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Abstynct

This thesis is in four parts, the first part consisting of a
general survey on wgltiperipheralism. The remaining three chapters
involve the gstudy of 3 modified multi-Hegge mndels.

In the second chapter, the single trajectory version of the
Multi-Kegge model in a factorisable anproximation is modified by
including a cut in the imput and a new set of bootstrap equations is
obtained, The relative contvibutions of the pole and the elostic
J.->7  amplitude cut are also examined,

In the third chapter, a multi-Regge model with nucleon loops
inserted between the high sub-energy rungs is analysed.

In the final chspter, it is shown how the addition of amplitudes

with correlations can have the effect of pushing upwards the position

ef the Regge trajectory in the multi-Reqgge beotstrap.
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CHAPTER T

INTRODNICTION

1. Tho ATIEST Madal

It was proposed by Amati, Fubini and Stanghellani (Ref. 1)
that a multiperipheral model of highecnergy Scattering would
provide a dynomical description of Regge poles and hence a
dynamical model of the {~.f-mass pérticles that 1ie on these
trajectories, Their papar featured both inelastic and elastic
scattering, the latter heing a sumﬁary of the work already done
by Bertocchi, Fubini and Tonin (Ref. ?),  The multiperipheral
mechanism was first studied by Berestetsky and Pomeranchuk (Ref, 3)
before the general Regge pole concept was developed,  They
described it in terms of pion-exchange and repeated diffraction
scattering which, in the multi-Reqge model to be described below,
corresponds to alternating pions (cﬂ,r 3 © ) and Pomeranchuk

(fiw | ) trajectories,

Multipavipheralism is the generalisation at very high
energies of the peripheral model which is useful in interpveting
the main features of inelastic scattering in the energy range 1-2 Gev.

For instance, in the process
W+ N -ﬁ S_‘+S;L

the peripheral model represents the reaction in terms of Fig. 1




—‘?u

where the 8 and t channels are given as in the figure. The reaction
products are identified by the sub-energies &, and S, carried
by then.  The exnerimentally chserved fact is that this description

of the process is valed only when =

, is small, Than the peripheral

idea stotes that the amplitude for the process is approximately given

by the product of the amplitudes corresponding to
T —> 3
and

v Yﬁ —> S,

where one of the incoming pions in both reactions is virtual and off
mass-shell,  Thus the full amplitude iz effectively factorised, If

S‘ in turn is sufficientiy large, the reaction MW — g;\

will itself permit a peripheral description of its own, splitting the
products S\ into 2 groups. Extending this process to the 7—‘9‘J
production amplitude, we arrive at the multiperipheral graph at

sufficiently high energy which is given by Fig. 2.

P
a




Phen this amplitude is combined with its complex conjugate to obtain
the cross-section, we obtain the ladder'structure which enables us to
evaluate the multiparticle production contribution to the total cross-
section by the iteration of an elastic cross~section, In the ADFST
model, the multiperipheral chain for the production amplitude was
comprised of elementary pion éxchanges leading to a Regge behaviour

of the imaginary part of the foiward amplitude which is related to the
total cross-section through the optical theoren., However, many of
the conclusions arrived at in the AFS papey do not depend on the
specific form of the T -T  amplitude or the low-energy imput,
but only on the topological form of the multiperiphernl graphs.

That is, their conclusions are model independent in the sense they are

true for all multiperipheral models,

The AFS paper analysed both the high-cnergy totel cross-seciions
and the elastic scattering amplitude, the graphs for hoth of which
are analoqous except that the latter is move complicated Kinematiczlly
since the momenta flowing through the two sides of the unitarity cut
are different. The main techrique used was to reduce the sum over
all individual multiperipheral effects for a particulay L — N
production reaction to the solution of a linear integral equation,
In the high-energy limit, the equations become rather simple, The
kernel of their integral equation, have the property, in fact shavrad
by all multiperipheral kernels in general, of being invariant under

the group of multiplicotive transformations

. . A \
§ —» ¢35 3 S —3 (5

\
where: = & is any sub-energy. This result can be derived from

the fact that when the nunber of emitted secondaries is large, the



main features of the process should be the same independently of
whether one considers as target, the particle ., P\ Py e

(sea Fige 2), The change in the description of the process from a
fixed target P° to a moving target P\ entails a Lorentz
transformation which in the extreme relativistic iimit (Ref.4) is

given by the above menticned group of transfermations. This

property of inveriance suggests that the solution of the multiperipheral
integral equation could be ewpressible in tewms of the irveducible
representztions of the above group, given by SJUL . In fact,

the solution is found to be of this form. The same result is also

achieved by summing the leading behaviour ¢f each multiperipheral

graph, which for the 2.'4>¥J case is proportional to

...L_ (%\cjé}n—\

Y

Thus the multiperipheral model gives a Regge behaviour in the
asymptotic Iimit., The trajectory o\ in the AFS case was

&
determined as a functioral of the lew-energy resonance input R (Q}

which they used for the kernel,

A = A E{D\&(ssx

i.e,

This holds for all multiperipheral models, that is, the position and
residue of the Regge pole which describes the high-energy behaviour

is determined by the kevnel,

The other "model independent” predictions of the AFS paper ave



- 10 -

sumnarised as follows :
ey The high-energy behaviour of the elastic scattering
amplituce is

-

5 (&) N
T8 =57 ¢ |Heruglble

ot

T\ (S\)cr) = Sd\j k) CA@ dan 1%@ ol

according as whether the amplitudes ave symmetric or
antisymmetric under crossirng. Also the slope of the
trajectory is positive and d\@?) j?*"\ The quantity
CL(*f) admits of factorisation such that the relation
between different amplitudes, dominated by the same pole
is

Txﬁ& (S\lc\} = ‘“rx €D <S ‘lcw

it g

T:z'j (S\LW T:Lw (g‘l;»

where X4 - and D represent any kind of
particle, -

) The inelastic emplitude also has average properties which
‘are simple and depend only on the multiperipheral mechanism,
The multiplicity grows with the logarithm of the energy.
The inelasticity and the hranching ratioc between different
secondaries are energy independent, Alse, the spectra
of the secondary particles are given)for LkL_ considerably

smaller than the initial energy, by

N atk- FOT AT (g

|
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where kl*f and k~L_ are the transverse and

- )
longitudinal mementa and b (k~)¥~z is a
universal function independent both of 5 and V;L

and strongly peaked for small L;él“_

Another feature of the AFS paper was their pointing out the
presence of cuts through s-channel unitarity. They also supgested
that these should be included in the multiperipheral kernel, with
resultant renorzalisation effects of the output Regge pole trajectory,
though they did not attempt te solve this problem,  Our next chapter
describes a model, modifying the multi-Regge model along these lines.
The Athg;;Iicitly éalculaﬁed the cut in the ? . particle
discontinuity which was assumed to be reproduced in the elastie
ampiitude, Mandelstam (fef, 5) showed that this was not so., In
the complete contributicn obtained by cutting by unitarity in all
possible ways the diagrem calculated by AFS, this cut is shown to
disanpear, though it reappears on computing other classes of
diagrams, This conflict is resolved in the multi-Regge model, when

one uses a Regge pole in the input and assumes all sub-encrgies to

be high.

2. The Multi-Reage lndal

An extension of the ABFST model, the multi-Regge model, first
pronosed by Kibble (Ref, 6.) and Ter Martirosyan (Ref. 7) had the
featurse that the exchanged pions along the multipefpheral chain were
replaced by Regge Poles,  The attraction of this model was enhanced
both by the phencmenological model of Chan, Loskievsky and Allison
(Ref. 8 ) which was extensively used in successfully fitting
individual reactions and the duality hypothesis proposed by Dolen -
Horn - Schmid (Ref, 9). The theoretical justification of multi-

Reqge models velies heavily on the latter which is used to assume
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that Regge pole asymptotic representations are valid even in the low
Teserance region. Experimentally, it is estahlished that the mean
sub-energy of nsighbouring Tial particles fall into this region

(Ref, 10,

Owing to the presence of input and out put Regge poles, the
multi~-Reqge model has provided a suitable fremework for a bootstrap
theory embracing multipevipheralism.  This model, in conjunction
with the unitarity equation can be used to obtain self-consistency
conditions imposing constraints on the Regge parameters, A crade
bootstrap of this naﬁure was analysed by Chew and Pignotti Ref, 11)

A nore exact treatment with the derivation and analysis of the multi-
Reqge integral equation was developed by several authors (Refs, 12,

13, 14, 15, 163, This integral equation, whose kernel consisted of
the elastic 2L 7 amplitude described by a Reqge represent-
ation, arises from the unitarity conditions impeced on the multi-
Regge model.  Its solution leads to selfconsistency conditions
relatin§ to'the imput and cut put Regge poles, which impose constraints

on the trajectory slopes and intercepts and the coupling constants.

The solutionr is pessible only with the use of asymptetic
approximations to the phase épace which enables a diagoraiisation of
the integral equation. The main problem in achieving this through
an asymptotically exact description of phase-space was the definition
of a suitable set of Kinematic variables, Bali, Chew and Pignotti
(Ref, 17) used Toller (;C>(1iﬂ] variables for this purpese,
Their variables previde a means by which the Toller-angle dependence
of the two-Reggeon particle coupling is easily understood.  These
varizbles also provide a group-theoretical basis for the multi-Regge

model.



Chew and de Tar (Ref. 18) made use of variables similar to
these to achieve an almost complete diagenalisation of the kernel
of the multi-Regge integral equation at zero mementum transfer by
invoking Lorentz symmetry, This foimed the hasis for the sub-
sequent work of Chew and Frazer (Ref. 19) which established the
relation between the Pomeranchuk pole and the cut. The group
theoretical amalysis was extended to include general momentun
transfers by Ciafaloni, de Tar and Mishelloff (Ref, 20) who used a
set of variables analogeous te the foregeing to obtain a partial
diagomalisation of the equation. Their technique was applicable

to bhoth the multi-Regge model and the AFS model.

Another sct of wvavriables that is especially suited to the
asymptotic requirements of “Multi-Regge phase space is that first
used by Sudakov (Ref., 21), The derivation of Ualliday and Saunders's
multi-Regge integral equation was carried out using these variables,
of which they pexrformed a detailed analysis (fef, 22), TIn this
eﬁuation. they assumed the existence of only one type of particle
of mags m, and zero spin, isospin and electric charge and crly one
type of trajectory. This assumption was only for convenience and
did not entail an unrealistic description of nature. As pointed out
in the AFS paper, only the external particles at the end of the
multiperipheral chain are replaced to account for different reactions,
the chain itself being uniform, and the properties of the model do

not depend on the extermal particles.

Halliday's (Ref. 14) output trajectory in the X —7 -

unitarity equation is produced by repeated exchanges of the seme

trajectory in'inelastic amplitudes, erabling one to obtain a closed
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set of equations for the parpmeters and couplings associated with
this trajectory. This model differs from that of the others (Refs,
11, 15, 16) wic suggest that nmultiple exchange of lower meson
trajectories in the 1. = amplitude is responsible for the
Pomeranchuk trajectory guzpﬁt in the elastic amplitucde, the

Pomeron in the imput producing only perturbation effects,

Earlier, it was stated that the multi=Regge medel is heavily
dependent on the duality idea to justify its employing Regge
representation for sub-enzrgies which are indicated by experiment to
be low. Hnllicay (Ref, 230 and Chew, Rogers and Snider (Ref, 10)
questioned the-Validit§ of this assumption. The latter confined theiv
aXuuwnents to the ABFST model, which they indirsctly related to the
multi-Regge model, The former cast doubt on the assumption in the
context of multi-Reggeism. The question of low sub-ecncrgies was
connacted to the problem of crossed rungs and shown to be the same for
Kinematic reasons. Without these crossed rungs, the multi-Hegge
formalism contains only planar diagrams, the calculation of which is

similar to the AFS cut calculation, Thus it is preferable to

include diagrams with the crossed rungs, as in Fig. 3




Naving thus reduced the study of low sﬁh»energies to the study of
crossed rungs, it was shown that the use of duallty expressed in temms
of Cauchy's theorem, to get round this problem was not possible
owing to two effects. One was that the sppropriate éna?ytic
amplitude has singularities at S=© as well as the threshold at

¢ = Lo leading to the application of Cauchy's theorem
needing not only the imaginary part but also the real pavt. The
second is that the phase space integral coutains extra temms due to

the dissection of phase-~snace to fit the multi-Regge ragion.

Chew, Rogers and Snider used the duality concept based on the
Veneziano model to cast doubt on ite validity in the context of multi-
perivheralism.  The asyaptotic form of the Veneziano model was usor
in the low-energy region to detevmine the kernal.  This led to a
qualitatively wrong isespin dependence of the ABFST kerrel. For
this reason, they re-cxamined the original ABFST model with a low-
éub«energy,kernel. forswearing the high-subenergy assumptions of
multi-Reggeism and compared this with the mulii-Regge model, to
throw further light on it. A crucial defect in their model was
that, using experimental values for the kernel, i.e. the low-energy

amplitude, they fell far short of producing the output pole at j‘;‘-

This failure of the Thew, Rogers and Snider version of the
ABFST model is shared by the varicus multi-Regge models studied
hitherto. All their models fail to account for total cross-sections
tending to a constant as required by experimental evidence. At the
beginning of the next chapter, we shall describe the work done in the

multi-Regge framework in relation to this point.

Another feature in respect of which multiperipheral models
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disagree with experimental evidence is the sign of the elastic cut
correction, The latter obtained through the application of two
particle unitarity gives a sign opposite to that of the absorption
model (Ref. 24)., This question is examined in our moﬁel introduced

in the next chapter,

In this thesis, we study three modificd versions of the multi-
Regge model analysed by Halliday aad Saunders {(Ref, 22) and Frazer and
Mehta (Refs., 14,16).  Throughout our work, we confine oursslves to
the use of Sudakov variables in the dervivation of the integral
equation, Our models are also based on the single trajectory input
version of the MR M, mentioned earlier., Our entire study assumes
the momentun transfer either to be zero or clese to it, together with
large s, both of which are essential for the validity of multiperipheral

models,

In the next chapter, we consider the effects of adding a cui
correction to the single pole input in order to attempt to push up
the output‘trajectory closer to one than the single pole imput modsl,
where Frazer and Mehta (Ref, 16) established the position to be 0,8,
The cut correction used is that which is dyramically produced by the
single-pole imput and as such, should have been present iu the irput
in a complete hootstrap. We alss investigate numerically the valuc of
the elastie cut correction in both cur modified model and that of
Frazer and Mehta's for comparisons with the absorption model. The
results which we obtain are dissappointing oa both counts. Self-
consistency constraints on the parameters involved actually force the
position of our trajectory lewer than Frazer and Mehta's trajectory,
our value being 0,7 instead of producing an enhanced trajectory as we

had hoped.  Also the sign of the elastic cut correction in our
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model also is opposite to that of the absorption meodel,

In chapter 3, we study a multi-Regge model which is modified
by the exchange of low-energy nucleous alternating with the high sub-
energy Reggeons in the multi-Regge chain. The type of diagram
calculated by us is very simiiar to that calculated by Cheng and lWu
(Ref.25) in their analysis of high energy quantrum electrodynzmics,
In their case, insertion of Fermion loops into dizgrams containing
Vector teson exchanges gave an enhanced s-behaviovy for the
amplitudes which led us to surmise that a similar vesult might occur
with the insertion of nucleon loops in the multi-Regge model,
posgibly producing constant cross-sections, For the nucleon-Reggeon
couplings that figure in this multi-Regge chain, we use the Neggeised
form of the Feraion-Boson couplings and propagators as prescribed
by Scadron (Ref. 26) and Jomes and Scadron (Ref, 27). We find that
the nucleon loops have the effect of multiplying each multi-flegge
diagram by a constant factor leading to the result that the twajectoxry
position in the multi-Regge bootstrap remains umaltered while the

Reggeon<Reggeon~particle coupling constant is "resormalised”,

In the finnl chapter, we indicate how the addition of correction
terms representing amplitudes in which non-adjacent particles in the
chain correlate, to the standard multi-Rsgge model amplitude of Frazex
and ‘lelita in which only neighbouring links correlate, can produce
the effect of enhancing the leading behaviour by pushing up the

position of the output trajectory.
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CHAPTER 1%

COT Brecers IN T MO TI-ARG0E POOTSTRAD

I. Tntveduating

Various papers have been published on the possibility of a
closed bootstrap in the mmiti-Regge model (Refs, 11, 12, 13, 14, 15,
16).  The simplest of these consists of a single Regge pole imput
in the multi-Regge ladder emerging self-comsistently in the outnut,
The identification of the residue and position of the output pole
with those of the input pole leads to a set of equations that
determine the parameters of the common trajectory for the inmput and

output. Assuming that the Renge trajectory is linear, of the form

O(OCW - O\-\’\q%
-4

Frazer and-lichta (Refs, 15, 16) obtained a relation between the
trajectory intercept ck(g) and the Regg@enwﬁeggeonupafticie coupling
constants ci occuring at each internal vertex of the multi-

Regge ladder, which was given by

N R I

The actual number obtained by Frazer and ikhta for o((d) was 0.3,
consistent with a high-ranking meson tréjectory. In fact, relation
2,1.2 implies (Ref. 15) that(x(d\ cannot approach unity without an
inadmissibly low value for ﬁ leading to the physically |
unrealistic result that the elastic cross-gection is large compared
to the production cross-section. Chew and Pignotti (Ref. 11)

L
arrived at a similar result by establishing that (3 < l-a




Finkelstein and Kajantie (Ref, 23), by assuning a physically realistic
g, also proved that multiply Pemeranchuk exchange violates the
Froissart bound by leading to cross-sections that increase faster
than any pewer of logs and suggested the inclusion of cuts as a
possible femedy. Thus it is well established that the self-
consistent singularity in the ona-pole version of the multi-Regge
model which determines the leading behaviour of the amplitude cannot
be identified with the Pomeron pole alone. Yet, if cross-secticns
tend to a constant at high energy as experimental evidence suggests,
this identification is necessary (Ref. 7293, A solution is to
include additional Iéwef lying singularities either cuts or poles in

the imput,

Chew and Pignotti (Ref., 11) used two imput poles, one of them
the Pomeron of =l and the other a lower rankiug meson
trajeétory which represents the effects of all meson trajectories,
They suggested that it was the multiple exchiange of the lower
ranking meson trajectory that leads to the output Pomeron while the
effects of multiple Pemeron exchange were negligible.,  Frazer and
Mehta (Ref. 15, 16) using Chew, Goldherger and Low's multi-Rlegge
integral equation (Ref, 13) also studied a bootstrap with the sams
input as Chew and Pignotti's.,  Both Chew and Pignotti and Frazer and
Mehta assume that the leading output trajectory as well as one eof the
input'poles is the Pomneron and use the bootstrap conditions to obhtain
values for the parameters of the other imput trajectory.  The gutput
Pomeron is thus a hypothesis in these models rather than the
inevitable outcome of a set of input singularities including itself,
In this sense, the bootstrap is not contained within these 2 pole
models, In contrast, the bootstrap of a single pole, which

unfortunately cannot be the Pomeron as stated above iz inherent in
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the one-pole model (Refs, 14, 15, 16),  The schizophrenic Pomeron
model of Chew and Snider (Ref., 30), with a more sophisticated version
of the 2-pole inmput similarls.' immoses the assumption that the

leading output nole is at j:\ ard obtains numerical estimates

for the other parameters, The two output poles are very close to
each other, with comparable residues for sufficiently small spacing

and can he regarded as a single pole,

All these two pole imput models have either negliected or
represented by a pole in the imput, the output cuts arising from
the imput pole through unitarity. The imyut of a simgle pole,
through s-channel unitarity, leads to an output eut with its branch-

point at the maximum of the expression
A U:Q a 0(('{:1) Ml

where JCt and va, are the momentunm transfers flewing
tﬁrnugh two sides of the unitarity diagram Qefs. 1, 31J). On the
assumption that 0'\&”—\ depends lineavly on t, then the

maximun value of o (k) + (k) —] is given by

on the boundary of the curve

. )
ek - 20k —2v X bk, =0

ARRES

where t is the momentum transfer.



nglm

This cut at WACN (i&:)*«\ together with

the pole at <KQ?> in turn produces a cut at 3 (*:/q>~—-jlw
In this manner the continued iteration in the s-channel of the

unitarity equation leads to the set of Regge cut trajectories

Nh&-) —~ N ({/nL) —n ) (h=23 - )
2.4V 4
A complete bootstrap scheme therefore requires the inclusion of all

these cuts in the input.

Hwa (Ref. 32) was able to achieve this complete bootstrap in
the g-channel of the Pomeranchuk singularity, the Iatter turning out

to be a branch-point in this scheme, Of course, this bootstrap i

ot
2]

not within the multiperipheral model,

Within the framework of multi-Reggeism this motif of the leading
§ingu1arity,being wholly or p artly a cut was discussed by Branson
(Ref. 33). He assumes an input corresponding to the asymptotic
behaviour

(E) 8
5 (kij;>'

His output singularity consists of a branch-point and a pole. The
branch=-point has the nature

X

(J" <)
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oY 2

P

(ag‘“ F*ci)j

aceording as whether a flat input trajectory or a linearly rising

one is em§loyede For positive kj the pele is to the right of

the branch-noint, For negative t, it is on an unphysical sheet and

at %:==O it coincides with the branch-point, its residue vanishing,
Thus he achieves self-consistency only in the forward dirvcction since
the imput pole and branch-point coincide for all t. ' Also the ocutput

singularity corresponds te an asymptotic behaviour of

S/Oof)g

oY
S/Q035\$

according as whether the input trajectory is flat or linearly rising.
This behaviour implies vanishing total cross-sections at asymptotic

energies in the single pole input model.

It is possible that a single Pomeron pole, given by a
trajectory c&(}g} tcgepher with its associated cuts at branch-
points o(wt?} as given by equation 2.1.4 can be beotstrapped
obviating the need for either lower-ranking input poles er the
assighment of a complex value tothe Pomeranchuk trajectory. In
this case, we will have the result that cross-sections tend to a

constant,

Such a hootstrap program is as yet technically too difficult.
Nevertheless, since for sufficiently small t, the threshold behaviour

of cut discontinuities of scattering amplitudes weakens as n



increases (Mefs., 1, 34), the inclusion of only the first cut for
n="L micht be a satisfactory approximntien. At any rate,
such a partial bootstiap will be a closer approximation to the
total boo;strap of pole plus cuts then the partia] bootstrap
involving a single input pole only. We may then hope, given the
hypothesis of the Pomeron pole and its associated cuts hootstrapping
themselves, that the inclusion of this cut will push the ocutput
trajectory closer to one than in the pole only model. lore
accurate schemes, involving the input of the iterated cuts for
Y\:3;%-‘-,ﬂ by the same argument, will result in trajectories
closer and closer to one, The pele only model will corrvespond to
the zeroth order and the pole plus N=2. cut will correspond
to the first order approximations in a series of approximate
bootstyaps, If in such a bootstyrap, we include the pole plus cut
up to N = L& (sayY, then theye would emerge self-consistently
in the output. Also, there will be output cuts for n ;7 e
ﬁhich are neglected in this approximation, From the. foregoing,

we then have d.(o\7 increasing as < increases,

o

In this paper, we study the effects of including the cut for
N=2  in the input in the hope it will lead us to an output
trajectory cleose to one and cross-sections tending to a constant
with increasing s. Ve use Frazer and Mehta;griRef. 15, 16) multi-
Regge integral equation in a factorisable approximation but deriving
it by a different method involving the use of Sudakov variables
(Refs. 21, 22) following Halliday and Saunders. The paremetrisation
js the same as that of Frazer and 'iehta in ovdsr that we may compare

the results., We use for the formulae for the discontinuity and



location of the cut, those emerging in the output of the pole

only model,

Finally, we also compare the relative contributions of the
pole and the elastic 2. —> 2 amplitude cut in both Frazer and
HMehta's model and our model in order to investigate whether the sign
agrees with that of the absorption model in view of the well-known
disagrecment of the latter will multiperipheral models in this

respect (Ref., 35),

2 The _Sudakoev Vaxipghlos and Kinemntics

In this section we shall discuss and outline the charnctevistics
of the Sudakov variables (as in Ref, 22) and their relation to the
invariants of the multi-Regge productien amplitude in order to
facilitate the subsequent derivation of the multi-Regge integral

equation

P\ - Cs' i
A —— Y oL,
> O
/X £
o > Giw’r {

N,
P2 701'r1

Fig. 4.

The ) _54). amplitude, the Kinematics of which we analyse is
_——3 K



represented by Fig, 4, the variables bheing as in the Figure. For

convenience all particles aré taken to be identical and of unit

mass,
We define the invariants
. .
D= (?‘ A VLW
‘ L.,
S‘: = (L\% ¥ C\-C’cn
Coo-Sq )
ke = Lpy- 2 1)
Farther, we define
\
P, = f — =
S

=v
)

‘!:U
[

%l‘:o

and

4.

I

2

. C'
~o _
-3r

o

. .(".
5o

Jr

7

the variables . , ﬁ; and K\[

the Sudakov variables.

2.2\

2270

0.2 Y

which is a twoe vector, are
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In the centre of mass frame of P, and PL_ it is

obvicus frem 2,%.4 - 2.2,6 that K\" is the transverse part of CL
<)

. -~
KC,@;¢L\<¢YE :_U

and k:gk < o

Also, since s is large, we have
- 5

\31 —_ 1’3 ! ~ 2. 2.2
S

P

and
A \
2 P\’ f'—- ~ 5 02§

This in addition implies that

h

M

RN

Equations 2,2.4 and 2,2.5 also lead to

\ 5
k\:' f‘:——-’ KC’F—L = O

A

Sinece the Ct . are on the mass-shell, we have from 2.2.7 and 2.2;8'
L

oA fes S 0(‘“9
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Also, conservation of 4-momentum leads to

) (
= e 0(%)
9-2.10

— \

(o

< Be = s 0(%) o

o

and
N

2. Ko =o

¢

Since ©
U~ (W pIE [ Do

S AR

]
|8

and MLﬁL:)O from equation 2.2,9, we have
O(t.kjﬂc >O

From the above equations, we also obtain
RN
gk: =5 (‘XC ’VO(GD ((g«:*(gun + (K“‘J(KC“\
2.-2.-\3

—a) e B

2.2 14

and

Eg — ~S(\~¢l.. :

We now introduce the assumptions that

SC-—”—7c><> as S_—-éc,o

remain small, Fquation 2.2,14 then makes it

and that the {fg
Also from equation 2,2,13, we

clear that the KL must be finite,

S (ot o((_'_;\\ C@;J«ﬁaﬂ\) T o0

have



-
<
because the term (_L\ ¢t K Ca-;), gives a negligible

contribution

Let |4
A = |\— < ar K=t,-- o
hEE . -
% =) 2,216
and
L
EK — 1= 0 .SJ\ k:\) -

J

L, =)

Clearly, the setCkk\ is monotonic decreasing and the set L’kN

2.2

is monotonic inereasirg, Also we have

SCo~ S (cxd,‘-—-qgﬂ QLCM'”LQ

2217
T L AT
T T e w (g—— %\‘.\7
J7
= s
Sageg o2 S
and
—_— e e
= (l-k) = o 2.2-49
‘ e
The qualities }Ag are defined by 2.2.19 and are clearly
Finite and positive. The conditions, S  —3 oo ; T
remain finite as S S0 and the monotonicity properties

of the Qk\ and &QK lead to

S &ey P on
22 2O



Dgquations 2,2,19 implies that S Aoy lob" and S Q. b;.*\

remadin finite

Hence i el > o
b
and
(S - —> oo
A

Therefore equation 2,2.15 leads to

ff(gwoum P B N R O E—— ﬁ_gg_x
Al -
a\ q\’. w

(1

— oD 10 X000 e My S
Thus the sequence q ddk is monotonic decreasing and { (”’j}

is monotonic increasing, Tt also follows that

2223
The above equation states that all momentum transfers arise from

the transverse components

3 &)
(2 K5)
Applying this equation to TL; leads to

d ¢ — |

and

o — O (-9 | L2
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By symmetry, we then have

o ~ 0 (%]

22,25
and (
Ba —>
We also obtain relations between s and the S From equations
2,2.9, 2.2,12% and 2,2,21
hp N
S o~ K
b _ Cr\
o CA
A2 b
This leads to
-\
S\' = _.?_(__L. - 0{1’\*\ \vqm:
. Cty
L=A - Ay
“ .
~ S \AC-H Ql/)‘"‘
2.2.27 follows from /Zv\ -1 and 2,2,9

We now define a further set of subenergies used in the next

chapter “\\\\\\\\

Let X
. B
<. = E
7 éj Ty
- 2B
where \
L=y -0 ) awd (;<J
j .':'2..‘3\ - - .. N
then
Se = S{w

Clearly, similar to equation 2.2t13, we have

sio= s (3a0(E8) « (2 K

! N 2.- 228

=



Also, obviously the §¢S - oD

‘It is then a simple matter to go through similar arguments to those
preceding .2,27 and arrive at the corresponding equation for the §%J‘
Evidently s could be expressed as proportional to a product of the
such that none of the sub-energies overlap. It will have to be of

the form

where

l<C <o < .. L T e N

There are a number of such possible equations between the s and the

< Cj Consider one of them

§‘§1~33 T S-S S Sh-y

L4 \:3 J
Lol v SIS T N
> I,S \A\%\,} \JJ' & .\A\ T\-ﬁ»\ /}

Equation 2.2.30 together with 2,2,27 then leads to

I

27230

-\

Sep = /W Sy

\\ = ( e REN
WP — .
= “
| My
¥y 'Jr\
3. The Uniterity Eavustion and the MR,

In this section, we use the Sudakov fermalism just described
to derive very easily the hootstyrap equations of the pole-only model,

These were arrived at by a different method by Frazer and Mehta (Ref.

16Y. The latter derived their equations using the formalism of
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Chew, Goldberger and Low (Ref, 13),

The L—32_ unitarity equation reads
AN
T . _ 4 . - —J
T g:m_(g‘)c’) 6—;L g}j\ x‘d 1. g((t;' P‘L»’r,\g“r({;h, f‘ f
K
plr\l QZ’.N 23\

where Fig. 5 represent$ a typical term on the right<hand side,
is the particle mass and the blobs represent the 2. —5 N 3
amplitudes ﬂlw We have eliminated the factors (hf)f
by normalising suitably the amplitudes RQ_N‘ in order to
facilitate comparison of our work with that of Frazer and Mehta,

We have also cancelled an Y\E and agreed to integrate over only
one of the \\E possible M.R.M. configurations of the N

particles,

In the multi-Regge model (Refs. 13, 140 R, =~ is
represerted by Fig, 6, the wavy lines standing for Reggeons and the
straight lines for particles. As mentioned earlier, all particles
are assumed to be identical and of zero,spin, isospin an%ﬁc

charge,

Ql‘\) is given by

SV
Q’Lv\! ~ G (.JCA C‘G‘fw} l{: ‘j("EC )JCC*M@L‘)

T{:» [ de\(kﬂ e_—‘-L crr‘o\(’c:ﬂ]

ic!

| .
o (]
where e = ‘ J is the signature factor C‘U‘fn
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and G (;t h:h are the Reggeon-particle«particle coupling
functions at the end of the multi-Regge chain, S-j({:(j)ﬁﬂ,p@)
is the Neggeon~Reggeon-particle coupling function occuring at each
internal vertex and o U:» is the imput Regge trajectory which
we shall assume to he linearly rising and parametfised in the
form c\,k\o)(:\ Though the slope of the Pomeranchuk trajectory
seems siall experimentally (Ref. 35) we do not assume a flat
trajectory for the Pomeron as it isolates the Froissavrt bound whan
used in conjunction with the M.R.M. (Ref, 22).

Also

T
S¢ = (OL c LM—\W
b = |
\ ¢ o]
L = L e
P“ Y| L"(’
and the CO are the Toller angles hetween different frames

in the nmulti-Regge amplitude

% . %‘ «70](

Fig. 7.

The Toller angle is defined with reference to Fig. 7 as the spatial
\ !
angle between the plane formed by the three vectors F and CL

and the plane formed by p and q in the rest frame of CL‘
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Thus the f\j intermediate particles state contribution
to the amplitude Bi\/ (corresponding to Fig., 8) is given by
N - '
) © i 2 2l (g
g\\} LSI"LW = ,.é__ {“/‘[g Cé QL & C(LL - AN )_E b \ZLLL, Pg’?:\;
Y - ' ¢ -
205 L

606 () €U ) S ) T L eotne)

W X
ek o ‘} ~.G"&JMW)
CS AR ) ’;\-r KSL
Lo Lo (6 - (6] jl{ |
€

233

where the variables not defined in Fig. 5 are given by

)CC = Y"Fzs“" S%AL

b= G-
énd | : ,
$= Cporp)

We now change te the Sudakov variables defined in the nrevious

section. The Jacobian of the transformation from dq- CLQ
to dd\u‘aﬁdé‘ Kg is clearly SIL and thus
N R
g (OLZ"_. x‘j’ dq}u\: _%__ o)«cx\;c).ﬁ,\; 8(0(5@¢S.~r¢ )d Ko
We then obtain

I.M gl‘)_ (S]JC) = ﬁ% %Mcgfk)
224
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where

B gJQ,___M_ ﬁ”{ e 3B S (aofor - )}gggdﬂ

2t s

§(5pe—1) S (LK) Gk G-y )c_(knjcr@:n]

ke O(Jr:ﬂ ot
T[o&ub)&w\?w)(ﬁ O—/L 7LL-\"\) )]‘r{ k E)

e’,;c‘-r{_q,(t O - e 3]]1

The factor s~' on thﬁ right-hand side arises from the

23 6

transformation of the g- functions which satisf{y the relations

g. (C\mj = ,_,L 3(13

o

We now make the substitution

635

From 2,72.26, we have

1,
S}: = A x/\ U |

A vy ‘ \

' o - s :
We use the M. factors (d“fg"““...‘ii..) to dispose of the FL
<

integrals, Next we effect the transformation from the A
integration to the W~ integration. The Jacobian J of the
transformation is, after teking into account the 2§ _functions
already present and the fact that ?\\ and ﬂ can be

assumed to be unitys given by

T o egs) '(zu..\_. S log pe” )

o— st

ca S
(3 | 2-3-L,
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We also make the additional transformations from the set of WM

rvmaiomy

two-vectors to the set of h—\ . two vectors K L‘

which are given by

C ‘
v - o~
KL\ = 3- K N L= ‘). .. |

,‘-.
(‘ ‘ 1‘3—1

The extra K is absorbed by the factor g (2 Kb\ in 2,3.5.

Hence, we have

(s Q L Y &q.lg Sug~t- i\ﬂ )

loq®

[ \PR

\ [‘f\ chd)ki-i—ﬂwﬂ Cj% (/(:: )Jcc‘ﬂaw)}

te |

\3—-&

e*f& m S oth ) +o (ko )’)\S\j

2-3-8

..i

To improve the convergence properties of the above equation, we

multiply the right-hand side by a factor

%f [ 240 °3S(£Uc""“£(ﬁﬁ Wﬁl
log $
i
In equation 2.2,8, the lower limit & of the U ' integrations
is given by ,

if_ logM

\03 S

where’V\ is a number such that we believe the multi-Regge model to

-
hold true only whem all the < 2 M - Also the upper bound is
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not really unity bhut determined by the factor

. ' T
g ( ik"(" ’“—\"M g \QC )\'__>

\038

and hence it wont make a difference if we replace the upper limit
unity with infinity, Performing the A\ integrations is
facilitated by replacing the 2§- function in the right-hand side

of equation 2,2.8 with its integral representation
a -
& . o Mo
- La'(iu\fm\* e \OJE‘“ )
Q)\} e \033

—

We now integrate the kkk“ from S to o0 and obtain

6(&@ QDCS) { -LBS’L‘*“ UJCLU
S

l

Q Lk& :x\ C"(*Qm—n Eﬁiﬂ[:} ((:C') J‘a—nc"’)]

(=

T (5 ks M’ I Sy

,&, \oc JS (dU:\

. (be ) — Lo lo) ey : | 2.
S %%?3 exp [wt‘“}\"j 2

N (’E\\] — 2‘0((0)

1S
+ L (O) {‘"‘) ‘J\CH]



We now undo one of the end integrations and define

- _ ) n-3% . _ b
CDM (KKB\S\J;) zgiﬁi).f {G‘Uﬁ'nﬂ C"’u:m\w S\G:‘?'E?-)““’)
5N

q"(& &:ij)’\‘ (1‘: ELH) .)j (Ec)kcﬂ) \.)

o)rtd
. [alk D& alk AR )*vgs

YV &a’“m ~M <xp
Cae . '

C’a. A \0‘35‘ [_0\ ('E\ )*O((Jc(' ’)—- [ Q\)]

i \ i .
—oy Lgpen ozaled) by \*}

\6635
This enables us to write down the multi-Regge integral equation

as it is easy to see that :5,\; C\/: \B\S\&W satisfies the

recurrence relation

D (63156 = ks [ (ak [9ED) § (6]50)

i e T t —»de(u‘\, "“
{«M [« (€)+4(E") sz]}
. Z&—t’ \035 Ca Lk %d.U:;) —Ladlo) ]}

Q:Lf «—-C’a,\oﬂ \ALL A loa(ﬂ \‘3:’) PL'L}]

\o-(j S
BN”" ( K \/}\S\JC)}
2-3-10

where
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The kernel of the integral equation is enclosed within the square

bracket and the equation itself is obtained by summing

() (E \(5‘3‘&;\ = éj)v\i (E \}\Sx%’)

Actually as proved by "alliday and Saunders (Ref, 22) the summation
should be performed cnly for hs logs. T . the proof
is very simple, Referring back to the previous section on

Sudakov variables, we define

— Y-
de = S

. 2-3 1|
Then clearly fk)K;\g is monotonic increasing

X =0 and X\,\::-\

O

Thus |
.
S&‘ =% Y\&*“ O‘Lf [\ng (Xg,?["ka/]

and we have

Hin (Xu‘x—(’".xdw = &

L.:A)u\A

2-3 0

where

é-.._ — ® (\ea S)

and

ns S\

However, we follow Nlalliday (Ref, 14) in assuming that the correct

answer is obtained by summing to o© since S —3 oo

Frazer and liehta, to solve their integral equation, used the
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weak coupling approximation of Chew, Goldberger and Low (Ref. 13)
We shall make a similarly drastic assumption in order to solve our

, ] . .,
integral equations, It is that we may ignore the teyms 52 L33k%g

in the factor

S <§,ug~\- S \03‘@5)
\035

which occured above. Then the exponential texrm in the kernel

of the integral equation becomes one,

Hitherto, we have parametrised the two Reggeon-particle
coupling function by (/Qlflkxlklats). From this point omwords,
we shall assume independence of the Toller angle (O From
group theoretical considerations, as anmalysed by Bali, Chew and
Pignotti (Ref. 17}, the inclusion of the Toller angle in addition
to the adjacent momentum transfers to describe the couplings at
the internal Reggeon-Reggeon-particle vertices‘is very natural.
Such a dependence Was also established by Drummond, Landéhoff and
Zakrewski (Ref., 26), We base our assumption on peripheral

considerations.

There have been a number of attempts to determine the
dependence of the interral couplings on (D (Refs, 237, 38, 29)
Tan and Wang (Ref. 40) examined this problem, basing their study on
analyticity properties of produetion amplitudes, They pointed out
that the internal Regge counlings associated with the leading
asymptotic power term is independent of (WO if either one or both
of the adjacent momentun transfers associated with this vertex
reduce to zero. On the assumption of factorisation of the

leading s-bzhaviour of the multi-Regge model, the internal Regge



"
vertex appearing in the 2— 2  production amplitude is the same
as those in the 7 <N amplitude and hence they confined their
discussion to the former renvesented by Fig, 7. They alse gave

a brief intuitive explanation as follows.

We consider only the events for which the 3-’-mome‘nta £
and 9 are parallel. For these events, it is not possible to
distinguish geometrically or physically one value of (> as
from another, Therefore, the differential cross-sections for
these events must be independent of ¢~ It is eaSy to

prove algebraically, from the Kinematics that

L (A bt o () o

From this equation, it is clear that for fixed t'z_. 1 Ey =0
as  §, and Sy D0 however, the M.R.M. is the description
of the scattering amplitude in the phase-space region given by

- SUSL"? o0 and fixed L ' 3‘E7__.‘ Therefore, the
independencé of the differential cross-section for the above
mentioned events implies the O independence of the leading M.R.IL.
asymptotic term at tl.:o G.e. ‘E, is kept fixed at zero).

This means that the internal Regge coupling is independent of CO
Since a fundamental assumption in multiperipheral models is the
Smalln_ess of the momentum transfers, the above arguments justify

assuming Toller angle independence.

The other assumption we make concerning § (4:" )EC'*' D
following Belliday (ef. !4 ) and Frazer and Mehta (Ref, 16) is that
it is factorisable in €. and ECH Thus we write

%(EC)JC C%\'\\ < q C%«“)"{:UCWD
‘1-3.\1+



where g is the Reggeon-Reggeon-narticle coupling constant,

Up to now, we have assumed that g is a complex number, Halliday

and Saunders (Ref, 41) anaiysing the -3 3  multi-Regge

unitarity cquation along the same lines as Tlalliday's analysis of

the .32, equation (Ref, 14) came to the conclusion that g is

probably complex,  This Was‘due to the fact that unlike in the
2.7 case, I:W\Tﬁ,_3 is not automatically forced to be a

real number by the unitarity equation for the s-matrix
{

LT
SS =1
2-3.(¢

but we also have to impose the conjugate equation

sTs =

2306

This follows from the lack of symmetry of the 2 ~3 R diagranm
(Fig., 9) which means that the signature factors are not antomatically

cancelled out.

7

Fig. 9

Driomaond, Landshoff and Zakrewski:also concluded that ¢ is complex

by analytical means,

For our bootstrap equations both in the pole-only model and
the pele plus cut model which will be introduced by us, this point

is irrelevant as it can be seen from 2,20 that the phase factors
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in <3 and 3% cancel, Nevertheless, it is worth noting that what
we calculate in this chanter is 1‘3\ and not g. To evaluate the

phase of g, one needs to study the L —52 unitarity equation.

We now incorporate the approximations mentioned above and the
separability and Toller angle independence of the coupling constant
g in our multi-Regge integral equationv 2,310, These assumptions
enable us to solve 2,2,10 by summing 2.3,9 directly since they cause

the right-hand side of the latter to factorise.

Thus we ohtain from 2.3.4. and 2,2,9

oo

) - :
j:\.«/\ OH;L (SA:) :_S_‘;, ‘( da‘ &’La’slckdﬁa’"l 2 [

h

n=i
ol

['P“ (sl}\@]L loﬁ\; K\;\eﬁs F(
2.
gl'b|%-)]%\~\ ]
where

T6aE) = o O G (B) e ()50 ) -
Cy 4 Yoy L= (£ ‘)*d@‘)mlx(oﬂ

ond v [oE)— (6 ‘\X

. ~r T 'L}é‘ e .
5 (s, =9 _(d K Fkklij__m

Y "’\0(33 f_d\@\ v (G

2.2
vw[;x(J;)~4XCE\Z)
e

n-13-\&
2-2.17 \Q_O\("\S to

e

T I:\ll(s‘icw 'ﬁ_l__(} d} &#CA”SZ&(OW—‘* L F (_S\B\jcix \035

S ‘*{‘;ﬁi"é Gab)
- 2319
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From 2,3,10, it can be seen that the kernel has a cut in

starting at the maximum value of g\( L ok(‘E J o (_E l‘) —-Zo{(oﬂ
logé}which is [ L& (L/;"),~ zc*(Q)} logs as clear from the
reasoning in section one. Therxe are also poles in a. which
determine thessymptotic behaviour of the amplitude, These poles

oceny when the denominator of 2,2,19 is zero. That is when

{.: h ‘O%S g (B‘S{Ew
~ 2-3-2.0

The solution is obviously of the form

FJ

2.-3

giving rise to the asymptotic behaviour

We now proceed to obtain Frazer and “lehta's boststrap
equations by shifting to the conventional ) ~plane. Ve achieve
this by using the Mellin transform technique, which is a powerful

tool to study high-energy behaviour,

The Mellin transform and its iaverse are defined by

o (@ = gw 4@:7 ":H?’ﬂ\ J
Clvu&

23R 20

A L0

) = - E((%\){:@d(’a 232

2are

C— o
where ¢ is chosen, such that the contour parallel to. the imaginary
axis rumning from C—CoR  to C4+ U0 is to the right of all

singularities of QQ;\ in the teplane,

In equations 2,3.18 and 2,3,19 by making the substitution

[v2 = 2a() —1+T —iyfless gz
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where ¢ is an arbitrary quantity introduced to ensure that 2a&&3«~YFZT
is to the right of all | -plane singularities, it is easy to
see thnt the richt-hand side of 2.3,19 represents the inverse Mellin

transform of 5\11.ij&) expressed in the form of 2.3,23,

Hence we can write
' 4 *
T 0 G = [g ()]
\-—~ Fg Cti\4rx)

2.-3205

where

—()—— (Jfk;) L 3 &'C)\’L . G C—L;) ¢k \)’ﬂggﬂglf‘{_

J— & (€ D= a (G

— -y
o (B) - A& ]
-, ( - — 236
and E (;}\k;} is the same except that we replace the C:Q;] G(E")
=4 - “\
o B0 FEY)
We use Frazer and Mehta's parametrisation for the two-particle-

Reggeon and two-Reggeon-particle coupling functions and define
: . Lxbk
GED) = L Ge

and

,{f (£:~) _ flit_¥<‘tf

This parametyisation in exponential form is counsistent with-the
multiperipheral requirement that the amplitude is dominated by small
values of the momentum transfers along the chain and falls off
rapidly for large values, We follow Frazer and Mehta in assuming

the same momentun transfer dependence K. in both 2.3.26 and 2,3,.27.



The s-plane version of equation 2,3,26 (after incorporating the

equations 2,3,27 and 2,3,28), is given by

2

F‘(g‘k) = 9 C;g.d)qhk e

2-%2.9

it is obvious that E:(Sﬁ;)and Ff (S{Q) are proportipnal to the
elastic L5 7 amplitude given by fig.190 which is in fact equal
to C}1~E'(S‘*:7 Also clearly the right-hand side of equation
2,3.25 does not contain this amplitude and is equal to ounly the
production contribution to :Cw«ﬂln_(jyky Since the pole position
and the asymptotic behaviour is determined by the latter, it hasn't
affected the arguments hitherto, but for an acecurate evaluation of

the residue, the inclusion of this is necessary,

e
Thus on adding (- e (jka) to the righi-hand side of
2.3,25, we have

& .
Ten 0,0 GE) = ClpGd)
\— Sjl’(gx\*:~)

\A\:\Q.(Q._
.

—_ \
()(\,tp) — (- Cj" (3 (J\'E'B
p(S{E) the s-plane equivalent of P(j’k;\ can be recegnised as
the expression on the right-hand side of équation ho4 inQRef, 22)
where Y\ is equal to 2. As suggested in that paper, the easiest
method of tackling the integration is‘by considering the integrand
to be a Gaussian converting all the terms accordingly into the
appropriate form., However, we are interested in deriving the same

bootstrap equations as Frazer and Mehta in order to demonstrate the

equivalence of the two methods and the approximations used, llence

,1,3.-

kE + k’\vE; T [o’x (Z‘) —A (L—‘)lg@) ’w(‘g:\)—\

2.-3-30
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we transform the integration from the variables ¥ to the invariants

J— {

and k& The Jacobian <  of the transformation is

given by

The expression in the denomimtor is the Kibble function (Ref. 42)
which oceurs frequently (see Ref. 1) in multiperipheral phase space
evaluation when the integration is over invariants rather than the
momenta as in 2,3,29,  The curve determines the limits of the

inteqgration,

Thus we obtain

k&) o O (ok'@w\@ll}
e

E(‘S\!C) = gé? at fe _
‘ J— &) — )
KTy R

The integral is reduced by means of the successive transformations
T T

= = — 4+ ke

P="1 » 9 " %‘E

and

P = ""L}-JC{LCOSQ} \ CL:—*LH:\’L AYPN S
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We then obtain

RN oy " 1
(-‘(J‘\k) = e = ,( dr e
9]

J7 al=Th L)+ |
4

ks 1
i];(}xtffdj%J

2-3-3 4%
Equation 2,3,39 is the same as equation 2 .|4 of (Ref.16) except
for a normalisation factor. Frazer and Viehta analysed this
equation in (Ref, 15) approximately and in (Ref, 16) exactly., It
is worthwhile repeating the approximste analysis in order to
pimpoint the importance of the signature factor in the multi-Regge

bootstrap,

Making the approximation that the wvalue of j is far from the

cut beginning at 24 (Jc_:j_),\ in 2-3- 34  we obtain
q—

ke~ o
: ~ = Y
: €<3 (Ef) ~ "“%’E )’We_ It e (jo {T\Lr\,@t]
J L _q-+i o
[ o
= l e_

2-335
where
! N
= K + 0 8 22t
= 9.3,
- $ .
Thus from 2.3.30 we obtain
k'
@ ' Lo &
T & (11D .

' tlejtl—q e
jo maleh] - 2-3- 3
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In the mmlti-Regge bootstrap, the pole is given by the zero of
the denoainator and on equating the L dependence of the imput

and cutput residucs, we get

k=% , ® b

7 & k.
Thus if not for the term 'ﬂq’tf“ which originates from the
£\

signature factor, self consistency would be impossible,

We now proceed to obtain the bootstrap equation from enquntion
2,3, 34 without making the above approximation. At high energy, the
left-hand side of equation 2,2.30 is anproximetely expressed in terms
of the output Reqge pole with trajectory <i(?) since we assume the
outnut and input trajections are the same in the single pole bootstrap.

i.e.

:Ev«\ G’LLCA\JCW = «;Lekb

J— « ) 2339

The right-hand side of 2,3,30 has a pole at the value of j for

~which

9" e =
2-3 %o

and the residue Qﬁ?ﬁ at this pole is given by

~1
RE) - - " (4% 2p90) L.y

EB\X

Equating the trajectory slopes and intercepts of the poles on the

right-hand side and left-hand side

'd\(ow O] = _J-——..
P L, .= e
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2-3 -4
Similaxly bootstranping the residue functions
T
R (o) = G
’ 2-3 4y
\ L
k = g (03/@(07 234G

FRauations 2.3.42 up to 2.2,45 lead to the bootstrap equations

1.
Ta  MEd) o
kb 23 -4

F‘QUQ[‘ lhuh] WD*—\:@ n -3 41
f

— eﬂ (o) -+.ﬁ\r:.— M Ec’\m Y\w- %..KL N — j};“h B @f]

*,L/rri" ﬁL -—-_L,._. ——L:__
& A "R
2-3 4g
<,
e \
2k - : ( ?\ ‘CL. (F\j — ‘X
%34
where
ﬂ - _..._[‘ A G.sﬁe& [&: “_\b
A kS
Numeriecal solution of equations 2,2.46 - 2,3.49 yields
% ()Y 09 Lk ¥ 0-5)
L - N |
S 0% b4 and WG 4
2

2 ¥
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The first three of these results are arrived at in (Ref, 16).

The different normalisation used by them resulting in the factor

. . & » 3 . £ 1'*
L instead of W in 2,2.%4 leads to their having 9
- " ct .
and (} instead of wq and 1T In the single pole
L e

bootstrap, it is not possible to evaluate the actual value of the
coupling coustants, hut only these ratios. The slight discrepancy
in the values gives in (Ref., 16) and our values is probably due
to computing inaccuracy in their paper.  Another point thot is
worth noting is that (§1~ does not fiqure in three of the four
bootstrap equations, Yence one can calculate o{o) without
a it .
evaluating (= and this embled Frazer and Mehta to omit &
from their consideration. It will be shown that CQL- does not

decouple itself from any of the hootstrap equations in the pole

plus cut model which we shall introduce in the following sections
SentionAd. ~ The Total Cut Niscontinuity

From equation 2,2.24, it is obvious thategykq has a cut

in the j-plane with its branch-point at
j — ’z‘d(/t — \ S
= o4 2
This cut in the elastic amplitude makes a contribution to the

total amplitude given by

Lkl (e g ,_l\*"\{L ?.O((f‘(’%l-_t'_)‘—\
(f.

fe™ de e T, Leld=e)s

We can express this as

a &) x | R
éj\ Ais € Cj‘xﬂ >



where

. " . ,L\{: 2k .
disc (~2by ,Jc] =W .- S join\w&:ﬂ

2\
REL R
In order to evaluate its contribution to the total discontinuity,

that is, the discontinuity of the full amplitude, we express

&)
(JCJ\‘EA)' :'( &J‘ A‘\SC_E(\J"H&W

- J”Jt 2:4-3
where o
d‘\SC_ (3(1*:’} = __‘_____ Ee’b (\\\«Ew ”‘(;C‘_}',}E»:)
240 2 ¢y
and
o (&) |
f:)i (j‘t) = Y G\J\ Aisc (3(—53‘ ')
m R J-3' Tee

yE \ ‘
= P g Wéj\ ‘3\}39@\(5 L) Ao c\isc‘O(JJ:’)

—~eb 474 24
The cut in f)(yjc) is reproduced in 1M QJ_LLA.‘.JC) as c¢an be

easily seen on examining 2,3.30, We now evaluate the dm{\

tinuity of the full amplitude

let .
Lo ‘PH;L. (hl":) = G‘q_ C “'{:w ; -
+ ’ S 246
Then '
. + . |
Ci‘\SC_ ) Q(j-\&ﬁ = G (J)'%\‘-’O» (J &7 1-%1
where

~+~ : +
A (S‘JC") = % ' Y-8
e |
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Equations 2.4.3, 2.4,5, 2.4,7 and 2,4,8 together lead to the

result
dice q(} %) — O\»\XQ-("(_Y\‘:P)

ILD" Lpfcwf \m))

“af T a AT
A4 T 3 A (3(_\.
On substituting enuation 2.,4.2 in 2,4,9, we obtain

Lk - B , — -
d\i.sc,q(j\kw*::lz eLh €. VJO L“"\,%J

249

.
g 0 [ )
where

K{:IL : { (’
R . - é W}"\g qé CS’ (]:"‘j %A ™

y E"b"‘\“‘ﬂA o \uw} B
b= & (e -]

and?is the Fuler constant here and not the integration variahle

S SR
used earlier. Since t is small, we evaluate 2,4.10 to the first
order in t and ohtain

— YA*F¥;2:tT

Aisc.  a (jfa - e_

2\ eRUSIRN

where

L ——7—\'\
N >k 2415
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At the branch-point

xj‘ ’:9 O(C((')
and

Ec® () = o

Hence from 2.4.17, we find that the discontinuity of the cut in
the full amplitude is singular at the eand-points and also vanishes
there, This cut in the full amplitude arises from the cut in the
two~pnfticle amplitude E(;y‘&;) corresponding to the AFS cut,
mentioned in chapter one of this thesis, obtained by calculating
Feymnan diagrams, which itself does not vanish and Is non-singular
at the end-point. Dur result about the end-noint properties of the
cut in the full amplitude is in agreement with that of Bronson and

Jones (Ref, 43),
Sgetion 5 ~ Pole and Cut In the Input

In section three, we saw that for values of j near the pole
(ikﬁ) the amplitude is given by the right-hand side of equation
2,2,20, Provided the pole is separated from cut, we obtain from
equations 2.4.6, 2,4,9 and the argument at the beginning of the last
section, the bshaviour of the amplitudes for values of j near the
cut, In the s-plane, the pole at jcchg] makes a contribution

to the asymptotic behaviour given by

2 et @) L eval)
S e

&



The corresponding asymptotic contribution from the cut which starts

at 2J&(%§)~\ is given by

G% K.o( (&)

vy

¢ 3 )
<ij émc.iaghgﬂ S e
ob

This cut contribution dominates over the pele contribution only if

o{(&) \> i which is precluded by the Froissart bound., If 'd(ﬁw
is much less than unity, then as s tends to infinity, the cut
contribution is negligible compared to the pole contribution,
Howaver if d(;\ equals one, then the pole and cut both coincide
at 420  and their asymptotic s-dependence is the same for
hoth, The relative contributions from the pole and the cut are
thus determined by the relative strengths of the residue at the pole
and the discontinuity across the cut for small values of t.
Yence if d&;} is close to unity, the cut contribution is net

necessarily negligible,

The two expressions given above reflect the relative strengths
of the particle-particle-pole and particle-particle-cut couplings
respectively in the elastic amplitude., In the multi-Regge chain
for the production amplitude, in a previous section we used the

e
input $L in each link corresponding to the output Regge pole
ng\ If we are to account for the output cut discussed in the
previous section, we need to include a cut in the inmput. On the
addition of a cut to the input pole in each link of the chain, we
now find that each of the n produced particles except for the two
end ones is linked to a pole and a cut in both directions along the
chain,  This means that we have to introduce two more parameters

to describe the strength of the cbuplings particle-cut-pole and

particle~cut-cut. Earlier, in the pole-only moedel, we assumed
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that the particle-nole-pole couplings factorise in the form given

by equation 2,32.14, Continuing in the same spirit, we assume that
the particle-cut-pole and particle=-cut-cut coupling functions also
factorise in their dependence on the adjacent momentum transfers,

We now make the further assumption that the relative strengths with
which the pole and the cut couple to an external particle in the
elastic amplitude are preserved in the production amplitude. This
is in keeping with the spirit of multiperinheral models where we
iterate the production amplitude with the elastic amplitude which
provides the kernel of the integral equation. These two assumptions

are tantamount to the relationship between the couplings given hy

Particle-Particle-Pole Particle-Pole=lole

Particle~-Particle-Cut Particle~-Pole«Cut

Particle-Nole-Cut

Particle-Cut-Cut

Thus the need for additioml paramesters is eliminated, If not for
these assumptions (also made in Ref.44), a study of the

production amplitude would have been necessary in order~to ﬁ%aip\
a closed set of bootstrap equations since the number of equations
arising from our model alone would be less than the mumber of

parameters.,

Therefore, to each factor in the multi-Regge amplitude

k ko ae) L oemaled)
“ S¢ <

the addition of the correction
{

G:“ j‘C\J‘ ¢de™ T dic Q(J‘rE)
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in line with their relative strengths in the elastic amplitude
will represent the effects of the cut.
Thus following the procedure of section 3,
. %‘\(.t
:I;Nﬂ (lzsu (1)\4;) = (;f f’ oL ')
ER .
= 97" (k)

9. 5_\

where Gﬁ (S’V%ﬁ] is the 25 % amplitude obtained after
adding the cut correction to the propagator and residue functions
associated with the imput pole, Using the notation of section
3

(JCSACW = jﬂdl K Pole (,’{::-7 ‘?-e\e% (:J;\)

252

where
Po\&@) = ak\t Sdg:) Q'—’Emc&({:)

then

o GE) = (aVR (R (B) »fur@ﬂ[%\f@;%cxx*(%‘)]
4

25
where ()
g Sk Ly
(fbvk (&;) = §jﬁd ¢ C{j gi e J(AQSC‘CIQA\*;)
e 2-6.G
then

FGE) = plsk) + § (k) M IEACD

2-6-6
where ,
- . > R — x =
f6E) =67 ) = (4 K_Qle (€)X &)
267
and

\ ‘ ~ —_— Y PP
68 2 (dx arl®E) er@)
~ 8. F
4§(S‘%;) is given by Fig. 11 (it is also obtained by putting t©=3

in Fig, 4 of Ref, 22) where the part of the diagram on the left of
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the dotted line represents the pole and that on the right
represents the cut, As in section 6 of (Ref.27. ), we only
integrate ovey the region of phase space where the momentun

tronsfers flowing along the Reggeons are finite,

,%(S(ef] is represented by Fig., 12 (it is obtained
by putting h= Y in Fig. 4 of Ref. 22), We ignore ’Fz (5\*:)
as it renresents a cut starting at L{-A(t—/((ﬂ -3 whose effects

we ignore owing to the reasons we gave in section one.

Thus enuation 2,51 follows from equation 2.2,30 after

replacing C()\’CW hy (3‘ (ji’Cw where

?‘ (k) = (D(“q‘%v 2 GL4:(J’,JC7
2.-6-9

and

FGx) = Re (47K A =

s st

\\« OKCL}"\\ + |

g:& K&) . i \CTE' ,\;c“"fj\ﬁ;)’{\\:\

&cf\\\scﬂ O\CJ' l,f:\)]}

2610

We use the identity

°° ol

ez

0 . ol

to convert the denominator in the integral of equation 2.5.10 into

exponential form which becomes

WCCJ;)'Q Re_ jé K c)\\§ C\Y\Lad: ex,63+

where 205 0

+ = -p +kzt %k{:% (T ]:gi\Jc.)—o( Q’c)«“ﬁt«]
N CA‘ A& = a k’c ) +qu—\] L



The transformation from j to k& was essential in order that

X may be expressed solely in terms of the latter and hence not
figure in the integration over the momenta., e now diagonalise )é
a quadratic form in }E by means of an orthogonmal transformation

of the variables k, whose Jacohean is unity and express it in e

(8

form R k74 ﬂlff ) Tﬁe transformation is given
{ =

by }5 =3 K 4,54 where}ﬁs a constant vector, We

finally transform to angular variables by replacing S:;l K Lﬁﬁ“H

2y -
f, e
- (o]

0

It is now easy to do the k integrations and we obtain to the first

order in t

k) = K_,_S’ ”“{ au{w\(c] #E) exp

Ciez e 3\,\(&] +,_ﬂ A

T4 (= 3ar2p [3]} -
where )
{.i*\/\mjf_%i‘%lf\ﬂj[‘—{—z%it\ﬁ]{\%:_ﬁi,ﬁ"q(\*‘\‘h)
= Lamg (2 el ub) 2§15
Y-
q =l [Ll (& +Lub) — (wrﬂ Lo
(=R T e

qg%] _ E\% RN *-:}-_-ngcl:t—] (pg[tﬂ&(m@j

.

+ Effﬁﬂ —kqt (v 2 *"é-\ﬂﬁﬂ Sin Y_\: « A(m\ﬂ]

2.6\
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Equations 2,5.14 - 2,5, 17, 2,5.9, 2.5.1 and the equations
obtained by replacing C3Qj\k;) with .CD‘(S\&:) in equations
2,3, 4% <« 2,.5.4% leads tn the bootstrap equations of our model

given by

1 = ﬁ/H ﬁ—.\,\[l Clﬂ-\.};\ 75(07

e o ——

- 2 (PR
I~ LI--&* %.4‘}_ti] 4..(_:;;17 i
2

2518

A =

Qr_gji )l&»eg Cela) +g§f gwji)r&\\]: =
yakT g Yo

3 Lo
e L.c(}\) L L N R b—2 1
L . o

a\& o o



and

wet (- M Ech’ﬂ) - (fi_’il

a\; -
| 4~ S} LN TS A |
(,Z_f\i_) QL £ C)t« dh (~L11; N

It can be observed that the above four equations reduce to

equations 2,3,46 - 2,2.49 if we putfjr andfj:\ equal to zero.
Thus the integrals of 2,5.18 and 2,5.19 represent the cut-effects
in the above multi-Regge bootstrap in equations, As we

remarked at the end of section 7, G} oceurs in all four

equations,

Solving these equations numerically, we ohtain

() & 01 L/K % 0-8
.

E_%_,,Q’r()-g awdl ’W@L:\jo,g,

2x .

Contrasted. with the pole-only model results at the end of
section 2, it can be seen that while ck(sw decreases by 0.1,

- .
ﬁlﬂ {V\ does not change appreciably, There is also a
T
noticeable difference in h{k; and ﬁG'Akimplyiﬁg that in our

model, the trajectory has a smaller slope and also that the
elastic amplitude forms a proportionately smaller part of the

cross~section.
Seection 6 - Comparison of Pole and Elastic Cut Contributions

As explained in the earlier sections, the generation of
Regge cuts in multiperipheral models occurs through the

application of s-channel unitarity. A type of approximation
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used in such applications is where we consider the outpui Regge
pole to be obtained from the many particle intermediate states and
the Regge-cut to arise from considering only the quasi-two body
chennels as intermediate states where the individual amplitudes
are given by Regge pole exchanges, Thus in this approximation,
the unitarity equation ¥eads
Tut,, = P+l ¢ ot

2 Y-k |
whére 1) represents the Regge-pole contribution and the symbol
® represents integration over intermediate states, The second
term in 2.6.1 represents the elastic cut cnrrection which as
ohserved by Finkelstein and Jacob (Ref. 24) is opposite in sign t
the absorpiive correction, which is more in agreement with
experiment. In this section, we compare the relative contrib-
utions of the pole and the elastic 2.5 72~  cut corrections
to the amplitude in both Frazer and lMehta's model and our madel
in order to investigate whether the sign in our model is in
agreement with the absorption model result in contrast to what
" the usual applicntion of unitarity and multineripheralism achieves

as in 2,6.1,

Aence we cdefine the following expression in the s-plane
which are obtained by taking the inverse WMellin transforms of
equations 2.3,29, 2,8,24 and 2,5,14, multiplied by the appropriate

constants

POLE = GL S * ej,? {_ (k +b \0557 *{:]

CUT = = La-|

G (e S N exp {5\: (ko blog)E

2L Q\-\-B\o%j'
ol bo )
& kalblogs 92573
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and '
L N\ Ra- ob
Cut( = G (“_G:_ ) 2" d e““ e~r‘M°35
2K A o r«‘;ZT '
(e kpt N g E)
Gl = *éh{))q‘a}l.é_rrkﬂ-’” 2-6-¢
POLE is the s-plane »equivalent of G—Le kt ij-x(kﬂ"'

which is the asymptotic contribution of the pole term to the

amplitude, CIJT is the elastic Z— L  contribution to the
amplitude, i.e. minus times the absorption model cut in s and
t, The expression CUT + CUTC is the corresponding contrib-

ution in our imput pole plus cut version,

After fixing the free parameter b = 1 in equations 2,6.2 -
2.6,4 for small t (¢t = 0,01) and large s, varying from 20 - 1000,

we find after numerical computation that the ratio CUL. in the
POLE

pole-only model is about 3 -~ 4 times the corresponding ratio

CUT + CUT & in our model,  Thus the cut correction hecomes much
POLE

smaller when there is an input cut. The more important result

is that we do not find the sign of the cut correction in our model
agreeing with the absorption model, Both ours and Frazer and
Mehta®s model produce the onposite sign. This effect does not
change appreciably for L<;‘ (altering b has the same effect

as altering t as from equations 2-(-L-2-b%, it can be seen that

b always occurs in conjuncticn with t),

There are markedly differvent effects for b YA but
they are meaningless in view of the small bt approximations made

during the course of the calculations,
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Section 7 - Conclusion

The nresence of the imput cut has not had a significant
impact on the position of the boststrapped Regge pole which drops
by 0,1 to 6. 7. llowever, assuming the exponential fall off in the
momentum transfef dependence  to be the same in both models, we find
that the slope of the trajectory is less in our model than in Frazer
and Mehta's, Also the Reqgeon-particle-particle constant having
a smaller value in our model than in theirs while the Reggeon-
Reggeon-particle couplirng constant is the same in both implies that
the elastic amplitude makes a proportionately smaller contribution
to the total cross-section in the input pole plus cut model than in

the pole only model,

The position of the output pole having actually dropped is
rather dissappointing from the point of view of the Pomeron and
its associated iterated cuts forming a closed bootstrap as discussed
in section one, where we had hoped that the output trajectory would
emerge closer to one, thus justifying our argument of section one,
Self consistency constraints on the parameters decreed otherwise
by destroying our expectations that the cut woulé enhance the kernel
strength and produce a higher trajectory. Thus we fail to produce
evidence that the inc¢lusion of cuts will lead fo the bootstrap of a

single pole at o ((ﬂt\

We also find that the inclusion of the inpui cut, conserves
the sign, though reducing the size of the elastic cut correction
which follews from the application of quasi-two body unitarity.
This belies our hope that our model would be in agreement with the

absorption model,

In assessing these results, it should be vemembered that all

the sub-energies have been assumed to he large. This assumption
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is implicit in the multi-Regge formalism. TNuality is invoked to
average over the low sub-energy regions by asymptotic expressions.
Yowever, os pointed out in (Ref, 227 and in chapter one of this

thesis, the use of quslity in this context is dubious,
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CAAPTER TR - Nucleon Loops in the MR,

- Section ] - Introduction

In this chapter we shall be studying a modified multi-Regge
model which includes nucleon loops. Instead of the usual multi-
Regge L-2,/ production amplitude in which the 2nN  produced
particles are linked together hy Regge exchanges, we Shall be
considering a model in which the links in the chain consist of
Reggeons alternating with nucleons. Conservation laws then require
that all the produced particles, except the ones at the ends which
are the same as the incoming particles, he nucleons, The sub-
enerqgies across the Reqgeons are assumed to be in theasympntotic
'feginn in line with the usual multi-Regge phase space requirements.
The sub-energies across the nucleons is assumed to be non-Reqge,
that is they belong to a range above the two-particle threshold and
lesi?igat energy above which Regge representation is suitable,

Since the sub-energies across the nucleons are low, diagrams,in
which the rungs containing the nucleons are crossed, also have to
be evaluated as the contributiomsfrom such diagrahs are not
negligible, We find that the phase space factorises into a purely
multi-Regge part and a separate contribution from the nucleons,

greatly facilitating the analysis of the model,

The alternating occurrence of nucleons and Reqgeons in the
amplitude necessitates the introduction of the complicated nucleon-
Reggeon coupling functions,  For these, we use the prescription
of Scadron (Ref. 26) for the Boson-nucleon couplings which we

shall use after Reqgeising the Boson contributions,

‘The type of diagram which we have to calculate is similar
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to those calculnted by Cheng and Wu (Ref. 25) in their analysis of
high-energy quontum electrodynamics using a conbination of
nerturbation theory and impact parvaneter formalism,  Their
diagrom had vector mesons at high-energy with Fermion loops

and obtained an extra logs factor for each diagram giving an
enhanced asymptotic s-behaviour for the amplitude owing to the

presence of the Fermion loops.

The analysis of our model is divided into seven sections,
Tn the next section, we define the amplitudes, variables and the
kinematical approximations used, In section three we show how the
phase space factorises, allowing the integration over the loop
momenta and the loop sub-egnergies to be carried out separately.
The contribution from each intermediate state is described.next
in section four. The propagators for the Doson trajectories and

the coupling functions are derived in section five.

In section six, we select the leading terms at asymptotic
ensrgies which simplifies greatly the problem of evaluating a
. large number of traces involving :y~—‘matrices. and enables us to

isolate the contribution from the nucleon loops.

In the next section, it is shown that the net effect of
inserting nucleon loons is to multiply each contribution to the
amplitude by a constant, which we show factorising. In section
eight, we discuss the effects of not assuming that the nucleon
pronagators are on mass-shell as was required for the formulae used
by us for the coupling functions and propagators. In this respect

also, we follow Scadron's (Ref. 26) prescription,



Sgetion 2 - Notation and Kinematies

The = —2N production amplitude with nucleon

loops is given by

T, .. G)

22w

SN L
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U

L=

——s:

R

L :_ ’H/\’S AR - C} tA.; (tg{fg }cgg U(?) LQ A}

{ o . " - v LAY EEJ—:}' -\

¢i“ Les %"8\3 ??WC Le™hat ¢ ]-,,:‘} é)l\rgt*w\@a !
v @C

q" \00 L

where the momenta are as in Fig., 13

—

and m is the nucleon-mass ki$‘ and uﬁg are the spinors
representing the external nucleons and the 1»& ¥ are the
b%°1l—»{b“
nuclesn propagators formed from their momenta and the f}, -matrices,
We assume that incoming particles are spinless, for convenience,
(}Qﬁi\ and C;ng;) are the coupling functions linking these
external particles to the Reggeons.  The ‘3 - Q&;L:D’CL:)CJA\)
are the Reggeon-nucleon-nucleon coupling functions occuring at the
internal vertices, the CO_  being the Toller angles, We follow
the last chapter in assuwining that the amplitude is independent of the
Toller angles and henceforth omit their inclusion., The subscripts
"\fb and thc attached to these counling functions arise from

the nucleon spins which have the effect of freeing these labels

from the Bosan pronnaoators. The 4) and 43 «. nare the



Reggeised Roson propagators which contain the input Regge

trajectories,

Yo define the following invariant variables with refsrence

to Fig. 13 (the wavy lines in the figure are Reggeons and the

2

straight lines are particles,)

S= (@O* (?V\ 37_* = [@Df @v\:\

R

- o
L"‘)‘ - ’\
Yoo~ = v=1,- - "
v - c{c
¢ c\" L Nty =\ - -\
6"‘: :(ﬁ /C\ :::C"L"‘%) L=
e = g U=ty - - -Nnl
L j %
< = [8°-8 1 ohewe =0, e
JS ‘) \ '\q
awd L<J
EleSea
It clearly follows that
g . e
-t L= gn. and Sov\ =S 323

We make the usual multi-Regge phase-space assumptions analysed

in detail by "alliday and Saunders (Ref. 22) and in chapter two of

These are C DDy S =3 oo

this thesis.
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and the %:C are small, We also use the result that the 4:\3

arise from the transverse components that is

Eg'z'-kC“ 314%

w
[ ¥
where the ki are the transverse components of CL The

-

sub-cnergies & across the nucleon loops are assumed to be
finite and non-Regge, We postulate }41" as that energy abagve
which Regge representation is suitable.  Thus, we have
L\“Mx S G S ML

325
where Lkpﬁ" is the uasual two-particle threshoeld in the s-channel
dictated by Kinematic considerations. This result follows fronm
bot) the F\U and (Lé being on the mass-shell, Tt will he seen
that these mass-shell constraints lead to the result that the (g
also lie betweon finite limits, which are dependent on the
nuclecn sub-energies O This is in contrast to the evaluation
of Feynnan diagrams where all the loop momenta are off mass-shell
which leads to divergences requiring the emnloyment of cut-offs to
‘perform the integration. In our diagrams, there are no divergences
and we shall be able to carry out the integrations exactly, as will

be seen,

The above considerations imply that

g SO sc ) GMCDML > €C
326

These inequalities lead to the following approximate equations
which ean be derived by considering a particular frame.
i ~ O CHy - ot Cri ™
S ® Lq'— q J x [ — 9
N {_ C—1 ks
q, — B
2]
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and

o an, SN et
sy = (g i) & Let=q'

N . 2
[:cLL-“ @Jj 3 L9

Segtion 2 - Factorisation of Phase Space and Kinematics

The absorptive part of the 2. —>7 amplitude in the

forward direction is given by

;\:b\/\ /) 2 (T—C—}X)‘) 21N 111\\+ ‘\)‘ 22

33
r\,;L is the two-particles intermediate state consisting of
Regge exchanges only and no nucleon exchanges., For convenience,
we shall omit this term till we finally sum all the diagrams, (the
diagram for &\13* is given by Fig. 10) when writing down the
amplitude, ‘TrcAwX- represents the phase space integral of the

particles intermediate state constibution to the amplitude which

is given by Fig. 14. We have
ﬂa\ﬁzi{rd*c "Rt s (D)
N
., s . n Cm ‘
8(&“3»«"\}5 [Pow"\a;(c -‘-ﬂ“)]
| | 332
Let C v )
C-pr =" .
¢ {ér(' A ::‘> - - n-
o) O N

C = ¢ and — R - G,VW

Then

mﬂ;[{ro\*G C(6ay) s Lpep - ZG]

L=
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‘\fﬁﬂ gd‘* 0" s () S(a"l—w\"’)}-

=\

’1—,
N’-‘.
Ve = .
27373
where
2
A~ —

The factor in curly brackets is easily identifiable as the
multi-Regge phase space for ¥:==C> described in the last

chapter with S the effective mass of the Lﬁ+&“ pair
of nurleons replacing the pion mass of that chapter, The
second factor in curly brackets is the product of the integ-
rations over the loop momenta and the fimnl factor is the
integrations over the variations in the nucleon-pair masses

which we introduced along with g~ffunctions in orler to effect

this factorisation,

Thus symholically

Mo = (Tda) - x QUJQ w ¥ @Tjdﬁlﬂ

33¢

where (ﬁfa§i11amis the multi-Regge phase-space, (jrckﬁl)aj‘L~
represents the ;ntegrations over the nucleon loops and the
last factor is self-cxplanatory. ()nhcim(L’7gq~L“ is
simplified by transforming to the variables T the

Jacobean of the transformation can be expressed as
- . I
7 % L
S (q M?-—‘Q}

Consider

o= j d¥ A S Tnt ) Sl 2] st

3-3°8
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(TZ~7C¢N§tY_
2-3-6

AL TR
Then |

T = fdlo\jﬁz g(xfmﬁ"wg(‘j~\4~qg

Where

~\

205000

To evaluate 3,.3.6, we choose the frame in which

and
C A

19 3 9 A ©
then

T ¢ <

e @5 =C =
o, , =C, = A

e have

A




1)

A a ) -~ ",
Mo+ A L&, +N Tt N
L 2.
- “, 1, T e
Lea —S¢ 4“'}\}— i -'t“’h T(,'“M ,‘_7\
2. 2.
ToA4wm M 2. 1
S L™ o T+
* 2,
~ 6—~L 'L_—_ e 1
L= e 377
NLKQY‘Q_‘ 1. — -
= —8 7f¢1* T AL T %*f% ¢ 3.3 5
d"(;
and ii( 7Ei: are functions of al and ™

Hence we have

I = fhb d N ‘

.
— D 7L57t \ éR:XF\ : 3:3-9

whare there is an extra factor of 2 arising from the 2 “—59\

transformation.  Obviously, the integration is possible only
R R e

for positive ‘A and values of N\ less than ‘A

_The condition

T
b 20
e —_ =
> O(L +‘ @b 6—\. >/O
and -
C ¢ i%; MI?&f ‘;; T
where \ A i
= ~
- X 2. . X sy (6—,;»”-%’\{)
LC I VY = C I
= 23310
3.3.9 then becomes
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Then (:Ych\glj) . becomes
(frae), =7 md T]
e [f't 3212

Thus
. i V ML ~(".+'
Wdﬁ\ = ((n&&vvvﬂf\/\’ﬁ [ f dey { & dt
A PR
333

Equation 3,3.12 enables us to extend the inequalities 3,2.6. and

write

S DY S¢ OO 6—6-)'#(‘_‘3\\1% > ko
33 14

lence equation 2,3.4 hecomes

(a0 = (ras, (T U 0w [

M
2-3\5
The O ¢ which play the role of the intermediate particle
masses in the M.R.M., act as a link between the S@J‘ and SO
This corresponding to equation 2,2.21, we have
3=\
T s
g\,‘J. - ~=
i
“ v\qk 33 \L
=1 .
where .
’ L
\A'L = 6+ Xk 33V
L .
and

VAT S 2318
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Since the l:Q' are small, and the expression k is a
positive definite function of the components, we have from

. 1 1. 4 o -L~ -
equation 2.2.4 that the quantities \: are also small, in
absolute value. Hence the ’)(L are also small quantities
which enables us to neglect the second term on the right-hand

’

side of equation 3,2,17, This assumption nf the b
being small which leads to replacing the quantities tﬁk
by the mass i$ normally used to solve the multi-Regge integral

equation as seen in the 1ast chapter.

Hence we write

32
S
- 7\:‘ dﬂ?\«—\
From equation 3.3,19 and the fact that the S~ tend to

while the S - remain finite and bounded as in 2,2.5, we

obtain the inequalities

Uj

where

Seetion 4 - The 22—\ Contribution

We rewrite equation 3,3.1 as

Ten ,Tﬂ‘ld (:g«) = éi_ 0 2 (Sf>
| N ety I

2

where

%1‘\,' = (Ta) T T+

’)_,I)_‘\) 1.1‘\.’

%31%3 is the contribution to the amplitude from the LW
intermediate particles state., It is represented by Fig. 14,

together with all the diagrams that can be obtained from this

Ll
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by crossing the intermediate particle pairs of one or more
nicleon loops (for example, 9% is obtained by summing the
contributions from the diagrams of Fig. 15),  Since each
nucleon losp is either crossed or uncrqssed. clearly the
nucleon loops of Fig. 14 contribute altogether ZC\A—ﬂ

terms to SﬂLN Clearly, for each of these ’L(V\—ﬂ terms,

4
PREN N

contribution, All thfsecontributions can be concisely expressed

T’Ltl\\\ is the same while there is a different T

in one equation which is

T = G mcm Qu (1 )3, by

W\;L“i] vy Joe (eeyd oy Tet]
B |

4

el o P

where

S st
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Figs, 156(a) and 16(b) correspond to the first and second
functions respectively in the above equation and represents
the two ways in which a single loop can contribute, The
addition of the crossed diagrams are necessary since the

loop energies are not in the asymptotic region,

From equations, 2.4.3, 3.4.2 and 3,2.1, we obtain

. . ')c, “’L {h - o ,
B, = (T 40) € () C) [ (98]

- ned
Y\'\E@ );

‘S\

§Z§ [@31‘1\%}§> L ‘(1 B]
@“]}{iﬁ 77{\;—“ or | [G WQL gm]

3’5 il L8 \f ) mﬁ({ﬂ_[‘“ )

C])\L ('{:L“)"Cg’) (1»4:[-)}& ?}5—‘3 (J“—GH)TC)

Ug () W) g o e 1) BT
{re—w)™

Iy (ko) Uy “‘67]}
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where I is the unit matrix, On summing the right-hand side
- . sns Ol ¢
of the above equation over all the nucleon spins ( ‘:5\(5

we nhtain

& = (TaaM
2 N N ZL{-‘(D

where

Ml = €0 e [ bt
» (T -

N-L L e
TG, JLergmem] p .t L)
‘f“ (g e) ¢ g ied ¢ L)
% PR Lg" —“CLM‘G ’VE

Qma where

Leo
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@ k,‘: U‘\\crc = Ty [(psc””“a %N;({:C f(a Sgac (ECH')’(J

(€c+ M,) c;;‘) \;“C< ‘EL‘-H)/CC) K,%’CJ( W\W

| FC (£ )’(J]
3-4€



Section 8 - The Propagator and Coupling Function

™.

frem the preceding seetions, it is evident that a
knowledge of the propagators ?6 and the nucleon-nucleon-
Reggeon coupling functions is required, The covariant formulae
for these derived by Scadron are used in our model,  Their
formulae hold for non-Reageised propagators of arbitrary spin J.
We follow the prescription of Jones and Seadron (Ref. 27) who
obtained their method for Reggeising invariant amplitudes based

on Scadron's formalism of (Ref. 23).

In the latter, it was shown that high-spin wave functions
give rise to covariant on-shell pronagators which are related to
rest frame rotation group tensors, Thus the propagators which
we shall use will be on-shell propagators. In one of the later
sections, we shall, following Scadron, show how to incorporate

the off-tiass-shell effects for the propagators.

The nuserator of a propagatnr for general spin J is given

by
P T i )
W) —_ (")
Si\[)l"‘“ T(k»\b;- y(k7
NI t ¢ 35
whare :Eﬁ \ - is either a boson or a Fermion

wave function and X is the momentum of the propagated particle of

mass M,  The exnression

Pr"“' rT3vV«~w &Cg)

. s . \
is contracted with the initial momenta ?d’ and the final momenta FKA
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which produces the contracted propagator, for a virtual Boson

will spin J in its rest frame given by

3 ‘ _ _ C Pi
P (P)?Dk)” 2{&37\" .7?}\_:’\3‘!.1\‘”}5_

AN

P’I\i_ . 7\'5'}

which can be expressed as a product of two 0(3) tensors of rank J,

35

given hy T_\ (f‘)and Tj(f) This leads to

where 7@%.(j¥- Ef) is the solid legendre polynomial given

by
T’ ( v, 1y N}
)< Vel el G )
7 0F s f‘P:r(_f‘f_
N - 354
where ¥> is a unit rector
and ZE is a normnlisation factor irrelevant for our

T

purposes, Uy using the prescriptions

gbd.>;3\-~(3 “‘¥:Pk;§)

",\r

and

6)\' — AQ)‘A(\QW
where

P () = — (p- ) ¢

P ()Y‘ e By 355
we boost cquation 2,5.3 up to momantunm *:\ and -obtain the

covariant on-shell result for the propagator given by

7?3‘(5931(5@ =G by (_.-*(f\(\ﬂ- E(Kﬂ}g—é



- Fig. 6
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Equation 2.5.6 gives the Boson propagator with spin J when it

is coupled to zero spin particles.

To deal with the cése when particles with spin other than
zero are coupled to eitier end of the propagator, covariant labels
must be fréed from the left-hand side éf 2,5.6. The number of
l1abels thus freed is directly related to the spin of the particle

concerned,

To derive the resulting propagators, Scadron used a
covariant version of Zemach's 0(3) differential technique (Ref,.45).
It involves differentiating the solid harmonic with respect to the
momenta of the particles with spin,  The following recursion
xvelations satisfied by the spherical Harmonics ?)3“ are used in
the derivation

¢ (DT —p (8§ (K) P

T Iy ==V - P G7 31
~ 3-571
\ ' ’%‘ oot
TN = e (ROPL = p(R) (KD
368
{ \ :
g i i
@) P, = w( P )
J ( = ' PU—..;,\ 3‘5'10
i)

— ( , %- RS .
(-0 = % —PT PR 3s

where \;’("fw ey ?(\Q}, E\(K’] and dashes denote

differentiation with respect to N Using these we

-

obtain the formulae for the Boson propagators which are
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/@“og (f 95’)\{) :’::}53:{———&3\ (KW P;T
+ b (K) &(\Q }
386143
R, T S [, ()
+ &”W\Q ?@(&’Q e :k
3G 1%

.y ‘ ”
?\7@;0{ <f\Q°1\/\) :__C__:L {gpﬁl (k} qod\(kvaﬂ()@(Qfd\(}/\)]??j_

j’L—

+ [(}3‘ (k) f@‘ (K) @O_:('\’Q F R () f@(ﬁ

t . \
P, (K }P‘T,l — Ci‘@o\“ﬂ P,

. l(:r,ﬂ) F‘ﬁ(l{) fd(j@ ”Pa.“_‘}
3818

~For the interaction of particles with spin <y and $4
at one end and Sl\ and S, at the other end with spin J
Boson propagator, one must consider a Boson propagator with at
most S 4 S free K labels and S“d—s‘Ll free f>
labels, Thus for our Boson propagators with a pair of spin

half nucleons at either end, we use equat‘ion 2.5.15,

The remaining problem is how a spin J prepagator couples



to other particles. Scardon dealt with this by considering
Lagrangian interactions in the context of the normality of
the threc-point vertex. The normality n of a particle of

spin J is defined as
' T
N = (’—— l) X A{v\’t(msic \)cw{*‘j

and the normality of the vertex is defined as the product of

the normalities of each particle at the vertex. If a spin zere
i

. particle couples to particles with spin S and S which is

denoted by ‘ |
o+ S —2>5

t :
where S and S are fermions, the number of independent on-
shell couplings as counted from the rest frame of one of the

particles is obviously pa SMJ‘—\ where

Spp = Wi (glg‘)
3-S5k

. . ’\
the fact that S and S are fermions, leads to -7:1-. Cstﬂ)
couplings being normal and _\ (2_ S 4_() abnormal couplings,
N

This procedure is generalised- to the case

Suppose that S, and SL are the lowest of the 3 spins,

Let
< = S+ Sy

Then the problem is reduced to couplings

4 =~
O S 753
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for

— 55\ |
This enahles us to show, as before, that if
Sitsa S Sy

there are.a% (Q_Srr;\ (?‘Sz,*‘() normal couplings and the same

number of abnormal couplings for fermion-fermion-Soson interactions
where all three particles are on the mass-shell., Thus for two nucleons
counling to a Soson, we have 2 normal couplings (:*ﬁ and 2 abnormal

couplings C We need consider only normal couplings as
“+ -—
C =

Y

in Dirac spin snace, Hence the counling which we use for the

wheyyg

nucleon-nucleon-Reggion vertices contain two terms which are given

by

3& ‘:ciéd'+3LP¢ 3517

wheye POK is the sum of the incoming momenta at the vertex at the

other end of the propagator (see Fig. 17)

] .
P Y
Pl a

Fige 17,

It is easy to understand why the coupling at one vertex depends

on the momenta at the other vertex when one considers the fact
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that the pronagators are a function of the Scalar product
To allow for particles with spin at a vertex, as mentioned
earlier we differentiate with respect to the momenta at the

veriex and cbviously we are then left with

d(ee) o
M"V A

For pion-nucleon scattering, equations 3.5.17, 3.5.12 enables us
© to recover the two invariant amplitudes A and B (see for example
Ref, 46)s  For nucleon-nucleon scattering which concerns us,
equations 3,5.15 and 2,5,17 lead to the 5 independent helicity

amplitudes,

We now Reggeise equations 3,5.17 and 2,5,15 for the
purposes of our model.  The preseription for Reggeisation given
by Jones and Scadron (Ref, 27) are the substitutions
(1) The snin J by the Reqge trajectory O(Q:)

(23 The couplmq constants q and § by the Regge residue
functions SQ—\ and G G:)
(?) The expression C '\)T(Uﬁ) by

C (&) KXPO‘ Q’J(\ﬂ

A

where t is the momentum transfer flowing along the propagator,

For large < we have from the asymptotic properties of Legendre

polynomials :
alk)
Coiy tan ™ S
) o)
It must be noted that this procedure is not suitable for ow C&(QTO
{r
trajectory in view ofﬁhaving a pole at dic) = © . and the

residue q having a zero for this valus (lef. 47),



We can now write down the Reggeisal TDoson propagators and
counling functions which we use in enuations 2,4,7 and 2.4,8,

The coupling functions are

¢ .
CB e = 3 \ (jt'ﬂ ’301‘0 + A Uc‘ﬂ Po(;\ O(CA‘["

— C
- ﬁ: (tC&-t’)}dC + ‘3’7__ ('(:C+1r) &o(“ d:\f“‘é’
where
3- G- 1§

N

C N Y
P = p‘&"‘—EL A N

o & .
& = g act C=1, - - -\

The Reggeised Doson propagators are

_ a E)=t o
?S = TSy il l@!gs(“tq

3 ¢ B=p'
3 -S-19
— T ‘i(fcvﬂ ~1 N
Th S, P?) (fi_v\) (3:=\r“"‘c*“—{
36210

% vt ,,\Cﬂ Egc‘ 1”—‘\ BCMJ

+ 3,9,¢ 9 o (%CH) SL-PL

—\ oKy ) A€ et .~
. _ Ck ¢
+- q‘F W ?l‘m ("L } Q\r‘ (g ) .



-0f =

+ CJSSC B (qf“)f &“
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.—--\ L\

N cer) o =t ¢ 4 oy __-\.
+Cj(osc b‘ru‘ﬂ (CL )56 bkvg(CL )Q (‘lm)sc'
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where
%’L—
and
% v <0Lj - % v __ q’\" L SRR TS
- . . . v .
e is the signature factor given by ex p L—‘fi\"‘ok&ﬂ]

and <i(££w is the input Regge trajectory. The coefficient
of the first term in the right-hand side of equation 2.5.27 is
is normelised to unity by absorbing it in the constants 9
and A 4. Similarly the coefficients of the right~hand sides
of equations 2,5.19 and 2,5.70 are normalised to unity by
multiplying the Reggeon-particle-perticle coupling fﬁnction by

~ the appronriate factor.
Section 6 - Leader order terms and asymptotic approximation

By examining equations 2.4.8 and 3,5,18 it is clear that
Loon ¢
‘)

a product of the following

< . . on expansion yields terms which are
AR - S g

Y

0\ Xtd‘g (x "9 @’ < ! d:‘*\wvid—lxy

i ‘ v © o
(‘)FL)PF QG_'\, QU‘\'

Q‘q gd@, (O(l[?ﬁ = \fc,‘]v\b‘ \7\0,61‘ C*:fl"fg’)
QQW RC'%C 31\C-CC ) {%C.C"\ .
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Each product carries only one each of labels \)\C‘\rtlgJ .
and 7\" Because of the %m& texms which occur in the
Regge propagators (the second term in the right-hand side of
equation 2,5,21) each term in each loop couples wiih each term
in every other loop, on contracting au the indices. It is
useful to construct tables, listing the values for all couplings.
Only a few entries need caleulation, The rest follew from
straightforward addition. In calculating these tables, inequal-

ities 2,3,14 and 2,3,20 and equations 3.2.7 were used, Therefore,

they contain errors to the order of 51‘

Table one for t.-3  counlings ¢ <)
-~

4 :\ . . . .
- J DR J J
A" | B C § Q 9
¢ }
A i
A A L R
r‘-.....,
B |-bes |4 | £
Z 7 Ly P oy 3 SLJ R
- _
$
CL Lg I | t
P ‘5:5») O - < _~i" S"J ES”.J“'
¢
> n | i
. S -3 - T —g.. -1 —1
t FAS 7y z " 5¢J SLJ ——sb‘“
Q
[
-5 - = —2s I S Py
\C < S\,J AR ¢ ZSLJ X ".J',,
i
Y Lo -1 -1
LIS R IS A - . KB L
CL For I R e °¢) 75 | T80
— S v —1 .

By t-{ couplings, we mean Scalar products of momenta with

4

superscripts ¢ and |



Table_two fox &—~C _counlirgs

Al et P | o

C kS 2
‘ s | 3w T, 2|
A | — L@ | 3Tg T8
2 2. 9
2
L . . .
R |tloa)] — e | $050) 2 | T
z L P e
- 2
L 2\,,.,1__0*‘_ L. 1) o 3;,\}_4-‘(_"5_0: ::))-~n—?'.),.f‘_ s et
L L'*’VVI e VL
2 2 2 7

3 5 2 2
J - B -
Colan n ) '
CD 3m TG ST e 30 F D - | Hida 4T, -6 ety 4T Sc
3 7 2 2 g
L 2z
P | Bt mmt [tega-et | o |
2 T < ‘

We divide the couplings between the momenta into 3 types.
(D Internal couplings
(11} Reverse couplings

(I11) Forward couplings

The infernal couplings nre the least complicated, They emerge
within each loop when the trace is evaluated by the quantities.
ﬁfigc and (:L forming scalar-products among themselves,
before we contact the loops with the propagator indices, There
are only three internal couplings for any loop, namely n‘i gcl

“\.Cb and @sL . CL
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Both reverse and forward couplings involve the coupling
of loop momenta to momenta occuring in.the propagator expressions.
" Any particular coupling may involve a number of propagators
supplying ‘ﬂ‘Au” factors and loops suoplying g<x@ factors,
The actual momenta coupled together after contracting all
indices in all the loons and propagators could be from the same
or different loops, one or two propagators, either parallel (that
is from the same rung of the multiperipheral ladder) or not.
All the other propagators and loops involved act as links
sunplying transitory Ejquamjg A3 factors which disappear on

contraction,

When at least one pair of parallel propagators participate
in a coupling, whether in a transitory or a termiml vole
it is defined as a reverse coupling. A propagator or loop plays
a termiml role when a 4-momenta from it actually figures in a
scalar product of tables one or twe. All couplings which are
neither reverse nor intermal are defined forward couplings.

E.g. consider the quantity B‘:f‘LC“l— Two ways in which .
this could arise on expansion of equation 2,4.7 are given to

\\\\\\\\‘

illustrate forward counlings and reverse counlings.

()

@ﬁ .9 — %xc—l

@ v ¢\ g U.\:\g )‘C‘"\ ’—9 g.%\,‘——]
. ¢ C—
@f&\cvl -Q{C“‘~ 2 8 4@

This is an example of a’ forward coupling in which the successive

couplings are all along one direction of the multiperipheral

ladder,
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C ¢
an % couples as ahove to form 8 e Then it
proceeds to a further loop, say the (—4'™  loop, couples to
the g-function in that loop, then retraces its tracks through
the propagators not already used, proceeds back to the C—lﬁib\

e Vg
loop and couples to 9 to form § 4

%

This is an
exanple of a reverse coupling. In table two, all the entries
[ \: L‘ b‘ vV (, .

except [y -B7 f-C" and §.C" are necessarily reverse

couplings.

The second term in the right-hand side of equation
3,.5.21 shows that each transition through a propagator effectively
.
provides a multiplying factor of S which is the sub-enerqgy

— R (ke
across it (we need not consider the terms T, S as it is

obvious that the nroduct 'ﬂ“tc~$g;d(k‘7 is a common factor for
all the terms of F41&§ ). This means each L—J' value of
tahle one and the reverse Lu“(: values of table two have to
be multiplied by the corresponding §¢—‘ factor for each
transitional propagator link involved in the coupling. Since
the reverse couplings have more transitional Iinkg than the
forward couplings for the same tL—| and C—w; values,-<¢learly
they are negligible asymptotically in view of the S ;:;;;:;;\'
to infinity, Hence we omit all reverse couplings in selecting
the leading terms, On restricting ourselves to forward couplings,
it is evident from table one for L~3' couplings, the corresponding
table for {4} ,:i _ couplings (i.e., we substitute U+l for L
in table one), and equations 2,3,19 and 3,2,20 that equations 2.5,18
up to 3,5,22 hecome
- e =1 g0 N
Eﬁ&:T{ <\ | é‘(b _ B:P:;?;
N
— otU:,Q“‘ PV\ - ae

= ‘n Sv« &) b=y &

32,
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¢ Gl ¢ - 4 &)
¢\;~C\,U’f\ [g I% )% ! = —n‘(k. SL‘H ['%U‘L“)\c*‘

4 E vl f"CH_. 102

where

-\
\!’WC \}CH = D3¢ port S ey 364

and

St B -\ <

g\rcvx“\ = Sy ¥ i Sen &t,.\‘ﬂ 3b5
U

It is easy to see how most of the terms of equations 3, 5,21

drop out when we derive equation 3,6.2, For instance CLC'X

and FC—X are negligible co&mpared’to Q\C-i.}( where X

is any momentum in Fig. 14, such that all these three quantities

are forward couplings. It may be noted that the 9 - terms

in 2.5,21 arising from 2,5,22 all disappear on selecting the

leading order terms. - This is a crucial factor which helps us

to analyse the effects of treating the propagators and couplings

as off-mass shell, which they actually are, in Section 8,

Though the internal couplings of table two do not have any

SC dependence, it is ohvious from equation 3.4.8 that they
appear on the same footing as the h41' terms which act as
coefficients of the leading order terms. Considering forw§rd.
couplipgs. altogether they belong to three categories? Xf% \fJ

)(C.\,\3 and UC’V-\ where X and Y belong to the set (4,B,C,P,Q)
as can be seen from equations 3,4.8 and 2,5.18 and U and V belong
to the set (P.é) as seen from equations 3.6.1 up to 3.6.5, From
table one and equations 2,3,19 and 3,6.1 -l3.6.5 it can be easily
deduced that SJJ factors of these couplings, which are picked up
each time a propagatoy figuresxzhem, (are exactly cancelled by the

§Q factors which arise from the values of table one of these
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couplings,

-~

Thus we can write

Mm = {(ﬁ— :C—; Sl;d GCQ)]%E—WSU:J cf‘f(&ﬂ@(kn

=

¢ NS L 2%

\ ‘3x(k67 = ‘3§—3UC‘:) 36

and

9, (k)= o 9 u’—c)
where q( and 4, are constants and 3(4-‘(,) is the same as the
expression \')—?j e 4> «,j'\ which we used in the last chapter as one
of the factors in the Reggeon-Reggeon~particle coupling functions, -
We define the two nucleon-Reggeon coupling functions thus in order
that the model of this chapter may be compared with the single-
pole model described in the last chapter. LlN is independent
of the §g . each LlQ "being a product of terms, one from each

loo y - and one from each Boson propagator,
propac

\A" VA ol N ‘
The summation is over all such possible L.LN

It can be seen from tables one and two, that the leading
order non-reverse couplings, in the asymptotic approximation, are
independent of the f‘:L' This implies that the same holds

for L

conclusion that it is true for i La_;d also. The leading

s However, it is not possible to draw the
terms of all the L).\\) could cancel, forcimg us to examine the
next leading terms in each LL\\\ to extract the asymptotic

behaviour of M‘L\J These non-leading order terms of Lv.«J
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will have complicated S and 4:h’ dependence in two ways.
(1) They contain the terms dronped because of the asymptotic

arguments in the earlier part of this section,

(T1) 1t will be necessary to rewrite the approximate equations

3.2,7 in exact form to take into account lower order terms,

The 1-1“3 can be grouped according to different orders of

the counling constants and summed, enabling us to write

)

—

<
= 2 Ly
PRY

: N - g .
349

on integration over all

— N

We proceed to show that at least one 20

the (¢ and SC  gives a non-zero result,

—_ q'vx—l}-‘o

Consider LQ From equations 3,6.3.- 3,A.5, it is

PN

. — K,0
obvious that the |_

20

absence of transitory propagator links((fx, :) terms) which
‘J\V

factorises for all K owing to the

correlate different loops, [Each factor is dependent only on

§5?\§5i‘\0’h~ and (¢ the corresponding loop energies. Since
A -

the loop energies have integration limits bw  and M independ-

ent of the position of the loop in the multiperipheral ladder, we

can write without altering the value of QBQJJ

-\ . v S
. P! ¢ T in-Y4 O
\ K,’“: g dsy § dtc] r o
c=\ *= Ym™ S "(,'C" ‘ N

7 N = N-|
— \"I’\, f ds~ |\ ate] L.om }
2. - . N\
=l M Yo
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where i el g L —L
— S}; & C 8 . 1. . \F? N q) th;JH
ne Y‘u \r“s“:“,\\‘ (" e
2.6\
K I

and L

term in

v e is the coefficient of the o
"\ \‘.&6_(_,‘7\\. )

LQQP P\\ \r\- G—C ,7\\/
Since the number of terms in the expansion of expression

of the type

T biiar - 0 &)

where
£ = 8-y

is given by zero when Y\ 1is odd (because the trace of an odd
number of jk—-matrices is zero, and by (V\—T)X k when Y1 is

even (Ref; 47) the number of terms Y\  in the expansion of

1_ADQ P.o v oav is given by

BT Y 10 3 # TG caa
We group the 232 terms according to different orders of the

coupling constants and express L,gc,? o

‘» VCFC 7\\1'

according

to the equation

L

QOG Y"\ \f‘\' G_,\.mb

S N 3. B N S 3 4 "}
= q_ qu C(‘I‘ t CAL 3\ F3+3L_3i LL—*—%LQ; Fﬂ+3l ‘;Q
where, ( in the following four equations, we drop the subscript 361

for convenience, since it is common to all momenta)l

Fezmfuay 8@ T v ng recr ac)
3613

F?) = {\Q\\r A PRQ}\A, [»ﬁqqm—e] A PV‘ B PM\"[JA’

- N
B e + P\A & PA}GU‘)"PB/*’&‘] = (P)J‘Q\U‘(QO‘B L
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1+ M
R A, Oy B + 0 A B YK

“+- ‘ { A S F
HQ\\F N ’69 ea P&\r@o“‘/ﬁ’m u(}(?\}

o= wie
g a\r . O
4+ P ~ v A
+ P O (-M“g\r})é_«"ﬁﬁ’awfz ng‘feaf’lﬁg‘%fj
Q[T
. W N J Ef /f’ﬁ/’g ’f}/g?\%ff“yat)‘/ta +aq8/,eaj
LB B [y 12 T Ty Py 4 PBE)
& f o
+ R ' [.JMLBV\B 4—% BH_,gf a\quP«’ aMa\r/E ¢3|4/8fa‘96]
Pt" M\.\‘:ﬁ,\ro*\*ﬁ/\re"] ¢, s D v, N
233 Ty ey g ) TRFI 99

EEV AR o A R AT 2"

+ Q(—Q—M Y__/R/a 3 ’g, %-3 \rf&x *‘33’% ]%%AMKQ/%}

(? 1. _~ g ~
A fLM A AT ey f“"a”}‘%aﬂ
FE T N ?;§"}:
2616

L = {iu I
= LRyt |

+ W Ve O
£y 3 €2 a’\/r ’ar‘/%’a\’"f:g{a}}
| 360
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To simplify equations 3,6,13 - 2,6,17, we use the following relations

satisfied by expressions containing 8»— matrices (Ref, 47)

Te e g) = Uad 2619
-6-19
T Domn - - AN =Te [ - - Anfua) 3620
/r:r [’Fr‘ - /Q'C"n(ﬂ-l L /&'&A} +/r( E/ﬁ/('/?’f'-}" ""ﬁz‘;\%—c"" Q’a
‘:S\i@ﬂ('ﬂ«:‘r—\\ e CAan - ARG - A% ) S
/rY [ﬁ.m - /afk' '%C"H - - - ”R‘Ml
= QCL Te CHAL - A Pl “(\}] .y 2

EO( ﬁcigu‘f\-l

We also use the following rules, hased on the asymptotic
reasonings earlier in this section, to select the leading order

terms. This enables us to reduce the number of terms to less

than 100,

(m All 2'7\\)\ and 56‘( terms are omitted as they give rise

to reverse couplings.

(IT) All terms containing “P‘“. ,PfO_c ) C P“A and C7\\
are excluded, since from table one (the first row and the third
column) it is clear that they can give rise to forward couplings

of non-leading order only,
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These two rules, together with equations 3,6.18 up to

346,22 enable us to rewrite equations 2,6,12 up to 2.6,17 as

- fPo. 6 0 Ludru(@srgc pd)
\ e 7\{ } 36273

f

ST Pr &y Qo By + By Bo f L(e-Ony,
g @f@@ﬁ]ﬂ"" PP@GP‘M:(WQCW +(n-Q) By |
tRag b (e (- 0O8-] +Fug8,

3-6- L4

ba = M{ Q\«« B\ e [AB4RC+RCtu]

+ (PPQU—-Q”]\U——- EQS““HC“GC‘F ML3

6 By Spo - RERC 48C 4 )
+ Ry B Sr\r L—a @ +RC ~8BC +ML]

+ P, & [Pats *™ (- Bn (o)

+ P\,\Qf [_Q% @«*Q]Q\r 'JFG7\ (\):X

+ Ppog LA }A@r*‘a\*(f * QT‘(GA

+ €.C
+ P &s Lo B v Pple™ Tp ‘3}
3625
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X‘:\ = EP!" Ay +Pp f7\} C gﬁrccf‘”fgr(\rf)

[, G+ Qp ) [‘G‘Maﬁ + 87 h |
¥ 5 DO (o (aBau) # 8B (RCs )
+ 8 Pp (Beaw™) 4+ BBy (RCam )]
Sae P de (agrw) = Fnle (Ao )
—8s Rp (8C-ui=) B B (A-C- MD
JYALQ A (8- o+ By By (A=)
P Coe (=0 8) 4 Rl (h ) | S -
t[ag fn (nrec) —a B (w4 AC)

FO (o (o) x Py G (A Spe
362

and

1_}_ . .
\jo = L VC eIl &

= ™ ﬂ&l\,\l ,@“.(ﬁh-%"@“ﬁv (gp\r‘gtﬂ\“gy‘@‘ghxg
+ Sae( PpBy TRpG +(¢8P\) + Spe Rptg

F i o G 8] S B 8y 10 GGt

g [p 8 +¢\C~<&]}
oM TR T N s

Nn the insertion of 2,6,7°7 in 2,6.11, all the terms
antisymmetric in either &* G%—?r?\ or V] S disappear.

Thus equation 2,6.,27 effectively becomes, for the purposes of
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3.6.11
IELY
Then using table one and equation 3,3,19, we have
L - 3n
S
“ 3-629

e can easily perform the integrations of equation 2,6,10 and

write

T ("

ol [xﬂ%«_\‘;ﬁ]l/?— 363 |

Obviously I is non-zero as otherwise we would have

M= ™

< ¥

¢ =
L
o= S f T~ (T M‘-T” 3-630

which implies zero phase-space in view of the limits of the

integration,

Therefore, it is clear that the leading order terms of iilw,
after inteqration over the locp energies and momenta and sub-
stitution in (91“5 can cancel only if termé to different order

in 8,,4, and 9~ cancel. It will be seen in the next

section that such cancellations cannot occur whatever the value

of qz, and will occur at most only for 4 specific values

of ?L//al_‘ In the absence of any reason to the contrary, we

assume that 93t““A 3, do not take such values, Otherwise, we

shall have to analyse those four cases separately. In fact, if
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the trajectory is the Pomeron, then helicity conservation in the
s-channel suggest that ., is zero or close to it, ruling out

cancellations since then the values of }oop is

i’\\.‘\r\:@\""’\k‘
given by 2,6.29,

Seetion. I - The impact of nucleon loops on the M.R.M.

From equations 3,3,1, 3.3,15, 3.4.1, 3. 4,6, 2.6.6 and 3,6,9,

we have

1 /r;:) <" = il e R 5 .
1 - Sf) . T N§§% «{;Kjrciiljk

t%'R-wq
el 2ol
T (7 dee ( Iz,
= At Zsy 4
T

wJ 2 v-1
Y_ﬁ T g% o) [W 3(4'—(.;7

= =l

%K(Jc;)] - [ w6 ch\\]
[i §;i'1el—ill 37|

Let

N“\ | - .
f =T “oae ™ (< —
N c=1 &"“—'g C\T‘: Mo_»J
e‘\:ﬁ

1S, \.‘ T 3

¥

12
Examination of equation 3.7.1 then shows that were it not for the

factors jT“I equation 2,7.1 would be identical to the multi-Regge
integral equation, in the factorisable approximation with a single

pole input derived in the last chapter. The arguments of section

—
six make it obvious that $42JJ is the residual factor after all
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the ¢, dependence in ™, has been extracted and absorbed into

the multi-Regge part of equation 3.7.1.

?LJ therefore denends only on the constants vﬂl,ual,gi,fjl
and 9, and therefore is itself a constant expressible in terms
of these by means of equation 2,7.2, ‘Equation 2, 7.1 is obtained
by multiplying each intermediate state contribution to the
amplitude in the multi-Regge integral equation by the factor {7N ;
In the factorisable approximation, the multi-Regge version of
the unitarity equation in the j-plane at £=0 can be expressed

as

o A N}
IMTll(j>: Iqll_*r NZ;, (31-(1}’2) Ay,

Gy
373

where g and G are the Neggeon=Reggeon-particle and the Reggeon-
particle-particle counling constants respectively,  This
equation, except for the \gt term which is included later
there, can be obtained from equation 2.3.17 of the last chepter

* by putting

3-;’1&(03-\—-j):
(,0%5 3.7 4

and taking the Mellin transform.  On going through the arguments
leading from equation 2,2.% to 2.3,17 in the last chapter, it is
obvious that multiplying each term, representing an intermediate
state, in the unitarity sum by a different constant does not

affect it.

. Lr .
Thus remembering that ¢ of equation 3,7.1 is equivalent

1.
to g of equation 3.7.3, 3.7.1 leads to
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—_— R eo 4 M-
Lem Ty CJ) = F\m"" E;‘l \CN ( SRS ) l’—\m

G‘i
5 75
It is convenient to extract the factors
N -1
|
T —
(L:l (,T‘L“H .)
from H)_N and write
N n* Tt
SO B I T R
N
| T Lo ('El“'ml)l LN
"(‘:\- i
3:7-6

Then we have from section 6,
M-

b B n )
e :{Qr«'@,\-”"w—' Py L, Lheor pivig ]

N-2 {4 by ] . .
E [(. P’v': QF{“ + 3 Scjv;_r‘i.m )( P(;L\ C\)ALC“
¥ i\SSqéhéa—\)]g
3-7-7

Seetion 6 makes it 'clefa,r that only the entries sB" A Tj) 03&. ﬁj)
PN cin’, e, ctedgtn 08 amof e
of table one and \’%IL.BL, l‘\{CL and eic of table two figure
in the expansion of the t;ight-hand side of equation 2,7.7, Of
these, the entries of table two, being internal couplings are
not the result of contraction of the propagator subscripts with
the lnop subscripts. Only the first nine, which are from table
one result from such contraction, The negative signs of these

entries are irrelevant as in each term of loop , , . .
Mo ‘:T‘Ac
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the momenta occur in pairs, thus cancelling out the sign, It must
be noted that the values given, in table one are not what we use in
evaluating equation 3.7.7., Because i% ,n and hence CQ:LN

is the residual factor after all the S_ factors are extracted
from \“\lN we must multiply each entry in table one by the factor

Ja given by

3-7-2

On examination of the relevant entries of table one, it

-

can be ohserved that when only R, & or C occur in the

Sealar nroduct, its value is given by L s..

o irrespective of

whether the corvelating momenta ars A, B or C. If one of P or
D replaces these, the Scalar product doubles and if both P and
0 replace the quantities A, B or £ in the palr of correlating

momenta, giving P.Q, the value of the product quadruples to 2.de

crl
This means that in equation 2.7.7, we can replace O

i [ L
and @ by quantities 2 ¥ and 2L X where these are defined

by the equation

3-7-9

Similtarly, in equations 2.6,23 up to 3,56.27, we can replace
all the P's and Q's by 2X's and all the A's and B's by X's,
taking care that these renlacemants are not carried out for the
internal couplings of these equations, viz.F%%BL,D AS CF and HC.BL

whose values are given in table two,
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Hquations 3,7.9 and 2,3,19 lead to

32

T o

‘\ . P

n==t 3710

»*

i v )
Now X correlatss with X through the ?lki) terms in

the propagators and & terms in the loops between the ¢ 1

and the ~jna . Nne and only one term participates from each
loop in this correlation, Equation 2,7,10 demonstates that

. - Th
each loop between the Lrﬁ and the ) there is a

corraesponding G- factor in the denominator in the right-hand

side, Hence if we make the transformation

> Lot T E; ¢
O(/s o(___(;

T

[

in equations 2.6.23 - 3.6,27, where

O(':ib(,/\

p=T D

we can then replace enquation 2,7,10 with

XX = 1
: = 7
3-7-11
If we make the further transformations
¢

X = Lx©

V2
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in equations 2,6,23 - 2,6,27 and 3,7.7, we can write

<)
X X=1 forall ¢
2.7-12
This result allows us to make the final replacement of all the

subscripted quantities in equations 3.6,23 ~ 2,4,27 and 3,7.7,

with the Scalar unity.

That is
X fer all ¢
Eixi ¢ |
& for all ¢

and

C\\r\c‘/{ D(:r,t,//\
30<Lﬂi N . /S: 7),0_'

Then these equations become

4 N-1

Q. = TT Loe 208 -2)
BN (=1 Pe [Q”Fﬁaj
3.7 13
where
[‘['[LOO‘QL]:E’:&[A}/ qu Ml(f:_.+‘7.hﬂl-6‘,_* )‘;
4 =

3 ,
o9, 564 AN P (o, 4 M"*)F

+‘ﬂz€) £&+L,gm}

i 3
+31€1| §‘6M+ ?)Q‘M%}-_Fﬁqghl
o i

<

3.7 14
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Then 3,7.,6 leads to

L AN-
E‘ 'OIG—‘- o/( Loo
fo-te ) j 0 (f’;"“ P] [LHG“]

The double integration is easily performed by splitting Loop;
into 3 parts, each part being separable in the variables o7

(9

and T, After doing the integration, we fimally obtain

L

fu= 1o (F) {p.ﬁf'ﬂhﬁlafﬂﬁ/igﬁfﬂf’"
9094, g [lfﬁ—cj]

3716
where
Fi = bW (Ea'f LH"“lgvz "%S )
v : 3.7 17(a)
ﬁz = LY‘lM (5, + [7 )
3.“]-(‘7(5)
ﬁg - L‘M (?—""\q—?,_t* ?)XL)
D747 (c.)
y = b (T 4 2
ﬁq > (') N 17Ld )
2
o= Dw p)
ﬁb * ‘3-7!7[@,)
and e

+0% (o= Lont) '/1]

i 2
— lo~{{_ L\L,‘}’)’/z

[ rji- g
~ bt )] ”‘°_ ke

= ]ﬂ% f&gf“(’"%)’;

I
i
—_

p.
a5
—
d
1 5' —
919
|
9
X
™~
4
!
-+
T,
p—
RN

4
o
Lo
oAy

-4

3.7
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'5_ ) d
L 112 (h)
Sﬁ :Jﬁ'z.j\ CYT[,M i"‘.’? f/;*
i1 | . o
"’ e
= I -gtj" [jl T z
L e Hq.
— b b
e [ M (! w)LJ
2 M
%8l
H’L
i r
1.
ES&" *LZ 5%92. ZTI - ftbi
L'Vl (r G—
bt
[ | Ly %
— .
= 1 | W:L
évwl+ [j H
' 3918 lel)

For purposes of numerical calculation, it can be noted that the

first series in the right-hand side of 3.7.18(a) is the Zeta
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function of Reimann, Also, the second series converges very
s . L 3
rapidly since M is not much larger that L-m~ and hence

taking the first few terms would be a reasonable approximation.

From equation 3,7.16, it is obvious that the cancellation
referred to at the end of the last section can occur only if

ay/ﬂz satisfies the equation,

S

S -( .
2 A9, 9 =°
L= 3-714

We assume that it dees not. In fact, as mentioned in the last
section, if the imput trajectory is the Pomeron, it cannot satisfy
2,7.19 since o, is then small or zero. lowever, if g, and 2,
take Valués satisfying 2.7.19, then, we will have to consider this
case separately as all thessvmptotic arquments of this chapter

would no longer be valid,

In view of the foregoing, glq can be put in the form

{\i ; y. VL»M

3-7-2.0

and equation 3.7.5 hecomes

ooi l A
Too T b)) = Ay NZ_\ (WZL ﬂﬁ) ( .i%l An)

-
_pn G )y e
% | _ 19 P
GN—
372

At high energy, the second term on the right<hand side of

2,7.21 dominates over the first as the latter is the contribution
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from the elastic (two-particle unitarity) amplitude, while the
latter is the total contribution from the production amplitudes.

By putting

3.'7,2'2_

and comparing with the result for the standard multi-Regge model,

derived in the last chapter

T T, = _Aaa
=9 R, 3723

where ¢ is the Reggeonuﬂeggeon-particie coupling constant, it
follows that the net effect of inserting the low energy nucleon
loops in the M.R.M. is to multiply this coupling constant by another
constant depending on f41)w3}<3\\ Yq and G, This has
the apparent effect of pushing up the trajectory as it is well

known that the position of the trajectofy depend on the kernel

and enhancing the coupling constant means effectively enhancing

the kernel, However, this is not true in the multi-Regge bootstrap,
the mechanism of which acts so as to keep o (o) at the same value,
as can be seen on deriving the bootstrap equations as in chapter 2

from equation 2,7.21,
Section 8 - Incorporation of off-mass-shell terms.

As explained in séction five, the formulae for the Boson
propagators and the counling functions were based on Scadron's
results which were derived assuming that the propagators and
spinors were on the mass~shell, The same papefagives the

preseription for incorporating extra terms for off mass-shell
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propagators and spinors, The method used there was to keep

the propagator numerators on mass-shell and nlter the coupling
functions in order to allow for the off-mass shell effects. This
involves adding terms proportional to le the momentum flowing
through the propagator, Also, if the off-shell particle is a

“fermion, couplings proportional to Y- P need to be added.

Since, at each Reggeon-nmucleon-nucleon vertex of our model,
the Reggeon and one of the nucleons are off mass-shell, we need to
add these extra terms, On inclusion of these terms to the

coupling function, equation ?.5,18 becomes

% at &[ %1(‘66)} af Cﬁzctﬂ Pca(‘+§?>((:‘;)cl’;£]

[ g

where /7_, is a constant and

1.2

— _ = e LED
ﬂs(twwﬂa J e

We write §3 U:L) according to 3.8.2, in order to separate
the multi-Regge component as we did for 9, and G, These
alterations lead to corresponding alterations in equation 3,4,8
It will be recalled that our asymptotic arguments of section 6
embled us to neglect the terms containiné Cl/d The same
reasoning applies to equation 3,8,1, allowing us to omit the

term contaihing CLL The factor [\+/z &] in 3.8,1 then leads

to the replacement of 2,4.8 with the equation

LOOP,—AL’ULG‘ChL = 'T‘, E(R'L-r’—\»\ ) Cjﬁé'ﬂcrc (l+ﬁ BL)

| (I+/s 85)(¢C+H)%pc(l+/s g‘)
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: : C |
(e g ) 1ep8°) g
383
where the g‘xi ({X:‘Pqp)nlqr> are the expressions defined |
in section 5 and not as in 2,8,1. With the use of the relations
satisfied by the >,~matrices. given in section 6, it is clear

that the factor
Lirp o g ][ iepnt]
can be replaced by
[ e ]

where k' and w'  depend on /6, - and M Similarly

the factor ‘
. (
(|+[5 g“)(!—r/s@ )
can be replaced by quantities depending on /6, I and F1QZ
Therefore, the insertion of these off-mass shell tewns does not
change qualitatively any of the arguments of the preceding
‘sections., They only serve to "renormalise" the values of the

coupling comstants ¢, and g,

Conclusion

The insertion of low energy nucleon loops in the multi-Reége
model has failed to produce the enhanced asymptotic s~behaviour
shown by similar Feynnan diagrams calculated in high~energy
quantum electrodynamics, The inclusion of crossed rungs, we found,
did not make our calculations more complicated, but actually
simplified them considérably by leading to the cancellation of

several terms in the expansion of the loop.
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The inclusion of the nucleon loops did not involve
complicated phase spacé integrals, The phase space factorised
very neatly, allowing us to isolate the contribution from the
loops. For each intermediate particle state, the loops acted
as a multiplying factor, This multiplier itself was found to
factorise in the same way as the multi-Reqge amplitude, which
meant that the sole impact of the loons was to act as a multiplier
for the kernel, which dependson the constants ¢; ,¢, which are
the Reqggeon-nucleon-nucleon coupling constants and the quantities

rﬂl and w" which are the Reqgge threshold energies and nucleon
mass respectively.\ Owing to the workings of the multi-Regge
bootstrap mechanism, the intercept of the trajectory is umaltered
in spite of a changed kernel. All our results were derived
using the approximation that our propagators were on the mass-shell,
We also analysed the effects of considering them off-mass-shell and

found that it only served to renormalise the Rengeon-nucleon-

nucleon coupling constants.



Chanter 4 = Non andiacent conrrelations

Saetinn )l - Introduction

As stated in chapter two, it has been established that the
position of the output trajectory in the single-pole input version
of the multi-Regge model in the factorisable approximation falls
short of unity. The model derived by us in chapter two, failed
to improve on this, In this chapter, it will be shown how the
addition of certain correction terms to the multi-Regge amplitude
helps to push up the trajectory close to one, These correction
terms represent long range correlations. It is one of the fundamental
features of multiperipheral models that the influence of particles
adjacent in the multiperipheral chain dominate over that of those
further away. That is, the multineripheral correlations are of
short range order. The factorisable approximation of the multi-
Regge model, described in chapter two, embodies this to the utmost.
Each link of the chain is calculated independent of the other

"links and the amplitude with n links is just Lﬁﬁn where k is a
constant and x is nronortional to the elastic (single link)
amplitude, The correction terms which we add are amplitudes
incorporating correlations between links,  These, by virtue 9f
multiperipheralism are small compared to the factorised multi-

Regge model,
Section 2 - The corrected multi-Regge model,

In the multi-Negge model, let 'T}l(}) be the n
intermediate particles state contribution to the absorptive part

of the 2. —> 2 amplitude in the forward direction.



’T;J(j) is given by

T T, = 2 T

i)

\
N2 J

4,21
Then
T, () = Gq(ﬁg”‘)lﬁg
and - .22
— . Yy s N-Z -y
N (‘1) =G [ 99 .], R
L2
where 4
Tl (j) =G R
.2 L

G and g are the Reggeon-particle-particle and Reggéon-
Reggeon-particle counling constants respectively. —Tj+ is given
by Fig, 18 and contains only correlations between neighbouring
links on the chain, These correlations are reflected in the
Reggeon-Reggeon-particle coupling functions at the vertices which
are given by é(tﬁ'ytgﬂ) where the C; and t:., are
momentum transfers flowing through successive links, In the
factorisable approximation, these functions are seperable in

t

¢ and t;., and can be put in the form

§(tc7t' ) :9{(115)1':(%*')

L+
2.5
enabling us to calculate each link separately, which leads to

equations 4.2,2 - 4,2.4.

Let br;_(j) which is given by Fig. 19, represent a 4-
particles intermediate state amplitude in which all 4 particles
correlate. In multi-Regge terms, it incorporates correlation
between non-adjacent particles in the chain separated by a

single link,
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—I'm,_r (j) is the lellin transform of the s-plane awnplitude

1
th(s) which is given by

T;_(s) :E:Soltrcl, LPCLLF S(O\f— ml) X(%J——ml)

(e,) 20 (£, )
Slloc S, « 3 Gz Ct,)@z(t-ﬁ)
g[- RO R R W L‘+ '<3} A (Szvtm'tmté‘?}
4-.2-6
where the momenta are as in Fig. 18,
2.
Si:(\<é—[—_\<i+‘) t._:f,')__'?)
and b4 2-Ta)
2
te=k; = 1,2,3
t.2. 7 (k)

R ( s“tl,t,,ts) is a high-energy off-mass shell amplitude
which is represented by Fig. 20, Corresponding to 4.2.6, the

uncorrected amplitude Tbr (s) is given by
—_ i 4 T 2
Tq_(s) = £ EQ[ Cl! ] CLL,L % (%‘z_ m) S(CL:_M)SquCt,)

«lty) 2, 2 .
332 6— (t') 6 (‘ts) f) (\:)iq-\oz— L‘-——CLL;- ,<‘+\<3)

['B(s“tz,t,,t3)]}
. 2.3

where
B (Sz;tutn ts) = 5\44(:},10{401«3 [_ ﬁz(tntz)
ﬁz(tl,tS)‘SLza(tl)J

b.2.9
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We now assume that
R ( Sg_)tz?t'\’ t3> = —-—>‘-<—' B[Sz_vtz?tl‘ItB)
Le.2.10

where X is a constant and IX] * is large as stated at the end of
the last section, This assumption is equivalent to replacing

the constant factor 534 in 'FA, (see equations 4,2.5 and 4.2.8)
with the factor ?ﬁ;ﬂk An example of this is given in the

last chapter where we studied a multi-Regge model with nucleon
loops. These resulted in the introduction of non-adjacent
correlations through the spinor and propagator indices, whose total
effect was to multiply the kernel of the integral equation by a
constant, However, as will be shown later, including a correction
with nucleon loops will not serve to enhance the value of the
trajectory intercept as we shall require the correction term to

be negative which cannot be satisfied by the nucleon loops

amplitude,

—

Let Tq' ::_Tq_ '\"TL:

.2t

F

" is our corrected version of the four intermediate particles
state contribution to Im ’le. We now proceed to insert this
correction in each |,  in the unitarity sum, It means that

the expression
w N 2
x
(3‘3)F‘
where the two (.g;a ) factors come from two adjacent rungs of the

multiperipheral ladder has to be factored out upto the maximum

possible number of lines in all possible ways and replaced with
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the expression,

(qq*) A {144)

In diagrammatic texms, it amounts to removing two adjacent

rurgs of | and replacing with the blob of Fig., 19 in all

possible ways,

This is represented by cutting the diagram for |
in all possible ways across the Regge pronagators such that
between cuts, these appear at most two rungs and at least ono,
Wherever there are exactly two rungs between a pair of adjacent

cuts, we extract a faector
( _}Q)Zﬂl
and replace it with

a,él,q')_
(9‘3)7

All possible diagrams are then added. The exiernal horizontal
lines at the top and bottom of the diagram are treated as cutting
the first and last pairs of propagators, Fig. 21, illustrates the
foregoing for ﬁzs which is equal to the sum of the three
diagrams there (the cuts are represented by dotted lines),
Thus « 3

T,=6"Alaq"A]

is replaced by

T, -6 {Lag A+ (29" R) (99"h)

59" P)3")
b..2.12
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each term on the right-hand side corresponding to a diagram of

Fig, 21.

Let W—N be the sum of all diagrams with N intermediate
particles i.e. |, is the corrected form of [, . Clearly,

- N 3 . »
an amplitude 'r; , represented by any particular diagram cut in

a specific way, that contributes to'j—N is given by
N Lq..— A Ay % 2 A,
T." =G AL(39™)A] Uaa H)J
X

o913
where

CiIJr-ZG{,_: N -2 .
.2 0y

This amplitude will have o, blobs and <, rungs, not counting
the top and bottom rungs. Obviously, there are several amplitudes,
all contributing to i:g and equal to the right~hand side of
4.2,13, Their number is equal to the number of different ways

of choosing ci, pairs of rungs from (N -2) ordered rungs and
replacing each pair with a blob. Clearly,:F;, is obtained by
_summing the right-hand side of 4.2,13 over all &, and <« ,

.subject to the restriction 4.2.14, Hence, after including these

corrections, the modified unitarity equation becomes
I T,
& ey =
Eg{ MYe+2a, > > (a,+a,),

a,=0 a,=g a.{al[

g(ﬂi’fgﬁ >al[ (ec{_‘;h)z]"l‘{

= G R 4+ G H HZ:I EM7Q1+20‘2 [ﬂ'ﬂ—k H]H = Eoo
. H.‘. &, =0 C‘l:o A

e la,l X
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! l

(aa)g a1 2 O
s e {Y)

“r o 20( ﬂ L). nct 2 _ Ik
=G'R+e'Al 99" )<,__ .ZY%*‘.‘:}?J

=G "A+G ni (9g*R)” ({J)'ﬂo Kf l

We now use Taylor's theorem to ohtain

k
Im T 21"'G A+ G ﬂ [Ej h+(3c ﬂ)mj

- 6N
— cﬁﬂ (C‘*H)z
[-[a9 +_ﬂ__4.>_<_.,]

.2.15
By letting X —> eo i.e. the correction —> O . we recover
T _ ¢é'n
M 21 e
l*~fﬂ€j R
.2. 16

which is directly obtainable froem 4.2.1 and 4.2.3,

At this stage, we shall use the crude result in the multi-

Regge bootstrap of Ref, 15, which we obtained in chapter 2, given by

A

k(1-ato))

h.2.17
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where k is the exponent in the Regge residue function and a,(t)

is the Regge trajcctory, In the given reference, the factor
k“ dees not appear as it should, because of normalisation,

This leads to, after equeting the denominator of equation 4.2.16

to zero to obtain the output pole

x () = ).-—— I 9

e .2 .18

In our corrected version, the position of the output pole is given

by 4.2.15, which together with 4.2,17 lead to

A

L
A -} =
X , 0

Thus we get

(o) =1+ 29"
ke X,£~}j' }+§; Z

. For large ¥, if we take the minus sign, we get

4.2.19

alo) ~ | — \_gl_l

l<

which is the same as in the uncorrected multi-Regge model, If

we take the plus sign

x(0) & 14 gl
e X

4.2.20

If X > O this means equation 4.2.15 violates the Froissart

bound.

If X < O we have x(¢)of 4.2,20 closer to one than the & (0)
of 4,2,18 for the same values of lg]z' and k, This implies

that the addition of a correction term representing the
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correlation of non-adjacent particles has been instrumental in

pushing the outnut trajectory closer to one,

For example, if we take the crude result of Ref, 15,

x(o) ™ 048, lg)ll)i'

~ 032
by putting X =-10we get
x(0) ~ O-97

Section 3 - The Mechanism of a negative correction

We shall illustrate in this section, a specific way in
which X can become negative.
. '
Let | N be represented by Fig., 22 and r; by Fig.22,

The latter is the correction term representing n_on-adj'acent

correlations, to be added to the 2 —> 4  amplitude,

Put
!
LIS I
r I X |
.3
ﬂ can he written

.
M, = lellql e ?
4.3.2
The phase C}S comes from both the signature factor and g which is

complex, as stated in chapter 2 as (Ref, 26 and 41)

/ A
Let rzr = ’“? \ CLHL .
T\'\an | L)‘S?)

| = 'CH%IIQ‘Q_CY’

f‘L ;
x|
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where

)™ = Jeltgl®le]™!

Thus we can write symbolically

e = T rllr
- }c)q‘}:j)zf

—b
and to the first order in I Xl

P

-

ko [rlfkrkl[nﬁ‘ﬂ; *

= &gl S

[X | "

A uﬁ(¢~%)
4.3.5

It must be noted that a correction term b& itself canrot
constitute an ampiitude which is always positive. The SOie
function of the correction term is to reduce the numerical value
.of the amplitude, though for convenience, we have been referring
to it as an amplitude in its own right. Considering eduation

4.2,5, if

L

the correction _r4 ——'Tzf becomes negative as réquired by the

preceding section to push up the trajectory.

Section 4 - The correlating amplitude,

In section two, we postulated an off-mass-shell amplitude
A (Sl,tz,t;, t,) representing non-adjacent correlations. In
this section, we describe how such an amplitude can arise that

will be consistent with the mechanism of section 3.
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We define the following invariants with respect to Figs., 24 - 27,

b2

S:=lp + P(,+I) £=1,2,3
E= K-l L=1,2,%
67_= (kl«— P'L)z

If ¢,,8 ~—> oo bul S, remained finite, we can

- represent the reaction
Pra — Pt P P37 Py
by means of Fig. 24 where the off mass-shell amplitude represented
by

‘<‘+(—~‘ \<3) —3 '\ol+ ‘33

is at low energy. If &, Dbecomes sufficiently large, then we
can express this amplitude also in peripheral terms with Regge

pole exchange and Fig., 24 becomes Fig, 25 which is the M.R.M.
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Let F ( s, B, £, t-3 ) be the low-energy off mass-
shell amplitude discussed above, In the multi-Regge model,

when $§, —> oo

F‘(Slatzjt.y{33)~f5fﬁﬁ(%n’tz)a(t“tB)%“(ﬁﬁ
L. b |

Where r 1is the signature factor and the ¢g's are coupling
functions at the two internal vertices of Fig. 25 the factor
<§(t.3tz) g (t;at3) is a feature of multiperinheralism which
imposes short range order. The power dependence Szd Cts)

is independent of multiperipheralism, being a more widely
accepted feature of high-energy scattering. It was argued by
Amati, Fubini and Stanghellani (Ref. 1, Appendix 1) that by
adding the most peripheral contributions alone, one chnotA

expect to achieve constant cross-sections, Hence we include

less peripheral contributions which are small compared to the
multiperipheral contribution. Our assumption is that these
less peripheral contributions also have the same power dependence,
Atheir smallness arising from the vertex functions, 1In addition
to the power dependence and the signature factor, these less
peripheral amplitudes will also be dependent on the masses and

the two usual landelstam invariants. Thus Fig. 24 can represent
a non-perinheral correction at high-energy which makes the cross-
sections more accurate. We assume that the amplitude represented

by Fig. 24 at high-energy is given by

—

F=roglt,t,,t,) g ¢

L. 4.2
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-

It must be remembered that b,, £, and L, are all small

quantities., e have to consider under what circumstances &E;’
can be a constant as required by section 2, If this is

— }
possible, then ¥  and F will play the roles of I
and 1}
and "

parametrisation, we have

of section 3. With Frazer and Mehta's (Ref. 15)

ke (by + € Ly
ﬂ(t,]tl)f)((:“és) :316,‘( o+t
443
Consider the possibility that
f:j(tntzztl): ?}Z Io [J*4]<(Ei’*f%+/;z) '] A
7 I

Bessel functions with their argument as the square-root of the
momentum transfer have occured in the multi-Regge bootstrap

(see chapter 2).

We have to the second order in x

exp L-%% ] - _jgfﬂl
J, [3{.'/1] (g -2

.y 5
For >c< |  the right-hand side of 4.4.5 renresents a percentage
difference of less than 4%, Hence for sufficiently small values

of E,,E

3 and tz_ we can write 4,4.,4 as

« (B E
5(6,5t3,t2) = ﬂz \(/f+’§+bJ
—, C e
| X |2

i

where b.4. b
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e

Similarly, any function that is meromorphic around the origin
and converges sufficiently fast when exnressed in series fowm
can be put in the form 4,4.6 for sufficiently small value of
the argument, which itself would have to be a suitable function
of £, b, and L;. Thus our amplitude fﬂé of section 3
can be represented by Fig, 24 and the correction amplitude of
section 2 incorporating P (Sl)tz) é)ztgj c¢an be represented
by Fig. 26, the corresponding non-corrected terms being Fig. 25

and 27 respectively,
Lonclusion

We have shown how an amplitude incorporating non-adjacent
correlations can help to push up the trajectory nearer to one and
hence produce cross-sections that vanish to zero more slowly with

inereasing s.



Ra:

19

20,

21,

22,

- 143 -

Amati, Fubini and Stanghellani - Nuovo Cimento 26,896
(1962),  This paper is referred to in the text as the
AFS paper,

Bertocchi, Fubini and Tonin - Muove Cimento 25,626 (1962),
Berestetski and Pomeranchuk - Nucl, Phys., 22,679 (1961).
S, Fubini - Comments on Nuclear and Particle Physics =
4,102 (1970).

S, Mandelstam - Nuovo Cimento 30,1127 (1963),
T.W.R.‘Kibble - Phys, Rev,, 121,2282 (1963).

K.A, Ter Nartriosyén - Sov, Phys, JETP, 17,241 (1963).
Chan, Loskievsky and Allison - Nuovo Cimento, 574,93
(1968),

Dolen, Morn and Schmid - Phys. Rev., 166,1768 (1968),
Chew, Rogers and Snider - Phys,Rev,, D2,765 (1970),
Chew and Pignotti = Phys. Rev., 176,2112 (1968),
Caneschi and Pignotti - Phys. Rev,, 180,1525 (1969),
Chew, Goldberger and Low - Phys, Rev, letters, 22,208
(1969).

1.G, Halliday - Nuovo Cimento 60,177 (1969),

Frazer and Mehta - Phys. Rev. letters, 23,258 (1969),
Frazer and lehta - Phys. Rev., D1,696 (1970),

Bali, Chew and Pignotti - Phys, Ref.. 163,1572 (1967),
Chew and de Tar - Phys. Rev., 180,1577 (1969).

Chew and Frazer - Phys. Rev., 181,1914 (1969),
Ciafaloni, de Tar and IMishelloff - Phys., Rev., 183,2522
(1969),

V.V. Sudakov - Zurn. Eksp. Teor. Fiz., 30,87 (1956).

Halliday and Saunders - Miovo Cimento 60,115 (1969),



29.

40,

41,

- 144 -

1.6, Halliday - Nucl. Phys., B21,445 (1970),
Jacob and Fiukelstein -~ Nuovo Cimento 564,681 (1958).,
Cheng and Wu - Phys. Rev., D1,2775 (1970).

M. D, Scadron - Phys. Rev., 165,1640 (1958),

Jones and Scadron - Nucl. Phys,, B4,267 (19683},
Finkelstein and Kajantie - Phys. letters, 268,305
(1968).

R.J. Rden - High Energy collisions of Elementary
particles = Cambridge University Press - 1967 -
page 143,

Chew and Snider -~ Phys, Rev., DN1,3453 (1970),

The Analytic S-Matrix by Eden, Landshoff, Olive and
Polkingho?ne - Cambridge University Press - 1966,
R,C. Dwa - Phys, Rev., D1,1750 (1971},

N, Branson - Miovo Cimento 3A,271 (1971},

Je¢B, Bronzan - Phys. Rev., N4,1007 (1971),

J.D, Jackson - Hodels for High Fnergy processes -
URL preprint 19205 - May 1969;

Drummond, Landshoff and 7akrewski - RNucl, ths..
B11,383 (1969).

Chan o Mo, Kajantie and Ranft - Nuovo Cimento
494,157 (1967, |

R.A, Morrow - Phys. Rev., 176,2147 (1948),

Lipes, Zweig and Bobertson - Phys. Rev. letters
22,433 (1969,

Tan and Wang - Phys. Rev., 185,1899 (1969),

Halliday and Saunders - Nuovo Cimento, 60,494 (1969),



45,
46,

47,

- 145 -

T.,W, B8, Kibble - Phys, Rev,, 117,1160 (1960),

Bronzan and Jones - Phys, Reve., 160,1494 (1967),
1.6, "alliday - Mucl, Phys., B18,125 (1970).

C. Zemach - Phys, Rev., 140.1397‘(1965).

Jones and Scadron - Phys, Rev., 171,1800 (1968),
Janch and Rohlrich - Theory of Photons and Electrons

Addison - Wesley (1957),



