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ABSTRACT

An orderly stochastic point process on the real line is shown
to be characterised by the probabil{ities that each finite union of intervals
contains no events. The equivalence of some definitions of stationarity
for point processes and the non-equivalence of others are demonstrated.
Various questions concerning the characterisation of the interval sequence
by the counting distributions are discussed.

Many point processes can be represented by the sequence of
times at which transitions occur in a semi-Markov process with general
state space. The counting distributions of the point process are deter-
mined by the transition functions and initial distributions of the semi-
Markov process. A fundamental relation between the synchronous and
asynchronous stationary distributions of the semi-Markov process is
used to relate the synchronous and asynchronous joint interval distributions.
Some examples are considered, including non-orderly processes.

Applications to point processes with events of several types
are considered, and Palm-Khintchine relations are derived. One such
process, the bivariate Markov process of intervals, is examined in
more detail,. and sufficient conditions for the existence of a stationary
distribution are given.

Simplifications which arise when the semi-Markov process is a
Markov process xjvith countable state space are discussed. A condition
is given for all the serial correlations of intervals to be positive.

It is shown that the self-exciting process exists as a generalised

Poisson cluster process. A clustering representation is derived also



for the point process generated by a random walk when the dominant

tail of the step distribution is expomential. When both tails are exponen-
tial the cluster structure is that of a birth and death process. Markovian
representations of the exponential Neyman-Scott process, the exponen-
tial self-exciting procéss and the double exponential random walk are
given. The simpler interval properties of these processes are derived

and some numerical values tabulated.
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CHAPTER 1

SOME PROPERTIES OF POINT PROCESSES

1.1. Motivation and Scope of the Thesis

The purpose of this thesis is to describe an approach to the
theory of s‘tochastic point processes on the real line R which is con-
structive and widely applicable. By identifying R with a time axis
we may think of the process as evolving in time according to certain
given probabilistic laws. The future of the process is assumed to
depend on its past only through certain 'initial conditions'. These
initial conditions must then form a stochastic process in continuous -
time, and this process must be Markovian. Lawrance (1970 , 1971,
1972), uses this approach to discuss the properties of particular point
processes and to derive conditions for stationarity. ﬁe defines the
notions of 'arbitrary time', 'arbitrary event' and 'average event' .
Intuitively an arbitrary time is a point of R chosen without knowledge
of the process, an arbitrary event is an arbitrary time conditional on
an event occurring at that time and an average event is an event whose
serial number is randomly chosen. Rigorous definitions can be given
using limiting procedures (Khintchine, 1955). Other methods, con-
taining a heavy measure theoretic content, are adopted by Sli\.rnyak
(1962)\and Ryll—NardzeW'ski (1961). Matthes (1963) gives an elegant
treatment using marked point processes.

The analytical difficulties inherent in a general approach will

be avoided by an appeal to the theory of semi-Markov processes. At
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some cost in generality, constructive definitions of the various types

\of initial conditions can be given. This programme will be carried out
in Chapter 3 and some examples of the method will be discussed. A
secondary motivation for this work is that the semi-Markov representa-
tion provides an explicit expression for the likelihood function. Some
caution is .needed here. The likelihood function is simple only when

the state variable of the semi-Markov process is observed, either
directly or because it is a function of the history of the process. In
general this' will not be so.

In Chapters 4 and 5 applications to multivariate processes,
where the events are of several distinguishable types, will be considered.
The importantl special case of the countable state semi-Markov process
is discussed in Chapter §. The self-exciting point process and the
point process generated by a random walk, the subjects of Chapters 7
and 8 respectively, have simple semi-Markov represénta‘cions in parti-
cular cases.

In the remainder of this chapter some aspects of the general
theory of pcﬁnt processes will be reviewed. In Section 1.4 the complete
intensity function is defined and some of its properties described. An
important characterisation result is proved in Section 1.5. This is
the only result in the thesis which extends immediately to processes
defined in Rn, or in more general spaces. In Chapter 2 various alter-
native‘defini‘cions of stationarity are considered and some problems

concerning the characterisation of the interval sequence are discussed.
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1.2. Notational and Mathematical Conventions

The word 'point' in this thesis is used to denote any element
of the real line. Those points which are also elements of a (realisation
of) a stochastic point process are called events. To distinguish this
meaning of the word event from its more general probabilistic meaning,
the measurable sets of the underlying probability space are called o-
sets, or og-events.

It is worth noting a few points of mathematical interpretation.
¥ W isa probability space an element of W is denoted by w, a random
variable taking values in W by W and a probability measure on wW
by p(dw). The degenerate distribution which assigns probability one to
the single element w of W’ is denoted by 6:1;0 . Functions are always
taken to be measurable. . In Chapters 3 and 4c<)1erivatives are defined
in the Radon-Nikodym sense. The absolute continuity 6f a function
ensures the existence of a Radon-Nikodym derivative,‘ ;although there
may be sets of measure zero on which the function is not differentiable.

A table of symbols and notation is provided. Total consistency
in notation has proved impracticable, but the major conventions of
Chapter 3 are adhered to throughout the sequel. Propositions are
always referred to by the full designation proposition x.z for the zth
proposition of Chapter x. Equations are numbered consecutively within
sections. The zth equation of Section x. y is referred to as (z) from
within that section'but as (x. y.z) from elsewhere. The class of integers

s
is denoted by Z- |, the non-negative integers by Z N and the positive

++
integers by Z +. Similar conventions apply to the real line R and
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to the minus sign used as a superscript. Thus R~ denotes the class

of non-positive real numbers.

1.3. Some Facts about Point Processes

In this section we state a few salient results from the general
theory of point processes which will be needed later and resolve some
potential ambiguities of definition and terminology. More details are
contained in Daley and Vere-Jones (19‘72). A heuristic treatment is
given by Cox and Lewis (1966).

Each realisation of a stochastic point process on the real line
is a countable, ordered subset itj 1 j € Z% of [R. Then tj is the
tirﬁe of the j'th event. It is assumed that { tjg has no finite limit
points, so that tj —>+ o0 as j —>+ . Conventionally we take

t. <0<t . A point proéess JP is a probability measure on the space

0 1

of all such realisations. The (random) counting measure N of the process

is given by N(A) = # { j: tj € A} for each bounded Borel subset
A of R. The underlying o-field is the smallest o-field which contains
all sets ,_& of the form

B = %ﬁ(Ai):ki:izl,...,n75 ,

where n, kl’ e kn are non-negative integers and Al’ .oy An are bounded

Borel subsets of R. The process P is then characterised by its

finite~-dimensional distributions, i.e. the probabilities of the o-sets x’j
defined above. These in turn are determined by the joint distributions

{PTOb [KT(IJ):kJ (j:]-’---,n)] . n, kl,...,kn€Z+g

- -{
over the half-open binary rational intervals IJ. = [aZ k, b2 ), where
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a,b, k, 1 are integers.
The %tj-g become random variables {Tjé . If, with prob-
ability one, j # k implies that Tj 7 T, then P is said to be orderly.

The nth moment measure of P is defined for disjoint bounded Borel

sets A.,...,A as
1 n
M (A A)= E§N@& N )t 1
(A A )= f(a)), N4 (1)
if this exists. IfM (dx. ,...,dx )=m (x,,...,x )dx.,...,dx , then
n 1 n n 1 n 1 n

m_ is called the nth moment density.

The process is completely stationary if all the finite-dimensional

distributions are invariant under translation. It is simply stationary

(Lawrance, 1970b) if Prob § N(I+t) = k§ is independent of t for all

ke Z * and intervals I of R. The first moment measure of a stationary
process is M1 (A) = p|A] Y, where p, which may be infinite, is the rate

of the process. If the process is also orderly then Korolyuk's theorem

(Khintchine, 1955) gives

p= lim a“Prob SN [ty >13 | . @)
h—>04

The covariance density of a stationary, orderly point process is

- x. alone, and as

2
Mz(dx1 x dxz) - p“dx 1 >

1 dXZ' It is a function of x

such has a Fourier transform called the counting spectrum. The function

var {N(O, t){ is the variance-time curve.

GeZ )

The interval sequence Xj is defined by Xj = Tj - Tj 1
In general this will not be a stationary sequence, even if P s completely

. stationary. However, rather difficult arguments (Slivnyak 1962; Ryll-

Nardzewski, 1961) show that if P s completely stationary, is orderly
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énd has finite rate then conditionally on T, = 0, the sequence %_ ng

0
is a stationary discrete time stochastic process. Since the o-event
{ TO = O]S has zero probability, the relevant conditional probabilities

must be defined by a limiting operation, considering the o-event

t-n< TO <0 75 and letting h ~> 0+, The interval properties of

1

are just the properties of the stationary time-series { Xj% . In

particular we can define the marginal and joint interval distributions,

the serial correlations of intervals and their Fourier transform, the

interval spectrum. The interval properties and counting properties

are equivalent, but only through their full distributions. The second
order properties alone are not equivalent.

The simplest point process is the Poisson process for which the
MW
counting measures of disjoint sets are independent. If the precess is
rentomne oo alurbdilly colimugua ,
orderty then (Gnedenko and Kovalenko, 1965) there must exist a rate

function Mt) > 0 such that the distribution of ﬁ(A) is Poisson with mean

J A(u)du, for every Borel'set A. The stationary Poisson process has

A
Mt) = p, a constant. If the rate is a random function /\ (t), then a

new process, the doubly stochastic Poisson process is obtained. This

process is completely stationary if and only if /\ (t) is a stationary
process.

The cluster processes foom another important class. Suppose

that each event of a process U‘pm of main events generates independently

an almost surely finite collection (cluster) of D subsidiary events.

These then suffer displacements Z Z_., not necessarily positive,

' D

from the main event. The distribution of the cluster structure, i.e.
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of the random variables (D, Z .o ZD) is the same for each cluster,

I
and does not depend on Pm Distinct clusters have independent structures.
Then the superposition of ’)Pm with all the subsidiary events generated

is a cluster process. When “P is a stationary Poisson process we
m

have a Poisson cluster process. If also the displacements Zi (i=1,...,D)

are independent and identically distributed with a distribution which does

not depend on D, we have a Neyman-Scott process (Vere-Jones, 1970).

A cluster process is completely stationary if the process of main events
is stationary.

A multivariate point process consists of events of finitely or

countably many different, distinguishable types. Most of the concepts
discussed above extend naturally to this case. Cox and Lewis (1972)
and Milne (1971) give det?iled discussions. The events of a particular

type form a marginal process and the collection of all events without

regard to type is the superposed process. The multivariate process is

marginally orderly if each marginal process is orderly and is strongly

orderly if the superposed process is orderly.

1.4, The Cbmplete Intensity Function

A useful method of defining orderly but in general non-stationary

point processes is to use the complete intensity function. This was

discussed in the multivariate context by Cox and Lewis (1972). The
history Ht of a point process 4@ at time t is defined by
2
= Sttt e andt <tf§. 1)
\ﬁt { j j < j (

We do not exclude the possibility that :H’-t = @ for some t. If }Jr = ¢
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with probability one then VP is called transient. The complete intensity

function N (t, %} t) is given by

-

X(t,ﬁ)?lim -I-Prob{ﬁ[t,t+h) 21]}# § (2)
E p—s0e” t

This may not exist. Moreover it is not always easy to demonstrate the
existence of stationary point processes which have given complete inten-

sity functions. However we do have

Proposition 1. 1. If BDI'O has a specified distribution then there exists
at most one orderly point process in t > 0 which satisfies (2) for
a given function N\ (.,.).

Proof. The joint interval distributions are determined by X as follows:

1

1
Prob(X1 -<-}.{1| \:ﬂo)z 1 - exp g - j X (u, ‘}iru) duB R

\ ' 0
where ':ﬁ'u: 3:*0 for Osuf_xl ; and for n > 2
t ~
| noL
= S = =1 - - , >
Prob(X:rl f_xn ! :ﬂo X1 X, Xn-l Xn-l) exp Au J;u)du ‘:
J
tn-l
where &}4 =:)Q‘r %t ceayt k for t <u<t, and
u o v 1" ''n-12 n-1 - n’
ti =%, + .. + X, The joint interval distributions in turn determine
the finite-dimensional distributions of counts. Y

Corollary. A transient point process is characterised by its complete

intensity function.
PEy _ { H . . .
The rate of is f{t) = E IA(t, t) if this exists. We

then have (cf. Leadbetter, 1971; Daley and Vere-Jones, 1972) that
b

[

E$N [a,b)§ = JIEE (3)

a
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If p+ is stationary, f(t) = p, and (3) is Korolyuk's theorem (see equation
1.3.2) again,

The tractability of the likelihood function depends on the existence
of a simple form for the complete intensity function. We shall use the
complete intensity function in Chapter 7, and a multivariate version in

Chapter 5.

1.5. A Fundamental Characterisation Result

The results given in this section simplify some of the proofs
in Chapter 3. They are also of considerable interest in their own right.
Although the statements and proofs given here apply only to processes
defined on R, extensions to processes defined in [Rn, or in any complete
separable metric space require only minor modifications. Two related
references should be not\ed. Monch (1971) uses methods simil;r to
ours but the statement of his theorem is weaker than our Proposition
1.4. More recently Kalienberg (1972) has given an elegant proof of
Proposition 1.4 using Dynkin's extension theorem. Neither of these
authors considers multivariate processes. Our techniques are based
on Leadbetter (1968).

Proposition 1. 2. Let P be an orderly point process. Forn=1,2,3,...,

i=0, +1, +2,... define random variables
X,= ) 1 ifN [22™ g+ 1)/2% 51,

0 otherwise.
. Then the finite-dimensional distributions of P are completely determined

.
by the joint distributions of the % Xnis .
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Proof. It will be shown that the joint distribution of gﬁ(ll), cees ﬁ(lk)%
is determined by the joint distributions of the {Xnig , for any binary

rational half-open intervals Il’ R | The result follows from the

"
fact that the %Ijlg form a base of the Borel sets (cf. Daley and Vere-

Jones, 1972, theorem 2.5).
v no no
Let n0 be such that 2 a.j, 2 bj are integers for j=1,...,k,

where Ij = [aj,bj). For each n >n_, the interval

0?

Ini = [1/2n, (1+1)/2n) is said to be an n-component interval of Ij if

I. < 1I.. Then, foreachn >n_,
ni ] -0

Ij is the disjoint union of its n-compo-

nent intervals. letm_,...,m

€ TZ+ and let E denote the o-event.
1 k n

En: {Foreachj(lgjsk), z Xnizm,%,

-

i€ C,
J
where X
C.= {'1 : 1 ,is an n-component interval of A,} .
J ni J
Now Prob(E ) is determined by the joint distributions of the § )(n_l?g :
- , - :
Also, for n > Ny En En—l—l and so, by orderliness,

Prob {iii(Aj) >m; (1)< k) § = Prob(lim E )

= lim Prob (E ).
n
Thus the joint distributions of the ﬁ(Aj) are determined.
The assumption of orderliness is essential to this result. How-
ever, the proof holds when the finite-dimensional distributions of
are improper. The extension to multivariate processes is straight-
forward.

Proposition 1. 3. Let ‘P be a marginally orderly multivariate point

process with m < oo types of event, and let the counting measures of

\



- 18 -

the marginal processes be 1§TI ¢ ({=1,...,m). Forn=1,2,..., and
i=0, t1, +2,... define random variables
Lo 32 i, ,n (i+l),.n
1 if , >1,
Xm_g N, [ /2 /27 >
i 0 otherwise.
Then the finite-dimensional distributions of T are completely deter-
mined by the joint distributions of the Xn‘i(e)
, (4) + :
Proof. We now define, for mj c 7 <Jj<k, 1< { <m),
E_-= {For each j, { 1 <j<k, 1<{ <m), Z xni(z)zm,(") :

J
ie C,
J

where Cj is defined in (1) above, and proceed as before to show that
the joint distributions of the f\uj (Aj) are determined. ¥

Returning to the univariate case, we have the fundamental

Proposition 1.4. Let J be the class of finite unions of half-bpen

intervals and define the incidence probabilities of an orderly, univariate

point process P with counting measure N as {Prob [ﬁ(f‘) £01: F€}%
Then the finite-dimensional distributions of P are determined by the
incidence probabilities of P .

Proof. It is sufficient to show that the joint distribution of any finite
collection f: of the % Xni% defined in Proposition 1.2 is determined
by the incidence probabilities. We can suppose without loss of g'enera-

lity that the elements of b refer to disjoint intervals 1,1 ,1

2,.:. k'

Then the joint distribution of the Xni € g is determined by the 2k

probabilities

Pl s e esiy) = Prob| iQ) {1’\?(13.) =0} ,iQI {ﬁ(lj) >8], (2)
' j j
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"We show by induction on r = il + ... +ik that the incidence probabilities

determine the p(il, cees ik). We have
k
p(0,...,0)= Prong/IA\}(.U Ij) = %
=1

Suppose that p(il, cees ik) is known for all i with Z ij <r.

e iy

Then if ij =1 for j< r+l, ij = 0 for j > r+l, we have

k B
p(il,...,ik)=Prob%ﬁ( U Ij)=0% - Z p(d) ,

j=r+2 ded

where By is the set of all k-tuples (i .o ik) of zero-one variables

1’
such thati, = 0 (j > r+2), and at least one i, = 0 for j < r+l. A similar

J - J =
argument holds for any p(il, Cen ,ik) with Z ij = r+]l. Hence the induc-
tion goes through. A ¥

Again, the multivariate generalisation is immediate.

Proposition 1.5. Let 4) be a marginally orderly multivariate point

process with m < co types of event, and let the counting measures of the

f?

> ({=1,...,m). Let the class of joint in-

marginal processes be N i

cidence probabilities of P be defined as the class of all probabilities

Prob 3 N (F)+N,(F,)+... + ﬁm(Fm) Fod . (3)

where each Fi is either the empty set or an element of J . Then the

finite-dimensional distributions of P are determined by its joint

incidence probabilities.

Proof. It is sufficient to show that these probabilities determine the
Lol

finite dimensional distributions of the { Xn\iS . The proof differs only

notationally from that of Proposition 1.4. The analogue of p(il, Ceey ik)



- 20 -

defined in (2) above requires mk arguments p(i’e j) (1< f < m;
1 < j £k) and the induction is on r = Z Ziﬂj' .
The meaning of Proposition 1.5 becomes clear when P is
represented, as it may be, by a univariate proce.ss on the product space
R x7T1, where M = (1,...,m). Proposition 1.5 then becomes merely
an extension of Proposition 1.4 to a process defined in a larger space.
As has been pointed out, many other such e;ctensions are possible, but
will not be considered here.

Corollary 1. 6. Let P be a multivariate process with possibly a

countable infinity of types of event. Suppose that the joint incidence
probabilities (3) are known for every m. Then the finite-dimensional
. . . A .
distributions of [) are determined.
Proof. This is obvious, \since any particular finite-dimensional distri-

bution involves only finitely many types of event. ' ¥
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CHAPTER 2

ON THE DEFINITION OF STATIONARITY

2.1. INTRODUCTION

Complete statioﬁarity of a univariate point process was defined
in Chapter 1 t o mean ’Fhe invariance of all finite-dimensiOnal distributions
under translation. It is irrelevant whether these joint counting distri-
butions are taken over Borel sets or over intervals. A formally weaker

condition, kth order stationarity, holds if the joint distribution of

2
4

{ﬁ(AI ) PP ﬁ(Ak)} is invariant under translation for all %A .

1,...,A

belonging to a given class O"'k of k-tuples of subsets of R. This
definition is incomplete until C(’k is specified. The ambiguity appears
to have given rise to some confusion in the literature. In Section 2.2

a generalisation of a construction due to Moran (1967) is; used to show

that when O.vk = % k-tuples of intervals ; » kth order stationarity

does not imply complete stationarity, for any k. A different construction,
given by Szasz (1970), could have been used to deduce the same result.
However, Moran's construction and its generalisation lead to certain
interesting problems concerning the interval sequence. These are
discussed in Section 2.3. Orderliness is assumed throughout this chapter.

The results of Section 1.5 give

Proposition 2. 1. For each positive integer k, let CL K denote the class

of k-tuples of finite'unions of intervals. Then kth order stationarity
as defined above and complete stationarity are equivalent.

Proof. It is obvious that complete stationarity implies kth order
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stationarity which in turn implies first order stationarity. It is there-
fore sufficient to show that first order stationarity implies complete
stationarity. However, first order stationarity implies invariance of
the incidence probabi‘lities under translation, and it is clear from the
proof of Proposition 1.2 that all finite dimensional distributions must

#

then be invariant also.

2.2. A k-DIMENSIONAL QUASI-PQOISSON PROCESS

Moran (1967) constructs a point process J‘{Jz which is not a
Poisson process, but which is such that l<I {‘a, b) has a Poisson distri-
bution with mean b-a for any a,b (a < b). His construction uses a bi-
variate exponential density of the form

- s _ 2

\ ) _
where g(xl,xz) is defined to equal ¢ (0< ¢ <e 6) on the squares

(0,2), (1,3), (2,1)and (3,0), and - ¢ on the squares (0, 3), (1, 2),

(2,0) and (3,1). Here (m, n) denotes the square { m f_xl < m+tl,
)
n < x2 <ntl ¢
/ e
PR N —
Cl-1
2 ;
|
B
s 4
=7 { [ aC,
= - (‘“4: >4

Figure 1. The function g(xl, xz)

The symmetry properties of g(Figure 1) ensure that if (Xl, XZ) has

the joint density (1), then X1 and X2 are each marginally exponential
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with unit mean. Moreover X1 + XZ has the distribution, two-stage

Erlangian, it would have if X1 and X, were independent. This is because

2

the integral of g(xl,xz) over any set of the form {Xl + X, < c} ,

3
3 is zero. Moran constructs an interval sequence

{xlf_c’g or zx2_<_c

$x B

?5 such that, for each n, the pairs ¥ o0’ X2n+1£

Lo X Xy X

have the joint density (1), and such that successive pairs are mutually
independent. The sequence is then imbedded in R so as to give a
completely stationary point process which has the stated properties.
Moran's process may be modified in several ways to define a process
which is simply stationary but not completely stationary. For example

the process ( Pa R ) g (’F’Z A R+) has this property if P isa

P
Poisson process of unit rate, independent of N 2"

D

The process 7| constructed in this section is such that its

k
\

joint counting distributions over any (k-1) contiguous intervals-are the
same as for a Poisson process of unit rate, but P K is not a Poisson

process. Whenk =2, Moran's process is recovered.

Proposition 2. 2. Let k > 2 be an integer. Then it is possible to con-

struct a k-tuple of random variables (X ,..., Xk) such that

1
(i) each Xi is exponential with unit mean,
(ii) the (k-1)-tuples (Xl' .o ’Xk-l) and (XZ’ C e, Xk) are each

(k-1)-tuples of independent random variables,

, X AX. X )

({ii) for each i (0 <i < k-1) the (k-1)-tuples (Xl’ . Ao X

have the joint distributions that they would have if (Xl, ey Xk) were
independent,

(iv) the random variables (Xl’ R Xk) are not mutually independent.
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Proof. Let @ = (ozl, e, ozk) be any permutation of (1,...,k), and let

0'(5) = sgn(g). For each such @, let Sa be the hypercube

-5 _
Sa—‘if—(x

~

1,...,xk):2(ai-l)<xi<2ai (1=l,...,k)§.

For each j = (jl, Cee ,jk),with each ji equal to 1 or 2, define the hypercube
T, = {§= (X.5000,x

3
; ) ):ji-l<xi<_]_1 Gi=1,...,k) 2,

k

andlet ¥()=+¢f or-¢ according as. ) ji is even or odd. Then,

-

ifx ¢ Soz and if no X, is integral, there exists a unique j such that
Lad ~

X-y ¢ Tj’ where ji = 2(ozi-1) i=1,...,k). Thus we can define

<

a function g: R —> R as follows. If, for some @, x ¢ Soz and no x,

-

is integral, then we set g(x)

ag(a) T (j), where j is defined above.

~

Otherwise we take g(x) = O.
Then g (x) satisfies
[ ® \ .
3 e vy d,: 9 e -0 g X, S, R C’
3 g(x1 Xk) x, 0 (xl X ) Xl+1 X R )
Jx.=0
i
1<igk), 2)
f\)’ SN
g(xl, ’Xk) dXi dxi__1 =0

(2 <i<k), (3)
" To prove (3) note that if z = (Zl’ , Zk) satisfies
£ S Sx:ox,+ <y b
A - AR LTS IR AT

then z', formed by intercha nging Zi and z, in z, satisfies
7
t o~ b ! :
z-¢ S T oxtx, +ox, <y ¢
o a' LT T ip1 VS

where o(2) = _0—(9{:) and ¥ tJ(Z)?‘ - "J(Zvv)'l _
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To prove (2) note that if z ¢ S , then so does
~ Lo

A

Eatd

“ = = - - * o
z'' = (al,...,zi_l, Z(ZQ'i 1) Zi’ Zi+1’ ’:_Zk)"
and that ¥ {jiz')% =- 1 1j(=)? .
Now let K
5 Y
fk({g) = exp(- s Xi) + g(x) . ] (4)
1

<

Provided 0< f <exp 1 -k(k+#l)’, f (x)is a joint density function with

fx

the required properties.
Remark. When k = 2, the function g(. ) defined here is the same as that

defined by Moran.

b
It is possible to define an infinite sequence ‘z o X 1’ XO’ Xl’ S

such that for each m the joint distribution of the k-tuple

'% has the density £ (x), and such that k-tuples

'tk 3 k "~

S

corresponding to different values of m are independent. Then if

= > = ..., =1, 0, 1,...),
Y=/ X ke ) sene)

i=1 | - 6)
the an are mutually independent, are identically distributed and have
finite mean. Thus a stationary renewal process may be constructed from
the an in the usual way. The events of this process will Be termed
R-events.
The process JP K is now constructed by interpolating k-1 events
between each pair, of neighbouring R-events accordihg to the joint density

fk(;g) given by (4), conditioned on

[————

k

X . .
FA mk+$i m
i=1 ¢

Interpolations between different pairs of R-events are to be independent.
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It is immediate from this construction that P is a completely

'k
stationary, orderly point process with unit rate, and that fibk is not
a Poisson process.
Proposition 2. 3. Suppose that for k > 3, the real numbers R
satisfy a, <a2< <ak. Then if |
Ni=1'\? (2 ;) i=1,...,k-1), (6)

where ﬁ is the counting measure of @k, the Ni are independently

distributed, N, having a Poisson distribution with mean a_+1 - ai.
i i

Proof. This is in two stages. We first consider the probability

w(n) = Prob(ﬁ(R) [a

n : 1,ak)=0, N =mn

1 | I P | k-1
(7)

where A1<T(R) is the counting measure of the R-process. Clearly w(n) =0

£

£.ny >k-1. It will be shown by a detailed enumeration of particular
cases that w(n) does not depend on ¢ . In each case w(n) will be evaluated
by conditioning on either the position a) -u of the last R-event before

a,, or the position a + v of the first R-event after ak. The respective

conditional probabilities will be denoted by m_(n, u)' and nf(g, v). Itis

b

worth emphasizing that to show that w(n) does not depend on ¢ itis

g
i

'

sufficient to show that one of ™ (n,u) and wf(n, v) does not depend on
VIt<is convenient to include in both conditioning o-events the serial number

m of the last R-event before a_, and to denote the interval X . by
_ 1 mk-bi.

Z. (i=1,...,k).
1

The various cases listed below include all possible values of n:

Q) > n <k-2;

[P— j—

(ii) for some i, n. > 3 ;
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(iiia) n, = 2,
-2 .
(iiib) D1 ; s
(iva) for some s > 1, g n, > s+l
i=1
k-1
(ivb) for some r > 1, n, >rt+l;
Z % ; 2
i=k-r

(v) n, = 1 for all i.

Case (i). If s n, < k-2, then either the first event after a, or the

k
last event before a, (or both) must be interpolated events. In the former
case m_ (n,u), which depends only on the joint distribution of (Zl’ e e Zk 1),

will not depend on ¢ . In the latter case w n, v), which depends only

£

on the joint distribution of (ZZ’ ceey Zk)\will not depend on :
Case (ii). If n, > 3, then for some j, wf(g, v) depends only on the joint

distribution of (Z .y Z

i-1 ...,Zk) and so does

); ) . . ’ Z.
) Zot 2oy

jt2’

not depend on ¢

Case (iiia) . If n, = 2, then for some measurable subset S of ‘Rk~2

Tl'f(%, v) can be expressed as

k k
= ; ¢s, > -a, -
wf(g,v) Prob - (Z3, s Zk) S s Z a + v a5 o Z. < ak + v al )
3 2
k k
Prob 5 (Z Z)cs y Z.>a 4 N z<a 4+ K
- To ‘i 3, ey Kk T, ,/ ‘‘‘‘‘‘ J Z % V—az, ,_f{_m j ak V-alj;
3 1

(8)

Neither component depends on ¢

Case (iiib) . Here there is a similar expression to (8) for wb(g,u).
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Case {iva). Here we use induction on s, noting that for s = 1 (iva) reduces

(n, r) does not depend on %  if,

to (iiia) or to (ii). Suppose now that (1

for some r (1 < r <s),
r

S—‘ n,zf—hl.

A i

i=1

We shall show that w_(n, v) does not depend on ¢ if

f
s+1
. . ; n >s+ 2,
S 1=
i=1
> ii lies. If =2 = > i
If n_q2 3, then (ii) applies. I ns_!‘1 and nS 0 (s > 3), orif
n_.q <1, the induction hypothesis applies. If ns_[‘1 = 2 and n_ >1, then

n + D1 >3, and (ii) applies if the sth and (s+1)th intervals are pooled.

The result now follows by subtraction, since it holds for all other n

with the same values of n_,...,n

1 , h +n

o-1 . a1’ ns+2,. . s . Hence

k-1

the induction goes through, and nf(;}, v) does not depend on “  in (iva).

Case (ivb). A similar inductive argument may be applied tow (3\1{, u) in

b
(ivb).

Case (v). Since k > 3, Case (iiia) may be applied to the pooled interval

ey p N 2
{a.,a )to show that Prob- N(R) ra_,a )=0, /~ N, =k-1§ does not
L7 Tk - -1 Tk i
depend on ¢ . The result now follows by subtraction, since for any
n with Z__ni = k-1, if (v) does not hold then one of (iva), (ivb) must

hold.

This completes the first stage of the proof. The second stage

(R

is to evaluate probabilities of the form (7) when N ) :al, ak) 7-1 0.

These may be determined by conditioning on the locations of all R-events
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i

1’ ak), and using the independence of interpolations within

within la
different R-~intervals to factorise the relevant conditional probabilities.
Each factor then corresponds to a set of at most k-1 contiguous intervals

i T ) ' ,
§ by boubo)., LY b'{)} , where either b or b, or

1
possibly both are R-events. The joint distributions of counts over
each such set may be evaluated by considering the same sequence of
particular cases as above. Here, however, there is no need to condi-
tion further, i.e. on the positions of R-events outside [al, ak). The
details, wﬁich are similar to those given in the first stage of the proof,
are omitted. This completes the proof of Proposition 2. 3. A
Remarks (i) This proof does not use the complete stationarity of G

but the stationarity of the renewal process of R-events is needed.

(ii) For Moran's process (k=2) the proof given requires a slight
A

modification. Specifically, Prob‘g N(R) "i:al, az) = g, Nl = 13 is
evaluated by subtraction, since it is equal to
S o (R)r _at SHRY & . _ .
Prob c.N Lal,az) =05 - Prob z,N Lal,az) = 0, N1 = O;. ,

which does not depend on ¢ .
(iii) The result of Proposition 2. 3 is surprisingly strong. It

cannot be proved without the rather indirect arguments given here.

For example, if each n, 1, it is not possible to show directly that

w(n) does not depend on ¢ , since both Trf(;_},v) and 'n'b(n;,u) do depend
on (.
The process \Pk as constructed is completely stationary, but

it may easily be modified to give a process which has its mth order

joint counting distributions over intervals invariant under translation
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(2m < k), but which is not completely stationary. If P is a Poisson

process of unit rate, then

+

Q=(PaR) , R')

I
i ko
is such a process. Alternatively the constant ¢ may be made a
function of the serial number m of the R-interval, so that the interval

sequence of Jr) becomes non-stationary. As noted above, this does

k
not affect the proof.

2.3, ON MORE GENERAL INTERVAL SEQUENCES

As the processes considered above are rather artificial, it is
interesting to consider how far the construction may be generalised.
There is a direct extension to 'quasi-renewal processes’,

Proposition 2. 4. Let F be a distribution function with F(0) = 0 and

finite mean which is not concentrated on fewer than 2k points of R.
Then there exists a (stationary or non-stationary) k-dimensional quasi-

renewal process whose joint counting distributions over the (k-1) con-

tiguous intervals la

| 1’ az), .. s ak) are the same as those of

., ia
b [ k-'].
the (stationary or non-stationary) renewal process with interval distri-

bution F.
Proof. It is sufficient to construct the joint distribution of a k-tuple

of random variables (X.,..., Xk) which has the properties (ii), (iii)

1
and (iv) of Proposition 2. 2, with Prob(Xi <x)=F(x) i=1,...,k).
If F has a continuous non-zero density function f, then the previous

construction can be applied immediately for sufficiently small P

Otherwise a little more work is needed. Let Al’ .«.,A_ be disjoint

2k
Borel subsets of R such that for some § > 0, F(Ai) >86 (A=1,...,2k).
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Then there exist positive measures m, on the Borel subsets of Ai such

that mi(Ai) =§ ({=1,...,k)and such that F-mi'is a positive measure

Let Bj = A (G=1,...,k)and for each permutation

u A
2j-1 Y 725
.o ) of (1,...,k) put

~ 1

If il-, e ik ére distinct and i ={ i,... ,ik), define

1

‘ S +1 if ;:i_is even,
T (i) = /

-~

1]
Co1is Zij is odd,

and let R (i) denote the rectangle F (i) = Ai X ... x A . Define
~ ~ i

1 k
the signed measure G on ka as follows. If, for some permutation

@, ‘P\:Q}) C Sa’ then on ® 1)

4 \
G =sgn(e) T{i)m, x...%m, ,
s P 1 1
1 k
0. ThenF,(dxl)-.. F(dxk)-G(dxl,...,dxk)lsa

1l

and elsewhere G

-k
probability distribution on R which has the required properties. To

N

‘ k
see this note thatifgz (zl,...,z ) R

K , then

G(dzl,...,dz R)=...=G([R,dz2,...,dzk)=0,

k-1’

and that if z' is obtained from z by interchanging z, and Z. 01 for some

i(l<ig<k-1), then

G(df) = -,G(dgv‘) . ¥

\

L%
Now let F  denote the ith convolution of F with itself (i > 1).

. ?

The sequence 3 o X 1’ XO, Xl’ ... % will be called a two-dimensional
. . ey s o= oy tt . . .
quasi-renewal sequence if, for eachn + Z, i € Z , the distribution of

&3
X +...+X .is F . The sequence will be called a k-dimensional
n+l n+i



- 32 -

quasi-renewal sequence (k > 2) if, for any '11, ey ik i > 0 and any n,

the random variables

=X . . e . < j< k-
Y n+11+...+1j+1|+ +Xn+il+...+1j (t<isk-1) (1)

are independently distributed, Yj having the distribution F *,

Proposition 2. 5. The interval sequence of the k-dimensional quasi-

renewal process constructed above is a k-dimensional quasi-renewal
sequence. Conversely, if the mutually independent k-tuples

¢ X

kil %(m=...—1, 0, 1,...)are such that the

e X(m+1)k
sequence {X;‘S is a k-dimensional quasi—renewai seqﬁence, then
each su-ch k-tuple must satisfy (ii) and (iii) of Proposition 2. 2.
Proof. If all the elements of a k-tuple appear among the Yj of (1),
then at least two (consecutive) elements must appéar in the same Y ..
In any case the mutual independence of the k-tuples ensures that the
Yj have the specified distributions.

The converse is established in three stages. First note that

the Xn mu st be identically distributed. Then, by considering 4 -tuples

which straddle two of the given (independent) k-tuples, it may be proved

) i

inductively for 7 < k-1, thé.t any £ ~-tuple of consecutive Xn is an
{ ~-tuple of independent ranciom variables. This proves (ii). Finally,
(iii) is proved by considering the joint distribution of a k-tuple which
straddles two of the given k-tuples.

The particular k-dimensional quasi-renewal sequences defined
above are not stationary sequences. However they may easily be made
s0 by randomising the serial number of the first interval. For stationary

quasi-renewal sequences there is the result
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Proposition 2. 6. Let P bea completely stationary point process whose

interval sequence is a two-dimensional quasi-renewal sequence. Then
P is a two-dimensional quasi-renewal process.
Proof. This is immediate from the' usual Palm-Khintchine formulae,
which show that the distribution of a sum of consecutive asynchronous
intervals may be expressed in terms of the distributions of sums of
consecutive synchronous intervals.
It seems likely that this result extends to k-dimensional quasi-
renewal sequences. However we have not yet been able to prove this.
Lawrance (1972) has asked whether a process of Moran's type
could have a non-zero serial correlaéion of intervals. The (negative)
answer to this question is contained in the following amusing result.

Proposition 2. 7. Let P be a second order guasi-renewal process

of the type defined in Proposition 2. 6. Then > has the same second
order properties of counts and of intervals as the cor‘responding stationary
renewal process.

Proof. The second order counting properties depend only on the rate

of the proc“ess and on the covariance density. These depend only on the
distributions of sums of consecutive intervals. For the covariances

gm (m=1,2,...) of the(stationary) interval sequence, we have

m

P

N,
- = > ¥
) var(X1+ ... +Xm) var (Xm+1) + 2/:,:* By

i=1

var(Xl+. . +Xm+1

i

N/
giving a proof, by induction on m, that .j_‘;m 0. *
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2.4. DISCUSSION

Many problems remain unsolved. Suppose that a sequence

(.. X

BT XO, Xl’ ... ) is defined to be quési-stationary if-the (univariate)

distribution of the sum of any number of consecutive Xi is invariant

under translation. Then the analogy with Proposition 2. 6 strongly sug-

gests that: provided E(Xi) < o0, the sequence { Xié may be imbedded
simpl

in R to give a stationary point process. However an explicit construc-

tion when the sequence i Xié does not have an imbedded renewal process

has not beeﬁ found.

Conversely, it may be asked what conditions simple stationarity
of a point process imposes on the interval sequence. It is known (Law-
rance 1970 , also Chapter 4 in this thesis) that the Palm-Khintchine
formulae hold, showing that the distribution of the sum of consecutive
intervals starting from an arbitrary event, is invariant under translation.
This does not necessarily imply quasi-stationarity of the interval se-
quence though. Here the distinction between an event at a specific

(arbitrary) time, and an event with a specific (arbitrary) serial number,

is important.
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CHAPTER 3

THE SEMI-MARKOV MODEL FOR A POINT PROCESS

3.1. INTRODUCTION AND SUMMARY

The general semi-Markov process is used to present a measure-
theofetic f;'amework for a wide class oag point processes. This enables
the basic relations between synchronous and asynchronous distributions
to be stated and proved in a simple form. It is shown how operations
on the semi-‘Markov process may be used to construct more complicated
point i)rocesses from simple ones. The method is best suited to processes
which are defined by their interval properties. Any point process which
evolves in time in such a way that its behaviour in (t, o) depends on its
behaviour in (-co,t] only through a process \t)l\\/'t of 'initial conditions'
can be represented in this way. The fundamental theo.rern of Section
3. 3 relates the synchronous ;a,nd asynchrono-us stationary initial condi-
tions. Some examples are considered briefly to illustrate the approach.
These include processes with Markov-dependent intervals, some doubly
stochastic p‘rocesses and clustering processes. A generalised Palm-
Khintchine forfnula is proved in Section 3, 6, and extended to non-orderly
processes in Section 3. 7.

In Chapter 4 it will be shown how the semi-Markov construction
may bg used to tackle multivariate processes. The heavy dependence
.on the order properties of R precludes any simple extension to pro-

. . n
cesses defined in R, or more general spaces.
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3.2. THE SEMI-MARKOV MODEL

5
Let «E LW, WO’ W . ¥ be a discrete parameter Markov

1 17

chain with a quite general state space 77 and stationary transition
function

P(Ajw) = Prob(W, . £ AlW. =), (1)
itl i

*

Sy _
where A ¢ 51”, a o-field of subsets of " . It is assumed that W0
has an initial distribution qo(. ) defined on - <,, Conditionally on the
entire realisation of this chain, the real, non-negative random variable

h ] ] .
Xi+1 as distribution
F(x. .l w,w .)=Prob(X

i+1 1+1 gW.:Q)., W =w );

<
itl = i1t a9 Vil T %

-

(2)
and the EX;% are conditionally independent given the (:Wl’i . . Usually
only orderly point processes will be considered and it will accordingly
be assumed that F satisfies

Hypothesis Hl. With probability one the distributions F(x .,.) have no

atoms at x = 0, i.e. with probability one F (0] Wi’ Wi+1) = 0 for all
i.

A standard technique, discussed in Section 3.4, enables most
non-orderly processes to be analysed by considering an induced orderly

process.

v

r .
It follows from this construction that < W._, Xi '
k A 1

£

i=..0-1, 0, 1,...)is also a Markov chain, with state space

B ' + P .
W ox R , and transition function

G(A,x ng) = 1 p(dw
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defined on the usual product o-field. A realisation of this Markov chain

defines a realisation of the associated point process which has interval

sequence Sg Xi % V(i =.:;. -1,0,1,...). Specifically, the associated

point process with an event at the origin is defined by placing the nth

and -nth events (for n > 0) at the points

n 0
< .‘.\.:_
- : . T - - R
Tn L Xi ’ -n A Xi
i=1 i=l-n

respectively. A basic requirement is that the g TiE should have no

finite limit points, so we assume

Hypothesis H2. With probability one, Tn —~>o00 and T n —> -00 as n —> 00.

Let
N =sup Sn:T <t? 4)
t < n— =
Utzt-TNt. | (5}

Then with probability one, Nt and Ut are each right-continuous every-
where, with points of discontinuity only at events of the associated
point process.

L

- Hypothesis H3. The Markov chain ?Wi © has a unique stationary

¥

distribution q(. ) on i 4.

Thus (. ) is the unique solution of

'8

aA)= | p(A]w)g(de) = G(A, dx ' w) g(dw) .

( (
: :
1
¢
" wif A ‘ w

1 Smeoraroro

R

Fd X O

(6)

Then the augmented Markov chain - Wi’ Xi also has a unique stationary
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distribution, given by

q(dw, dx) = q(dwy) pldw fw,) F(dx 3 wgr @) - (7)

L o
iy

(
i
J
0y €

0

Proposition 3.1, If W0 has the distribution q(. ), then the interval se-

quence % v, X X X e % is a strictly stationary process in

1°"77°0° 71
discrete time.

-

)
3

¥

Proof. The joint distributions of the §Xi, Wi are invariant under

2

A

translation.

Fort ¢ R, define _Vvt = WNt.
Proposition 3.2. The process rWt, UtE is a well-defined Markov

Then we have the important result

. . . X ¥ : T 17 2
process in continuous time with state space ©wWx R. The process CUtS
is separable.

Proof. The separability follows from the fact that jUt« has only

finitely many discontinuities in bounded intervals. It is clear1y> possible

¢ oo~ B
to write down the joint distribution of ﬁth s Ut N i=1,...,k) for
o : .
anyk « Z , t1<. ce <tk<}: R, as a countable sum of terms corresponding
to the number of events in (ti, ti-[— l‘j i=1,...,k=-1). The Markov

property follows from the form of this distribution: the transition prob-
abilities are exhibited in Proposition 3.4 below. K

Proposition 3. 3. The finite-dimensional distributions of the associated

point process are determined by the finite-dimensional distributions of

]
U

v

the
Proof. Let N denote the counting measure of the associated point process

. and let R be a finite union of half-open intervals ?‘_ai,bi). Then

Prob ! N(R)#0 % =Prob~ inf (U)=0%
: tC R
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By separability the right hand side is determined by the joint distribu-

E However, the assumption of orderliness (H1) and

Loy

tions of the ;fUt

Proposition 1. 2 ensure that knowledge of the left hand side for all R

determines; th¢ finite-dimensional distributions of the process. 24
We define the conditional interval survivor function

?(xlwo) = J p(dw1 | wo) %l-F(x Iwo,wl)} = Prob %Xl > x \W = wo% .

0
w; €W | .
’ (8)

can now be

Crnd

The transition function p v (dw, du !wo, uo) of th, Ut

written down. We define
P(dw1 | wO)F(u0+du ‘t @y wl)

‘3»(\10](»0) !

Gl(dwl,du{wo,u0)= (9)

and, inductively, n-step analogues of G,

u+
Gn(dwl,u‘wo,uo) = j Gl(dw, dyfwo,uO)Gn_l(dwl,u-y ’@,0).
w €W y=0- (10)
Then
n
- = | =
Gn(A,u]wO,uo) Prob({ Z Xi Suo+u, Wnﬁ A fWO wg X1 >u-) .
. i=1

Proposition 3.4. The transition functions of the process %W » U %

are given by

. Y
do, du, 3*(u0+,vfw0)

5 8 S (w, >7T),(11)
@ u0+*g R (uO lwo) 1
P,.v (dwl,du1|w0,u0)= X?i
h ! N o
}(ul;wl) /S Gn(dwl, { dulsz’uO) (u1 <T).
=1 '
? (12)
Proof. If u, > Y , then u = ug +7% and the interval in progress at
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time t must still be in progress at time t +7 . If u, < T , thenn
events can occur in (t, t+ 7 -u] (n=1,2,...)including an event at
t+ T -u, and the interval (t +  -u, t +¥] must be empty. X

3.3. THE STATIONARY SEMI-MARKOV PROCESS

The fundamental result proved below has appeared in several
guises in the literature on semi-Markov p'rocgsses. g‘inlar (1969a)
adopts an approach heavily dependent on the theory of functions. Orey
(1961) regards a result essentially equivalent to Proposition 3.5 as too
obvious to require proof. His formulation differs from ours, in that he
assumes that the length of the (n+1)th interval is a deterministic function
of Wn- However, as he points out, the general process can be treated
by his methods if the state space is suitably extended. We have been
unable to see how the dterministic assumption simplies the argument.
For processes with countable state space, the result is an immediate
corollary of certainrerewal-type limit theorems. We refer to ginlar
(1969b) and Pyke and Schaufele (1964). Note that our condition H2 implies
the strong regularity of Pyke and Schaufele (1964). We shall give a
direct proof that the postu-lated stationary distribution is invariant.
Such a proof is scarcely more difficult for the general semi-Markov
process than it is for the renewal process considered by Doob (1948).

It does not seem to have been given before in this form,

+
Lemma . For any function r{x,w) {( Rx 1) —> £R+), any a,b ¢ R,

¢ 1J and any measurable A < W , we have

w. €
Ok,
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a Q0 {a {, (00)
{ r(x, w) G(dw, btu-dx | wo)du = ; r(x, w) f G(dw, du I wo)dx.

‘=0 WEA =0 x=0 wrA u=b-x
(1)

Proof, This is a simple application of Fubini's theorem. Note that the
inclusion or exclusion of the endpoints in the ranges of integration does
not alter the value of either side of (1). ¥ S

Proposition 3.5. If (H1), (H2) and (H3) are satisfied, the Markov process

{ W‘t’ Utjg (t¢ R) with state space W'x iR+ and transition functions
given by (3.2.11) and (3. 2.12) has an essentially unique stationary
measure q given by

d(dw, du) = qldw) F(a]w) du . | @)

Proof. (i} Existence. Let ao(dwo,duo) = q(dwo) 3’(\10 ]wo) duo. We shall

show that '&,_{ (dw, du) is also given by (2). Now

;0
J qo(dwo, duo)ph{; {(de, du;wo,uo) . (3)

£ A

! *
N

a’% (dw, dg) =

[l

=0 w

0 0

o

If u>7 , substitution of (3.2.11) into (3) gives the result at once. If
u< 7, (3) and (3.2.12) give

® o
a»{(dw,du) = é’(u; W) >

n=1 uo=0 wog'}\f

Gn(dw, T-du ] ®y2 uo) }(uo}-wo)q(dwo)duo

P

(4)

We denote the corresponding expression with k replacing oo in the sum-

(k)

mation by ?11 ~ (dw, du). We show that
v .

(k)

q(dw) >u lw)du - q - k (dow, du)= F (u! w)du ( G, (dw, Y -u lo_, 0)q{dw_ ),
[ £ z’ ¢ -l b 0
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in the sense that the integrals of the two sides over any measurable
subset of W x R are equal. To prove (5) for k = 1, we write the

left-hand side, using (3.2.6), as

© . o'o) .
:—}r (u 'w) [ q(dwo) gdu )( G (dow, dyl wo) - j G(dw,'{f+uo~duéwo)duoj‘ .
w4 € 2 y=0 u0=0
By the lemma, the second term in the bracket is
0
G (dw, dy]| wo) .
y=1 -u
To prove (5) inductively for a general k it is sufficient to show that
m -
A (u! [ | d -
T (ulw) j j Gk+1( w, T du\wo,uo)}(uolwo) q(dwo) duo
uyT0 wy e
£ ! 7
=3y} : _ ,0 o o~ Q
3 (u;m)du2 ) Gk(dw,'t u1w0 )q(dcoo) j Gk_l_l(dco,“c u Iwo, O)q(dt.oo):>
(‘00 iff"?fvr wo {‘:,q/"“
This can be proved by expanding the terms containing C;ka by the con-

volution formula (3.2.10) and applying the lemma to the right hand side.

By assumption H2 the right hand side of (5) tends to 0 as k —> co.

Since aj . (k) (dw, du) —> ,(; (dw, du) as k —> 0o, this proves existence.
T v P

(ii) Uniqueness. It follows from (3. 2.11) that any stationary
distribution forEW};t, UtE has the form
q' (dw) 3 (u 'w) du .
If now we write down the equatnion corresponding to (4) for this postulated .

stationary distribution and allow u —> I -, the terms in which n > 1

\
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become negligible compared to the first term by Hl. After cancellation
we see that q' must satisfy (3.2.6), and so, by H2, q' = q. X

Proposition 3. 6. A process satisfying H1, H2 and H3 has .a stationary

probability distribution if and only if H4 below is satisfied.

Hypothesis H4. The mean interval length is finite, i.e.

00

o= J q(dw) }(ﬁ%w)du <.
wegW u=0

Proof. For then g'lxi'f (u] w)g(dw)du is a stationary probability distribution. ¥
We can now give definitions of synchronous and asynchronous

realisations of the associated point process. For the process ‘W, U

enables us to construct realisations with any prescribed initial conditions,

i.e. not necessarily with an event at the origin. By a 'synchronous’

process, with the origin at an 'average event' (cf. Lawrance 1971 )

is meant a process which has initial distribution

4, (dw, du) = q.(dw) 6d(;1 . (6)

An asynchronous process, with the origin at an 'arbitrary time', is
obtained from the stationary initial distribution

4 (dw, du) = p-l q(dw) 3‘ (u} w)du . (7)
Then we have

Proposition 3. 7. (i) The intervals of the synchronous process form a

stationary discrete time process.

(ii) The asynchronous point process is completely stationary
and has rate p.
' Proof. Isart () is Proposition 3.1 and Part (i) follows from Propositions

3.3 and 3. 6. g

s
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Following Khintchine (1955) and others, we may define an 'arbi-
trary event' in the associated point process by taking the limit as h —> 0+
. . s
of the conditional distribution of ‘LWt, Ut73 at an arbitrary time, given
that Ut < h.

Proposition 3. 8. 'Average' and 'Arbitrary' event initial conditions are

equivalent for processes satisfying all of H1 - H4.
Proof. This is immediate by dominated convergence, since

lim (u]w) = 1 for almost all w. *
u=—> 0

Note that orderliness is essential here. Without it we cannot
sensibly define 'arbitrary' events. 'Average' events are still well-
defined, however, and can be used to give an extended meaning to many

of the Palm-Khintchine formulae discussed below.

3.4. OPERATIONS ON THE SEMI-MARKOQOV MODEL

-Any point process has a formal representation as a semi-

~

Markov process, as we can take W to be (R“ﬂ)00 and Wn the entire

S M
interval sequence up to the nth event, Wn = 3...X s Xn‘g . However,

n-1
measure -theoretic difficulties arise in defining appropriate transition

! wo) and stationary measures g(dw) on

functions p (do.)1 7

. These may
be circumvented for particular processes by giving detailed constructions.
It is helpful first to define some operations on the class of semi-Markov

processes.

(A) Adjoining . Given a semi-Markov process ‘ZWt, Uti( , it is often

helpful to form a new semi-Markov process with larger state space but

the same associated point process. We consider a few examples.
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(i) Independent Adjoining. This is analogous to the independent

marking discussed by Matthes (1963). Let {Zig (i=0,+%1, +2,...)
be any sequence of independent identically distributed random variables
taking values in the space ’b"according to a probability measure pz(dwz).

i = W a = 1 ! 1
Then if ’Na W x %fand w N {Wn, an ; p(dwl | wo) induces the

.. . a P
Markov transition function pa(dw { wao) on ‘,\Ia, where

1
a a a :
P (dw; " [wg") = pldw, |wy) P, (dw,) .
The stationary distribution of this chain is

q” (do”) = q(dw) p, (),

. a7 .
and of the continuous time process ﬁwt s Utfg is

.a. . a -
q (dw ,du) =p (ug w) q(du;\du pZ(de) .

Thus (Z\ft = ZN is independent of E{A‘/’t, U;{' as would be expected.
t

(ii) Adjoining the Next Interval and State. Let

a

W = fé;x?x"l-\}v X ;’R+ and Wa =W , W X } . The transition
n n n+

17 Tn+l
function is

a

P (dwlalw &

0 ) = p(de! wl) F (dx

ol ey)

The new conditional interval distribution is degenerate. The induced

stationary distribution of Wma is given by
*dw, %) = q(dw,) p(d ) F(dx )
q (dwy ) = qldey) pldw, | o plegrep)s

A
and that of (Wt , Ut) is

g a
qa(dw ,du) = pq(dwo) p(dw lw

*1 ZO(u>x).
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Note that the conditional distribution of the backward recurrence time

Ut given Wta is uniform over {'O,x1 ), where x. is the length of the

1

interval in progress at time t. Moreover, the unconditional distribution
of the length of the interval in progress, obtained from (1) by integrating

out w,., w

0 and u, is px

F(dx,), where F(.) is the synchronous marginal

1 1 1

interval distribution. These are precisely the results obtained by
heuristic length-biased sampling arguments (cf. Cox and Lewis 1966).

(iii) Adjoining the Previous State

Let W - Wx W and Wna = %Wn l’WnE . Then the transition

function and stationary distribution are given by

0
a a a | } dwl
P (o, {w,7) = pldw; | w ') 6%, : (8)
a_ g 0 17
where Wn = Z,Wn , WI1 E,
(do, *) = q(do, ) pldo ! o ° 9)
~a a 0 ity 0. 1
4 (dw; ", du) = q(dw, ) plde; iw) )\,a(ulc.ol )du . - Qo)

Thus the stationary distribution of WneL is obtained by giving the first

0
comporent Wn = Wn 1 the distribution q(dw). The asynchronous

stationary distribution is always obtained from the synchronous stationary

distribution by Proposition 3. 5.

Rl \f f’} T
(B) Filtering. Let (v~ < i\ be measurable, and suppose that entry

£ :

into W occurs infinitely often with probability one. Then the filtered
‘ r'f

process is obtained by deleting all transitions except those into Ry

Filtering of processes with countable state space has been discussed

by Cinlar (1969b). The transition functions are given by
>
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@ (r) ;(rt+l1)
= J i (@51 o s, @, ). . . plde, 15 )
L | P, wg /PIGw, 1 &y plaw, je.
r=0 @2 W Nl S x . <x
- l\, P [ ‘4% .e:j.; —_
)
o f
o ¢ W
Fd o) Flax. 15,5 ). . Flax | 5, 0.0
x Fldxofeg o 1i©p 97 P et

It is easy to verify that the stationary distribution on 'fle’f is

v

f
o (auf) = 28]
a(W)

and that the intensity of the filtered process is p q(dwf). In general

the asynchronous stationary distribution does not take a simple form.

3

f N~ . i. .e' < f? .
Ifw € n is anatom of q(.), if g( "w 3 ) >0, and if
;. A

£ -,»f 5 . .
W= w § , then the filtered process is a renewal process. This

% =

“

single-point filtering is a useful device when :* is countable, but will

not usually be possible otherwise.

(a) ~ (b) (b)

(C) Superposition. Let ({A\th(a), Ut } and (Wt , Ut ) be two inde -

pendent semi-Markov processes. The superposition can be represented

as a semi-Markov process in the following way. Define

Wsz(];,w(a),w(b),V),
n n n n n
where

% 0 if the nth event is of type A,
I —
n

1 if the nth event is of type B,

Wn(a) and Wn(b) define the states of the two processes just after the nth

event (in the cormbined process), and Vn is the semi-synchronous

A
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backward recurrence time. The transition probabilities of the Markov

. < s . ‘s . . . .
chain ‘Lwn } involve the conditional interval distributions Fa and F

of the two processes

b

as well as the Markov transition probabilities.

Sy ssas ‘s 8 S -
There are four possibilities for transitions W, —> W1 , corresponding

0
to the four values of (IO, I1 ):
(A) I0 = 0, I1 = 0. Here the transition probability is
s (@) (b) ! () (b)
P (O,dco1 ,dwl ,dvléo,wo 9 ,VO)
a ),
@), (a) @ (), - Tplep
- i _ 4 3 . N
pa(dco1 L0y )Fa(dv1 Yo "'mO » @) ,Bmo(b) S v 53
“poio
and the conditional distribution of X1 is degenerate, i.e.
dx
s s 1
F(dxlgwo,wl )=25 ;
Y17V
(B) IO =0, Il = 1. Here we obtain
s @) (b) . (2)  (b)
P (l,dm1 ,dwl , dv1 3 O,wo ' @q ,VO)
(@)
F v v o P, B de
e ® ®) Yo % 2 Iy )
Ple®y 19y 3 (v o B (@) “a'1'70 7.
b0l ) “0

The conditional distribution of X. is then

Cases (C) and (D) corresponding to I

can be deduced from

1

=1, I, =0andI =1,1 =1

0 1 1

(B) and (A) by exchanging A and B throughout.

The synchronous stationéry distribution is
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PP 5

a0, o', 4®, av) = p: :’)b qa(dw(a)) qb(dw(b)) Q}i)(vfw(b))dv,

(1, do®, a6u®), av) _ e q @o®) ¢ @e®) 3 wle®av .
pa+pb a b a -’

s .
The asynchronous stationary distribution q is given by

(a) . (b)

q° (0, o', dw'?’, dv, du)

= papbqa(dw(a))qb {~d<.o(b)) E;(u( w(a)) }b (utv %w(b))du dv ,

with a similar result when I = 1.

3.5 SOME EXAMPLES

We now consider a few examples of point processes which can
be given a semi-Markov representation.

(S enewa rocess. or the renewa process, AN ma e
(A) The R 1P For th 1 W may b

taken as a one-point set. The transition functions and stationéry dis-
tribution of the Markov chain are trivial. Suppose that the interval
distribution has density ;zf(x), survivor function 2 (x) and mean .

The usual renewal density is

o
ko) = > 7 (), | (1)
n=0
where ™" (x) is the n-fold convolution of g with itself, (40 (x) = 5d;‘ ).

We define also the delayed renewal density

p.4 .

o _ gly+u) )

kﬁ(x’ u) j :Q_ @) k;f(x y) dy . (2)
y=0

This is the renewal density of a modified process in which the component
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3

in use at t = 0 is known to have age u. The asynchronous process gUt"‘”’

has transition density

o~
\ kg (T-ugfug) () (w) <% ),
{ o —— (w, >7T ).
L u0+‘g: 3 (uo) 1

(B) Countable Semi-Markov Processes. These will be discussed in

Chapter 6.

(C) The Wold Process and Extensions. Suppose that the state variable

at the nth event is the length of the previous interval, so that
n
{ = ! ! =
pdw wn-l) H(doon | mn—l) say, and F(dxn i wn—l’mn) Smn

we have a representation of the Markov process of intervals discussed

Then

by Wold (1948a, 1948b), Cox (1955) and others. If q(dw) is the stétionary

Lyt

C
distribution for < Wn , then the synchronous stationary interval distri-

bution is

{
1 ; :
qdw )plde .'w )Fdx . w ,w , )= q(dx).
w W W j\’. Ly " ntl o "
R

n+l *

nt+l

The asynchronous stationary initial conditions are given by

, S dx
a(dm}du) = pqldw) { p(dmlff w) 6m du
J 4 1

w ‘

M

~?

= pq(dw) Z(u w) du .

Similarly, the k-dependent renewal process has a representation with

'fﬁ}‘:(;R—b)k and W = (X ,X PN 4 ).
n n

n-k+1

(D) The Doubly Stochastic Poisson Process with Markovian Rate. Any

semi-Markov representation of the general doubly stochastic Poisson
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process must necessarily be rather complicated. However, when the
rate process ,{\(t) is Markovian, there exists a representation with

W = R¢ For we can take Wn = f&\(Tn). The transition functions

and conditional interval distributions can be written down, but not usually
in a simple form. Particular processes for which this approach might
prove usef:ll are the random hazard process studied by Gaver (1963)

and Lawrance (1971), the shot noise process with eprnential decay

(cf. Chapter 6) and the Ornstein-Uhlenbeck process also discussed by

Lawrance (1971).

(E) Clustering Processes. A fairly general treatment of cluster pro-
cesses can be given from the semi-Markov viewpoint, but is extremely
messy. We shall outline the approach without giving full details.- It

is assumed that a process of main events is given by a semi-Markov

2.y

A

process (W ,Z 3% . Each main event independently generates a cluster

‘““"'n n

of subsidiary events, which are here assumed to follow the main event.

)

The cluster structure is specified by the random variables (M, Yl’ cees YM
where M is the number of events generated (possibly zero), Y-l is the
distance fro“rn the main event to the first subsidiary event of the cluster
and Yi (2<i< M) are the distances between successive subsidiary

events. We say that the cluster is operative at time t if the main event
occurs at or before time t and the last subsidiary event occurs after

time t. iThen the state variable corresponding to the full process must
include the state and the backward vrecurrence time of the main process,

the number of operative clusters and a specification of the relevant

history of each. The existence of a stationary distribution for the main
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process does not ensure the existence of a stationary cluster process

without some conditions on the cluster structure.

3. 6. PALM-KHINTCHINE TYPE RESULTS

The semi-Markov representation allows a simple derivation
of the so-called 'generalised Palm-Khintchine relations' connecting the
joint distributions of synchronous and asynchronous intervals. We
shall denote the synchronous sequence, measured from an 'érbitrary

event', by (X,X,,...), with joint distributions F (dx ), F (dxl,dxz)',...

2 2
-~ P
The asynchronous sequence (Xl’ XZ’ ... ) measured from an arbitrary
time will have joint distributions F (dx ), F (dx ,dx ), etc. We assume

that assumptions Hl - H4 are satisfied.

Proposition 3. 9. The joint distributions of n successive intervals under

asynchronous and synchronous sampling are related by the equation

co,dx )= p Fi(x

Fn(dxl’dXZ" n n 1

;@) dx,, ..., dx Sdx, (1)

Proof. The left hand side is

Futdx | w @, )

00 (ntl)
! | 170’
p i dw) (uw)dup(dw;w)
J 0 C"/(uiwo)
u=0 wo ‘g;’
w €
n n_
Y pdele )F@Ex e, ,w.)
v 1 -1"
i=2
QO I (n+l) n
- | 7T
= i ! dw. dv! o ! ,
i J i=2
V=xl wo £
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(by the lemma to theorém 2.5), and this is the same as the right-hand
side. *
This result is the integral form of a relation conjectured in
Lawrance (1971). In view of its implortance we give an alternative,
more intuitive, derivation using arguments from leng’ch-—bia‘sed sampling.
Suppose that we construct a synchronous realisation of the process and
pick a point of R at random, independéntly of the process, to define

the origin of the asynchronous process. Then the joint distribution of

the length Y of the interval in which the origin falls and of the succeeding

n-1 intervals XZ’ cens Xn is
yI':(dy, dXZ’ RN dxn)
; ) =py Fﬁ(dy, dxz, ey dxn) ,
j% y F;‘(dy, dXZ’ ce s dxn)

since the chance of a random point falling in a particular interval is
proportional to its length but is otherwise independent.of the process.
The position of this random origin within the interval is uniformly dis-

tributed over its length (0,y), so that

- - s d:x:1
e = — , R |
Edx, . od )= STey Ry, dx x )
Y=X1
=p F“]((xl, ), dXZ’ cee dxn)dxl.

All the usual moment formulae may be deduced from (1). For
n=1, (1) reduces 130 the well-known relation bet\;veen the distributions
of intervals and forward recurrence times,

A slightly strongef result than Proposition 3. 9 is needed for

the work of Chapter 4.
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Proposition 3.10. Let E be any set in the o-field generated by

% Wl’XZ’ WZ’ X3, ‘e } , and let’];"‘(dx, E), F(dx, E) denote the improper

asynchronous and synchronous distributions, i.e.

c o s ) 7
F(dx,E) = Prob { X ¢ dx;, (W,X,,...) € Eg,

(8

: .
F(dx, E) = Prob { X, € dx, (W,X,...) € ES.

1

Then F(dx ,E) = p F § (x, ), E} dx,

Proof. This is the same as the proof of Proposition 3.9, except that

'n o0
T 1. 7 . . .
the product g i is replaced by ! : and the domain of integration
! Lo
i=2 i=2
(R 5 € Bt *
%(ml,...,wn){ L by Z(wl,xz,wz,...) Ez:.

It is also possible to derive relations involving both the forward
and backward recurrence times. For example the result (Matthes,
1963)

FZ(U,V) =p fl(u + v)

for the joint density of the forward and backward recurrence times holds

if the density fl of Fl exists.

3. 7. NON-ORDERLY POINT PROCESSES

Although only orderly processes will be discussed in later chapters
we shall show here how the methods developed in this chapter may be
used to attack non-orderly processes. Specifically we shall show that
Proposition 3.9 does not re quire orderliness. We shall use the standard
device of collapsing the point process (Milne, 1971), replacing each
multiple occurrence by a single occurrence at the same’point to define

an induced orderly point process. Some care is needed over the definition
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of the state variable W: of the collapsed process. For our purposes
it is sufficient to take Wz = (V—Vn, Kn), where Wn is the final state
entered by the original process at each transition and Kn‘is the multi-
plicity of the transition. A discussion of non-orderly multivariate

processes would require a larger state variable. Note that in contin-
Vo o

. cas . . . * ®
uous time Wt = Wt’ and that the conditional distributions p(dwn} w

)

n-1

iy
Thus Lan

and F(dx;fw"‘{
. t n

1 is itself

, 03‘%"’) are independent of k .
n n-1

a Markov chain.

r

Lemma. Suppose that a semi-Markov process ‘}Xn, an, satisfies
H2, H3 and H4. Then the collapsed process satisfies all of H1l - 4,

Proof. This is straightforward. The stationary distribution of the

)

chainsfwnf is q(dw) = a/-l Ka (0lw) q(dw), where &= glq(dw) 3"‘(05(»)- dw > 0.

The intensity of the collapsed process is ap. *

Proposition 3.11. The relation between synchronous and asynchronous

interval distributions given by Proposition 3. 9 holds even if H3 is not
satisfied.

Proof. We apply Proposition 3. 10 to the collapsed process, noting
that any event E of the o-field generated by (XZ’ X3, ... ) belongs also

to the o-field generated by (Wl’ XZ’ WZ’ ...). We have, for Xl >0,

3
F(dxl,E) =aF (dxl,E)

Hence

~x ¥ <
F (dxl,E) = apF™ 7

o~ t
Fdx ,E) ,oo),Ei;‘dx

i

(x

1 1

H

pF ), 00), E dx, .
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3.8. DISCUSSION

It would be very convenient if a semi-Markov representation
could be found for any stationary stochastic point process with finite
rate. As has been pointed out in Section 3.4, a rigorous construction
would require a rather deeper measure-theoretic background than
has been considered here. The constructive approach given above is
difficult to apply, for example, to the rnosf-; general form of the doubly
stochastic Poisson process.

A general restriction of the model is that it cannot apply to

processes with infinite rate. For if p = oo then E(Xng Wn 1’ Wn) =0

almost surely, for each n and thus Xn 0 almost surely for each n,

contradicting HI.
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CHAPTER 4

SOME APPLICATIONS TO MULTIVARIATE POINT PROCESSES

4.1. INTRODUCTION AND PRELIMINARY DEFINITIONS

The semi-Max;kov model provides a useful approach to the theory
of multiva'mriate point processes. In Section 4.2, the results of Chapter
3 are used to derive a simple generalisation to multivariate processes
of the usual formula for the forward recurrence time in a univariate
process wifh known interval distribution. In Section 4. 3, this result
is used to derive Palm-Khintchine formulae for multivariate prccesses.
The concept of deterministic thinning introduced here appears to be new.
For bivariate processes results of Milne (1971) and Wisniewski.(1972,
1973) are recovered.

An m-variate semi-Markov process is a semi-Markov process
{ Xn, ang whose state space ﬂ‘/\)v is partitioned into m measurable
subsets 'L\Jvl, ce (Iﬂfm. A transition into wi deﬁpes an event of
type i. It is assumed that all of the hypotheses Hl - 4 of Chapter 3
are satisfied. ) Thus the Markov chain‘ {Wn% has a unique stationary
distribution g(dw) which defines synchrcnous and asynchronous stationary
initial conditions in the usual way. Moreover, the associated (multi-
variate) point process is strongly orderly and the rate p of the super-
posed process satisfies 0 < p < co. Provided that q(%)’i) >0
(1< i‘f_ m)}, the chain {Wné enters each /L\)Ni infinitely often, and
so the marginal processes obtained by filtering by each ’L\/Z in turn
are all well defined, with the transition functions given in Section 3. 4.

If the original process is stationary each marginal process is also
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gtationary and the rates p. (1 <i < m) satisfy > p, = p. Synchronous
and asynchronous realisations are defined as in Chapter 3. A semi-
synchronous realisation, corresponding to an 'average' or 'arbitrary’
event of specified type i at the origin, is obtained by conditioning the

stationary distribution g(dw) of W

1
0 °° the o-event iWO € /U)“ig .

3

Thus

_ 9(dw) ,
qi(dw)—q(w) we W) - (1)

i
The joint distributions of the synchronous forward recurrence

. S . 2 .

times (V..:1 <j<m3 , of the semi-synchronous forward recurrence

times gV., 11 <3< mjg and of the asynchronous forward recurrence

1)
times %*VOj 1K< mg _may all be expressed in terms of the basic
functions q(. ), p(.)and F(.}.,.). Note that the first suffix, i, é'lenotes
the type of event, if any, at the origin and the second suffix, j, the type
of event to which the recurrence time is measured. There is a simple
relation connecting the semi-synchronous and synchronous distributions

of the process.

Proposition 4. 1. Let E be any o-set in the v-field generated by

s X, WX, W, .% , and let p. (E) and p,(E) (1 <i<m)denote the
synchronous and semi-synchronous probabilities of E, respectively.

Then

m
PP (E)= ) p, p,(E). @)

i=1

Proof. We have



- 59 -

pp-(E)=p J Prob(E|w) q(dw)

weW
m
- d
= Z— P a(L)) S Prob(E|w) A2
i=1 we .
i
m
- N
- L_‘ pi pi (E) . ¥
i=1

4.2. A MULTIVARIATE RECURRENCE TIME RELATION

Let X'j (0<i<m, 1< j<m)be defined as follows. Let
4 S1z =)=
. arn} be the unique permutation of VYl = (1,...,m) such that

V. <..r <YV.
ia i
1 m

Define X, =V, and X, .=V, -V (] >1). Suppose that the improper
il ia, i) 1czj L, !
joint distributions of (Xil’ cees Xim) corresponding to each ¢ are

Fi(g) (dxl, e dxm). Then Propositions 3.10 and 4.1 give, for the

asynchronous distribution

2 _ (@) ¢,
F, “(dxl,...,dxm)_ pF. ™ {(x,00), dx,,. ,dxm?g dx
m
_N (2)
= ) hF bl By dx §dx)
i=1

Define the synchronous and asynchronous joint survivor functions

_ . - 1< 'é 1= . .
Fyvyseeesv J=Proby Voo >v (1<j<m)S  (i=0,1,...,m)

J
(2)

Then equation (1) yields a simple relation among the 3’1. For clarity

this is proved first for m = 2, and then generally.
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Proposition 4. 2. The function 7 (v

oV vz) is absolutely continuous

as a function of Vi when v2 is held fixed and vice versa. Moreover,

) 3 _ o
(_-v_l_ * zvz) Folrp vy ==y T vy - by Ity

(3)

Proof. Here there are only two permutations of T\ say (1) = (1, 2)

the asynchronous bivariate survivor function

and (2) = (2,1). If vy __<_v2,
is
[oo =0 [0 0] ?O
. (1) i 2)
= . F ,dy) ,
X=v, y=(v2-x) : x=v, y=0 4)
where (vz-x)+ denotes max (vz-x, 0). Substitution of (1) into (4) gives,
for the coefficient of Py in 3’(\1’1, VZ)’
00 00 o) c© ,00 ,00
1) L )
Fl (dz, dy)dx + j | Fl (dz, dy)dx.
_ o Co Sep Do
X=v, y—(vz-x) Z=X x=v, y=0 z=x
For a fixed Voo this is an integral with respect to vy of
leo) 0o
1
- J r, iaz, ay) , (5)
J :

y-—-vz-v1 zzvl

and, for a fixed v_, it is an integral with respect to v_ of

1 2
|
y:O Z:VZ-—Y y::() Z:VZ

Combination of (5) and (6) after changing'the order of integration gives
the expression corresponding to (4) for the semi-synchronous survivor

function tl'_\fl (Vl’ Vz). The analogous result holds for the coefficient

Y
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of Py and the case v. >v_ may be dealt with similarly.

1 2

This result immediately yields a number of moment formulae.

For example, integration of (3) over the domain 0 < v, v, < oo gives

1

E(V (7)

21 22)’

01) BV, = p.1 E(V,, V,,)tp, E(V, V

and integration of (3) over the domain 0 < v

<o, 0<u<v, <oogives

2 2

<

SR

2
—
AN
b3
. b

‘ S
Py BV Vi (Ve Y)

o

1 2 }_ 2
2 BV 113 BV )+ 2EV,) Vop) 1

(0%

Z
i=1
(8)
These give the formulae of Wisniewski (1972) quoted by Cox and Lewis

(1972), on application of the usual univariate results of the form

3
E(V.. 2%) =(1/3/'p1 E(V113) . They hold in the sense that if either side

01
is finite, then the other side is also and they are equal.

In the general case we have

Proposition 4. 3. The asynchronous and semi-synchronous joint distri-

butions of forward recurrence times of an m-variate semi~Markov

point process are related by the equation

m m

<) 2

> R S 2 3‘ (v,‘_.,v ):- Tp. \":T"(V ye ey V )o
Looyv, T00 m Lo Th i ™ (9)
i=1 ! i=1

Proof. Let ) denote the set of all permutations a of YYU . Then

forOSism,

b= ) r @
m A_W 1
acl

(@x ), enydx ), (10)

B‘i(vl,...,v

Ty

where the domain of integration B is specified by the inequalities
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Using (1), we obtain

m
- N (@)
3‘0(v1,-..,vm)-— 2— p, K. (Vyseeesv )
aeQ =l o
where
(2) _ J (@) .
Ki (Vl’ .,Vm)- Fi (dxl,...,dxm)dx0 (1 <i<m).

1
Here & denotes the region of {Rm+ defined by the inequalities

x. >0 i=2,...,m),

i =
X0>Va/l ’
), > X,
L3
Z—_ xj,+x0>va/k k=2,...,m).
j=2

If for some j <Kk, Yy >Va/ » then the inequality including that v, is
J k | k
redundant. Therefore the derivative of K, (@) (vl, eV 1) with respect
i n

to v, is zero. Otherwise, say for k ¢ /W“'a/ c TN, , we have
k ~

where B K is the region of R™ defined by the inequalities

XiEO i=1, ,m) ,
k

' - Xj>Va ,

: k

k

Z xSV, -V, (4=1,...,k-1),
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(7= ktl,...,m).

-
"
| S
\V4
<
Q
]
<
Q

j=k+1 )
The differentiation under the integral sign here is justified by the constant

sign of the right hand side of (12), the Radon-Nikodym interpretation of

g
derivatives and Fubini's theorem. Now R K c R for each k € ”)“{La.

—~
.

Also if x ¢ B, thenx ¢ R, for precisely one k¢ ’ﬂ\va. For, if

k

J
0, = 7 x -V 1 <j<m),
3T L Xyt (sism)
{=1 )
thenx ¢ 4R, ifandonlyif@ =-0,<0(j<k)and 9 -6, >0 (j>k).
~ k k i~ - k J
This holds for a unique k ¢ V. Infactk ¢ "r"{\a, for otherwise there

would exista j <k withv_ >v_, and so 0. < 0 . It follows that

k
i Tk !
= )
- K v )= [F,("f) @x.,...,dx ),
o }V i 1 m J i 1 m
k=1 R
which, together with (10) and (11), proves the Proposition. #

If m = 2 and the marginal processes are independent, then each

joint survivor function factorises and

EE 4 - o .
Sor Fotvy vp) == p, I, v vy) (i=1,2).  (2)
An example of a process with dependent marginals for which (12) holds

is given in Section 5.4

\

4.3, MULTIVARIATE PALM-KHINTCHINE FORMULAE .

Consider a stationary multivariate point process P with m
different types of event and let N()j (0,t! denote the counting measure

of the jth marginal. If ¥ has a semi-Markov representation, then semi-
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synchronous counting measures Nij (0,t] (1 <i<m), corresponding

to events of type i at the origin may also be defined. Moreover, for each

i, the joint distributions of %Nij (O,tﬂ (3=1,... ,m)% can be ex-

pressed in terms of the transition functions and stationary distributions

of the semi-Markov process. Thus we can define, for m > 1, tl, e, tme &
. cyeas
R € Z , the probabilities
p. (t.,...,t N.y.+0,0 )=ProbiN.(0,t-j =n (1<j<m)‘§
il m'! 1 m ij J j - -
(1)
for eachi=0,1,...,m. In this section the relationship between these

probabilities is investigated. From Proposition 4.3, replacing vj by

tj, we have

m m .
D - ;

Z vt Po (tl,...,tmlo,...,O)_- /PP, (tl, st 10, »0),
. 1 .

i=1 i=1 _

(2)
since V_1j > 1:j if and only if Ni.(O, tJj = 0. It might be thought that
J

relations involving non-zero nj would be more difficult to derive. How-
ever, by applying Proposition 4. 3 to a modified process, we can recover
the formulae given by Milne (1971) and generalise them to m-variate

processes. The method used, which will be called deterministic thinning,

will be considered first in relation to univariate processes.
Let P be a stationary, orderly univariate point process with
finite rate p, and let the ordered sequence of events of P be
- E_,E,E|,..., where E is the first event in (0, ®). Fora
given integer k > 2, let the random variable K be chosen independently

of 4* so that



Prob ( /k i=0,1,...,k-1),
and letP(k) be the process

P() = § E, : Kti is a multiple of K.
For example if P is a Poisson process then/P(k) is a stationary renewal
process with k-stage Erlangian interval distribution. Note that if an
origin is taken at an arbitrary event of’P, or at an arbitrary time, the
distribution of the number of events of P up to and including the first
event of P(k) is uniform over (l,...,k), and independent of P. It
follows that“P (k) is stationary, with rate p/k.

Let the asynchronous and synchroncus survivor functions of
’P(l;) be denoted by :'\‘fi(k)(v) fori=20,1 reépetively, and let B’i(v";j)
denote the asynchronous and synchronous survivor functions for the sum

of j consecutive intervals of . Then

b

k
Lk
e ) T
j—- .

Hence the forward recurrence time formula
Fldx)= p F 3 (x, )% dx (3)

applied toP(k) gives
k

lcy

LS en=-2 3wl 4)

J=1
Thus we have, inductively on k, that
o S Y i
3v i\/ O(Vtk)% =p 3 ql(\’}k"l) 3”1(V3k)},

or, in terms of pi(t]k) = }i(tzkﬂ) - }i(tgk),‘
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f? pouik)= -p%fplﬁlk)- Pl“lk'1)§ .

These are the well-known Palm-Khintchine relations. vNote that the
proof requires only simple stationarity of /°, for this implies simple
stationarity of /P(k), which is sufficient to derive (3) (cf. Lawrance,
1970 ).

The method extends to multivalfiate processes in an obvious
way. Let /Pm be an m-variate semi-Markov point process, and denote

k . = k) th btai by i dent
byJPrn ( km) ’.Pm(N) e process obtained by independently

1
thinning each marginal process in the way described above. It is impor-
tant to note that—’Pm(E) is also a semi-Markév' point process. To see
this,‘ include in the state variable WI1 of P terms Kn(l), ce. s K ()
specifying the number of events in each marginal since the last undeleted

event in that marginal. The transitions of the ‘E Kivg are to be deter-

mined by the transitions of P in the following way. If‘Wn ¢ ’]A}'i, then

A

+1 (mod ki )s

=K G#1).

The desired semi-Markov representation of P (k) is obtained by filtering
m o~

“P by the set
m

“Moreover, if P is stationary, then‘P (k) is also stationary and the
m ‘ m ~

rate of the jth marginal of P_ (k) is pj/kj.

Let the joint survivor functions of the forward recurrence times

ks



- 67 -

of P__(k) be denoted by
m v

5 v 0L,

and the joint survivor functions for the sums of {j consecutive intervals
in the jth marginal by

Y, 0oy [ 4) G=0,1,...,m).

As usual the subscript i is zero for the asynchronous distributions, and
otherwise denotes a semi-synchronous distribution. From Proposition

4. 3 applied to ’Pm(}g) ,

m m 0
— 2 (k) E i o (k)
% BVi 3“0'“ (vl,...,vm)—- : E:a’iﬁ (vl,...,vrn).
i=1 o=l
(5)
However, it is easily seen that Kk

1 m jl =1( {-,‘:1, , m)
(6)
and that fori=1,...,m,
m
k -
K .
3.(”)(v1,...,vm)=km1 . 7__\ “,i(vl,...,vn/1
' | 1w el AT
iy K dg) (0

Proposition 4.4. Let Di denote the different operator defined by

R A I { AP 5 P £,
m 1

m

D f({,..., {_)=1(¢

Then under the assumptions of Proposition 4. 3,

m

2 d | N 9 y
6Vi PO(VI’..-,legl’---sgm)_"Z—' Pi Di pi(Vl,--.,Vm' ’?:.1,--.,1\;
i=1 i=1
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Proof. Note that the operators Dj commute with one another and with

the operator b/AVi for each i. Now

}i(vl,...,vm’ nl,...,nm)z Z pi(vl,...,vm! {il,..., €m).

‘(_<n. (=1,...,m)
J JJ

Hence, using (5), (6) and (7) and defining {+1 = ({;+1,..., {_+1),

we have

. m

N

L »v, poyreo v | Ly )
i=1

m
ZZ Béf- @D ) Fglvpse s v [EHhees f4D)
Ca=l 7

1 m A EV. ]. 1 l’n"}
X 1
i=1
- (Y
< n - i o {+1 R
= -(D,, ,D <L +1 1 T Ve /
i=1
m
- _ r ;
= (Dl, , D )Z Dip 3 (vl,. Vo { th » [ t1)
=1
m
= - . pl D, Pi (Vl; ’Vmi ;1: ;bm)
i=1

Throughout this proof any \3“_1 involving a zero {j) or any p. involving
i
‘a negative JBJ is given the value zero. X
For m = 2, this result is proved by Milne (1971) using orthodox

sub-additivity arguments. The proof of Proposition 4.3 given here
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holds only for the class of semi-Markov point processes. However,

the method used to deduce Proposition 4.4 from Proposition 4. 3 is more
general. It is not difficult to show that if# is an orderly point process
in the usual sense, i.e. if the finite-dimensional distributions of P over
disjoint Borel sets are consistently specified, then/P(k) is also a point
process. Moreover, this result extends to multivariate processes.

As noted by Milne, the relatiom'given above do not enable the
semi-synchronous distributions to be determined from the asynchronous
distributions. Wisniewski (1972,1973) has derived some relationships
of that type for bivariate processes, but they all involve more compli-
cated asynchronous distributions. For example it may be necessary
to know the type of the event immediately preceding the origin. These

relationships will not be considered here.
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CHAPTER 5

THE BIVARIATE MARKOV PROCESS OF INTERVALS

5.1. INTRODUCTION

For the usual univariate renewal process, the backward recur-
. < 2 . . - .
rence time < Utg defines a Markov process in continuous time. A
natural generalisation is to bivariate point processes which are such
(2) 7
M

1
that the joint backward recurrence times §Ut( ), U form a

t
Markov process. Cox and Lewis (1972) introduce such a process which
they call the bivariate Markov process of intervals. Following Cox
and Lewis, we define, fori=1,2,

1 o }
A{u,,u )= lim— Prob% Event of type i in [t,t48) | U =u, (j=1,2)L .

il 2 ) - j
&—>0 t-0

It is assumed that the process is well behaved, so that the )\i exist and
determine the finite time transition distributions. In fact ()\] ,?\2) may
be regarded as a vector complete intensity function for the process.
Note that the )\i are not functions of time. The point process will be

1 2 '
( ), Ut( )7} is a stationary

completely stationary if and only if %Ut
process. In this chapter, conditions on the )\i which ensure the exis-
tence of a stationary distribution are discussed and some of the simpler

properties of the process are derived. Unfortunately the results are not

very tractable.

5.2. EQUATIONS FOR THE STATIONARY DISTRIBUTION

1 2 :
If %Ut( ), Ut( )23 has a stationary distribution with joint density

function qlu., u2), then, by considering transitions in a small interval

1
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Lt,t+6), Cox and Lewis derive the equations

~ y =
p q(ul’uZ) uq(ulyuz)

:-%)\_1(111,112)'{")\ (U. s u )%aj(u ,U.), (1)

+
& u o u, 21772 1’ 2
(oo
A0 )= | () ) duy (2)
. u1=0
0o
q(ul,0)=J )\Z(U.l,uz)q(u.l,u.z)du2 . - (3)
u2=0
Setting )\(ul,uz) = xl(ul,uz) + Xz(ul,uz), we obtain for the general solu-
tion of (1),
~ A X _
d(a),u,) = Gla), ) gla-u)) 4)
where g(. ) is‘an arbitrary differentiable function and {;\(ul, uz) is the

particular solution

u
- 1
S
A i g exp 2 - ‘{ n(t, t+uz-ul)dt\§ (ul < uz) s
q(u,,u,) = 0 : (5)
1’72
¢ ot
Z expz - j )\(t+ul—u2,t)dt3 (u1 >u2) .

0

Letlgl(x) = g(-x)if x < 0 and gz(x) = g(x)if x > 0. Then (2) and
(3) give two simultaneous integral equations in g, and g, It does not
seem possible to solve these analytically in general, though solutions
corresponding to known results can be obtained if each xi is a function
of ui alone, or if each )\i is a function of min(ul, uz) alone. These are
the spécial cases of two independent renewal processes and the two-
state semi—Markov process, respectively.

A solution may also be found if
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5>\1(u1’u2) ) };)xz(ul,uz) o ©)
oYy 34, ,

for then there exists a differentiable function ,f\ (ul, uz) for which

z/\(ul:u?)
su,) = -

1° 2 Bui

A (u i=1,2).
i

In fact, provided the constant ¢ can be chosen to make ?fa probability
density,

Ind -~ <
q(ul,uz) =cexp 3 - /\(ul,uz)%

is a valid solution of (1), (2) and (3). In particular, if each \_ is linear,
i

)\i(ul,uz) =a.u, + biu2 + <. i=1,2),
then (6) holds if and only if a, = bl’ and then
[\(u u )'—'—l-(au +b_u.®+2a_u,u)+c.u +c_u
AR R 2171 2 2 212 171 2 2

Here the stationary distribution is a truncated bivariate normal distri-
bution.
In general the semi-synchronous backward recurrence times

have joint densities
)\i(ul, uz) q(uI ; uz)

R G=1,2). (7

i

i —~
J J )\i(ul,uz)q(ul,uz)dulduz
u =

The denominator of (7) is just the marginal intensity Py The densities
of intervals in each marginal process may be found by integrating out
the unwanted variable in (7). The densities of the semi~synchronous
backward recurfence times Uij (j # i) may also be found from (7). Here

as usual the first suffix denotes the type of event at the origin. The
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density of Uij turns out to be

1 T
—g,() G714,

1

giving a probabilistic meaning to the functions g, introduced above.

5.3. THE ALTERNATING PROCESS

The work of Section 5.2 depends on the assumption of station-

arity. It is clear that not all functions )\i(ul,u ) can define stationary

2

bivariate Markov interval processes. For example if, for all u.1 and

1.12,

>\.(u1+t, u2+t) dt < oo,

then the process will eventually terminate. It is also possible to choose
the )\i so that the process explodes, giving infinitely many events in a
finite interval. Other types of non-stationary behaviour may occur.
Although necessary and sufficient conditions for the existence of a
stationary distribution have not been found, in Section 5.5 a simple
sufficient gondition is given. As a preliminary another special process
is considered here.

= < i=1,2
If }\.1(1.1 :uz) 0 (ul 113,, 1 3 ’):

1

then the event types alternate, and the interval sequence
{ZO, Yl’ Zl’ YZ’ “en } is a Markov chain governed by the transition

densities

h21(z,y): }\l(y+z,z)exp %- j{ A, (y+u, u) du ®

y

N
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Z

hlz(y, z) = )\z(y, y+z) exp % - [ )\i(u, z+u) dui (1)

0
Then Yn and Zn denote the nth intervals of type (1,2) and (2,1) respec-
tively, and Xn will denote the nth interval without regard to type. A
semi-Markov representation is obtained by taking Wn = { tn’ Xn), where

-~

L, is thg type of the nth event. If a stationary distribution q(dw) does

exist, then q(7} =i) = % i=1,2)and
q(dxl t=1)= ng(X) dx , qdx|7T =2) = glz(x) dx ,
where
{oo
o o .
gij(y) = hij(y, z) gji(Z)dz (i,j=1,2; i#j). (2)
0

The conditional interval distribution is degenerate and the gij are also
the stationary marginal interval densities. A stationary alte rnating
process can be constructed if the méans b2 and oy 9£ the gij are
finite. ﬂThe marginal intensities P take the common value

-1

Py = (yp T hay) G=12).

A sufficient condition for the existence of a stationary distribu-
tion on /Lﬁf is that Doeblin's condition should hold (Doob, 1953, p.192).
In our notation, this becomes

Condition D. There is a finite-valued measure ¢ on ,—(l’bf with

gf(f;\r') >0, an integer v >1 and a positive % such that the V -step

transition probability p(v)( { ,S) satisfies, for all ieW andsc -flq;«\

4

sy <1 -0 irdE)< g . ?

7

Proposition 5. 1. Suppose that there exists a function { (x)

-

+ .
(x & R ), non-zero on a set of positive measa re, such that for all z
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h2) > {m. @

< )
Then Condition D holds for the chain { W_3 .

1 O
Proof. Take V =2, 2:2 j/g(x)dx,
0
d
dit=2, X €(,df = J@(x)dx,
[
d (o's)
$5v=1, X d) = ( h, (z,y){ (y)dy d
L=1 € (c, = J 2112,y y) dy dz .
z=¢c y=0 ¥

It also follows from Doob's results that the stationary distribu-
tion is unique, for (4) implies that any set with positive ﬁ—measure can
be reached with positive probability from any point of W, It can be
shown from Doob (1953, Chapter 5, Theorem 7.5) that a central limit
theorem holds for the distribution of the sum of n-corllsecutive intervals
as n —> 0, provided that for some 6 > 0,

2+8 . . g .
jz gij(z)<oo (1;«{_]; i,j=1,2).
This result gives a simple proof of the asymptotic normality of Nt under
the same conditions by the usual inversion argument (cf. Cox and Miller
1965, Chapter 9).

5.4. EXISTENCE OF A STATIONARY DISTRIBUTION FOR THE GENERAL
PROCESS

. A semi-Markov representation for the general bivariate Markov
process of intervals may be derived. The state variable Wis (7,Y),
where Y denotes the semi-synchronous backward recurrence time,
Y=U . .+ The transition functions and conditional interval distri-

butions ar'e determined by the functions
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pij(u)zProb{ ’};1=j|‘50=i, Y, =u) G#j: 1,j=1,2),
Fij(x,u) =Prob(X1_<_x;’t0= i, "5’1 = j, Y0=u) (1743; i,j=1,2).

In terms of the }\i, we have, for j =1 and 2,

x
plj(u) flj(x,u) = )\j(x,x+u) exp { - j At, t+u) dt% s (1)
0
x
ij(u) fzj(x, u) = )\j(x+u,x) exp g - J N (t+u, t) dt% , (2)
' 0
where fij(x,u) = B/a x SL Fij(x’ u)% for each i and j. Conversely,

the )\j are determined by the pij and fij by formulae such as

p..(u) f.. (x,u)
)\..(X, X+UL) = 1) 1 (3)
J (00 .
J %pll(u)fll(t’ u)+p12(u)f12(t,u)§ dt
t=

p:4

The integrals in (1) and (2) must tend to infinity with x, for otherwise
the process might terminate.
The properties of the process might now be derived by an in-
. S g M .

vestigation of the processes LW;S and 3} Ut’ Wt}', . The continuous
time process is clearly equivalent to the original defining process

$o (1) o (2)7 . . : ‘
(,Ut ) Ut § . However there is a simpler approach which makes

direct use of the structure of the point process. The nth event of the

process is said to be a last i-event (i = 1,2) if it is of type i and if

the (n+l)th event is of the opposite type. The last events form a point

process called the imbedded process.

Proposition 5. 2. The imbedded process is an alternating bivariate
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Markov interval process with transition densities h.j(x, y) given by
, i

b y) = by y) by () @#i; Li=1L2), @4
where
X .
hij(x’ y) = fij(x, y) + j hij(z, y) pjj(y) fjj(x-z, z)dz (5)
“z=0

Proof. The imbedded ﬁrocess is alternating, and the semi-synchronous
backward recurrence time in the original process, measured to an
event of the opposite type, must be measured to a 'last event' of that
type. The equations (4) and (5)‘ may be derived from an expression
for hij(x’Y) as aninfinite sum, or probabilistically. Note that
L_ij(x’ y) dx is the probability that some event, not necessarily a last
event, occurs in rde?S and that no last event occurs in (0,x), given
that a last i-event occurs at the origin and that the backward recurrence
time at the origin is Uij =Y. - ¥
It can now be shown that the condition H5 below is a sufficient
condition for the interval sequence of the imbedded process to satisfy

Doeblin's condition, and thus to have a stationary distribution.

Hypothesis H5. (i) The functions )\i(ul, uz) (i=1,2)are bounded in

any compact set.
(ii) There exist functions pi(u) i=1,2), non-negé.tive,
monotonic non-decreasing and not identically zero, such that
> i =1 .
Lemma 1. If H5 holds, then, for any ¢ > 0, there exists an x such that

for all u,
‘ (0]

~ (
B"J-Lj(x,u): j‘ fij (yu)dy <c (G #£J; i,u=1,2).
X
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Moreover, the moments of f'j are bounded uniformly in u.
i
Proof. We have

oo y

[
‘( exp g- J A, tHa) dt% 4>\2(y, y+u) dy
X 0
X o . y
5 [ M, t+ )dt2 ‘( *( n,(E, tt )dt?’ A ) d
<exp+4 - . s ttu 4 o eXp S - » ttu ; y, ytu) ay
o y o ()2 j 2
0 X b'4
X
g ]
= exp i - j A(t, t+u) dti
0
From (1) and (2) it follows that _
* 1
expi - j A, ttu) dtS
Fpp600) 0
<
1- ~ {(x,u) — x y
expd - 1 M(t, t+u)dt‘< Xz(y, y+u) dy
C 4 3
0 0
e ; .
<P b o exps, &-ylu,ly) bdy |, (6)
] | 2 ¢ 27705 i

which is arbitrarily small for sufficiently large x. The first result
follows immediately and the second by noting that if pz(y) is ultimately
greater than ¥ (and there must be some ¥ >0 for whicia this is
true), then the right hand side of (6) ultimately decreases at least as
fast as exp(- ¥ x). The proof for 3"21 is similar. X

Lemma 2. If H5 holds then there exists an Xy and a function *‘/ (x) ;n-[ g,

o~

such that hlZ(X’u) > € (x) if x >x1.

Proof. If 0 <c¢ <1, then there exist x, and  such that, Q—ﬂv" Obw_'b()
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/xo-ﬁ
} le(Y’u) dy Z'c - gz(é) >0.
0 o -

’
v

Then, if x _>_x0,

two aI/),p'l‘i_cation’s of .(5) givé
' X
h ,Gcu) 2 § hy,{y,u) p,,(v) £, (x-y,y) dy
. YL.:O
x-8
> § £50u) p, o () £, G-y, v) dy
y=0

o~ Y
>c inf 3 pzz(y; fZZ(x-y,y)g .

- Ogysx-6

However, for 0 <y <x-8§, we have

X~y
7
Py, (y) £, (x-y, V) > exp g - j k(t+y=t)d% by (x-y)
C
X~y
?
> o exp % - j Nt+y, t) dt 3/&(8)> 0.

0

As this is a continuous function of yin 0 <y < x-06 its infimum £ (x)

is also strictly positive. Then hlZ(x’ y) > '_fjl(x) Py (x) which must also

be strictly positive eventually. >
The results of Section 5. 3, combined with the preceding lemmas

give

Proposition5. 3. If the condition H5 holds then the imbedded process

has a unique stationary distribution in discrete time which generates

a stationary distribution for the (continuous) backward recurrence time
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2
» U t( )% in the usual way.

process i'U (1) I

R P

The importance of this result lies in

Proposition 5.4. A bivariate Markov process of intervals is stationary

if and cnly if its imbedded process is stétionary.

)

, 2 ‘
Proof. The conditional distribution of SLU,C(1 ) Ut( )} given a full

realisation of the imbedded process in (-o,t]. depends only on

UI t(l) and UI t(Z)' The form of this conditional distribution, given
(1) (2) .
= v = <
UI’t vy and UI_)t Vs (vl Vs say) is
du ~ , V-
p(du.,du by, v )= 06 u][‘; :le(vl VZ V]') dMQ
IR - - V.
zer2t s vy DV veyy) 2

B (VU V=V IPpo (v -uy ) Srpp (uy, vy -y )du, i ,
Fi2lpe vy

Y

+

where :ﬂ i and 3’ are the survivor functions corresponding to the
i

1)
o . . (1) _ (2)
densities hij and fij’ repsectively. Thus Ut = v, and Ut

1 has a

).

distribution with an atom of probability at v_ and a density over ,':O, v

2 1

If the imbedded process is stationary, with density EI(vl, v2), then the

full process must also be stationary, with density

2 O s b -
q(ul,uz)iﬂ. Uz | qI(Vl,VZ) p(dul,duzivl,vz) dv, dv, . (7)

}J 12

The reverse implication is trivial.

It can be shown by a little manipulation that (7) agrees Witﬁ the
density ’ql in Section 5. 1.

It is interesting to note that the stationary bivariate Markov

process of intervals can have infinite rate. For example, suppose that
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< )

P () <uy)

)\l(ul,uz) =a, 7\2(111,112) =
3 2

exp %(af«kﬁ)ulg (u1 > uz) .
Then H5 holds. It is easily verified that the type 1 events are regenera-
tion points for the process, and that the expected number of type 2
events in a synchronbus interval of the type 1 process is infinite.
1t follows that bpz = 00.

We note that any stationary bivariate Markov interval process

whose intensities satisfy the condition (5.2.6), i.e.

\
bxl(ul,uz) i ")‘2(“1’“2)

u - u
0 2 o 1
when reversed in time, provides an example of a process whose forward

recurrence time distributions satisfy the relations

>

\."’ - . \:"3_,‘. . .
bvi JO(V]_«‘VZ) Pl *’i(vl’VZ) (1 1,2)

quoted .in Chapter 4 (equation 4.2.12). Mor.e generaliy the definining
equations (5. 2.1) of the bivariate Markov interval process can be re-
garded as a (time-reversed) differential form of the relations (4.2. 3)
between the asynchronous and semi-synchronous forward recurrence
time distributions. Thus, equations (5.2.1) hold for more general
bivariate point processes. However, the )\i, although defined.in the
same way as in Section 5.1, will not be complete intensity functions.
It does not seem possible to parameteriée the general bivariate

Markov process o% intervals in a way which permits explicit determi-
niation of the interval distributions other than those given in Section

5.2. It is easy to write down expressions for the joint distribution of
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intervals in a marginal process, for example, but these involve the
functions hij’ and cannot be simplified unless a solution is found to

equation (5. 4. 5}.
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CHAPTER 6

SEMI-MARKOV PROCESSES WITH COUNTABLE STATE SPACE

6.1. INTRODUCTION

Semi-Markov processes with general state spaces were dis-
cussed in Chapter 3. In the remainder we shall principally be con-
cerned with semi-Markov processes on a -c0untab1e state space.

From our viewpoint the extra assumption makes little difference
to the general theory, but it does allow a simpler notation. Moreover,
the relative tractability of the processes examined in Chapters 6; 7 and
8 compared for example with those considered in Chapter 5, is due to
the simplicity of W~ . We shall not be concerned with the wealth of
results about the classification of states, the existence of and speed of
approach to limiting distributions and the analogues of the renewal
equation. An extensive bibliography is given by Cheong, De Smit and
Teugels (1972). Particular mention should also be made of the series
of papers by Pyke (196la, 1961b) and Pyke and Schaufele (1964, 1966),
and of the paper by ginlar (1969b). For the processes considered here,
it will always be evident that all states intercommunicate and that both
the imbedded Markov chain and the semi-~-Markov process itself have
a unique stationary distribution.

In Section 6. 2, we consider some properties of the interval
sequence when the semi-Markov process is in fact Markovian. The
important concept of the stochastically monotone Markov chain is dis-
cussed in Section 6. 3. This was introduced by Daley (1968) and applied

in Daley (196™%) to the study of waiting times in a GI/G/1 queue. Related
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work has been done by Kalmykov (1962) and O'Brien (1972a, 1972b).

The relevance to the theory of point processes appears to have passed
unnoticed. We consider as an example the Neyman-Scott cluster process
with exponential displacements. Two particular cases, corresponding

to Poissonian and geometric cluster size distributions, are discussed.

. Th:a state variable of a countable semi-Markov process will be
denoted by K, assumed to take values in Z+, and the transition prob-
abilities and stationary distribution of the imbedded Markov chain by
% pijg and‘;'rqi'lg , respectively. The conditional interval distribution

F(dxlgk ,kl) of Xl’ given K_ =k _and K1 =k

0 0 0

1’ will have mean "lk

k
0

1
say, so that the rate p of the process is given by

A ’
p = E 9, B p].Lj s (1)
i,j

assumed to be finite and positive, If there exists a sequence %gkﬁ

such that

Flelko k)= 1= exp § - g x% 2)

then the continuous time process

K =K 3
<, = Nt (3)

is Markovian with infinitesimal transition matrix p_j 6t where, for
i
each i,

! ~ 5 . .
Zpij— T Py (j#1). (4)
J

In the notation of Cox and Miller (1965, Chapter 4) f)/lJ = qij' It is

easily verified that the stationary distribution Eik of %L'“.

E R .
‘ tfj 1s given

by
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~ +
g 4 = PY keZ). (5)

1

g
It is not generally possible to reconstruct the process ? Kn§
from 2 Et?; » because transitions from a state to itself are not re-
corded by %’f{t% . A discussion of this point is given by Pyke (196lq,

p. 1235).

6.2. PROPERTIES OF THE INTERVAL DISTRIBUTION WHEN I'Et

IS MARKOVIAN

Tt is useful to collect a few results which hold when 3} Kt’g is
Markovian, i.e. (6.1.2)is satisfied. This is a situation which often
occurs in practice. The moments of the synchronous and asynchronous

interval distributions can be determined quite simply. We have

, Y
EX): ESEBEXK?Y = L=, 1)
i - ) 22 <
i=0

(o)
EX2) = B EBXIK): =2 S 4 2)
(X°) = [ K3 = =

/&

with similar results for the asynchronous intervals. The covariance

sequence may be determined in a similar way, since

( ‘\
Y, = cov EXI,Xn = cov ¢ E(XngO) , ExX JK %

kR
+13 n+lt " n'
(3)

[ '
Proposition 6. 1. (i) If EKt* is a Markov process, the stationary

synchronous and asynchronous interval distributions each have mono-
tonically decreasing hazard functions.
(ii) The expected mean of the forward recurrence time distri-

bution is greater than 1/p.
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Proof. The hazard \(x) for the synchronous distribution is
0

2_ q; g, exp(-g, x)
M) = - : 1)
Z q, eXP(-gi x)

i=0
Thus A(x) is differentiable and its derivative'is negative, being of the
form E(G) 2 - E(G?), where G is the random variable which takes
the value g; with probability proportional to qi exp(-gi x). A similar

result holds for the asynchronous distribution. Using (6.1.5), we have

<~ .2
Sy 1 1
EX)= /) == > —z >p (4_5 o) = EX),
S . [ A— é’. »
i=0 i=0 7 i=0 !
which proves (ii). ES
Corollary. The coefficients of variation of synchronous and asynchronous

intervals are greater than one.

s
M

Proof. This follows immediately from Proposition 6. 1(i).

The probability generating functions of the synchronous and

ey

are denoted

. . . . $ 7 Toe
asynchronous.stationary distributions 3q.3 and +q.
i !

by Q(z) and 5(z), respectively. It often happens that g, =a + bi
i ¢ E+) for some constants a and b. We then have the following easily
verified relations connecting the synchronous and asynchronous interval

~S
survivor functions with Q@ and Q

) = e Qe ") ; 2)
Fix) = e ¥ B %) (3)
p Q) =a () (z)+bz & '(z), (4)

the prime denoting differentiation with respect to z.
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6.3. STOCHASTICALLY MONOTONE MARKOV CHAINS

< B
Suppose that a Markov chain ?_an with real or countable
state space is such that for each fixed kl ,
cx |k =x )i L o : .
PI'ob(K1 __‘k1 i KO 1«'0) is a non-increasing function of ko

(1)
Then it is easy to show inductively that a similar property holds for
the n-step transitions, i.e. that for each fixed n and kn

Prob(K <k {K_ =k,)is a non-increasing function of k
n— n!' 0 0

0
A Markov chain which satisfies (1) is called stochastically monotone.
Daley (1968) gives a detailed discussion of the properties of such chains.
A more general formulation which includes continuous time processes,
but does not explicitly consic?ller covariances, is given by Kalmykov
(1962). Rece'ntiy O'Brien {1972a, 1972b) has extended the concept to
non-Markovian processes.
We shall quote for future reference Daley (19683,Theorem 4,

p. 311) which in his notation is

Theorem {Daley). If the strictly stationary discrete time process

%an n=...-1,0,1,...)is Markovian with state space X ¢ R,
with one-step transition function p(.}.) which- satisfies (1.1) (equivalent
to our (} ) above), if w(. ) is an invariant probability measure on 2
and if f : X —> R is a monotonic function quadratically integrable
with respect to m, then the sequence

i s )
iv.i = covy [£(X ), £(X )13 (n=10,1,...)

of serial covariances decreases monotonically to a non-negative limit

Yoo If the invariant measure w for the process is unique, then Vo © 0.
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6.4, THE EXPONENTIAL NEYMAN-SCOTT PROCESS

As a first example of a point process generated by a countable
Markov process we consider the Neyman-Scott cluster process obtained
by taking a Poisson process szti-g “of rate ¥V for the process of
main events and allowing each main event independently to generate
a random number D of subsidiary events which are then independently
displaced in the positive direction from the main event. We shall assume
throughout that the displacement distribution is exponential with para-
meter B. The probability generating function of D will be denoted by

PD(z) and we take E(D)< oo. We shall be concerned with the combined

process of main and subsidiary events.

o~

SK;’; denote the total number of unexpired subsidiary

Let

events at time t, i.e. the total number of subsidiary events which them-

selves occur in (t, ®), but which are generated by main events occurring

in (~o0,t] . Let Kn = KT , the number of unexpired subsidiaries just
n

o
after the nth process event. Then it is easily seen that § K 3 and

t

1K s are respectively a Markov process in continuous time, and a
n

Markov chain in discrete time. This follows from the lack of memory
of the exponential distribution. N

We consider first the discrete chain ¢ Kni . Let dj = Prob(D = }j).

is that of the minimum of k+l

Then if K = k, the distribution of X
n n+l

independent exponential variables, k having parameter B and one having
parameter ¥ . If the (ntl)}th event is a main even1; then it may generate
D descendants, giving Kn-{-l = k + D. If it is a subsidiary event, then

= k-1. In 'any case the conditional distribution F(d}{r k_, kl) is

n+1 0
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exponential with parémeter V o+ ﬁko.‘ These results give

Proposition 6. 2. The exponential Neyman-Scott process defined above

has a semi-Markov representation with state space Z+, transition prob-
abilities pij = 0if j <i-1,
B
o Piie1 TVREL

Vv

- _ S 1),
Pij = Uapr e (G21)
and conditidnal interval distribution
- L1
F(x|i,j)=1-expy -(V+pi)x73. (2)

It is clear that all states of the Markov chain communicate, so
that there can be at most one stationary distribution. The existénce of
a stationary probability distribution is ensured by the fact that for large
k, SKn_"S is stochastically dominated by a random v:}alk with negative
drift. An alternative proof can be constructed using the known station-
arity of the point process to construct an appropriate stationary marked
point process, along the lines of Matthes {1963). An analytic proof
is given by’Yang (1972), whose formulation includes as special cases
both the Neyman-Scott process considered here and the exponential
self-exciting process considered in Chapter 7. Our approach will be
to exhibit the unique solution of the equilibrium equations and to use the
existence results referred to above to deduce that this solution must

be a probability distribution.

Proposition 6. 3. The continuous time processifit—:has a stationary

distribution ° q whose probability generating function is
: 1
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l-2
[ 1 -P_(1-x)
€ D dx L

~ - . g _I‘Jyﬁ
Q(z) exp < , B
L j 0 X 5

Proof. The equations for the equilibrium probabilities offﬁt} are

(3)

(v 4B, = B+1, +v3“d A G=0,1,...) )

e j-1 0

i=0

Multiplication of (4) by 2 (0<z<1)and sﬁmming over j gives

VQ(z) + Bz D'(2) = p D' (2) + VP (2) Bla)

which gives (3) on integration, since 6(1) = 1. X
As a check we can evaluate the asynchronous surviver function
from (6.2.3) :
se=e 7t Qe P, | )

Lawrance (1972) has derived the p.g.f. of counts, E f} zN(0 t)

§ for
a general Neyman-Scott process, and it is easily verified that (5) is

a special case of his results.

6.5. SHOT NOISE PRQOCESSES AND PROPERTIES OF THE INTERVAL

SEQUENCE

An important special case of the Neyman-Scott process occurs
if D has a Poisson distribution with mean o/B. It can then be shown
that the process of subsidiary events is equivalent to a shot noise doubly

. . . ~ -Bx
stochastic Poisson process with rate ) _ g(t-ti), where g(x) = e
S S . .
(x >0)and ; tié is the Poisson process of main events. This process

for a general function g(. ) is discussed by Bartlett (1964), Westcott

(1971), Vere-Jones (1970)and Lawrance (1972). 1f the height o of each
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shot is an exponentially distributed random variable with mean 0,
heights of different shots being independent of each other and of the

{f li» , then the distribution of D is geometric, with

—B .
Pol) =5 on 1)

The displacement distribution is, of course, still exponential with
parameter f.

The serial correlations ‘2\(173 for the interval sequence of
the exponential Neyman-Scott process may be determined by the con-
ditioning argument given in Section 6. 2. They need not be positive in
general. A simple example of a process with negative first serial

correlation is obtained by taking P_(z) = z, so that each main event

D

t

generates precisely one subsidiary event, and ¥ << f. However,
if the cluster size distribution has sufficiently uniformly large hazard,
we can assert positivity.

Proposition 6. 4. Suppose.that, for all k,

d
"k N ﬁ” . (2)
oo} — Bt
i} d
i r
r=k

~F

3

Then the Markov chain %Kn’ is stochastically monotone and the co-

n

. . A .
variance sequence ® y 3 decreases rmonotonically to zero as m —> oo.
“'m

Proof. It is sufficient to verify the stochastic monotonicity, since

-1
E(X_';:K_,Ki 1) = (VY + ﬁKi 1) is a monotonic decreasing function of
1771 - -
K. 1’ and Daley's theorem applies. We have from (2)
1-.
o
p) N
Svipa-1t a4 >p 2 d,
jei=" Ty
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and so, for j >i,

Prob(K, > j|[K = i) - Prob(K, >j|K, =i-1)

© T
——— d
px j___ v+p(1 1) z r
 pmjei r=j-itl
>0.
For j<i, Prob(K1 ZjIKO =i)=1. *

For georﬁetrically distributed cluster sizes (2) takes the simple
form

o<y

~t
Explicit evaluation of 0, (z) is possible in the Poissonian and

- % (1-2z)

geometric cases. If PD(z) =e , we have, from Proposition

6. 3,

log { (Z)E Y Ein %B (1- z)s,

where the function Ein(u) given by

u
1 - emt
Ein(u) = — dt
0
is related to the exponential integral E1 (u) tabulated by Ab.rarnowitz

and Stegun (1964, Chapter 5) by the formula

Ein(u) = El(u) +logu+y,

Y being Euler's constant.

If D has the geome tric' distribution (1), then we find
g V/p + V/p
- ‘Y A “———'—ﬁ—g -
Q (=) %fg oz ) ’ Q (z) _<g49_gz) - (3)
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Thus, as would be expected from tklle form of the process, in equilibrium
Kn is aistributed as the sum of Et and an independent random variable
with the distribution (1).

To conclude this Chapter we will show how the joir;t density of
contiguous intervals may be determined in terms of Q and its deri-

vatives. We restrict attention to the den.sity f (x, v)-of two contiguous -

XY
intervals, though similar methods apply to higher order joint densities.
We have .
0 .
kN = > S ap VBV Eexp - (V +Ux-(V 4RI -
i=0 j=0
The term V + Blcancels with the denominator of pij and each term of

the resulting series is a quadratic polynomial in i and j. After some

manipulation we find that

T -Bxty)
£ by) e V(xty) [ﬁze-Zﬁx-ﬁY o' e 15

rup § Pap_ (TP PTG {7PEHYY
+ {VZPD"(e-ﬁV) + ﬁe-ﬁYPD.(e-ﬁV)§ Q ie'ﬁ(“y)}l
In the geometric case we find from (1) and (3) that

' &

o ) Vel . |
£, y)dy = 0" VOB cTprve ,_vA& %
» Viay &8 -B(x+y) 3+g_ge-[3(x+y) ﬁ*@-@e'ﬁy

; |

2+ §- 0e
Numerical results for the simpler properties of the two parti-
cular Neyman-Scott processes considered here are given in the Appendix
and corﬁpared with the corresponding results for processes discussed

in Chapters 7 and 8 below.

L}
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CHAPTER 7

THE SELF-EXCITING PROCESS

7.1. MOTIVATION AND INTRODUCTION

Hawkes (1971a) has introduced a new class of point process
which he calls self-exciting processes. These are formally defined
by the requirement that the complete intensity function should be a

linear function of the history of the process, so that

t
x(t,j%t) =Y/ +j( g(t-u) dN(u) . (1)

- 00

Here ¥ >0, g(u)>0foru >0, and g is integrable with

co

0<mm = [ glu)du<l1. (2)

0
More recently, Jowett and Vere-Jones (1972) have pointed out that
equations like (1) arise naturally in the theory of linear prediction.

The_counting spectra of self-exciting processes and of related

multivariate processes have been derived by Hawkes (1971a, 1971b,
1972 ) assuming stationarity. However, it is not absolutely clear from
(1) that stationary self-exciting processes exist. In Section 7.2, we prove
that they do exist, and show that the class of stationary self-exciting
processes with finite rate is equivalent to a certain subclass of the
class of generalised Poisson cluster processes. The existence part
of this result has now been proved, independently of this work, by Hawkes

(private communication). He also points out thaconnection with the
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generalised birth and death processes considered by Kendall (1949)
and gives an equation for the generating functional.

Some consequences of the representation as a cluster process

. . . -Bx -

are considered in Section 7.3. When g(x}) = a e , there exists a
simple Markovian representation. This is developed in the remaining
sections of the chapter and is used to derive an expression for the
p. g.-f. of counts and to give a simple proof of the positivity of the inter-

val serial correlations. A few possibilities for further work are out-

lined.

7. 2. CHARACTERISATION OF THE STATIONARY SELF-EXCITING

PROCESS

Lemma 1. If* ¥V >0and 0 < m < 1, there exists a stationary, o;'derly
point process with rate p = ‘?/]/(l-m) which has a complete intensity
function of the form (7. 1.1).

Proof. We can define inducti.vely stationary, orderly point processes
Pi i=0,1,...) with respéctive counting measures RI i=0,1,...)

1

as follows. We take/P _ to be a Poisson process with rate W a.nd.*-’P1

0

to be a cluster process which hasP_ as the process of main events.

0
A main event occurring at tj generates a cluster of subsidiary events
in a non-stationary Poisson process of rate g(t-tj) int > tj. Then (cf.
Chapter 6)-{P1 is a Neyman-Scott cluster process. The distribution
of the number of subsidiary events in a cluster is Poisson with mean
m, and the independent displacements of each subsidiary event from

the main event have density g(x)/m. We do not exclude the possibility

of empty clusters and the even‘csbf«PO are not counted as events of P .
1

L



- 96 -
Fori>2, /Pi is the subsidiary i)roces‘s vvith".l?i ] 28 the process of

main events and the same cluster structure as that described above.
It is clear that Pi is a well-defined stationary point process with rate

P, = ym' for all i and that the superposition P1 U oeee UP.I is both

stationary and orderly. Now consider the superposition

¥

S

m .
S = »- | i (1)
i=0 '

The convergence of Z p; ensures that 3\;3 is a well-defined ﬁdint

process. Moreove)Q A is stationary and orderly, and has rate

00 )
p= ) = V/@-m). | 2)

j=

(=)

We show that the complete intensity function satisfies (7.1.1).

-y i-1
For eachi >1, let JU; tl and define

denote the history of Pi

1
"'1 1 r s Lo 1 :)
AL (t, B ! )= lim %, Prob® N, it,t+46)>1: & i-1 T
i o 6>0+8‘ S =z t 3
(3)
Then, by the construction of Pi )
. ,—t
i-1 o .
G T g dN, (W) @21). (4)
J-co
But
le's)
2 -~ . e .-].
e, SF) = Vot \ (TN (5)
t . 1 t
i=1
Equations (4) and (5) give
ot
M, Sr )= Vb | glt-u) dNG) .

< -00
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The process k‘% will be called the stationary iterated cluster
process. J.emma ]l demonstrates the existence of stationary self-
exciting processes. We now show that all such processes are iterated
cluster processes. We note first that a transient iterated cluster pro-
cess which still satisfies (7.1.1) in t > 0 may be constructed as before

by taking P as a Poisson process in t > 0 only.

0
Lemma 2. The only transient self-exciting process corresponding to
a given V and g(.)is the appropriate transient iterated cluster pro-

cess.

Proof. This is immediate, since a transient point process is charac-

terised by its complete intensity function. X
Lemma 3. Let Al’ e ey Ak be bounded Borel subsets of EO, o). Then
the joint distribution of %ﬁ(Al +T ). ,i\I(Ak +7 )i: in a transient

iterated cluster process tends as T —> oo to the joint distributions

of %ﬁ'(Al), “ee ,ﬁ(Ak)} for the stationary iterated cluster process.

¢+ . . '
Proof. Let .J be a transient iterated cluster process. Let )(g

§t

be the iterated cluster process, independent of <) , obtained by taking

dPO as a Poisson process in t < 0, and let N (.) denote its counting

3 + ; -
measure. Then the superposition »\S v X2 is a stationary iterated

cluster process. The complete intensity function of J " satisfies

ot
NN D EIRAE f g(t-u) dN (u) (t <0),
J-m !
rF -
NinR )= glt-u)dN @) t>0),
Js_m

Ay [

where t is the history function for .! . Thus



Fw= B 6 5,0

satisfies f (t)=pint<Oandint >0
00 t

f(t)=p J g (u) du + i{g(t-u)f—(u)du. ‘ (7)

+

t . 0

It is easily proved from this equation that f (t) —> 0 as t —> c0. Since
N ()isa non-negative integer valued random variable, and putting

B=A

19 UAk +97 we obtain
- 3 -
E%N (B)3 = Jf(u)du——>0 (T —> o0)
B
it follows that Probs N (B) >0 ; —>0as 7 —> oo. P

Lemma 4. If m <1, the only stationary process with finite rate and
complete intensity function given by (7.1.1) is the stationary iterated

cluster process defined in Lemma 1.

g

9
Proof. Let & be sucha process. We construct a new process »J '

Dy . ;- e +
as the superposition of two independent processes A and ¢ as

J4
follows. We take .0 * to be a transient iterated cluster process and

X

A~ to be the unique process which has the same finite dimensional

AT

n

distributions as \; int >0, and whose complete intensity function in
t >0 is given by

g(t-u) dN-(u) .

Then, as in the proof of Lemma 3, it follows that the limiting distri-

{1

butions of j

as 7 -—>o00 are the same as the limiting distributions

v

¢+

A o
A

of as [ —>o00, which, by Lemma 3, are just the distributions of

the statignary iterated cluster process. But the complete intensity
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function of .}'is the same as that of j int > 0 and the two processes

have the same distributions in t < 0. Thus the two processes have

identical distributions int > 0 also, and the result follows from the

stationarity of 8 . B
The preceding lemmas give immediately

Proposition 7. 1. If ¥ > 0 and the non-negative integrable function

co
g(u) has m = ( g(u) du < 1, then there exists precisely one stationary

0
point process of finite rate whose complete intensity function satisfies

(7.1.1). This process is an iterated cluster process and has rate
V/(l-m). The limiting distributions of the corresponding transient
self-exciting process as t —> oo exist and are the same as the distribu-

tions of the stationary process.

7.3, THE ITERATED CLUSTER PROCESS AS A GENERALISED

POISSON CLUSTER PROCESS

The events of'P0 will be called immigrants. An event Ek of

~Pk is said to be a descendant of an event Ej of“Pj (j < k) if there exist

of*Pk_l, such that, for j<i< k-1,

events E, of'Pj+1, c e, Ek-l

j+l
Ei+1 is a member of the first generation (Neyman-Scott) cluster with
main event Ei. It is clear that the Fotal number S of descendants of
a given event is distributed as the total number of offspring in a simple
Galton-Watson branching process whose offspring distribution is' Poisson

with mean m < 1. Thus we have (Harris, 1963, Chapter 1) that S is

finite with probability one, and

8

E(S) = <, (1)
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var(S) = ____r_n__g <o0. . (2)
(1-m)

By grouping all the descendants of each immigrant, we obtain a repre-
sentation of the iterated cluster process as a generalised Poisson cluster
process. It follows from known res'ults (Kerstan and Matthes, 1965;‘
Westcott, 1971) that the stationary self-exciting process with finite

rate is both infinitely divisible and mixing. The mixing property has
already been verified implicitly in the .proof of Proposition 7.1. The
infinite divisibility follows from the Poisson clustering representation.

It is worth noting that from the original definition (equation 7.1.1) it
follows that the superposition of two independent self-exciting processes
having the same g(. ) is another self-exciting process.

A quantity of some interest in clustering processes is the total
length L of a cluster. Here L is defined to be the distance between an
immigrant and its last descendant. It is easy to write down a functional
equatio;a satisfied by the distribution function of L, but difficult to derive
useful information from it. However, we do have the

Lemma. A necessary and sufficient condition for E(L) < oo is that
lo's)

Y = j& v g(v)dv<oo.

Proof. The necessity is obvious. To prove sufficiency, note that, by
conditioning on the configuration of the S descendants and using inequali-
> 0), we have

ties of the form max(Z ,Z,) < Z, + Z, (Z,,Z

1 1 2 71772
¥S,
E(LIS)< " /m. (3)

Hence



- 101 -

E(L)< Y/(1-m) . (4)

If E(L)< oo we can use a theorem of Lewis (1969) to prove the
asymptotic normality of the counting distribution. Following Lewis,
we define H(u) = E(Nu), where Nu is the number of descendants in
(0,u} of an immigrant at the origin. Then in our notation Lewis's
theorem 3. 3 becomes
Theorem (Lewis). If E(S2) < oo and if

%
1 7}
— {E(S) - H{@u) 7 du-—>0 (x —> 00),
Jx 3
0
then the number of events in a transient Poisson cluster process is
asymptotically normally distributed with mean V t[E(S+1l) and
variance vt E(S+1)2.

Here it is easily verified that

j{ SE@S) - Hw:du< E(LS).
)

for all x > 0, and this is finite by (2) and (3). Substitution from (1)
and (2) gives the asymptotic distribution of the transient self-exciting
process to be normal with mean ‘Jt/(l—m) and variance L)t/(l-rn)3,
provided y < oo. The stationary process has the same limiting dis-
tribution.

If y < 00, it is easy to verify that the asymptotic slope of the
log-survivor function is (- 2’) , for standard methods can be used to
show that the distribution of the number of operative clusters at an

arbitrary time is Poisson with mean WV E(L). Thus the posterior
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probability of there being any operative clusters at the start of an
interval {"tﬁ , vt+“z; ) tends to zero as T —~> o0.

Finally, we note that the extension of this theory to multivariate
self-exciting processes is straightforward. This provides an existence
and characterisation theorem similar to Proposition 7.1 for the 'mutu-

ally exciting' processes considered by Hawkes (1971a, 197i).

7.4. THE EXPONENTIAL SELF-EXCITING PROCESS
—-ﬁV

When'g v)=ae (@ < B), a Markovian representation for the

self-exciting process can be obtained in the same way as for the Ney-
man-Scott process discussed in Chapter 6. The only difference is that
for the self-exciting process all events give rise to descendants. Al-
though D will have a Poisson distribution with mean «/p, it is convenient
to consider the more general processes obtained when D has a general

distribution with p.g.f. P_(z) and mean E([D)<1. We let I&t denote

D

the total number of first generation descendants of events in (-, ti

-

that occur in (t, ), and let Kn = K Then, as for the Neyman-Scott

Tn'
and §Kn§ have the Markov property. The counter-

e

< -~
process, Kt

hY

‘

part of Proposition 6.1 is

Proposition 7. 2. The exponential iterated cluster process has a semi-

Markov representation with state space Z , transition probabilities

coG<i-),
piJ -5 B: Y
( vt dj-—1+1 viB L T-i G2 1‘—'1) ’ (1)

where clj = Prob(D = j) if j > 0 and _fﬁl;‘ = 0. The conditonal interval

distribution is
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Fixli,j)=1-exp § ~(V+pYx§ . (2)

The general remarks following Proposition 6.2 apply here also. More-

over, the stationary distribution can be derived in a similar way.

~y .
Proposition 7. 3. The stationary distribution % q.3 of the continuous

1

time process § f{tﬁ% has p.g.f. Q (z), where

1 -P_ (1-x)
J D dx 7 .. (3)
0

PD(l-x) + x-1

Proof. The equations for the equilibrium probabilities are

j j+l
UMD R AL DI Ly “
i=0 i=
Taking genellating functions gives
W)+ Pz (z) = VP () % (@) + BRI P (e)
which on integration gives (3). ’(

Note. This theorem is a special case of a result proved in Yang (1972).
Our interated cluster process is equivalent to a continuous time branch-
ing proces;s with immigration. The only slightly anomalous feature is
that each immigrant in our process splits immediately after entering
the system. However, this can easily be dealt with by considering
immigration with a random batch size, which is allowed in Yang's
formplation. These remarks apply also in Chapter 8.

For the self-exciting process, (3) becomes

i‘,l—z l—e_(a/p)x —)

e dx (' (5)
e\a/p‘k-i'x—l \S

D (z) = exp

(m/\/' ]
]
oI
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We have not been able to express this integral in terms of known func-
. ~
tions. However, it is easy to work out the moments of K. For example,

using L'Hospital's rule, we obtain

var®) = Ry - £RE 2 Groy =

The asynchronous survivor function is given in terms of {3 by
-t =X, =Pt
}(t) = e < (e P ),

from (6. 2. 3:3_

7.5. THE ASYNGHRONOUS COUNTING DISTRIBUTION

In this section we derive an expression for the p.g.f.

—~ N ’t\
Blz,t)= E Szt

of counts in an arbitrary interval (o, tt . As
will be seen, the result is not particularly tractable. We start by
considgring the generating function Pl(z, t) of the number N1 (0, t}

of events in (0,t' , due to an immigrant at 0 which is known to have
precisely one first generation descendant in (0, ®). We obtain a func-

tional equation for Pl(z, t) by conditioning on the time of the first event,

if any, in (0,t) . This gives

0 ,t
- oBt N | geBlt-x) 7 R
Pl(z,t) =e + z p di j fe iPl(z’X)S’ dx ,
i= 0
L e
t -
- - ¢ 3
P (z,t)=e ﬁt+z ¢ P X)P s Po(z,x): dx (1)
l . D [ 1 -
<0

This equation can be solved by differentiation with respect to

t. For the right hand side is clearly differentiable, and so
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Z‘Pl (Z, t)

Tt =pz P

b B @05 - BP (1) (2)

For each fixed z with 0 < z < 1, this is an ordinary differential equa-
tion in Pl. By considering the sign of the derivative, we can deduce
that Pl (z,t) decreases monotonically from its initial value

Pl(z, 0) = 1 to a limiting value which is the solution of the equation

P (2, ©)% . (3)

r./’g/}

Pl(z,oo) =z PD

Equation (3) is the functional equation satisfied by the total number of
descendants, including the initial individval, in a simple Galton-Watson

process. Thus the formal solution of (2), given by

1-P
1 du

ﬁt: - i . ZPD(I“'u) _ (1-—1.1) 3 (4)

does determine Pl(z,t) as a function of z and t.

.We now consider the contribution to ﬁ(O,t'f from immigrants
who enter the process in (0,t; and their descendants. The number I
of such immigrants has a Poisson distribution with mean ' t, and
conditionally on I they are independently and uniformly distributed over
(0,t} . Each immigrant gives rise independently to a total number NI
of events in (0,t) . We determine the p.g.f. PI(z,t) in terms of Pl.
The number of first generation descendants of an immigrant at
t-x(0 <x < t) has p.g. f. PD, and each gives rise independently to a

number of descendants in (t-x,t} distributed as Nl(O,x} . Since

x is uniformly distributed over (0,t} , PI(Z, t) is given by



0 i=0

The p.g.f. of the total innovatory component in (0, t) is

'

(9.0]
\ -yt i .
Pz, t)= e vit) 0§ L
L & XL

i=0
t
:expg-\,ﬁt-f-‘b;z g{ PDgpl(z,x)?j dxj;‘
"0
i” t ) v < v
:eXP-é - UJ % 1-P, (z,x)g dx -3 - Pl(z,t)fg ; .
| 0 - ' ) (5)

o

from (3).
Finally we note that the asynchronous count KI(O, t) is the sum

sy

of the innovatory component and K independent random variables each
with p.g.f. P1 (z,t), where K has the stationary distribution Hki .
/

Thus, we obtain
PP o), (6)

et

i;(z, t) = P(z,t)Q 3 i
fald

where P1 and P are given by (4) and (5) above, and 3 by (7.4. 3.

PROPERTIES OF THE INTERVAL SEQUENCE

7. 6.
The intensity p of the exponential self-exciting process may

be obtained from the formula p = SM (Vv + {3"“) q1 , or from the general

existence theorem. Thus
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VB 1)

p = B - a
The p.g.{. of the synchronous stationary distribution qu"_);‘ is given
by
p () VR(z2)+Pzl '(2). | (2)

It is worth making a few remarks concerning computation.
Although the results of Sections 7.4 and 7.5 do give explicit expressions
for the p.g.f., these are not particularly suited to numerical work.

However, the form of the equilibrium equations does permit a simple

. . . yses T
iterative solution. For the synchronous probabilities { a5 . we have

99 % Pgg Y T Py 4 ¢

9 = Pyy 99 TPy 9 TPy 9y s ctes

Thus the ratios qi/q (i=1,2,...) may be determined by simple back

0

substitution. The value of Eh may be obtained from Proposition 7. 3
) N
{substituting (z = 0) or it may be approximated by taking ~, q.~ 1

=0
for some large N. An important proviso is that the stationary distri-

bution should not be spread over too many states. These remarks apply
also to the Neyman-Scott processes discussed in Chapter 6.

We shall not attempt to derive analytic results for the joint
distributions of intervals. We shall merely point out that it is possible

to obtain expressions for the joint density f (x,y) of two contiguous

X, Y

synchronous intervals in terms of {2 and its derivatives (cf. Section
6.5).It does not seem possible to obtain simple results for the serial
correlations. However, we do have

Proposition 7.4. The serial correlations 7

\
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of the synchronous interval sequence decrease monotonically to zero
as m —> oo.
Proof. It is sufficient to show that the Markov chain apij’% is

stochastically monotone. We have immediately from Proposition 7. 2

that for any k and i > 1,

0
Prob(K, >k ! K =i)> ) d; > Prob (K

1

proving the result. -

7.7. CONCLUDING REMARKS

As has been seen, the interval properties of even the simplest
self-exciting process are not particularly tractable. It is not possible
to obtain explicit re sults- for a general function g(. ). However, the
method of stages can be used when g( ) has a special Erlangian form,
and a countable semi-Markov representation obtained. The simple
iterative method of Section 7. 6 is not available for numerical solution.
For a general function g(. ) it is possible to obtain an integral equation
for the p.g.{. {g(z, t) of ﬁ(O, t) which mi ght allow a numerical solution
(Hawkes, private communication).

In the exponential case the complete intensity function \{(t, 4 1:)
is itself a Markov process. For \ —'E«" decays exponentially and jumps
by @ whenever an event occurs. The stationary state equations for \
can be solved iteratively for Y <\ < V+toa, V o+ oa 5_ A< V4 2a,...,
but only by successive integrafion. The approach we have given seems

superior.
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CHAPTER 8

A RANDOM WALK POINT PROCESS

8.1. INTRODUCTION AND PRELIMINARIES

A random walk with positive steps generates a renewal process.
Daley (1970) has discussed the point proce_ss'generated by a random
walk with the two-sided step distribution with density

£ (x) = p f,(-x) I(-00, 0) + q £{x) 1(0, ) , (1)

2
where 0 <p=1-g<1, fl and fz are probability densities on 1ZR+ and
I(A) denotes the indicator function of the set A. It is assumed that f1
and fz have finite means 1/p and 1/« respectively, and that the walk

has positive drift, so that

p:%-§>0. ()

Daley derived an integral equation satisfied by the p.g.f. of counts
in a Borel set A and gave an explicit solution when A is an interval
and the step distribution has two exponential tails, i.e.

£6x) = P e P, (3)

f )=ae . (4)
2 .
'He obtained the marginal distribution of intervals in the stationary
point process and the joint distribution of two contiguous intervals.

A different approach based on the technique of ladder variables
used by Feller (1966, Chapter XII) is adopted here. We show that when
(3) holds there is a representation of the walk as a Poisson cluster

process. Moreover, there are simple formulae for the interval dis-

tribution and counting spectrum of this process. It is shown that when
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both (3) and (4) hold the cluster structure is that of a linear birth and
death process. There is then a simple Markovian representation which
gives an easy proof of the positivity of the interval correlations and
algorithms for their calculation.

We imagine the random walk to be performed by a particle which

jumps from a point Ym t o another point Y at the (m+1)th epoch.

m+1

Words such as 'between', 'before' and 'after' refer to the ordering of

the E#Ym—lé induced by the random walk, not to the usual ordering of

P

. 2 .
[R. The Bath is the sequence % e Y-l’ YO’ Yl’ - 3 . The point
_ % = . ]
process ‘P = 3...T_1,T0,Tl,...; consmts_of the %Ymg reordered
... < < <.... Us = = 0.
so that < T_1 T0 T1 Usually we take T0 Y0 0. In

general it is not possible to reconstruct the path from the sequence

H

p.%
i

, where as usual

3
N

ELTn—{S , or from the interval sequence

L

X, =T, -7, ..
i i i-1
It follows from (2) that the ascending ladder points (successive
maxima) of the walk form a non-terminating renewal process. The
renewal measure of the ladder process is denoted by '11'-* . Fora
random walk which starts at the origin, Feller (1966, Chapter XII,

p- 311) gives the

Duality lemma. The measure ¥ admits of two interpretations. For

+
I ¢ R,
(@) (I) is the expected number of ladder points in I;
(b) f (I) is the expected number of visits to I prior to the first entry

into R .

If the first step is known to be positive then the expected number
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of visits to I prior to the first entry into R is given by

v.M= ym/q. (5)

8.2. STEP DISTRIBUTIONS WITH POSITIVE EXPONENTIAL TAIL

Proposition 8. 1. If (8.1.2) and (8.1.3) hold, then-P is a Poisson

cluster process. The ladder points are the main events and the cluster
corresponding to the ith ladder point is thé set of points visited between
the ith and (i+1)th ladder epochs.

Proof. Note that the subsidiary events of a cluster lie to the left of
the main event. From the lack of memory of the exponential distribu-
tion, it follows immediately that the ladder points form a Poisson
process and that sections of the path between successive ladder epochs
are mutually independent.

Corollary. If Y0 = 0, then that part of the future path §~Yi ti> 0}

which lies int > 0 generates a stationary point process in R .

Ift € Randi ¢ Z, theniis said to be a positive or negative

crossing ei t if Yi <t<Y Y <t< Yi’ respectively. The multi-

or
i+l i+l —
"l
licity M, at time t is the number of negative crossings of t. Then the
piicity t g g
positive drift ensures that 1\7[t is finite and that the number of positive

™~
crossings of t is Mt +1.

Proposition 8. 2. If (8.1.2) and (8. 1. 3) hold, then

~ :

(i) conditionally on Mt = m, the m+l sections into which the
path is divided by successive positive crossings of t are mutually
independent,

sk .
(ii) the distribution of Mt is geometric, with Prob(Mt =mj}=r1r {(l-r)
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.(rn =0,1,...), wherer = pB/(qoz).
Proof. Part (i) is immediate from the lack of memory of the exponen-
tial distribution. Hence, to prove (ii))it is sufficient to show that the
probability of at least one negative crossing of tis r. Equivalently,
we show that |

P;ob(f~;1>o:Yi<o Y =0 Y >0 =1

For u >0, let

L(u) = Prob(2i>0:Y Y. . >0, Yi<-u{Y = 0, Yl>0).

ERRRER ] 0

Then (cf. Feller op.cit. p.387) we have

(0. 0]
Liu) = [ Y, (dx) p X (utx)

x=0
where 32 is the survivor function of fz. Since the ladder poi;lts
form a Poisson process, the duality lemma gives VNI = ;3%15 and

y'r’+(I) = B|1]/q. Hence

Lo)=28 _ ..
qa

00
Corollary. L(u)/L(O) = o [ 3’2(u+x)dx.
: x=0

Thus, conditionally on i being a negative crossing of t, the

distribution of t - Y,+1 is the same as the recurrence time distribution
1
in a stationary renewal process with interval density fZ. We denote
Y
the survivor function of this recurrence time by :}’2.

Proposition 8.2 and its corollary permit a simple derivation
of the interval distribution of the point process. We first determine

the survivor function
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o~

A - -
e (x) = Proby N(t-x,t; =0¢,
. . - ‘ \ - 13 I3 (\J( "\j
by conditioning on the multiplicity Mt' Suppose that Mt = m and that
the (m+1) positive crossings of t and the m negative crossings are

o~
respectively. Then N(t-x,t}] = 0if and

vl

- djenns]
' m+l 20¢ /

1’ md

only if

t-Y, >x k=1,...,m+l),
t-Y, >x (k=1,...,m).

These random variables are mutually independent, with survivor func-

_ﬁx

o
I

tions e and X 2(x), respectively. Thus

¢ ~ - 1 % ,
Prob{ Nit-x,t1 = 0|M, =m§ = Prymtl & F 68

Using Proposition 8.2(ii) to remove the conditiéning on m, we obtain

Proposition 8.3. If (8.1.2) and (8. 1. 3) hold then the survivor function

of the forward recurrence time is given by

v -Bx
3’,, (x) = (1-r) e

~

-Bx
l-r e P :;'Z(x)
Since the rate of the process is p = 1/p, the usual recurrence
time formula for stationary point processes gives the

Corollary. The marginal interval distribution has survivor function

q(l-r)? e-ﬁx 'Eﬁ-i—rcxe_ﬁx s (x).%

¥ = e
B \?,,’l-r e-ﬁx }Z(X)%z

8.3. DOUBLE EXPONENTIAL STEP DISTRIBUTION

If both (8.1.3) and (8. 1. 4) hold, there is a strengthening of

Proposition 8. 2, viz
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Proposition 8.4. If £ (x) = B e P £,(x) = a e” ™, then
‘ Lavs
(i) conditionally on Mt = m, the 2m+2 sections into which the
path is divided by successive crossings of t are mutually independent;
N 3
(ii) Mt is a Markov process.
Proof. Part (i) is again immediate from the lack of memory of the
exponenti’al distribution. Thus, conditionally on I\/it = m, that part of
the path which lies in 7Y <t is independent of that part in T >t. It
o~
follows that the values of M, in Y <t are conditionally independent
o "
of those in T >t, given M. This proves Part (ii).
To conform with our general notation for imbedded Markov
processes, we now let ?{t = I\‘\/‘It. We also define the process %Kn?g

by the usual relation

~
Kn - KT :
n

Then Kn is the multiplicity just after the nth event. Also, “K v is
a Markov chain, and, for each n, the joint distributions of * K_, X, -
ini >n depend on their joint distributions in i < n only through K .

- n

Thus 7 K., X.
i1

Crnd

is a semi-Markov representation of the point process.

We now consider the transition probabilities of EK,XE .
1

1

Letting vy = B/ (4B), we have

Proposition 8. 5. The transition probabilities of i an are given

by

4]
Py =0 ( {#k-1, k, kt1),

__@2q k o _Bp (1)
Pr,k-1 " (a4B)(kty) * Tk ktl  (atB)(kty) ’

_ {optBg) k + Bq
P,k T Terp)REy) (1)
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The conditional interval density is

£6e, | oo kp) = (@4 B)(ie +y) exp sz-(a+p)(k0+y)xl§ .

Proof. Consider a typical section of the path from a positive to the
next negative crossing of Tn. There are 4 ways in which this section
may include an event at Tn+x but no event in (Tn’ Tn+x), see Figure 2.

Note that it is irrelevant whether the event at Tn is on the upper or

lower part of the section. In (a) and (c), Tn+x is the first point in the

() (b) ©) D
G e —
| .
(s
X e Koo Mo
T Tot%  Ta TtX  Tw Tn Ta*rX

Figure 2. The transitions of ;K L
n-

section visited by the particle. In (b) and (c) it is the last but in (d)
it is neither the first nor the last.

In (a) we require the improper density that the particle visits
Tn + x on its first step, then takes a positive step and ultimately returns
past Tn, visiting no point in (f”n, Tn+x). This density is to be condi-
tional on the first step being positive and on ultimate return tot. This
gives a term

gpe P¥ qre™/(qr) = qpe”(*TPX

- (etP)x -(atB)x

Similarly for (b) and (c) we obtain terms pa e \

and qae
respectively. In (d) the appropriate o-event is that the particle over-

shoots Tn+x on its first step, ultimately returns to T +x, then takes
n
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a positive step and finally returns to t, visiting no point in (t, t+x).

This gives a term

q e—ﬁx o (a+B)x

raqre  frg=pp

For the final section of the path, which does not return to Tn’ only

(a) and (d) are possible and the appropriate conditional densities are

- Bx px

Bq e and Bp e ', respectively.

If the (nt+l)th event of the point process occurs at Tn+x, there
must be precisely one section of the path for which one of (a), (b), (c)
or (d) holds, and the remaining sections must contain no évent in

(T , T +x). Moreover, if K =k, then K =k, k, k-1 and k+1 in (a},
n n n n+ .

1
(b), (c) and (d), respectively. The proof is completed by appealing to
Proposition 8. 4(i) and noting that the probability of a section containing
no event in (t, t+x’ is exp S-(oz-t-ﬁ)xz‘ . X

&

Proposition 8. 6. The synchronous stationary distribution is given by

G = § (1-0)? (etp) (kiy)e” @)
with p.g.f.
_9q > (Btarz)
Q(z) = p(l-r)P To2a)? " (3)

Proof. It is easy to verify that the distribution (2) is invariant under
the transition probabilities (1). Alternatively, (3) may be deduced from
Proposition 8.2 and the relation (6. 2.4) between the synchronous and

asynchronous stationary distributions. ¥
i

8.4. SOME PRCPERTIES OF THE INTERVAL SEQUENCE

The survivor function for a synchronous interval is

p g, ©Xp 'é -(a+[3)(k+y)x‘f{) .
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We find that this agrees with Daley's (1970) result

(qa-pp)? (q=P* + po” ™)

x) = - mp~
Qe -pBe )?

’ W

which is a special case of the corollary to Proposition 8. 3 above. The

moments of the interval distribution may be found from (1), or by using
(o's)

ExX™) - E § BXTIK)} = ;f e
latp)ey) 5

m!

k=0

After substituting for 9 and simplifying, we obtain for the first two

moments

E(X)=4q/B - p/a,

as it must, and

2 _ 2
ex®) - 2o Ty,

where, following Daley again, § is defined in Erdelyi, Magnus,

Oberhettinger and Tricomi (1953, p.27) as

ad k
® (r,m,y) = p ——— . (2)
’ — (kﬂ/)m

k=0
K
In general £ does not appear to have been tabulated, though, as

Dale oints out, it is a special case of Gauss's hypergeometric function.
yp P yperg

A simple expression is available in one case however, for

® (r,1,7/2) =1 %log © -
. 1 1723

The results of Section 6. 2 ensure that the marginal interval distribution

has a hazard function which decreases to B as x —> 0, and a coefficient

A
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of variation greater than one. The serial correlations of the interval

sequence may be obtained using similar methods. For, if {p, '(m)%

i)
(m) .
s Pij = 0if

are the m-step transition probabilities of gpij?f\,

lj-il >m and hence ,

® X q, p, ™
.S e
fE(X1Xm+1) pa Z (@t+B) 2 (i+y) (+Y) )
i=0 J=O

. e : . (m) .
may be expressed as a single infinite series. Since p.j is a
i

rational function of i if j-i is fixed it is possible tc; express the serial
correlation an of lag m in terms of § (r,s,y)(s=1,...,m+l). The
algebra becomes tedious even for small m however, and numerical
results can be obtained quite easily from (3). Explicitly for m=1 we

have

2 . <2 o

?
= ) 2
2 6(&'{‘5}2 (), a'{'ﬁ - Q-l-ﬁ (I’, 1’ Y) zqab »

which agrees with a result of Daley (1970), and for m = 2 ,

(¢ o]
_q(l-1)? >‘ k | 2B%p2(ktl)(k+2)
EX, X3)= 3 /L7 Do(kty) (kv L) (k44 2)

Bletp)” T,

{ct1)Batkop ® | Bp(Bp+2ep)t1)*+26%pqlict1) (+2)

+
3 k k 2
(k+y) (k+y)(k+y+1)

Bp(2Pgtag }(k+1)% + 2aPp2k(k+l) I
(kty)® (k+y+1) |

+

~

After reduction by partial fractions this yields

2 . .
x,)=—=rke b,y (r,3,y)+ B 2(r,2,y)+C B (r,1,y)+ D

5 ;
L3 papy

o

EX s

g

Com

where
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A =a®p?(p-q)?,

B = af 1B2(-3pqt2q?) + aP(-4p3+4q?) + a?(-2p+3pq) § ,
3

C = ﬁ4qz+aff3 (-pz+9pq+6qz) + a2ﬁ2(6p2+22pq+6q2)

3 4
+ o B(6p?+9pgq-q®) + a p?,

. 3
-D = (@+p) Lap *(pat4q®) + a®B(5q*+11pg) + @ (6pg-q?) §.
There is the usual qualitative result for the behaviour of the

serial correlations.

. b
Proposition 8. 7. The serial correlations %Ym :m=1,2,...% of the

~

interval sequence of the double exponential random walk point process

are positive for all m and decrease monotonically to zero as m —> co.

Proof. We have E(X |K_,K )=f(K ), where f(x)= $ (@tp)xtB. "
— nt' n-1""n n -

-1

is a monotone function of x. Thus, by the theorem of Daley quoted in
Section 6. 3 above, it is sufficient to show that the Markov chai_n %Kn-)g

.is stochastically monotone, i.e. that

< ! = < i = -
Prob(K, <k {KO ko)f_Prob(K1 —-kl‘KO ko 1) (4)

1 1

for all ko and kl. If ko < k., the right hand side of (4) is unity, whereas

1’
if ko >kl+1, the left hand side is zero. If ko = k1+1, then (4) is

a/(k1+1)q akl+ﬁ(k1+1)q
@It +vr1) = rpik +y)

which always holds for kl >1. . ¥

8.5. THE CLUSTER STRUCTURE OF THE DOUBLE EXFONENTIAL

PROCESS

For the double exponential random walk there is a pleasing
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representation of the within cluster structure.

Proposition 8.8. If (8.1.2), (8.1.3)and (8.1.4) hold, then the structure

of the clusters defined in Proposition 8.1 is that of a linear birth and
death process, reversed in time, in which a single individual dies in

a small interval 8t and simultaneously reproduces to form 0,1 or 2
similar individuals with respective probab‘ilities aqbt, (ap+Pq)dt, Ppdt.
Proof. This is essentially the same asl Proposition 8. 2, except that

here we are concerned with sections of the path between negative and
positive crossings. There are four possible configurations corresponding

to the occurrence of an event, see Figure 3. The approriate probabilities

s ' I
e Ky R

i 7 i
’ { | 2
| . X - X :
Ynyg — ] P
' 1
1 birth 1 birth no births 2 births

Figure 3. The cluster structure.

can be written down as before. For example in the first case we obtain
(—‘:-Q/X p.l.e-ﬁx. ' G
Proposition 8. 8 permits a treatment of the asynchronous counting
distribution based on the corresponding results of Chapter 7. We have
shown that the two-sided random walk may be represented as a reversed
time iterated cluster process, in which the process of centres haé rate

B, the parameter of the lifetime distribution (corresponding to the 'f'

of Chapter 7) is o+, and the offspring distribution has p. g. {.

P_(2) = (e+p) '$ aq + (eptpa)z + Bpz?§ . (1)
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Here we can evaluate explicitly the p.g.f. Pl(z,t) of N [ -t,0) given

by (7.5.4), which becomes

1
B du
(a+B)t = - ZP (u)-u (2)
D
Py

From the general remarks following (7.5.4) we see that the denominator
of (2) is always negative in the region of interest. There must therefore
be a factorisation

z PD(u) -u=cfu- gfl)(yfz - u), (3)

where ;52 >1, ;51 <1 and c >0 are independent of u. In fact ;51 and
are the roots of
2
Bpzu? + %(ap-f—ﬁq)z-a— ﬁ}u-!-o:qz:O. (4)

After expansion by partial fractions and integration, we obtain

g (5, -1) exp S (-4 Bpzt: + 4 (1-4)
B (z,t) = 172 2 "1 2 1

187 g Thexp 16,8 bt 5 * 18, ©)

To calculate the total p. g.f. f’(z, i:), we can proceed as in Chapter
7, but there is one important difference. Here the immigrants do not
split immediately on entry. However an immigrant (main event) at
(-t + x) generates no subsidiary events with probability q, and Nl(O,x)
subsidiary events with probability p. Thus the total innovat;bry'com—

ponent is

® t
Pz,t)= » e P [ s ! | i
& £ - %zéq-&% ) Pl(z,x)dx?gj . (6)
i=0 .1. L 0

After performing the integration in (6), simplifying and substituting
(5) and (6) into (7.5.5), noting that here 2 (z) = (1-r)/(l-rz), we

find that
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(Q‘Q“ﬁp)(féz-ﬁfl) exp% -Bt(l-qz) + ﬁngﬁzt »’
(8,-1)(@q-Ppg, ) exp § Ppz(F,-4, )t} +(1- )(@a-Ppg,;

P(z,t) = (7)

This agrees with Daley's result. It must be remembered that in this
expression 951 and ;52 are functions of z, so that expansion of (7) as a

power series in z is not easy.

8. 6. THE CROSS-INTENSITY FUNCTION AND MOCMENT MEASURES

Finally we consider the moment measures of the process. The
second order intensity function is of course closely related to the 'renewal
function' for the random walk. This has been studied, for example by
Feller (1966, Chapter 1ll). However, in random walk contexts, interest
usually centres on the distributions and epochs of the ascending and
descending ladder variables. Here we shall be concerned with the full
process and it will be seen that the representation as a cluster process
does simplify the arguments. At first however we consider a step

and f_, and use methods based

distribution with general densities fl 5

on the regenerative character of the random walk.

Define intensity functions ml(t) and m,, (t) {t > 0) as follows
t)dt = Prob § 3! ‘>0-Y ¢ (t, t+dt) | —015 1
ml() = Prob 7 3" : nk(, )gYO— , (1)
T . ?
m, (t)dt = Prob 3 §pn >0:Y_¢ (-t -trdt) | Y= 0S . )

The existence of my and m, will usually follow from the existence of
the renewal density for the ladder process. In the particular cases
we consider below the cluster process representation automatically

gives a proof.

Proposition 8. 9. The functions m, and m, satisfy the equations
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t o0
ml(t) = qfl(t) +q J( m, (u)f, (t-u)du + p j ml(u)fz(u-t)du +
0 uet
o0
+q J mz(u)fl(t-l-u)du s (3)
u=0
t , 00

m, (t) = pf,(t) +p | m, ()i, (t-u)du + g j ‘m, () (a-t)du +
0 u=t

+p S m, (u)fz(t+u)du., 4)
=0

Proof. If t >0, then Yn =t if and only if (i) Yl: t" (i) 0 <Y p <t and

I1-

Y =t (iii) Y >tand ¥ =1t, or (iv) Y <0and Y =t. This
n n - 11 } n

-1 n-1

gives (3) and a similar decomposition gives (4). #
In general, there is no simple solution of these equations.
However, when the positive tail is exponential, we have

“P% ,nd that the walk has

Proposition 8.10. Suppose that fl (x) = pe

positive drift 1/p. Then ml(t) = p and the Laplace transform mg(s)

of mZ(t) is given by

' . - ¢ £ "
m (3) ~<.,1-pf";(s) - 5—%—% =pf;‘(s)+‘1—‘§_—gﬂ +B2 1 £Xe) ) (5)

~

Proof. That ml(t) = p follows immediately from the corollary to

Proposition 8.1, Substitution into (3), without taking transforms, gives

‘m;‘;(ﬁ) = (p-—[3)/[3. Taking transforms in (4) and substituting for m;’(ﬁ),

we obtain (5).

Corollary. For the two-sided exponential walk,
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7

, :
m_(u) = B m_ (u) = palatP) exp % - (qa-pBlu 3 (6)

1 qa-pp ' 2 qe - pf

It is worth noting that the existence of m. and m, for the random

1

walk point process ensures the existence of finite, absolutely continuous

moment measures of all orders. For we let a’k be the set of all per-

mutations & = (al, e ak) of (1,...,k) and define m(t) = ml(t) t > 0)
and m(t) = m,(-t) (t < 0). Then, if t; <. L. < t s the particle may visit
the points t t in any order. Thus we have, for the kth moment

A k

measure,

M(k)(dtl x...oxdty)=p )dt ... dt;

2
1

S k_
, T; t

b @, «
@ €0y J=2 )
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APPENDIX

SOME NUMERICAL VALUES

Some numerical results are given for the simpler processes
discussed in Chapter 6 to 9. The four processes considered are the
two Neyman-Scott cluster processes with .exi)onential displacements
when the cluster size has Poisson and geometric distributions, re-
spectively the exponential self-exciting process and the random walk
point process with double exponential step distribution. The rate of
each process is set to unity, leaving two parameters which can be
varied separately in each case. Tables 1.1, 2.1, 3.1 and 4.1 give
the values of the third parameter for specified values of two given para-
meters for each process.

The interval properties were calculated from ’the synchronous
and asynchronous stationary distributions of the imbedded Markov
process. For all except the random walk process, for which a simple
explicit solution is known, the synchronous stationary distribution was
calculated by the iterative procedure discussed in Section 7.3 Some of
the values obtained for the geometric shot-noise process were checked
with the terms in the negative binomial distribution (6.5.3). The serial
correlations of the interval sequence were found by iterating the trans-
ition matrix of the imbedded Markov chain. The transition matrix and
the stationary distribution were truncated after 40 states. This placed
some restriction on the values of the parameters for which results_

could be obtained. However, the method used to calculate the stationary
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distribution ensured tlat this was not sensitive to the pﬁint at which
the transition matrix was truncated.

The coefficients of variation of intervals and the asymptotic
slopes of the variance-t_ime curves are exhibited in Tables 1.2, 2, 2,
3.2 and 4. 2. The ratio of these two quantities, which is known to equal

1+ 2 /T.—Yk,.

LA —

1Y
’ F4

o k% are the serial correlations of intervals (Cox, 1962,

where
p. 134) is also given. This ratio gives a useful measure of the depar-
ture from a renewal process, particularly when the (‘ :)/12 are all
positive, Tables 1.3, 2.3, 3.3 and 4. 3 give values of \(1, \Q/Z and
\KIO' The mean and variance of the forward recurrence time are dis-
played in Tables 1.4, 2.4, 3.4 and 4. 4.

For all four processes the coefficient of variation of intervals
and the asymptotic dispersion of counts are known to be greater than
one. Moreover, the mean forward recurrence time is also greater
than unity. “ The serial correlations %—d i’{g of the random walk process
and the self-exciting process decrease monotonically to zero. It is
interesting to see from the numerical values given that the serial
correlations decrease quite slowly, i.e. that

N\

01

> ¥k

is usually quite small. The greatest dispersion of counts for moderate

values of the parameters seems to be exhibited by the random walk

point process, followed by the self-exciting process. A direct
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comparison of the results for the two Neyman-Scott processes is

~
illuminating. A Poisson cluster size distribution gives smaller dis-
persion and lower serial correlations than a geometric cluster size
distribution when the parameters of the process are the same. This
would be expected from the shot-noise interpretations of the two pro-

cesses, since there is an extra source of rardom variation in the latter

process due to the randomness of the shot height.
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1. NEYMAN-SCOTT PROCESS WITH POISSON CLUSTER SIZES
Here the Risson process of main events has rate ' , the

distribution of the cluster size is Poisson with mean /B and the

displacement of the subsidiary events has density e-ﬁX .
Cy i
Wetakep:1+a/‘3—l.
TABLE 1.1. Values of V _ for specified @ and §
o
B 5.0 2.0 1.0 0.5 0.2 0.1
5.0 . 500 . 714 . 833 . 909 . 962 . 980
2.0 - . 286 . 500 . 667 . 800 . 909 . 952
1.0 L 167 . 333 . 500 . 667 . 833 . 909
0.5 . 333 . 500 . 714 . 833

0.2 . 167 .286 . 500 . 667
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TABLE 1.2. Dispersion of Counts and of Intervals

The first entry in each cell is the asymptotic slope,

-1 -~ b)
1im jrt var % N(O, t)'} } , of the variance time curve, the second

t—>00 ~

entry is var(X), the variance of a synchronous interval, and the third

entry is the ratio of these quantities,

o 5.0 2.0 1.0 0.5 -~ 0.2 0.1

p
5.0 2.500 1.686 1.367 1.191 1.078 1.040
2,718 1.675 1.335 1.167 1. 067 1. 033
. 920 1. 007 1. 024 1.021 1.010 1. 007
2.0 4.214 2.500 1.833 1.450 1.191 1. 098
4. 761 2.402 1.682 1.337 1.134 1. 067
. 885 1.041 1.090 1. 085 1.050 1.029
1.0 6.833 3. 667 2.500 1.833 1.367 1. 191
7. 649 3.262 2.051 1.508 1.201 1.100
. 893 1.124 1.219 1.216 1.138 1. 083
0.5 3. 667 2.500 1. 686 1. 367
2. 466 1. 675 1.263 1.132
1.487 1.493 1.335 1.208
0.2 6. 833 4.214 2.500 1.833

3.041 1. 816 1.304 1. 155
2,247 2.320 1.917 1.587
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TABLE 1.3, Serial Correlations of the Interval Sequence

The entries in each cell are the serial correlations \C‘;‘il,
}; 5 and };10 of lags 1, 2 and 10, respectively, for the synchronous

interval sequence.

6 © 5.0 2.0 1.0 0.5 0.2 0.1
5.0 -0.047 -0.001 . 009 .008  .005 . 002
. 004 . 004 . 002 .002  .001 . 000
. 000 .000  .000 .000  .000  .000
2.0 _0.052 -0.001 . 025 . 027 . 017 . 010
-0. 022 . 011 . 012 . 009 . 015 . 003
.000  .000  .000  .000 . 000 . 000
1.0 -0.016 . 014 . 048 . 053 . 035 . 021
-0.036  .012 . 027 .026 . 017 .010
-0.002  .000  .000  .000  .000 . 000
0.5 . 083 . 088 . 059 . 036
. 048 , 052 . 036 . 023
. 003 . 003 . 002 . 001
0.2 . . 146 .137 . 087 . 053
. 087 .098 . 067 . 042

. 017 . 019 .014 . 001
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TABLE 1.4. Mean and Variance of the Recurrence Time

The first entry in each cell is the mean, E(Sél)’ and the

o
second entry is the variance, var(Xl), of the forward recurrence

time.
o 5.0 2.0 1.0 0.5 0.2 0.1
p

5.0 1.859 1,337 1.168 1.084 1.033 1.017
3.935 1.935 1.428 1.204 1.079 1. 039
2.0 2. 881 1. 701 1.341 1,168 1. 067 1.033
11.472 3.708 2.116 1.500 1.187 1. 091
1.0 4, 324 2.131 1.526 1.254 1.100 1. 050
31.511 7. 307 3.263 1.930 1.327 1.157
0.5 1.733 1.338 1.132 1. 066
5.408 2.568 1.507 1.237
0.2 2.021 1.408 1.152 1. 077

11.168 3.584 1.702 1.320
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2. THE NEYMAN-SCOTT PROCESS WITH GEOMETRIC CLUSTER

SIZES

Here the Poisson process of main events has rate )}/ , the

distribution of the cluster size is geometric with mean a/p and the

displacement of the subsidiary events has density B e-ﬁx.
We take p = %o = 1
etaep:_1+a/ﬁ— .

TABLE 2.1. Values of Y for specified o and

8 o 5.0 2.0 1.0 0.5 0.2 0.1
5.0 .500 714 . 833 .909 . 962 . 980
2.0 .500 . 667 . 800 . 909 . 952
1.0 .500 . 667 . 833 . 909

0.5 . 333 .500 . 714  .833

0.2 .500 . 667
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TABLE 2.2 Dispersion of Counts and of Intervals

The {first entry in each cell is the asymptotic slope,

~ -

-

lim 't = var N(0, t) 3 ;
t—>00 =
entry is var(X), the variance of a synchronous interval and the third

2

S

, of the variance time curve, the second

¢

entry is the ratio of these quantities.

13

8 o 5.0 2.0 1.0 0.5 0.2 0.1
5.0 3. 000 1. 800 1.400 1.200 1.080 1. 040
2. 752 1,684 1.338 1.168 1. 067 1. 033
1. 090 1. 069 1. 046 1. 027 1,012 1. 007
2.0 3.000 2.000 1.500 1.200 1.100
2.468 1.705 1,344 1.135 1. 067
1.216 1.173 1.116 1. 057 1. 031
1.0 3. 000 2. 000 1.400. 1.200
2.142 1.538 1.206 1.102
1.401 1.300 1.161 1. 089
0.5 5. 000 3.000 1. 800 1.400
2.729 1.773 1.284 1.138
1.832 1. 692 1.402 1.230
0.2 3.000 2. 000

1.375 1.177
2.182 1.699
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TABLE 2.3 Serial Correlations of Intervals

The entries in each cell are the serial correlations Xl’
XZ and KIO of lags 1, 2 and 10, respectively, for the synchronous

interval sequence,

5 © 5.0 2.0 1.0 0.5 0.2 0.1

5.0 . 029 . 026 . 018 . 011 . 005 . 003

. 009 . 006 . 004 . 002 . 001 . 000

.000  .000 . 000 . 000 . 000 . 000

2.0 . 062 . 053 . 037 . 019 . 010

. 024 . 019 .013 . 006 . 003

. 000 . 000 . 000 . 000 . 000

1.0 . 094 . 073 . 040 . 022
. 045 . 035 . 020 011

. 001 . 018 . 000 . 000

0.5 . 141 .118 . 068 . 039

. 082 . 072 . 043 . 025

. 006 . 004 . 002 . 017

0.2 ‘ . 106 . 060

. 084 . 049

. 018 . 040
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TABLE 2.4. Mean and Variance of the Recurrence Time

The first entry in each cell is the mean, E(X‘l), and the

-

~4
second entry is the variance, var(X1 ), of the forward recurrence

\

time.
6 a 5.0 2.0 1.0 0.5 0.2 0.1

5.0 1.876 1.342 1.169 1.084 1.033 1.017
3.948 1.938 1.429 1.204 1.079 1.039
2.0 1.734 1.352 1.172 1.068 1.034
3.758 2.132 1.505 1.187 1.091
1.0 1.571 1.269 1.103 1. 051
3. 374 1.961 1.332 1.158
0.5 1.864 1.386 1.142 1. 069
5.990 2,736 1.536 1.244
0.2 1.187 1. 089

1.854 1. 361
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3. THE EXPONENTIAL SELF-EXCITING PROCESS

Here the procevss has a complete intensity function of the form

A, )

t

and o < B.

We take p = 1——:—0"—/?3—

TABLE 3.1, Values of

st

i
J

-0

Vv

Y,

a e_ﬁ(t—u) dN(u) ,

for specified ¢ and 8

111

. 222

. 125

. 333

. 250

. 143

. 444

. 375

. 285

. 167

. 556

. 500

. 429

. 333

. 200

. 667
. 625
571
. 500
. 400

. 250

. 778

. 750

. 714

. 667

. 600

. 500

. 333
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TABLE 3.2. Dispersion of Counts and of Intervals

The first entry in each cell is the asymptotic slope,

1

r =1 o 3 ’
lim {t var %N(O,t); ; » of the variance time curve, the second
¥ :

t—>00 -
entry is var(X), the variance of a synchronous interval, and the third

entry is the ratio of these quantities.

11

.9 81.000 20.250 9. 000 5.063 3. 240 2. 250 1.653
11.635 5. 001 3.107 2. 255 1,780 1.480 1.272
6. 962 4. 049 2.897 2.245 1.820 1. 520 1. 300

.8 64. 000 16.000 7.111 4. 000 2.560 1.778
9. 628 4.140 2. 607 1.923 1.541 1.297
6. 647 3. 865 2.728 2. 080 1. 661 . 1.371

LT 49. 000 12.250 5.444 3. 062 1.960
7.700 3. 346 2.157 1.628 1.330
6. 364 3. 661 2.524 1.881 1.474

.6 36. 000 9. 000 4. 000 2.250
5.893 2. 638 1. 766 1.374
6.109 3.412 2.265 1.638

.5 25.000 6. 250 2.7178
4.272 2.037 1.441
5.852 3. 068 1.928

4 ' 16.000 4. 000
X 2.920 1.563
5.479  2.559

.3 9. 000
1.920
\ 4. 688
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TABLE 3. 3. Serial Correlations of the Interval Sequence

. . . . A
The entries in each cell are the serial correlations Ty

e

\éz and 110 of lags 1, 2 and 10, respectively, for the synchronous

interval sequence.

P 8 7 6 .5 4 .3 2
g

.9 . 204 . 197 .176 . 149 .119 . 088 . 058
. 148 . 140 .121 . 099 .076 . 054 .034
. 058 . 042 . 027 . 015 . 007 . 003 . 001
.8 ' . 209 .198 .170 . 136 . 100 . 065
.153 . 141 L117 . 091 . 064 . 040
. 059 . 041 . 024 .012 . 005 . 026
.7 .216 .196 .158 .116 .075
.159 . 141 .110 . 078 . 048
. 060 . 039 . 021 . 009 ;003
.6 .223 . 188 . 137 . 087
. 166 .137 . . 097 ., 059
. 062 .037 .017 . 006
.5 - | . 227 . 169 .104
.172 .126 . 076
. 064 . 032 . 012
4 .221 . 131
.173 .101
. 065 . 025
.3 | .184
.152

. 059
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TABLE 3.4 Mean and Variance of the Recurrence Time

The first entry in each cell is the mean, E(il), and the

second entry is the variance, Var(Xl), of the forward recurrence

time.

6.318 3.000
70. 751 16.230

5.314
53.413

2. 054
6. 988

2.570
12.131

4. 350
38.300

. 628
. 952

. 804
. 283

173
. 666

. 447
25.

569

. 390
. 605

. 461
. 050

. 579
. 870

. 819
. 869

. 636
. 442

. 240
. 892

. 271
. 058

. 383
. 754

. 519
. 760

. 960
. 152

1.136
1.467

1.149
1.528

1. 165

1.612

1.187
1.732

1.220
1.926

1.281
2,319

1. 460

3. 737
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4. THE RANDOM WALK WITH DOUBLE EXPONENTIAL STEP

DISTRIBUTION

Here the density of a step is
ape P

where p + q =1,

(0,0)+pae If-c0,0),

qa/p - p/a > 0.

We take piq/ﬁ— p/a .

TABLE 4.1. Values of o and r for specified g and §

Here r = pB/qP is the asynchronous probability of at least one

return to the origin.

entry is r.

g .9
p
.8 . 800
111
.7 . 350
222
.6 .200
. 333
.5 . 125
. 444
.4 . 080
.556
.3 . 050
. 667
.2 . 029
.778

1.400
. 125

. 600
. 250

. 333
. 375

. 200
.500

. 120

. 625

. 067

. 750

1. 800
. 143

. 750
. 286

. 400
. 429

. 300
. 571

. 120
. 714

2.000
. 167

. 600
. 333

.400
. 500

. 200
. 667

. 000
. 200

. 750
. 400

. 333
. 600

1. 800
. 250

. 600
. 500

The first entry in the Table is @ and the second

1.400
. 333
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TABLE 4.2. Dispersion of Counts and of Intervals

The first entry in each cell is the asymptotic slope,
. -1 S e .‘;‘7 '} . .
lim i t  var * N(0,t)§ | , of the variance time curve, the second
t—>00 ~ N -

entry is var(X), the variance of a synchronous interval, and the third

entry is the ratio of these quantities.

q .9 .8 .7 .6 .5 .4 .3
g
.8 2.125
1.311
1. 621
.7 4.306 2.469
1.453 1.584
2.964 1.559
.6 9.000 4.556 3.074
1.630 1.747 1.946
5.521 2.608 1.580
.5 19.000 9.000 5.667 4.000
1.851 1.964 2.139 2.435
10.265 4.582 2.649 1.643
.4 41.500 19.000 11.500 7.750 5.500
2.137 2.252 2.419 2.681 3.129
19.420 8.437 4.754 2.891 1.758
.3 99,000 44,556 26.407 17.333 11.889  8.259
2.529 2.649 2.817 3.067 3.468 4.182
39.146 16.820 9.374 5.651  3.428 1.975
.2 289.000 129.000 75.667 49.000 33.000 22.333 14.714

3.122 3.250 3.426 3. 680 4. 067 4.718 5.971
92.569 39.692 22.086 13.315 8.114 4.734 2.464
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TABLE 4. 3. Serial Correlations of the _‘ Interval Sequence

The entries in each cell are the serial correlations 51,

v/ /

{s (10 of lags 1, 2 and 10, respectively, for the synchronous

interval sequence,.

q 9 .8 .7 .6 .5 .4 .3
p
- . 080
. 057
. 006
7 .128  .095
,106 . 057
.033  .004
ra .170  .149  .102
.150 .111  .058 .
.070 .024 .004
.5 .210  .193  .162 .104
.193  .159 .115 .06l
.113  .134  .023 .005
.4 .249  .235 212 .172 .105
.234  .204 .166 .120 .066
.158 .098 .057 .027 .008
.3 .288 .276 .257 .227 .179  .105
.274 .248  .216 .177  .129  .072
,205 .146 .102 .066 .036  .013
.2 .328  .317 .302 .278 .242 .188 .107

. 317 .294 . 267 .234 . 193 . 142 . 080
. 256 . 201 . 157 .118 . 083 . 051 . 022
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TABLE 4.4. Mean and Variance of the Recurrence Time

The first entry in each cell is the mean, E(il), and the

- - Lo
second en try is the variance, var(Xl), of the forward recurrence

time.
q 9 .8 .7 .6 5 4 3
B
.8 1.155
1.479
.7 1.226 1.292
1.795  1.931
L6 1.315  1.373  1.473
2.240 2.409  2.621
.5 1.425 1.482 1.570 1.718
2.899 3.114 3.399  3.749
.4 1.568 1.626 1.710 1.840 2.064
3.953  4.243  4.629 5.143  5.782
.3 1.764 1.824 1.908 2.034 2.234 2.591
5.839  6.263 6.827 7.594  8.648 10.025
.2 2.061 2.125 2.213 2.340 2.534 2.860 3.485

9.942 10.656 11.604 12.901 14.739 17.429 21.339
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TABLE OF NOTATION

Notation used only in the Chapter where it is defined has been

omitted.

(i) General Notation

R the real numbers
n
R n-fold Cartesian product of R
R~ the strictly negative real numbers
R~ the non-positive real numbers
+ .
R the non-negative real numbers
++ . o
R the strictly positive real numbers
= the integers. The superscript notation used for subsets of R

o
is also used for subsets of /7..
4¥(A) cardinal of a set A

N Lebesgue measure of a set A

() .
f n-fold integral (e.g. over R')
@ empty set

sgn(a) is +1 or -1 according as the permuta.tion’_ciis even or odd

p-g-f. probability generating function
) the degenerate probability distribution concentrated at w

E(X) expectation of the random variable X

(ii) Notation Specific to the Thesis

The Section in which the symbol is first used is given.

ﬁ(. ) the (asynchronous) counting measure of a point process;

-

N (a,b) = N(la,b}) etc.



g (x%wo)

=

F ), F,
~ o~
F1 (dxl), FZ

=

V. .(i>0)
. 1)
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the synchronous interval sequence

time of the nth event after the origin
history of a point process at time t
state space of a semi-Markov process
element of

the o-field of measurable subsets of .4}
state variable of a semi—Mark_ov process
transition function of the Markov chain W i

nf)

synchronous stationary distribution on “1J*

number of events in (0, t)

continuous time semi-Markov process
) conditional interval distribution

conditional interval gurvivor function

mean of a synchronous interval
(dxl, dxz). .. synchronous interval distriﬁutions
(dxl, dxz). .. asynchronous interval distributions

multivariate synchronous forward recurrence
times

multivariate semi-synchronous forward
recurrence times

multivariate asynchronous forward recurrence
times

state variable of a countable imbedded
Markov chain '

countable state Markov process

i . S
transition matrix of Kn v

3

synchronous stationary distribution of K -
n

p-g.f.'s of éqlw ) ‘:a;'ﬁ , respectively

(1.
(1.
(1.

3), (3. 6)

3),(3.2)

. 1)

. 1)

. 1)

. 1)

. 1)

.2)
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