  

Eqaul to or less than that of the aphid pest. If no 

inremediate plants are colonized then the threshold can be 

higher, but it can not be so high that it is only reached 

when the aphids have arrived in the crop. 

Temperature and Physiology  

The rate of population growth in the predator must 

equal or exceed that of the prey at all temperatures likely 

in the field, otherwise increases or decreases in mean 

temperature would bring about a pest outbreak. 

Weather Factors  

The climatic tolerances of the predator should be optimal 

for all areas where the pest is found; in general this will 

mean that the area over which a species is distributed 

naturally will be an indication of its likelihood of acting 

as a good biological control agent in a new area. 

Food Preference  

Depends upon predator size; if the predator is large 

enough to consume all sizes of prey, then it should concentrate 

on those of maximum reproductive value, taking relatively 

younger aphids in preference to relatively older (see Fig. 

114 in Chapter Iv). If no predator can be found to consume 

all age classes, then more prey will be killed by selecting 

a predator to attack the smallest aphids (or, in general, 

the most abundant size class). 



.387. 

Dispersive Ability  

Predators should be able to differentiate between areas 

of different prey density, and to lay their eggs in relation 

to the number of eggs already present as well as to the 

relative prey density. The intensity of the aggregation response 

should increase with mean prey density. 

Prey Refuge  

The structure of the environment, or the behaviour of 

the predators, should be such as to allow for the survival of 

a number of pest insects. This number must be sufficiently 

large to give rise to an attractive population which will 

maintain predator numbers, and sufficiently low so as to 

cause no significant crop loss. 

Spatial Pattern of Feeding 

Near the surface of the bean canopy, where aphid feeding 

causes most damage (see Chapters II and III). 

Age Structure  

As stable as possible; this will be increased by pro-

longed immigration and by rapid development and extended 

oviposition, and decreased by a tendency to lay all eggs in 

one batch (if development is synchronous). 

11 Candidate Species  

Aphids fall prey to many types of predators including 

birds, spiders, and many insects (Imms, 1947). Of the latter, 

beetles (Coleoptera, and Coccinellidae in particular), lace-

wings (Neuroptera), hover-flies (Syrphidae) and some midges 

(Ceeidomyidae), form the most important groups. No single 
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species from any category is optimal in all respects, but 

the groups can definitely be ranked, and candidate species 

within any group classified in terms of their control potential. 

Neither adult syrphids nor adult cecids feed on aphids, 

and their control potential is thereby diminished. They may, 

under certain circumstances, be useful in biological control 

by preferring an aphid which is ignored by other groups 

(J. J. Brightman, pers. comm.). 

The model could best be used in discriminating between 

various potential coccinellids, syrphids or lace-wings whose 

biology was rather well known; the principal shortcoming of 

the model is that it requires a rather detailed understanding 

of the biology of the candidate species. On the other hand, 

the completely empirical approach advocated by some ecologists 

(e.g. Gifford, 1971) would demand numerous expensive field 

trials with animals whose control potential could, had a 

model been employed, have been eliminated a priori. The model 

only proposes an order in which to conduct the field trials, 

and does not presume to predict exactly which predator species 

will be optimal in a particular situation. 

One important aspect of the list of attributes stands out. 

This is that while no one species is optimal in all respects, 

there is no respect in which a species of some sort might not 

be optital. This fact would argue for the implementation of 

multiple-species control, especially when the optimal attrib-

utes appear to change as the season progresses. Thus we find 

that our ideal predator must be highly synchronized with the 

pest, so that it immigrates before economic losses are caused, 

and have the ability to increase rapidly in numbers in the 

early stages of the infestation. On the other hand, it must 

be able to withstand rather low pest densities if later 



.389. 

outbreaks are to be avoided. Again, the animal should be 

monophagous at high aphid densities but polyphagous when prey 

are scarce, These requirements are unlikely to be combined 

in a single species, because selection would have operated 

to produce one set of attributes or the other, A sequence 

of predator species, however, might combine all the desirable 

• attributes; a fast-breeding ladybird could be optimal in the 

early period of growth, followed by a syrphid species which 

could withstand lower pest densities and maintain the aphids 

below the economic threshold. Finally, perhaps, a predator 

which tended to stay in the crop up to harvest, feeding only 

rather slowly but ensuring continued control, might be 

• released (a lace-wing species for example). It is unlikely 

that a single predator species of Aphis fabae could be found 

which would work alone in the conrol of the pest under 

British conditions. 

12 Model Assessment  

Of the models of parasitism and predation reviewed in 

the introduction,' the population model presented here most 

closely resembles that of Hassell and Rogers (1972). It differs 

from their model in several respects because it was built 

specifically to investigate the properties of an ideal predator, 

rather than to describe extant bodies of data. First of all, 

it considers predation rather than parasitism; this distinction 

is discussed in depth by Royama (1971). Second, I have laid 

emphasis on the number of predators rather than on the number 

of prey in calculating the number of prey killed (Watt, 1959, 

made the same distinction), and this treatment removes any 

implicit assumptions of density dependence in predation which 

may occur when writing N = f(N).N instead of N = f(N).P.C. 
ha 	ha 
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• 

• 

Third, the predator population is considered by age classes, 

and no assumptions of stable age-distribution are made; the 

incorporation of non-feeding stages in the life-cycle, and 

the dependence of development time upon temperature further 

complicate an analytical comparison of the two models, but 

as shown earlier, it is possible to write an algebraic 

approximation to the attack equation for one predator age class. 

The calculation of the number of encounters is given by 

' Hassell and Rogers . (1972) as 

-8 
[a", a P . T. N 

a 	1 + a". T'. N 

while the functional responses in the present model can be 

approximated by writing 

v 	-(b.P/N) 
N 	= P.0 (1 - (T'/N) )(1 	e )(1 - (K.P,) ) 
a 

where the notation is as described on page 309. The principal 

difference in content is that I have considered an additional 

functional response, namely that to relative prey density, 

appearing as the second bracketted term in the equation. Both 

these models must assume some pattern of searching behaviour 

to allow fOr prey exploitation; typically we assume random 

search and allow that the fraction of the prey population 

escaping attack is given by the zero term of the Poisson 
-Na/N 

Distribution, e 	(see Pielou, 1969). The actual proportion 
-Na/N 

encountered is therefore 1 - e 	, and so the number killed is 

-Na / N 
N 	= N ( 1 - e 
ha 

• 	
I have assumed that there is exploitation within the 
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predator population, so that the larger predators are allowed 

first pick of the aphid crop. The prey population is then 

depleted and the next size class is allowed to feed. As 

discussed earlier, this system is completely arbitrary, its 

sole purpose being to distribute the relative effects of 

starvation differentially between the predator instars. If 

we thought that the young suffered starvation less frequently 

than the adults, it would be quite straightforward to reverse 

the feeding order and model the observed effect. 

Most of the conventional models of predation and parasitism 

assume that within a generation feeding or oviposition occurs 

instantaneously, and that the number of parasitei in the 

s 
	following generation is simply the number of eggs successfully 

laid (perhaps multiplied by a survival rate). In biological 

control situations, this type of approach might apply to pests 

of perennial crops with highly specific parasites, but in an 

annual crop with poyphagous predators it almost certainly 

does not. On the contrary, the details of the numerical 

responses occurring within a set of overlapping generations 

will be the factor of over-riding importance in determining 

whether pest control is achieved or not. For this reason the 

current model deals with numerical responses in some detail, 

and fecundity, mortality and emigration rates are all computed 

on a daily basis in relation to the current conditions of 

prey availability. The model is simple in its present treat-

ment of these responses in so far as it only considers the 

starvation experienced on the preceeding day; no account is 

taken of any accumulative effects of starvation; for example. 

The novel feature of the model is the combination of a 

relatively complex treatment of functional responses with a 
• 
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consideration of the effects of predator aggregation behaviour. 

This has brought to light two main points. First, that while 

a functional response to predator density (mutual interference) 

is stabilizing in discrete-generation models (e.g. Hassell 

and Rogers, 1972Y it has the opposite effect when applied to 

models of overlapping generations. Second, that the factors 

affecting the stabilizing properties of predator aggregation 

differ in discrete models of parasitism and overlapping models 

of predation. In the former, stability is enhanced by 

increases in the aggregation index, and by increased hetero-

geneity in initial prey distribution; in the latter, the 

1 converse is true. It has also become clear that a treatment 

of predator aggregation should not ignore the effects of 

predator density (especially the density of non-feeding egg 

and pupal stages) in determining the pattern of predator egg-

laying over the areas. 

All the data sets in the model are intuitive. This is 

deliberate, and allows that the attributes of the ideal 

predator will not be coloured by any preconceptions about 

particular species. 

w 
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• 	
CHAPTER VI 	 ON THE RELATIONSHIP BETWEEN THE COMPLEXITY 

AND THE UTILITY OF SIMULATION MODELS 

• 

Introduction  

The models described in the preceeding chapters serve 

to highlight a number of points about management models in 

general. For the purposes of discussion we can define two 

poles in the spectrum of resource management problems; those 

concerned with accurate numerical predictions (usually in 

relation to economic analyses), and those concerned with 

obtaining a broad, qualitative understanding of the response 

of the.system to a given manipulation (usually by considering 

the detailed biology of the organisms involved). As I shall 

attempt to show, these two types of problem require quite 

different approaches in model building, and have divergent 

data requirements. It is of crucial importance to the success 

of an ecological investigation to determine explicitly whether 

• 
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a quantitative or a qualitative answer is required, and to go 

about the analysis and modelling in the appropriate fashion. 

1 Quantitative Problems  

A large class of management problems poses questions of 

the type 'How much ?', 'When ?', 'Where ?1 , 'How many ?1 , and 

so on; these we shall call quantitative problems. The answers 

they demand are accurate numerical predictions which can be 

used directly and immediately in management. 

The only efficient means of answering this class of 

problems is empirically; that is, by going out and doing the 

experiments. In most cases modelling will only be a time-

consuming and irrelevant diversion, and is most unlikely to 

benefit the management effort. In some instances, however, 

the management problem suggests experiments which are either 

very difficult or very expensive. Here, it may be possible to 

solve the problem theoretically by resort to some form of 

economic analysis (e.g. linear programming; Noble, 1964). The 

important point is that biological simulation models as 

described in Chapter I hold very little potential for answering 

this class of problem. 

2 Qualitative Problems  

The second class of management problems demands solutions 

which are essentially qualitative. The aim is not to predict 

exactly what will happen, but rather why it should have 

happened. The questions are directed at increasing our under-

standing of the resource system, so that the quantitative 

questions we ask in the future can be better geared to the 

system's biological behaviour. 

Qualitative management problems will usually be complex 
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(in the sense that they can not be tackled by mental deduction), 

and it is important to decide on the degree of biological 

complexity which must be considered in the model in order to 

fulfil its objectives. As the complexity of a model increases, 

however, so do the costs of its construction and the difficulty 

of its final interpretation. We should therefore aim for the 

minimum complexity necessary to the solution of the problem, 

but to do this, we must understand the relationship between 

complexity and utility. 

a) Complexity  

i/ Number of Variables  

In broad terms, there is an increasing relationship between 

the number of variables considered and the complexity of the 

resulting model. The number of variables in the model will 

increase as the manipulation increases in 'causal-distance' 

from the output (the 'width' of the flow-diagram; see Fig. 6), 

and with increases in the degree of biological detail into 

which each component process is analysed. We can not reduce 

the 'causal-distance', but the degree of analytical detail 

must be decided. Throughout the preceeding chapters I have 

used as a criterion for assessing the merits of further 

analysis whether or not the process in hand is likely to vary 

in its behaviour in such a way as to affect the output. If 

the process behaves in a consistent and predictable pattern, 

there is no need to analyse it further. If, on the other hand, 

the process is known to vary under the manipulation (e.g. 

photosynthetic rate under aphid feeding), and this variation 

is likely to affect the output (bean yield), then further 

analysis is warranted. Instead of including photosynthetic 

rate as a constant, therefore, the factors which affect its 
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rate are elucidated, and inspected in the same way. So it is 

that some processes are analysed in considerable biological 

detail (e.g. photosynthesis), while others in the same model 

which are either less strongly affected by the manipulation 

or are inherently less variable (e.g. water and nutrient 

uptake) are treated very simply. 

ii/ The Inter-relatedness of Variables  

The complexity of a model also increases with the extent 

of the inter-relatedness of its variables. If we have a 

number of variables, the simplest model is that in which each 

affects, and is affected by, only one other; the model, in 

other words, is a causal chain. Clearly, then, the most 

complex model of a given system will be that in which each 

variable affects, and is affected by, all the others; this 

model is a complete causal network. 

Just as before, when deciding upon the number of variables 

to consider, the criteria for including a particular inter-

action must be a) whether the interaction importantly affects 

the variables concerned, and b) whether it is likely to occur 

at an intensity which will be important. Both of these criteria 

will be implicit in the question under scrutiny. 

It is essential that each interaction be carefully 

considered, because it is from interactive processes that 

much of the interesting behaviour of the model springs (the 

interaction of different organs in the distribution of photo-

synthate in Chapter III, and the effects of density-related 

processes like birth and dispersal rates in Chapters IV and V). 

As the number of interactions increases then so will the 

number of data sets required by the model. In a causal-chain 

model with N variables, there will be (N-1) data sets needed, 
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but if.the model is a complete network,—the data requirements 
2 

will rise to (N -N). There is an obvious incentive to keep 

the number of interactions as low as possible. 

Not only'does the number of data sets increase with the 

number of interactions, but also the difficulty of obtaining 

the data. When interactions occur one must either make 

potentially misleading assumptions as to the form of the 

interaction (see Chapters I, III), or collect the data by 

factorial experiments. Factorial data are less abundant in 

the literature (and therefore the relationships are less 

likely to be already quantified), and also more expensive to 

gather, than are data from controlled-environment, single 

independent-variable experiments. 

iii/ Levels of Organization  

Odum (1959) lists a number of 'levels' at which biological 

processes can act, namely biochemical, organelle, cell, 

tissue, organ, individual, population, community, ecosystem 

and biosphere. The third aspect of model complexity relates 

to the number of levels which must be considered in solving 

a given problem. We can suggest that the more levels involved, 

the more complex the model will be. This is because processes 

which operate on one level are affected by the summation of 

those processes operating at lower levels; the growth of an 

animal can be expressed at the individual level as a single 

dry weight increment, but at the lower level this must be 

replaced by the sum of the dry weight increments of its 

component organs. Since increasing the number of levels will 

inevitably increase the number of variables (and probably the 

number of interactions), the data-requirements will be higher 

for many-level than for single-level models. Also, because 
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data tend to be collected at one level without a view to 

synthesis to a higher level, it is not always clear how 

low-level processes act together to produce an effect at a 

higher level (for example how plant 'sinks' compete for the 

reserves available, and how this process manifests itself 

in the dry weight increase of a single sink organ). 

The models considered in the foregoing chapters ranged 

in level from organs (the different plant parts in Chapter III), 

through individuals (the aphids in Chapter IV; their growth 

and feeding rates), to populations (of aphids and predators 

in Chapters IV and V). The question tackled had the output 

expressed at the level of the organ (the weight of beans), 

and the manipulation stated jointly in terms of individual 

and population attributes of the ideal predator species. 

b) Utility 

The utility of a model can be expressed most simply as 

the extent to which it answers the questions posed. The 

difficulty lies in discovering the accuracy of the answers, 

since, in most cases, it is not known in advance what the 

precise repercussions of the manipulation will be in a real 

ecosystem. This raises again the important issue of validation; 

the determination of how realistically a model represents the 

real system, and the degree of confidence with which its 

suggestions can be implemented as management practices. 

A model can be said to be validated if, under a range of 

conditions, the output from the model agrees with observations 

of the real system. The definition of this agreement should 

be made in advance, so that, for instance, we might allow 

that the model be validated when there is less than 10% 

disagreement between observed and predicted levels in the 
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output variable. 

It is crucial, as Goodall (1968, 1971a, b) points out, 

that the data used to validate the quantitative behaviour 

of the model be collected independently of the data used to 

describe relationships within the model. If this is not observed 

then the validation simply measures the extent to which the 

model distorts its internal data sets in producing an output 

value t Validation data typically consist of a time-series of 

measurements of the output variables, and of the conditions 

under which these outputs developed (often a series of 

meteorological observations). The model is then assessed by 

running it over a similar time period, using the field-

measured conditions as driving variables; the sequence of real 

and predicted outputs can then be compared to assess the 

quantitative and behavioural validity of the model. 

Once the validation data have been collected, and the 

outputs compared, the discrepancies which appear must be 

explained. There is a school of thought (see, e.g., Plinston, 

1972) that the best strategy at this point is to feed the 

validation data into the computer and run the model under an 

optimization program to determine the set of parameters 

which gives the best fit between the observed and predicted 

outputs. This method has the serious draw-back that it 

distorts the data sets which were incorporated in the initial 

model. This will be irrelevant if the data sets were all 

intuitive, but it will be seriously misleading if they were 

the result of careful, well-replicated experiments. In fact, 

this method of parameter-fitting can be more than a little 

dangerous, and, to use de Wit's words (1970), "the model 

degenerates from an explanatory model into a demonstrative 

model which cannot be used anymore for extrapolation, and the 
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technique reduces into the most cumbersome and subjective 

technique of curve fitting that can be imagined." Additionally, 

the more complex the model becomes, in terms of the number 

of variables included and the degree of their inter-relatedness, 

the easier it is to obtain a perfect fit between predicted and 

observed values'by 'parameter-fiddling'. 

The difficulty in assessing the causes of departure 

between the behaviour of the model and real systems lies in 

the fact that there is no a priori method of determining 

whether the discrepancies are due to qualitative or quant-

itative errors in the model; whether our structure is incorrect 

through the omission of important variables or inter-relations, 

or whether some of the data sets are inaccurate or inappropriate. 

If the model includes only data sets of high quality (as 

defined in Chapter I), then the structure of the model must 

be inadequate in some sense, since we know that if only X 

affects Y then the value of Y will be accurate for any X (by 

the definition of a high quality data set). In this case the 

model should be re-examined to see which potentially important 

variables might have been omitted, and experiments carried out 

where necessary to obtain the data necessary for their inclusion. 

The more common situation, however, is that in which the 

data sets included are 'patchy' with respect to their quality, 

and some processes are better understood than others. Here, 

the problem of rectifying the discrepancies in model behaviour 

is more difficult. The only objective and rigorous procedure 

is to set up a feed-back between experimentation and modelling 

in each sub-suction of the system, starting with those sections 

in which confidence is minimal, and progressing in turn to the 

best understood sections. Clearly, this procedure will be both 

expensive and time-consumimg. It is necessary, therefore, to 
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relate this phase of the modelling process directly to the 

objectives of the research; if the exercise is principally 

theoretical, then the feed-back can continue indefinitely, 

, whereas an applied problem will demand a strict definition 

of the accuracy required of the model, and of the resources 

available for the attainment of the desired level of precision. 

Model utility therefore depends not only upon the 

answers obtained, but also on the possibility of showing them 

to be correct. In general, we can conclude that the utility 

of a biological simulation model increases with complexity 

so long as , 

1. the model remains compact enough to run in the computer at 

reasonable cost; 

2. the data requirements are manageable; 

3. the interpretation of model behaviour is unimpaired; 

4. validation is possible. 

Other Uses  

Over and above their use in answering specific questions, 

biological simulation models have great additional utility. 

First of all, they act to impose a strict and rigorous logic 

on the analysis of a scientific problem by demanding a 

knowledge of precisely what affects what in the system, and in 

what way. By this means, apparently established ideas are 

brought into contexts in which their applicability can be 

questioned (e.g. mutual interference in predator feeding, 

Chapter V; the relationship between aphid density and alate 

production, Chapter IV). 

Second, they form a useful precursor to experimentation, 

by showing which variables and processes are likely to be 

• 
	

important in a given context. A great deal of time and expense 
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can be saved by collecting only those data which will actually 

be used in disproving an hypothesis (and see Watt, 1968). 

Third, in building, running, and interpreting a 

biological simulation model, many novel hypotheses are suggested 

about the behaviour of the system. These can form the basis 

of later experimentation and research (e.g. does plant 

• 	 compensation significantly defray the yield reductions caused 

by aphid feeding ? will useful biological control predators 

aggregate more strongly at high rather than low prey densities ? 

and so on). 

Finally, simulation modelling has great heuristic and 

educational value in uncovering the consequences of the 

synthesis of even the most simple ideas (Innis, 1971; Patten, 

1966). For example it was impossible to tell before building 

the model whether the curve of predator aggregation reported 

by Hassell (1968) was a stabilizing or a destabilizing 

process. Again, it became clear that the functional response 

to predator density has quite divergent consequences when 

applied to aphid consumption and to predator oviposition 

patterns (Chapter V). 

In short, while simulation modelling has a considerable 

number of drawbacks (Chapter.I), and is ill-suited to 

answering quantitative problems (above), the benefits which 

it brings to the analysis of complex qualitative problems 

make it a very potent tool of ecological research. Its 

usefulness is not to be judged in terms of the number of 

spectacular predictions it fosters, but rather in the insight 

it allows into the functioning of the biological resource 

systems upon which we rely. 

• 
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SUMMARY 

1. A method is explained for the construction of problem-

oriented computer simulation models, and a brief review 

presented of other types of model. A system is devised for 

tackling the complex problem of determining the biological 

attributes of a predator for Aphis fabae which would maintain 

aphid abundance below the level at which significant crop 

loss occurred. 

2. An experiment is described to determine the effects of 

infestation by Aphis fabae on the growth and pattern of dry 

matter distribution in broad bean plants (Vicia faba). Aphid 

infestation reduced the rate of new leaf production (and 

hence subsequent net production), and reduced the fraction of 

dry matter incorporated into stem and fruit tissues. 

3. The growth and fruit development of a model plant of V. 

faba is evaluated under different patterns of reserve removal 
• 
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(aphid feeding). Factors of importance are the time of first 

feeding relative to germination, the amount of reserve removed, 

the pattern of removal from different nodes, and the surface 

damage caused by aphid presence (honeydew deposition, stylet 

insertion, and so on). 

4. A model of the growth and feeding of an aphid population 

under different predation strategies shows that the ideal 

predator must select aphids of maximal reproductive value 

(or younger), be highly synchronized with aphid population 

increase, and show strong functional and numerical responses 

to prey density (so that it neither over- nor under-exploits 

the aphid population). 

5. A model of the relationship between the biological attributes 

of a predator species and the number of aphids eaten is 

developed. Additionally, a scheme is laid out for investigating 

the effects of predator dispersal on the stability and 

abundance of aphids in different areas. The attributes of the 

optimal predator species are listed (page 381), and compared 

with known aphid predators. The applicability of multiple-

species control is assessed. 

6. The relationship between the complexity of a model and its 

utility is explained. Two discrete types of answer to resource 

management problems (accurate prediction and qualitative 

understanding) emerge which require quite different model- 

structures for their solution. 
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• 

APPENDIX 

• 

There follows a computer listing of the three models discussed. 

Program VICIA is the code of the plant model, APHIS of the 

aphid population, and PRED of the predator population in-

cluding adult dispersal (Chapters III, IV and V respectively). 

All the subroutines these models call are included with the 

listings, and all the programs should run as they stand on 

CDC FORTRAN machines, 

• 
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• 

PROGRAM VICIA (INPUTOUTPUT.TAPE5=INPUT.TAPE6=OUTPUT) 
COMMON /BD01/BLANK.DoT.CROSS,NUMB(6) 

C 	******************************************************************* 

C 	* 	 * 

C 	* 	A MODEL TO SIMULATE THE GROWTH AND FRUIT DEVELOPMENT OF 	* 

C 	* 	VICIA FABA L. UNDER AN INFESTATION OF APHIS FABAE SCops 	* 

C 	* 	 * 

C 	******************************************************************* 

C 	******************************************************************* 

C 	* 	 * 

C 	* 	DECLARE THE DIMENSIONS OF THE VECTORS AND ARRAYS USED 	* 

C 	* 	 * 

C 	******************************************************************* 

DIMENSION TEST(200) 
DIMENSION IHEAD(20).LABELS(6.3).LABoUT(4.2) 
DIMENSION DIV(6),BNDS(12) 
DIMENSION 

X69(4).Y69(4). 
X70(4),Y70(4), 
X71(4),Y71(4), 
X72(3),Y72(3), 
X30(4).Y3()(4), 
RADIAT(52), 
AREAL(25) 

DIMENSION 
WTL(25), 
THRMORT(25), 
PODWT(25), 
WTS(25), 
wTP(25). 
WTF(25). 
LIVE(25) 

DIMENSION 
+ 	LFAGE(25). 

TCGR(25), 
TEMP(25), 
TEmPOPT(4), 
FRACTL(4), 
FRACTS(4), 
FRACTF(4), 
FRACTP(4) 

DIMENSION 
OPTRPR(25), 
SINK(25), 
WTLMAx(25), 
WTSMAX(25), 
WTPMAX(25), 
DISTL(25), 
DISTS(25), 
DISTP(25). 
DISTF(25) 

DIMENSION 

s 



NFLOWR(25), 
FLOSURV(25), 
FRUSURV(25), 
WTINIT(25), 

+ 	LPODAGE(25), 
FLOWRS(25), 
PODS(25)9. 
POLLEN(52) 

DIMENSION 
DENSLF(250), 
X20(4),Y20(4), 
X21(5),Y21(5), 
X23(4),Y23(4), 
X33(4),Y33(4), 
X73(5),Y73(5), 
X76(3),Y76(3), 
X77(3),Y77(3), 
X78(3),Y78(3), 
X80(4)9'1'80(4) 

DIMENSION 
TURGOR(25), 
APHFEED(25), 
DUALITY(25) 

INTEGER 
PBDEATH, 

+ 	COND 
REAL 

LEAFINC 

C 	******************************************************************* 
C 	* 	 * 
C 	* 	DATA STATEMENTS ASSIGN INITIAL VALUES TO ARRAYS AND 	* 
C 	* 	PARAMETERS WHEN THE PROGRAM IS COMPILED 	 * 
C 	* 	 * 
C 	******************************************************************* 

DATA TEST/40*0.,20*.09920*.17920*.27920*.17980*0./ 
DATA 

APHFEED/25*0./9 
LFAGE/25*0/9 
DISTL,DISTS,DISTP,DISTF/100*0./9 
WTSMAX/.251.08923*.15/9 
WTPMAX/2*0.9.0059.0079.0099.019.0119.012,.0159.0229.0299 
.0359.0369.0389.042910*.045/, 
X69/0.,.29.391./9Y69/0.,.5,.991./9 
X70/0.9.3,.6,14,/,Y70/0.9.5,.95,1./9 
X71/0 	5 A 1 / Y71/1 	95 6 0./,  
X72/0.,.791./fY72/.5,.991./ 

DATA 
K30/0.9300.1600.,1000./9Y30/1.9.59.39.2/9 
X73/0.95.97.,9.,10./, 
Y73/1.9.99.75'.490./9 
X76/0.,10.120./9 
Y76/.3,.7,1./, 
X77/0.98.915./, 
Y77/.3,.7,1./, 
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TEMPOPT/10.,15.,16.,14./, 
AREAL/25*0./, 
LIVE/25*1/, 
WTINIT/8*0.,7*.0008,5*.0005,5*.0003/,  
POLLEN/52'1./9 

+ 	TCGR/2*0.,.16,.2,.245,.285,.325,.355,.415'.449.4659.44,  

X33/0.'50.'80.'110./0'33/1.9.959.5,0./ 
DATA 

WIL,WTS,WTF,WTP/100*0./, . 
FRACTL/.786,.807,.765,.6/, 
LPODAGE/25*0/, 
THRMORT/25*0.4/9 
PODWT/25*1.8/, 

• 	FRACTS/.137,.129,.092,.16/, 
FRACTF/0.90.,.073,.23/ 

DATA 
OPTRPR/25*.5/, 
WTLMAX/2*0.,.04,.058,.078,.103,.142,.1749.198,16*.2/,  
RADIAT/20*.08,32*1.5/, 
FLOSURV/8*0.9.5,1.9.89.7159.625,.5,.4299.5,.4,.59.66669  

1.,5*0./, 
FRUSURV/8*0.91.9.6666,.75,2*.6,.5,2*.6666,3*.5,6*0./,  

DATA 
X23/.5,.7,.8,1./,Y23/.5,1.,1.2,1./, 
)(20/0.9.3,.6,1./,Y20/1.,•98,•86,.7/, • 	 X21/04.94.96.0.,14./,Y21/5.,7.0.0.5,10./, 
DENSLF/250*.0035/, 
TURGOR/25*5./, 
X80/4.96.,8.,10./,Y80/1.,.5,.5,1./ 

DATA ENDS/25.,0.,25.,0.,10.,0.,10.,0.,10.,0.,.05,0./ 

C 	******************************************************************* 
C 	* 	 * 
C 	* 	SET INITIAL VALUES OF THE CONSTANTS USED 	* 
C 	* 	 * 
C 	******************************************************************* 

READ(5,201) (IHEAD(J),J=1,20) 
READ(5,202) ULABELS(IsJ),J=1,3),I=1,6) 
READ(5,203) ((LABOUT(I,J),J=1,2),I=1,4) 

201 	FORMAT (20A4) 
• 202 	FORMAT (6(3A4)) 

203 	FORMAT (4(2A4)) 
CALL SCALE (BNDS,DIV,IHEAD,LABELS,LABOUT) 
PBLOCK=0. 
PBDEATH=6 
THRLF=0.0085 
SUPPLY=50. 
DECAY=.9 
SHOOT=ROOT=0. 
WTPLANT=0. 
SIGAPHF=0. 
PRODNET=SIGSINK=0. 
NODES=1 

a 
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MI=0 
EFFIC=0.02 
SHOOTIC=0. 
GPROD=TOTLA=0. 
MAXAGE=70 
X33(4)=FLOAT(MAXAGE) 
PBTHR=0.158 
PBRES=0.0077 
PBRES1=0.0025 
PBWT=0.435 
RESPR=0.01 
RESPS=0.01 
CHOEAT=0. 
WTTHR1=0.03 
WTTHR2=0.0336 
BASEWT=0.0076 
NNFL=10 
IPHOTP=75 
NDAYFL=0 
N4THR=120 
TCWT=0. 
GRL=0,07 
GRS=0.065 
GRP=0.06 
GRFL=0.3 
GRFR=0.08 
PODMAX=1.75 
NFTHR=13 
INITN0=9 
NOFRU=NOFLO=O 
WTFLOWR=0.025 
XYZ=.1 
MORTPT=14 
CWATER=1, 
THRLA=15. 
TLATHR=480. 
THR4=30. 
COND=1 
TOTL=TOTS=TOTF=TOTP=TOTLA=0. 
NW=2 

C 	******************************************************************* 
C 	* 	 $ 
C 	* 	BEGIN THE CYCLE OF DAYS 	 * 
C 	* 	 * 
C 	* 	ALL THE EVENTS BETWEEN HERE AND STATEMENT NUMBER 1 ARE 	* 
C 	* 	SIMULATED ONCE EVERY DAY. DAY 1 IS ASSUMED TO BE THE DAY 	* 
C 	* 	UPON WHICH THE BEAN CROP WAS SOWN. 	 * 
C 	* 	 * 
C 	ii.****************************************************************** 
• 

WITHR=WTTHR1 
DO 1 IDAY=1,200 
IWEEK=IDAY/7+1 
DO 3653 NODE=1,NODES 

3653 APHFEED(NODE)=0. 

• 
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IF (COND.EQ.3) NDAYFL=NDAYFL+1 
AIRTEMP=TEMPOPT(COND) 
SOILT=AIRTEMP-5. 
DO 42 NODE=1,NODES 

42 	TEMP(NODE)=AIRTEMP 
C 	******************************************************************* 

• UPDATE LEAF WATER CONTENT IN RELATION TO APHID FEEDING 
• AND NATURAL WILTING. 

******************************************************************* 

IF (NODES.LT.3) GO TO 21 
DO 20 NODE=3,NODES 

• AGE=FLOAT(LFAGE(NODE)) 
WATER=TURGOR(NODE)*WTL(NODE) 
APHWAT=APHFEED(NODE)*CWATER 
WATRAT=APHWAT/WATER 
APHWF=F(WATRAT,X20,Y20,4) 
OPTWAT=F(AGE,X21,Y21,5) 
DIFWAT=TURGOR(NODE)/OPTWAT 
IF (DIFWAT.GT.1.) DIFWAT=1. 
DIFWAT=F(DIFWAT,X23,Y23,4) 

20 	TURGOR(NODE)=TURGOR(NODE)*APHWF*DIFWAT 
21 	CONTINUE 

TOTLA=GPROD=0. 
RESPB=0. 
APHF=1. 
TSINKL=TSINKS=TSINKP=TSINKF=0. 

******************************************************************* 

• CALCULATE RESPIRATORY LOSS 
C 
C 	******************************************************************* 

TOTLR=0. 
DO 649 NODE=3,NODES 
IF (LIVE(NODE).EQ.0) GO TO 649 
TOTLR=TOTLR+WTL(NODE) 

649 CONTINUE 
SRESP=(SHOOT-TOTL+TOTLR)*RESPS 
IF (NODES.LE.3) SRESP=SHOOT*RESPS 
SRESP=SRESP*F(AIRTEMP,X76,Y76,3) 
RRESP=ROOT*RESPR 
RRESP=RRESP*F(SOILT,X77,Y77,3) 
TRESP=SRESP+RRESP 

C 	******************************************************************* 

C 	* 	 * 
C• 	* 	CALCULATE RESERVES MOBILIZED FROM PARENT BEAN 	* 
C 	* 	 * 
C 	******************************************************************* 

IF (PBWT.LT.PBTHR.OR.IWEEK.GT.PBDEATH) GO TO 40 
RESPB=PBRES 
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IF (IWEEK.LE.2) RESPB=PBRES1 
PRWT=PBWT—RESPB 

40 	RESERVE=RESPB 
IF (COND.EQ.1) GO TO 2 

C — 	******************************************************************* 
C 	* 	 * 
C 	* 	CALCULATE GROSS PHOTOSYNTHETIC PRODUCTION 	* 
C 	* 	 * 
C 	******************************************************************* 

GPROD=0. 
TOTLA=0. 
ND=NODES-2 

4 	DO 30 NODE=1,ND 
NN=NODES—NODE+1 

C 	******************************************************************* 

• FROM THE TOP OF THE PLANT DOWNWARDS, COMPUTE THE FOLLOWING 

• 1. EFFECTS OF SUB—OPTIMAL TURGOR 
C 

******************************************************************* 

AGE=FLOAT(LFAGE(NN)) 
OPTWAT=F(AGE,X21,Y21,5) 
TURGF=F(TURGOR(NN)/OPTWATO(70,Y70,4) 

C 	******************************************************************* 
C 	* 	 * 
C 	* 	2. EFFECT OF STOMATAL BLOCKAGE BY HONEYDEW 	* 
C 	* 	 * 
C 	******************************************************************* 

BLOKF=F(PBLOCK,X71,Y71,4) 

C 	******************************************************************* 
C 	* 	 * 
C 	* 	3. EFFECTS OF RESERVE ACCUMULATION IN THE LEAF 	* 
C 	* 	 * 
C 	******************************************************************* 

CHOF=1. 
IF (PRODNET.GT.SIGSINK) CHOF=F(SIGSINK/PRODNET0(72,Y72,3) 

C 	******************************************************************* 

• 4. EFFECTS OF TEMPERATURE 	 sr 

C 

	

	******************************************************************* 

TD=ABS(TEMPOPT(COND)—TEMP(NN)) 
TEMPF=F(TD,X73,Y73,5) 

C 	******************************************************************* 

• COMPUTE THE TOTAL RATE REDUCTION, FACTORS 	 sr 

4 
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C 
C 	******************************************************************* 

FACTORS=TEMPF*CHOF*BLOKF*TURGF 

C 	******************************************************************* 

• COMPUTE THE LIGHT AT THIS LEVEL IN THE CANOPY 
• CURRENTLY I ASSUME AN EXPONENTIAL DECREASE IN INTENSITY 
• WITH ACCUMULATED LEAF AREA 

C 	******************************************************************* 

IF (NN.EQ.NODES) GO TO 31 
Alt TOTLA=TOTLA+AREAL(NN+1) 

ALIGHT=F(TOTLA,X30.Y30.4)*RADIAT(IWEEK) 
GO TO 32 

31 	ALIGHT=RADIAT(IWEEK) 
32 	PRODN=ALIGHT*AREAL(NN)*EFFIC*FACTORS 

C 	******************************************************************* 

C 	* 	 * 

C 	* 	COMPUTE THE EFFECT OF LEAF AGE ON PHOTOSYNTHETIC RATE 	* 

' C 	* 	 * 

C 	******************************************************************* 

• IF (PRODN.LE.0.) PRODN=0. 
LFAGE(NN)=LFAGE(NN)+1 

33 	AGEF=F(AGE,X33.Y33.4) 
PRODN=PRODN*AGEF 
IF (LFAGE(NN).LE.MAXAGE) GO TO 30 
LIVE(NN)=0 
WTL(NN)=WTL(NN)*DECAY 

30 	GPROD=GPROD+PRODN 

C 	******************************************************************* 

C 	* 
C 	* 	COMPUTE THE OTHER LIMITS TO GROSS PRODUCTION 	* 
C 	*  
C 	* 	1. TOO LITTLE ROOT BIOMASS TO SUPPLY THE NEEDS OF THE SHOOT * 
C 	* 	 * 
C 	******************************************************************* 

UPFRAC=1. 
SRAT=1./OPTRPR(NODES)--1. 
IF (SHOOT/ROOT.LE.SRAT) GO TO 60 
UPFRAC=1.-((SHOOT/SRAT)-ROOT)/(SHOOT/SRAT) 

C 	******************************************************************* 

C 	* 	 * 

C 	* 	2. TOO LITTLE WATER OR NUTRIENTS IN THE ROOT REGION 	• 

C 	* 
C 	******************************************************************* 

60 	UP=ROOT*UPFRAC 
SOILF=1. 



IF (SUPPLY.GE.UP) GO TO 61 
SOILF=1.-((UP-SUPPLY)/UP) 

61 
	

ROOTF=F(UPFRAC.X69.Y6994) 

C 
	******************************************************************* 

C 
C 
	

• 	

COMPUTE TOTAL GROSS PRODUCTION 
C 
C 
	******************************************************************* 

GPROD=GPROD*SOILF*ROOTF 
IF (SIGAPH.GT.GPROD+RESERVE) SIGApH=GPROD+RESERVE 
GPROD=GPROD+RESERVE-sIGAPH 
GO TO 3 

• 2 GPROD=RESERVE 

C 	******************************************************************* 

CALCULATE NET PRODUCTION. GPROD LESS RESPIRATION LESS FEED 

C 	******************************************************************* 

3 	PRODNET=GPROD-SRESP-RRESP 

C 	******************************************************************* 

C 	* 	 * 
C 	* 	IF RESPIRATION EXCEEDS GROSS PRODUCTION. THEN REDUCE 	* 

• C 	* 	TISSUE WEIGHTS ACCORDINGLY 	 * 
* * 

C 	******************************************************************* 

IF (PRODNET) 17.750.16 
17 	RLOSS=SRESP+RRESP-GPROD 

ROOT=ROOT-(RLOSS*ROOT/WTPLANT) 
TCWT=TCWT-(RLOSS*TCWT/WTPLANT) 
DO 18 NODE=1.NODES 
WTL(NODE)=WTL(NODE)-('RLOSS*WTL(NODE)/WIRLANT) 
WTS(NoDE)=wTS(NODE)-(PLOSS*WTS(NODE)/WTPLANT) 
WTF(NODE)=WTF(NODE)-(RLOSS*WTF(NODE)/WTPLANT) 

18 	WTP(NODE)=wTP(NODE)-(RLOSS*WTP(NODE)/wTPLANT) 
WTPLANT=WTPLANT-RLOSS 
SHOOT=WTPLANT-ROOT 
GO TO 750 

C 	******************************************************************* 

• DISTRIBUTE THE NET PRODUCTION 
C 

• PRIOR TO THE FIRST LEAVES APPEARING AT WHORL 3 DO 
• THE FOLLOWING. 

C • 
C 	******************************************************************* 

16 	IF (NODES.GE.2) GO TO 15 
ROOT=ROOT+PRODNET*OPTRPR(NODES) 
SHOOT=SHOOT+PRODNET*(1.-OPTRPR(NODES)) 
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IF (SHOOT.LT.THRLF) GO TO 760 
SHOOT1=SHOOT-BASEWT 
WTS(1)=SHOOT1*0.6666 
WTS(2)=SHOOT1-wTs(1) 
TCWT=BASEWT 
NoDEs=2 
GO TO 760 

15 	ApHF=1. 
NODNEw=NODEs+1 
TCNEw=EXP(TCGR(NODNEw)*APHF)*TCWT 
TCSINK=TCNEW-TCWT 

C 	******************************************************************* 

C 	* 	 * 

• C 	* 	NEXT, THE ROOT INCREMENT IS CALCULATED 	 * 

C 	* 	 * 

C 	******************************************************************* 

WTPLANT=WTPLANT+PRODNET 
OPTRUT=wTPLANT*OPTRPR(NODEs) 
PRODI=PRoDNET 
IF (ROOT.GE.OPTRUT) GO TO 552 
PROD11=PROD1-OPTRUT+ROOT 

C 	******************************************************************* 

C 	* 	 * 
C 	* 	IF NET PRODUCTION IS INSUFFICIENT TO SATISFY ROOT GROWTH 	* 

C 	* 	THEN SHOOT GROWTH IS ZERO. 	 * 
C 	* 	 * 
C 	******************************************************************* 

IF (PROD11.GT.0.) GO TO 551 
ROOT=ROOT+PROD1 
SHOOTIC=0. 
Go TO 750 

551 ROOT=oPTRUT 
SHOOTIC=PROD11 
GO TO 553 

552 SHOOTIc=PROD1 
553 CONTINUE 

C 	******************************************************************* 

• 

• 	

COMPUTE THE RELATIVE SINK STRENGTHS OF LEAF, STEM, 
• FRUIT, AND PETIOLE SHOOT TISSUE. 

C 	******************************************************************* 

IF (COND.GE.4) GO TO 105 

C • 	******************************************************************* 

• 1. LEAF SINK 

C 	******************************************************************* 
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TSINKL=0. 
IF (NODES.LT.3) GO TO 571 
DO 56 NODE=3,NODES 
IF (LIVE(NODE).EQ.0) GO TO 6587 
FTURG=1. 
FHONEY=1..  
FWT=(WTLMAX(NODE)-WTL(NODE))/WTLMAX(NODE) 
SINK(NODE)=WTL(NODE)*EXP(GRL*FWT*FTURG*FHONEY) 
SINK(NODE)=SINK(NODE)-WTL(NODE) 
GO TO 56 

6587 SINK(NODE)=0. 
56 	TSINKL=TSINKL+SINK(NODE) 

DO 57 NODE=3,NODES 
57 	DISTL(NODE)=SINK(NODE)/TSINKL 

C 	******************************************************************* 

C 	* 	 * 
C 	* 	2. STEM SINK 	 * 
C 	* 	 * 
C 	******************************************************************* 

571 TSINKS=0. 
DO 58 NODE=1,NODES 
FADENS=1. 
FWT=(WTSMAX(NODE)-WTS(NODE))/WTSMAX(NODE) 
SINK(NODE)=wTs(NODE)*ExP(GRs*FwT*FADENs) 
SINK(NODE)=SINK(NODE)-WTS(NODE) 

• 58 	TSINKS=TSINKS+SINK(NODE) 
DO 59 NODE=1,NODES 

59 	DISTS(NODE)=SINK(NODE)/TSINKS 

C 	******************************************************************* 

3. PETIOLE SINK 

C 	******************************************************************* 

TSINKP=0. 
IF (NODES.LT.3) GO TO 711 
DO 70 NODE=3,NODES 
FADENS=1. 
FWT=NTPMAX(NODE)-WTP(NODE))/WTPMAX(NODE) 
SINK(NODE)=WTP(NODE)*EXP(GRP*FWT*FADENS) 
SINK(NODE)=SINK(NODE)-WTP(NODE) 

70 	TSINKP=TSINKP+SINK(NODE) 
DO 71 NODE=3,NODES 

71 	DISTP(NODE)=SINK(NODE)/TSINKP 

******************************************************************* 

C • 	4. FRUIT SINK 

4A. FLOWER SINKS 
C 
C 	******************************************************************* 



s 

.428,, 
711 	IF (COND.LT.3) GO TO 700 

IF (NOFLO.GT.0) GO TO 102 

C 	******************************************************************* 

C 	* 	 * 
C 	- * 	SET UP INITIAL DISTRIBUTION OF FLOWER WEIGHTS 	* 
C 	* 	 * 
C 	******************************************************************* 

NOFLO=NOFRU=INITNO 
DO 104 I=NOFLO.NODES 

104 	WTF(I)=WTINIT(I) 
GO TO 105 

102 NFLO1=NOFLO 
DO 103 NODE=NFLO19NODES 
WTFLMAX=FLOWRS(NODE)*WTFLOWR 
IF (WTFLMAX.GT.0.) GO TO 1021 
WTF(NODE)=0. 
GO TO 103 

1021 CONTINUE 
IF (WTF(NODE).LT.WTFLMAX) GO TO 105 
PODS(NODE)=AINT(FLOWRS(NODE)*FLOSURV(NODE)*POLLEN(IWEEK)+.5) 
WTF(NODE)=WTF(NODE)*FLOSURV(NODE)*POLLEN(IWEEK) 
NOFLO=NOFLO+1 

103 CONTINUE 
105 TSINKF=0. 

DO 106 NODE=NOFLO.NODES 
APHFLO=1. 
SINK(NODE)=WTF(NODE)*EXP(GRFL*APHFLO) 
SINK(NODE)=SINK(NODE)-WTF(NODE) 

106 TSINKF=TSINKF+SINK(NODE) 

C 	******************************************************************* 

C 	* 
C 	 46. POD SINKS 
C 

******************************************************************* 

IF (NDFRU.EO.NOFLO) GO TO 101 
NF=NOFLO-1 
DO 107 NODE=NOFRU,NF 
IF (WTF(NODE).LT.THRMORT(NODE)) GO TO 1065 
PODS(NODE)=AINT(PODS(NODE)*FRUSURV(NODE)+.5) 
WTF(NODE)=WTF(NODE)*FRUSURV(NODE) 
THRMORT(NODE)=5000. 

1065 PODMAX=PODS(NODE)*PODWT(NODE) 
IF (PODS(NODE).GT.0.) GO TO 1064 
SINK(NODE)=0. 
GO TO 107. 

1064• CONTINUE 
FWT=(PODMAX-WTF(NODE))/PODMAX 
APHFRU=1. 
SINK(NODE)=WTF(NODE)*EXP(GRFR*APHFRU*FWT) 
SINK(NODE)=SINK(NODE)-WTF(NODE) 

107 TSINKF=TSINKF+SINK(NODE) 
101 CONTINUE 
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• 

• 

DO 109 NODE=NOFRU,NODES 
109 	DISTF(NODE)=SINK(NODE)/TSINKF 
108 CONTINUE 

C 	******************************************************************* 

C 	* 	 * 
C 	* 	DISTRIBUTE STEM INCREMENT BETWEEN THE SHOOT ORGANS 	* 
C 	* 	 * 
C 	******************************************************************* 

IF (COND.GE.4) GO TO 600 
GO TO 701 

700 TSINKF=0. 
701 SIGSINK=TSINKL+TSINKS+TSINKP+TSINKF+TCSINK 

C 	******************************************************************* 

C 	* 	 * 
C 	* 	THE TERMINAL MERISTEM IS INCREMENTED FIRST 	* 
C 	* 	 * 
C 	******************************************************************* 

TCINC=(TCSINK/SIGSINK)*SHOOTIC 
TCWT=TCWT+TCINC 
IF (TCWT.LE.WTTHR) GO TO 51 
NODES=NODES+1 
WTNEW=TCWT—BASEWT.  
TCWT=BASEWT 
WTTHR=WITHR2 

• 

C 	******************************************************************* 

C 	* 	 * 
C 	* 	SET UP THE BIOMASS DISTRIBUTION IN THE NEWLY FORMED NODE 	* 
C 	* 	 * 
C 	****************************************************************** 

NODOLD=NODES 
IF (NODOLD.LT.3) GO TO 54 
WTL(NODOLD)=WTNEW*FRACTL(COND) 
WTS(NODOLD)=WTNEW*FRACTS(COND) 
WTF(NODOLD)=WTNEW*FRACTF(COND) 
WTP(NODOLD)=WTNEW—WIL(NODOLD)—WTS(NODOLD)—WTF(NODOLD) 
LFAGE(NODOLD)=1 

vo 



AREAL(NODOLD)=WTL(NODOLD)/DENSLF(1) 
TURGOR(NODOLD)=Y21(1) 
GO TO 51 

54 	WTS(NODOLD)=WTNEW 
51 	CONTINUE 

LEAFINC=(TSINKL/SIGSINK)*SHOOTIC 
STEMINC=(TSINKS/SIGSINK)*SHOOTIC 
FRUTINC=(TSINKF/SIGSINK)*SHOOTIC 
PETOINC=(TSINKP/SIGSINK)*SHOOTIC 
GO TO 601 

600 FRUTINC=SHOOTIC 
IF (FRUTINC6GT.TSINKF) FRUTINC=TSINKF 
LEAFINC=STEMINC=PETOINC=0. 

601 TOTLA=TOTL=TOTS=TOTP=TOTF=0. 
DO 200 NODE=19NODES 

C 	******************************************************************* 

C 	* 	 * 

C 	* 	DISTRIBUTE LEAF INC. VERTICALLY THROUGH THE CANOPY IN 	4.1- 
C 	* 	RELATION TO THE RELATIVE SINK STRENGTH OF EACH NODE. 	* 

C 	* 	 * 
C 	******************************************************************* 

IF (LEAFINC.LE.0.) GO TO 710 
WTL(NODE)=WIL(NODE)+DISTL(NODE)*LEAFINC 
LAGE=LFAGE(NODE) 
AREAL(NODE)=WTL(NODE)/DENSLF(LAGE) 

C 	******************************************************************* 

C 	* 	 * 
C 	* 	DISTRIBUTE THE STEM INCREMENT 	 * 
C 	* 	 * 
C 	******************************************************************* 

710 	IF (STEMINC.LE.0.) GO TO 720 
WTS(NODE)=WTS(NODE)+DISTS(NODE)*STEMINC 

******************************************************************* 

DISTRIBUTE THE PETIOLE INCREMENT 
C 
C 	******************************************************************* 

720 	IF (PETOINC.LE.0.) GO TO 730 
WTP(NODE)=WTP(NODE)+DISTP(NODE)*PETOINC 

******************************************************************* 

C 
DISTRIBUTE THE FRUIT INCREMENT 

******************************************************************* 

730 	IF (FRUTINC.LE.0.) GO TO 740 
WTF(NODE)=WTF(NODE)+DISTF(NODE)*FRUTINC 

C 
	******************************************************************* 

a 
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C 	* 	 * 
C 	# 	COMPUTE TOTALS OF EACH DIOMASS TYPE 	 * 
C 	* 	 * 
C 	.******************************************************************* 

740 TOTLA=TOTLA+AREAL(NODE) 
TOTL=TOTL+WTL(NODE) 
TOTS=TOTS+WTS(NODE) 
TOTP=TOTP+WTP(.NODE) 
TOTF=TOTF+WTF(NODE) 

200 CONTINUE 
GO TO 780 

750 TOTLA=TOTL=TOTS=TOTP=TOTF=0. 
DO 770 NODE=19NODES 
TOTLA=TOTLA+AREAL(NODE) 
TOTL=TOTL+WTL(NODE) 
TOTS=TOTS+WTS(NODE) 
TOTP=TOTP+WTP(NODE) 

770 TOTF=TOTF+WTF(NODE) 
780 SHOOT=TOTL+TOTS+TOTP+TOTF+TCWT 
760 WTPLANT=SHOOT+ROOT 

C 
	

******###**********************************************####******** 
C 
C 
	

• 	

DETERMINE WHETHER THE PLANT SHOULD CHANGE PHENOLOGICAL 
C 
	

• 	

CONDITION, BY REFERENCE TO VARIOUS THRESHOLDS. 
C 
C 
	

4111 4 0 ******************41-41-************-1411***************************** 

IF (COND.GT.1) GO TO 5 
IF (NODES.GE.3) COND=2 
GO TO 7 

5 	IF (COND.GT.2) GO TO 6 
IF (NODES.GE.NNFL.AND.IDAY.GE.IPHOTP) COND=3 
GO TO 7 

6 	IF (COND.GT.3) GO TO 7 
IF (NDAYFL.GE.N4THR) COND=4 

7 	CONTINUE 
A1=SHOOT 
A2=ROOT 
A3=TOTL 
A4=TOTS 
A5=TOTF 
A6=TCWT 

• A7=WTPLANT 
A8=TOTF 
IF (MI.E0.1) GO TO 7474 
M1=1 
CALL PRTPLT(BNDS,DIV9IDAY,A1,A29A39A49A59A69A79A8) 
GO TO 7475 

7474 MI=0 
7475 CONTINUE 
1 	CONTINUE 

WRITE (6,5002) TOTF 
5002 FORMAT (# #9# TOTAL BEAN YIELD =#,F8.4) 

STOP 

• 

• 
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END 
REAL FUNCTION F(X,XVAL,YVAL,NDIM) 
DIMENSION XVAL(NDIM),YVAL(NDIM) 
IF (X.LE.XVAL(1)) GO TO 1 
IF (X.GE.XVAL(NDIM)) GO TO 2 
DO 3 I=1,NDIM 
IF (XVAL(I).LE.X) GO TO 3 
AM=(YVAL(I)-YVAL(I-1))/(XVAL(I)-XVAL(I-1)) 
C=YVAL(I)-AM*XVAL(I) 
F=AM*X+C 
RETURN 

3 	CONTINUE 
1 	F=YVAL(1) 

RETURN 
2 	F=YVAL(NDIM) 

RETURN 
END 
SUBROUTINE SCALE(BOUNDS,DIV,IHEAD,LABELS,LABOUT) 
DIMENSION IHEAD(20),LABELS(6,3),LABOUT(4,2) 
DIMENSION 

BOUNDS(12), 
DIV(6) 

NOG=6 
WRITE (6,800) (IHEAD(I),I=1,20) 
WRITE (6,801) 
N=0 
DO 9 K=2,1212 
N=N+1 
WRITE(6,802)BOUNDS(K),(LABELS(N,J),J=1,3),BOUNDS(K-1) 

9 	CONTINUE 
WRITE (6,808) ((LABOUT(I,J),J=1,2),I=1,4) 
WRITE (6,910) 
DO 1 ISCALE = 1, NOG 
IKX = 2 * ISCALE 

1 	DIV(ISCALE) = (BOUNDS(IKX-1)-BOUNDS(IKX))/70. 
RETURN 

910 	FORMAT (#0#) 
800 	FORMAT (#1#,T33,20A4) 
801 	FORMAT (#0#,/,T33,#MINIMUM#,T59,#GRAPHING#,T92,#MAXIMUM#) 
802 	FORMAT (# #,T33,E11.4,751,3A4,T64,#,VV.#,T71,#TIME#,T92,E11.4) 
808 	FORMAT (# #,T4,2A4,T17,2A41.1105,244,T119,2A4) 

END 
BLOCK DATA 
COMMON /BD01/BLANK,DOT,CROSS,NUMB(6) 
DATA NUMB/1H1,1H2,1H3,1H4,1H5,1116/ 
DATA BLANK/1H / 
DATA DOT/1H./ 
DATA CROSS/1H+/ 
END 
SUBROUTINE PRTPLT(BND,DIV,19,W1,W2,W3,W4,W5,W6,W7,W8) 
COMMON/BD01/BLANK,DOT,CROSS,NUMB(6) 
DIMENSION 

XV(8), 
ALINE(70), 
DIV(6), 
BND(12) 
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INTEGER BLANK,DOT,CROSS,NUMR 
INTEGER ALINE 
NOG=6 
XV(1) = WI 
XV(2) = W2 
XV(3) = W3 
XV(4) = W4 
XV(5) = W5 
XV(6) = W6 
XV(7) = W7 
XV(8) = W8 
DO 1 1=1,70 

1 	ALINE(I)=BLANK 
ALINE(1 ) = DOT 
ALINE(70) = DOT 
DO 2 I = 1, NOG 
J=2*I 
NDIV = (XV(I)-BND(J))/DIV(I)+0.5 
IF (NDIV.LE.1 ) NDIV = 1 
IF (NDIV.GE.70) NDIV = 70 

2 	ALINE(NDIV)=NUMB(I) 
WRITE(6,3) I9,XV(1),(ALINE(II),II=1,70),XV(7),XV(8) 

3 	FORMAT (# #91.49I49T179E11.49T31970(A1),T105,E11.4,T119,E11.4) 
RETURN 
END 

• 
UT 
TECTED BY INPUTC AT ADDRESS 006022 
000112 

DATE 03/07/73 NODUMP 
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PROGRAM APHIS (INPUTOUTPUT,TAPE5=INPUT,TAPE6=OUTPUT) 
COMMON /B001/BLANK,DOT,CROSS,NUMB(6) 
DIMENSION PRATE(5) 
DIMENSION IHEAD(20),LABELS(6,3),LABOUT(4,2) 
DIMENSION DIV(6),BNDS(12) 
DIMENSION 

ALATAE(25), 
APTERAE(25), 
SIZE(25)9. 
IAGEAD(25), 
SIZEMAX(25). 
AL(5), 
TURGOR(25), 
FOODQU(25), 
ALA(5) 

DIMENSION 
INSTAR(25), 
DAYDEG(25), 
FECMAX1(17), 
FECMAX2(17), 
APTSURV(25), 
ALASURV(25), 
FALEM(25), 
APHFEED(25), 
DENSITY(25), 
DEGTHR(4) 

DIMENSION 
X101(4)0(101(4), 
X102(4),Y102(4), 
X103(4)0(103(4), 
X104(4),Y104(4), 
X100(4),Y100(4), 
X120(4)0(120(4), 
X121(4)0(121(4), 
X140(4),Y140(4), 
X150(4),Y150(4), 
X400(4),Y400(4), 
X1(4),Y1(4), 
X3(4),Y3(4), 
X2(4)0(2(4) 

DIMENSION 
P(5), 
AREAL(25), 
WTS(25) 

DIMENSION X99(3),Y99(3) 
DIMENSION X77(4)0(77(4) 
DIMENSION OLD(10) 
DIMENSION X5S(3),Y55(3) 
DATA X55/1., 1.5,2./,Y55/1.,.5,0./ 
DATA OLD/10*0./ 
DATA X77/0.,2000.,3000.,5000./tY77/-.3,0.,.3,.5/ 
DATA X99/2.0.95./0(99/0.,.7,1./ 
DATA 

X101/0.92.95.,10./,Y101/0.,2.,5.,10./, 
X102/3.,5.97.1, 10./,Y102/0.,.6,.9,1./, 
X103/0.94.,8.,10./,Y103/.69.65,.95,14,/, 

4 
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X104/0.93.97.110./9Y104/.89.99.95,1./9 
X100/5.910.915.920./9Y100/.19.69.9,1./9 
X120/0.9.259.691./9Y120/6.97.599.910./9 
X121/5.97.99.910./9Y121/.69.79.991./9 
X140/0.9.59.891./9Y140/0.9.39.591./9 
X150/.3E49.6E49.4E59.1E7/9Y150/0.9.491.93./9 
X400/5.910.915.925./9Y400/.2659.2559.249.22/9 
X1/0.910.930.940./9Y1/3.95.916.920./9 
X2/0.90.95000.96000./9 
Y2/1.91.9.959.95/9 
X3/0.90.95000.96000./9 
Y3/1.91.9.959.95/ 

DATA 
AL9ALA/10*0./9 
ALATAE9APTERAE/50*0./, 
DEGTHR/40.,80.,120.,160./, 
SIZE9SIZEMAX/50*0./9 
FECMAX1/7.92*9.93*10.92*7.94*4.92*3.93*1./9 
FECMAX2/5.92*7.93*8.92*5.94*2.92*1.93*0./, 
INSTAR/25*0/9 
DAYDEG/25*0./9 
FALEM/10*0.9.019.039.059.19.159.29.259.39.49.59.69.79.89.99. 

+1./ 
DATA 

TURGOR/25*10./9 
DENSITY/25*3./9 
FOODQU/25*1./9 
APTSURV/25*.95/9 
ALASURV/25*.9/9 
WTS/25*.1/9CSA/1./ 

DATA BNDS/8.90.98090.98.90.98.90.98.90.98090./ 
READ (59201) (IHEAD(J)9J=1920) 
READ(59202)((LABELS(19J)9J=193)9I=196) 
READ(59203)((LABOUT(19J)9J=192)9I=194) 

201 FORMAT(20A4) 
202 FORMAT(6(3A4)) 
203 FORMAT(4(2A4)) 

READ (5,713) (P(M)9M=195) 
713 	FORMAT (5F5.0) 

CALL SCALE(BNDS,DIV,IHEAD,LABELS,LABOUT) 
NODE=6 
TOTAPH=EM=DIF=0. 
ALTHR=.1 
TPC=TP=0. 
IPTHR=10 
FOODOUL=1. 
REF=1000. 
TOP=.8 
FILBTH=.5E7 
PR=0.2 

C 	******************************************************************* 
C 	* 	 * 
C 	* 	INITIAL IMMIGRATION OF ALATE APHIDS 	 * 
C 	* 	 * 
C 	******************************************************************* 



.436. 

ALATAE(10)=2. 
INSTAR(10)=5 
SIZE(10)=9. 
SIZEMAX(10)=10. 
IAGEAD(I0)=9 
NDAYS=100 
TFOOD=ADAYS=0. 
ALP=O. 
ADAYS=0. 
TEMP=20. 
DO 1 IDAY=1,NDAYS 
IWEEK=IDAY/7 
PPR=(TOP-.1)*.1E-3*TOTAPH+.1 
TP=PPR*TOTAPH 
TOTAPH1=OLD(10) 
PR=F(TOTAPH19X77,Y77,4) 
PRTEMP=F(TEMP,X100,Y100,4) 

c 	******************************************************************* 
C 	* 	 * 
C 	* 	GROWTH OF THE APHIDS OF EACH AGE IS ASSUMED TO BE SIGMOID • * 
C 	* 	IN RELATION TO THEIR WEIGHT AT BIRTH, AND THEIR MAXIMUM 	* 
C 	* 	WEIGHT WHICH IS DETERMINED BY THIS. TEMPERATURE AND FOOD 	* 
C 	* 	QUALITY AFFECT THEIR GROWTH RATE.  
.0 	* 	 * 
C 	******************************************************************* 

GRAPH=F(TEMPIX400,Y400,4) 
DO 400 1=1,25 
IF (SIZE(I).LE.0.) GO TO 400 
SIZE(I)=SIZE(I)*EXPMSIZEMAX(I)-SIZE(I))/SIZEMAX(I))*GRAPH* 
+FOODQU(NODE)) 

400 CONTINUE 
DAY=FLOAT(IDAY) 
AREAL(NODE)=F(DAY,X1,Y1,4) 

C 	******************************************************************* 
C 	* 	 * 
C 	* 	APHIDS FEED AT A RATE WHICH IS A FUNCTION OF THE TURGOR 	* 
C 	* 	OF THE LEAF,THE DENSITY OF APHIDS IN THE AGGREGATE, AND 	* 
C 	* 	THE NUTRITIONAL QUALITY OF THE PHLOEM SAP 	* 
C 	* 	 * 
C 	******************************************************************* 

APHFEED(NODE)=0. 
DO 401 1=1,25 
FACTS=F(TURGOR(NODE),X102,Y102,4)*F(DENSITY(NODE),X103,Y103,4) 
FACTS=FACTS*F(F00DQU(NODE),X104,Y104,4) 
APHFEED(NODE)=APHFEED(NODE)+(APTERAE(I)*F(SIZE(I),X101,Y101,4) 

+*FACTS) 
APHFEED(NODE)=APHFEED(NODE)+(ALATAE(I)*F(SIZE(I),X101,Y101,4) 

+*FACTS) 
401 CONTINUE 

TF00D=TF00D+APHFEED(NODE) 
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C 	******************************************************************* 
C 	*- 	 * 
C 	* 	DENSITY DEPENDENT FECUNDITY AND SURVIVAL CAN BE INCLUDED 	* 
C 	* 	HERE IF THEY ARE REQUIRED 	 * 
C 	* 	 * 
C 	******************************************************************* 

DDFEC=F(TOTAPH,X29Y2,4) 
DDSURV=F(TOTAPH,X39Y394) 

C 	******************************************************************* 
C 	* 	 * 
C 	* 	DETERMINE THE NUMBER OF DAY—DEGREES EXPERIENCED BY EACH 	* 
C 	* 	AGE CLASS OF APHIDS TO DATE 	 * 
C 	* 	 * 

C 	******************************************************************* 

DO 301 1=1925 
301 	DAYDEG(I)=DAYDEG(I)+TEMP 

INSTAR(1)=1 
BORN=o. 
TSIZE=0. 

C 	******************************************************************* 

• COMPUTE THE NUMBER BORN TODAY. THIS IS A FUNCTION OF THE AGE * 
• OF THE ADULT FEMALES AND THE TEMPERATURE 

C 	******************************************************************* 

DO 200 1=1925 
IF (INSTAR(I).NE.5) GO TO 200 
K=I—IAGEAD(1) 
A=BORN 
BORN=BORN+AINT(APTERAE(I)*FECMAX1(K)*PRTEMP*DDFEC) 
B=BORN—A 
TSIZE=TSIZE+B*SIZE(I) 
A=BORN 
BORN=BORN+AINT(ALATAE(I)*FECMAX2(K)*PPTEMP*DDFEC) 
B=BORN—A 
TSIZE=TSIZE+B*SIZE(I) 

200 CONTINUE 

******************************************************************* 

• DETERMINE THE PROPORTION OF SECOND INSTAR APHIDS WHICH ARE 	* 
• DESTINED TO BECOME ALATE. THIS IS RELATED TO THE ACCUMULATED * 

C 	

• 	

POPULATION LIFE AT THIS NODE OF THE PLANT 

******************************************************************* 

ADAYS=ADAYS+TOTAPH 
TOTAREA=AREAL(NODE)+(WTS(NODE)*CSA) 
FILTH=F(ADAYS/TOTAREA,X1509Y150,4) 
IF (FILTH.LT.ALTHR) GO TO 500 
PROP2=F(FILTH,X140,Y14094) 
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BORN=BORN*F(FILTH9X559Y55,3) 
DO 501 1=1915 
IF (AL(2).LE.0.) GO TO 501 
IF (INSTAR(I).NE.2) GO TO 501 
DIF=AINT(APTERAE(I)*PROP2) 
APTERAE(I)=APTERAE(I)-DIF 
ALATAE(I)=ALATAE(I)+DIF 

501 	CONTINUE 
500 CONTINUE 

IF (IDAY.LT.8) GO TO 527 
DO 526 1=1925 	, 
IF (INSTAR(I).NE.5) GO TO 526 
EMIGNO=AINT(ALATAE(I)*FALEM(I)) 
EM=EM+EMIGNO 
ALATAE(I)=ALATAE(I)-EMIGNO 

526 CONTINUE 
527 CONTINUE 

C 	******************************************************************* 

C 	* 	COMPUTE DAILY SURVIVORS 

C 	******************************************************************* 

DO 528 1=1925 
APTERAE(I)=APTERAE(I)*APTSURV(I)*DDSURV 

528 ALATAE(I)=ALATAE(I)*ALASURV(I)*DDSURV 

C 	******************************************************************* 
C 	* 	 * 
C 	* 	UPDATE THE INSTARS OF THOSE AGES OF APHIDS WHOSE TEMPERATURE * 
C 	* 	THRESHOLDS HAVE BEEN PASSED 	 * 
C 	* 	 * 
C 	******************************************************************* 

DO 302 1=1925 
K=INSTAR(I) 
IF (K.EQ.5) GO TO 302 
IF (DAYDEG(I).LT.DEGTHR(K)) GO TO 302 
INSTAR(I)=INSTAR(I)+1 
IF (INSTAR(I).LT.S) GO TO 302 
IAGEAD(I)=1 

302 CONTINUE 

C 	*******.************************************************************ 
C 	* 	 * 
C 	* 	AGE ALL THE APHIDS, AND THE PARAMETERS ASSOCIATED WITH THEM * 
C 	* 	BY ONE DAY 	 * 
C 	* 
C 	******************************************************************* 

DO 303 J=1924 
I=25-J+1 
ALATAE(I)=ALATAE(I-1) 
APTERAE(I)=APTERAE(I-1) 
DAYDEG(I)=DAYDEG(I-1) 



• 
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IAGEAD(I)=IAGEAD(I-1) 
INSTAR(I)=INSTAR(I-1) 
SIZE(I)=SIZE(I-1) 
SIZEMAX(I)=SIZEMAX(I-1) 

303 	CONTINUE 
APTERAE(1)=RORN 
ALATAE(1)=0. 
DAYDEG(1)=0. 
INSTAR(1)=1 
SIZE(1)=SIZEMAX(1)=0. 
IF (BORN.EQ.0.) GO TO 277 
AvADS=TSIZE/80RN 
SIZE(1)=F(AVADS9X1219Y12194) 
SIZEMAX(1)=F(SIZE(1)0(1209Y12094) 
SA=0, 
DO 7117 1=1925 
K=INSTAR(I) 

7117 SA=SA+(APTERAE(I)+ALATAE(I))*P(K) 
DO 7118 1=1925 
K=INSTAR(I) 
A=APTERAE(I)+ALATAE(I) 
IF (A.LE.O.) GO TO 7118 
FA=APTERAE(I)/A 
PKILL=TP*(P(K)*A)/SA 
PAPT=PKILL*FA 
PALA=PKILL-PAPT 
APTERAE(I)=AMAX1(0.9APTERAE(I)-PAPT) 
ALATAE(I)=AMAX1(0.9ALATAE(I)-PALA) 

7118 CONTINUE 
711 	CONTINUE 

C 	******************************************************************* 

C 	* 	 * 

C 	* 	COMPUTE TOTALS 	 * 
C 	* 	 * 
C 	******************************************************************* 

277 	DO 309 I=195 
309 	AL(I)=ALA(I)=0. 

TOTAPH=0. 
DO 310 1=1925 
K=INSTAR(I) 
ALA(K)=ALA(K)+ALATAE(I) 
AL(K)=AL(K)+APTERAE(I) 

310 TOTAPH=TOTAPH+ALATAE(I)+APTERAE(I) 
DO 444 1=199 
K=10-I+1 - 

444 OLD(K)=OLD(K-1) 
OLD (1) =T.OTAPH 
DENSITY(NODE)=TOTAPH/TOTAREA 
IF (TOTAPH.LE.0.) GO TO 11111 
A1=0. 
A2=0. 
A3=0. 
A4=0. 
A5=0. 

• 
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E=0. 
IF (AL(1).GT.0.) A1=ALOG10(AL(1)) 
IF (AL(2).GT.0.) A2=ALOG10(AL(2)) 
IF (AL(3).GT.O.) A3=ALOG10(AL(3)) 
IF (AL(4).GT.0.) A4=ALOG1O(AL(4)) 
IF (AL(5).GT.O.) A5=ALOG10(AL(5)) 
IF (EM.GT.0.) E=ALOG10(EM) 
CALL PRTPLT(BNDS,DIV,IDAY.Al.A2.A3.44,A5.E. 
+TOTAPH,PRED) 

1 CONTINUE 
11111 CONTINUE 

WRITE (6,966) Y3(3) 
966 	FORMAT (#0#,F6.2) 

WRITE (6,666) ADAYS,TFOOD 
666 	FORMAT (# #.2(E12.6.2X)) 

XFFF=TFOOD/ADAYS 
WRITE (6,966) XFFF 
WRITE (6,666) TP,TPC 
STOP 
END 
REAL FUNCTION F(X.XVAL.YVAL.NDIM) 
DIMENSION XVAL(NDIM),YVAL(NDIM) 
IF (X0LE.XVAL(1)) GO TO 1 
IF (X.GE.XVAL(NDIM)) GO TO 2 
DO 3 I=1,NDIM 
IF (XVAL(I).LE.X) GO TO 3 
AM=(YVAL(I)-YVAL(I-1))/(XVAL(I)-XVAL(I-1)) 
C=YVAL(I)-AM*XVAL(I) 
F=AM*X+C 
RETURN 

3 	CONTINUE 
1 	F=YVAL(1) 

RETURN 
2 	F=YVAL(NDIM) 

RETURN 
END 
SUBROUTINE SCALE(BOUNDS,DIV,IHEAD9LABELS,LABOUT) 
DIMENSION IHEAD(20),LABELS(6,3),LABOUT(4,2) 
DIMENSION 

BOUNDS(12), 
DIV(6) 

NOG=6 
WRITE (6.800) (IHEAD(I),I=1.20) 
WRITE (6,801) 
N=0 
DO 9 K=2.12.2 
N=N+1 
WRITE(6.802)BOUNDS(K),(LABELS(N,J).J=!,3).BOUNDS(K-1) 

9 	CONTINUE' 
WRITE (6,808) ((LABOUT(I.J),J=1,2)0=1.4) 
WRITE (6,910) 
DO 1 ISCALE = 1, NOG 
IKX = 2 * ISCALE 
DIV(ISCALE) = (BOUNDS(IKX-1)-BOUNDS(IKX))/70. 
RETURN 

910 	FORMAT (#0#) 
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800 	FORMAT ($1$,T33,20A4) 
801 	FORMAT (#0$,/,T33,*MINIMUM*,T59,$GRAPHING#,T92,$MAXIMUM*) 
802 	FORMAT ($ *,T33,E11.4,T51,3A4,764,*.VV.$,T71,$TIME*,T92,E11.4) 
808 	FORMAT (# $,T4,2A4,T17,2A4,7105,2A4,T119,2A4) 

END 
BLOCK DATA 
COMMON/B001/BLANK,DOT,CROSS,NUMB(6) 
DATA NUMB/1H1,1H2,1H3,1H4,1H5,1H6/ 
DATA BLANK/1H /• 
DATA DOT/1H./ 
DATA CROSS/1H+/ 
END 
SUBROUTINE PRTPLT(BND,DIV,I9,W1,W2,W3,W4,W5,W6,W7,W8) 
COMMON/BDO1/BLANK,00T,CROSS,NUMB(6) 
DIMENSION 

XV(8), 
ALINE(70), 

+. 	DIV(6), 
BND(12) 

INTEGER BLANK,DOTsCROSS,NUMR 
INTEGER ALINE 
NOG=6 
XV(1) = W1 
XV(2) = W2 
XV(3) = W3 
XV(4) = W4 
XV(5) = W5 
XV(6) = W6 
XV(7) = W7 
XV(8) = W8 
DO 1 1=1,70 

1 	ALINE(I)=BLANK 
ALINE(1 ) = DOT 
ALINE(70) = DOT 
DO 2 I = 1, NOG 
J=2*I 
NDIV = (XV(I)—BND(J))/DIV(I)+0.5 
IF (NDIV.LE.1 ) NDIV = 1 
IF (NDIV.GE.70) NDIV = 70 

2 	ALINE(NDIV)=NUMB(I) 
WRITE(6,3) I9,XV(1),(ALINE(II),II=1,70),XV(7),XV(8) 

3 	FORMAT (# #,T4,14,T17,E11.4,T31,70(A1),T105,E11.4,T119,E11,4) 
RETURN 
END 

UT 
TECTED BY INPUTC AT ADDRESS 006022 
000112 

DATE 03/07/73 NODUMP 
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PROGRAM PRED (INPUT9OUTPUT9TAPE5=INPUT,TAPE6=OUTPUT) 
COMMON /BD01/BLANKOOT9CROSSINUMB(6) 
COMMON/BD02/X1(4),Y1(4).FEC(50)9SUV(5°) 
COMMON/BD03/BETA(5) 
COMMON/BDO4/IPRINT,REFUGE 
DIMENSION DIV(6),BNOS(12) 
DIMENSION IHEAD(20),LABELS(6,3),LABOUT(4,2) 
DIMENSION ALPHA(5)9 

X111(2)9Y111(2)9 
EGG(5)9 
ADS(20)9 
AKILL(5), 
PREY1(5), 
SEXR(20), 
P(5950)9 
IA(5950)9 
00(5,50), 
5(5,50), 
IN(5950)9 

+ 	SV(5,50) 
DATA P/250*0./9S/250*0./9DD/250*0./ 
DATA IN/250*1/9SV/250*1./9IA/250*20/ 
DATA ADS/20*0./ 
DATA X111/0.9100000./ 
DATA Y111/-1.91./ 
DATA SEXR/20*.5/ 
DATA 8NDS/6.93.96.93.96.93.96.93.96093.91000.90./ 
READ (5,99) REFUGE 
READ (5,99) (PREY1(I)9I=195) 
WRITE (6,97) (PREY1(I),I=195) 
READ (5,98) IMP 

97 	FORMAT (*Ott* 	INITIAL PREY DISTRIBUTIONS *95(F10.193X)) 
98 	FORMAT (1013) 
99 	FORMAT (10F6.0) 

READ (59201) (IHEAD(J)9J=1920) 
READ(5,202)((LABELS(I,J)9J=1,3)9I=196) 
READ(59203)((LABOUT(19J)9J=192)91=194) 

201 FORMAT(20A4) 
202 FORMAT(6(3A4)) 
203 FORMAT(4(2A4)) 

CALL SCALE(BNDS,DIV,IHEAD9LA43ELS,LADOUT) 
AD=0. 
ADFOOD=20. 
STT=0. 
READ (5,99) ADIM 
DO 1 IDAY=1,100 
IF (IDAY.GT.IMP) GO TO 111 
DO 11 1=1,20 

11 	ADS(I)=ADS(I)+ADIM 
111 CONTINUE 

TP=0. 
DO 2 1=195 

2 	TP=TP+AMAX1(0.9PREY1(I)—REFUGE) 
DO 5 1=195 

5 	ALPHA(I)=AMAX1(04ePREY1(I)—REFU7E)/TP 
AM=TP*.2 
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ULOG=F(AM.X111.Y111,2) 
U=10.**ULOG 
SIGA=0. 
DO 3 1=1,5 

3 	SIGA=SIGA+ALPHA(I)**U 
DO 4 1=1,5 
BETA(I)=(ALPHA(I)**U)/SIGA 
TAD=TEGGS=0. 
DO 6 j=1.20 
ADS(J)=ADS(j)*SUV(J) 
TAD=TAD+ADS(J) 
TEGGS=TEGGS+ADS(J)*FEC(J)*SEXR(J)*F(STT,  X1.Y1.4) 
TFOOD=0. 
DO 7 J=1,20 

7 	TFOOD=TFOOD+ADS(J)*ADFOOD 
00 8  1=1,5 
EGG(I)=TEGGS*BETA(I) 

8 	AKILL(I)=TFOOD*BETA(I) 
DO 9 J=1,19 
I=20-J+1 

9 	ADS(I)=ADS(I-1) 
ADS(1)=AD 
IPRINT=0 
IF (IDAY.EQ.100) IPRINT=1 
CALL POPGRO (EGG.AKILL.PREY1.P.IA.DD.S.SV,IN,STT.AD) 
01=ALOG10(PREY1(1)) 
02=ALOG10(PREY1(2)) 
03=AL0G10(PREY1(3)) 
04=ALOG10(PREY1(4)) 
05=ALOG10(PREY1(5)) 
CALL PRTPLT (8NDS.DIV.IDAY.01.02.03.04.05.U.TAD.U) 

1 	CONTINUE 
STOP 
END 
SUBROUTINE POPGRO (E,A,PREY1.P.IA.DD.S.SV.IN.STT.AD) 
COMMON/BD02/X1(4).Y1(4).FEC(50).SUV(50) 
COMMON/BD03/8ETA(5) 
COMMON/B004/IPRINT,REFUGE 
DIMENSION E(5).A(5), 

PREYI(5), 
ST(5), 
P(5.50), 
IA(5.50), 
IN(5.50), 
DD(5.50), 
S(5.50), 
SV(5,50) 

DIMENSION PREDS(50), 
IAGEAD(50), 
DAYDEG(50), 
INSTAR(50), 
SIZE(50), 
FOOD(50), 
DEGTHR(10), 
PIMIG(50), 
PEMIG(50), 
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KILL(50), 
NKILL(50)9 
EATEN(50)9 
STARVE(50), 
PREYSZ(50), 
SEXR(50) 

DIMENSION 
X2(4)9Y2(4), 
X3(4),Y3C4)9 
X4(4)9Y4(4)9 
X5(4)9Y5(4)t. 
X6(4)9Y6(4)9 
X7(4)9Y7(4)9 
X8(4)9Y8(4)9 
X9(4),Y9(4), 
X10(4),Y10(4) 

DATA IX/0/ 
DATA PREYSZ/50*.1/ 

10 	FORMAT (2613) 
11 	FORMAT (16F5.0) 

IDISP=4 
IF (IX.E0.1) GO TO 1106 
READ (5,10) IRUN 
READ (5,10) NINST 
READ (5,10) IPUPL 
READ (5,11) (DEGTHR(I),I=19NINST) 
READ (5911) PREP 
READ (5,11) TEMP 
MINAD=DEGTHR(NINST)/TEMP+0.5 
MAXAD=MINAD+19 
READ (5,11) GR9SIZEMAX 
KK=MAXAD-MINAD 
READ (5,11) (FEC(I)9I=1920) 
READ (5,10) IMPER 
READ (5,11) (X1(I)9I=194) 
READ (5,11) (Y1(I)9I=194) 
READ (5,11) (X2(I)91=194) 
READ (5,11) (Y2(I)91=194) 
READ (5911) (X3(I)91=194) 
READ (5,11) (Y3(I)9I=194) 
READ (5.11) (X4(I)91=194) 
READ (5,11) (Y4(1)91=194) 
READ (5,11) (X5(I)9I=194) 
READ (5:911) (Y5(I)9I=194) 
READ (5,11) (X6(I)9I=194) 
READ (5911) (Y6(I)9I=194) 
READ (5911) (X7(1)91=194) 
READ (5911) (Y7(I)9I=194) 
READ (5,11) (X8(I)9I=194) 
READ (5,11) (Y8(I),I=194) 
READ (5,11) (X9(1)91=194) 
READ (5,11) (Y9(I)9I=194) 
READ (5,11) (X10(I)9I=194) 
READ (5,11) (Y10(I)9I=194) 

1000 DO 1001 1=1,MAXAD 
INSTAR(I)=IAGEAD(1)=1 
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PREDS(I)=DAYDEG(I)=SIZE(I)=STARVE(I)=0. 
1001 SEXR(I)=0.5 
1106 IX=1 

IF (IPRINT.EQ.0) GO TO 1108 
WRITE (6,202) 

202 	FORMAT (#19*INPUT DATA SUMMARY*,//) 
WRITE (6,203) IRUN,NINST,IPUPL 

203 	FORMAT (* tit*NUMBER OF DAYS IN RUN*9I39*. PUPAL STAGE*0392X9I3) 
WRITE (6,204) (DEGTHR(I)9I=1,NINST) 

204 	FORMAT ($ #9*TEMPERATURE THRESHOLDS*910F7.1) 
WRITE (6,205) TEMP,PREP,GR,SIZEMAX 

205 	FORMAT (# *910F10.4) 
WRITE (69205) (X1(I)9I=194) 
WRITE (6,205) (Y1(I)9I=194) 
WRITE (69205) (X2(I)9I=194) 
WRITE (69205) (Y2(I)9I=194) 
WRITE (69205) (X3(1)91=194) 
WRITE (69205) (Y3(I)9I=194) 

'WRITE (69205) (X4(I)9I=194) 
WRITE (69205) (Y4(I)9I=194) 
WRITE -(69205) (X5(I)9I=194) 
WRITE (69205) (Y5(I)91=194) 
WRITE (6,205) (X6(I)9I=194) 
WRITE (69205) (Y6(I)9I=194) 
WRITE (69205) (X7(I)9I=194) 
WRITE (69205) (Y7(I)9I=194) 
WRITE (69205) (X8(I)9I=194) 
WRITE (69205) (Y8(I)9I=194) 
WRITE (69205) (X9(I)9I=194) 
WRITE (69205) (Y9(I)9I=194) 
WRITE (69205) (X10(I)9I=194) 
WRITE (6,205) (Y10(I)9I=194) 

1108 CONTINUE 
AD=O. 
DO 101 K=195 
DO 201 I=1950 
PREDS(I)=P(K9I) 
IAGEAD(I)=IA(K9I) 
DAYDEG(I)=DD(K9I) 
SIZE(I)=S(K9I) 
INSTAR(I)=IN(K9I) 

201 	STARVE(I)=SV(K9I) 
PREYI(K)=PREYI(K)*PREP 
PREY=AMAX1(0.9PREY1(K)-REFUGE) 
IP0=1 
IF (PREY.LE.0.) IP0=0 

1. BIRTHS 
BORN=0. 
DO 1 I=RINAD9MAXAD 
IF (PREDS(I).LE.0.) GO TO 1 
IF (INSTAR(I).NE.NINST+1) GO TO 1 
J=1-IAGEAD(I)+1 
BORN=BORN+AINT(PREDS(I)*FEC(J)*SEXR(I)*F(STARVE(I),X19Y194)) 

1 	CONTINUE 
SEXBOR=0.5 

2. DEATHS 
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DO 2 I=1,MAXAD 
IF (INSTAR(I).EQ.7.AND.I-IAGEAD(I).GE.IDISP) GO TO 7177 
GO TO 7178 

7177 AD=AD+PREDS(I) 
PREDS(I)=0. 

7178 IDISP=4 
2 	PREDS(I)=AINT(PREDS(I)*SUV(I)*F(STARVE(I),X2,Y294)) 
"C 	# 4. DEVELOPMENT 

DO 4 I=1,MAXAD 
DAYDEG(I)=DAYDEG(I)+TEMP 
KIN=INSTAR(I) 
IF (KIN.GE.NINST+1) GO TO 4 
IF (DAYDEG(I).LT.DEGTHR(KIN)) GO TO 4 
INSTAR(I)=INSTAR(I)+1 
IF (INSTAR(I).EQ.NINST+1) IAGEAD(I)=I 

4 	CONTINUE 
C 	• 5. GROWTH 

DO 5 I=1,MAXAD 
EE=F(STARVE(I),X49Y4,4)*F(TEMP,X59Y5,4) 
AA=(SIZEMAX-SIZE(I))/SIZEMAX 
IF (INSTAR(I).E0.1.0R.INSTAR(I).EO.IPUPL) EE=0. 

5 	SIZE(I)=SIZE(I)*EXP(GR*AA*EE) 
• 6. FEEDING 
DO 6 I=1,MAXAD 
STARVE(I)=0. 
IF (INSTAR(I).EQ.1.OR.INSTAR(I).EQ.IPUPL) GO TO 61 
FOOD(I)=F(SIZE(I),X69Y694) 
NKILL(I)=FOOD(I)/PREYSZ(I) 
GO TO 6 

61 	F00D(I)=0. 
NKILL(I)=0 

6 	CONTINUE 
AD1=A(K)/20. 
IF (AD1.LE.0.) GO TO 616 
IF (PREY.LE.0.) GO TO 616 
PK=F(PREY,X79Y794) 
FK=F(PREY/AD19X89Y894) 
CK=F(AD19X99Y994) 
ACTK=AMIN1(PK,FK,CK) 
ADKIL=ACTK*A(K) 
PP1=PREY*(1.-EXP(-ADKIL/PREY)) 
PREY=PREY-PP1 
ST(K)=AMAX1(0.91.-PP1/A(K)) 
GO TO 617 • 616 ST(K)=0. 

617 CONTINUE 
• 7. FUNCTIONAL RESPONSES 
DO 7 J=1,MAXAD 
I=MAXAD-J+1 
IF (PREY.LE.0.) GO TO 71 
IF (NKILL(I).EO.0) GO TO 71 
IF (PREDS(I).LE.0.) GO TO 71 
PK=F(PREY,X7,Y794) 
FK=F(PREY/PREDS(I),X8,Y894) 
CK=F(PREDS(I),X99Y994) 
ACTK=AMIN1(PK,FK,CK) 
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KILL(I)=AINT(FLOAT(NKILL(I))*ACTK)*PREDS(I) 
P2=FLOAT(KILL(I)) 
P1=PREY*(1.-EXP(-P2/PREY)) 
KILL(I)=P1+0.5 
STARVE(I)=AMAX1(1.-P1/(FLOAT(NKILL(I))*PREDS(I))90.) 
EATEN(I)=FLOAT(KILL(I))*PREYSZ(I) 
GO TO 7 

71 	KILL(I)=0 
EATEN(I)=0. 
STARVE(I)=1. 
IF (INSTAR(I).E0.1.0R.INSTAR(1).EQ.IPUPL) STARVE(I)=0. 

7 	PREY=PREY-FLOAT(KILL(I)) 
TKILL=0. 
NTKILL=0 
DO 72 I=19MAXAD 
TKILL=TKILL+EATEN(I) 

72 	NTKILL=NTKILL+KILL(I) 
IF (IPO.EQ.0) GO TO 7964 
PREY1(K)=PREY+REFUGE 

7964 CONTINUE 
UPDATE 

M=MAXAD-1 
DO 8 J=19M 
I=MAXAD-J+1 
PREDS(I)=PREDS(I-1) 
DAYDEG(I)=DAYDEG(I-1) 
SIZE(I)=SIZE(I-1) 
IAGEAD(I)=IAGEAD(I-1) 
STARVE(I)=STARVE(I-1) 
INSTAR(I)=INSTAR(I-1) 

8 	SEXR(I)=SEXR(I-1) 
PREDS(1)=8ORN+E(K) 
DAYDEG(1)=0. 
IAGEAD(1)=INSTAR(1)=1 
SEXR(1)=SEXPOR 
SIZE(1)=.5 

C 	9. TOTALS 
TEG=T1=T2=T3=T4=TPUP=TAD=0. 
00 9 I=1,MAXAD 
IF (INSTAR(I).EQ.1) TEG=TEG+PREDS(I) 
IF (INSTAR(I).EQ.2) T1=T1+PREDS(I) 
IF (INSTAR(I).EQ.3) T2=T2+PREDS(I) 
IF (INSTAR(I).EQ.4) T3=T3+PREDS(I) 
IF (INSTAR(I).E0.5) T4=T4+PREDS(I) 
IF (INSTAR(I).E0.6) TPUP=TPUP+PREDS(I) 
IF (INSTAR(I).EQ.7) TAD=TAD+PREDS(I) 

9 	CONTINUE 
DO 301 1=1950 
P(K9I)=PREDS(I) 
IA(K9I)=IAGEAD(I) 

• DD(K9I)=DAYDEG(I) 
S(K9I)=SIZE(I) 
IN(K9I)=INSTAR(I) 

301 	SV(K9I)=STARVE(I) 
101 CONTINUE 

STT=0. 
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DO 103 I=19S 

103 	STT=STT+ST(I)*BETA(I) 
RETURN 
END 
REAL FUNCTION F (X,XVAL,YVAL,NDIM) 
DIMENSION XVAL(NDIM),YVAL(NDIM) 

IF (X.LE.XVAL(1)) GO TO 1 
IF (X.GE.XVAL(NDIM)) GO TO 2 
DO 3 I = 19 NDIM 

IF (XVAL(I).LE.X) GO TO 3 
AM=(YVAL(I)-YVAL(I-1))/(XVAL(I)-XVAL(I-1)) 
C=YVAL(I)-AM*XVAL(I) 
F=AM*X+C 

RETURN 
3 	CONTINUE 
1 	F=YVAL(1) 

RETURN 
2 	F=YVAL(NDIM) 

RETURN 
END 
SUBROUTINE SCALE(BOUNDS,DIV9IHEAD9LABELS9LABOUT) 
DIMENSION IHEAD(20)9LABELS(693),LABOUT(492) 
DIMENSION 

BOUNDS(12)9 
DIV(6) 

NOG=6 
WRITE (6,800) (IHEAD(I)91=1920) 
WRITE (6,801) 
N=0 
DO 9 K=291292 
N=N+1 
WRITE(69802)BOUNDS(K),(LABELS(N9J),J=193)9BOUNDS(K-1) 
CONTINUE 
WRITE (6,808) ((LABOUT(19J)9J=192)9I=194) 
WRITE (69910) 
DO 1 ISCALE = 19 NOG 
IKX = 2 * ISCALE 

1 	DIV(ISCALE) = (BOUNDS(IKX-1)-BOUNDS(IKX))/70. 
RETURN 

910 	FORMAT (#0#) 
800 	FORMAT (#1#9T33920A4) 
801 	FORMAT (A09/9T33.MINIMUM#9T599*GRAPHING#9T929#MAXIMUM*) 
802 	FORMAT (# #,T339E11.49T5193A49T649#.VV.#9T719#TIME#9T92,E1104) 
808 FORMAT #9T412A49T17,2A4,T10592A49T11992A4) 

END 	. 
BLOCK DATA 
COMMON/BDOI/BLANK9DOT9CROSS9NUMB(6) 
COMMON/BD02/X1(4)9Y1(4),FEC(50)9SUV(50) 
DATA NUMB/1h191H291H391H491H5,1H6/ 
DATA BLANK/1H / 
DATA DOT/1H./ 
DATA CROSS/1H+/ 
DATA X1/0.91.92.93./9Y1/1.91.91.91./ 
DATA SUV/50*.95/ 
DATA FEC/50*0./ 
END 



.449. 
SUBROUTINE PRTPLT(BNO9DIV9191419W2,W3,W4,W5,W6,W7,W8) 
COMMON/B001/BLANK,DOT,CROSS,NUMB(6) 
DIMENSION 

XV(8), 
ALINE(70)t 
DIV(6), 
BND(12) 

INTEGER BLANK,DOT,CROSS,NUMfi 
INTEGER ALINE 
XV(1) = W1 
XV(2) = W2 
XV(3) = W3 
XV(4) = W4 
XV(S) = WS 
XV(6) = W6 
XV(7) = W7 
XV(8) = W8 
DO 1 1=1,70 
ALINE(I)=BLANK 
ALINE(1 ) = DOT 
ALINE(70) = DOT 
DO 2 1=1,6 
J=2*I 
NDIV = (XV(I)-BND(J))/DIV(I)+0.5 
IF (NDIV.LE.1 ) NDIV = 1 
IF (NDIV.GE.70) NDIV = 70 

2 	ALINE(NDIV)=NUMB(I) 
WRITE(6,3) I9,XV(1),(ALINE(II),II=1,70),XV(7),XV(8) 

3 	FORMAT (# #,T4,14,T17,E11.4,T31,70(A1),T105,E11.4,T119,E11.4) 
RETURN 
END 

TECTED BY INPUTC AT ADDRESS 006022 
000112 

DATE 03/07/73 NODUMP 

a 


