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This thesis is in four parts, the first part consisting of a 

general survey on titiperipheraiisi 	The remaining three chapters 

involve the study of 3 modified multi-Regge models. 

In the second mapter, the single trajectory version of the 

Mutti-Regge model in a factorisable approximation is modified by 

including a cut in the input and a new set of bootstrap equations is 

obtained. 	The relative contributions of the pole and the elastic 

-.?2_ 	amplitude cut are also examined. 

In the third chapter, a multi-Regge model with nucleon loops 

inserted between the high sub-energy rungs is analysed. 

In the final chapter, it is shown how the addition of amplitudes 

with correlations can have the effect of pus h ing upwards the position 

of the Regge trajectory in the malti-Regge bootstrap. 
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C1=23--1. 

IlkrfTMCTION 

1. 	QSI 

It was proposed by Amati, Fuhini and ‘Itanghellani (Ref. it 

that a multiperipheral model of high-cneroy scattering would 

provide a dynamical description of Regge poles and hence a 

dynamical model of the i.-..c-mass particles that lie on these 

trajectories. 	Their paper featured both inelastic and elastic 

scattering, the latter being a summary of the work already done 

by Bertocchi, Fubinl and Tonin (Ref. 1). 	The multiperipheral 

mechanism was first studied by 9erestetsky and Pomeranchuk (Ref. 3)  

before the general Regge pole concept was developed. 	They 

described it in terms of pion-exchange and repeated diffraction 

scattering which, in the multi-Regge model to be described below, 

corresponds to alternating pions (c,k ii- 	) 	and Pomeranchuk 

trajectories. 

Multiperipherali:m is the generalisation at very high 

energies of the peripheral model which is useful in interpreting 

the main features of inelastic scattering in the energy range 1-2 Gev. 

For instance, in the process 

the peripheral model represents the reaction in terms of Fig. 1 

fi 
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where the s and t channels arc given as in the figure. 	The reaction 

products are identified by the sub-energies 	and S 	carried a_ 

by then. 	The experimentally observed fact is that this description 

of the process is valid only when la 	is small, Then the peripheral 

idea states that the amplitude for the process is approximately given 

by the product of the amplitudes corresponding to 

and 

where one of the incoming pions in both reactions is virtual and off 

mass-shell. 	Thus the full amplitude is effectively factorised. 	If 

Si 	in turn is sufficiently large, the reaction 	-VV 	sk  

will itself permit a peripheral description of its own, splitting the 

products 	S 	into 2 groups. 	Extending this process to the "1--  

production amplitude, we arrive at the multiperipheral graph at 

sufficiently high energy which is given by Fig. 2. 



When this amnlitude is combined with its complex conjugate to obtain 

the cross-section, we obtain the ladder structure which enables us to 

evaluate the multiparticle production contribution to the total cross- 

section by the iteration of an elastic cross-section. 	In the ARFST 

model, the multiperipheral chain for the production amplitude was 

comprised of elementary pion exchanges leading to a Regge behaviour 

of the imaginary part of the forward amplitude which is related to the 

total cross-section through the optical theorem. 	However, many of 

the conclusions arrived at in the AFS paper do not depend on the 

specific form of the 	1V-11 	amplitude or the low-energy input, 

but only on the topological form of the multiperipheral graphs. 

That is, their conclusions are model independent in the sense they are 

true for all multiperipheral models. 

The AFS paper analysed both the high-energy total cross-sections 

and the elastic scattering amplitude, the graphs for both of which 

are analogous except that the latter is more complicated kinematically 

since the momenta flowing through the two sides of the unitarity cut 

are different. 	The main technique used was to reduce the sum over 

all individual multiperipheral effects for a particular 	2 	1̀ 1 

production reaction to the solution of a linear integral equation. 

In the high-energy limit, the equations become rather simple. 	The 

kernel of their integral equation, have the property, in fact shored 

by all multiperipheral kernels in general, of being invariant under 

the group of multiplicative transformations 
,N 
S 	C S 

where 	is any sub-energy. 	This result can be derived from 

the fact that when the number of emitted secondaries is large, the 



main features of the nrocess should be the same independently of 

whether one considers as target, the particle 	f\ ,f,) --- • - 

(see Fig. 2). 	The change in the description of the process from a 

fixed target t), 	to a moving target V t 	entails a Lorentz 

transformation which in the extreme relativistic limit (Ref.4) is 

given by the above mentioned group of transformations. 	This 

property of inveriance suggests that the solution of the multiperipheral 

integral equation could be expressible in terms of the irreducible 

0L 
representations of the above group, given by 	5; 	In fact, 

the solution is found to be of this form. 	The same result is also 

achieved by summing the leading behaviour of each multiperipheral 

graph, which for the 	2 --0 	case is proportional to 

(0c 101sr‘  
5  

Thus thethe multiperipheral model gives a Regge behaviour in the 

asymptotic limit. 	The trajectory ci■ 	in the AFS case was 

determined as a functional of the low-energy resonance input ilCk(c„-.) 

which they used for the kernel. 

i.e. 

This holds for all multiperipheral models, that is, the position and 

residue of the Regge pole which describes the high-energy behaviour 

is determined by the kernel. 

The other "model independent" predictions of the AFS paper are 
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summarised as follows : 

(1) The high-energy behaviour of the elastic scattering 

amplitude is 

or 

(sio = sok,i 	oc) \A-„, 	• 

according as whether the amplitudes are symmetric or 

antisymmetric weer crossing. 	Also the slope of the 

trajectory is positive and 	 — 1 	The quantity 

C_(-0 admits of factorisation such that the relation 

between different amplitudes, dominated by the same pole 

is 

T 	T Cs \-C) 

T 

where 	>(- 	1  -2- 	and c) 	represent any kind of 

part i cle. 

(2) The inelastic amplitude also has average properties which 

are simple and depend only on the multiperipheral mechanism. 

The multiplicity grows with the logarithm of the energy. 

The inelasticity and the branching ratio between different 

secondaries are energy independent. 	Also, the spectra 

of the secondary particles are given,for k 	considerably 

smaller than the initial energy, by 	ct  

) T 	 ( ?)) 
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where 	and k 	are the transverse and 
ee--  

longitudinnl momenta and 	V ( Li-  L ) -c 	is a 

universal function independent both of 	S c 
e 	and 

and strongly peaked for small 	2-  
-e.- 	- 

Another feature of the AFS paper was their pointing out the 

presence of cuts through s.-channel unitarity. 	They also suggested 

that these should be included in the multiperiphera/ kernel, with 

resultant reno=alisation effects of the oltrot Regge pole trajectoiy 

though they did not atteept to solve this problem. 	Our next chapter 

describes a model, modifying the multi-Regge model along these lines. 

The AFS explicitly calculated the cut in the 2- particle 

discontinuity which was assumed to be reproduced in the elastic 

amplitude. 	Mandelstam (Ref. 5) showed that this was not so. 	In 

the complete contribution obtained by cutting by unitarity in all 

possible ways the diagram calculated by AFS, this cut is shown to 

disappear, though it reappears on computing other classes of 

diagrams. 	This conflict is resolved in the multi-Regge model, when 

one uses a Regge pole in the input and assumes all sub-energies to 

be high. 

2. .T.he2AtLtizaf=-LeetA. 

An extension of the ABFST model, the multi-Regge model, first 

proposed by Kibble (Ref. 6.) and Ter llartirosyan (Ref. 7) had the 

feature that the exchanged pions along the multiperpheral chain were 

replaced by Regge Poles. 	The attraction of this model was enhanced 

both by the phenomenological model of Chan, Losklevsky and Allison 

(Ref. 8 ) which was extensively used in successfully fitting 

individual reactions and the duality hypothesis proposed by polen - 

Horn - Schmid (Ref. 9). 	The theoretical justification of multi- 

Regge models relies heavily on the latter which is used to assume 
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that Rogge pole asymptotic representations are valid even in the low 

resorance region. 	Experimentally, it Is established that the mean 

sub-energy of neighbour/en final particles fall into this region 

(Ref. 10). 

Owing to the presence of input and out put Regge poles, the 

multi-Regge model has provided a suitable framework for a bootstrap 

theory embracing multiporipheralism. 	This model, in conjunction 

with the unitarity equation can be used to obtain self-consistency 

conditions imposing constraints on the Regge parameters. 	A crude 

bootstrap of this nature was analysed by Chew and Pignotti (Ref. 11) 

A more exact treatment with the derivation and analysis of the multi- 

Regge integral equation was developed by several authors (Refs. 11, 

In, 14, 15, 16). 	This integral equation, whose kernel consisted of 

the elastic 
	

amplitude described by a Regge represent- 

ation, arises from the unitarity conditions imposed on the multi- 

Regge model. 	Its solution leads to selfconsistency conditions 

relating to the imput and out put Regge poles, which impose constraints 

on the trajectory slopes and intercepts and the coupling constants. 

The solution is possible only with the use of asymptotic 

approximations to the phase space which enables a diagonalisation of 

the integral equation. 	The main problem in achieving this through 

an asymptotically exact description of phase-space was the definition 

of a suitable set of Kinematic variables. 	Bali, Chew and Pignotti 

(Ref. 17) used Toiler 	 0(:)..n)-1 	variables for this purpose. 

Their variables provide a means by which the Toiler-angle dependence 

of the two-Reggeon particle coupling is easily understood. 	These 

variables also provide a group-theoretical basis for the multi-Regge 

model. 
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Chew and de Tar (Ref. 18) made use of variables similar to 

these to achieve an almost complete diagonalisation of the kernel 

of the multi-Regge integral equation at zero momentum transfer by 

invoking Lorentz symmetry. 	This formed the basis for the sub- 

sequent work of Chew and Frazer (Ref. 19) which established the 

relation between the Pomeranchuk pole and the cut. 	The group 

theoretical analysis was extended to include general momentum 

transfers by Ciafaloni, de Tar and rtishelloff (Ref. 20) who used a 

set of variables analogous to the foregoing to obtain a partial 

diagonalisation of the equation. 	Their technique was applicable 

to both the multi-Regge model and the AFS model. 

Another set of variables that is especially suited to the 

asymptotic requirements of Multi-Regge phase space is that first 

used by Sudakov (Ref. 21). The derivation of Halliday and Saunders's 

multi-Regge integral equation was carried out using these variables, 

of which they performed a detailed analysis (Ref. 22). 	Tn this 

equation, they assumed the existence of only one type of particle 

of mass m, and zero spin, isospin and electric charge and only one 

type of trajectory. 	This assumption was only for convenience and 

did not entail an unrealistic description of nature. 	As pointed out 

in the AFS paper, only the external particles at the end of the 

multiperipheral chain are replaced to account for different reactions, 

the chain itself being uniform, and the properties of the model do 

not depend on the external particles, 

rialliday's (Ref. 14) output trajectory in the 

unitarty equation is produced by repeated exchanges of the same 

trajectory in inelastic amplitudes, enabling one to obtain a closed 
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set of equations for the parameters and couplings associated with 

this trajectoTy. 	This model diffels from that of the others (Refs. 

11, 15, 16) who suggest that multiple exchange of lower meson 

trajectories in the 	 amplitude is responsible for the 

Pomeranchuk trajectory output in the elastic amplitude, the 

Pomeron in the input producing only perturbation effects. 

Earlier, it was stated that the multi-Regge model is heavily 

dependent on the duality idea to justify its employing Regge 

representation for sub-onergies which are indicated by experiment to 

be low. qedliday (Ref. ').3,  and Chew, Rogers and Snider (Ref. 10) 

questioned the validity of this assumption. 	The latter confined their 

a rgaments to the ABFST model, which they indirectly related to the 

multi-Regge model. 	The former cast doubt on the assumption in the 

context of multi-Reggeism. 	The question of low sub-energies was 

connected to the problem of crossed rungs and shown to be the same for 

Kinematic reasons. 	Without these crossed rungs, the multi-Regge 

formalism contains only planar diagrams, the calculation of which is 

similar to the AFS cut calculation. 	Thus it is preferable to 

include diagrams with the crossed rungs, as in Fig. 3 

+ 

Fig. S. 
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fleeting thus reduced the study of low sub-energies to the study of 

crossed rungs, it was shown that the use of duality expressed in terms 

of Cauchy's theorem, to get round this problem was not possible 

owing to two effects. 	One was that the appropriate analytic 

amplitude has singularities at Se() 	as well as the threshold at 

leading to the application of Oauchy's theorem 

needing not only the imaginary pant but also the real part. 	The 

second is that the phase space integral contains extra terms due to 

the dissection of phase-seace to fit the multi-Regge region. 

Chew, Rogers and Snider used the duality concept based on the 

Veneziano model to cast doubt on its validity in the context of multi

peripheralim. 	The asymptotic foru of the Veneziano model was used 

in the low-energy region to determine the kernel. 	This led to a 

qualitatively wrong isospin dependence of the ABFST kernel. 	For 

this reason, they re-examined the original :6 U'3T model with a low-

sub-energy kernel, forswearing the high-sunenergy assumptions of 

multi-Reggeism and compared this with the multi-Regge model, to 

throw further light on it. 	A crucial defect in their model was 

that, using experimental values for the kernel, i.e. the low-energy 

amplitude, they fell far short of producing the output pole nt 

This failure of the hew, Rogers and Snider version of the 

ABFST model is shared by the various multi-Rogge models studied 

hitherto. 	All their models fait to account for total cross-sections 

tending to a constant as required by experimental evidence. 	At the 

beginning of the next chapter, we shall describe the work done in the 

multi-Regge framework in relation to this point. 

Another feature in respect of which multiperipheral models 
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disagree with experimental evidence is the sign of the elastic cut 

correction. 	The latter obtained through the application of two 

particle unitarity gives a sign opposite to that of the absorption 

model (Ref. 14). 	This question is examined in our model introduced 

in the next chapter. 

In this thesis, we study three modified versions of the multi-

Regge model analysed by lialliday and Saunders (Ref. 22) and Frazer and 

Mehta (Refs. 14.16). 	Throughout our work, we confine ourselves to 

the use of Sudakov variables in the derivation of the integral 

equation. 	Our models are also based on the single trajectory input 

version of the M.R.M. mentioned earlier. 	Our entire study assumes 

the momentum transfer either to be zero or close to it, together with 

large s, both of which are essential for the validity of multiperieheral 

models. 

In the next chapter, we consider the effects of adding a cut 

correction to the single pole input in order to attempt to push up 

the output trajectory closer to one than the single pole input model, 

where Frazer and Mehta (Ref. 16) established the position to be 0.8. 

The cut correction used is that which is dynamically produced by the 

single-pole input and as such, should have been present in the input 

in a complete bootstrap. 
	We also investigate numerically the value of 

the elastic cut correction in both our modified model and that of 

Frazer and Mehta's for comparisons with the absorption model. 	The 

results which we obtain are dissappointing on both counts. 	Self- 

consistency constraints on the parameters involved actually force the 

position of our trajectory lower than Frazer and Mehta's trajectory, 

our value being 0.7 instead of producing an enhanced trajectory as we 

had hoped. 	Also the sign of the elastic cut correction in our 
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model also is opposite to that of the absorption model. 

In chapter 11, we study a multi-negge model which is modified 

by the exchange of low-energy nucleoeis alternating with the high sub- 

energy Reggeons in the multi-Regge chain. 	The type of diagram 

calculated by us is very similar to that calculated by Cheng and Wu 

(Ref.25) in their analysis of high energy quantrum electrodynamics. 

In their case, insertion of Fermion loops into diagrams containing 

Vector Meson exchanges gave an enhanced s-behaviov 	for the 

amplitudes which led us to surmise that a similar result might occur 

with the insertion of nucleon loops in the multi-negge model, 

possibly producing constant cross-sections. 	For the nucleon-Reggeon 

couplings that figure in this multi-Regge chain, we use the heggeised 

form of the Feraion-floson couplings and propagators as prescribed 

by Scadron (Ref. 26) and Jones and Scadron (Ref. 27). 	We find that 

the nucleon loops have the effect of multiplying each malti-Regge 

diagram by a constant factor leading to the result that the trajectory 

position in the multi-Regge bootstrap remains unaltered while the 

Reggean-Reggeon-particle coupling constant is "renormalised". 

In the final chapter, we indicate how the addition of correction 

terms representing amplitudes in which non-adjacent particles in the 

chain correlate, to the standard multi-Regge model amplitude of Frazer 

and lehta in which only neighbouring links correlate, can produce 

the effect of enhancing the leading behaviour by pushing up the 

position of the output trajectory. 
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1, 	Introf1=2.21 

Various papers have been published on the possibility of a 

closed bootstrap in the multi-Regge model (Refs. 11, 12, 13, 14, 15, 

.16). 	The simplest of these consists of a single Regge pole input 

in the multi-Regge ladder emerging self-consistently in the output. 

The identification of the residue and position of the output pole 

with those of the input pole leads to a set of equations that 

determine the parameters of the common trajectory for the input and 

output. 	Assuming that the Regge trajectory is linear, of the form 

2- - 
Frazer and-Mehta (Refs. 15, 16) obtained a relation between the 

trajectory intercept eds.) and the Reggeon-Reggeon-particle coupling 

constants 	(A 	occuring at each internal vertex of the multi- 

Regge ladder, which was given by 

CA 

The actual number obtained by Frazer and delta for a0(6- ) was 0.0, 

consistent with a high-ranking theson trajectory. 	In fact, relation 

2.1,2 implies (Ref. 15) that (740 cannot approach unity without an 

inadmissibly low value for 	leading to the physically 

unrealistic result that the elastic cross-section is large compared 

to the production cross-section. 	Chew and Pignotti (Ref. 11) 

arrived at a similar result by establishing that 9 -‹; 
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Finkelstein and Kajantie (Ref. 2(3), by assuming a physically realistic 

g, also proved that multiply Pcneranchuk exchange violates the 

Froissart bound by leading to cross-sections that increase faster 

than any power of logs and suggested the inclusion of cuts as a 

possible remedy. 	Thus it is well established that the self- 

consistent singularity in the one-pole version of the multi-Regge 

model which determines the leading behaviour of the amplitude cannot 

be Identified with the Pomeron pole alone. 	Yet, if cro4s sectioes 

tend to a constant at high energy as experimental evidence suggests, 

this identification is necessary (Ref. 19). 	A solution is to 

include additional lower lying singularities either cuts or poles in 

the input. 

Chew and Pignotti (Ref. 11) used two input poles, one of them 

the Pomeron t\t jel 	and the other a lower ranking meson 

trajectory which represents the effects of all meson trajectories. 

They suggested that it was the multiple exchange of the lower 

ranking meson trajectory that leads to the output Pomeron while the 

effects of multiple Pomeron exchange were negligible. 	Frazer and 

Mehta (Ref. 15, 16) using Chew, Goldberger and Low's malti-Regge 

integral equation (Ref. 13) also studied a bootstrap with the sa-le, 

input as Chew and Pignotti's. 	Both Chew and Pignotti and Frazer and 

Mehta assume that the leading output trajectory as well aS one of the 

input poles is the Pomeron and use the bootstrap conditions to obtain 

values for the parameters of the other input trajectory. 	The output 

Pomeron is thus a hypothesis in these models rather than the 

inevitable outcome of a set of input singularities, including itself. 

In this sense, the bootstrap is not contained within those 2 pole 

models. 	In contrast, the bootstrap of a single pole, which 

unfortunately cannot be the Pomeron as stated above ie inherent in 
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the one-pole model (Refs. 14, 1 	16). 	The schizophrenic Pomeron 

model of Chew and Snider (Ref. 30), with a more sophisticated version 

of the 2-pole input similarly imposes the assumption that the 

leading output pole is at 3  = t 	and obtains numerical estimates 

for the other parameters. 	The two output poles are very close to 

each other, with comparable residues for sufficiently small spaci r:g 

and can be regarded as a single pole. 

All these two pole input models have either neglected or 

represented by a pole in the input, the output cuts arising from 

the input pole through unitarity. 	The input of a single pole, 

through s-channel unitarity, leads to an output cut with its branch-

point at the maximum of the expression 

where -Et 	and t, 	are the momentum transfers flowing 

through two sides of the unitarity diagram Olers. 1, 31). 	On the 

assumption that 01.(0 	depends linearly on t, then the 

maximum value of 0: CO + 	is given by 

on the boundary of the curve 

2 ic 
	 0 

where t is the momentum transfer. 



This cut at 	2_ el, {±7,TI 
	

together with 

the pole at 0(.(- ) 	in turn produces a cut at 	3 cti,1 ).__. 2_ 

In this manner the continued iteration in the s-channel of the 

unitarity equation leads to the set of Regge cut trajectories 

0' 	V‘0( et  C) 	 (IA= 213) - • 

A complete bootstrap scheme therefore requires the inclusion of all 

these cuts in the input. 

Hwa (Ref. 32) was able to achieve this complete bootstrap in 

the s-channel of the Pomeranchlk singularity, the latter turning out 

to be a branch-point in this scheme. 	Of course, this bootstrap is 

not within the multiperipheral model. 

Within the framework of multi-Reggeism this motif of the leading 

singularity , being wholly or p artly a cut was discussed by Branson 

(Ref. 33). 	He assumes an input corresponding to the asymptotic 

behaviour 

His output singularity consists of a branch-point and a pole. 	The 

branch-point has the nature 
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or 

according as whether a flat input trajectory or a linearly rising 

one is employed. 	For positive •the pole is to the right of 

the branch-point. 
	For negative t, it is on an unphysical sheet and 

at -IC =0 	it coincides with the branch-point, its residue vanZshing. 

Thus he achieves self-consistency only in the forward direction since 

the input pole and branch-point coincide for all t. ' Also the output 

singularity corresponds to an asymptotic behaviour of 

s ( i ls )33-  

01 

according as whether the input trajectory is flat or linearly rising. 

This behaviour implies vanishing total cross-sections at asymptotic 

energies in the single pole input model. 

It is possible that a single Pomeron pole, given by a 

trajectory djetI 	together with its associated cuts at branch- 

points 	0( 0(0 	as given by equation 2.1.4 can be bootstrapped 

obviating the need for either lower-ranking input poles or the 

assignment of a complex value tothe Pomeranchuk trajectory. 	in 

this case, we will have the result that cross-sections tend to a 

constant. 

Such a bootstrap program is as yet technically too difficult. 

Nevertheless, since for sufficiently small t, the threshold behaviour 

of cut discontinuities of scattering amplitudes weakens as n 



increases (refs. 1, :14), the inclusion of only the first cut for 

mirfht he a satisfactory approximation. 	At any rate, 

such a partial bootstrap will be a closer approximation to the 

total bootstrap of pole plus cuts then the partial bootstrap 

involving a single input pole only. 	We may then hope, given the 

hypothesis of the Pomeron pole and its associated cuts bootstrapping 

themselves, that the inclusion of this cut will push the output 

trajectory closer to one than in the pole only model. 	More 

accurate schemes, involving the input of the iterated cuts for 

nc.3)4----- 	by the same argument, will result in trajectories 

closer and closer to one. 	The pole only model will correspond to 

the zeroth order and the pole plus 	2- 	cut will correspond 

to the first order approximations in a series of approximate 

bootstraps. 	If in such a bootstrap, we include the pole plus cut 

up to V\ == k (spy), then thegp would emerge self-consistently 

in the output. 	Also, there will, be output cuts for 	11 7 k 
which are neglected in this approximation. 

we then have 	0( (0) 	increasing as 

From the. foregoing, 

ke: 
	

Increases, 

In this paper, we study the effects of including the cut for 

in the input in the.hope it will lead us to an output 

trajectory close to one and cross-sections tending to a constant 

with increasing s. 	We use Frazer and rehta's (ref. 15, 16) multi- 

Regge integral equation in a factorisable approximation but deriving 

it by a different method involving the use of Sudakov variables 

(Refs. 21, 22) following Halliday and Saunders. 	The parometrisation 

is  the same as that of Frazer and 'Tehta in order that we may compare 

the results. 	We use for the formulae for the discontinuity and 
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location of the cut, those emerging in the output of the pole 

only model. 

Finally, we also compare the relative contributions of the 

pole and the elastic 	2_ 	amplitude cut in both Frazer and 

Mehta's model and our model in order to investigate whether the sign 

agrees with that of the absorption model in view of the well-known 

disagreement of the latter will multiperipheral models in this 

respect (Ref. 35). 

2. 

In this section we shall discuss and outline the characteristics 

of the qudakov variables (as in Ref. 221 and their relation to the 

invariants of the multi-Regge production amplitude in order to 

facilitate the subsequent derivation of the multi-Regge Integral 

equation 

     

   

  

ck. 

 

  

(1, ,:s- I 

    

Fig. 4, 

The 	1 	amplitude, the Kinematics of which we analyse is 
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represented by Fig. 4, the variables being as in the Figure. 	For 

convenience all particles are taken to be identical and of unit 

mass. 

11e define the invariants 

Further, we define 

S 	 • ci> 

and 

ct 2 2. (t) 

 

L 	 t, 

 

the variables 0(,: 	and 	 which is a two vector, are 

the Sudakov variables. 



-26- 

In the centre of mass . frame of "ft 	and 	P It— 	it is 

obvious from 2.2.4 - 2,7,6 that 	' 	is the transverse part of T. 

\(t:- k, 	I< 	0 

and 	 ° 
Also, since s is large, we have 

2.- 

t 
21 

and 
1 	1 

- 

This in addition implies that 

Equations 2,2,4 and 2.2.5 also lead to 

c. C1  ea_ 

Since the 	. 	are on the mass-shell, we have from 2.2.7 and 2.2.8 



and 

2.2.- 
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Also, conservation of 4-momentum leads to 
v\ 	

I 	0 (A-) 
	

• t 

T 
 pc' 	k• 	 ) 

and v,. 

since 1.9 

  

  

and a(z_r).-)0 from equation 2.2.9, we have 

From the above equations, we also obtain 

=. s. (oc c,  

We now introduce the assumptions that 

04) 	as  

and that the -E t.; 	remain small. 	Equation 2.2.14 then makes it 

clear that the F.c 	must be finite. 	Also from equation 2.2.1:3, we 

have 



The qualities are defined by 2.2.19 and are clearly 

— 28 — 

because the term 
	

C 	• 	C:+t 
	gives a negligible 

contribution 

Let 
c1c =I— 	t. 

and 

Clearly, the set Cikk is monotonic decreasing and the set 

is monotonic increasing. 	Also we have 

S 
-4" 

A- 	C 

and 

(ct 	— 	(L 	c-- -1) 

Finite and positive® 	The conditions, C 	00 ) 

remain finite aS 	C 	.0,0 	and the monotonicity properties 

of the Ckt_ 	and 	k•0 _ 	lead to 

S _ 	c0o 

7-0 
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Equations 2.2.19 implies that 	S Cic_ t 	t: 
	and S 

renal n it iii te 

Hence 

L. 
and 

2... -4.1 
Therefore equation 2.2.15 leads to 

C.4 	-t- 

  

..■......•■■••■•••••••••■••••••.... 

  

<>4.2 	 a . • 2.'1_ 

Thus the sequence 	ck 
	

is monotonic decreasing and 

is monotonic increasing. 	rt also follows that 

23 

The above equation states that all momentum transfers arise from 

the transverse components 

51) 

Applying this equation to 	 leads to 

and 



By symmetry, we then have 

:30 - 

 

oz„ 
.2, • 	• 

and 

We also obtain relations between s and the 	S'L 	From equations 

2.2.9, 2.2.1.:3 and 2.2.21 . 

This leads to 

11-k 

g (2,  

2.2,27 follows from and 2,2.9 

We now define a further set of subenergies used in the next 

. 	chapter 

Let 

F 

2. 

where 

I 	_ 	. 

then 

sL 

Clearly, similar to equation 2.2.13, we have 

, 	• kt 

• -1 
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Also, obviously the 

'It is then a simple matter to go through similar arguments to those 

preceding 2.2.27 and arrive at the corresponding equation for the 

Evidently s could be expressed as proportional to a. product of the 

such that none of the sub-energies overlap. 	It will have to be of 

the form 

S oL S 	S 
C 	C C 

where 

There are a number of such possible equations between the s and the 

Consider one of them 

S1 5,x_ 53  - 	
L-! 
	4,3 
	- - S 

\-A 	t 
t 

Equation 2.2.30 together with 2.2.27 then leads to 

I 

3. 	the IT.R.Yr. 

In this section,- we use the Sudakov formalism just described 

to derive very easily the bootstrap equations of the pole-only model. 

These were arrived at by a different method by Fra7er and Mehta (nef. 

16). 	The latter derived their equations using the formalism of 



- 32 - 

Chew, Goldberger and Low (Ref. 13). 

The 	 unitarity equation roads 
oLD 	• N) _ 

( 
L•A k = 	 

\_14 0t, k--A 

 J It4 	21.1 	 2 - 3.  \ 
where Fig. 5 represents a typical term on the right-hand side, 

is the particle mass and the blobs represent the 	2- 	Ni 

amplitudes 	,yj 	We have eliminated the factors (111) 

by normalising suitably the amplitudes 	R .1 	in order to 

facilitate comparison of our work with that of Frazer and flehta. 

We have also cancelled an i'\ 	and agreed to integrate over only 

one of the 	11, , 	possible M.R.M. configurations of the n 

particles. 

In the multi-Regge model (Refs. 13, 14) PI 	is 1 t.1 

represerted by Fig. 6, the wavy lines standing for Reggeons and the 

straight lines for particles. 	As mentioned earlier, all particles 

are assumed to be identical and of zero,spin, isospin and electric 

charge. 

is given by 
2A,J 

Cy-uc,) cc 	) c-DL: 

IF 

 

e_. 

where is the signature factor 
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and G- (L rl: 	are the Reggeon-partiele-particle coupling 

functions at the end of the multi-Regge chain, ci 

is the ileggeon-Reggeon-particle coupling function occuring at each 

internal vertex and ot Cq 	is the input Rogge trajectory which 

we shall assume to be linearly rising and parametrised in the 

form (NA_ 	, Though the slope of the Pomeranchulc trajectory 

seems small experimentally (Ref. 35) we do not assume a flat 

trajectory for the Pomeron as it isolates the Froiseart bound w113n 

used in conjunction with the M.R.M. (Ref. 22). 

Also 

Sac 	c + 

tp, £_ CI j  

and the CO; 	are the Toiler angles between different frames 

in the multi-Regge amplitude 

It 

Fig. 7. 

The Toiler angle is defined with reference to Fig. 7 as the spatial 

angle between the plane formed by the three vectors r 	and cts  

and the plane formed by p and q  in the rest frame of 	II 





a 
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Thus the 	intermediate particles state contribution 

to the am-Aitude 	t,1 
	(corresponding to Fig. 0) is given by 

VI I  (_c t.1 ans  

G 

Lc' t: 

C d 	 (tcl )] CiT 

23 
where the variables not defined in Fig. 5 are given by 

C 

CL 

and 

Te now change to the Sudakov variables defined in the 'previous 

section. 	The Jacobian of the transformation from 

to 	 X 	K 	is clearly 	5/ and thus 

3(4-q 	 oc ,; c),Thg k-r.Dc,s 

We then obtain 

= 14=-2_ 	
2_, 9- 



t .6!I 



where 

I cck, 	 S(c_ot,--0 

C( •-•:1) . ( 5:-\c,) (;(t7-1)Cr-(•L t )C4.En.:() G"(On:) 

• c4(:) "jr0j0 

Li-cr tec:)—,,,c-0,1)331 	 S 
The factor 	s —1  on the right—hand side arises from the 

transformation of the S— functions which satisfy the relations 

t 

We now make the substitution 

From 2.2.26, we have 

We use the 1A. factors 1AL ) to dispose of the 

integrals. 	!ext we effect the transformation from the ck 

integration to the 	integration. 	The Jacobian J of the 

transformation is after taking into account the 2- g—functions 

already present and the fact that o'c% and 	vi 	can be 

assumed to be unity, given y 

1. 3 s 



1 

S 

,E,41 
	ti 

c (-E 
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We also make the additional transformations - from the set of 	YA 

two-vectors 	to the set of 11.--k 	two vectors 

which are given by 

C 	. 

c 	
K17- t 

The extra 	is absorbed by the factor g 	in 2.3.5. 

Hence, we have 

exf 
• tr--  

Ions ‘10& (,) 43( 

To improve the convergence properties of the above equation, we 

multiply the right-hand side.by a factor 

In equation 2.3.0, the lower limit 	of the Lk t,' integrations 

is given by 

where 	is a number such that we believe the multi-Regge model to 

hold true only when all the 	• Also the upper bound is 



e2r._ 
4-G6.17c 

1® S 

- do - 

net really unity but determined by the factor 

ut: — 

and hence it won't make a difference if we replace the upper limit 

unity with infinity. 	Performing  the \k 	integrations is 

facilitated by replacing  the 	function in the ri ght-hand side 

of eq uation 2.n.8 with its integral representation 

( 5  "C 
e_ 	 t.c3  s 

We now integrate the ttc' from 	to 20 and obtain 

g(scla -.=0°c)s  
e— 	S 	 C. 1) C.  Lh ) 

c=1 

loc (0') ( Ln 

1 



2.. 

( k- I r)■S t rE')1 
3-10 

— 41 — 

We now undo one of the end integrations and define 

t 	, 

'2— 

—4 	 ti.[ cis  („U 	a a 	2.c4.(0)4,)- 
to cis 

oi qa..r 

CA- 	(01 	■:1-  
S 

This enables us to write down the multi—Rogge integral equation 

as it is easy to see that 1%4 (. -Z. C3. t0:-) 	satisfies the 

recurrence relation 

(k' j k-;c,C) 

d. 	 (ta) Cs:a 
tvl 	 tc`.1s 

t \n.S C- Li) ot 

where 

I 	A 
K 

..•••■•• 

C 
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The kernel of the integral equation is enclosed within the square 

bracket and the equation itself is obtained by summing 

Actually as proved by Halliday and Saunders (Ref. 22) the summation 

should be performed only for 	logs. 	. 	‘,.tie proof 

is very simple. 	Referring back to the previous section on 

Sudakov variables, we define 

2.- 3 
Then clearly f1,2■LAc  is monotonic increasing 

and )( 

Thus 

S 

and we have 

C 

where 

and 

However, we follow Halliday (Ref. 14) In assuming that the correct 

answer is obtained by summing to vo since 	7)  

Frazer and Mehta, to solve their integral equation, used the 
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weak coupling approximation of Chew, Goldberger and Low (Ref. 12) 

We shall make a similarly drastic assumption in order to solve our 

integral equations. 	It is that we may ignore the terms '41 

in the factor 

s 

which occured above. 	Then the exponential term in the kernel 

of the integral equation becomes one. 

Hitherto, we have parametrised the two Reggeon-particle 

coupling function by 	cl (_(;c 1 6c,c1 I G;) From this point onunrds, 

we shall assume independence of the Toiler angle CD 	From 

group theoretical considerations, aS analysed by Bali, Chew and 

Pignotti (Ref. 17), the inclusion of the Toiler angle in addition 

to the adjacent momentum transfers to describe the couplings at 

the internal Reggeon-Reggeon-particle vertices is very natural. 

Such a dependence was also established by Drummond, Landshoff and 

Zakrewski (Ref. 26). 	We base our assumption on peripheral 

considerations. 

There have been a number of attempts to determine the 

dependence of the internal couplings on 	C,D 	(Refs. n7, 38, 29) 

Tan and Wang (Ref. 40) examined this problem, basing their study on 

analyticity properties of production amplitudes. 	They pointed out 

that the internal Regge couplings associated with the leading 

asymptotic power term is independent of (AD if either one or both 

of the adjacent momentum transfers associated with this vertex 

reduce to zero. 	On the assumption of factorisation of the 

leading s-behaviour of the multi-Regge model, the internal Regge 
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vertex appearing in the 2—) 3  production amplitude is the same 

as those in the 	 amplitude and hence they confined their 

discussion to the former represented by Fig. 7. 	They also gave 

a brief intuitive explanation as follows. 

We consider only the events for which the :1-momenta _1p_ 

and 9, are parallel. 	For these events, it is not possible to 

distinguish geometrically or physically one value of GD aZ 

from another. 	Therefore, the differential cross-sectios for 

these events must be independent of 	C- ) 	It is eaS'y to 

prove algebraically, from the Kinematics that 

From this equation, it is clear that for fixed 

as 	C I  and SI_ 	cA9 	however, the M.R.M. is the description 

of the scattering amplitude in the phase-space region given by 

oto 	and fixed t 
	

Therefore, the 

independence of the differential cross-section for the above 

mentioned events implies the CL)  independence of the leading M.R.M. 

asymptotic term at -E. -,o (i.e. 47( is kept fixed at zero). 

This means that the internal Regge coupling is independent of CO 

Since a fundamental assumption in multiperipheral models is the 

smallness of the momentum transfers, the above arguments justify 

assuming Toiler angle independence. 

The other assumption we make concerning 	(  

following flalliday (Ref. 14-- ) and Frazer and Mehta (Ref. 16) is that 

it is factorisable in 	and E2 	Thus we write 
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where g is the Reggeon-Reggeon-particle coupling constant. 

Up to now, we have assumed that g is a complex number. 	Halliday 

and Saunters (;ref. 41) analysing the 	multi-Regge 

unitarity equation along the same lines as Halliday's analysis of 

the 2,92_ equation (Ref. 14) came to the conclusion that g is 

probably complex. 	This was due to the fact that unlike in the 

case, 11J-A -1-7,3  is not automatically forced to be a 

real number by the unitarity equation for the s-matrix 

S.  S 	I 

2- • 3. S 
but we also have to impose the conjugate equation 

S = I 	
• 3 1G 

This follows from the lack of symmetry of the 	3 diagram 

(Fig. 9) which means that the signature factors are not automatically 

cancelled out. 

Fig. 9 

DrUmmond, Candshoff and Zakremkiaso concluded that g is complex 

by analytical means. 

For our bootstrap equations both in the pole-only model and 

the pole plus cut model which will be introduced by us, this point 

is irrelevant as it can be seen from 2.:1.9 that the phase factors 
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in cl and 	cancel. 	Nevertheless, it is worth noting that what 

we calculate in this cha,oter is 	and not g. 	To evaluate the 

phase of g, one needs to study the 2_ 	3 unitarity equation. 

now incorporate the approximations mentioned above and the 

separability and 'roller angle independence of the coupling constant 

g in our multi-Regge integral equation 203,10. 	These assumptions 

enable us to solve 2.3.10 by summing 2.3.9 directly since they cause 

the right-hand side of the latter to factorise. 

Thus we obtain from 2.3.4. and 2.3.9 

where 

CP 
— op 

s )10I—   

(.1/21-1C11 
IA- I 

C 

s Lk CC- ) cf, 
 

D. -∎s. \ 
2.3.11 	e (.1 s 

][m A (szz ) L. 	 a,01 \os 

tt,s  
2,1,1 
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From 2.3.10, it can be seen that the kernel has a cut in 

starting at the maximum value of 	L 	CC )_0) 
logslwhich is c. [ 2_ s(-LI+ 	2. d, (0)1 logs as clear from the 

reasoning in section one. 	There are also poles in a 	which 

determine theesymptotic behaviour of the amplitude. 	These poles 

occur when the denominator of 2.3.19 is zero. 	That is when 

D.,- 3 '2_ o 

The solution is obviously of the form 

(V) 10 

3 -2_ I 

giving rise to the asymptotic behaviour 

We now proceed to obtain Frazer and 7,1ehta's bootstrap 

equations by shifting to the conventional 3 - -plane. 	lie achieve 

this by using the Mellin transform technique, which is a powerful 

tool to study high-energy behaviour. 

The Mellin transform and its inverse are defined by 

((s') 	c°(D 
23 

cmcl 

--- 
(A-000 

where c is closer), such that the contour parallel to the imaginary 

axis running from C-- oci 	to Ci- k.:00 is to the right of all 

singularities of C@) in the t-plane. 

In equations 2.3.13 and 2.3.19 by making the substitution 

1°).5 	el. 3-2_4 
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where c is an arbitrary quantity introduced to ensure that 2-d,0 

is to the right of all 3 -plane singuiarities, it is easy to 

see thn.t the right-hand side of 2.5.1q reoresents the inverse 	rvici.thn 

transform of ficit-) expressed in the form of 2.3.23. 

Hence we can write 

where 

0 c 	G- 	G- 	gf).R11  

11.3-/A 

and 	
((:) \ 	is the same except that we replace the c(-) 	CC 

ot  

by 

We use Frazer and Mehta's parametrisation for the two-particle-

Reggeon and two-Reggeon-particle coupling functions and define 

(L. 

and 

This parmetrisation in exponential form is consistent with the 

multiperipheral requirement that the amplitude is dominated by small 

values of the momentum transfers along the chain and falls off 

rapidly for large values. 	We follow Frazer and Mehta in assuming 

the same momentum transfer dependence Is in both 2.3.26 and 2.3.27. 
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The s-plane version of equation 2.3.26 (after incorporating the 

equations 2.3.27 and 1.3.28), is given by 

/, • (slo 	,c 	e 

it is obvious that r(SiOnnd 	(Sc) are proportional to the 

elastic 	'2, amplitude given by Fig.10 which is in fact equal 

to 	(;-.1-- e (51 0 	Also clearly the right-hand side of eqeation 

2.3.25 does not contain this amplitude and is equal to only the 

production contribution to 14 (v0 Since the pole position 

and the asymptotic behaviour is determined by the latter, it hasn't 

affected the arguments hitherto, but for an accurate evaluation of 

the residue, the inclusion of this is necessary. 

/ 
Thus on adding 	Ls. r L.Sck: 	to the right-hand side of 

2.3.25, we have 

(3,0 	e  (3 

\— 

G- 	C 

-1-•-• -3 

 

e(S 1 	the s-plane equivalent of (ac5,),-- 	can be recognised as 

the expression on the right-hand side of equation 6.4 in(Ref. 22) 

where Y1 is equal to 2. 	As suggested in that paper, the easiest 

method of tackling the integration is by considering the integrand 

to be a Gaussian converting all the terms accordirely into the 

appropriate form. 	However, we are interested in deriving the same 

bootstrap equations as Frazer and Mehta in order to demonstrate the 

equivalence of the two methods and the approximations used. 	Hence 



••• 
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we transform the integration from the variables if to the invariants 
t 

and 6. 
	The Jacobian 	of the transformation is 

given by 

The expression in the deneminitor is the Kibble function (Ref. 42) 

which occurs frequently (see Ref. 1) in multiperioheral phase space 

evaluation when the integration is over invariants rather than the 

momenta as in 2.3.29. 	The curve determines the limits of the 

i ntegration. 

Thus we obtain 

(s,C) 	c,\--C 4-C 

The integral is reduced by means of the successive transformations 

and 

r (Ft-- 	cos(4 C 



Ci 	e 
\('-• 

ck 	E 	1,C-q 

;') 
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We then obtain 

Equation 2.3.39  2.3.39 is the same as equation -1,11-1- of (Ref.16) except 

for a normalisation factor. 	Frazer and Mehta analysed this 

equation in (Ref, 15) approximately and in (Ref. 16) exactly. 	It 

is worthwhile repeating the approximate analysis in order to 

pinpoint the importance of the signature factor in the multi-Regge 

bootstrap. 

Making the approximation that the value of j is far from the 

cut beginning at 20(, 	t in 2 3 .3 Li- 	we obtain 

c.A r e_ 	-S0  trk 

where 

7_.3 3 
Z  

Thus from 2.3.30 we obtain 

o 

2-0c (43  
- 3-1 
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In the multi-Regge bootstrap, the pole is given by the zero of 

the denominator and on equating the -(c- dependence of the input 

and output residues, we get 

k. 

Thus if not for the term 	11 6 	which originates from the 

signature factor, self consistency would be impossible. 

We now proceed to obtain the bootstrap equation from equation 

without making the above approximation. 	At high energy, the 

left-hand side of equation %%no is approximately expressed in terms 

of the output Regge pole with trajectory 04) since we assume the 

output and input traiections are the same in the single pole bootstrap. 

i .e. 

Tv-A ,_( jc1Z) 
j- 	2,3-3 

The right-hand side of 2.3.:10 has a pile at the value of j for 

which 

3 Cciiq = I 
'J..- 3- Yu 

and the residue gs,..) at this pole is given by 

3 4- 

Equating the trajectory slopes and intercepts of the poles on the 

right-hand side and left-hand side 

- 3 
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= 0 

2-3.4_3 
Similarly bootstraopinp the residue functions 

s 

- - S 

Equations 1.3.42 up to 2.3,45 lead to the bootstrap equations 

1-  nr"  •e!\ 	cf‘) 

2-3 

e A 	(10 	iTt 
	

LC 	_ 	a_ • ?5 - 9-1 

e„P'  c(R) 
P\ 

2 -3 

. t- " 	.CC(R) 
a, - 

where 

 K 
Numerical solution of equations 2.3.46 - 2.3.49 yields 

11.311: 	- 	conc.\ 	kr' 	1 

aL 
	

\<- 
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The first three of these results are arrived at in (Ref. 16). 

The different normalisation used by them resulting in the factor 

• instead of T 	in 2.2.N leads to their having 
	

c3 

and 	instead of IT 	and 	T7 ts- 	In the single pole 

16--- 

bootstrap, it is not possible to evaluate the actual value of the 

coupling constants, but only these ratios. 	The slight discrepancy 

in the values gives in (Ref. 16) and our values is probably due 

to computing inaccuracy in their paper. 	Another point that is 

worth noting is that G 	does not figure in three of the four 

bootstrap equations. 	Bence one can calculate c4(1) without 

G evaluating (s- and this enabled Frazer and Mehta to omit 

from their consideration. 	It will be shown that G- 	does not 

decouple itself from any of the bootstrap equations in the pole 

plus cut model which we shall introduce in the following sections 

qeod:11.1. - The Total Cut niscontinuity 

From equation 2.:1.2d, it is obvious that ( .)) has a cut 

in the j-plane with its branch-point at 

2  `4--1 
This cut in the elastic amplitude makes a contribution to the 

total amplitude given by 

e' 
	c s

r  e_ 	!..3,(,1-7--.1 
	.t• 

we can express this as 

j S 



2--tr 
and 
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where 

( 

In order to evaluate its contribution to the total discontinuity, 

that is, the discontinuity of the full amplitude, we express 

where 

—co 

—.S 

MTN 	 c 61S. 	 C)L 	 .ac_.e(it-L) 	diccrs,0 

The cut in ecc i-q is reproduced in 1-vs.\  (41...,_(_,..\- t-ic) 	as can be 

easily seen on examining 2. n. ?o, 	We now evaluate the dii-to 

tinuity of the full amplitude 

T,et 

Tk,A Pk, (TO Ck (s1-0 

Then 

sc 
+- ( 

where 



4c(1/4-E)  

cl4scp(3), 
J 	' — 

— co 
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Equations 72.4., 2.4.5, 2.4.7 and 2.4.8 together lead to the 

result 

rti 	L 	(sc-L)SL- 2,  

On substituting equation 1.4.2 in 2.4.9, we obtain 

IT- 	
t_17 

0 

where 

c53  " R 	e 
57:3 o 	t 

r  

and Is the Euler constant here and not the integration variable 

used earlier. 	Since t is small, we evaluate 2.4.10 to the first 

orrer in t and obtain 

where 
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a . 4-N- and 

2 	4_ 	 r  
At the branch-point 

and 
(1t41 	04D 

Hence from 1.4.10, we find that the discontinuity of the cut in 

the full amplitude is singular at the end-points and also vanishes 

there. 	This cut in the full amplitude arises from the cut in the 

two-particle amplitude (ICA 	corresponding to the AFS cut, 

mentioned in chapter one of this thesis, obtained by calculating 

Feynman diagrams, which itself does not vanish and Is non-singular 

at the end-point. 	Our result about the end-point properties of the 

. cut in the full amplitude is in agreement with that of Bronson and 

Jones (Ref. 43). 

52.,Quanzl - Pole and Cut In the Input 

In section three, we saw that for values of j near the pole 

ca) the amplitude is given by the right-hand side of equation 

2.?.39. 	Provided the pole is separated from cut, we obtain from 

equations 2,4.6, 2.4.9 and the argument at the beginning of the last 

section, the behaviour of the amplitudes for values of j near the 

cut. 	In the s-plane, the pole at 3e:014) makes a contribution 

to the asymptotic behaviour given by 

eCe 	ca0 
e 	6 
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The corresponding  asymptotic contribution from the cut which starts 

at 2(1,07) t 	is given by 

r  4rye 3  cgi 
-01 s 

This cut contribution dominates over the pole contribution only if 

0,4 0 	which is precluded by the Froissart hound. 	If ckG;) 

is much less than unity, then as s tends to infinity, the cut 

contribution is negligible comoared to the pole contribution. 

However if a((;) equals one, then the pole and cut both coincide 

at .L.-;.0 	and their asymptotic s-dependence is the same for 

both, 	The relative contributions from the pole and the cut are 

thus determined by the relative strengths of the residue at the pole 

and the discontinuity across the cut for small values of t. 

Pence if 01,3:.) is close to unity, the cut contribution is not 

necessarily negligible. 

The two expressions given above reflect the relative strengths 

of the particle-particle-pole and particle-particle-cut couplings 

respectively in the elastic amplitude. 	In the multi-Regge chain 

for the production amplitude, in a previous section we used the 

cak-,z1 
input :)z, 	in each link corresponding  to the output Regge pole 

Qc) 

previous section, we need to include a cut in the input. 	On the 

addition of a cut to the input pole in each link of the chain, we 

now find that each of the n produced particles except for the two 

end ones is linked to a pole and a cut in both directions along  the 

c4ain. 	This means that we have to introduce two more parameters 

to describe the strength of the couplings particle-cut-pole and 

particle-cut-cut. 	Earlier, in the pole-only model, we assumed 

If we are to account for the output cut discussed in the 
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that the particle-pole-pole couplings factorise in the form given 

by equation 2.n.14. 	Continuing in the same spirit, we assume that 

the particle-cat-pole and particle-cut-cut coupling functions also 

factorise in their dependence on the adjacent momentum transfers. 

We now make the further assumption that the relative strengths with 

which the pole and the cut couple to an external particle in the 

elastic amplitude are preserved in the production amplitude. 	This 

is in keeping with the spirit of multiperinheral models where we 

iterate the production amplitude with the elastic amplitude which 

provides the kernel of the integral equation. 	These two assumptions 

are tantamount to the relationship between the couplings given by 

Particle-Particle-Pole 	 Particle-Pole-Pole 

Particle-Particle-Cut 

 

Particle-Pole-Cut 

Particle-Pole-Cut 

Particle-Cut-Cut 

Thus the need for additional parameters is eliminated. 	If not for 

these assumptions (also made in Ref.44), a study of the 

production amplitude would have been necessary in order-t-P-bbtain 

a closed set of bootstrap equations since the number of equations 

arising from our model alone would be less than the number of 

parameters. 

Therefore, to each factor in the multi-llegge amplitude 

e. 5L" 

the addition of the correction 

33. 	3  e72::  
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in line with their relative strengths in the elastic amplitude 

will represent the effects of the cut. 

Thus following the procedure of section n, 

r' cc) c) 
where is the the 1-, /- amplitude obtained after 

adding the cut correction to the propagator and residue functions 

associated with the input pole. 	Using the notation of section 

3 

K a\e 	me?' 
S -2_ 

where 

pok 	 C7,71 	c.-vr ektC- 

then 	

DUE_ 	t 0-4 LR \fa 1) (1/4-k6 1)-1 

where 

CE 
	(....(0 

83.  .c• e_. 	(scL) 

then 

-I-  c,( 	c(S CL) -14-3 (Sib) 

- C- 
where 

2_ , fl 
and 

3  (s t ic) -_ 	K 	(L2  (. I) 	
• ? 

-CAJc-1 	is given by Fig. 11 (it is also obtained by putting ve= S 

in Fig. 4 of Ref. 22) where the part of the diagram on the left of 
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the dotted line represents the pole and that on the right 

represents the cut. 	As in section 6 of (Ref. '2 ), we only 

integrate ovoq. the region of phase space where the momentum 

transfers flowing along the Reggeons are finite. 

(5'Ll 	is represented by Fig. 12 (it is obtained 

by putting b 4- 	in Fig. 4 of Ref. 22). 	We ignore  

as it represents a cut starting at t+ (t-i(c) - 	whose effects 

we ignore owing to the reasons we gave in section one. 

Thus equation 2.5.1 follows from equation 2.%no after 

replacing c:‘ It-)  by c; 	ct1 	where 

‘csro rcsio  
and 	

""),•°1 

,R3,ticr) 	Re_  ci 4L-k,  

3-43 

I.' 1 ] 

We use the identity 

cOn 
Akt■ 	_ 1 

0 of 

to convert the denominator in the integral of equation 2.5.10 into 

exponential form which becomes 

where 

	 cmc rc"'Nce, 3̀ .ra 	
'2. • 

<ALCic 
'S-\3 



- 

3 The transformation from ) 	to V■ was essential in order that 

x may be expressed solely in terms of the latter and hence not 

figure in the integration over the momenta. 
	

We now dingonalise 

a quadratic form in V:. 	by means of an orthogonal transformation 

of the variables k, whose Jacobean is unity and express it in 

form 	-I- 	2_t- 
t 

-5e transformation is given 

by 	k 	ç +. 	where s a constant vector. 	We 

finally transform to angular variables by replacing 

0 —1 a  fc ) 

c,t) 

It is now easy to do the k integrations and we obtain to the first 

order in t 

e r (00 

C c)  
(4 LA 

 

ket3  

Ct-i-z 4 L  

(s-  3 ot A-- 2 r -) 
where 

— 
16 

et_ (1+  

2• S15 

and 4 	1,‘  
2_ 	 tb '1. • 	t 

lt — 	(1+ 	 (R+141 
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Equations 	- 	17, 2.1.9, 2. 1 and the equations 

obtained by replacing e(j t-El 	with .c t  (ScE) in equations 

2.%42 	1%,%41 leads to the bootstrap equations of our model 

given by 

r\ [■ (1  .A" 	xl (
off 
 

1-  -2.- 3  ttk  61 + 
2 a'S 

a 
( (13 	P) 	

(o 

c 	 rk  
-2..\c, A 	 -------- 

I 

- 5 2U 

rr 

a 	I 

e 	c0 c" 2 ^ J._ L g INt 	a. lit- 

I 
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and 

art 	1-13t- 	A  LW) --Ai  

a V, 

   

t4-  (ir 	
fop 

cAtAMAGLIT 
ta's 

It can be observed that the above four equations reduce to 
,-1 

equations 2..46 - 2,n.49 if we put 7-17 and --IL equal to zero. 

Thus the integrals of 1.5.13 and 1.5.19 represent the cut-effects 

in the above multi-Regge bootstrap in equations. 	As we 

remarked at the end of section n, G- occurs in all four 

equations. 

Solving these equations numerically, we obtain 

TI9 
0-  S 

■c.. 
ck-k.c\ (? 

   

Contrasted.with the pole-only model results at the end of 

section 	it can be seen that while djc;) decreases by 0.1, 

k: does not change appreciably. 	There is also a 

noticeable difference in 131K and ITC,JOrlipiying that in our 

model, the trajectory has a smaller slope and also that the 

elastic amplitude forms a proportionately smaller part of the 

cross-section. 

Secri.aal - Comparison of Pole and Elastic Cut Contributions 

As explained in the earlier sections, the generation of 

Regge cuts in multiperipheral models occurs through the 

application of s-channel unitarity. 	A type of approximation 



C-:L  (.4 G-11  s Uns) 
v_ 	(14,- b.tns) V  

CUT= 

( 	 •E^ 
g k4. 	s _143 

-66- 

used in such applications is where we consider the output Regge 

pole to be obtained from the many particle intermediate states and 

the 7egbe,-cut to arise from considering only the quasi-two body 

channels as intermediate states where the individual amplitudes 

are given by Regge pole exchanges. 	Thus in this approximation, 

the unitarity equation l'eQds 

a - ( 

where I) 	represents the Regge-pole contribution and the symbol 

o represents integration over intermediate states. 	The second 

term in 2.6.1 represents the elastic cut correction which as 

observed by Finkelstein and Jacob (Ref. 24) is opposite in sign t 

the absorptive correction, which is more in agreement with 

experiment. 	In this section, we compare the relative contrib- 

utions of the pole and the elastic 	 cut corrections 

to the amplitude in both Frazer and lehta's model and our model 

in order to investigate whether the sign in our model is in 

agreement with the absorption model result in contrast to what 

the usual aoplicption of unitarity and multioeripheralism achieves 

as in 2.6.l. 

Bence we define the following expression in the s-plane 

which are obtained by taking the inverse VIWG,\  transforms of 

equations 2.% ?9, 2.%n4 and 2.5.1.4, multiplied by the appropriate 

constants 

POLE = 
	

Gel-  5 cl 	4-  6 \n-5)  
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and 
( 	't- 

(s" 	 ) 2. 	s  
3 glop 

LAT C =  r e 

5is 

(14-- 	k (:),Th 
16 

POLE is the s-plane equivalent of 

2- 6 q- 

which is the asymptotic contribution of the pole term to the 

amplitude. 	CUT is the elastic 	 contribution to the 

amplitude, i.e. minus times the absorption model cut in s and 

t. 	The expression GUT + CTITC. is the corresponding contrib- 

ution in our input pole plus cut version. 

After fixing the free parameter b = 1 in equations 1.6.1 - 

2.6.4 for small t (t = 0.01) and large s, varying from 20 - 1000, 

we find after numerical computation that the ratio Ea_ in the 
POLE 

pole-only model is about n - 4 times the corresponding ratio 

CUT + CUT C 	in our model. 	Thus the cut correction becomes much 
POLE 

smaller when there is an input cut. 	The more important result 

is that we do not find the sign of the cut correction in our model 

agreeing with the absorption model. 	Roth ours and Frazer and 

P.lehta's model produce the ooposite sign. 	This effect does not 

change appreciably for lo<, 	(altering b has the same effect 

as altering t as from equations 	 , it can be seen that 

b always occurs in conjunction with t). 

There are markedly different effects for LI 	I 	but 

they are meaningless in view of the small bt approximations made 

during the course of the calculations. 
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- Conclusion 

The presence of the input cut has not had a significant 

impact on the position of the bootstrapped Rogge pole which drops 

by 0.1 to 0.7. 	however, assuming the exponent ial fall off in the 

momentum transfer dependence 	to be the same in both models, we find 

that the slope of the trajectory is less in our model than in Frazer 

and Mehta's. 	Also the Reggeon-particle-particle constant having 

a smaller value in our model than in theirs while the Reggeon-

Reggeon-particle coupling constant is the same in both implies that 

the elastic amplitude makes a proportionately smaller contribution 

to the total cross-section in the input pole plus cut model than in 

the pole only model. 

The position of the output pole having actually dropped is 

rather dissappointing from the point of view of the Pomeron and 

its associated iterated cuts forming a closed bootstrap as discussed 

in section one, where we had hoped that the output trajectory would 

emerge closer to one, thus justifying our argument of section one. 

Self consistency constraints on the parameters decreed otherwise 

by destroying our expectations that the cut would enhance the kernel 

strength and produce a higher trajectory. 	Thus we fail to produce 

evidence that the inclusion of cuts will lead to the bootstrap of a 

single pole at 	ok(0)=1 \ 

We also find that the inclusion of the input cut, conserves 

the sign, though reducing the size of the elastic cut correction 

which follows from the application of quasi-two body unitarity. 

This belies our hope that our model would be in agreement with the 

absorption model. 

In assessing these results, it should be remembered that all 

the sub-energies have been assumed to be large. 
	This assumption 



- 69 - 

is implicit in the multi-Regge formalism. 	Duality is invoked to 

average over the low sub-energy regions by asymptotic expressions. 

90,.over, ns oointed out in Clef. 1?) and in chapter one of this 

thesis, the use of 01,-,Ility in this context is dubious. 
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CT!APTM T7.17; - Nucleon Coons in the M.R.M. 

- Introduction 

In this chapter we shall be studying a modified multi-Regge 

model which includes nucleon loops. 	Instead of the usual multi- 

Regge 	t j production amplitude in which the 2N) produced 

particles are linked together by Regge exchanges, we shall be 

considering a model in which the links in the chain consist of 

Reggeons alternating with nucleons. 	Conservation laws then require 

that all the produced particles, except the ones at the ends which 

are the same as the incoming particles, be nucleons. 	The sub- 

energies across the Reggeons are assumed to be in theesymptotic 

region in line with the usual multi-Regge phase space requirements. 

The sub-energies across the nucleons is assumed to be non-RN-me, 

that is they belong to a range above the two-particle threshold and 
than 

less/that energy above which Regge representation is suitable. 

since the sub-energies across the nucleons are low, diagrams,in 

which the rungs containing the nucleons are crossed, also have to 

be evaluated as the contribution5from such diagrams are, not 

negligible. 	We find that the phase space factorises into a pUrely 

multi-Regge part and a separate contribution from the nucleons, 

greatly facilitating the analysis of the model. 

The alternating occurrence of nucleons and Reggeons in the 

amplitude necessitates the introduction of the complicated nucleon- 

Reggeon coupling functions. 	For these, we use the prescription 

of qcadron (Ref. 26) for the Boson-nucleon couplings which we 

shall use after Reggeising the Boson contributions. 

The type of diagram which we have to calculate is similar 
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to those calculated by Cheng and Wu (Ref. ')5) in their analysis of 

high-energy quantum electrodynamics using a conbination of 

nertur'eation Oeory and impact parameter formalism. 	Their 

diagram had vector mesons at high-energy with Fermion loops 

and obtained an extra logs factor for each diagram giving an 

enhanced asymptotic s-behaviour for the amplitude owing to the 

presence of the Fermion loops. 

The analysis of our model is divided into seven sections. 

In the next section, we define the amplitudes, variables and the 

kinematical approximations used. 	In section three we show how the 

phase space factorises, allowing the integration over the loop 

momenta and the loop sub-energies to be carried out separately. 

The contribution from each intermediate state is described next 

in section four. 	The propagators for the noson trajectories and 

the coupling functions are derived in section five. 

In section six, we select the leading terms at asymptotic 

energies which simplifies greatly the problem of evaluating a 

large number of traces involving 	matrices, and enables us to 

isolate the contribution from the nucleon loops. 

In the next section, it is shown that the net effect of 

inserting nucleon loops is to multiply each contribution to the 

amplitude by a constant, which we show factorising. 	In section 

eight, we discuss the effects of not assuming that the nucleon 

propagators are on mass-shell as was required for the formulae used 

by us for the coupling functions and propagators. 	In this respect 

also, we follow ';cadron's (Ref. 26) prescription. 
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qoatula - Notation and Kinematics 

The 1- 	 1.,4 production amplitude with nucleon 

loops is given by 

C—t 

p 6°-)  1,1 ) e`i 	- 	e'" )(Tv\ el  1C-  1)4  L: 	) r  

32 I 
where the momenta are aS in Fig. 13 

and m is the nucleon-mass G 	and (-1 ; are the spinors 

representing the external nucleons and the - 	A-1'1 	are the 

nucleon propagators formed from their momenta and the ry -matrices. 

We assume that incoming particles are spinless, for convenience. 

02;) and C7.+n) 	are the coupling functions linking these 

external particles to the Reggeons. 	The 	() (`L-C  

are the Reggeon-nacleon-nucleon coupling functions occuring at the 

internal vertices, the C),. 	being the Toiler angles. 	We follow 

the last chapter in assuming that the amplitude is independent of the 

Toiler angles and henceforth omit their inclusion. 	The subscripts 

and V, 	attached to these coupling functions arise from 

the nucleon spins which have the effect of freeing these labels 

from the Boson nronflontors. 	The 4 : 	and 	are the 
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Reggeised 3oson propagators which contain the input Regge 

trajectories. 

Tqo define the following invariant variables with reference 

to Fig. 13 (the wavy lines in the figure are Reggeons and the 

straight lines are particles.) 

° 

 

) 

- 

41 

c 

It clearly follows that 

and 	Co n  S 3.2.3 

We make the usual multi-Regge phase-space assumptions analysed 

in detail by 9alliday'and Saunders (Ref. 22) and in chapter two of 

this thesis. 	These are 	00 ) 	 0.0 
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and the 	are small. 	We also use the result that the 1.7. t: 
arise from the transverse components that is 

k 

where the Is, 	are the transverse components of 	 The 

sub-energies 671: across the nucleon loops are assumed to be 

' finite and non-Regge, 	We postulate 1-1 	as that energy above 

which Rogge representation is suitable. 	Thus, we have 

where 	is the usual two-particle threshold in the s-channel 

dictated by Kinematic considerations. 	This result follows from 

both the t- r-N 1 	and C being on the mass-shell. 	It will be seen 

that these mass-shell constraints lead to the result that the --Cu 

also lie between finite limits, which are dependent on the 

nucleon sub-energies ei-j 	This is in contrast to the evaluation 

of Feynman diagrams where all the loop momenta are offmass-shell 

which leads to divergences requiring the emoloyment of cut-offs to 

perform the integration. 	In our diagrams, there are no divergences 

and we shall be able to carry out the integrations exactly, as will 

he seen. 

The above considerations imply that 

These inequalities lead to the following approximate equations 

which can be derived by considering a particular frame. 
SI-- 	 - 	Ct 

S ';)j (t, 	 fe_P 
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and 

ti  

qeqticm.  3 - Factorisation of Phase Space and Kinematics 

The absorptive part of the 2 	 )2...  amplitude in the 

forward direction is given by 
0,›  t 

\\S 

3-'3 • 

is the two-particles intermediate state consisting of 

Regge exchanges only and no nucleon exchanges. 	For convenience, 

we shall omit this term till we finally sum all the diagrams, (the 

diagram for A.1.1_ is given by Fig. 10) when writing down the 

amplitude. 	11- cA2D- represents the phase space integral of the 

particles intermediate state constitution to the amplitude which 

is given by Fig. 14. 	1%'e have 

c=t 

 

- ( C 	 j 

 

3.3 Z. 
Let C 

C 
- ) - 

0 

C = Cr 	and 

Then 

 

g 

 

- 
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c12' 11 A2 
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Fig. 
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where 

The factor in curly brackets is easily identifiable as the 

multi-Regge phase space for t7=:0 	described in the last 

chapter with 	the the effective mass of the CFL"' 	pair 

of nucleons replacing the pion mass of that chapter. 	The 

second factor in curly brackets is the product of the integ-

rations over the loop momenta and the final factor is the 

integrations over the variations in the nucleon-pair masses 

which we introduced along with g--functions in order to effect 

this factorisation. 

Thus symbolically 

SLR-. 	1-WL 11,1 

3. 3 4- 

where Orja.) 	is the multi-Regge phase-space, ClicUONV 

represents the integrations over the nucleon loops and the 

last factor is self-explanatory. (IT A-P- -1 w ,  L., 	is 

simplified by transforming to the variables 	- 	the 

Jacobean of the transformation can be expressed as 

C 	A 

Consider 

S 01 4.  P c:  g 	 h1-1 q(ci,c41111-cd 
3-3-S 
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Put x C 

Then 

I - icLd otzc (7.,- 01-) 	(-z--cL-)T 
3-3 L 

Where 

et 	kC3 Pt C1) 62(:) 
To evaluate 3,3.6, we choose the frame in which 

0 

   

and 

9,3 
then 

L 
C 

5 
have 



and 	
"14.  1 f3  

Hence we have 

are functions of - L and 1-1-L" 

and 
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t1/4.4 t A 

2—, 

c  

•■•■••■., 

(N, 

LJLete__ -Cc 	0( 1/4: 

3-3`1 

3 

3 - 3 - 

where there is an 

transformation. 

extra factor of 2 arising from the 	--9 

Obviously, the integration is possible only 

for positive 

The condition 

and values of -I\ less than 

where 

c 6L 

    

3.3.9 then becomes 

3 .11 
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Then becomes 

r -r*c  -rr A -CI  
2_6-I 

Thus 

016-, 11- 

2.6T;  

Equation 3.3.12 enables us to extend the inequalities 3.2.6. and 

write 

c )) 	->) L )  T, 3 	C 	

3 3 i 

hence equation 3.3.4 becomes 

( cA 	

r  

K •t•-1.1 

331S 
The 	(57c 	which play the role of the intermediate particle 

masses in the M.R.M., act as a link between the Cc" 	and Sc' 

This corresponding to equation 2.2.31, we have 

3-k 
11- s  
--2-,  
\\ S "I ft 

where 

2 ,3 • ,s,;• 



Hence we write 
-1-2— 

C‘i  

C 2— Since the 1:c 	are small, and the expression 1-- 	is a 

positive definite function of the components, we have from 

equation 3.1.4 that the quantities 	are also small, in 

absolute value. 	Bence the y 	are also small quantities 

which enables as to neglect the second term on the right-hand 

side of equation 3.3.17. 	This assumption of the 	L c' 

being small which leads to replacing the quantities N 

by the mass is normally used to solve the multi-1egge integral 

equation as seen in the last chapter. 

From equation 3.3.19 and the fact that the S c 	tend to 

while the CT 	remain finite and bounded as in %2.-5, we 

obtain the inequalities 

S-  • 	Th-) 	5 

where 

L ,,, 3 

autiaiLA - The 2--3 0 Contribution 

We rewrite equation 3,3,1 as 

(s-) 	2 
where 

c-vv- 	T 21■1 	 ) ts4  1 

6 is the contribution to the amplitude from the 2..1\1 
1-1,1 

intermediate particles state. 	It is represented by Fig, 14, 

together with all the diagrams that can be obtained from this 
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by crossing the intermediate particle pairs of one or more 

nucleon lof3os• (for exa-lple, Ott 	is obtained by summing the 

contributions from the diagrams of Fig. 15). 	Since each 

nucleon loop is either crossed or uncrossed, clearly the 

nucleon loops of Fig. 14 contribute altogether  

terms to t) 	Clearly, for each of these 2Cv\--1) 	terms, 

1—  h is the same while there is a different 	+ 
cz_ 

contribution. 	All thCsecontributions can be concisely expressed 

in one equation which is 

eL 	e- 1:1 

( I 61/ 

1 
'i6C" ) 

C 

4-3 

where 

L 
1; • 
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Figs. 16(a) and 16(b) correspond to the first and second 

functions respectively in the above equation and represents 

the two ways in which a single loop can contribute. 	The 

addition of the crossed diagrams are necessary since the 

loop energies are not in the asymptotic region. 

From equations, 3.4.3, 2.4.2 and 3.2.1, we obtain 

, [el 1
1

1 8i  

czt 

Lct--  01‘) 

47+1 ) T  

cL 

3 Li- S 
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where I is the unit matrix. 	On summing the right-hand side 

of the above equation over all the nucleon spins ' 7̀) (t446\ 6  

we obtain 

‘,1 	(Jr A_R_M-1. NI 	
b 

where 

 

ri:. ckl 
L 11,  

i6c5,27\k:tt 

1 g 
6t.)-1 113t■1 

■A-1 t- 	tc1, 1  

  

where 

(11c 	?c( t-, 1-,1 (Lett it') 

L tc-H D -  0 	v11-) 

3 -Y 



SeQsaana - The Propagator and Coupling Function 

Frem the preceding sections, it is evident that a 

knowledge of the propagators 	and the nucleon-nucleon- 

Reggeon coupling functions is required. 	The covariant formulae 

for these derived by Scadron are used in our model. 	Their 

formulae hold for non-Reggeised propagators of arbitrary spin J. 

We follow the prescription of Jones and Scadron (Ref. 27) who 

obtained their method for Reggeising invariant amplitudes based 

on ccadron's formalism of (Ref. 25). 

In the latter, it was shown that high-spin wave functions 

give rise to covariant on-shell propagators which are related to 

rest frame rotation group tensors. 	Thus the propagators which 

we shall use will be on-shell propagators. 	In one of the later 

sections, we shall, following Scadron, show how to incorporate 

the off-mass-shell effects for the propagators. 

The numerator of a propagator for general spin J is given 

(A-) 	--- 
r (k) e  

 

- - vr 
3' S 

where 	 is either a boson or a '''ermion 

wave function and K is the momentum of the propagated particle of 

mass M. 	The expression 

1 
is contracted with the initial momenta c‘r_ and the final momenta rl 



(a) 
	

(b) 

Fig. Is 



-88— 

which produces the contracted propagator, for a virtual Boson 

will spin J in its rest frame g iven by 

P ) 93 et 

which can be expressed as a product of two 0(3) tensors of rank J, 

g iven by 17‘  ( P / and 	 This leads to 

7)717 	 — ' 
1 

where 

by 

is the solid legendre polynomial g iven 

iT 
IN 

where 	is a unit rector 

and 	C. is a normalisation factor irrelevant for our 

purposes. 	By using  the prescriptions 

and 

where 

we boost equation 3,5.3 up to momentum K. 	and-obtain the 

covariant on—shell result for the propagator g iven by 

PT-  C 	(1cI 	(1(  A_s_ 6 



( ) (b) 

Fig. lb 
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Equation 3.5.6 gives the Boson propagator with spin J when it 

is coupled to zero spin particles. 

To deal with the case when particles with spin other than 

zero are coupled to either end of the propagator, covariant labels 

must be freed from the left-hand side of 3.5.6. 	The number of 

labels thus freed is directly related to the spin of the particle 

concerned. 

To derive the resulting propagators, Scadron used a 

covariant version of 7emach's 0(3) differential technique (Ref.45). 

It involves differentiating the solid harmonic with respect to the 

momenta of the particles with spin. 	The following recursion 

relations satisfied by the spherical Harmonics ?y• 	are used in 

the derivation 

lf. 

3-s-1 

3*C.? 

'S- 

where  lc"-  ( 0 ---: f)(C.),f 	and dashes denote 

differentiation with respect to 	q.- . 	Using these we 

obtain the formulae for the Boson propagators which are 



(V\) PT\ 

C.L(K') C
oti(0  PT_\  

i3 

ok 	r 

?PIT 

- 91 - 

13--3-- y )(3
) 
 1;) 	c 	

J. 

3.s 

c) 	f,t(K)1/3,--' 

-1- 	(k1) 3' (0 c'Cs') 	(),1- (q t) 

	

) rie) (Kr) facK-) 	
3 S • S 

-For the interaction of particles with spin' 5 t 	and 5 

at one end and 51 	and _Si 	at the other end with spin J 

Boson propagator, one must consider a Boson propagator with at 

most St ir St 	free 0( 	labels and Si  -17..s 	free 

labels. 	Thus for our Boson propagators with a pair of spin 

half nucleons at either end, we use equation %5,15. 

The remaining problem is how a spin J propagator couples 
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to other particles. 	Scardon dealt with this by considering 

Lagrangian interactions in the context of the normality of 

the three-point vertex. 	The normality n of a particle of 

spin J is defined as 

v(.6„ s is 

and the normality of the vertex is defined as the product of 

the normalities of each particle at the vertex. 	If a spin zero 
1 

• particle couples to particles with spin S and 5 	which is 

denoted by 

Q -t- s 	s 

where 	and 	are fermions, the number of independent on- 

shell couplings as counted from the rest frame of one of the 

particles is obviously 	2_ S 	\ where 

3 

1 the fact that S 	and S 	are fermions o  leads to --- CLS 
M4 

couplings being normal and 	(2_ s 	4...c) abnormal couplings. 

This procedure is generalised to the case 

SI  +- S3 

Suppose that S I  and SZ  are the lowest of the 3 spins. 

Let 
S, = S dr 

Then the problem is reduced to couplings 

04-- S 
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for 

s 	S S 

This enables us to show, ns before, that if 

there are —I 
2- 
 (2.51-1-1) 	Jri) normal couplings and the same 

number of abnormal couplings for fermion-fermion-3oson interactions 

where all three particles are on the mass-shell. 	Thus for two nucleons 

cou7ling to a 9oson, we have 2 normal couplings C 	and 2 abnormal 

couplings 	(:-- 	We need consider only normal couplings as 

w h 

in Dirac spin soace. 	Hence the coupling which we use for the 

nucleon-nucleon-Reggion vertices contain two terms which are given 

by 

()%) P
oc 	3 S 

where eck is the sum of the incoming momenta at the vertex at the 

other end of the propagator (see Fig. 17) 

Fig. 17. 

It is easy to understand why the coupling at one vertex depends 

on the momenta at the other vertex when one considers the fact 



- 94 - 

that the propagators are a function of the Scalar product 

To allow for particles with spin at a vertex, as mentioned 

earlier we differentiate with respect to the momenta at the 

vertex and obviously we are then left with 

For pion-nucleon scattering, equations '3.5.17, 3.5.r enables us 

• to recover the two invariant amplitudes A and 3 (see for example 

Ref. 46). 	For nucleon-nucleon scattering which concerns us, 

equations 3.5.15 and n.5.17 lead to the 5 independent helicity 

amplitudes. 

We now Reggeise equations 3.5.17 and 3.5.15 for the 

purposes of our model. 	The prescription for Reggeisation given 

by Jones and Scadron (Ref. 27) are the substitutions 

(1) The spin J by the Regge trajectory d.. (E ' ) 
(2) The coupling constams 9 and c) by the Regge residue 

' 
functions 9A and 9 	) 

(3) The expression LT. 	C,..,;) 	by 

c\i"-) eTZ c'rr cikE)  

where t is the momentum transfer flowing along the propagator. 

For large S we have from the asymptotic properties of Legendre 

polynomials 	
c ) 

L c  Lt) 	ak(cE) 	
r■-) 

It must be noted that this procedure is not suitable for Cvl  

trajectory in view of having a pole at o{(o) 0 	and the 

residue 	having a zero for this value (Ref. 47). 
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sL 

[16  C 	 1' 4-) izt  

\f C  

( 

L'+‘ ci. ) 	9  

3  

3- S--2-o 

We can now write down the Reggeisal 9oson propagators and 

coupling functions which ue use in equatimls 3.4.7 and 2.4.S. 

The coupling functions are 

9 

where 
(4--c„,-; 

U 

IA 	g 	c=1, 

(3\ 	 C 
c 	 C=-11 

The Reggeised 9oson propagators are 
h 

i30-1 ( A.%) 

to:* Ct 
( 

c# 1
)  s

. 



S 
S.  

—1 c 	c 	-1 	C-1 	Ct  
 v.c 	 S-( 

where 

S 

and 

fA.,- (11) 2: C) 	cL■5-  

-- 
(.(, 	is the signature factor given by 	e 	yr ea c).3 

and ol.CL:,) is the input Regge trajectory. 	The coefficient 

of the first term in the right-hand side of equation p..5.27 is 

is normalised to unity by absorbing it in the constants 

and 	Similarly the coefficients of the right-hand sides 

of equations %5.19 and :).5.90 are normalised to unity by 

multiplying the Reggeon-particle-particle coupling function by 

the appropriate factor. 

qectiDnk - Leader order terms and asymptotic approximation 

By examining equations ?).4.3 and 2.5.18 it is clear that 

Lpep 
	on expansion yields terms which are 

a product of the following 

(I) X X 	 0 1-k l ■r i cri)r) 

Q, 1) PC 	 E C  ) 	ke 

\r',2 vit; t 	0C 

Q.C) 	- tl y 	11c- 	 es- cc 

-)a • S-2-7) 



t 
-i.  r'L C i 	. , 

"1" 
1 	__, . L t 	__,  L  

- -1 	5 , • - 0 - s , • - I 	s 	. cj  --Ls.. / 	L,j-I 

i 
— S. / 	,..) 

t 	- — L- / 	J -s.• Li  
_ ) 	s 	• 

	

7 	CJ -J...5  2. 	L,j-.1 

- S .• ..) 
1 Ci. 

2_ 	j - 2s.• ,.. j -25 . CJ -1 	5 ,  -72: 	. ji 

- ..) • 2- 	L.) 
I 	---, (.-. 2_ 	J 

., 

	

.......t 	s  

	

-I 	' ' Lj 
-) 	(.. 

1 	-"(.,j - 1 

S . ,  
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C 	c 
Each product carries only one each of labels 	\A 	10-  c. 

and 	)2: 	Because of the o x. 
 terms which occur in the 

JAp 

Regge propagators (the second term in the right-hand side of 

equation 3.5.20 each term in each loop couples with each term 

in every other loop, on contracting all the indices. 	It is 

useful to construct tables, listing the values for all couplings. 

Only a few entries need calculation. 	The rest follow from 

straightforward addition. 	In calculating these tables, inequal- 

ities 3.3.14 and 2.3.20 and equations 3.2.7 were used. 	Therefore, 

they contain errors to the order of 

By (:-.S couplings, we mean Scalar products of momenta with 

superscripts and j 
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i:. • 
CL COL 

AL - 

T. c vi:4  1.... 	. +t L 
2_ 

1V-11417,-..  —  
2. 2 2_ 

r 	k4, L 
, 	,  L 

2.. 
.1. 

.2_ 

......1._____. 

(.. 

.. 	. 

/6,1--0--, t 	(, 	1 -- 	L 	 l- 	) 
.341-I. -tr. 2-,?-4. r -t-: 

2,  2 2.. 2_ 

3-I-Vc  

2_ 
if 144  

L 
..._..._ 

C1(1 

i.  

1-1 ,,, ---f.1 - tr. 

2.   

L 4  
2. 2- 2 . 2. 

C Z.. c  — r61, 
 1.  c  _ 	 ,z Q-1 4 0.; ' -._ r — Ili  - 

L. 

-72.7 

We divide the couplings between the momenta into 3 types. 

(I) Internal couplings 

(II) Reverse coup 1 i ngs 

(III) Forward couplings 

The internal couplings are the least complicated. 	They emerge 

within each loop when the trace is evaluated by the quantities 

and C forming scalar-products among themselves, 

before we contact the loops with the propagator indices. 	There 

are only three internal couplings for any loop, namely 

TV:,c,' and tc. 
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Both reverse and forward couplings involve the coupling 

of loop momenta to momenta, occuring in the propagator expressions. 

Any p8rticular coupling may involve a nimher of propagators 

supplying 1"),Q- factors and loops supplying S',,(( 	factors. 

The actual momenta coupled together after contracting all 

indices in all the loops and propagators could be from the same 

or different loops, one or two propagators, either parallel (that 

is from the same rung of the multiperipheral ladder) or not. 

All the other propagators and loops involved act as links 

supplying transitory ri 	and g A 	factors which disappear on 

contraction. 

When at least one pair of parallel propagators participate 

in a coupling, whether in a transitory or a terminal Y-0\e_ 

it is defined as a reverse coupling. 	A propagator or loop plays 

a terminal role when a '1-momenta from it actually figures in a 

scalar product of tables one or two. 	All couplings which are 

neither reverse nor internal are defined forward couplings. 

E.g. consider the quantity 1 
L
- 
 C.- 2.- 

Two ways in which. 

this could arise on expansion of equation 	are given to 

illustrate forward couplings and reverse couplings. 

(I) 

This is an exmole of a' forward coupling in which the successive 

couplings are all along one direction of the multiperipheral 

ladder. 
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C 
(II) 	Qj 	couples as above to form 	70.-1 	Then it 

proceeds to a further loop, say the {.,*--L} t 	loop, couples to 

the s-function in that loop, then retraces its tracks through 

the propagators not already used, proceeds back to the C-1
ei 

 

(1-2_ 
loop and couples to t 	to form t 9, 	This is an 

example of a reverse coupling. 	In table two, all the entries 

C 
except 	Nfa 1  R -C 	and (2, ,c 	are necessarily reverse 

couplings. 

The second term in the right-hand side of equation 

2.5.21 shows that each transition through a propagator effectively 

provides a multiplying factor of S, 	which is the sub-energy 

across it (we need not consider the terms rc 	as it is 
•■, 

ckftei 
obvious that the product 	5`;3, 	is a common factor for 

all the terms of 1%4 
1 	

). 	This means each 1.-1 	value of 
0,1 

table one and the reverse 	values of table two have to 

be multiplied by the corresponding 5 t:
-1 
 factor for each 

transitional propagator link involved in the coupling. 	Since 

the reverse couplings have more transitional links than the 

forward couplings for the same 	and C--L 	values;- Dearly 

they are negligible asymptotically in view of the Ste' tending 

to infinity. 	Hence we omit all reverse couplings in selecting 

the leading terms. 	On restricting ourselves to forward couplings, 

it is evident from table one for G-3 couplings, the corresponding 

table for 	couplings (i.e., we substitute C-1-1 	for C 

in table one), and equations 3.3.19 and 2.2.20 that equations 3.5.18 

up to 3.5.22 become 

	

' 	k  

	

td 	P 
3.6  

t 

3•()‘2._ 
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r  c c41 
Lg 

C.-1- 0( 	r  

to— 1,0,4 

where 

.3- C.- 4 
and 

1 	C4-k 	_.1 

It is easy to see how most of the terms of equations 3.5.21 
C4 	CC +A 

<1-̀ -  

drop out when we derive equation 3.6.3. 	For instance cLC- X 

and 1' -A are negligible compared to a."-i4( 	where X 

is any momentum in Fig. 14, such that all these three quantities 

are forward couplings. 	It may be noted that the 9 	terms 

in 3.5.21 arising from 3.5.22 all disappear on selecting the 

leading order terms. 	This is a crucial factor which helps us 

to analyse the effects of treating the propagators and couplings 

as off-mass shell, which they actually are, in Section 8. 

Though the internal couplings of table two do not have any 

S( 	dependence, it is obvious from equation 3.4.8 that they 

appear on the same footing as the VA 	terms which act as 

coefficients of the leading order terms. 	Considering forward . 
c: \J..) 

couplings, altogether they belong to three categories 	X 

X`AY1  and LA C , V3  where X and Y belong to the set (OL,B.C9P0) 

as can be seen from equations 3.4.8 and 3.5.18 and U and V belong 

to the set (P,Q) as seen from equations 3.6.1 up to 3.6.5. 	From 

table one and equations 3.3.19 and 3.6.1 - 3.6.5 it can be easily 

deduced that 	factors of these couplings, which are picked up 

each time a propagator figures,,them, (are exactly cancelled by the 

' factors which arise from the values of table one of these 

c4-1 3-LS 
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couplings. 

Thus we can write 

„ 	T. (°1117 ( 66 " 

31 	Bi- 	 3-L-1 

and 

where Cl i  and cNi_ are constants and 0)(J:(,) is the same as the 

expression \37, k (,t.;-1 which we used in the last chapter as one 

of the factors in the Reggeon-Reggeon-particle coupling functions. 

We define the two nucleon-Reggeon coupling functions thus in order 

that the model of this chapter may be compared with the single- 

pole model described in the last chapter. 	L2 	is independent 

of the 	, each I-1Lkj 	. being a product of terms, one from each 

loop 	
v cr 7\`' 
c 	and one from each Boson propagator. 

The summation is over all such possible 

It can be seen from tables one and two, that the leading 

order non-reverse couplings, in the asymptotic approximation, are 

independent of the 	4: - 

	

G 	This implies that the same holds 

for 	1_ 	However, it is not possible to draw the 

conclusion that it is true for 	 L.,__Lt\J 	also. 	The leading 

terms of all the 	could cancel, forcing us to examine the 

next leading terms in each I., ,,,1 	to extract the asymptotic 

behaviour of 	t4.1.%4 	These non-leading order terms of 
LaJJ 
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will have complicated SC and -c=
1 _ 

c 	dependence in two ways. 

(I) 	They contain the terms dropped because of the asymptotic 

arguments in the earlier part of this section. 

(TI) 	it will he necessary to rewrite the approximate equations 

3.2.7 in exact form to take into account lower order terms. 

The 1-1,1 can be grouped according to different orders of 

the counting constants and summed, enabling us to write 

t.1 

Yr\ 
9, 

2,4  

We proceed to show that at least one 1-21\i  on integration over all 

the 1:t.: and 61- 	gives a non-zero result. 

Consider 	L.. 	From equations 3.6.2.- 2.6.5, it is 

obvious that the L /s°3 	factorises for all K owing to the 1,J 
absence of transitory propagator links((ck -) terms) which 

correlate different loops. 	Each factor is dependent only on 

9S'il:" 1 (57(: and 1:74: the corresponding loop energies. 	Since 

the loonloop energies have integration limits 1i 	and \\A 	independ- 

ent of the position of the loop in the multiperipheral ladder, we 

can write without altering the value of C&It,j 

A-A 

fc. 14T-' 	
dcsc 	GI-cc n - 

CN (5-- 	-CL: 

67: T—  , 
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where C-t 
s-  : 	 a A' 

C+ 	t_:+1 

t.rti tr 

Is the coefficient of the 

term in 
er- C  

Since the number of terms in the expansion of expression 

of the type 

41-"1--t\T 

where 

is given by zero when rt  is odd (because the trace of an odd 

number of 	-matrices is zero, and by erg-1i 	when 	n is 

even (Ref: 47) the number of terms IA 	in the expansion of 

o 	r. .... cr 1/4: 7\1/4; 
	is given by 

and L 

1-71 	W 	(c, 	4- 	C 	-Jr 1C 	t k l 

1Ve group the 232 terms according to different orders of the 

coupling constants and express 	v 	 according 

to the equation 

Lot:, V lx1/4.• 1/43„.: 

F L- 14 CC"I"" 	ci F3 + Ta-1- 11 - 1:11- + 	ri +341  
where, ( in the following four equations, we drop the subscript 

for convenience, since it is common to all momenta) 

i•A 	6)  
\r- 

3-C, 1 3 
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[-tA +-es- 	A- 0,1/4( 	V A—ir 3E1 	 00--PA--K03\f-e/  

e ,A 	 kAfr-z- a.c -3•)\ 4.- -re s5-3)\-},-)pecas-al 

4- PI, 	Cwt.1-3V4-41-Ava`rAA-4A- 	 3')\] 

- c'

- 

tA c7\ 	LA5- -41-.'"a r̀a5---i  au---ea67F-61-3-  r̀-eri 

	

-1-- 	ckr—  ["1-  3 "\a-(7\-i--4'a 	P-e-.`• 

frt\ LtAl— Id\  '°74-- 
	1-‘4,3+ix 3 _ 	

31  3 
\r,i1 

'A 2I- T-e-al 

3 	- 1(0 

and 

3- (a q 
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To simplify equations 3.6.13 - 3.6.17, we use the following relations 

satisfied by expressions containing'-- matrices (Ref. 47) 

CAr- 	 Li- A • 92) 	 • t .s> 

t°1 

TN- [441I 	 LA1-1-1- --ki-X.4- - Tc.\ 

11, - 	-1-Nr CAVicK. 3 -6 -2- 1 

3-6 - 2  

•Ty" [ A-1 	- 	-rz3-t- f  - 

to,( AC7_0c-4-1 

We also use the following rules, based on the asymptotic 

reasonings earlier in this section, to select the leading order 

terms. 	This enables us to reduce the number of terms to less 

than 100. 

(I) All cAy,  and so_\r- terms are omitted as they give rise 

to reverse couplings. 

(II) All terms containing 	' 	C 	and 
- 

are excluded, since from table one (the first row and the third 

column) it is clear that they can give rise to forward couplings .  

of non-leading order only. 
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These two rules, together with equations 3.6.18 up to 

2.6,22 enable us to rewrite equations 3.6.13 up to 3.6.17 as 

3 - - 2.-3 

era P,At.01.?_(\s,_ 	(3,1 

4- Fr,  kr- r-N col .1%') c 	(A-0 	-I- Pr 	6).„. 

v-- 	Ac5— 	g ri- c_ ± e-c. 4 	I 
'f)  

17-7‘ 	 r\cs-- C— 	6.0 	64  1-1 

-t- -A e,_ k 0.)‘ 	t fs.) (0-1 

04, e, 	Ut 	ev_A-- 	 gr,c,r3 

3- L.-  )-S 
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CC' 	4- 11-
k r f', 	[ 	cc,__+ 60_ Cam-r) 

S's l\cr  [q)1,, ( c3— (t\ 	wt-) Vi, fl 	U‘C t..41 

W-km1-)1 

7\v-- 	c 

— 	R ( 6 C— 	C9■0-- G [-A 	C 141-1 

G■T. g-x  (A- C- 

PA C 	IV • g) 	VI\ 	( 	3 gt,w--- 

A- el\  (6- 0,-\•1—R.0 	e?, 	 E IA 6—  
zto  

and 

— 1'1\ 	 g— 	Cs 14,r go----)\--gvi 

g 	AlA 1/4r 'HI (kr + Cv-  etd■ -1" <CA.r E-argG-- 

C 4- cc,- 	 :A 	g 	 Cts-g-?,1 

3-6 Li 
On the insertion of P,6,27 in '.6.11, all the terms 

antisymmetric in either 	\A- 	 r)\ or ".7 	(r- 	disappear. 

Thus equation :3.6.27 effectively becomes, for the purposes of 



-109- 

3.6.11 

.= dA [t\'' 	 (6_ 	ti„(cj_Q 
L -1_,s? 

Then using table one and equation 3.3.19, we have 

.3- 6-2_1 
i'Te can easily perform the integrations of equation 3.6.10 and 

write 

f " 	d 61 r7c L 
3-(0 -31/43 

3-b-3 I 
Obviously I is non-zero as otherwise we would have 

	

A 	, 	(A- 

	

V' 	+ 144  

which implies zero phase-space in view of the limits of the 

integration. 

Therefore, it is clear that the leading order terms of gLoj  

after integration over the loop energies and momenta and sub-

stitution in G,It4 can cancel only if terms to different order 

in q"ch..  and g 3 cancel. 	It will be seen in the next 

section that such cancellations cannot occur whatever the value 

of cli 	and will occur at most only for 4 specific values 

of c.tkii_ 	In the absence of any reason to the contrary, we 

assume that 911 0-'41  9 do not take such values. 	Otherwise, we 

shall have to analyse those four cases separately. 	In fact, if 
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the trajectory is the Pomeron, then helicity conservation in the 

s-channel suggest that CI 	is zero or close to it, ruling out 1.„ 
cancellations since then the values of hoop 	ti 	is 

given by 3.6,29. 

- The impact of nucleon loops on the M.R.M. 

From equations 3.3.1, 3.3.15, 3.4.1, 3.4.6, 3.6.6 and 2.6.9, 

we have 

040 

dia.) 
ts.,\ 

1-Ef) 	E-E 1,1)1 

Let 

\-1\-‘-  a 6-- • 
2.6— • 

(IT) 
3-1- 

Examination of equation 3.7.1 then shows that were it not for the 

factors A;1,s 	equation 2.7.1 would be identical to the multi-Regge 

integral equation, in the factorisable approximation with a single 

pole input derived in the last chapter. 	The arguments of section 

six make it obvious that k‘-.A234 is the residual factor after all 
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the 	dependence in 1-A lw  has been extracted and absorbed into 

the multi-Regge part of equation 3.7.1. 

c''0  therefore depends only on the constants 1,11-, 

and 	and therefore is itself a constant expressible in terms 

of these by means of equation 3.7.1. 	Equation 3.7.1 is obtained 

by multiplying each intermediate state contribution to the 

amplitude in the multi-Regge integral equation by the factor CN • 

In the factorisable approximation, the multi-Regge version of 

the unitarity equation in the j-plane at L.O can be expressed 

as 

- I 

(-)2-a ) 
N= 1 	Cr y 2-1 

3•7  3 

where g and G are the Reggeon-Reggeon-particle and the Reggeon- 

particle-particle coupling constants respectively. 	This 

ist 
equation, except for the 	term which is included later 

there, can be obtained from equation 2.3.17 of the last chapter 

by putting 

S 
	

it- 

and taking the Mellin transform. 	1n going through the arguments 

leading from equation 2.3.3. to 2.3.17 in the last chapter, it is 

obvious that multiplying each term, representing an intermediate 

state, in the unitarity sum by a different constant does not 

affect it. 

Thus remembering that 9 	of equation 3.7.1 is equivalent 

to 9 
	of equation 3.7.3, 3.7.1 leads to 
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n 2,21- 
cx) 	 N - 

It is convenient to extract the factors 

N - ► 

I 	C ,11- t-11).7-  

1 "7 Sr 

Q 2_ 

from 	1-1 2_ Ni 	and write 

r 
AU: 

t, 	 A 
2 	'L 

3 ,  -"/ 6 

Then we have from section 6, 
NI-I 

Q 2h1 -- 	Q 	? 	f) 	1 1 	co ? 1,, z v  i. , L 2  d o 	rk 

ILA  I 	) I 	u-v1--1 	4:3- bl-i 	C. --- 1 

3-7--7 

Section 6 makes it clear that only the entries 	E''. A . (f3 . s33  ) 	) c: 	3 	,: 	:; 	 i: 	 c.. 
and Q 

C, e 'j  B . P 5  CJA ; C
il
. Z

3 
, c .e ,q"..n3/ _Q _ B 

,.  
of table one and n i..e.C  , )9 .c. 	z and B c of table two figure 

in the expansion of the right-hand side of equation 3.7.7. 	Of 

these, the entries of table two, being internal couplings are 

not the result of contraction of the propagator subscripts with 

the loop subscripts. 	Only the first nine, which are from table 

one result from such contraction. 	The negative signs of these 

entries are irrelevant as in each term of loop, frt. 	cr. c 	z 
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the momenta occur in pairs, thus cancelling out the sign. 	It must 

be noted that the values given, in table one are not what we use in 

evaluating equation 3.7.7. 	Because t1 	and hence Q 2.0 	 11,1 

is the residual factor after all the SL 	factors are extracted 

from M IN we must multiply each entry in table one by the factor 

1 	given by 

3- 7 

On examination of the relevant entries of table one, it 

can be observed that when only H', B 	or C L  occur in the 

Scalar product, its value is given by 4,r 	irrespective of 

whether the correlating momenta are A, B or C. 	If one of P or 

Q replaces these, the Scalar product doubles and if both P and 

Q replace the quantities A, B or C in the pair of correlating 

momenta, giving P.Q, the value of the product quadruples to 2 s.. 

This means that in equation 3.7.7, we can replace (3  

and Q by quantities 2Y 	 and 2X 	where these are defined 

by the equation 

j 	 . 
X . X = '2- 

g 
 (:,1 

3 9 

Similarly, in equations 3.6.2S up to 3.6.27, we can replace 

all the P's and Q's by 2X 's and all the A's and B's by X's, 

taking care that these replacements are not carried out for the 

internal couplings of these equations, viz. n .t3 ) A . 	and r■ 

whose values are given in table two. 
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Equations 3.7.9 and 3.3.19 lead to 

3 - 1 . o 

„i_ 
Now A 	correlates with 	X 5 	through the ci t.„.1)  terms in 

the propagators and 
ITN and the • 	

▪ 	

One and only one term participates from each 

loop in this correlation. 	Equation 3,, 7. 10 demonstates that 

each loop between the E 

▪ 

and the j 	there Is a 

corresponding 07-  factor in the denominator in the right-hand 

side. 	%nee if we make the transformation 

in equations 3.6.23 - 3.6.27, where 

ILA, -A 

1) 

we can then replace equation 7.7.10 with 

L 	3 

X X 
3.7 II 

If we make the further transforlations 

terms in the loops between the 	II' 



a rid c
o rrr 

.„,L 9' (A 

Then these equations become 

N-1 

cal 

2C N 2.) 

where 
3. -7 13 

2 ) I 

4 

'23:21 i 	64 14-4 16 	!+hie)1 
2. 1. fl 2 r1 4 , 

(5-1: Li-a8 kvi'j 9, 
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in equations 3.6.23 - 3.b.27 and 43.7.7, we can write 

1 for all 	41 

. 	12 

This result allows us to make the final replacement of all the 

subscripted quantities in equations 3.6.23 - :1.6.27 and :1.7.7• 

with the Scalar unity. 

That is 

4 [ Loo p j 

161,1, 4 Yl• P-13 	 1-1-• 	z g 
Cr-c: Cr-e. 



Then 3.7.6 leads to 

Mz  

[00 

- Lf  
1‘) —1  

L 4- 

Vv‘ L 0 1— 211, 6 

4 tr.;)-  ( 7C3 	L HA-, a, 
- .2_ L' ) a  

(32 

13 r 

( 	6.-t1-7;2_ 

C21,1- 74 -i-3 -,) 

and 

-2- 

1 	— 2_ 
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N- 	2N -4  

[L+  X31 
3 - "7 	I s- 

The double integration is easily performed by splitting Loop,:  

into 3 parts, each part being separable in the variables (FL: 

and 	c , 	After doing the integration, we fir*lly obtain L 

p,1/1/39, 
2_ 2 

3 3 9  2_ i 

3 	t6 

where 



- 117 - 

Ytin 

   

H 	( ( 

2- K-A 

) J 

 

— 
H 

ci 	1- 1  
371 ' Is (L) 

 

r--  
C 

Lt. 

H 

 

(b 

   

   

'2. H 

 

L c) 

1-1 

3. -i- 1.2 C .,1 ) 

For, purposes of numerical calculation, it can be noted that the 

first series in the right-hand side of 3.7.18(a) is the Zeta 
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function of Reimann. 	Also, the second series converges very 

rapidly since Mt 	is not much larger that 4KI2 and hence 

taking the first few terms would be a reasonable approximation. 

From equation 3.7.16, it is obvious that the cancellation 

referred to at the end of the last section can occur only if 

satisfies the equation. 

s -L 	- 
12.5, 	= 0 

3 7.1'1 

We assume that it does not. 	In fact, as mentioned in the last 

section, if the input trajectory is the Pomeron, it cannot satisfy 

3.7.19 since 91 is then small or zero. 	however, if 9, 	and 

take values satisfying 3.7.19, then, we will have to consider this 

case separately as all theasvmptotic arguments of this chapter 

would no longer be valid. 

In view of the foregoing, 	can be put in the form 

h- 
3.-7 1_0 

and equation 3.7.5 becomes 

L T„Lj 	 r-\ „ 
eo 

T11 

G4 

3!2 I 

At high energy, the second term on the right-hand side of 

3.7.21 dominates over the first as the latter is the contribution 
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from the elastic (two-particle unitarity) amplitude, while the 

latter is the total contribution from the-production amplitudes. 

By putting 

1 7 2:2--  

and comparing with the result for the standard multi-Regge model, 

derived in the last chapter 

71, Ci 	RI/ 

i- Fin J•7- 	 • 13 

where 9 	is the Reggeon-Reggeon-particle coupling constant, it 

follows that the net effect of inserting the low energy nucleon 

loops in the M.R.M. is to multiply this coupling constant by another 

constant depending on 1-1 	1L■ (;)z 	and 	93 	This has 

the apparent effect of pushing up the trajectory as it is well 

known that the position of the trajectory depend on the kernel 

and enhancing the coupling constant means effectively enhancing 

the kernel. 	However, this is not true in the multi-Legge bootstrap, 

the mechanism of which acts so as to keep 	 Co)ot. 	at the same value, 

as can be seen on deriving the bootstrap equations as in chapter 2 

from equation :3.7.21. 

- Incorporation of off-mass-shell terms. 

As explained in section five, the formulae for the Boson 

propagators and the coupling functions were based on Scadron's 

results which were derived assuming that the propagators and 

spinors were on the mass-shell. 	The same paper gives the 

prescription for incorporating extra terms for off mass-shell 
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propagators and spinors. 	The method used there was to keep 

the propagator numerators on mass-shell and alter the coupling 

functions in order to allow for the off-mass shell effects. 	This 

involves adding terms proportional to or 	the momentum flowing 

through the propagator. 	Also, if the off-shell particle is a 

fermion, couplings proportional to 	)0 	need to be added. 

Since, at each Reggeon-nucleon-nucleon vertex of our model, 

the Reggeon and one of the nucleons are off mass-shell, we need to 

add these extra terms. 	On inclusion of these terms to the 

coupling function, equation 3.5.13 becomes 

where (2, is a constant and 

ci 	
0 (L.) 	4) • j 	L 

_J 3 L 	3 

We write 	(L-L) 	according to 3.0.2, in order to separate 

the multi-Regge component as we did for 1 and 	ci 	These 

alterations lead to corresponding alterations in equation 3.4.8 

It will be recalled that our asymptotic arguments of section 6 

enabled us to neglect the terms containing The same 

reasoning applies to equation 3.8.1, allowing us to omit the 

term containing 	9,1" The factor [ 	in 3.8.1 then leads 

to the replacement of 2.4.8 with the equation 

LOc>p fri z.v c r =". 	 (R÷1---, 	c} !! 	
j_c (1-y ig'`) 

( 1-YV. )(e-f- 1-1 )9 
-2} 
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3.2 3 

where the 	1 60: (cx:---JtA,1):1 ,(r) are the expressions defined 

in section 5 and not as in %8.1. 	With the use of the relations 

satisfied by the )--matrices, given in section 6, it is clear 

that the factor 

11 1 	cei I -1-L  

can be replaced by 

where 	and 1,,- 11  depend on /S, 	and 1-12 Similarly 

the factor 

iy0c )( 1±("1)  

can be replaced by quantities depending on /6, k- 	and HI. 

Therefore, the insertion of these off-mass shell terms does not 

change qualitatively any of the arguments of the preceding 

'sections. 	They only serve to "renormalise" the values of the 

coupling constants 91  and 92  

Con 'Luton 

The insertion of low energy nucleon loops in the multi-Regge 

model has failed to produce the enhanced asymptotic s-behaviour 

shown by similar Feynman diagrams calculated in high-energy 

quantum electrodynamics. 	The inclusion of crossed rungs, we found, 

did not make our calculations more complicated, but actually 

simplified them considerably by leading to the cancellation of 

several terms in the expansion of the loop. 
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The inclusion of the nucleon loops did not involve 

complicated phase space integrals. 	The phase space factorised 

very neatly, allowing us to isolate the contribution from the 

loops. 	For each intermediate particle state, the loops acted 

as a multiplying factor. 	This multiplier itself was found to 

factorise in the same way as the multi-Regge amplitude, which 

meant that the sole impact of the 1000S was to act as a multiplier 

for the kernel, which dependson the constants c!s o c,j 2_ which are 

the Reggeon-nucleon-nucleon coupling constants and the quantities 

and 1-4 which are the Regge threshold energies and nucleon 

mass respectively. 	Owing to the workings of the multi-Rogge 

bootstrap mechanism, the intercept of the trajectory is unaltered 

in spite of a changed kernel. 	All our results were derived 

using the approximation that our propagators were on the mass-shell. 

We also analysed the effects of considering them off-mass-shell and 

found that it only served to renormalise the Reggeon-nucleon-

nucleon coupling constants. 
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Chnn .rent 	r 

5C=ina  1 - Introduction 

As stated in chapter two, it has been established that the 

position of the output trajectory in the single-pole input version 

of the multi-Regge model in the factorisable approximation falls 

short of unity. 	The model derived by us in chapter two, failed 

to improve on this. 	In this chapter, it will be shown how the 

addition of certain correction terms to the multi-Regge amplitude 

helps to push up the trajectory close to one. 	These correction 

terms represent long range correlations. 	It Is one of the fundamental 

features of multiperipheral models that the influence of particles 

adjacent in the multiperipheral chain dominate over that of those 

further away. 	That is, the multiperipheral correlations are of 

short range order. 	The factorisable approximation of the multi- 

Regge model, described in chapter two, embodies this to the utmost. 

Each link of the chain is calculated independent of the other 

links and the amplitude with n links is just Koc-
e 
 where k is a 

constant and x is oroportional to the elastic (single link) 

amplitude. 	The correction terms which we add are amplitudes 

incorporating correlations between links. 	These, by virtue of 

multiperipheralism are small compared to the factorised multi-

Regge model. 

Seadan_l - The corrected multi-Regge model. 

In the multi-Regge model, let 1 r4 (:0 	be the n 

intermediate particles state contribution to the absorptive part 

of the 2 	amplitude in the forward direction. 



N-1 

G L, 

4- -2- • 1  
Then 

	

j) 	G 4  ( j 	)1  

and 	r- 

	

T,, (3) 	G 	4 ._] 	" 

where 

T, 
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iN(p is given by 

hi T1 2_ ( 
	,27_. 	L.4  

G and g are the Reggeon-particle-particle and Reggeon- 

Reggeon-particle coupling constants respectively. 	f 	is given 

by Fig. 10 and contains only correlations between neighbouring 

links on the chain. 	These correlations are reflected in the 

Reggeon-Reggeon-particle coupling functions at the vertices which 

are given by 9 f -L L Ot6,1 ) where the ti and tc.,t  are 

momentum transfers flowing through successive links. 	In the 

factorisable approximation, these functions are seperable in 

tE, and tL,1 	and can be put in the form 

--F (ti ) f 
. 2 . 

enabling us to calculate each link separately, which leads to 

equations 4.2.2 - 4.2.4. 

Let T (j) which is given by Fig. 19, represent a 4-

particles intermediate state amplitude in which all 4 particles 

correlate. 	In multi-Regge terms, it incorporates correlation 

between non-adjacent particles in the chain separated by a 

single link. 
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--- 1  
( 	S the Meilin transform of the s-plane amplitude 

4( 5 ) which is given by 

(s) 
C- 

20( C.t ) 	2c( (t3) 	2. I s 	
(t 1 ) z ( -t. 3 ) 3 

ei+ri-9 ,-ct ,f -1,1-i- k3.1 A ( say y21t 

where the momenta are as in Fig. 18, 

SZ 	( k i:_ 1 	 i:+ 1 ) 

and 

t 	1: 	1,2,3 

s„t 2 ,t„ t 3 ) is a high-energy off-mass shell amplitude 

which is represented by Fig. 20. 	Corresponding to 4.2.6, the 

uncorrected amplitude 1 	(s) is given by 

(s) = f 	I Li. 
Cl

it 
 C1 1  a ct it 	( C1( 11  _ v-na ) Z.  ( ., 2 . _ ki l.) s  2. q (t. 1 ) 

-1'4- 

ss2"t3)  6- 2  (t,) &t3) 

LB (s,)t2lti)t3)1} 

where 

s23 	t3  ) r 4 

ia-c/19"3 [ 	 1(t„L2.) 

_z (t 2.1t 3  ) s2.2a a ) 

4-.2. °I 

6 
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We now assume that 

ILA ( s l ,t2.1ti) t-3) 
. 2 - I 0 

where 7C is a constant and (X' 	• is large as stated at the end of 

the last section. 	This assumption is equivalent to replacing 

the constant factor 94  in T. 	(see equations d.2.5 and 4,1.8) 
Li- 

with the factor 	An example of this is given in the 

last chapter where we studied a multi--Kedge model with nucleon 

loops. 	These resulted in the introduction of non-adjacent 

correlations through the spinor and propagator indices, whose total 

effect was to multiply the kernel of the integral equation by a 

constant. 	however, aS will be shown later, including a correction 

with nucleon loops will not serve to enhance the value of the 

trajectory intercept as we shall require the correction term to 

be negative which ,cannot be satisfied by the nucleon loops 

amplitude. 

LetT =Ti- +-FL: 

I+ .2 

—F-4 	is our corrected version of the four intermediate particles 

state contribution to Tim 1 2z , 	We now proceed to insert this 

correction in each 7-, 	in the unitarity sum. 	It means that 

the expression 

tag )2.  AI  

where the two ( 9 9) factors come from two adjacent rungs of the 

multiperipheral ladder has to be factored out upto the maximum 

possible number of lines in all possible ways and replaced with 



. 	' 	 • 
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; •••■ 
• 
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Fig. VI 
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the expression, 

In diagrammatic terms, it amounts to removing two adjacent 

rungs of 1 0  and replacing with the blob of Fig. 19 in all 

possible ways. 

This is represented by cutting the diagram for 1 

in all possible ways across the Regge propagators such that 

between cuts, these appear at most two rungs and at least one. 

Wherever there are exactly two rungs between a pair of adjacent 

cuts, we extract a factor 

and replace it with 

( 9*)2 11; 

All possible diagrams are then added. 	The external horizontal 

lines at the top and bottom of the diagram are treated as cutting 

the first and last pairs of propagators. 	Fig. 21. illustrates the 

foregoing for 1 5  which is equal to the sum of the three 

diagrams there (the cuts are represented by dotted lines). 
Thus 

T5 	9c:k  Al 3  

is replaced by 

-r-5  cy4  {L 	j3 	c.A*  AY- 	94t A) 
X 

2 
 (n A )( 99* F0 -*  

X , 2 . 2. 



Fig. 
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each term on the right-hand side corresponding to a diagram of 

Fig. 21. 

Let TN  be the sum of all diagrams with NJ 	intermediate 

particles i.e. TN 	is the corrected form of 	. Clearly, 

an amplitude T  ) represented by any particular diagram cut in 

a specific way, that contributes to TN  is given by 

Tim 	U9 Ak)  ni 6'1  [1 (639n  
. 2.- 1 3 

where 

ci ct- 2a z  = N -2 
4.2  .14- 

This amplitude will have cx,' blobs and ca, rungs, not counting 

the top and bottom rungs. 	Obviously, there are several amplitudes, 

all contributing to TN 	and equal to the right-hand side of 

4.2.13. 	Their number is equal to the number of different ways 

of choosing c4, 	pairs of rungs from ( N -2) ordered rungs and 

replacing each pair with a blob. 	Clearly, 7-w  is obtained by 

summing the right-hand side of 4.2.ln over all et, and CA 2  

subject to the restriction 4.2.14. 	Hence, after including these 

corrections, the modified unitarity equation becomes 

:40  -rit  
= 4 n 64 A a t + 2ck >  t1=1 A t -0 	 62. ! 

44  E.  (99*A )z. 
 az  

X J 

= G I÷ A -F-cy , 	e'c. 

Ft 	 cli+zo,z [m 9i I-I 



( ct , +- G2 	
(2 1°t2] 

ot, 1 n1 1. 	3r 

G4n 	6; 4n z77 (99*  11\ 	(_74:2_ 
M= I 	H !  L°6  

We now use Taylor's theorem to obtain 

4 
vn T2 .2_ G 4 

 n 4 G i n 	 L 

  

 

I - 	(191' r) 
x 

 

By letting X 	00 i.e. the correction we recover 

T 
	4 n 

c•i*c1  

which is directly obtainable from 4.2.1 and 4.2.5. 

At this stage, we shall use the crude result in the multi-

Regge bootstrap of Ref. 15, which we obtained in chapter 2, given by 

g 

( I — «co) ) 



1 33 
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where k is the exponent in the negge residue function and o■ (L 

is the Ilegge trajectory. 	In the given reference, the factor 

k 
-1 	

does not appear as it should, because of normalisation. 

This leads to, after eq uating  the denominator of equation 4.2.16 

to zero to obtain the output pole 

a(o) 	191L  

Li- . 	. 12 

In our corrected version, the position of the output pole is g iven 

by 4.2.15, which together with 4.2.17 lead to 

X 

Thus we get 

a(o) 	25 2  
1<X 1_±\14 	

y.2. t 
. For large X, if we take the minus sig n, we get 

oc (o) gs- 	) 

which is the same as in the uncorrected multi-negge model. 	If 

we take the plus sign 

( 	) 	%-\N; 	l ei 1
.  2 

i 
IC X 	

2+-'2-20 

If X 7 0 this means equation 4.2.15 violates the Froissart 

bound. 

If X < 0 we have ot(0)of 4.2.20 closer to one than the a (o) 

of 4.2.16 for the same values of 1 9 ) 2  and k. 	This implies 

that the addition of a correction term representing the 
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correlation of non-adjacent particles has been instrumental in 

pushing the output trajectory closer to one. 

For example, if we take the crude result of Ref. 15, 

a Co) 	0 - 68 3 	 t 	0.32 

by putting 	= -10 we get 

oc(0) 	C)-c 7 

.5=Ljan...2.,- The Mechanism of a negative correction 

We shall illustrate in this section, a specific way in 

which X can become negative. 

Let i 	be represented by Fig. 22 and 1-14 1  by Fig.23. 

The latter is the correction term representing non-adjacent 

correlations, to be added to the 2 --* 4- amplitude. 

Put 

  

  

XI 
J. 2.. 

  

   

can be written 

4.3.2_ 
The phase 	comes from both the signature factor and g which is 

complex, as stated in chapter 2 as (Ref. 26 and 41/ 

Let 	r 	- - 	e 1P 
Then 

fl - - 	 
1X1 V1  

3 
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where 

1x1 	1C-11
.2. 
 C1 -1  

Thus we can write symbolically 

T if 	it  

) 

and to the first order in !XI 

[ 1-4 r 

0-  I 	LI-  + 	1 	)  2 cis 	"yJ 
IX 

4. 3.3  

It must be noted that a correction term by itself cannot 

constitute an amplitude which is always positive. 	The sole 

function of the correction term is to reduce the numerical value 

of the amplitude, though for convenience, we have been referring 

to it as an amplitude in its own right. 	Considering equation 

4.3.5, if 

Of-ik 4: Tz4_ 

the correction 	7F-Li_ becomes negative as required by the 

preceding section to push up the trajectory. 

fgaiD/LA - The correlating amplitude. 

In section two, we postulated an off-mass-shell amplitude 

( Sl, bZ , t,, t 3) representing non-adjacent correlations. 	In 

this section, we describe how such an amplitude can arise that 

will be consistent with the mechanism of section 3. 



	 p3  

P P 

Pz 

k3 -----__ ›. 

f 	2/1- 

rif 

26 

We define the following invariants with respect to Figs. 24 - 27. 

SL = (Pc 	I' 	) 2-  

E c  r k61 

IC S  — 

= 1 	,3 

1 ) 2 ) 3 

If C ) S3 

 

060 	but Sz.  remained finite, we can 

 

represent the reaction 

r 	vi + r, 	
tti  

by means of Fig. 24 where the off mass-shell amplitude represented 

by 

1< i +-(— 1( 3  

 

	 r.4 V3 

 

Is at low energy. 	If Sz  becomes sufficiently large, then we 

can express this amplitude also in peripheral terms with Regge 

pole exchange and Fig. 24 becomes Fig. 25 which is the M.R.M. 



Fi 



1. 
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Let 	€ 25 	 ) be the low-energy off mass- 

shell amplitude discussed above. 	In the multi-Regge model, 

when S2  0= 

V: ( S1) 	, E 3  ) 	 (t2)t3 ) e;°' (62)  

4.4-1 

Where r is the signature factor and the g's are coupling 

functions at the two internal vertices of Fig. 25 the factor 

c-(.L i t 2. ) cj  (L,) L3 ) is a feature of multiperipheralism which 

imposes short range order. 	The power dependence 	52c( (EL)  

is independent of multiperipheralism, being a more widely 

accepted feature of high-energy scattering. 	It was argued by 

Amati, Fubini and Stanghellani (Ref. 1, Appendix 1) that by 

adding the most peripheral contributions alone, one cannot 

expect to achieve constant cross-sections. 	Hence we include 

less peripheral contributions which are small compared to the 

multiperipheral contribution. 	Our assumption is that these 

less peripheral contributions also have the same power dependence, 

their smallness arising from the vertex functions. 	In addition 

to the power dependence and the signature factor, these less 

peripheral amplitudes will also be dependent on the masses and 

the two usual Mandelstam invariants. 	Thus Fig. 24 can represent 

a non-peripheral correction at high-energy which makes the cross- 

sections more accurate. 
	

We assume that the amplitude represented 

by Fig. 24 at high-energy is given by 

c-3(t il t. 11  E i ) szc‹(E) 

4 .1±- 2. 
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It must be remembered that L I , LI 	and L 3  are all small 

quantities. 	We have to consider under what circumstances p: ] 

can be a constant as required by section 3. 	If this is 

possible, then 	and F will play the roles of r 

and rl  l  of section 3. 	With Frazer and Mehta's (Ref. 15) 

parametrisation, we have 

(6111::2.) 	,ze k(tlf. 	+ ) 

Consider the possibility that 

(L-0  L 3  ) Ll J b [11- 	 - + La  ) 	. 

4-.4.. 4 

9essel functions with their argument as the square-root of the 

momentum transfer have occured in the multi-Regge bootstrap 

(see chapter 2). 

We have to the second order in x 

exto 

 

2 2 3c- 
pc:IL 

tf-4.5" 

For x<1 the right-hand side of 4.4.5 reoresents a percentage 

difference of less than 4%'. 	Hence for sufficiently small values 

of Ell  E 3 	and L 	we can write 4.4.4 as 

j 	31 	— 	J2 	
14 ( 	f 	4_ 

' 	2.) 

OW- 

where 

52 
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Similarly, any function that is meromorphic around the origin 

and converges sufficiently fast when expressed in series form 

can be put in the form 4.4.6 for sufficiently small value of 

the argument, which itself would have to be a suitable function 

of E), L . 	and 	L3  . Thus our amplitude I 	of section 3 

can be represented by Fig. 24 and the correction amplitude of 

section 2 incorporating A- ( so  fr., 	3 ) 	can be represented 

by Fig. 26, the corresponding non-corrected terms being Fig. 25 

and 27 respectively. 

lansjasjan 

We have shown how an amplitude incorporating non-adjacent 

correlations can help to push up the trajectory nearer to one and 

hence produce cross-sections that vanish to zero more slowly with 

increasing s. 
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