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ABSTRACT  

An orderly stochastic point process on the real line is shown 

to be characterised by the probabilities that each finite union of intervals 

contains no events. The equivalence of some definitions of stationarity 

for point processes and the non-equivalence of others are demonstrated. 

Various questions concerning the characterisation of the interval sequence 

by the counting distributions are discussed. 

Many point processes can be represented by the sequence of 

times at which transitions occur in a semi-Markov process with general 

state space. The counting distributions of the point process are deter-

mined by the transition functions and initial distributions of the semi-

Markov process. A fundamental relation between the synchronous and 

asynchronous stationary distributions of the semi-Markov process is 

used to relate the synchronous and asynchronous joint interval distributions. 

Some examples are considered, including non-orderly processes. 

Applications to point processes with events of several types 

are considered, and Palm-Khintchine relations are derived. One such 

process, the bivariate Markov process of intervals, is examined in 

more detail, and sufficient conditions for the existence of a stationary 

distribution are given. 

Simplifications which arise when the semi-Markov process is a 

Markov process with countable state space are discussed. A condition 

is given for all the serial correlations of intervals to be positive. 

It is shown that the self-exciting process exists as a generalised 

Poisson cluster process. A clustering representation is derived also 
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for the point process generated by a random walk when the dominant 

tail of the step distribution is exponential. When both tails are exponen-

tial the cluster structure is that of a birth and death process. Markovian 

representations of the exponential Neyman-Scott process, the exponen-

tial self-exciting process and the double exponential random walk are 

given. The simpler interval properties of these processes are derived 

and some numerical values tabulated. 
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CHAPTER 1 

SOME PROPERTIES OF POINT PROCESSES  

1.1. Motivation and Scope of the Thesis 

The purpose of this thesis is to describe an approach to the 

theory of stochastic point processes on the real line R which is con-

structive and widely applicable. By identifying R with a time axis 

we may think of the process as evolving in time according to certain 

given probabilistic laws. The future of the process is assumed to 

depend on its past only through certain 'initial conditions'. These 

initial conditions must then form a stochastic process in continuous 

time, and this, process must be Markovian. Lawrance (1970 , 1'971, 

1972), uses this approach to discuss the properties of particular point 

processes and to derive conditions for stationarity. He defines the 

notions of 'arbitrary time', 'arbitrary event' and 'average event' . 

Intuitively an arbitrary time is a point of R chosen without knowledge 

of the process, an arbitrary event is an arbitrary time conditional on 

an event occurring at that time and an average event is an event whose 

serial number is randomly chosen. Rigorous definitions can be given 

using limiting procedures (Khintchine, 1955). Other methods, con-

taining a heavy measure theoretic content, are adopted by Slivnyak 

(1962) and Ryll-Nardzewski (1961). Matthes (1963) gives an elegant 

treatment using marked point processes. 

The analytical difficulties inherent in a general approach will 

be avoided by an appeal to the theory of semi-Markov processes. At 
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some cost in generality, constructive definitions of the various types 

of initial conditions can be given. This programme will be carried out 

in Chapter 3 and some examples of the method will be discussed. A 

secondary motivation for this work is that the semi-lvlarkov representa-

tion provides an explicit expression for the likelihood function. Some 

caution is needed here. The likelihood function is simple only when 

the state variable of the semi-Markov process is observed, either 

directly or because it is a function of the history of the process. In 

general this will not be so. 

In Chapters 4 and 5 applications to multivariate processes, 

where the events are of several distinguishable types, will be considered. 

The important special case of the countable state semi-Markov process 

is discussed in Chapter 6. The self-exciting point process and the 

point process generated by a random walk, the subjects of Chapters 7 

and 8 respectively, have simple semi-Markov representations in parti-

cular cases. 

In the remainder of this chapter some aspects of the general 

theory of point processes will be reviewed. In Section 1.4 the complete 

intensity function is defined and some of its properties described. An 

important characterisation result is proved in Section 1.5. This is 

the only result in the thesis which extends immediately to processes 

defined in Rri, or in more general spaces. In Chapter 2 various alter-

native definitions of stationarity are considered and some problems 

concerning the characterisation of the interval sequence are discussed. 
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1.2. Notational and Mathematical Conventions  

The word 'point' in this thesis is used to denote any element 

of the real line. Those points which are also elements of a (realisation 

of) a stochastic point process are called events. To distinguish this 

meaning of the word event from its more general probabilistic meaning, 

the measurable sets of the underlying probability space are called o--

sets, or o--events. 

It is worth noting a few points of mathematical interpretation. 

If lAr is a probability space an element of 	is denoted by co, a random 

variable taking values in MY by W and a probability measure on iAr 

by p(do)). The degenerate distribution which assigns probability one to 

dco 
the single element (.,.)

o 
of -1/jj  is denoted by S

w 
. Functions are always 

taken to be measurable. ti  In Chapters 3 and 4 derivatives are defined 

in the Radon-Nikodym sense. The absolute continuity of a function 

ensures the existence of a Radon-Nikodym derivative, although there 

may be sets of measure zero on which the function is not differentiable. 

A table of symbols and notation is provided. Total consistency 

in notation has proved impracticable, but the major conventions of 

Chapter 3 are adhered to throughout the sequel. Propositions are 

always referred to by the full designation proposition x.z for the zth 

proposition of Chapter x. Equations are numbered consecutively within 

sections. The zth equation of Section x. y is referred to as (z) from 

within that section'but as (x. y.z) from elsewhere. The class of integers -77  
+ is denoted by 	, the non-negative integers by 7 and the positive 

integers by "
y- ++. Similar conventions apply to the real line ER and 



to the minus sign used as a superscript. Thus R denotes the class 

of non-positive real numbers. 

1.3. Some Facts about Point Processes  

In this section we state a few salient results from the general 

theory of point processes which will be needed later and resolve some 

potential ambiguities of definition and terminology. More details are 

contained in Daley and Vere-Jones (1972). A heuristic treatment is 

given by Cox and Lewis (1966). 

Each realisation of a stochastic point process on the real line 

is a countable, ordered subset 	t. j E 	of R. Then t. is the 

time of the j'th event. It is assumed that 	t. 	has no finite limit 

points, so that t. 	+ co as j —> + co. Conventionally we take 
— 

t0 
 < 0 < t

1
. A point proCess f is a probability measure on the space 

of all such realisations. The (random) counting measure  N of the process 

is given by N(A) = # 	j : t j  E A/ for each bounded Borel subset 

A of R. The underlying o--field is the smallest o--field which contains 

all sets 	of the form 

K(Ai ) = ki  : i = 1, 	, 

where n, k1,... , kn are non-negative integers and A1 , 	, An are bounded 

Borel subsets of R. The process P is then characterised by its 

finite-dimensional distributions,  i. e. the probabilities of the cr-sets 

defined above. These in turn are determined by the joint distributions 

Prob [14(I.) = k. (j = 1, 	, n) 	: n, k1, 	,kn 3 	J 
4- 

- 
over 	 Cver the half-open binary rational intervals I. = 	a2

-k, b2 	), where 
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a, b, k, t 	are integers. 

The ILI become random variables ..T.1 	If, with prob- 
J 	 J 

ability one, j / k implies that T. / T then P is said to be  orderly. 
J k 

The nth moment measure of f)  is defined for disjoint bounded Borel 

sets A1, 	, An as 

Mn (A l' • • • ' An ) 
	E R(A1 ), ... ,g(An 

	 (1) 

if this exists. If Mn  (dx1 , 	,dxn
) = ma(x1,...,xn) dx1 ,...,cbcn, then 

mn 
is called the nth moment density. 

The process is completely stationary if all the finite-dimensional 

distributions are invariant under translation. It is simply stationary  

(Lawrance, 1970b) if Prob 	= k 	is independent of t for all 

k c Z and intervals I of R. The first moment measure of a stationary 

process is M1  (A) = p [Al ", where p, which may be infinite, is the rate  

of the process. If the process is also orderly then Korolyuk's theorem 

(Khintchine, 1 955 ) give s 

p = lim EL, Pr ob 51.  [t, t+h) > 1 	. 	 (2 ) 
h—>0+ 

The covariance density  of a stationary, orderly point process is 

M2(dx1  x dx2 ) - p a  dxi  dx2. It is a function of x1  - x2  alone, and as 

such has a Fourier transform called the counting spectrum. The function 

var S N(0, 	is the variance-time curve. 

The interval sequence 	X. 	is defined by X. = T. - 	 € 	). 
J 	J 	Ti -1 

In general this will not be a stationary sequence, even if jP is completely 

stationary. However, rather difficult arguments (Slivnyak 1962; Ryll-

Nardzewski, 1961) show that if -1:)  is completely stationary, is orderly 
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and has finite rate then conditionally on T 0 = 0, the sequence 	Xi  

is a stationary discrete time stochastic process. Since the o--event 

T
0  0

1S has zero probability, the relevant conditional probabilities 

must be defined by a limiting operation, considering the o--event 

- h < T
0  < 0.1 and letting h —> 0+. The interval properties of 

are just the properties of the stationary time-series 	X. 
	

In 

particular we can define the marginal and joint  interval distributions, 

the serial correlations of intervals and their Fourier transform, the 

interval spectrum. The interval properties and counting properties 

are equivalent, but only through their full distributions. The second 

order properties alone are not equivalent. 

The simplest point process is the Poisson process  for which the 

pjoitrort-esyr.vvtot 
counting measures of disjoint sets are independent. If the iartru--ers-ris 
erAkt,kker caratii C.4n441444•TAA 

ordc-ily then (Gnedenko and Kovalenko, 1965) there must exist a rate 

function X(t) > 0 such that the distribution of N(A) is Poisson with mean 

J

X(u)du, for every Borel set A. The stationary Poisson process has 

A 
X(t) = p, a constant. If the rate is a random function A (t), then 	a 

new process, the doubly stochastic Poisson process is obtained. This 

process is completely stationary if and only if A (t) is a stationary 

process. 

The cluster processes fotrm another important class. Suppose 

that each event of a process 	of  main events generates independently 

an almost surely finite collection (cluster) of D subsidiary events. 

These then suffer displacements Z1, 	, ZD, not necessarily positive, 

from the main event. The distribution of the cluster structure, i. e. 
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of the random variables (D, Z1, 	, Zip) is the same for each cluster, 

and does not depend on1--)  . Distinct clusters have independent structures. 

Then the superposition of --1)  with all the subsidiary events generated 

is a cluster process. When -p is a stationary Poisson process we 

have a Poisson cluster process. If also the displacements Zi  (i = 1, 	, D) 

are independent and identically distributed with a distribution which does 

not depend on D, we have a Neyman-Scott process  (Vere-Jones, 1970). 

A cluster process is completely stationary if the process of main events 

is stationary. 

A multivariate point process consists of events of finitely or 

countably many different, distinguishable types. Most of the concepts 

discussed above extend naturally to this case. Cox and Lewis (1972) 

and Milne (1971) give detailed discussions. The events of a particular 

type form a marginal process  and the collection of all events without 

regard to type is the superposed process. The multivariate process is 

marginally orderly if each marginal process is orderly and is strongly 

orderly  if the superposed process is orderly. 

1.4. The Complete Intensity Function  

A useful method of defining orderly but in general non-stationary 

point processes is to use the complete intensity function. This was 

discussed in the multivariate context by Cox and Lewis (1972). The 

history 	of a point process -p at time t is defined by 

t t. : t. E 
3 	3 

and t. < t S . (1) 

We do not exclude the possibility that 	= for some t. If A--0  = 
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with probability one then 11)  is called transient. The complete intensity 

function X (t, 	t) is given by 

r Mt, 34 t ) = lirn — Prob N [t, t h) 
h—>Okh 

> 1 1 	t (2) 

This may not exist. Moreover it is not always easy to demonstrate the 

existence of stationary point processes which have given complete inten-

sity functions. However we do have 

Proposition 1.1. If 	0 has a specified distribution then there exists 

at most one orderly point process '.1)-1-  in t > 0 which satisfies (2) for 

a given function X (. 	). 

, X1 = x1
, 	, Xn-1 = xn-1) = 1 - exp -

f 

 

Proof. The joint interval distributions are determined by X as follows: 

( 1 

Prob(X1  < x i  1 	0) = 1 - exp 	X(u, TI- u ) du 

1 	 0 

where 	 for 0 < u < x1 
 ; and for n > 2 

Prob (X < x n— n 

t  
X(u, 	)du 

tn-1 

where Y--u - 0  { t 
	, 	- t 	for t n-1 < u < t , and 

0  — n 

• 

x1 	1 
x.. The joint interval distributions in turn determine 

the finite-dimensional distributions of counts. 

Corollary. A transient point process is characterised by its complete 

intensity function. 

The rate of ID  + is f(t) = E k(t, 	t ) 	if this exists. We 

then have (cf. Leadbetter, 1971; Daley and Vere-Jones, 1972) that 

b 

E 	 f(u) du . 	 (3) 

a 
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If .P+  is stationary, f(t) = p, and (3) is Korolyuk's theorem (see equation 

1.3.2) again. 

The tractability of the likelihood function depends on the existence 

of a simple form for the complete intensity function. We shall use the 

complete intensity function in Chapter 7, and a multivariate version in 

Chapter 5. 

1.5. A Fundamental Characterisation Result  

The results given in this section simplify some of the proofs 

in Chapter 3. They are also of considerable interest in their own right. 

Although the statements and proofs given here apply only to processes 

defined on R, extensions to processes defined in IRn, or in any complete 

separable metric space require only minor modifications. Two related 

references should be noted. MOnch (1971) uses methods similar to 

ours but the statement of his theorem is weaker than our Proposition 

1.4. More recently Kallenberg (1972) has given an elegant proof of 

Proposition 1.4 using Dynkin's extension theorem. Neither of these 

authors considers multivariate processes. Our techniques are based 

on Leadbetter (1968). 

Proposition 1.2.  Let C)  be an orderly point process. For n = 1,2,3, 

= 0, +1, +2, ... define random variables 

= 
	1 if N [ / 2 n  , (i + 1)/2n) > 1 , 

0 otherwise. 

Then the finite-dimensional distributions of P are completely determined 

by the joint distributions of the 	Yni7c • 
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Proof. It will be shown that the joint distribution of IN(I1 ),. 

is determined by the joint distributions of the 3. 	for any binary 
ni 

rational half-open intervals 	, Ik. The result follows from the 

fact that the 	I. 	form a base of the Borel sets (cf. Daley and Vere- 
J 

Jones, 1972, theorem 2.5). 

Let no  be such that 2 0  a., 2 0  b. are integers for j = 1, 	k, 

where I. = 	b.). For each n > no, the interval 
J J 

= 	(i+1)/2n) is said to be an n-component interval of I. if 

Ini  C I.. Then, for each n > n0  , I. is the disjoint union of its n-compo- - 	j 

nent intervals. Let m1,... , mk ÷ and let En  denote the cr-event. 

En = 	For each j (1 < j < k) , >m. , ni— j 
1€ C. 

J 

where 

C. = . is an n-component interval of A. 
J 	ni. 

Now Prob(En
) is determined by the joint distributions of the 	y 	. 
 ni 

Also, for n > n0 
 , E

n 	
En+1 and so, by orderliness, 

 

Prob 1V(A j) > mj  (1 < j < k) 	= Prob (lim En) 

= lim Prob (En). 

Thus the joint distributions of the N(A.) are determined. 

The assumption of orderliness is essential to this result. How-

ever, the proof holds when the finite-dimensional distributions of 

are improper. The extension to multivariate processes is straight-

forward. 

Proposition 1.3. Let -1) be a marginally orderly multivariate point 

process with m < oo types of event, and let the counting measures of 
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the marginal processes be N 	( e = 1,...,m). For n = 1, 2, ... , and 

i = 0, +1, +2, ... define random variables 

1 if g 
r 	

' 
(i+1)/2n) > 1 , 

0 otherwise. 

Then the finite-dimensional distributions of P are completely deter- 

v (?) 
rii 

Proof. We now define, for m. a) E 
	

(1 < j < k, 1< 	< m)  

En = fror each j, e (1 < j  < k, 1 < < m), > > m. " , 	 m 	, —  
i E C. 

3 

where C. is defined in (1) above, and proceed as before to show that 

the joint distributions of the Nt (A j) are determined. 

Returning to the linivariate case, we have the fundamental 

Proposition 1.4. Let 	be the class of finite unions of half-open 

intervals and define the incidence probabilities of an orderly, univariate 

point process tP  with counting measure N as 	Prob N(F) 0 : 

Then the finite-dimensional distributions of 	are determined by the 

incidence probabilities of 7P . 

Proof. It is sufficient to show that the joint distribution of any finite 

collection t of the 	definedd in Proposition 1. 2 is determined 

by the incidence probabilities. We can suppose without loss of genera- 

lity that the elements of C refer to disjoint intervals II , Iz, 	, Ik. 

Then the joint distribution of the yni C h is determined by the 2k 

. probabilities 

mined by the joint distributions of the 

PO • • • , ) = Prob . 	cN(I.) = 01 	n  N(I) > 	 (2) 
-1' 	 1.= 	j 	5 	 . — 
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We show by induction on r = i + 	+i
k 

that the incidence probabilities 
1 

determine the p(i1, 	, ik). We have 

p(0, 	, 0) = Prob N( j I.) = 

j=1  

Suppose that p(i1, ...,ik) is known for all 	with  	< r. 
J 

Then if 1. = 1 for j < r÷1, i. = 0 for j > r+1, we have 

=P(i i ,•-•,ik )=Prob N( 	I.) 0 

j=r+2 

where 5) is the set of all k-tuples 	of zero-one variables 

such that 1. = 0 (j > r+2), and at least one i. = 0 for j < r+1. A similar 

argument holds for any p(i1, ...,ik ) with 

tion goes through. 

= r+1. Hence the induc- 

Again, the multivariate generalisation is immediate. 

Proposition 1. 5. Let -C)  be a marginally orderly multivariate point 

process with m < co types of event, and let the counting measures of the 

marginal processes be N 	( = 1, 	, m). Let the class of joint in- 

cidence probabilities of 1 be defined as the class of all probabilities 

Prob 	N1 (F1) N2(F2) ... + N 
m 

 (F m ) / 0 j , 

where each F. is either the empty set or an element of 3-  . Then the 

finite-dimensional distributions of --F)  are determined by its joint 

incidence probabilities. 

Proof. It is sufficient to show that these probabilities determine the 

c  
finite dimensional distributions of the t Xni S . The proof differs only 

notationally from that of Proposition 1.4. The analogue of par 	, 

>  1)(q) 

1) 

(3) 
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defined in (2) above requires mk arguments 	 t < m; 
t 3) 	<   

1 < j < k) and the induction is on r = 	Ei 
f, J 

.. 

The meaning of Proposition 1. 5 becomes clear when f)  is 

represented, as it may be, by a univariate process on the product space 

R xlfft, wherert = (1, ... m). Proposition 1. 5 then becomes merely 

an extension of Proposition 1.4 to a process defined in a larger space. 

As has been pointed out, many other such extensions are possible, but 

will not be considered here. 

Corollary 1. 6 . Let 40 be a multivariate process with possibly a 

countable infinity of types of event. Suppose that the joint incidence 

probabilities (3) are known for every m. Then the finite-dimensional 

distributions of "f)  are determined. 

Proof. This is obvious, since any particular finite-dimensional distri-■ 

bution involves only finitely many types of event. 
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CHAPTER 2 

ON THE DEFINITION OF STATIONARITY  

2.1. INTRODUCTION 

Complete stationarity of a univariate point process was defined 

in Chapter 1 t o mean the invariance of all finite-dimensional distributions 

under translation. It is irrelevant whether these joint counting distri-

butions are taken over Borel sets or over intervals. A formally weaker 

condition, kth order stationarity, holds if the joint distribution of 

N(A1  ), • . , g(A
k )1 is invariant under translation for all /.A • • • A k 

belonging to a given class 'n of k-tuples of subsets of R. This 

definition is incomplete until eu
k is specified. The ambiguity appears 

to have given rise to some confusion in the literature. In Section 2.2 

a generalisation of a construction due to Moran (1967) is used to show 

that when ak  = 	k-tuples of intervals < , kth order stationarity 

does not imply complete stationarity, for any k. A different construction, 

given by Szasz (1970), could have been used to deduce the same result. 

However, Moran's construction and its generalisation lead to certain 

interesting problems concerning the interval sequence. These are 

discussed in Section 2.3. Orderliness is assumed throughout this chapter. 

The results of Section 1.5 give 

Proposition 2.1. For each positive integer k, let
k  denote the class 

of k-tuples of finite'unions of intervals. Then kth order stationarity 

as defined above and complete stationarity are equivalent. 

Proof. It is obvious that complete stationarity implies kth order 



L 

- 22 - 

stationarity which in turn implies first order stationarity. It is there-

fore sufficient to show that first order stationarity implies complete 

stationarity. However, first order stationarity implies invariance of 

the incidence probabilities under translation, and it is clear from the 

proof of Proposition 1. 2 that all finite dimensional distributions must 

then be invariant also. 

2. 2. A k-DIMENSIONAL QUASI-POISSON PROCESS 

	

Moran (1967) constructs a point process 
	

43 2 which is not a 

Poisson process, but which is such that N a, b) has a Poisson distri-

bution with mean b-a for any a, b (a < b). His construction uses a bi-

variate exponential density of the form 

f2 (x1, x2) = exp 	(x12  ) ‘'• 	g (x1' x2) 	 (1) ' 

where g(x i , x2) is defined to equal 	(0 < I < e 6
) on the squares 

(0, 2), (I, 3), (2, 1) and (3, 0), and - 2, on the squares. (0, 3), (1, 2), 

	

(2, 0) and (3,1). Here (m, n) denotes the square 	m < x1  < m+1, 

".? n < x
2 
 < n+1 

Figure 1. The function g (x i  , x2 ) 

The symmetry properties of g(Figure 1) ensure that if (X1, X2 ) has 

the joint density (1), then X
1 and X2 are each marginally exponential 
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with unit mean. Moreover X
1  1'X2 

has the distribution, two-stage 

Erlangian, it would have if X1 and X2 were independent. This is because 

the integral of g (xi , x2 ) over any set of the form 

 

S.  + x2  < c , 

1 <cl or fx <c i  is zero. Moran constructs an interval sequence 

, X 	X 	X , 	 ', such that, for each n, the pairs 	X , X _1, 	0, 	1  - 2n 2n-1-1 

have the joint density (1), and such that successive pairs are mutually 

independent. The sequence is then imbedded in R so as to give a 

completely stationary point process which has the stated properties. 

Moran's process may be modified in several ways to define a process 

which is simply stationary but not completely stationary. For example 

the process ( 
	

R ) 	( 2 ° R+) has this property if 
	

is a 

Poisson process of unit rate, independent of 2.  
5-3 The process 	t 	constructed in this section is such that itsk 

joint counting distributions over any (k-1) contiguous intervals are the 

same as for a Poisson process of unit rate, but 'AP k  is not a Poisson 

process. When k = 	Moran's process is recovered. 

Proposition 2. 2. Let k > 2 be an integer. Then it is possible to con- 

struct a k-tuple of random variables (X1, 	, Xk ) such that 

(i) each X. is exponential with unit mean, 

(ii) the (k-1)-tuples (X1, ... ,X1c....1 ) and (X2, 	, Xk ) are each 

(k-1)-tuples of independent random variables, 

(iii) for each i (0 < i < k-1) the (k-1)-tuples (X1, 	, Xi+Xi+i , 	, Xk ) 

have the joint distributions that they would have if (X1, 	, Xk ) were 

independent, 

(iv) the random variables (X1, 	, Xk ) are not mutually independent. 
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Proof.  Let a = (a
1 
 , . . . , 

k
) be any permutation of (1, 	, k), and let 

•-•  

cr(a) = sgn(a). For each such a, let S be the hypercube 

S = 41x= (x1,** xk 
 ) 2(a

i 
 -1) < x.

1 
 < 2a. 	(i = 	,k) a  1 

For each j = (j 	, 
jk 1  ) with each j. equal to 1 or 2, define the hypercube s. 

T. = 1" 	
,x

k
) j

i
-1<x. < j. 	(i = 	, 

and let 	(j) = 	or - L according as "7  ji  is even or odd. Then, 

if x E S and if no x. is integral, there exists a unique j such that 1 

x - y E, T . , where 	v • = 2 (a. - 1 ) (i = 1 , . . . , k) . Thus we can define 

a function g : R
k 

—> R as follows. If, for some a, x 	S and no x. 

is integral, then we set g(x) = cr(a) 	(j), where j is defined above. 

Otherwise we take g(x) = 0. 

Then g(x) satisfies 

g(x , 

	

	, x ) dx = 0 (x 	x 	,x 	x 
1 	k i 	 i-1 i+1' 	k R

+
) 

(1 < i < k) , 	(2) 
I y-x 

i-1 

x. =0 1 x.=0 1-1 

g (x1 ' 
	

. xk  ) dxi 	1 
dx.-1 = 0 

(x . 	, x. -2'  y, x. +1 ' . 	, xk 	R +) 

(2 < i < k) — (3) 

To prove (3) note that if z = (z1,... , zk ) satisfies 

z 	Sa 	: x.+x. +1 < y 	, 1 

then 	formed by interchanging zi±1  and zi  in z, satisfies 

x :x1 	y.+ 	< 
X  1+ 1 Sa 

where cr(a) 	-cr(a') and j (z ) : 3 
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To prove (2) note that if z 	S
a
, then so does 

=(zl,• • • ,z.1,2(2ai-1) 
	zi+1,  " • 

< • and that 	'z  3( it = - 	i(z)j • 

Now let 	 k 

f (x) = exp(- 	x.) g(x) . 	 (4) 

1 

Provided 0 < v < exp c -k(k+l) , f (x) is a joint density function with 
k - 

the required properties. 

Remark. When k = 2, the function g(. ) defined here is the same as that 

defined by Moran. 

It is possible to define an infinite sequence 	X-1
, X0, X1, .. 

such that for each m the joint distribution of the k-tuple 

Xrnk+i , 	, X(m+1 )k3, has the density fk(5), and such that k-tuples 

corresponding to different values of m are independent. Then if 

k 

Y X
mk+i 

(m = 	, -1, 0, 1, 	), 

(5 ) 

the Ym 
are mutually independent, are identically distributed and have 

finite mean. Thus a stationary renewal process may be constructed from 

the Y in the usual way. The events of this process will be termed 

R-events. 

The process 	k is now constructed by interpolating k-1 events 

between each pair, of neighbouring R-events according to the joint density 

f
k 
 (x) given by (4), conditioned on 

k 

X 	= Y • 
mk+i m 

i=1 

Interpolations between different pairs of R-events are to be independent. 
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It is immediate from this construction that -tD
k 
 is a completely 

stationary, orderly point process with unit rate, and that
k 
 is not 

a Poisson process. 

Proposition 2. 3. Suppose that for k > 3, the real numbers al , 	, a
k 

satisfy a l  < a2  < 	< ak. Then if 

[a.., a.
+1  ) 
	(i = 1, 	, k-1), 	 (6) 

where N is the counting measure of pk, the Ni  are independently 

distributed, Ni  having a Poisson distribution with mean 
a. 	

- a.. 

Proof. This is in two stages. We first consider the probability 

Tr(n) = Prob(N(R)  La i , ak ) = 0, N1  = n1, . 	, 	= nk_  ) , 

(7) 

where N
(R) 
 is the counting measure of the R-process. Clearly Tr(n) = 0 

if 2ni  > k-1. It will De shown by a detailed enumeration of particular 

cases that Tr(n) does not depend on u . In each case Tr(n) will be evaluated 

by conditioning on either the position a1  -uof the last R-event before 

a l , or the position ak  v of the first R-event after ak. The respective 

conditional probabilities will be denoted by Trb(n,u) and Tr
f 
 (n, v). It is 

worth emphasizing that to show that Tr(n) does not depend on 	it is 

sufficient to show that one of Trb(n,u) and Tri(n, v) does not depend on 

It is convenient to include in both conditioning o--events the serial number 

m of the last R-event before a
l
, and to denote the interval 

Xmk+i 
by 

Z. 	(i = 1,...,k). 

The various cases listed below include all possible values of n: 

(1) —  n. < k-2 ; 
i- 

(ii) for some i, n. > 3 ; 
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(ilia) n1  = 2 ; 

(iiib) nk-1 	2  ; 

(iva) for some s > 1, 

  

 

n. > s+1 ; 
1— 

1=1 

(ivb) for some r > 1, 
k-1 

i=k-r 

> r+1 ; 
1 — 

(v) n. = 1 for all i. 

Case (i). If 	ni  < k-2, then either the first event after a
k or the 

last event before a l (or both) must be interpolated events. In the former 

case Trb  (n, u), which depends only on the joint distribution of (Z1, 	, Zk _ i ), 

will not depend on 	. In the latter case Tr
f  (n, v), which depends only 

on the joint distribution of (Z2, 	, Zk )iwill not depend on 	. 

Case (ii). If n. > 3, then for some j, Tr.(n, v) depends only on the joint i 

distribution of (Z1, 	, Z j_ l , Z j  + Zi+1, Z Z. 	, Zk ) and so does 

not depend on 

Case (iiia)  . If n1  = 2, then for some measurable subset S of Rk-2 

Tr (n, v) can be expressed as f ry  

Tr (n, v) = Prob •• f 

k 

, 	Zk) 	Z. > a
k  + v-a2, 

 

Z
j 
<ak +v-al  

 

3 2 

 

k 	 k 
,s----- 	 \---- 

- Prob -e, 	3 	k 	,/ (Z, ... , Z) 	/ Z. >a 4- v-a2,2. Z.< a + v-a, ;,. ' 	j— k 	 1 J k  
3 	 1 

(8) 

Neither component depends on 

Case (iiib)  . Here there is a similar expression to (8) for Tr
b  (n, u). 
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Case (iva). Here we use induction on s, noting that for s = 1 (iva) reduces 

to (iiia) or to (ii). Suppose now that Tr
f 
 (n, r) does not depend on 	if, 

for some r (1 < r < s), 

r 

n.  > r + 1 . 
1 —  

i= 1 

We shall show that Tri(n,v) does not depend. on 	if 

s + 1 

n. > s + 2 

i = 1 

 

If n 	> 3, then (ii) applies. If n 	= 2 and n = 0 (s > 3), or if 

ns+1 < 1, the induction hypothesis applies. If n
s+1 

= 2 and n
s 
 > 1, then 

n
s 
 + n

s+1 
 > 3, and (ii) applies if the sth and (s+1.)th intervals are pooled. 

The result now follows by subtraction, since it holds for all other n 

with the same values of n1 	, ns-1,  ns + ns+1
,  n

s+2
, 	, nk-1.  Hence 

the induction goes through, and 71.f  (n, v) does not depend on 	in (iva). 

Case (ivb). A similar inductive argument may be applied to Trb(n,u) in 

(ivb). 

Case (v). Since k > 3, Case (iiia) maybe applied to the pooled interval 

a
k
) to show that Prob- N(R)  -al' ak) = 0, di Ni  -= k-1 S does not 

depend on 	• The result now follows by subtraction, since for any 

n with 	, n. = k-1, if (v) does not hold then one of (iva), (ivb) must 

hold. 

This completes the first stage of the proof. The second stage 

is to evaluate probabilities of the form (7) when N
(R) 
 al, ak ) / 0. 

s+1 — 	 s+1 

These may be determined by conditioning on the locations of all R-events 
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within ra t , ak ), and using the independence of interpolations within L. 1  

different R-intervals to factorise the relevant conditional probabilities. 

Each factor then corresponds to a set of at most k-1 contiguous intervals 

[b1,b2), 	 b 
-1

, b. ) 	, where either b
1 
 or 	or 

possibly both are R-events. The joint distributions of counts over 

each such set may be evaluated by considering the same sequence of 

particular cases as above. Here, however, there is no need to condi-

tion further, i. e. on the positions of R-events outside [a l , a
k
). The 

details, which are similar to those given in the first stage of the proof, 

are omitted. This completes the proof of Proposition 2. 3. 

Remarks (i) This proof does not use the complete stationarity of f—
k1 

but the stationarity of the renewal process of R-events is needed. 

(ii) For Moran's process (k=2) the proof given requires a slight 

(R) 
modification. Specifically, Prob 	N 	La y  a2) = 0, N

1 
 = 1 	is 

evaluated by subtraction, since it is equal to 

(R) r 	 ) Prob N 	La
l
, a

2
) = 	- Prob 

	

`a l , a2) = 0, N
1 
 = 0 	, 

which does not depend on 

(iii) The result of Proposition 2. 3 is surprisingly strong. It 

cannot be proved without the rather indirect arguments given here. 

For example, if each n. = 1, it is not possible to show directly that 

7. (n) does not depend on 

on S  . 

The process 	
k 

as constructed is completely stationary, but 

it may easily be modified to give a process which has its mth order 

joint counting distributions over intervals invariant under translation 

since both Tr (n, v) and ir (n, u) do depend 
f 	b 
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(2m < k), but which is not completely stationary. If 
	

is a Poisson 

process of unit rate, then 

Qk = 	TR—  ) 	k " 
R+) 

is such a process. Alternatively the constant 	may be made a 

function of the serial number m of the R-interval, so that the interval 

sequence of p k  becomes non-stationary. As noted above, this does 

not affect the proof. 

2. 3.  ON MORE GENERAL  INTERVAL SEQUENCES 

As the processes considered above are rather artificial, it is 

interesting to consider how far the construction may be generalised. 

There is a direct extension to 'quasi-renewal processes'. 

Proposition 2.4. Let F be a distribution function with F(0) = 0 and 

finite mean which is not concentrated on fewer than 2k points of R. 

Then there exists a (stationary or non-stationary) k-dimensional quasi-

renewal process  whose joint counting distributions over the (k-1) con- 

tiguous intervals Fal , a2), 	, L ak_i ,ak) are the same as those of 

the (stationary or non-stationary) renewal process with interval distri-

bution F. 

Proof. It is sufficient to construct the joint distribution of a k-tuple 

of random variables (X1, 	, Xk) which has the properties (ii), (iii) 

and (iv) of Proposition 2. 2, with Prob(X. < x) = F(x) (i = 1, ...,k). 

If F has a continuous non-zero density function f, then the previous 

construction can be applied immediately for sufficiently small 

Otherwise a little more work is needed. Let A1, 	, A2k  be disjoint 

Borel subsets of ill such that for some 5 > 0, F(Ai ) > 5 (i = 1, 	, 2k). 
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k 

the signed measure G on R
k as follows. If, for some permutation 

- 31 - 

Then there exist positive measures m, on the Barel subsets of A, such 
1 	 1 

that rn. (A, ) = 5 (i = 1, 	,k) and such that F-m. is a positive measure 
1 1 

on 
1
. 

Let B j  = A2j-1 	
A2j (j = 1, 	, k) and for each permutation 

a = (al , 	, ak) of (1, 	,k) put 

Scr = 	x : x. E  B 
1 

If il , 	, ik  are distinct and 	, ik ), define 

	

1 if 	i, is even, 
(i) = 
— 	C.. -1 if 
	

is odd, 

a, 	--1),(i) c Sa , then on -R. (9 ..„ 	 ■ 
G = sgn(a) 1. (i) m. x ...Xm , 

11 	1k 

and elsewhere G = — 0. Then F(dxi ) ... F(dxk  ) - G(dx1 
 , ... , dx

k 
 1 is a 

probability distribution on R
k which has the required properties. To 

see this note that if z = (z1 
 , ... , zk

) ':-.- R
k
, then 

G(dz 1, 	,dz 	, 
1 	k- 1 ) = 	= G( (R, dz

2
, 	dzk

) = 0 , 

and that if z' is obtained from z by interchanging z.1  and zit,. for some 

i ( 1 < 1 < k-1), then 

G(dz) = 	. 

Now let F denote the ith convolution of F with itself (i > 1). 

The sequence 	... X-1, X0, X1, 	will be called a two-dimensional 

quasi-renewal sequence if, for each n < Z, i 	Z++, the distribution of 

Xn+1 	+ X . is F . The sequence will be called a k-dimensional 
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quasi-renewal sequence (k > 2) if, for any i1, 	k- 1 > 0 and any n, 

the random variables 

Y. = X 
J 	i  n+i+ 	+ii  ji l +  • ' ' 	Xn+i 	_1

i 	
( 1  < < k-1) 

1 	• • T j 
(1) 

are independently distributed, Y. having the distribution F 	. 

Proposition 2. 5. The interval sequence of the k-dimensional quasi-

renewal process constructed above is a k-dimensional quasi-renewal 

sequence. Conversely, if the mutually independent k-tuples 

Xrnk+1 	, X(m+i)k 	(m = 	-1, 0, 1, 	) are such that the 

sequence 1, Xn 's is a k-dimensional quasi-renewal sequence, then 

each such k-tuple must satisfy (ii) and (iii) of Proposition 2.2. 

Proof. If all the elements of a k-tuple appear among the Y, of (1), 

then at least two (consecutive) elements must appear in the same Y. 

In any case the mutual independence of the k-tuples ensures that the 

Y. have the specified distributions. 

The converse is established in three stages. First note that 

the Xn must be identically distributed. Then, by considering 	-tuples 

which straddle two of the given (independent) k-tuples, it may be proved 

inductively for 	< k-1, that any 	-tuple of consecutive Xn  is an 

-tuple of independent random variables. This proves (ii). Finally, 

(iii) is proved by considering the joint distribution of a k-tuple which 

straddles two of the given k-tuples. 

The particular k-dimensional quasi-renewal sequences defined 

above are not stationary sequences. However they may easily be made 

so by randomising the serial number of the first interval. For stationary 

quaSi-renewal sequences there is the result 
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Proposition 2. 6. Let 1)  be a completely stationary point process whose 

interval sequence is a two-dimensional quasi-renewal sequence. Then 

is a two-dimensional quasi-renewal process. 

Proof. This is immediate from the usual Palm-Khintchine formulae, 

which show that the distribution of a sum of consecutive asynchronous 

intervals may be expressed in terms of the distributions of sums of 

consecutive synchronous intervals. 

It seems likely that this result extends to k-dimensional quasi-

renewal sequences. However we have not yet been able to prove this. 

Lawrance (1972) has asked whether a process of Moran's type 

could have a non-zero serial correlation of intervals. The (negative) 

answer to this question is contained in the following amusing result. 

Proposition 2.7. Let -p be a second order quasi-renewal process 

of the type defined in Proposition 2.6. Then P has the same second 

order properties of counts and of intervals as the corresponding stationary 

renewal process. 

Proof. The second order counting properties depend only on the rate 

of the process and on the covariance density. These depend only on the 

distributions of sums of consecutive intervals. For the co.variances 

m (m = 1,2, 	) of the (stationary) interval sequence, we have 

var (X1+. . . +Xm+1) - var (X1+ • . . +Xm) = var (Xm+1) + 
i=1 

•„1 
giving a proof, by induction on m, that 	

m 
= 0. 
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Z. 4. DISCUSSION  

Many problems remain unsolved. Suppose that a sequence 

(... 	X0, X1, 	) is defined to be quasi-stationary if the (univariate) 

distribution of the sum of any number of consecutive X. is invariant 

under translation. Then the analogy with Proposition Z. 6 strongly sug- 

gests that, provided <E(X.) co, the sequence 	X 	may be imbedded X. 

simply 
in RR, to give a stationary point process. However an explicit construc- 

tion when the sequence 	X.1 does not have an imbedded renewal process 

has not been found. 

Conversely, it may be asked what conditions simple stationarity 

of a point process imposes on the interval sequence. It is known (Law-

ranee 1970 , also Chapter 4 in this thesis) that the Palm-Khintchine 

formulae hold, showing that the distribution of the sum of consecutive 

intervals starting from an arbitrary event, is invariant under translation. 

This does not necessarily imply quasi-stationarity of the interval se-

quence though. Here the distinction between an event at a specific 

(arbitrary) time, and an event with a specific (arbitrary) serial number, 

is important. 
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CHAPTER 3 

THE SEMI-MARKOV MODEL FOR A POINT PROCESS  

3. 1.  INTRODUCTION AND SUMMARY  

The general semi-Markov process is used to present a measure-

theoretic framework for a wide class of point processes. This enables 

the basic relations between synchronous and asynchronous distributions 

to be stated and proved in a simple form. It is shown how operations 

on the semi-Markov process may be used to construct more complicated 

point processes from simple ones. The method is best suited to processes 

which are defined by their interval properties. Any point process which 

evolves in time in such a way that its behaviour in (t, co) depends on its 

behaviour in (-co, t1 only through a process W
t 

of 'initial conditions' 

can be represented in this way. The fundamental theorem of Section 

3. 3 relates the synchronous and asynchronous stationary initial condi-

tions. Some examples are considered briefly to illustrate the approach. 

These include processes with Markov-dependent intervals, some doubly 

stochastic processes and clustering processes. A generalised Palm-

Khintchine formula is proved in Section 3. 6, and extended to non-orderly 

processes in Section 3. 7. 

In Chapter 4 it will be shown how the semi-Markov construction 

may be used to tackle multivariate processes. The heavy dependence 

on the order properties of R precludes any simple extension to pro-

cesses defined in
n
, or more general spaces. 
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3. 2. THE SEMI-MARKOV MODEL  

Let 	, 	W0, W1, ... 	be a discrete parameter Markov 

chain with a quite general state space 	and stationary transition 

function 

P 	 w(A(4) Prob(Wii,i 	A W. 	) , 	 (1) 

where A 	a 6-field of subsets of .NJ . It is assumed that WO 
 

has an initial distribution q0(.) defined on 	Conditionally on the 

entire realisation of this chain, the real, non-negative random variable 

X. 
	
has distribution 

F(xi.+1.1 	= Prob(Xj+1 	Wi  = 	W. 	= wi+i ) 	
(2) 

and the Cz X. 	are conditionally independent g iven the 	. Usually 

only orderly point processes will be considered and it will accordingly 

be assumed that F satisfies 

Hypothesis Hl. With probability one the distributions F(x:., . ) have no 

atoms at x = 0, i.e. with probability one F(01 Wi, W.+i ) = 0 for all 

i. 

A standard technique, discussed in Section 3.4, enables most 

non-orderly processes to be analysed by considering  an induced orderly 

process. 

It follows from this construction that 	 X. W., X 
1 	1 -1 

(i = 	-1, 0, 1, 	) is' also a Markov chain, with state space 

„ 
Le\i x fil

+, and transition function 

Q(A,x 	) = 	p(dwi  w0) F('w0, w1 ) 

(...) E.T.A 

(3) 
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defined on the usual product cr-field. A realisation of this Markov chain 

defines a realisation of the associated point process which has interval 

sequence 	Xi 	= 	-1, 0, 1, 	). Specifically, the associated 

point process with an event at the origin is defined by placing the nth 

and -nth events (for n > 0) at the points 

	

n 	 0 

T
n 

= 	X. ; 
1 	

T 
-n 

= - 	\ 	X. , 
../L 	1 

	

i=1 	 i=1-n 

respectively. A basic requirement is that the 	T. 	should have no 

finite limit points, so we assume 

Hypothesis H2  . With probability one, Tn  —> oo and T ...n  —> -oo as n —> OD . 

Let 

Nt =sup n  <t 

Ut = t - T 	. 
Nt  

(4)  

(5)  

Then with probability one, N
t and U

t are each right-continuous every-

where, with points of discontinuity only at events of the associated 

point process. 

Hypothesis H3. The Markov chain 	has a unique stationary 

distribution q(. ) on 

Thus q(. ) is the unique solution of 

q(A) = 	p(A; co)q(do.)) = 

cuE A x=0 

G (A, dx co) q(dco) . 

(6) 

Then the augmented Markov chain W. X. . also has a unique stationary 
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distribution, given by 

q(dco, d.x) = 	q(dco0  ) p(dc.o ,' coo
) F(dx w0, co) 
	

(7) 
6.) 	e'Ly 

0 	"t4  

Proposition 3. 1. If W0  has the distribution q(. ), then the interval se- 

quence 	X-1, X0, X1, 	is a strictly stationary process in 
 -) 

discrete time. 

Proof. The joint distributions of the 	X., W. 1 	1 

translation. 

are invariant under 

For t C R, define Wt = W
N

. Then we have the important result 
t 

 

Proposition 3. 2. The process
'  Wt, Ut 	is a well-defined Markov 

process in continuous time with state space 11,-,-I j x R. The process 

is separable. 

Proof. The separability follows from the fact that 	has only 

finitely many discontinuities in bounded intervals. It is clearly possible 

c - 
to write down the joint distribution of W , U - (i = 1, 	, k) for 

ti 	t. 

any k 	Z, 	R, as a countable sum of terms corresponding 

to the number of events in (t.,t. 	(i = 1, ... ,k-1). The Markov 1 1+1- 

property follows from the form of this distribution: the transition prob-

abilities are exhibited in Proposition 3.4 below. 

Proposition 3. 3. The finite-dimensional distributions of the associated 

point process are determined by the finite-dimensional distributions of 

the Ut  

Proof. Let N denote the counting measure of the associated point process 

	

. and let R be a finite union of half-open intervals 	Then 
1 1 

Prob N(R) t  0 = Prob inf (Ut) = 0 
t R 
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By separability the right hand side is determined by the joint distribu- 

tions of the 	Ut  . However, the assumption of orderliness (HI) and 

Proposition 1.2 ensure that knowledge of the left hand side for all R 

determines the finite-dimensional distributions of the process. 

We define the conditional interval survivor function 

` -'(,c 1 Loo ) = 
	p(dwi  1 wo ) 11-F (x i wo, 	= Prob Xi  > x \ WO  = w0. 

wi EW 	
(8) 

The transition function p 	(du), du !coo, uo ) of LW.t , Utl can now be 

written down. We define 

G (dw , dui 	, u ) = 
1 	1 	0 	0 	 (110 ) w0) 

and, inductively, n-step analogues of G, 

Gn(dw i , ujwo, u0 ) = 	

ti+ G

1  (d`'', dy lw0, u0 )Gn _ 1(dw1  , u-y lw, 0). 

w C `L4` J  y=0- 	
(10) 

Then n 

Gn(A, ulw , u ) = Prob ( 	X. < u +u, W 	A I w = 	x > u) . 

	

0 0 	0 	n 	0 0 	1 
1=1 

Proposition 3. 4. The transition functions of the process We UtS 

are given by 
du)1 du1 	4.-Y10.) ) 0 	0  5 5 

o wo )  
(u1  > 	) (11) 

(dw1, du l l w0, u 0) 

  

OD 

 

,) Gn(dw i , T-du 	, u ) (u1 	) 

	

1 0 0 1 	• 
n=1 

(12) 

wo )F(uo÷clu f wo, co l  ) 
(9) 

Proof. If u1  > "")/ then u1 = u0 + -6 and the interval in progress at 
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time t must still be in progress at time t 	. If u1  < "6 , then n 

events can occur in (t, t+ 	- u] (n = 1, 2, ... ) including an event at 

t + 	-u, and the interval (t 	-u, t +TA must be empty. 

3. 3. THE STATIONARY SEMI-MARKOV PROCESS 

The fundamental result proved below has appeared in several 

guises in the literature on semi-Markov processes. y inlar (1969a) 

adopts an approach heavily dependent on the theory of functions. Orey 

(1961) regards a result essentially equivalent to Proposition 3.5 as too 

obvious to require proof. His formulation differs from ours, in that he 

assumes that the length of the (n+l)th interval is a deterministic function 

of W. However, as he points out, the general process can be treated 

by his methods if the state space is suitably extended. We have been 

unable to see how the dterministic assumption simplies the argument. 

For processes with countable state space, the result is an immediate 

corollary of certainrerewal-type limit theorems. We refer to Cinlar 

(1969b) and Pyke and Schaufele (1964). Note that our condition H2 implies 

the strong regularity of Pyke and Schaufele (1964). We shall give a 

direct proof that the postulated stationary distribution is invariant. 

Such a proof is scarcely more difficult for the general semi-Markov 

process than it is for the renewal process considered by Doob (1948). 

It does not seem to have been given before in this form. 

Lemma  . For any function r(x, w) ( R x 7,,j" —> R+), any a, b € (R+, 

0 rij and any measurable A c 	, we have 



a 
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roo 	 a 

 

r(x, co) G(dco,b+u-dxico0)du =I 	r(x, co) 	 G (dco, du co0)dx., 

u=0 	 x=0 co cA 	u=b-x 

 

(1) 

Proof. This is a simple application of Fubini's theorem. Note that the 

inclusion or exclusion of the endpoints in the ranges of integration does 

not alter the value of either side of (1). 

Proposition 3.5. If (H1), (H2) and (H3) are satisfied, the Markov process 
ev 
Wt' Ut 	(t C 2.) with state space clvix R+ and transition functions 

given by (3.2.11) and (3.2.12) has an essentially unique stationary 

measure q given by 

Ii(dco, du) = q(dco) 	I co) du . 	 (2 ) 

Pr oof. (i) Existence  . Let CI'0  (dco0'  du 0  ) = q(du)0 ) 31u0  Iwo ) du0. We shall 

show that q (dco, du) is also given by (2). Now 

r 00 

„, 
'6 

q (dco, du) = 

u0=0  (4)0 , 

   

40 (dco0, du ) du), du w0, u (3 ) 

 

If u > Y, , substitution of (3.2. 11) into (3) gives the result at once. If 

u < 	, (3) and (3.2.12) give 

(du), du) = 	co) 
	

Gn(dco, — 	w0, u0)(u0 .wo )q(dwo )duo  

n=1 u0=0 co0c1 31 	
(4) 

We denote the corresponding expression with k replacing co in the sum-

mation 

 

^Nd 

mation by q (k)(dco, du). We show that 

(k) q(dco) 	w)du - -A 	I (dw, du)= 	w)du 	Gk (dco, L. -u 	0)q(dco0 ) 

(1)0 E-141 	 (5) 
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in the sense that the integrals of the two sides over any measurable 

subset of V1 x al are equal. To prove (5) for k = 1, we write the 

left-hand side, using (3. 2. 6), as 

OD 

) 	q(dwo) du J 	G (dw, dy I wo ) 

6)0(14 	y=0 

G(dw,T-E-u - u o.)0  )du 

By the lemma, the second term in the bracket is 

oo 

G (dw, dyj wo ) . 

y=T -u 

To prove (5) inductively for a general k it is sufficient to show that 

j Gk+1 (dco, 	-du 	, u ) 5-(u Ico ) q(du.) ) du 0 0 

0-)o 

( IcQ)du 	Gk(dco,'t -u 	0)q(tho0)- 	Gk+ I (do), -u too, 0)q(dw 	. 0 )' 
c°0 "2ND, 

This can be proved by expanding the terms containing G
k+1 by the con-

volution formula (3. 2. 10) and applying the lemma to the right hand side. 

By assumption H2 the right hand side of (5) tends to 0 as k —> co. 

Since q (k)  (dw, du) —> q „ (dw, du) as k —> oo, this proves existence. 

(ii) Uniqueness. It follows from (3.2.11) that any stationary 

distribution for-r  ,W t  , U t ;- has the form 

qt  (dw) 	(u !co) du . 

If now we write down the equation corresponding to (4) for this postulated 

stationary distribution and allow u —> 	-, the terms in whith n > 1 

(u I (A) 

j 
0 
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become negligible compared to the first term by Hl. After cancellation 

we see that q' must satisfy (3. Z. 6), and so, by HZ, q' = q. 

Proposition 3. 6. A process satisfying H1, }12 and H3 has .a stationary 

probability distribution if and only if H4 below is satisfied. 

Hypothesis  H4 . The mean interval length is finite, i. e. 

q(dw) -(ti.lco)du < co . 

w04' =0 

Proof. For then [I 	(u! )q(dw)du is a stationary probability distribution. *: 

We can now give definitions of synchronous and asynchronous 

realisations of the associated point process. For the process 	.111 , U t t- 

enables us to construct realisations with any prescribed initial conditions, 

i.e. not necessarily with an event at the origin. By a 'synchronous' 

process, with the origin at an 'average event' (cf. Lawrance 1971 ) 

is meant a process which has initial distribution 

iio(dw, du) = q(dw) 	. 	 (6) 

An asynchronous process, with the origin at an 'arbitrary time', is 

obtained from the stationary initial distribution 

(do.), du) = µ 	q(dw) 	(ul w)du . 	 (7) 

Then we have 

Proposition 3. 7. (i) The intervals of the synchronous process form a 

stationary discrete time process. 

(ii) The asynchronous point process is completely stationary 

and has rate p. 

Proof, Part ) is Proposition 3.1 and Part 6.i) follows from Propositions 

3. 3 and 3. 6. 

= 
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Following Khintchine (1955) and others, we may define an 'arbi-

trary event' in the associated point process by taking the limit as h —> 0+ 

of the conditional distribution ofWt, Ut 	at an arbitrary time, given 

that U
t 

< h. 

Proposition 3.8. 'Average' and 'Arbitrary' event initial conditions are 

equivalent for processes satisfying all of H1 - 1-14. 

Proof. This is immediate by dominated convergence, since 

lim 	NI 	1 for almost all co. 
u—> 0 

Note that orderliness is essential here. Without it we cannot 

sensibly define 'arbitrary' events. 'Average' events are still well-

defined, however, and can be used to give an extended meaning to many 

of the Palm-Khintchine formulae discussed below. 

3.4. OPERATIONS ON THE SEMI-MARKOV MODEL 

.Any point process has a formal representation as a semi- 

, 
Markov process, as we can take fry to be( R)00 and Wn the entire 

interval sequence up to the nth event, W
n = i ...X 	, X n-1 n .  However, 

measure-theoretic difficulties arise in defining appropriate transition 

functions p(do)1  w0  ) and stationary measures q(dw) on 	. These may 

be circumvented for particular processes by giving detailed constructions. 

It is helpful first to define some operations on the class of semi-Markov 

processes. 

(A) Adjoining  . Given a semi-Markov process 	Wt, Ut 	, it is often 

helpful to form a new semi-Markov process with larger state space but 

the same associated point process. We consider a few examples. 
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(i) Independent Adjoining  . This is analogous to the independent 

marking discussed by Matthes (1963). Let 	Z• 	0,+1, +2,... ) 

be any sequence of independent identically distributed random variables 

taking values in the space 4 / according to a probability measure p 	). Z Z 

Then if 	 0,land Wan = n  , Z 	, p(dw11 0) induces the 

Markov transition function pa (dwa l coa0 	, ) on `1,ra, where 

pa(dwl a 1w0a) = P (clw1 1w0 ) pZ 

The stationary distribution of this chain is 

qa (d2) _ (dw) pz (d)z  ) 

and of the continuous time process 	a 
2..  Wt 	is 

cia
(d
:, du)  _ w) q(cluidu pz(dwz ) . 

Thus Z = z is independent of 	 as would be expected. t  ZN 
 

(ii) Adjoining the Next Interval and State. Let 

kr 	!.;- x 	ilt+ and Wa
n = (Wn, Wn+1' Xn+1 ) 	The transition 

a 

function is 

pa  (dco1a  wOa ) = p(dw2 1 co l ) F (dx2 1 w1 , w2 ) . 

The new conditional interval distribution is degenerate. The induced 

stationary distribution of Wn 
a  is given by 

qa(dwoa ) = q(dw0 ) p (dcoi  1 wo ) F(clx i lwo, w i ) , 

and that of (Wta-  , Ut ) is 

Za(dwa, du) = pq(dcoo ) p (dw i  I wo ) F(dx, i w0, w1  ) 
iux  du , 

1 

c 1 (u xi ) , 
where Iu 

x11 0 (u >xi). 



and W a 
n 	Iwn-l' Wni • 

Let 1,,r a  = 	x  '1,\Y Then the transition 

function and stationary distribution are given by 

0 
dca

l  
pa(do)

1  a
l co0  a

) = p(d(A)
1 

1 w0Y ) 50) „ 0  (8) 
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Note that the conditional distribution of the backward recurrence time 

Ut 
given W

t

a 
 is uniform over 10,x1 ), where x

1 
is the length of the 

interval in progress at time t. Moreover, the unconditional distribution 

of the length of the interval in progress, obtained from (1) by integrating 

out (A)o' co
l and u, is pxIF (cbc1 ), where F(. ) is the synchronous marginal 

interval distribution. These are precisely the results obtained by 

heuristic length-biased sampling arguments (cf. Cox and Lewis 1966). 

(iii) Adjoining the Previous State  

0 
where Wn

a 
	ze Wn  , Wn  

qa(dwi a )  = q(d(,),  0) p(dwi  

,a a 	 0 
q (d(A) 	, du) = q(d(A) °) p(d(A)1 	(A)]. ) 	(u I co )du . 1 	 1 	 1 

Thus the stationary distribution of Wn 
a 
 is obtained by giving the first 

component Wn
0 
 = Wn-1 the distribution q(d(A)). The asynchronous 

stationary distribution is always obtained from the synchronous stationary 

distribution by Proposition 3.5. 

(B) Filtering. Let 
	

be measurable, and suppose that entry 

into vv occurs infinitely often with probability one. Then the filtered 

process is obtained by deleting all transitions except those into 
	of 

Filtering of processes with countable state space has been discussed 

by Cinlar (1969b). The transition functions are given by 

(A) 	) 
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f
(x 

I
wo

f
, col f

) p(dwi
f 

wo
f F 	 ) 

CO 

r=0 
6)1' 

(r) 	(r+1) 

p(c1c7.) 
r 'cz- x <x 
0 

Of 
	f — )p(dco2'1w1 ). . p(dco1 i cor ) 

cTir C-INT \1
f 

x F(dxo lwo 	F(dx 
f 

! co-1  co2 
 )...F(clx 

r  !, co r, col ) . 

It is easy to verify that the stationary distribution on V-  is 

f co f q(dwf )  
q (d ) = 

q ( ) 
 

and that the intensity of the filtered process is p q(dw ). In general 

the asynchronous stationary distribution does not take a simple form. 

f 	.-, 	 i. e. 	f 
If w 	! 	is an atom of q(. ), if q( w 	) > 0, and if 

f 
lco .':, , then the filtered process is a renewal process. This 

• 

single-point filtering is a useful device when 	is countable, but will 

not usually be possible otherwise. 

(C) Superposition. Let (Wit (a), Ut (a)) and (171-1t (13), Ut(b)) be two inde-

pendent semi-Markov processes. The superposition can be represented 

as a semi-Markov process in the following way. Define 

(a) 	(b) =W 	W 	W 	V ) , n n n 

where 

0 if the nth event is of type A, 

I = n 	1 if the nth event is of type B, 

Wn
(a) 	(b) 

and Wn 	define the states of the two processes just after the nth 

event (in the combined process), and Vn is the semi-synchronous 
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backward recurrence time. The transition probabilities of the Markov 

chain ZWns 3  involve the conditional interval distributions Fa and Fb 

of the two processes as well as the Markov transition probabilities. 

There are four possibilities for transitions W0  —> W1
s
, corresponding 

to the four values of (Icy: 

(A) I0 = 0, I1 = 0. Here the transition probability is 

ps(0,c1co1  (a)'  dco1  (13)'  dv1 	' 0 co0 	' (a)  co0 	' (b)  v0  ) 

do.) (b) (b), 

= pa(thoI 
(a) ?I  co0

(a)) F (dv -v 	(a), 	(a). 	(b) b 	co 0  
a 1 0, 	 ' w00 

b 	I 0 (b) 

and the conditional distribution of X1 is degenerate, i. e. 

1 
F(dx1  I coos, co l s ) = 5 

v - 1 v0 

(B) I0  = 0, I1 = 1. Here we obtain 

ps(1,c1co (a)  dco (b)  d 	0 co (a) 	(b)  
1 	1 	v l 	0 wo ,v0' 

(a) 
(b) 	(b), clw F (dv -1-v 	co 	co 	1 

pb (dcol (b),  co0(b)) 	b 	1 	0 	0 	1 	 (a)1  
(b), coo(a) j̀a‘ . 1 w0 

w0 

The conditional distribution of X1 is then 

F(dx1  s 	s 	1 ) = 
dx 

, 
v l 

Cases (C) and (D) corresponding to Io  = 1, I1  = 0 and I0  = 1, I1  = 1 

can be deduced from (B) and (A) by exchanging A and B throughout. 

The synchronous stationary distribution is 

dx 
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qs  (0, dw(a) 	 PaPb 

9.  
, 	03),  dv ) = 

Pa+Pb a( w 	) cib(clu)(3)  ) 
w
(b))dv, 

qs  (1, do)(a), clu)(b), dv) - PaPb 	 (b) 	I (a) 
p 	qa (dw(a)) qb (dw ) 	(v 	)dy 

a • a b 

The asynchronous stationary distribution q
s  is given by 

qs  (0, dw(a), dw(b), dv, du) 

= p a pb q a (dw
(a))qb ldw

(b)
) a(u!  w(a)) 1:b (u+v 	))du dv , 

with a similar result when I = 1. 

3. 5 SOME EXAMPLES  

We now consider a few examples of point processes which can 

be given a semi-Markov representation. 

(A) The Renewal Process . For the renewal process, 	may be 

taken as a one-point set. The transition functions and stationary dis-

tribution of the Markov chain are trivial. Suppose that the interval 

distribution has density 0(x), survivor function 	(x) and mean 

The usual renewal density is 

00 

k0(x) = 
	0

n`  (x) , 	 (1) 

n=0 

where 
nk 

(x) is the n-fold convolution of with itself, (0
04. 
 (x) = 5

dx 
0 

We define also the delayed renewal density 

x 

Vi(x, u) = 	fE(Y.jru)  

	

(u) 	
-y) 
	

(2) 

y=0 

This is the renewal density of a modified process in which the component 



k
feS 
	-u1L 0 ) '7•`:(u1  ) 

	
(u < `'' ) , 

du
1  (u0  ) 

6u04 	(u0) 
	>`t. ) 

u041 	0) 	
1 

(3) 

gi(clwclu) = pq(dw p(dw
l  

dx 
6

43 
du 

1 
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in use at t = 0 is known to have age u. The asynchronous process 	Ut  

has transition density 

(B) Countable Semi-Markov Processes. These will be discussed in 

Chapter 6. 

(C) The Wold Process and Extensions. Suppose that the state variable 

at the nth event is the length of the previous interval, so that 
dx 

p(dwn w
n-1 

 ) = H(dw
n n- I ) say, and F (dx

n wn-1, 
w

n
) = 	Then 

n 
we have a representation of the Markov process of intervals discussed 

by Wold (1948a,, 1948b), Cox (1955) and others. If q(dw) is the stationary 

distribution for - W 	, then the synchronous stationary interval distri- 
' n- 

bution is 

(„) n-1-1 q (dwn
) p (dw

n-Fl
•  w

n
) F (dx w

n, wn÷1 ) = q(clx) • 

The asynchronous stationary initial conditions are given by 

X= U W 

= pq(dw) 	w) du . 

Similarly, the k-dependerit renewal process has a representation with 

k 
( 	) and Wn  = (Xn, Xn _ i , ..., X 

n-k+1 )  • 

(D) The Doubly Stochastic Poisson Process with Markovian Rate . Any 

semi-Markov representation of the general doubly stochastic Poisson 



- 51 - 

process must necessarily be rather complicated. However, when the 

rate process NO is Markovian, there exists a representation with 

= R. For we can take Wn 
= .'\(Tn

). The transition functions 

and conditional interval distributions can be written down, but not usually 

in a simple form. Particular processes for which this approach might 

prove useful are the random hazard process studied by Gayer (1963) 

and Lawrance (1971), the shot noise process with exponential decay 

(cf. Chapter 6) and the Ornstein-Uhlenbeck process also discussed by 

Lawrance (1971). 

(E) Clustering Processes. A fairly general treatment of cluster pro-

cesses can be given from the semi-Markov viewpoint, but is extremely 

messy. We shall outline the approach without giving full details.- It 

is assumed that a process of main events is given by a semi-Markov 

process 	W , Z -S . Each main event independently generates a cluster 
n n 

of subsidiary events, which are here assumed to follow the main event. 

The cluster structure is specified by the random variables (M, Y1, 	, Ym) 

where M is the number of events generated (possibly zero), Y I 
is the 

distance from the main event to the first subsidiary event of the cluster 

and Y. (2 < i < M) are the distances between successive subsidiary 
1 

events. We say that the cluster is operative at time t if the main event 

occurs at or before time t and the last subsidiary event occurs after 

time t. Then the state variable corresponding to the full process must 

include the state and the backward recurrence time of the main process, 

the number of operative clusters and a specification of the relevant 

history of each. The existence of a stationary distribution for the main 



n+1) 

q(dw0  )p(dw 

j 
v=x co c. 

1 . 0 

) F(dvt 	, w p(dco. 	)F (dx. 	co ) 0 	 -1 	-1' i 
i=2 
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process does not ensure the existence of a stationary cluster process 

without some conditions on the cluster structure. 

3. 6. PALM-KHINTCHINE TYPE RESULTS  

The semi-Markov representation allows a simple derivation 

of the so called 'generalised Palm-Khintchine relations' connecting the 

joint distributions of synchronous and asynchronous intervals. We 

shall denote the synchronous sequence, measured from an 'arbitrary 

event', by (Xi , X2, 	), with joint distributions F1(dx1), F2(clx i ,dx2), 

The asynchronous sequence (X1, 	) measured from an arbitrary 

time will have joint distributions F i (dx, ), F2(dxi ,d.x2), etc. We assume 

that assumptions HI - H4 are satisfied. 

Proposition 3. 9.  The joint distributions of n successive intervals under 

asynchronous and synchronous sampling are related by the equation 

F
n

(dx
l
, dx

2' 
. 	, dx

n) = p F - (x , co), dx , 	, dx -dx . I 	2 	n.  1 
(1) 

Proof. The left hand side is 

(n+1) 

q(dco0 
	- ) `-(ul w0  )du p(dw1  ! 

n 

F(u+dxw , 
1= 	0 

) 
1 

co 

P j  

u=0 wo  

w
n 

(u 	w0)  

p (dw
i 
 co

i - 1 
) F (dx

i 
co

i- 1 
, co

i
) 

i=2 

w n 
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(by the lemma to theorem 2. 5), and this is the same as the right-hand 

side. 

This result is the integral form of a relation conjectured in 

Lawrance (1971). In view of its importance we give an alternative, 

more intuitive, derivation using arguments from length-biased sampling. 

Suppose that we construct a synchronous realisation of the process and 

pick a point of R at random, independently of the process, to define 

the origin of the asynchronous process. Then the joint distribution of 

the length Y of the interval in which the origin falls and of the succeeding 

n-1 intervals X2, 	, Xn  is 

yF (dy, dx2, . . . , dxn) 

(n) 
y F(dy, dx , 	, dx n) 

2 	n 

since the chance of a random point falling in a particular interval is 

proportional to its length but is otherwise independent of the process. 

The position of this random origin within the interval is uniformly dis-

tributed over its length (0, y), so that 

co 
r dx 1 

F (dx • . . , dx
n

) = 	p y F (dy, dx
2' 

 . . . , dx
n
) 

y 
y=x1  

p F((x , co), dx 2, 	, dx )dx 
it 

	

1 	2 	n 1 

All the usual moment formulae may be deduced from (1). For 

n = 1, (1) reduces to the well-known relation between the distributions 

of intervals and forward recurrence times. 

A slightly stronger result than Proposition 3. 9 is needed for 

the work of Chapter 4. 

= p y 	 , dxn) , 
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Proposition 3.10. Let E be any set in the cr-field generated by 

W1, X2, W2, X3, ... , and let F(dx, E), F(dx, E) denote the improper 

asynchronous and synchronous distributions, i. e. 

F(dxi,E)= Prob 1)7(1  

F(dx1 
 ,E) = Prob 

dx i , (W1,X2,...) C 

1 ,X2 
	C ,•••)E Es. 

Then F(dx
1
,E) = p F (x1, oo), E dxl .  

Proof. This is the same as the proof of Proposition 3. 9, except that 

n 00 

  

the product 	3 is replaced by 	and the domain of integration 

i=2 
	

1=2 

(°) 1 	• ,wn) 	by l• (0)
1

, x
2' 	

) C E 	. 

It is also possible to derive relations involving both the forward 

and backward recurrence times. For example the result (Matthes, 

1963) 

f z (u, v) = p f l  (u v) 

for the joint density of the forward and backward recurrence times holds 

if the density f1  of F
1 

exists. 

3. 7. NON-ORDERLY POINT PROCESSES  

Although only orderly processes will be discussed in later chapters 

we shall show here how the methods developed in this chapter may be 

used to attack non-orderly processes. Specifically we shall show that 

Proposition 3. 9 does not require orderliness. We shall use the standard 

device of collapsing the point process (Milne, 1971), replacing each 

multiple occurrence by a single occurrence at the same point to define 

an induced orderly point process. Some care is needed over the definition 
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of the state variable W
n 

of the collapsed process. For our purposes 

it is sufficient to take W
n 

= (W,K), where W is the final state 
n n 

 
n. 

entered by the original process at each transition and K
n is the multi-

plicity of the transition. A discussion of non-orderly multivariate 

processes would require a larger state variable. Note that in contin-

uous time W
t 

= W
t' and that the conditional distributions p(dw

n (.4n-1 ) 

and F(dx 	(.4
n

) are independent of 
kn-1. Thus LWn■ is itself 

a Markov chain. 

Lemma. Suppose that a semi-Markov process X, W 
n n• satisfies 

H2, H3 and H4. Then the collapsed process satisfies all of HI - 4. 

Proof. This is straightforward. The stationary distribution of the 

chaiW—  is q(dco) = a
-1 

r) 
	
j (01c.o) q(dco), where c,<= 	q(dw) ,:"-(0;o)- dco > 0. 

The intensity of the collapsed process is ap. 

Proposition 3.11. The relation between synchronous and asynchronous 

interval distributions given by Proposition 3. 9 holds even if H3 is not 

satisfied. 

Proof. We apply Proposition 3.10 to the collapsed process, noting 

that any event E of the o--field generated by (X2, X3, 	) belongs also 

to the o--field generated by (W1, X2, W2, 	). We have, for x i  > 0, 

F (dx i , E) = a F (dx i , E) 

Hence 

F (clx , E) = F (clic E) = apF'' 	(x l , co), E t•;,. 
1 	 1 

= p F 	, E 
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3. 8. DISCUSSION 

It would be very convenient if a semi-Markov representation 

could be found for any stationary stochastic point process with finite 

rate. As has been pointed out in Section 3.4, a rigorous construction 

would require a rather deeper measure-theoretic background than 

has been considered here. The constructive approach given above is 

difficult to apply, for example, to the most general form of the doubly 

stochastic Poisson process. 

A general restriction of the model is that it cannot apply to 

processes with infinite rate. For if p = oo then E(Xn : Wn_ i , Wn) = 0 

almost surely, for each n and thus Xn 
= 0 almost surely for each n, 

contradicting 1-Il. 
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CHAPTER 4 

SOME APPLICATIONS TO MULTIVARIATE POINT PROCESSES  

4.1. INTRODUCTION AND PRELIMINARY DEFINITIONS  

The semi-Markov model provides a useful approach to the theory 

of multivariate point processes. In Section 4.2, the results of Chapter 

3 are used to derive a simple generalisation to multivariate processes 

of the usual formula for the forward recurrence time in a uni.variate 

process with known interval distribution. In Section 4.3, this result 

is used to derive Palm-Khintchine formulae for multivariate processes. 

The concept of deterministic thinning introduced here appears to be new. 

For bivariate processes results of Milne (1971) and Wisniewski.(1972, 

1973) are recovered. 

An m-variate semi-Markov process is a semi-Markov process 

Xn, W 	whose state space "LAF is partitioned into in measurable 

subsets 2 • • • P 
1 	

A transition into 	defines an event of 

type i. It is assumed that all of the hypotheses H1 - 4 of Chapter 3 

are satisfied.  Thus the Markov chain .V1/4rn-S has a unique stationary 

distribution q(dco) which defines synchronous and asynchronous stationary 

initial conditions in the usual way. Moreover, the associated (multi-

variate) point process is strongly orderly and the rate p of the super- 

posed process satisfies '0 < p < oo. Provided that q 	> 0 

(1 < i < m), the chain 	n 
	enters each 	infinitely often, and 

so the marginal processes obtained by filtering by each ~~` in turn 

are all well defined, with the transition functions given in Section 3.4. 

If the original process is stationary each marginal process is also 
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stationary and the rates pi  (1 < i < m) satisfy .\ pi  = p. Synchronous 

and asynchronous realisations are defined as in Chapter 3. A semi-

synchronous realisation, corresponding to an 'average' or 'arbitrary' 

event of specified type i at the origin, is obtained by conditioning the 

stationary distribution q(dw) of W0  on the cr-event 

Thus 

d.( w) - q(do)) 	((A) € tVi) • 
q.(14 

WS e 1-A-0 • 

(1) 

The joint distributions of the synchronous forward recurrence 

times 

times 

times 

V.. 	: 

5 V
0j  : 

ij  

. < j < m 	, 

1 < j < m 

1 < j < m 
 — — 

of the semi-synchronous forward recurrence 

and of the asynchronous forward recurrence 

may all be expressed in terms of the basic 

functions q(. 	p(. ) and F(. 1. 	). Note that the first suffix, i, denotes 

the type of event, if any, at the origin and the second suffix, j, the type 

of event to which the recurrence time is measured. There is a simple 

relation connecting the semi-synchronous and synchronous distributions 

of the process. 

Proposition 4.1. Let E be any cr-set in the o--field generated by 

X1, W1, X2, W2, ... , and let p. (E) and pi(E) (1 < i < m) denote the 

synchronous and semi-synchronous probabilities of E, respectively. 

Then 
m 

p p. (E) 	pi  pi(E) . 	 (2,) 

1=1 

Proof. We have 
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pp.(E)=p 
J

Prob(E (4)) q(clw) 

m 
.\\ P rob (El co) q(dc.4)  = / cl(i)i ) 	 q( 	) 
i=1 	 € 

Pi  Pi  (E) • 
i=1 

4. 2. A MULTIVARIATE RECURRENCE TIME RELATION  

Let X.. (0 < i < m, 1 < j < m) be defined as follows. Let 1,1 	_ 	_ 

= (a l , ... , am) be the unique permutation of Y1L = (1, 	, m) such that 

V. < r < V. 
1 

Define X =V. and X = V -V 	(j > 1). Suppose that the improper 
il =Vi 	an d

ij 	ia. 
' 

joint distributions of (X 	... , X. ) corresponding to each a are 

Fi(1 	(dx 	,dxm). Then Propositions 3.10 and 4. 1 give, for the 

asynchronous distribution 

F0  (dxi , 	, dxm) = p F. (& ct (x1 , co), dxz, 	, dx 

= 	Pi 

 

F. 	(x1,  co),  dxv • • • , 
i=1 

(1)  

Define the synchronous and asynchronous joint survivor functions 

-- (v , 	, v ) = Prob V.. > v. (1 < j < 	(i = 0,1, ... ,m) . i 	 13 1 - 

(2)  

Then equation (1) yields a simple relation among the 	,. For clarity 

this is proved first for m = 2, and then generally. 



- y=0 z=v2-y 

rco 

Fi  (2)(dz, dy) . 	(6) 

y=0 z=v2  

F1(
1 )(dz, dy) - 

V - V 2 1 

- 60 - 

Proposition 4. 2. The function 	
0(v1, v2 ) is absolutely continuous 

as a function of v1 when v2 is held fixed and vice versa. Moreover, 

v ,v2 ). 

(3)  

Proof. Here there are only two permutations of 	say (1) = (1, 2) 

and (2) = (2,1). If v1  < v2  , the asynchronous bivariate survivor function 

is 

oo 	r c 0 	 co 

F (1)(dx, dy) + 	(9° 	(2 ) 5-  (v , v 	 1  F 	(dx, dy) , 0 1 2 J 	- 	+ 0 	 j  0 
x=v i  y=(v2-x) 	 X=V2  y=0 (4)  

where (v2  -x)-k° denotes max (v2-x, 0). Substitution of (1) into (4) gives,  , 

for the coefficient of p1  in 3-(v i , v2 ),  

Co 	, 00 	 c oo 	r OD ( OD 

F1 
 (1)(dz, dy)dx F1 

 (2)(dz, dy)dx. 

x=v1 =(v2-x) z=x 	 x=v2 y=0 z=x 

For a fixed v2, this is an integral with respect to v1 of 

la 	4.  

12' 	O'vl' v2' - -p1 	1 (v1 v2 )  - Pa 

' Co 

y= - v2 v  1 

 

co 

  

 

F1 
 (1)(dz, dy) , (5 ) 

Z = V 1 

  

and, for a fixed v1, it is an integral with respect to v
2 of 

Combination of (5) and (6) after changing the order of integration gives 

the expression corresponding to (4) for the semi-synchronous survivor 

function 1 (v1, v2 ). The analogous result holds for the coefficient 
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of p2  and the case v1  > v2  may be dealt with similarly. 

This result immediately yields a number of moment formulae. 

For example, integration of (3) over the domain 0 < v1, vz  < oo gives 

E(V01 ) + E(V02) = p1 E(V11 V12)-1-,  p2 E(V21 
V22), 	(7) 

and integration of (3) over the domain 0 < v2 
 < co , 0 < u < v

2 
 < co gives 

— —  
2 

1 	 1 pi  E Vii  Vi2(Vii+Viz )k (V.01 2)+ -2-1 E(V022)+ E(V01 V02 )  = 
i=1 

(8 ) 

These give the formulae of Wisniewski (1972) quoted by Cox and Lewis 

(1972), on application of the usual univariate results of the form 

E(V01 2) =(1/3)P1 E(V113)  • They hold in the sense that if either side 

is finite, then the other side is also and they are equal. 

In the general case we have 

Proposition 4. 3. The asynchronous and semi-synchronous joint distri-

butions of forward recurrence times of an m-variate semi-Markov 

point process are related by the equation 

m 	 m 
----- 	\ 
> ' -L-- ir (v 	 --\ 

), v. 	-' 0 	1,  • • • 2 V  . m  ) = . - . )._ . 	p. j . (v , ... , v 	). 
" 1 	

1 1 1 	m 
1=1 	 i=1 	 (9) 

Proof. Let rj,, denote the set of all permutations a of Y& . Then 

for 0 < i < m, 

Z 
	Fi 	(dx i , ...,dxrn) , 	(10) (a) 

a E 

where the domain of integration 'k is specified by the inequalities 

x . >0 	(1 < j < m ) , 

x 	x. > v 
(z• 1  

(1 < j < m). 
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Using (1), we obtain 

    

m 

 

      

0(v1, 	, v 

 

p. K. (a)  ( 	, . 	, v ) , 1 1 	v1 

 

at € 	i=1 

 

where 

() r . - a K (a)  (v 	, v ) 	i F(dxl, 	, d_xm)dx0 (1 < i < m) 

Here J denotes the region of alm+1 defined by the inequalities 

(x. > 0 	i = 2, ... , m) , 

j=2 

x x > v j' 0 ak 
(k = 2, . . . , m) . 

If for some j < k, v > v , then the inequality including that va is a 
J ak k 

redundant. Therefore the derivative of K. (a)  - (v1' 	,vm) with respect 

to va is zero. Otherwise, say for k c 	a  c 	, we have 

(a) 
v 0 	

K. 	(v1, 	, v ) = 
ak 

 (a) F. - (dxl , 	 gym) 

k 	

1 	m 

(12) 

, where 	is the region of !Rm  defined by the inequalitiesk 

x. > 0 1— 

k 

(i 	1, . 	, m) , 

x. > v 	, 
ak 

k 

x. < v 	- v 	 1,...,k-1), j _ ak j= ), +1 
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>v 	v 	 = k+1,... , m) . 
3 	

a
. 

j=k+1 	j 	k 

The differentiation under the integral sign here is justified by the constant 

sign of the right hand side of (12), the Radon-Nikodym interpretation of 

derivatives and Fubini's theorem. Now R k c R, for each k e rrn,
a
. 

Also if x C 	, then x c 	k  for precisely one k C rnce. For, if 

	

=xt 	v
a. 	

(1 < j < m), 

jt =1 

then x ' 
 ik 

k 
 if and only if A

k 
 - 0

j 
 < 0 (j < k) and 0

k 
 - A. > 0 (j > k). 

--. 	 — 	— 	j 

This holds for a unique k E, (iii . In fact k C., 'YR , for otherwise there a 

would exist a j < k with v > v , and so 0. < 0 . It follows that 
ak  a 	j k 

J 

(a) 	 I 	(a) K. - (v , 	v ) = 	F. - (dx , 	,dx) 

ak 

, 
v'I  1 1 	 J 1 	1 	 m 

.1" 
k=1 	k 

which, together with (10) and (11), proves the Proposition. 

If m = 2 and the marginal processes are independent, then each 

joint survivor function factorises and 

0(v l , v2 ) = 	pi 	(vi , vz ) 	(i = 1, 2) . 	(12) 
vi  

An example of a process with dependent marginals for which (12) holds 

is given in Section 5.Lr. 

4. 3. MULTIVARIATE PALM-KHINTCHINE FORMULAE  

Consider a stationary multivariate point process -ID with m 

different types of event and letN0  . (0, ti denote the counting measure 
J 

of the jth marginal. If -1--)  has a semi-Markov representation, then semi- 
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synchronous counting measures Nij  (0,0 (1 < i < m), corresponding 
— — 

to events of type i at the origin may also be defined. Moreover, for each 

i, the joint distributiOns of 5Nij  (0, t33 	= 1, 	, m) 	can be ex- 

pressed in terms of the transition functions and stationary distributions 

of the semi-Markov process. Thus we can define, for m > 1, t1, 	, t c 

ni , n2, ... E Z
-1°, the probabilities 

pi  (ti  , . . . , tm 	, . . , nm) = Prob ZNij  (0, ti] = n. 	(1 < j < m)1 

(1)  

for each i = 0, 1, 	,m. In this section the relationship between these 

probabilities is investigated. From Proposition 4. 3, replacing v, by 

t., we have 

m 	 m 

t.p0 
(ti 	• • , tm1 0, 	, 	_ p. p. (t 

1
, ...,t 	, 0) , 

3.  
i=1 
	

i=1 
(2)  

since V.. > t. if and only if N..(0, t.1 = 0. It might be thought that 
13 	J 	 J" 

relations involving non-zero n. would be more difficult to derive. How-

ever, by applying Proposition 4. 3 to a modified process, we can recover 

the formulae given by Milne (1971) and generalise them to m-variate 

processes. The method used, which will be called deterministic thinning, 

will be considered first in relation to univariate processes. 

Let 11)  be a stationary, orderly univariate point process with 

finite rate p, and let the ordered sequence of events of P be 

E_ I ,E0,E1, 	, where E0  is the first event in CO, co). For a 

given integer k > 2, let the random variable K be chosen independently 

of -1"-' so that 
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Pr ob (K = i) = 1/k 	 (i = 0,1, ... ,k-1), 

and let-P(k) be the process 

'P(k) = 	Ei  : K÷i is a multiple of k/ 

For example HT is a Poisson process then/P(k) is a stationary renewal 

process with k-stage Erlangian interval distribution. Note that if an 

origin is taken at an arbitrary event of -P, or at an arbitrary time, the 

distribution of the number of events of-P up to and including the first 

event ofP(k) is uniform over (1,...,k), and independent of-P. It 

follows that-?(k) is stationary, with rate p/k. 

Let the asynchronous and synchronous survivor functions of 

(k) 
(k) be denoted by 	. 	(v) for i = 0, 1 respetively, and let 3-.( 

denote the asynchronous and synchronous survivor functions for the sum 

of j consecutive intervals of IP. Then 

(k) 
f u (v) = 	o 	 0  

j=1 

(k)(v)  = 31 (v k)  * 

Hence the forward recurrence time formula 

F(dx) = p F (x, co)s, dx 	 (3) 

applied to.P(k) gives 

1 
k Z1v .T3-0 (v i j) = k 	

l (vj k) . 

j=1  

Thus we have, inductively on k, that 

= p 	(v1 k-1) - 	k)1, 

or, in terms of pi(ti k) = 3-"i(t 	- 	k), 

j) 

(4) 
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p
0 
(tik) = -p 	

1
(tik) - p1(tik-1) 	. 

These are the well-known Palm-Khintchine relations. Note that the 

proof requires only simple stationarity of 	for this implies simple 

stationarity of -P(k), which is sufficient to derive (3) (cf. Lawrance, 

1970 ). 

The method extends to multivariate processes in an obvious 

way. Let-Pm be an m-variate semi-Markov point process, and denote 

by-Pm 
(k 

* 
. . , k ) ='P (k) the process obtained by independently 

I/1 

thinning each marginal process in the way described above. It is impor- 

tant to note that-'P (k) is also a semi-Markov point process. To see m 

this, include in the state variable 	Wn 	of -P terms Kn 
(1) 

, 	,Kn
(in) 

specifying the number of events in each marginal since the last undeleted 

event in that marginal. The transitions of the L K. 3 are to be deter-

mined by the transitions of~P in the following way. If Wn C 1.A,'1, then 

( Kn
(1) = Kn-1

i) 
	

(mod k.), 1 

K = K (j) 	(i) 
n 	n-1 (j ' i) 

The desired semi-Markov representation of -13 (k) is obtained by filtering m 

-P by the set m 

6 	n 	. 
i=1 

`Moreover, if 'P is stationary, then-P (k) is also stationary and the 
rn m 

rate of the jth marginal of fPrn(k) is p./k.. 

Let the joint survivor functions of the forward recurrence times 



m 	 m 

i=1 
vi  0 

However, it is easily seen that 

if • • • \I'm! j1 f • • • 1 jm.), 

(6) 

and that for i = 1, 	, m, 

tm ) 
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of 1') (k) be denoted by m 

(v ...,vm) (i = 0, 1, 	, m) , 

and the joint survivor functions for the sums of -t. consecutive intervals 

in the jth marginal by 

(i = 0, 1, 	, m) . 

As usual the subscript i is zero for the asynchronous distributions, and 

otherwise denotes a semi-synchronous distribution. From Proposition 

4. 3 applied to iPm(.15) , 

ki  

3'i 	(v1, 	
, v

m
) 

k1... km 
, 	,vm1 

il ' •  • • 	ki' ii+1' • • • jm) 
	

(7) 

Proposition 4. 4. Let D. denote the different operator defined by 

Di f( l' • • • 	tm) = f(• 	•, 	•12 • • 	(
m

) 	f( el • • • 	tai-1,..., 	in • 

Then under the assumptions of Proposition 4. 3, 

m 
\-- 	 r 

' 
p (v ,...,v v If 	.., 	)._/ 	p. D p.(v , ... , v 1 -12  , ..., ti  

.v 	10 	m -1' • iil 	m '1 	mis i i=1 i=1 
(8) 
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Proof. Note that the operators D. commute with one another and with 

the operator 	for each i. Now 

, vm  I 	, nm ) 	> 	p. (v ••• v 	1: 
	f m ) 

J J 
(j=1, 	,m) 

Hence, using (5), (6) and (7) and defining 	+1 = ( 1+1, . 	, fm+1) , 

we have 

i=1 

p (v 	, v 
lv. i 

; • • • ; ( In ) 

m 

(D , ..., 	) 	 v 	I P 
1 	

D m 	0(v  •• 	ml 'J."' • • • 
i=1 1  

m 

= (D1 , 	,D 
.e+1 

V 
(D 1  , 	,D M  ) 	e +1).. 	( e +1 ) 	

0 
 --( v1  "..,v 

. 	nL 
i=1 

m 
- P. 'f +1 

= - (D1 , . . . , D 
m 	( 

)2 	(41"' +1) . . . (
Q m+1) (v

1
, 	, v 

i=1 

m 

= (D1 , . 	, D Di  pi  (v
1 	

,vm1+1,..., f.m+1) 

i=1 

rn 
p. D. p. (v ,...,v 1 	 c.1 	m ) • rY 

i=1 

Throughout this proof any 	involving a zero 

a negative j  is given the value zero. 

For m = 2, this result is proved by Milne (1971) using orthodox 

sub-additivity arguments. The proof of Proposition 4. 3 given here 

, or any pi  involving 
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holds only for the class of semi-Markov point processes. However, 

the method used to deduce Proposition 4.4 from Proposition 4.3 is more 

general. It is not difficult to show that if -P is an orderly point process 

in the usual sense, i.e. if the finite-dimensional distributions of 	over 

disjoint Borel sets are consistently specified, then)P(k) is also a point 

process. Moreover, this result extends to multivariate processes. 

As noted by Milne, the relations given above do not enable the 

semi-synchronous distributions to be determined from the asynchronous 

distributions. Wisniewski (1972, 1973) has derived some relationships 

of that type for bivariate processes, but they all involve more compli-

cated asynchronous distributions. For example it may be necessary 

to know the type of the event immediately preceding the origin. These 

relationships will not be considered here. 
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CHAPTER 5 

THE BIVARIATE MARKOV PROCESS OF INTERVALS  

5.1. INTRODUCTION  

For the usual univariate renewal process, the backward recur-

rence time" Ut 
 defines a Markov process in continuous time. A 

natural generalisation is to bivariate point processes which are such 

that the joint backward recurrence times /Ut(1), Ut(Z) i form a 

Markov process. Cox and Lewis (1972) introduce such a process which 

they call the bivariate Markov process of intervals. Following Cox 

and Lewis, we define, for i = 1,2, 

	

1 
	j 

5 Xi(u1,u2
) = lim — Prob 5 Event of type i in Et, t+6) 1 U 	= u. (j=1,2) . 

5—>0 	 t-0 

It is assumed that the process is well behaved,  so that the X. exist and 

determine the finite time transition distributions. In. fact (Xl , X2 ) may 

be regarded as a vector complete intensity function for the process. 

Note that the X. are not functions of time. Th.e point process will be 

completely stationary if and only if 1,Ut(1), U
t
(2)1 is a stationary 

process. 	 ich ensure the exis- 
t 

tence of a stationary distribution are discussed and some of the simpler 

properties of the process are derived. Unfortunately the results are not 

very tractable. 

5.2. EQUATIONS FOR THE STATIONARY DISTRIBUTION 

	

(1 ) 	(2) -  If t.Ut Ut 

function "ii(u
1 
 ,u

2  
u2 ), then, by considering transitions in a small interval 

has a stationary distribution with joint density 



exp - 
A q(u , 

X(t,t-fuz-u1 )dt 
0 

r uz  
iiX (t-Fu l -u2 , t)dt 	(u1 > u2 ) .. 

Ju l 
(u1  < u2  ) , 

(5 ) 
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E t, WO, Cox and Lewis derive the equations 

4(111 ,112 ) 	Ei(u i  , uz ) 

u l 	u2 	/x i (111' u2 )  + x2 (ui ' u2 )3-) "J-(ur u2 )  ' 	(1)  

'.4(0,u2 ) = 

co 

J
u =0 

X l (u1,u2 ) Ci(u l ,u2 ) du l (2) 

00 

(u i  , 0) = 	X2 (u1, u2 ) (u1, u2 ) du2 . 
	 (3 ) 

u2=0 

Setting X(ui ,u2 ) = X1(u i ,u2 ) X 2 (u i ,u2 ), we obtain for the general solu-

tion of (1) , 

eq(u i ,u2 ) = ii(u i ,u2 )g(uru2 ), 	 (4) 

where g(. ) is 'an arbitrary differentiable function and 4/i(u1,u2 ) is the 

particular solution 

Let g i (x) = g(-x) if x < 0 and g 2(x) = g(x) if x > 0. Then (2) and 

(3) give two simultaneous integral equations in g1  and g 2. It does not 

seem possible to solve these analytically in general, though solutions 

corresponding to known results can be obtained if each X. is a function 

of ui  alone, or if each X: is a function of min(u1,u2 ) alone. These are 1 

the special cases of two independent renewal processes and the two-

state semi-Markov process, respectively. 

A solution may also be found if 



oo 

X.i (ui ,u2)4(ui ,u2)duidu2  

2
=0 

(i = 1, 2) . 	(7) 

have joint densities 

Xi(ui ,u2) 
q. (u1  ,u2 

 ) = 

ui=0 
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Yu]: uz) 
ul 

,u ) 
2 1 2 	- 0 , 

u2  
(6) 

for then there exists a differentiable function I\ (ul'u2)  for which 

Xi(u
l
,u

2
) =

u. 
I 

u2) 
	

(i = 1, 2) . 

In fact, provided the constant c can be chosen to make --J1 a probability 

density, 

q(ui ,u2 ) = c exp 	- A (Ili , tyl 

is a valid solution of (1), (2) and (3). In particular, if each X. is linear, 

X
i
(u

1
,u

2
) = a.

1
u
1 	

b
i1 
u + c. 	(1  = 1, 2) , 

then (6) holds if and only if a
2 

= 1)
1' 

and then 

A(u,u)=—(au 2+bu 2+2auu)+cu +cu 1 2 211 22 212 11 2 9 ' 

Here the stationary distribution is a truncated bivariate normal distri- 

bution. 

In general the semi-synchronous backward recurrence times 

The denominator of (7) is just the marginal intensity pi. The densities 

of intervals in each marginal process may be found by integrating out 

the unwanted variable in (7). The densities of the semi-synchronous 

backward recurrence times U.. (j i) may also be found from (7). Here 

as usual the first suffix denotes the type of event at the origin. The 
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density of U.. turns out to be 
13 

 g.(u.) 
Ali  3- J 

/ 

giving a probabilistic meaning to the functions 	 introduced above. g ,
gi 

5. 3. THE ALTERNATING PROCESS  

The work of Section 5.2 depends on the assumption of station-

arity. It is clear that not all functions Xi(u1,u2) can define stationary 

bivariate Markov interval processes. For example if, for all u1 and 

u2, 

X(ui+t, u2+t) dt < co , 

then the process will eventually terminate. It is also possible to choose 

the X. so that the process explodes, giving infinitely many events in a 

finite interval. Other types of non-stationary behaviour may occur. 

Although necessary and sufficient conditions for the existence of a 

stationary distribution have not been found, in Section 5. 5 a simple 

sufficient condition is given. As a preliminary another special process 

is considered here. 

If X.(u1,u2) = 0 (u. < u 	, 	i = 1,2,) , 
3-t 

then the event types alternate, and the interval sequence 

0,Y1, Z1, Y2, 	is a Markov chain governed by the transition 

densities z 

h2  (z, y) = X1  (y+z, z) exp 	- I X1 
(y+u, u) du 	, 
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h12(y, z) = X2 (y, y+z) exp 5 - 	X.(u, z+u) du 	 (1) 

0 

Then Yn and Zn 
denote the nth intervals of type (1,2) and (2, 1) respec-

tively, and Xn  will denote the nth interval without regard to type. A 

semi-Markov representation is obtained by taking Wn = ( 	Xn), where 

n  is the type of the nth event. If a stationary distribution q(dw) does 

1 
exist, then q(-1; =i) = 2 — (i = 1,2) and 

q(dx I =1) = g21(x) dx 	q(dx  I 2 =2)  = g12(x) dx  

where 
r 
co 

g..1.3(y) = 	9 h.. (y, z) g..( z)dz 	(i, j =. 1,2; 	i 	j) . 	(2) 

0 

The conditional interval distribution is degenerate and the 	 also 
gij 

the stationary marginal interval densities. A stationary alternating 

process can be constructed if the means µ12  and µ2l  of the g.. are 

finite. The marginal intensities p. take the common value 

Pi = (112 +1121 ) 
 -1 	(i = 1,2) . 

A sufficient condition for the existence of a stationary distribu- 

tion on 	is that Doeblin's condition should hold (boob, 1953, p. 192). 

In our notation, this becomes 

Condition D . There is a finite-valued measure S on 	with 

S(i,r) > 0, an integer v > 1 and a positive 	such that the V -step 

transition probability p 
 )( ,S) satisfies, for all I 

	
and S 

p(  )( ,S) < 1 - 	if $(S) < 	 (3) 

Proposition 5.1. Suppose that there exists a function 	(x) 

(x 	R), non-zero on a set of positive meaai re, such that for all z 
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h12(Y, z) > L (y) • 	 (4) 

Then Condition D holds for the chain 	n 

Proof. Take 	
1 

= 2, 	2 = -2- 
00 

(x) dx , 

d 

2 , 

1, 

X e (c, 

X 	e, (c, d) 

= 

d 

z=c 

(x) dx , 

j 	h21  (z, y) 

y=0 

(y) dy dz 

It also follows from Doobrs results that the stationary distribu-

tion is unique, for (4) implies that any set with positive 0-measure can 

be reached with positive probability from any point of iJ'. It can be 

shown from Doob (1953, Chapter 5, Theorem 7. 5) that a central limit 

theorem holds for the distribution of the sum of n-consecutive intervals 

as n —> co, provided that for some 5 > 0, 

z2+6 g..(z)  < 00 	 ; i,j = 1,2). 

This result gives a simple proof of the asymptotic normality of N
t 

under 

the same conditions by the usual inversion argument (cf. Cox and Miller 

1965, Chapter 9). 

5.4. EXISTENCE OF A STATIONARY DISTRIBUTION FOR THE GENERAL 
PROCESS 

A semi-Markov representation for the general bivariate Markov 

process of intervals may be derived. The state variable W is ( 	Y), 

where Y denotes the semi-synchronous backward recurrence time, 

Y = U 	. The transition functions and conditional interval distri- 
t. , 

butions are determined by the functions 

= 

= 
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p..(u) = Prob -t 1=j) C0 	Y0  = u) 

Fii(x,u) = Prob(X1  x 110  = 	= j, Yo  = u) 

In terms of the X., we have, for j = 1 and 2, 

p13 
.(u) f

1 
 .(x, u) = X.(x x+u) exp 
 j 	J 

xp2j(u) f2i(x, u) = X.( +u, x) exp 

; 	i,J = 1,2)) 

- 	X(t, t+u) dt 

0 

I X (t+u , t) dt 

0 

where f..(x,u) = V x 	F..(x,u)1 for each i and j. Conversely, 
ij  

the X. are determined by the p. j 
	f.. and f. by formulae such as 

3   
p..(u) f.. (x, u) 
1) 	13  

Cpl (u)f  11 (t u)+p12  (u)f12  (t u)? dt 

t=3C 

The integrals in (1) and (2) must tend to infinity with x, for otherwise 

the process might terminate. 

The properties of the process might now be derived by an in- 

vestigation of the processes 	wr:3 and s: lit, Wt  S . The continuous 

time process is clearly equivalent to the original defining process 

u ' t 
	However there is a simpler approach which makes 

direct use of the structure of the point process. The nth event of the 

process is said to be a last i-event (i. = 1,2) if it is of type i and if 

the (n+l )th event is of the opposite type. The last events form a point 

process called the  imbedded process. 

Proposition 5. 2. The imbedded process is an alternating bivariate 

xX..( ,x+u) - 
3 

(3) 
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Markov interval process with transition densities h..(x,y) given by 
3.3 

 

, y) = 13 
	

y) p.. (x) 3.3 	 31 
(ij; i,j = 1,2), 	(4) 

where 
X 
t 

 

3. 	
y) = f.. (x, y) 

3 	3.3 
y) p..(y) f ..(x-z, z)dz 

13 	33 	33 
(5 ) 

   

z=0 

Proof. The imbedded process is alternating, and the semi-synchronous 

backward recurrence time in the original process, measured to an 

event of the opposite type, must be measured to a 'last event' of that 

type. The equations (4) and (5) may be derived from an expression 

for h..(x,y) as an infinite sum, or probabilistically. Note that 
13 

h..(x,y) dx is the probability that some event, not necessarily a last 
13 

event, occurs in 'I_ 	and that no last event occurs in (0,x), given 

that a last i-event occurs at the origin and that the backward recurrence 

time at the origin is U.. = v. 
13 

It can now be shown that the condition H5 below is a sufficient 

condition for the interval sequence of the imbedded process to satisfy 

Doeblin's condition, and thus to have a stationary distribution. 

Hypothesis H5  . (i ) The functions Xi(ui , u2 ) (i = 1,2) are bounded in 

any compact set. 

u(ii) There exist functions [I.( ) (i = 1, 2) , non-negative, 

monotonic non-decreasing and not identically zero, such that 

Xi(ui , u2  ) > p.i(ui ) (i = 1, 2). 

Lemma 1. If H5 holds, then, for any c > 0, there exists an x such that 

for all u, 	co 

i.( x, u) = 	f.. (y, u) dy < c 	(i 	j ; i,u = 1, 2) . 

x 
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Moreover, the moments of f.. are bounded uniformly in u. ij  

Proof. We have 

oo 

exp - 	X (t, t+u) dt 	X2(y, y+u) dy 
C. 

0 

exp 5- 

X 

	

) 	I c° 

	

X (t, t+u)dt `) 	exp 	- 	X
z 
 (t, t+u)dt 	X.2  (y, y+u) dy 

0 	1 	x 	x
J 

x 

r X t+u) dt = exp  

0 

From (1) and (2) it follows that 
x 

exp - 	X (t, t+u) dt 
12(x'11)  	 0 

- 312tx,  u 	x 	
ry 

-)? exp 	X(t, t+u)dr. X.2  (y y+u) dy 

0 	0 

r x 

I C  IA (y) exp 

- 0 

-1 
(x-y)(Y) dy 2 J   (6) 

which is arbitrarily small for sufficiently large x. The first result 

follows immediately and the second by noting  that if µ2(y) is ultimately 

g reater than V (and there must be some V > 0 for which this is 

true), then the right hand side of (6) ultimately decreases at least as 

fast as exp(- )..)x). The proof for 	„1"-21  is similar. 

Lemma 2. If H5 holds then there exists an x1 , and a function 	(x ) 

such that h i (x, u) > 	(x) if x > x1. 

Proof. If 0 < c < 1, then there exist xo  and 5 such that  .0-fie cat 14.1 
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f12(y, u) dy arc , 	112(6) > 0 . 

Then, if x > x0, two applications of (5) give 

x 

12 	— 

	

(x, u) > 	12 (y, u) p22  (y) f 22  (x-y, y) dy 

y=0 

x-6 

	

> 	f 12(Y, u) p22 (Y) f 22(x-Y, Y) dY 
y=0 

> c 	inf 
0<y<x-6 (y) f22(x-y,  y) • 

However, for 0 < y < x-6, we have 

x-y 

p22(y) f 22(x-y, y) > exp 	- (t+y, t) dt_s p.2 (x-y) 

... > '..; exp 	- 

x-y 
) 

X(t+y, t) dt ?,t6» 0 . 
0 

As this is a continuous function of y in 0 < y < x-6 its infimum 	(x) 

is also strictly positive. Then h12  (x, y) > 	(x) p21  (y) which must also 

be strictly positive eventually. 

The results of Section 5. 3, combined with the preceding lemmas 

give 

Proposition5. 3. If the condition H5 holds then the imbedded process 

has a unique stationary distribution in discrete time which generates 

a stationary distribution for the (continuous) backward recurrence time 
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process 	U
I,  t

(1), uI, t (2) 3 in the usual way. 
 

The importance of this result lies in 

Proposition 5.4. A bivariate Markov process of intervals is stationary 

if and only if its imbedded process is stationary. 

(1) 	(2) 
Proof. The conditional distribution of 	Ut , U

t 	
given a full 

realisation of the imbedded process in (-oci,t]. depends only on 

UI, t
(1) and U

I, t
(2). The form of this conditional distribution, given 

U (1) = v1  and U (2) = v2  (v1  < v2  say) is 

du l y 	 schAl 

1  p(dul , du2 
v
l' 

v
2

) =
v 	(v v -v 

12 1 	1 -v1 )  

-li
1 2 

(v 
 1 

-u2, v
2 
-v

1 
 )p

22 
(v1  -u2  ) , v i -u )du2  

Niz(vr v2-v1 )  

where 	and 
13 

are the survivor functions corresponding to the 
13 

densities h.. and f.., repsectively. Thus Ut
(1) = v

1 
and U

t
(2) has a 

distribution with an atom of probability atv2 
 and a density over 

If the imbedded process is stationary, with density q
I
(v

1
, v

2
), then the 

full process must also be stationary, with density 

q(ul , u2
)Itt,c1142.-- 1 I (v

1
, v

2
) p(du1  , dug 1  t v v2) dv1  dv 2 	(7 ) 

The reverse implication is trivial. 

It can be shown by a little manipulation that (7) agrees with the 

density q in Section 5. 1. 

It is interesting to note that the stationary bivariate Markov 

13 	13 

process of intervals can have infinite rate. For example, suppose that 



X
1 

(u
1

, u
2
) = a , X2(u1,u2) = 

(u
1 
 < u

2 
 ) 

(ui > u2 )  

Then H5 holds. It is easily verified that the type 1 events are regenera-

tion points for the process, and that the expected number of type 2 

events in a synchronbus interval of the type 1 process is infinite. 

It follows that p2 = 

We note that any stationary bivariate Markov interval process 

whose intensities satisfy the condition (5. 2. 6), i. e. 

X1  (u1,  u2) 	X2 (u1 ,  u2 ) 
 

u2 	1.11 

when reversed in time, provides an example of a process whose forward 

recurrence time distributions satisfy the relations 

- p° (v , v2 ) 	(i = 1 , 2) 
0
(v v 

1 , 	2
) = 1  

quoted in Chapter 4 (equation 4. 2. 12). More generally the definining 

equations (5. 2. 1) of the bivariate Markov interval process can be re-

garded as a (time-reversed) differential form of the relations (4. 2. 3) 

between the asynchronous and semi-synchronous forward recurrence 

time distributions. Thus, equations (5.2.1) hold for more general 

bivariate point processes. However, the X., although defined in the 

same way as in Section 5.1, will not be complete intensity functions. 

It does not seem possible to parameterise the general bivariate 

Markov process of intervals in a way which permits explicit determi-

niation of the interval distributions other than those given in Section 

5.2. It is easy to write down expressions for the joint distribution of 
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intervals in a marginal process, for example, but these involve the 

functions h.., and cannot be simplified unless a solution is found to 13 

equation (5. 4. 5). 
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CHAPTER 6 

SEMI-MARKOV PROCESSES WITH COUNTABLE STATE SPACE 

6. 1. INTRODUCTION  

Semi-Markov processes with general state spaces were dis-

cussed in Chapter 3. In the remainder we shall principally be con-

cerned with semi-Markov processes on a countable state space. 

From our viewpoint the extra assumption makes little difference 

to the general theory, but it does allow a simpler notation. Moreover, 

the relative tractability of the processes examined in Chapters 6, 7 and 

8 compared for example with those considered in Chapter 5, is due to 

the simplicity of 'v.'s-  . We shall not be concerned with the wealth of 

results about the classification of states, the existence of and speed of 

approach to limiting distributions and the analogues of the renewal 

equation. An extensive bibliography is given by Cheong, De Smit and 

Teugels (1972). Particular mention should also be made of the series 

of papers by Pyke (1961a, 1961b) and Pyke and Schaufele (1964, 1966), 

and of the paper by Cinlar (1969b). For the processes considered here, 

it will always be evident that all states intercommunicate and that both 

the imbedded Markov chain and the semi-Markov process itself have 

a unique stationary distribution. 

In Section 6. 2, we consider some properties of the interval 

sequence when the semi-Markov process is in fact Markovian. The 

important concept of the stochastically monotone Markov chain is dis-

cussed in Section 6. 3. This was introduced by Daley (1968) and applied 

in Daley (196:'-.) to the study of waiting times in a GI/G/1 queue. Related 
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work has been done by Kalmykov (1962) and O'Brien (1972a, 1972b). 

The relevance to the theory of point processes appears to have passed 

unnoticed. We consider as an example the Neyman-Scott cluster process 

with exponential displacements. Two particular cases, corresponding 

to Poissonian and geometric cluster size distributions, are discussed. 

The state variable of a countable semi-Markov process will be 

denoted by K, assumed to take values in Z, and the transition prob-

abilities and stationary distribution of the imbedded Markov chain by 

pij 
	

aneq. j , respectively. The conditional interval distribution 

F(dx i iko,ki ) of X1, given Ko  = k0  and K1  = kl , will have mean  ‘tikok1  

say, so that the rate p of the process is given by 

-1  
p 	= 	q1  - 	• P•13• 13  (1 ) 

assumed to be finite and positive. If there exists a sequence gk j  
such that 

F(x ko, k J. ) = 1 - exp 	gk  x 	 (2) 
0 

then the continuous time process 

K
Nt 
	 (3) 

is Markovian with infinitesimal transition matrix p.. 5t where, for 
13 

each i, 

2.1 pii  = 0 , g
1  . pi 

 . 
lj 	j (J /1) • (4) 

In the notation of Cox and Miller (1965, Chapter 4) p. j  = q... It is i 	13 

easily verified that the stationary distribution CIk of
t 	is given 

by 



oo 

E (X 2! 	= 
gi- i=0 

q. 1 
(2) 
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gk "tik = pqk 	tic € 7Z+) 
	

(5) 

It is not generally possible to reconstruct the process IK 

from 	K
t) 

 , because transitions from a state to itself are not re- 

corded by Kt  . A discussion of this point is given by Pyke (1964, 

p. 1235). 

6. 2. PROPERTIES OF THE INTERVAL DISTRIBUTION WHEN kt 
IS 1VIARKOVIAN 

It is useful to collect a few results which hold when 	K
t 	

is 

Markovian, i. e. (6.1.2) is satisfied. This is a situation which often 

occurs in practice. The moments of the synchronous and asynchronous 

interval distributions can be determined quite simply. We have 

00 

E (X) = E E(Xi K) qi 
	 g i  -p - 
i=0 

(1) 

E(X 2 ) = 

with similar results for the asynchronous intervals. The covariance 

sequence may be determined in a similar way, since 

-y
n 

= cov iX , X n 	= cov 	E(X
l
iK

0
) , E(Xn+1' n1 

. +1  

(3 ) 
re 

Proposition 6.1. (i) If 	Kt 1  is a Markov process, the stationary 

synchronous and asynchronous interval distributions each have mono-

tonically decreasing hazard functions. 

(ii) The expected mean of the forward recurrence time distri-

bution is greater than 1/p. 



X(x) - 
co 

qi  exp(-g i  x) 

exp(-g i  x) 
i=0 

(1) 
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Proof. The hazard X(x) for the synchronous distribution is 
00 

i=0 

Thus X(x) is differentiable and its derivative is negative, being of the 

form E(G) 2  - E(G2 ), where G is the random variable which takes 

the value g i  with probability proportional to qi  exp(-g i  x). A similar 

result holds for the asynchronous distribution. Using (6. 1. 5), we have 

00 
7---.  qi 	q. 	 q. 2 

Ea) = > 	-----= p 	-----z ?P 	Z__ 	) = IE(X) , 
i 	 3_ 

L. __ gi 	0, ei 	 . — g 
i=o 	i=o 	 i=o i 

which proves (ii). 

Corollary The coefficients of variation of synchronous and asynchronous 

intervals are greater than one. 

Proof. This follows immediately from Proposition 6. 1 (1). 

The probability generating functions of the synchronous and 

asynchronous_ stationary distributions 	
1 
	and 	q.2 are denoted 

by Q(z) and Q(z), respectively. It often happens that g i  = a + bi 

(i C 	
-t,) for some constants a and b. We then have the following easily 

verified relations connecting the synchronous and asynchronous interval 

survivor functions with Q and 

e-ax we -bx )  ; 	 (2) 

.31x) = e-ax  (e-bx  ) ; 	 (3) 

p 	Q(z) = a 	(z ) 	bz 	'(z) , 	 (4) 

the prime denoting differentiation with respect to z. 

00 
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6.3. STOCHASTICALLY MONOTONE MARKOV CHAINS 

Suppose that a Markov chain K a  with real or countable 

state space is such that for each fixed k1  , 

Prob(K1  < k1  K0  = k0 ) is a non-increasing function of k0 
 

(1) 

Then it is easy to show inductively that a similar property holds for 

the n-step transitions, i.e. that for each fixed n and kn 

Prob(Kn  < kn  K0  = ko) is a non-increasing function of ko. 
—  

A Markov chain which satisfies (1) is called stochastically monotone. 

Daley (1968) gives a detailed discussion of the properties of such chains. 

A more general formulation which includes continuous time processes, 

but does not explicitly consider covariances, is given by Kalmykov 

(1962). Recently O'Brien (1972a, 1972b) has extended the concept to 

non-Markovian processes. 

We shall quote for future reference Daley (19684.)Theorem 4, 

p. 311) which in his notation is 

Theorem (Daley). If the strictly stationary discrete time process 

5 , X : (n = ... -1,0,1, ... ) is Markovian with state space R, 
n= 

with one-step transition function p(. 	) which satisfies (1. 1) (equivalent 

to our ) above), if -tr(. ) is an invariant probability measure on 

and if f : :Kr -7> R is a monotonic function quadratically integrable 

with respect to Tr, then the sequence 

NT' 
r COV)' Lf(X0), f(Xn ) (n = 0,1, 	) 

of serial covariances decreases monotonically to a non-negative limit 

. If the invariant measure Tr for the process is unique, then y = 0. 
co 	 co 



in (-oo,- t1 . Let Kn 
K

T
, the number of unexpired subsidiaries just 

n 
 

,s4 
after the nth process event. Then it is easily seen that 	K 	and 
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6.4. THE EXPONENTIAL NEYMAN-SCOTT PROCESS  

As a first example of a point process generated by a countable 

Markov process we consider the Neyman-Scott cluster process obtained 

by taking a Poisson process 	t. 	of rate 	for the process of 

main events and allowing each main event independently to generate 

a random number D of subsidiary events which are then independently 

displaced in the positive direction from the main event. We shall assume 

throughout that the displacement distribution is exponential with para-

meter p. The probability generating function of D will be denoted by 

p (z) and we take E(D) < oo. We shall be concerned with the combined 

process of main and subsidiary events. 

Let 	denote the total number of unexpired subsidiary 

events at time t, i. e. the total number of subsidiary events which them-

selves occur in (t, co), but which are generated by main events occurring 

1K
n
:s are respectively a Markov process in continuous time, and a 

Markov chain in discrete time. This follows from the lack of memory 

of the exponential distribution. 

We consider first the discrete chain PLet d. = Prob(D = j). 

Then if Kn 
= k, the distribution of Xn+1 

is that of the minimum of k+1 

independent exponential variables, k having parameter p and one having 

parameter 	. If the (n+l)th event is a main event then it may generate 

D descendants, giving Kn+i  = k + D. If it is a subsidiary event, then 

Kn+i  = k-1. In any case the conditional distribution F(dx ko, k i ) is 
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exponential with parameter 	)./} + f3k
0 
 . These results give 

Proposition 6.2. The exponential Neyman-Scott process defined above 

has a semi-Markov representation with state space Z
+, transition prob-

abilities. = 0 if j < i-1, 
pij 

pi, i-1 , i-1 V+J31 

	

13•. - 	- 	d. 
V-Epl -i 

and conditional interval distribution 

	

Ir(x i,  j) = 1 	exp 	-(14 f3i)x -,, 	 (2 ) 

It is clear that all states of the Markov chain communicate, so 

that there can be at most one stationary distribution. The existence of 

a stationary probability distribution is ensured by the fact that for large 

k, -',
-
K

n) 
 is stochastically dominated by a random walk with negative 

drift. An alternative proof can be constructed using the known station-

arity of the point process to construct an appropriate stationary marked 

point process, along the lines of Matthes (1963). An analytic proof 

is given by Yang (1972), whose formulation includes as special cases 

both the Neyman-Scott process considered here and the exponential 

self-exciting process considered in Chapter 7. Our approach will be 

to exhibit the unique solution of the equilibrium equations and to use the 

existence results referred to above to deduce that this solution must 

be a probability distribution. 

Proposition 6. 3. The continuous time process Kt 
 'has a stationary 

(1) 

(j > 

distribution 	whose probability generating function is 
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1-z 1 - PD (1-x) 
6(z) = exp 	 dx 

X 

0 

(3) 

 
Proof.  The equations for the equilibrium probabilities of

--
are 

3 

	

-1-(3.j)q. = j3(j+1 4+1 	
d. . 

1 
(j = 0,1, ... ) 	(4) 

) 	---- -  
i=0 

Multiplication of (4) by z3  (0 < z < 1) and summing over j gives 

)16(z) + 13z 6(z) = 1361 (z) + VPD(z) 	, 

which gives (3) on integration, since 6(1) = 1. 

As a check we can evaluate the asynchronous survivor function 

from (6. 2. 3) : 

	

= e 	t  a (e
-Pt 

 ) . 	 (5 ) 

Lawrance (1972) has derived the p. g. f. of counts, E zN(0, 
 t)for 

a general Neyman-Scott process, and it is easily verified that (5) is 

a special case of his results. 

6.5. SHOT NOISE PROCESSES AND PROPERTIES OF THE INTERVAL 

SEQUENCE 

An important special case of the Neyman-Scott process occurs 

if D has a Poisson distribution with mean a/13. It can then be shown 

that the process of subsidiary events is equivalent to a shot noise doubly 

-fix  
stochastic Poisson process with rate 7 g(t-t.), where g(x) = ae 

(x > 0) and •i c 2 
t. e is the Poisson process of main events. This process 

for a general function g (. ) is discussed by Bartlett (1964), Westcott 

(1971), Vere-Jones (1970)and Lawrance (1972). If the height a of each 
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- 91 - 

shot is an exponentially distributed random variable with mean 8, 

heights of different shots being independent of each other and of the 

then the distribution of D is geometric, with 

p
D

(z) - 	 
13 + 	- (1)  

The displacement distribution is, of course, still exponential with 

parameter j3. 

The serial correlations L• 	for the interval sequence of 
Y3. 

the exponential Neyman-Scott process may be determined by the con-

ditioning argument given in Section 6. 2. They need not be positive in 

general. A simple example of a process with negative first serial 

correlation is obtained by taking P
D

(z) = z, so that each main event 

generates precisely one subsidiary event, and 'e) << p. However, 

if the cluster size distribution has sufficiently uniformly large hazard, 

we can assert positivity. 

Proposition 6. 4. Suppose, that, for all k, 

4 k  
(2)  co 	—13 +) 

\• d 
 

r=k 

Then the Markov chain I 
	

is stochastically monotone and the co- 

variance sequence 	y 	decreases monotonically to zero as m —> oo. 

Proof. It is sufficient to verify the stochastic monotonicity, since 

-1 
E(XAK.1,K.1-1 	(V 	1+ f3K.-1 

 ) is a monotonic decreasing function of 
1  

K. 	and Daley's theorem applies. We have from (2) 
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and so, for 

Prob(K1  > jilco = i) - Prob(K1  > jIK0  = i-1) 

V+13[ >  dr 
-
V+p(i-i) 	dr 

r=j-i 	 r=j-i+1 

> o 

For j<i, Prob(K1  > j 	i) = 1. 

For geometrically distributed cluster sizes (2) takes the simple 

form 

< 	. 

Explicit evaluation of 76 (z) is possible in the Poissonian and 

geometric cases. If PD(z) = e 	(1-z) we have, from Proposition 

6. 3, 

log I Q (z )1 (1-z) 

where the function Ein(u) given by 

E in(u) =

u -t 1 - e  
dt 

0 

is related to the exponential integral E1 (u) tabulated by Abramowitz 

and Stegun (1964, Chapter 5) by the formula 

in(u) = E l  (u) + log u + y , 

y being Euler' s constant. 

If D has the geometric distribution (1), then we find 
v/13 +I 

A V/p 
Q,(z)   ) 	 Q (z) =V;F:ciT)t6 ez (3) 
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Thus, as would be expected from the form of the process, in equilibrium 

Kn 
is distributed as the sum of Kt and an independent random variable 

with the distribution (1 ). 

To conclude this Chapter we will show how the joint density of 

contiguous intervals may be determined in terms of c), and its deri-

vatives. We restrict attention to the density 
fXY 

 (x, y).of two contiguous 

intervals, though similar methods apply to higher order joint densities. 

We have 
CO 00 

f,y(x,y)= > >---  cliPij(V +PO( V+Pj)exP i -(V +Pi,)x-(1/ +I3i)y} . 

i=0 j=0 

The term 1.)+ (3i..cancels with the denominator of p.. and each term of 
ij 

the resulting  series is a quadratic polynomial in i and j. After some 

manipulation we find that 

f 	(x, y) e- V(x+y) `R ae -2f3x-13y 	i e-P(x+Y)1  
XY 

+ f3 	e f3Y+pD(e-PY)i e  -P(x+Y)Q, e-p(c-Fy) 

iv2P 	-PY ) 	Re -PYpDi (e  -13Y) 	e  -13 (x+Y)3  

In the geometric case we find from (1) and (3) that 

6- 
e- P(x+y)  

co 	

11134"' 
I 	

r 
f(x, y)dy = e- V (x+Y)' 	  

Numerical results for the simpler properties of the two parti-

cular Neyman-Scott processes considered here are g iven in the Appendix 

and compared with the corresponding  results for processes discussed 

in Chapters 7 and 8 below. 
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CHAPTER 7 

THE SELF-EXCITING PROCESS  

7.1. MOTIVATION AND INTRODUCTION 

Hawkes (1971a) has introduced a new class of point process 

which he calls self-exciting processes. These are formally defined 

by the requirement that the complete intensity function should be a 

linear function of the history of the process, so that 

x(t,IN-) = 	+ 	g (t-u) dN(u) . 	 (1) 

Here 	> 0, g(u) > 0 for u > 0, and g is integrable with 

co 

I
0 < m = 	g(u) du < 1 . 	 (2) 

0 

More recently, Jowett and Vere-Jones (1972) have pointed out that 

equations like (1) arise naturally in the theory of linear prediction. 

The counting spectra of self-exciting processes and of related 

multivariate processes have been derived by Hawkes (1971a, 1971b, 

1972 ) assuming stationarity. However, it is not absolutely clear from 

(1) that stationary self-exciting processes exist. In Section 7.2, we prove 

that they do exist, and show that the class of stationary self-exciting 

processes with finite rate is equivalent to a certain subclass of the 

class of generalised Poisson cluster processes. The existence pa.rt 

of this result has now been proved, independently of this work, by Hawkes 

(private communication). He also points out thaconnection with the 
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generalised birth and death processes considered by Kendall (1949) 

and gives an equation for the generating functional. 

Some consequences of the representation as a cluster process 

are considered in Section 7. 3. When g(x) = a e -13x, there exists a 

simple Markovian representation. This is developed in the remaining 

sections of the chapter and is used to derive an expression for the 

p. g. f. of counts and to give a simple proof of the positivity of the inter-

val serial correlations. A few possibilities for further work are out-

lined. 

7.2. CHARACTERISATION OF THE STATIONARY SELF-EXCITING 

PROCESS 

Lemma 1. If 	> 0 and 0 < m < 1, there exists a stationary, orderly 

point process with rate p = W(1-m) which has a complete intensity 

function of the form (7.1.1). 

Proof. We can define inductively stationary, orderly point processes 

(i = 0,1, 	) with respective counting measures Ni  (i = 0, 1, ... ) 

as follows. We take-P0  to be a Poisson process with rate )) and-P
1 

to be a cluster process which has °P0  as the process of main events. 

A main event occurring at t. generates a cluster of subsidiary events 

in anon-stationary Poisson process of rate g(t-t.) in t > t.. Then (cf. 
3 

Chapter 6).P1 is a Neyman-Scott cluster process. The distribution 

of the number of subsidiary events in a cluster is Poisson with mean 

m, and the independent displacements of each subsidiary event from 

the main event have density g(x)/m. We do not exclude the possibility 

of empty clusters and the events of -P
0 
 are not counted as events of -P 1. 
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For i > 2, 'P, is the subsidiary process with P, 	as the process of 
3.-1 

main events and the same cluster structure as that described above. 

It is clear that P. is a well-defined stationary point process with rate 

pi  = „ ml  for all i and that the superposition P1  ... Pi  is both 

stationary and orderly. Now consider the superposition 

00 

P. . 	 (1) 

i=0 

The convergence of 	 p. ensures that 	is a well-defined point 

process. Moreove 	is stationary and orderly, and has rate 

co 

P 
	pi  = V/(1-m) 

	
(2) 

i=0 

We show that the complete intensity function satisfies (7.1.1). 

For each i > 1, let 
	

i-1 denote the history of P. 	and define 

i-1 
X1(t, 	

-1
) = 	Ern — 	 t+6) > 1 *'j  24. 

1 	 S # 	 t 
5—>0÷ 

(3) 

Then, by the construction of Pi  , 

t 

X.(t, 	
i-1 	I 

= 	g(t-u) 	(u) 	(i > 1), 	(4) 

But 

  

co 

   

 

X(t, X.(t, 	
i-1 ) . (5) 

   

i=1 

  

Equations (4) and (5) give 

X (t, ) = g (t-u) dN(u) . 
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The process 	will be called the stationary iterated cluster 

process. Lemma 1 demonstrates the existence of stationary self-

exciting processes. We now show that all such processes are iterated 

cluster processes. We note first that a transient iterated cluster pro-

cess which still satisfies (7. 1. 1) in t > 0 may be constructed as before 

by taking -P
0 
 as a Poisson process in t > 0 only. 

Lemma 2. The only transient self-exciting process corresponding to 

a given V and g(. ) is the appropriate transient iterated cluster pro-

cess. 

Proof. This is immediate, since a transient point process is charac-

terised by its complete intensity function. 

Lemma 3. Let A1, 	, Ak  be bounded Borel subsets of CO, 00). Then 

the joint distribution of 	N(A1 	), . . ,N(Ak +I ) 1, in a transient 

iterated cluster process tends as 	t —> co to the joint distributions 

of 	 ,N(Ak)s for the stationary iterated cluster process. 

fi 
Proof. Let 	be a transient iterated cluster process. Let 

be the iterated cluster process, independent of 	, obtained by taking 

-P0  as a Poisson process in t < 0, and let N (. ) denote its counting 

measure. Then the superposition 
	

- is a stationary iterated 

, cluster process. The complete intensity function of 	- satisfies 

	

(t, N't ) = 	f 	g(t-u) 	(u) 	(t < 0) , 

X ( 	) = 	g(t-u) dN-(u) 
	

(t > 0) , 

-CO 

where 	is the history function for 	. Thus 
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f (t) = • • - X (t, 	s t 

satisfies f (t) = p in t < 0 and in t > 0 

oo 

f(t) = p 	g (u) du + 	g (t-u) f -(u) du. 	 (7 ) 

0 

It is easily proved from this equation that f(t) —> 0 as t —> co. Since 

N (. ) is a non-negative integer valued random variable, and putting 

B = A „ Al 	v Ak we obtain 

ESN (B).3 = 	f (u) 	—> 0 	—> oo) 

B 

it follows that Prob, c   N (B) > 0 	—> 0 as 	=> oo. 

Lemma 4. If m < 1, the only stationary process with finite rate and 

complete intensity function given by (7. 1. 1) is the stationary iterated 

cluster process defined in Lemma 1. 

Proof. Let 	be such a process. We construct a new process 	' 

as the superposition of two independent processes 	and 	as 

follows. We take 	to be a transient iterated cluster process and 

to be the unique process which has the same finite dimensional 

distributions as 	in t > 0, and whose complete intensity function in 

t > 0 is given by 	 t 

X (t, Jai t  ) = I 	g(t-u) dN (u) . 

00  

Then, as in the proof of Lemma 3, it follows that the limiting distri- 

butions of j as 	—> co are the same as the limiting distributions 

of 	as 	—> oo, which, by Lemma 3, are just the distributions of 

the stationary iterated cluster process. But the complete intensity 
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function of 	' is the same as that of 3 in t > 0 and the two processes 

have the same distributions in t < 0. Thus the two processes have 

identical distributions in t > 0 also, and the result follows from the 

stationarity of 	. 

The preceding lemmas give immediately 

proposition 7.1. If 1) > 0 and the non-negative integrable function 
co 

g(u) has m = 1 g(u) du < 1, then there exists precisely one stationary 

0 
point process of finite rate whose complete intensity function satisfies 

(7.1.1). This process is an iterated cluster process and has rate 

W(1-m). The limiting distributions of the corresponding transient 

self-exciting process as t —> co exist and are the same as the distribu-

tions of the stationary process. 

7.3. THE ITERATED CLUSTER PROCESS AS A GENERALISED 

POISSON CLUSTER PROCESS 

The events of-P0  will be called immigrants. An event E
k 

of 

-Pk is said to be a descendant of an event E. of-P. (j < k) if there exist 

events E j+1 of -.Pj+1' 
. 	Ek-1 	-Pk-1 such that, for j < i < k-1, 

E
i+1 

is a member of the first generation (Neyman-Scott) cluster with 

main event E.. It is clear that the total number S of descendants of 
1 

a given event is distributed as the total number of offspring in a simple 

Galton-Watson branching process whose offspring distribution is Poisson 

with mean m < 1. Thus we have (Harris, 1963, Chapter 1) that S is 

finite with probability one, and 

E(S)= 1 	 <oo, 	 (1) 



- 100 - 

var(S) - 	 < oo . 
(1-m)  

(2) 

By grouping all the descendants of each immigrant, we obtain a repre-

sentation of the iterated cluster process as a generalised Poisson cluster 

process. It follows from known results (Kerstan and Matthes, 1965; 

Westcott, 1971) that the stationary self-exciting process with finite 

rate is both infinitely divisible and mixing. The mixing property has 

already been verified implicitly in the proof of Proposition 7.1. The 

infinite divisibility follows from the Poisson clustering representation. 

It is worth noting that from the original definition (equation 7. 1. 1) it 

follows that the superposition of two independent self-exciting processes 

having the same g(. ) is another self-exciting process. 

A quantity of some interest in clustering processes is the total 

length L of a cluster. Here L is defined to be the distance between an 

immigrant and its last descendant. It is easy to write down a functional 

equation satisfied by the distribution function of L, but difficult to derive 

useful information from it. However, we do have the 

Lemma. A necessary and sufficient condition for E(L) < oo is that 

= 	v g(v) dv < oo . 

0 

Proof. The necessity is obvious. To prove sufficiency, note that, by 

conditioning on the configuration of the S descendants and using inequali-

ties of the form max(Z1,Z2) < Z1  Z2  (Z1  , Z2  > 0), we have 

E (L 	
y 

S) < S/m 	 (3) 

Hence 
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E(L) < V/(1-m) . 	 (4) 	:4 

If E(L) < co we can use a theorem of Lewis (1969) to prove the 

asymptotic normality of the counting distribution. Following Lewis, 

we define H(u) = E(Nu), where Nu 
is the number of descendants in 

(0, u 	of an immigrant at the origin. Then in our notation Lewis's 

theorem 3. 3 becomes 

Theorem (Lewis). If E(S2 ) < oo and if 

E(S) - H(u) ,- du —> 0 	(x —> oo), 

then the number of events in a transient Poisson cluster process is 

asymptotically normally distributed with mean '1,/ t E(S+1) and 

variance 	vt E(S+1)2. 

Here it is easily verified that 

x 

E(S) - H(u)Sc du < E (LS) . 

for all x > 0, and this is finite by (2) and (3). Substitution from (1) 

and (2) gives the asymptotic distribution of the transient self-exciting 

process to be normal with mean Vt/(1-m) and variance vt/(1-m)3, 

provided y < oo. The stationary process has the same limiting dis-

tribution. 

If y < oo, it is easy to verify that the asymptotic slope of the 

log-survivor function is ( ) , for standard methods can be used to 

show that the distribution of the number of operative clusters at an 

arbitrary time is Poisson with mean 	F (L). Thus the posterior 



- 102 - 

probability of there being any operative clusters at the start of an 

interval 	i , t+, ) tends to zero as 	—> oo. 

Finally, we note that the extension of this theory to multivariate 

self-exciting processes is straightforward. This provides an existence 

and characterisation theorem similar to Proposition 7. 1 for the 'mutu-

ally exciting' processes considered by Hawkes (1971a, 19710. 

7.4. THE EXPONENTIAL SELF-EXCITING PROCESS 

When g(v) = a e -Pv  (a < (3), a Markovian representation for the 

self-exciting process can be obtained in the same way as for the Ney-

man-Scott process discussed in Chapter 6. The only difference is that 

for the self-exciting process all events give rise to descendants. Al-

though D will have a Poisson distribution with mean a/f3, it is convenient 

to consider the more general processes obtained when D has a general 

distribution with p. g.f. PD(z) and mean E(D) < 1. We let K
t 

denote 

the total number of first generation descendants of events in (-co, t7" 

that occur in (t, oo), and let K
n 

= K
T 

. Then, as for the Neyman-Scott 
n 

process, 	K
t 	

and (K
n s have the Markov property. The counter- 

part of Proposition 6.1 is 

Proposition 7.2. The exponential iterated cluster process has a semi- 

Markov representation with state space Z
+
, transition probabilities 

0(j < i-1), 

P• = 

d. . 	d . . 	(j > i- 1 ) , 
J-1+1 v+p 3-1 

where 	 Prob(D d. = rob(D = j) if j > 0 and  

	

-I = 	The conditonal interval 

v+i3' (1 ) 

distribution is 
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F (xi i, j) = 1 - exp 	( + (3i) 'x 	. 	 (2) 

The general remarks following Proposition 6.2 apply here also. More-

over, the stationary distribution can be derived in a similar way. 

s " ;Proposition 7. 3. The stationary distribution 	._ of the continuous 

time process 	Kt  ( has p. g. f. 	Q (z), where 

(s: 
(z) = exp 

  

1-z 1 - p
D 

(1-x) 

pD (1-x) + x-1 

 

   

dx 	(3) 

 

J 0 

 

Proof. The equations for the equilibrium probabilities are 

v +Pi) qi = 

J 

d. . q. + 
Z 	3-1 
i=0 

j+1 

i 	. 
qi .3+1-i 

i=0 

(4) 

Taking generating functions gives 

it (z) + 13z 	(z) = 	PD  (z) 	(z) (z) , 
D 

which on integration gives (3). 

Note. This theorem is a special case of a result proved in Yang (1972). 

Our interated cluster process is equivalent to a continuous time branch-

ing process with immigration. The only slightly anomalous feature is 

that each immigrant in our process splits immediately after entering 

the system. However, this can easily be dealt with by considering 

immigration with a random batch size, which is allowed in Yang's 

formulation. These remarks apply also in Chapter 8. 

For the self-exciting process, (3) becomes 

0 (z) = exp < - 13 1
1-z 

0 
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We have not been able to express this integral in terms of known func-

tions. However, it is easy to work out the moments of K. For example, 

using L'Hospitar s rule, we obtain 

E(K) = 	(1) = 
P(R-a) 

var(K) = ,"‘si "(1) - 	'(1)/ 2  + 751 (1) - C" 	(213-a)  
2P(P-a)2  

The asynchronous survivor function is given in terms of Q by 

310 	e- 1.; t 	(e  -Pt),  

from (6. 2. 3), 

7.5. THE ASYNCHRONOUS COUNTING DISTRIBUTION 

In this section we derive an expression for the p.g.f. 
, 	 - P(z, t) = E ) s zN(0, t) 	

of counts in an arbitrary interval (o, e . As , 

will be seen, the result is not particularly tractable. We start by 

considering the generating function P1  (z, t) of the number N1  (0, 0 

of events in (0, ty. , due to an immigrant at 0 which is known to have 

precisely one first generation descendant in (0, co). We obtain a func-

tional equation for P1(z, t) by conditioning on the time of the first event, 

if any, in (0, t) . This gives 

00 
-13t p (z, t) = e 	z 	d 

1 	 i 
i=0 

-i3(t-x) < p
1 
 (z,x)c dx , 

P1 (z, t) = e
-pt 

z 	pe-f3(t-x) PD 	 (1) 

This equation can be solved by differentiation with respect to 

t. For the right hand side is clearly differentiable, and so 



du 
zP

D
(1 -u) - (1-u) (4) 
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(z,t) 
\t‘, t 	

- 13z PD 	(z, t) 	-P P1  (z, t) . 

For each fixed z with 0 < z < 1, this is an ordinary differential equa-

tion in P
l
. By considering the sign of the derivative, we can deduce 

that P1 
(z, t) decreases monotonically from its initial value 

P1 
(z, 0) = 1 to a limiting value which is the solution of the equation 

P1  (z, co) = z PD 	
P1  (z, co) t" 

• 

	 (3 ) 

Equation (3) is the functional equation satisfied by the total number of 

descendants, including the initial individual, in a simple Galton-Watson 

process. Thus the formal solution of (2), given by 

1-p 
1 

fit 

0 

does determine P l
(z,t) as a function of z and t. 

.We now consider the contribution to N(0, t: from immigrants 

who enter the process in (0, t) and their descendants. The number I 

of such immigrants has a Poisson distribution with mean ')t, and 

conditionally on I they are independently and uniformly distributed over 

(0, t) . Each immigrant gives rise independently to a total number NI 

of events in (0, t) . We determine the p. g. f. P1(z, t) in terms of Pi . 

The number of first generation descendants of an immigrant at 

t-x(0 < x < t) has p. g. f. PD, and each gives rise independently to a 

number of descendants in (t-x,t) distributed as N1(0, x) . Since 

x is uniformly distributed over (0, t) , p (z, t) is given by 

(2) 



p (z,t) = t 

z 

i t CO 

d. P 

0 
	

i=0 

f t 

PD /P1(z'x) 
 dx. 

, x 
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The p. g. £. of the total innovatory component in (0, t) is 

co  

p (z, t) = 	e- t  (ut)i  i 
-1 	L P

I
(z, t)) 

t 

= exp -1) t + Vz 1 PD)  ..- P (z x))-  dx 
r 

 ,.., 	1 	' 

r- 	t 

= exp - ),) 	1-P1  (z,x)y dx - — 	1 - P 

x = 0 
	

(5 ) 

from (3). 

Finally we note that the asynchronous count N(0, t) is the sum 

of the innovatory component and K independent random variables each 

) 
with p. g. f. P1  (z, t), where K has the stationary distribution ) q 	. kJ 

Thus, we obtain 

P(z, t) = P(z, t) 	> 	P1(z,t)1 , 	 (6) 

e ,1 

where P1 
 and P are given by (4) and (5) above, and Q  by (7.4. 3. 

7. 6. PROPERTIES OF' THE INTERVAL SEQUENCE 

The intensity p of the exponential self-exciting process may 

be obtained from the formula p = > (V+ P) q. , or from the general 

existence theorem„ Thus 

i=0 
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P = 13  - a 

The p. g. f. of the synchronous stationary distribution 

by 

(1) 

is given 

(z) = 	'0) 	(z ) 	13 z 	' (z) . 	 (2) 

It is worth making a few remarks concerning computation. 

Although the results of Sections 7.4 and 7.5 do give explicit expressions 

for the p. g. f. , these are not particularly suited to numerical work. 

However, the form of the equilibrium equations does permit a simple 

iterative solution. For the synchronous probabilities 	o.3 , we have 

	

-̂ z.n q + 	r 
'0 '00 0 '

n 
 10 '1 

ql = p01 q0 P ll q l 	P21 q2 etc. 

Thus the ratios qi/q
0 
 (i = 1,2, 	) may be determined by simple back 

substitution. The value of q0 
 may be obtained from Proposition 7. 3 

bution should not be spread over too many states. These remarks apply 

also to the Neyman-Scott processes discussed in Chapter 6. 

We shall not attempt to derive analytic results for the joint 

distributions of intervals. We shall merely point out that it is possible 

to obtain expressions for the joint density f X, Y (x, y) of two contiguous 

synchronous intervals in terms of 	and its derivatives (cf. Section 

6. 5),It does not seem possible to obtain simple results for the serial 

correlations. However, we do have 

Proposition 7.4. The serial correlations at n, 	(m = 1, 2, ... ) 

N 
(substituting (z = 0) or it may be approximated by taking 	q  i 	1  

t. 0 
for some large N. An important proviso is that the stationary distri- 
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of the synchronous interval sequence decrease monotonically to zero 

as m —> oo. 

Proof. It is sufficient to show that the Markov chain 	1)1.3.1  is 

stochastically monotone. We have immediately from Proposition 7. 2 

that for any k and i > 1, 

oo 

Prob(K1  > k 	= 1) > 	j 	d. >Prob(K1 
 >k/ K0  = i-1) , 

k-i+l 

proving the result. 

7. 7. CONCLUDING REMARKS 

As has been seen, the interval properties of even the simplest 

self-exciting process are not particularly tractable. It is not possible 

to obtain explicit results for a general function g(. ). However, the 

method of stages can be used when g(, ) has a special Erlangian form, 

and a countable semi-Markov representation obtained. The simple 

iterative method of Section 7. 6 is not available for numerical solution. 

For a general function g(. ) it is possible to obtain an integral equation 

for the p. g. f. P(z, t) of N(0, t) which might allow a numerical solution 

(Hawke s, private communication). 

	

In the exponential case the complete intensity function X(t, 	
t 

is itself a Markov process. For X - '1' decays exponentially and jumps 

by a whenever an event occurs. The stationary state equations for k 

can be solved iteratively for \,) < X < 1.1 + a, 	+ a < X < 	+ 2a, 	, 

but only by successive integration. The approach we have given seems 

superior. 
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CHAPTER 8 

A RANDOM WALK POINT PROCESS 

8. 1. INTRODUCTION AND PRELIMINARIES 

A random walk with positive steps generates a renewal process. 

Daley (1970) has discussed the point process generated by a random 

walk with the two-sided step distribution with density 

f (x) = p f
2
(-x) I(-oo, 0) + q fI(x) I(0, co) , 	 (1) 

where 0 < p = 1-q < 1, f l  and f2  are probability densities on R+ and 

I(A) denotes the indicator function of the set A. It is assumed  that f l 

and f2 
have finite means 1/13 and 1/a respectively, and that the walk 

has positive drift, so that 

= -- - 
a

> 0 . 	 ( ) 

Daley derived an integral equation satisfied by the p. g. f. of counts 

in a Borel set A and gave an explicit solution when A is an interval 

and the step distribution has two exponential tails, i. e. 

-13x 
f l (x) --,- 13 e 	, 	 (3) 

f 
2
(x) = a e-ax  . 	 (4) 

He obtained the marginal distribution of intervals in the stationary 

point process and the joint distribution of two contiguous intervals. 

A different approach based on the technique of ladder variables 

used by Feller (1966, Chapter XII) is adopted here. We show that when 

(3) holds there is a representation of the walk as a Poisson cluster 

process. Moreover, there are simple formulae for the interval dis-

tribution and counting spectrum of this process. It is shown that when 
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both (3) and (4) hold the cluster structure is that of a linear birth and 

death process. There is then a simple Markovian representation which 

gives an easy proof of the positivity of the interval correlations and 

algorithms for their calculation. 

We imagine the random walk to be performed by a particle which 

jumps from a point Ym  t o another point Yrn+i  at the (m+l)th epoch. 

Words such as 'between', 'before' and 'after' refer to the ordering of 

the Y 

	

	induced by the random walk, not to the usual ordering of 
m 

The path is the sequence 

process -P = 	T -1, T 0, T 	consists of the L Y 	reordered 

so that ... < T_1  < To  < T 1  < ... 	Usually we take T o  = Y 0  = 0. In 

general it is not possible to reconstruct the path from the sequence 

Tn 
, or from the interval sequence

' 
 X.1.)  , where as usual 

X.
1 
 = T.

1 
 - T. 	.  1-1 

It follows from (2) that the ascending ladder points (successive 

maxima) of the walk form a non-terminating renewal process. The 

renewal measure of the ladder process is denoted by 	. For a 

random walk which starts at the origin, Feller (1966, Chapter XII, 

p. 311) gives the 

Duality lemma. The measure admits of two interpretations. For 

I c 11
+

, 

(a) 	(I) is the expected number of ladder points in I ; 

Wt• Z. 
	Y -1' Y0'  Y1, • • • S 	The point 

(b) 
	

(I) is the expected number of visits to I prior to the first entry 

into It. 

If the first step is known to be positive then the expected number 



of visits to I prior to the first entry into R is given by 

(I) = 	VE(I)/q • 
	 (5 ) 

8. 2. STEP DISTRIBUTIONS WITH POSITIVE EXPONENTIAL TAIL 

Proposition 8. 1. If (8. 1. 2) and (8. 1. 3) hold, then-P is a Poisson 

cluster process. The ladder points are the main events and the cluster 

corresponding to the ith ladder point is the set of points visited between 

the ith and (i+l)th ladder epochs. 

Proof. Note that the subsidiary events of a cluster lie to the left of 

the main event. From the lack of memory of the exponential distribu-

tion, it follows immediately that the ladder points form a Poisson 

process and that sections of the path between successive ladder epochs 

are mutually independent. 

Corollary. If Y0  = 0, then that part of the future path 	Yi  : i > 0 

which lies in t > 0 generates a stationary point process in .R+
. 

If t 	51 and i 	2, then i is said to be a positive or negative 

respectively. The mujti- 
i 

plicity M
t at time t is the number of negative crossings of to Then the 

positive drift ensures that M
t 

is finite and that the number of positive 

crossings of t is M
t 

+1. 

Proposition 8. 2. If (8. 1. 2) and (8. 1. 3) hold, then 

(i) conditionally on Mt  = m, the m+1 sections into which the 

path is divided by successive positive crossings of t are mutually 

independent, 

(ii) the distribution of M
t is geometric, with Prob(M = m) = r (1-r) 
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m = 0,1, ... ), where r = P13/(qa). 

Proof. Part (i) is immediate from the lack of memory of the exponen-

tial distribution. Hence, to prove (ii) itis sufficient to show that the 

probability of at least one negative crossing of t is r. Equivalently , 

we show that 

Prob( i > 0 : Y. < 0 Yo = 0, Y1  > 0) = r. 

For u > 0, let 

L(u) = Prob( i > 0 : Y11 , 	, Y.-1 
 > 0, Y. < -u Yo  = 0, Y l  > 0). 

Then (cf. Feller op. cit. p. 387) we have 

00 

L(u) = p (clx) 	(u+x) , 

  

x=0 

where 2 is the survivor function of f 2. Since the ladder points 

form a Poisson process, the duality lemma gives 1)  (I) = plI and 

kii +(I)=R Ij %q• Hence 

L(0) = qa  = r . 

00 
Corollary. L(u)/L(0) = 	2  (u+x)dx. 

x=0 

Thus, conditionally on i being a negative crossing of t, the 

distribution of t - Yi+1 
is the same as the recurrence time distribution 

in a stationary renewal process with interval density f 2. We denote 
4,1 

the survivor function of this recurrence time by 	
2 '  

Proposition 8.2 and its corollary permit a simple derivation 

of the interval distribution of the point process. We first determine 

the survivor function 
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5- (x) = Prob N(t-x, 	= 0 ' 

by conditioning on the multiplicity Mt
. Suppose that Mt = m and that 

the (m+1) positive crossings of t and the m negative crossings are 

,im+1  and j
l' 	

, j
m)

respectively. Then i\I(t-x,t] = 0 if and 

only if 

t - Y. >x 	(k = 1, ... ,m+1) , 
k 

t - Y
+1 

 >x (k = 1,...,m). 
i k 

These random variables are mutually independent, with survivor func- 
es/ 

tions e- 13x and.:r2  (x), respectively. Thus 

Pr ob N(t-x, 	= 0 1Mt 	
= (e-(3x)m.+1 	

2 = m 	 (x) 
m 

 . 

• 

Using Proposition 8. 2(ii) to remove the conditioning on m, we obtain 

Proposition 8. 3. If (8. 1. 2) and (8. 1. 3) hold then the survivor function 

of the forward recurrence time is given by 

(l_r) e-fax 
(x) - 

1-r e-(3x (x) 
2 

Since the rate of the process is p = 14., the usual recurrence 

time formula for stationary point processes gives the 

Corollary. The marginal interval distribution has survivor function 

g(1-r)2  e -133c fif3+rae -13x  2(x) 

8. 3. DOUBLE EXPONENTIAL STEP DISTRIBUTION  

If both (8. I. 3) and (8. 1.4) hold, there is a strengthening of 

Proposition 8. 2, viz 

(X ) — 
- r e -13x 	(x) 2 
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Proposition 8.4. If f1  (x) = f3 e-13x,  f 2  (x) = a e ax, then 

(i) conditionally on Mt  = m, the 2m+2 sections into which the 

path is divided by successive crossings of t are mutually independent; 

(ii) M
t 

is a Markov process. 

Proof. Part (i) is again immediate from the lack of memory of the 

1,9 

exponential distribution. Thus, conditionally on M
t 

= m, that part of 

the path which lies in "lc < t is independent of that part in T- > t. It 

follows that the values of MI in 	< t are conditionally independent 

of those in T > t, given 	This This proves Part (ii). 

To conform with our general notation for imbedded Markov 

processes, we now let K
t 

= M
t
. We also define the process .:K < 

n 

by the usual relation 

K = KT  
n 

Then K
n 

is the multiplicity just after the nth event. Also, 	K -1-• is 

a Markov chain, and, for each n, the joint distributions of 	K., X. ;- 

	

1 	1-- 

in i > n depend on their joint distributions in i < n only through K. 

Thus 	K., X. I is a semi-Markov representation of the point process. 
1,) 

We now consider the transition probabilities of 	K., Xj 
L.- 	1 

Letting y = f3/(a+13), we have 

Proposition 8.5. The transition probabilities of 

by 

=0 	(
0 
 k-1, k, k+1) , 

	

a q k 	 f3p (k+1)  
Pk, k-1 	(a+f3)(k+y) 	Pk, k+1 	(a+(3)(k+y) 

(ap+3q) k Pq  
Pk, k 	(a+p)(k+-y) 

are given 

(1) 
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The conditional interval density is 

f(x i ! ko, ki ) = (a+13)(k0+-y) exp -(a+p)(ko+y)xi/ . 

Proof.  Consider a typical section of the path from a positive to the 

next negative crossing of T. There are 4 ways in which this section 

may include an event at Tn+x but no event in (Tn, Tn+x), see Figure 2. 

Note that it is irrelevant whether the event at T
n is on the upper or 

lower part of the section. In (a) and (c), Tn+x is the first point in the 

(6) 	(c) 	(4) 

• 
X >  

Tn 	`In+x Tn 	Tr4x Th 	n*- 3C. Tn 	-7;1  

Figure 2. The transitions of 

section visited by the particle. In (b) and (c) it is the last but in (d) 

it is neither the first nor the last. 

In (a) we require the improper density that the particle visits 

Tn + x on its first step, then takes a positive step and ultimately returns 

past T
n
, visiting no point in (T 	 +x). This density is to be condi- n n 

tional on the first step being positive and on ultimate return to t. This 

gives a term 

qi3e -13x  qre-ax/(qr) = qpe-(a+P)x 

Similarly for (b) and (c) we obtain terms pa e
-(a+(i)x 

and qae
-(a+p)x 

respectively. In (d) the appropriate a--event is that the particle over-

shoots T
n
+x on its first step, ultimately returns to T +x, then takes 
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a positive step and finally returns to t, visiting no point in (t, t+x). 

This gives a term 

qe Px  raqre -axArq)= f3 p e
- (a+(3)x 

For the final section of the path, which does not return to T
n
, only 

(a) and (d) are possible and the appropriate conditional densities are 

-(3x ° 	-13x 
Pq e 	and pp e 	, respectively. 

If the (n+l )th event of the point process occurs at Tn+x, there 

must be precisely one section of the path for which one of (a), (b), (c) 

or (d) holds, and the remaining sections must contain no event in 

(T
n
, Tn+x). Moreover, if Kn = k, then Kn+1 = k, k, k-1 and k+1 in (a), 

(b), (c) and (d), respectively. The proof is completed by appealing to 

Proposition 4(i) and noting that the probability of a section containing 

no event in (t, t+xj1  is exp Si-(a+(3)xj . 

Proposition 8. 6. The synchronous stationary distribution is given by 

q
k 
 = q  (1-02  (a+(3) (k+y)rk  , 	 (2) 

with p.g.f. 

Q(z) = —
q
(1-r)

2  (13+arz)  
13 	(1 - rz )2  • 

Proof. It is easy to verify that the distribution (2) is invariant under 

the transition probabilities (1). Alternatively, (3) may be deduced from 

Proposition 8. 2 and the relation (6. 2. 4) between the synchronous and 

asynchronous stationary,distributions. 

8.4. SOME PROPERTIES OF THE INTERVAL SEQUENCE 

The survivor function for a synchronous interval is 

co 

(x ) = 
	ti 	q

k exp - a+13)(k+y)x,k . 

k=0 

(3 ) 
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We find that this agrees with Daley's (1970) result 

(cia_pi3)2 (c1.42.f3x 

"."(x) - 	 
(qa e

PX  - pp e
-ax

) 
2 

which is a special case of the corollary to Proposition 8.3 above. The 

moments of the interval distribution may be found from (1), or by using 

co 

E(Xm) = E E(Xm l 

k=0 (.(a+P)(k+-01 m  

After substituting for qk 
and simplifying, we obtain for the first two 

moments 

(E (X ) = q /f3 - P/a 

as it must, and 

2  E 	
ig 

(X2 ) - 2c1(L--r)
a+P) 

where, following Daley again, / is defined in Erdelyi, Magnus, 

Oberhettinger and Tricomi (1953, p. 27) as 

(r,m,"Y) = k=0 (k+y)
m  

	

co 	rk 	
(2) 

In general 	does not appear to have been tabulated, though, as 

Daley points out, it is a special case of Gauss's hypergeometric function. 

A simple expression is available in one case however, for 

r,,1, 
1
/2) = r 

2 
 log < 

	

1 	
C 1 + r1/2 

1 - r1/2  

The results of Section 6. 2 ensure that the marginal interval distribution 

(1) 

q
k 

has a hazard function which decreases to 13 as x 	co, and a coefficient 
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of variation greater than one. The serial correlations of the interval 

sequence may be obtained using similar methods. For, if(rn))` P. • 

are the m-step transition probabilities of p.. € , p. .(m)  = 0 if 
13 

I >m and hence 

1E (X
1
Xm+1 ) = 

	

00 	OD 	 (m) 

	

N.-- 	
CIi i j  P 

/ L (a+ R) 2  (i+Y)(i+Y) 

	

1=0 	j=0 

(3) 

may be expressed as a single infinite series. Since p..
(m) 
 is a 

1J 

rational function of i if j-i is fixed it is possible to express the serial 

correlation ym  of lag m in terms of 	(r, (r, s, -y) (s = 1, 	, m+1). The 

algebra becomes tedious even for small m however, and numerical 

results can be obtained quite easily from (3). Explicitly for m=1 we 

have 

-1; (r, 1, y)--2cla 
(1-r)2 	3 aP(9-) 	(r, 2,y) + 3a13+0'2P+P2q 

a+ 
Epc

1x2) - 
p 
ci
(a+P)2 	a+a+(3 13  

-which agrees with a result of Daley (1970), and for m = 2 , 

co 

	

q(1-r)2  	2P 2p 2(k+1)(k+2)  
E(X1 X3) - 	3 	 (k+y)(k+y+1)(k+-y+2) ... 

k= 0 

 
+ 	

2 (k+1)13q+kap 	Pp(pp+2ap)(k+1 )2+2p2pq(k+1 )(k+2) 
3 	 (k+y) (k+y+1 )2  

Pp(2(3q+aq  )(k+1)2  + 2a3p2k(k+1 
(k+y)2  (k+y+1) 

After reduction by partial fractions this yields 

(1-r)2   
E(X1 X3) - 

q  5 < A 
P(a+P) 

, 3,y) + B 	(r, 2, y) +C 	(r, 1, y) + D$- 

P(a+P) 

(k+y ) 

where 
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A = a.j32 (p-q)2  , 

B = af3 1f32 (-3pq+2q 2 ) + al3(-4p2+4q 2 ) + a 2 (-2p2+3pq)'s , 

C = p4 q2 +a33  (-p 2  +9pq+6q 2 ) + a2 f3 2 (6p 2+22pq+6q 2 ) 

+ a3I3(6p 2+9pq-q 2 ) + a4p 2 , 

-D = (a+13) ,_.(Xp 2  (pq-E4q 2  ) + a213 (5q 2+1 I pq) + a3  (6pq- q 2 ) A 

There is the usual qualitative result for the behaviour of the 

serial correlations. 

Proposition 8. 7. The serial correlations iym  : m=1, 2, ... c of the 

interval sequence of the double exponential random walk point process 

are positive for all m and decrease monotonically to zero as m —> oo. 

Proof. We have E (Xn 1 Kn- 1 , Kn ) = f (Kn- 1 ), where f (x ) = (a+(3)x+13 

is a monotone function of x. Thus, by the theore'm of Daley quoted in 

Section 6. 3 above, it is sufficient to show that the Markov chain -)K s n 

is stochastically monotone, i.e. that 

Prob(K1  < k 	= k ) < Prob(K < k 1 	1 i K0 	0 	1 	1 = k0-1) (4) 

for all ko and k1. If k0  < k1  , the right hand side of (4) is unity, whereas 

if k0 > k1+1, the left hand side is zero. If k0 = k1+1, then (4) is 

a(k1  +1)q 	crk1+13(k1+1 )q 

(cti-P)(c1  +N+1 ) 	(a+P)(k1+Y) 

which always holds for k1  > 1. 

8. 5. THE CLUSTER STRUCTURE OF THE DOUBLE EXPONENTIAL 

PROCESS 

For the double exponential random walk there is a pleasing 
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representation of the within cluster structure. 

Proposition 8. 8.  If (8. 1. 2), (8. 1. 3) and (8. 1.4) hold, then the structure 

of the clusters defined in Proposition 8. 1 is that of a linear birth and 

death process, reversed in time, in which a single individual dies in 

a small interval St and simultaneously reproduces to form 0,1 or 2 

similar individuals with respective probabilities aq5t, (ap+(3q)5t, 13p6t. 

Proof.  This is essentially the same as Proposition 8. 2, except that 

here we are concerned with sections of the path between negative and 

positive crossings. There are four possible configurations corresponding 

to the occurrence of an event, see Figure 3. The approriate probabilities 

1 	 1 	 1 

1 	 1 
1 	 I 	 • 	1 

1 
	 7 	I-  — • <----- 1 

1 birth 	 1 birth 	no births 	2 births 

Figure 3. The cluster structure. 

can be written down as before. For example in the first case we obtain 

-ax 
p. 1. e 

-I3x e  

Proposition 8. 8 permits a treatment of the asynchronous counting 

distribution based on the corresponding results of Chapter 7. We have 

shown that the two-sided random walk may be represented as a reversed 

time iterated cluster process, in which the process of centres has rate 

f3, the parameter of the lifetime distribution (corresponding to the fp, 

of Chapter 7) is a+13, and the offspring distribution has p. g. f. 

P
D

(z) = (a+(3)
-1 

aq 	(crp+ f3q)z 	Ppz 2  . 	 (1 ) 
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Here we can evaluate explicitly the p. g. f. P1  (z, t) of N [-t, 0) given 

by (7. 5.4), which becomes 

(aH3)t = - du  
z P

D
(u) - u (2 ) 

From the general remarks following (7. 5. 4),we see that the denominator 

of (2) is always negative in the region of interest. There must therefore 

be a factorisation 

z PD(u) - u = c(u - 01 )(02  - u) 	 (3) 

where 0 > 1, 01  < 1 and c > 0 are independent of u. In fact 0
1 

and 

0
2 are the roots of 

13pzu 2  + (ap+(3q) z - a - 13 )f  u + aqz = 0 . 	 (4) 

After expansion by partial fractions and integration, we obtain 

Pl (z,t) = 	 (5 ) (02-1 )exp (02  -01  )(3pzt 	+ 1 -01  

To calculate the total p. g. f. P(z, t), we can proceed as in Chapter 

7, but there is one important difference. Here the immigrants do not 

split immediately on entry. However an immigrant (main event) at 

(-t + x) generates no subsidiary events with probability q, and N1(0, x) 

subsidiary events with probability p. Thus the total innovatory com-

ponent is 

co t 

  

51 (02-1) exp L  (02  -01  )f3pzt 	+ 02(1 -Si  ) 

P(z, t) = 

i=0 

e- 13t pt)' t- 
it. 	L z 	0  P (z,  x)dx q 	1 	 (6) 

After performing the integration in (6), simplifying and substituting 

(5) and (6) into (7.5. 5), noting that here 	(z) 	(1-r)/(1_rz), we 

find that 
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P(z,t) - 

	

(2-1)(ac1-(PS1) exp I3Pz  (°241)t 	 -$1)(aq-Pp$ 

This agrees with Daley's result. It must be remembered that in this 

expression 0
1 

and 0
2 

are functions of z, so that expansion of (7) as a 

power series in z is not easy. 

8. 6. THE CROSS-INTENSITY FUNCTION AND MOMENT MEASURES  

Finally we consider the moment measures of the process. The 

second order intensity function is of course closely related to the 'renewal 

function' for the random walk. This has been studied, for example by 

Feller (1966, Chapter 11). However, in random walk contexts, interest 

usually centres on the distributions and epochs of the ascending and 

descending ladder variables. Here we shall be concerned with the full 

process and it will be seen that the representation as a cluster process 

does simplify the arguments. At first however we consider a step 

distribution with general densities f l  and f 2, and use methods based 

on the regenerative character of the random walk. 

Define intensity functions m1(t) and m (t) (t > 0) as follows 

m
1 	

5 (t)dt = Prob 	='-\ 	> 0 : Y
n 	 Y0 	, E (t, t+dt) 	= 0 	 (1) 

m2(t)dt = Prob 
	

> 0 : Y 	-t, -t+dt) I Y0  = 	. 	(2) 

The existence of m1 
and m

2  will usually follow from the existence of 

the renewal density for the ladder process. In the particular cases 

we consider below the cluster process representation automatically 

gives a proof. 

Proposition 8. 9.  The functions m1 and m2 satisfy the equations 

(aq-Pp)(02-01 ) exp -(3t(1-qz) 	ppzSat 
(7) 



- 123 - 

t 

m1 (t) = qf 1  (t) + q 	m1(u)f 1  (t-u)du + p 	ml (u)f u-t)du + 

0 	 uir-t 

+ q 

m2(t) = pf 2(t) + p 

+p 

 

m2 (u)f l (t+u)du , 

u=0 

  

(3)  

    

m2(u)f 2(t-u)du + q 

0 u=t 

m2(u)f t  (u-t)du + 

 

 

oo 

m1  (u)f 2  (t+u)dti— 

u=0 

  

(4)  

Proof. If t > 0, then Yn = t if and only if (i) Y1= t, 	0  < Y
n-1 < t and 

Y = t ; (iii) Y 	> t and Yn = t, or (iv) Yn-1 < 0 and Yn = t. This n n-1 — 

gives (3) and a similar decomposition gives (4). 

In general, there is no simple solution of these equations. 

However, when the positive tail is exponential, we have 

Pr oposition 8. 10. Suppose that f1 (x) = die -fix  and that the walk has 

positive drift 1/p. Then m1 — m1(t) = p and the Laplace transform m2 (s)2 (s) 

of m2 (t) is given by 

qP 	 q(p-P)  f (s) - 	= pf (s) + 	pp  <1 - f (s) 	(5) 2 	P-s ) 	2 	s-13 	s 	2 

Proof. That m1  (t) = p follows immediately from the corollary to 

Proposition 8. 1. Substitution into (3), without taking transforms, gives 

m*2  ((3) = (p- (3)/13. Taking transforms in (4) and substituting for 

we obtain (5). 

Corollary. For the two-sided exponential walk, 
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ml (u) 	ceP 	' in (11)  Pq(a+P)2 	 (6) qa-pf3 	
2    exp 	-(qa-p13)u. 

It is worth noting that the existence of m1 and m2 for the random 

walk point process ensures the existence of finite, absolutely continuous 

moment measures of all orders. For we let ak be the set of all per- 

mutations a = (a1 , . . . , ak ) of (1, 	, k) and define m(t) = m1  (t) (t > 0) 

and m(t) = m
2
(-t) (t < 0). Then, if t

1 
< 	< t

le 
the particle may visit 

the points t1, ...,tk  in any order. Thus we have, for the kth moment 

measure, 

M
(k)

(dt1 x 	x dtk
) = p  	m (ta  -ta 	)dtl. . 	. 	 R - 

= 	
j 	j-1 
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APPENDIX 

SOME NUMERICAL VALUES 

Some numerical results are given for the simpler processes 

discussed in Chapter 6 to 9. The four processes considered are the 

two Neyman-Scott cluster processes with exponential displacements 

when the cluster size has Poisson and geometric distributions, re-

spectively the exponential self-exciting process and the random walk 

point process with double exponential step distribution. The rate of 

each process is set to unity, leaving two parameters which can be 

varied separately in each case. Tables 1.1, 2.1, 3. 1 and 4.1 give 

the values of the third parameter for specified values of two given para-

meters for each process. 

The interval properties were calculated from the synchronous 

and asynchronous stationary distributions of the imbedded Markov 

process. For all except the random walk process, for which a simple 

explicit solution is known, the synchronous stationary distribution was 

calculated by the iterative procedure discussed in Section 7.5 Some of 

the values obtained for the geometric shot-noise process were checked 

with the terms in the negative binomial distribution (6. .3 ). The serial 

correlations of the interval sequence were found by iterating the trans-

ition matrix of the imbedded Markov chain. The transition matrix and 

the stationary distribution were truncated after 40 states. This placed 

some restriction on the values of the parameters for which results 

could be obtained. However, the method used to calculate the stationary 
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distribution ensured that this was not sensitive to the point at which 

the transition matrix was truncated. 

The coefficients of variation of intervals and the asymptotic 

slopes of the variance-time curves are exhibited in Tables 1. 2, 2.2, 

3. 2 and 4. 2. The ratio of these two quantities, which is known to equal 

00 

1 + 2 	\67 k 	• 

where k 	
are the serial correlations of intervals (Cox, 1962, 

p. 134) is also given. This ratio gives a useful measure of the depar- 

ture from a renewal process, particularly when the 	i 	are all 

positive. Tables 1. 3, 2. 3, 3. 3 and 4. 3 give values of 	
Q 1' 
	2 and 

10. The mean and variance of the forward recurrence time are dis-

played in Tables 1.4, 2.4, 3, 4 and 4. 4. 

For all four processes the coefficient of variation of intervals 

and the asymptotic dispersion of counts are known to be greater than 

one. Moreover, the mean forward recurrence time is also greater 

than unity. The serial correlations 
	's

6 i 	of the random walk process 

and the self-exciting process decrease monotonically to zero. It is 

interesting to see from the numerical values given that the serial 

correlations decrease quite slowly, i. e. that 

6 1  

	 Y k 

is usually quite small. The greatest dispersion of counts for moderate 

values of the parameters seems to be exhibited by the random walk 

point process, followed by the self-exciting process. A direct 
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comparison of the results for the two Neyman-Scott processes is 

illuminating. A Poisson cluster size distribution gives smaller dis-

persion and lower serial correlations than a geometric cluster size 

distribution when the parameters of the process are the same. This 

would be expected from the shot-noise interpretations of the two pro-

cesses, since there is an extra source of random variation in the latter 

process due to the randomness of the shot height. 
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1. NEYMAN-SCOTT PROCESS WITH POISSON CLUSTER SIZES  

11,ere the Ebis son process of main events has rate \i.) , the 

distribution of the cluster size is Poisson with mean a/p and the 

displacement of the subsidiary events has density p 
e-13x  . 

, 	_  We take p - 1 +f  ce/13 	
1 

 

TABLE 

13 	a 

1. 1. 	Values of V for specified a and p 

0.1 5.0 2.0 1.0 0.5 0.2 

5. 0 . 500 . 714 . 833 . 909 . 962 . 980 

2. 0 .. 286 . 500 . 667 . 800 . 909 . 952 

1. 0 . 167 . 333 . 500 . 667 . 833 . 909 

O. 5 . 333 . 500 . 714 . 833 

0.2 .167 .286 .500• .667 
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TABLE 1. 2. Dispersion of Counts and of Intervals 

The first entry in each cell is the asymptotic slope, 

lirn rt-1  
t_>00 

var 	t) 
J 

, of the variance time curve, the second 

entry is var(X), the variance of a synchronous interval, and the third 

entry is the ratio of these quantities, 

a 	5.0 2.0 1.0 0.5 0.2 0.1 

5. 0 2. 500 1. 686 1. 367 1. 191 1. 078 1. 040 

2. 718 1. 675 1. 335 1. 167 1. 067 1. 033 

. 920 1. 007 1. 024 1. 021 1. 010 1. 007 

2. 0 4. 214 2. 500 1. 833 1. 450 1. 191 1. 098 

4. 761 2. 402 1. 682 1. 337 1. 134 1. 067 

. 885 1. 041 1. 090 1. 085 1. 050 1. 029 

1.0 6.833 3. 667 2.500 1.833 1.367 1. 191 

7. 649 3. 262 2. 051 1. 508 1. 201 1. 100 

. 893 1. 124 1. 219 1. 216 1. 138 1. 083 

0. 5 3. 667 2. 500 1. 686 1. 367 

2. 466 1. 675 1. 263 1. 132 

1. 487 1. 493 1. 335 1. 208 

0. 2 6. 833 4. 214 2. 500 1. 833 

3.041 1.816 1.304 1. 155 

2. 247 2. 320 1. 917 1. 587 
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TABLE 1. 3. Serial Correlations of the Interval Sequence 

The entries in each cell are the serial correlations 	C l' 

"41 2 and 	10 of lags 1, 2 and 10, respectively, for the synchronous 

interval sequence. 

2.0 1.0 0.5 0.2 0.1 

-0. 001 . 009 . 008 . 005 . 002 
. 004 . 002 . 002 . 001 . 000 
. 000 . 000 . 000 . 000 . 000 

0. 001 . 025 . 027 . 017 . 010 
. 011 . 012 . 009 . 015 . 003 
. 000 . 000 . 000 . 000 . 000 

. 014 . 048 . 053 . 035 . 021 

. 012 . 027 . 026 . 017 . 010 

. 000 . 000 . 000 . 000 . 000 

.. 083 . 088 . 059 . 036 
. 048 . 052 . 036 . 023 
. 003 . 003 . 002 . 001 

. 146 . 137 . 087 . 053 

. 087 . 098 . 067 . 042 

. 017 . 019 . 014 . 001 

5.0 

	

5. 0 	-0. 047 
. 004 
. 000 

	

2. 0 	-0. 052 
-0. 022 
. 000 

	

1. 0 	-O. 016 
-O. 036 
-0. 002 

0. 5 

0. 2 
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TABLE 1. 4. Mean and Variance of the Recurrence Time  

The first entry in each cell is the mean, E(X1  ), and the 

second entry is the variance, var(X1 ), of the forward recurrence 

time. 

P 
_ a 	5.0 2.0 1.0 0.5 0.2 0.1 

5. 0 1. 859 1. 337 1. 168 1. 084 1. 033 1. 017 

3. 935 1. 935 I. 428 1. 204 1. 079 1. 039 

2. 0 2.881 1.701 1.341 1. 168 1.067 1.033 

11.472 3. 708 2. 116 1. 500 I. 187 1. 091 

1.0 4.324 2.131 1.526 1.254 1.100 1.050 

31.511 7.307 3.263 1.930 1.327 1.157 

0. 5 1. 733 1.  338 1. 132 1. 066 

5. 408 2.  568 1. 507 1. 237 

0. 2 2. 021 1. 408 1. 152 1. 077 

11.168 	3.584 	1.702 	1.320 
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2. THE NEYMAN-SCOTT PROCESS WITH GEOMETRIC CLUSTER 

SIZES 

Here the Poisson process of main events has rate i) , the 

distribution of the cluster size is geometric with mean a/13 and the 

displacement of the subsidiary events has density f3 e-(3x. 

N i+ 
We take p -1  1 + a/ 	 - 1 a/13 

TABLE 2. 1. 	Values of for specified a and 13 

a 5. 0 2. 0 1. 0 0.5 0.2 0.1 f3 

5. ö .500 .714 .833 .909 .962 .980 

2. 0 . 500 . 667 . 800 . 909 . 952 

1. 0 .500 . 667 . 833 . 909 

O. 5 . 333 .500 . 714 . 833 

0.2 .500 .667 
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TABLE 2. 2 Dispersion of Counts and of Intervals 

The first entry in each cell is the asymptotic slope, 

lim -1 	- 
var N(0, t) 	, of the variance time curve, the second 

t ->oo - 
entry is var (X), the variance of a synchronous interval and the third 

entry is the ratio of these quantities. 

a 	5.0 2.0 1.0 0.5 0.2 0.1 

5. 0 3. 000 1. 800 1. 400 1. 200 1. 080 1. 040 

2. 752 1. 684 1. 338 1. 168 1. 067 1. 033 

1. 090 1. 069 1. 046 1. 027 1. 012 1. 007 

2.0 3.000 2.000 1.500 1.200 1. 100 

2. 468 1. 705 1. 344 1. 135 1.067 

1. 216 1. 173 1. 116 1. 057 1. 031 

1.0 3. 000 2. 000 1. 400 • 1. 200 

2. 142 1. 538 1. 206 1. 102 

1.401 1. 300 1. 161 1. 089 

0. 5 5. 000 3. 000 1. 800 1. 400 

2. 729 1. 773 1. 284 1. 138 

1. 832 1. 692 1. 402 1. 230 

0. 2 3. 000 2. 000 

1. 375 1. 177 

2. 182 1. 699 
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TABLE 2. 3 Serial Correlations of Intervals 

The entries in each cell are the serial correlations ?(1' 

6 2 and1(10  of lags 1, 2 and 10, respectively, for the synchronous 

interval sequence. 

P 
5. 0 2. 0 1.0 0.5 0. 2 0. 1 

5. 0 . 029 . 026 . 018 . 011 . 005 . 003 

. 009 . 006 . 004 . 002 . 001 . 000 

. 000 . 000 . 000 . 000 . 000 . 000 

2. 0 . 062 . 053 . 037 . 019 . 010 

. 024 . 019 . 013 . 006 . 003 

. 000 . 000 . 000 . 000 . 000 

1. 0 . 094 . 073 . 040 . 022 

. 045 . 035 . 020 . 011 

. 001 . 018 . 000 . 000 

0. 5 . 141 .118 . 068 . 039 
. 082 . 072 . 043 . 025 

. 006 . 004 . 002 . 017 

0. 2 .. 106 . 060 

. 084 . 049 

. 018 . 040 
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TABLE 2. 4. Mean, and Variance of the Recurrence Time 

The first entry in each cell is the mean, E(Xi  ), and the 

second entry is the variance, var(3t1 ), of the forward recurrence 

time. 

a 	5.0 2.0 1.0 0.5 0.2 0. 1 

5. 0 1. 876 1. 342 1. 169 1. 084 1. 033 1. 017 

3. 948 1. 938 1. 429 1. 204 1. 079 1. 039 

2. 0 1. 734 1. 352 1. 172 1. 068 1. 034 

3. 758 2. 132 1. 505 1. 187 1. 091 

I. 0 1. 571 1. 269 1. 103 1. 051 

3.374 1.961 1.332 1.158 

0. 5 1. 864 1.  386 1. 142 1. 069 

5. 990 2.  736 1. 536 1. 244 

0. 2 1. 187 1. 089 

1.854 	1.361 
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3. THE EXPONENTIAL SELF-EXCITING PROCESS 

Here the process has a complete intensity function of the form 

f 
a e f3 -(t-u) 

X(t, 'alt ) = 	+ 1 	 dN(u) 

and a < P. 

Wetakep= 1 azp  1.  

TABLE 3.1. Values of for specified a and p 

P 
a .8 .7 .6 .5 .4 .3 .2 

.9 .111 .222 .333 .444 556 . 667 . 778 

. 8 .125 . 250 . 375 .500 . 625 . 750 

. 7 143 .285 .429 .571 .714 

. 6 . 167 . 333 .500 . 667 

.5 .200 .400 . 600 

.4 .250 .500 

.3 .333 

t 
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TABLE 3. 2. Dispersion of Counts and of Intervals 

The first entry in each cell is the asymptotic slope, 

r - 1 	c lim t var N(0, 	, of the variance time curve, the second _., 
t ->oo 	 -J 

entry is var (X), the variance of a synchronous interval, and the third 

entry is the ratio of these quantities. 

a 	. 8 .7 .6 .5 .4 .3 .2 

.9 81. 000 20. 250 9. 000 5. 063 3.240 2. 250 1. 653 

11. 635 5. 001 3. 107 2. 255 1. 780 1. 480 1. 272 

6. 962 4. 049 2. 897 2. 245 1. 820 1. 520 1. 300 

.8 64. 000 16. 000 7. 111 4.000 2.560 1.778 

9. 628 4. 140 2. 607 1. 923 1. 541 1. 297 

' 6. 647 3. 865 2. 728 2. 080 1. 661 1. 371 

.7 49. 000 12. 250 5. 444 3. 062 1. 960 

7. 700 3. 346 2. 157 1. 628 1. 330 

6. 364 3. 661 2. 524 1. 881 1. 474 

.6 36. 000 9. 000 4. 000 2. 250 

5. 893 2. 638 1. 766 1. 374 

6. 109 3. 412 2. 265 1. 638 

.5 25. 000 6. 250 2. 778 

4.272 2.037 1.441 

5.852 3. 068 1.928 

.4 16. 000 4. 000 

2. 920 1. 563 

5. 479 2. 559 

.3 9. 000 
1. 920 

4. 688 
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TABLE 3. 3. Serial Correlations of the Interval Sequence 

The entries in each cell are the serial correlations 

•6"

2 

and 	-10 of lags 1, 2 and 10, respectively, for the synchronous 

interval sequence. 

p 
a 	.8 .7 .6 .5 .4 .3 .2 

. 9 . 204 .197 .176 .149 .119 . 088 . 058 

.148 .140 .121 . 099 .076 .054 . 034 

. 058 . 042 . 027 . 015 . 007 . 003 . 001 

. 8 . 209 .198 .170 .136 .100 . 065 

.153 .141 .117 . 091 . 064 .040 

059 . 041 . 024 . 012 . 005 . 026 

.7 .216 .196 .158 .116 . 075 

.159 .141 .110 .078 .048 

. 060 .039 . 021 . 009 . 003 

.6 .223 .188 .137 . 087 

.166 .137 . 097 .059 

.062 .037 .017 . 006 

.5 .227 .169 .104 

.172 .126 .076 

.064 .032 .012 

.4 .221 .131 

.173 .101 

. 065 . 025 

.3 .184 

.152 

. 059 
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TABLE 3. 4 Mean and Variance of the Recurrence Time  

The first entry in each cell is the mean, E(X1 ), and the 

second entry is the variance, var(X1 ), of the forward recurrence 

time. 

.8 .7 .6 .5 .3 .2 

.9 6.318 3.000 2.054 1.628 1.390 1.240 1.136 

70.751 16.230 6.988 3.952 2.605 1.892 1.467 

.8 5. 314 2. 570 1. 804 1.461 1.271 1. 149 

53. 413 12. 131 5. 283 3. 050 2. 058 1. 528 

.7 4.350 2.173 1.579 1.314 1.165 

38.300 8.666 3.870 2.311 1.612 

.6 3.447 1. 819 1. 383 1. 187 

25. 569 5. 869 2. 754 1. 732 

.5 2. 636 1. 519 1. 220 

15.442 3.760 1.926 

.4 1.960 1.281 

8.152 2.319 

. 3 1. 460 

3. 737 
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4. THE RANDOM WALK WITH DOUBLE EXPONENTIAL STEP 

DISTRIBUTION 

Here the density of a step is 

q p e-Px  I (0, co) p a eax  I(-co, 0) , 

where p q = 1, q/f3 - p/a > O. 

We take p = q/13 - p/a 

TABLE 4. 1. Values of a and r for specified q and (3  

Here r = p(3/q(3 is the asynchronous probability of at least one 

return to the origin. The first entry in the Table is a and the second 

entry is r. 

P 

.8 

q 	
.9 

.800 

.111 

.8 .7 .6 .5 .4 .3 

.7 .350 1.400 

. 222 .. 125 

. 6 . 200 . 600 1. 800 

. 333 . 250 . 143 

.5 . 125 . 333 . 750 2. 000 

. 444 . 375 . 286 .167 

.4 . 080 . 200 . 400 . 600 2. 000 

. 556 .500 . 429 .333 . 200 

. 3 . 050 . 120 . 300 .400 . 750 1. 800 

. 667 . 625 . 571 .500 . 400 . 250 

.2 . 029 . 067 . 120 . ZOO . 333 . 600 1. 400 

. 778 . 750 714 . 667 . 600 . 500 . 333 
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TABLE 4. 2. Dispersion of Counts and of Intervals 

The first entry in each cell is the asymptotic slope, 

r  lim 	t -1  var 	 , of the variance time curve, the second 
t ->oo - 
entry  is var(X), the variance of a synchronous interval, and the third 

entry is the ratio of these quantities. 

p 
q .9 .8 .7 .6 .5 .4 .3 

. 8 2. 125 

1. 311 

1. 621 

.7 4.306 2.469 

1. 453 1. 584 

2. 964 1. 559 

.6 9. 000 4. 556 3. 074 

1. 630 1. 747 1. 946 

5. 521 2. 608 1. 580 

.5 19. 000 9. 000 5. 667 4.000 

1. 851 1. 964 2.139 2.435 

10. 265 4. 582 2. 649 1. 643 

.4 41.500 19.000 11.500 7.750 5.500 

2.137 2.252 2.419 2.681 3.129 

19.420 8.437 4.754 2.891 1.758 

.3 99. 000 44.556 26.407 17. 333 11.889 8. 259 

2. 529 2. 649 2.817 3.067 3.468 4.182 

39. 146 16. 820 9. 374 5. 651 3. 428 1. 975 

.2 289. 000 129. 000 75. 667 49. 000 33. 000 22. 333 14. 714 

3. 122 3.250 3.426 3.680 4. 067 4. 718 5. 971 

92.569 39.692 22.086 13.315 8.114 4.734 2.464 
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TABLE 4. 3. Serial Correlations of the Interval Sequence 

The entries in each cell are the serial correlations 	o 1 ,  

-\(,(12 and10  of lags 1, 2 and 10, respectively, for the synchronous 

interval sequence. 

q 

.8 

. 9 

.080 

. 057 

. 006 

.8 .7 .6 .5 .4 .3 

.7 .128 .095 

.106 . 057 

. 033 . 004 

.6 .170 .149 .102 

. 150 . 111 .058 

. 070 . 024 . 004 

.5 . 210 .193 .162 .104 
.193 .159 .115 .061 

. 113 .134 .023 . 005 

.4 . 249 . 235 .212 .172 .105 

. 234 . 204 .166 .120 . 066 

.158 . 098 . 057 . 027 . 008 

. 3 288 . 276 .257 .227 .179 .105 

.274 .248 .216 .177 .129 . 072 

. 205 .146 .102 . 066 . 036 . 013 

. 2 . 328 . 317 .302 .278 .242 .188 .107 
. 317 .294 . 267 .234 .193 .142 . 080 
. 256 .201 .157 .118 . 083 . 051 . 022 
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TABLE 4.4. Mean and Variance of the Recurrence Time 

The first entry in each cell is the mean, E (Ri  ), and the 

second en try is the variance, vara/Ci ), of the forward recurrence 

time. 

P q .9 .8 .7 .6 .5 .4 .3 

.8 1.155 

1.479 

. 7 1.226 1.292 

1.795 1.931 

.6 1.315 1.373 1.473 

2.240 2.409 2. 621 

.5 1.425 1.482 1.570 1.718 

2.899 3.114 3.399 3.749 

. 4 1. 568 1.626 1. 710 1.840 2. 064 

3. 953 4. 243 4. 629 5.143 5. 782 

.3 1.764 1.824 1.908 2.034 2.234 2.591 

5.839 6.263 6.827 7.594 8.648 10. 025 

.2 2.061 2. 125 2.213 2. 340 2.534 2.860 3.485 

9.942 10.656 11. 604 12. 901 14. 739 17. 429 21. 339 



- 144 - 

TABLE OF NOTATION 

Notation used only in the Chapter where it is defined has been 

omitted. 

(i) General Notation  

the real numbers 

R
n 

n-fold Cartesian product of R. 

the strictly negative real numbers 

R 	the non-positive real numbers 

R 	the non-negative real numbers 

R
++ 

the strictly positive real numbers 

the integers. The superscript notation used for subsets of It 

is also used for subsets of .,eL . 

-07(A) cardinal of a set A 

(A\ 	Lebesgue measure of a set A 

f (n) 
n-fold integral (e. g. over Rn) 

empty set 

sgn(a) is +1 or -1 according as the permutation a is even or odd 

p. g. f. probability generating function 

.) 
5 

do 
 the degenerate probability distribution concentrated at w

0  

E(X) expectation of the random variable X 

(ii) Notation Specific to the Thesis 

The Section in which the symbol is first used is given. 

N(. ) 	the (asynchronous) counting measure of a point process; 

N 	 b 	= N( ra, 	) etc. 



p(dw
l

w0) 

13 
	 transition matrix of 	K n  

synchronous stationary distribution of Kn  

Q, 	 p. g. f. s of 	 , respectively 
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the synchronous interval sequence 

Tn 	 time of the nth event after the origin 

(1. 3), (3. 6) 

(1. 3), (3. 2) 

t" history of a point process at time t 	 (1. 4) 

state space of a semi-Markov process 	(3. 2) 

element of 	 (3. 2) 

the o--field of measurable subsets of 	(3. 2) 

W, Wn 	state variable of a semi-Markov process 	(3. 2) 

transition function of the Markov chain 

synchronous stationary distribution on 

`141. 
n  7

'; 

•-1 

(3.2) 

(3. 2) 

number of events in (0, t) (3. 2) 

continuous time semi-Markov process (3. 2) 

F(dx\wo, co l ) 	conditional interval distribution 	 (3.2) 

(xl wo ) 	conditional interval survivor function 	(3. 2) 

N- 	 mean of a synchronous interval 	 (3. 3) 

F l (dx l ), F2 (clx l , dx2 ). . . 	synchronous interval distributions (3.6) 

Fi  (dx i  ), F2(dxl , dx2 )... asynchronous interval distributions (3. 6) 

V.. 	multivariate synchronous forward recurrence 
times 	 (4. 1) 

V..13 (i>0) multivariate semi-synchronous forward 
recurrence times (4. 1) 

V 03 multivariate asynchronous forward recurrence 
times 	 (4. 1) 

K, Kn state variable of a countable imbedded 
Markov chain (6.1) 

countable state Markov process 
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