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Abstract

A turbulence model is proposed for the prediction
of two-dimensional boundary-layer flows near walls. Two
differential equetions are solved: one for the turbulent
kinetic energy and one for the tufbulence—energy—length—
scale product. The constants appearing in the equations
are determined by reference to experimental data of self-

similar boundary layers.

The calculations by the model for both incompressible
and compressible wall boundary layers, with or without
heat transfer, are found to compare favourable with the
experimental data. Both qualitative and statistical
comparisons of some of the predictions with those by other
methods of calculation reveal that, the two-equation model
predicts the main features of the boundary-layer flows
as accurately as other simpler or more complex models.
Méreover, the two-equation model is found to be more

general in its application than the simpler models.

The experimental investigation of radial wall
jets yields both the mean and turbulent quantitiés of
the flow. The data are used to compare with the predictions

of the two-equation model.
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CHAPTER 1.

. INTRODUCTION

1.1 Background of problem considered

The calculation of turbulent boundary layers is
an extensive subject of which the present investigation
is concerned with the prediction of their properties by

use of turbulence mbdels. The motion of a turbulent Newtonian

fluid can be divided into two modes: a primary mode

‘which is the ensemble average or mean motion; and,
superimposed on it, the secondary mode which is the

random fluctuating motion we call turbulence. Theoretically,
since such'a fluid is governed by thé Navier-Stokes
equations, direct solution for the motion of the turbulent
fluid should be possible. However, because of the random
and complex nature of the motion, such an exact solution
is quite impracticable even with the aid of existing
gomputers, due fo the enormous amount of computing time
that would be required. Faced with such a difficulty,

we have to seek approximate solutions of these equations

which are compatible with our computing capability.

One way to tackle the problem of turbulent motion
is to obtain the statistical correlations of the
turbulence within the flow field. However, because of
the non-linear nature of the Navier-Stokes equations, the
correlétion equations always include terms of higher-order
correlations. Thus an infinite number of correlation

equations have to be chosen and such a set of equations



is made determinate by means of additional information
which may either be based on intuitive assumptions'or
on experimental evidence. The choice of the set of
equations and the provision of hypotheses in addition
to the hydrodynamic equations, so as to obtain a closed

‘solution, constitute the approach of turbulence modelling.

Prior to 1965, attempts to calculate fluid

motions through turbulence models wéréNhampered by two
main difficulties. The first was the lack of computational
fadilities and of general numerical technigues which

could handle a large number of simultaneous partial
differential equations. The requirement springs from the
aforementioned fact that the complete specification of
the flow field requires an infinite number of equations;
therefore, we can expect that a model of reasonable
universality (i;e. one which can be used to calculate
~a large number of flow situations without having to
make any change in the governing equations) will in general

require a large number of differential equations.

Secondly, there was a dearth of information upon
which one could build the comp}ete picture of a turbulent
fluid. The information on the structure of turbulence

is useful as a guide to the correct physical hypotheses.
However, despite a number of informative treatises on
the subject of turbulent motion e.g., Batchelor (1953),

Townsend (1956) and Hinze (1959), the picture of the



mechanism of turbulent flow was, and still remains, far

from complete.

Because of these obstacles, understandably,
calculations of turbulent recirculating flows were non-
existent; and the use of turbulence models was confined
to two~dimensional boundary layers. These models
consisted of no more than one differential equation in
addition to momentum and continuity equations. Models
which proposed the use of more differential equations,
such as those of Kolmogorov (1942), Rotta (1951),

Chou (1945), and Davydov (1961), had either not been
tested at all or tested only over a limited number of
classes of flow. However, this situation has been changed
in recent years with the availability of general
numerical techniques for the solution of pafabolic and
elliptic partial differential equations, like those of
Patankar and Spalding (1970) and Gosman et al (1969).
Furthermore, improved measuring techniques and equipment

yield more reliable turbulence measurements.

The object of the present investigation is to
make use of some of our preseqt—day knowledge to develop
~a two-equation turbulence model applicable for boundary-
layer flows near walls; the model has two equations
which specify the local turbulence intensity and its
length scale of the flow. Although the model las a

potential application in recirculating flows, the present
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investigation 1s limited to two;dimensional boundary
layers. By restricting ourselves to the calculation of
boundary layers rather than more complex flows, the
mathematical task of devising a solution 1s reduced.
This will in turn reduce the amount of computing time
required in the process of developing the model.
Moreover, the calculation of turbulent boundary layers
is of great importance because such phenomena are
frequentiy encountered in engineering thermal-fluid

equipment as well as in Nature.

1.2 Purposes of the present investigation

The main object of the investigation has been
indicated in the above Section. It may be stated more

precisely as follows:

(1) to survey existing turbulence models.

(2) to develop a two—-equation turbulence model
based on the local turbulence intensity and its length
scale for the calculation of two-dimensional boundary
layers near walls.

(3) to assess the accuracy of the modei by
comparing calculations with experimental dataj; the data
"include measurements of the hydrodynamics and heat
transfer of incompressible and compressible boundary
layers.

(4) to compare some of the present predictions
with those from other models of turbulence.

(5) to carry out new measurements of the mean
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and turbulent velocities of radial wall jets; these

results are used in the development of the model.

1.3 Limitation of the present investigation

The present investigation is limitéd to two-
dimensional boundary 1éjers generated by smooth impermeable
walls only. The development of the same model for free-
shear flows (i.e. boundary layers without walls) is

reported by Rodi (1971).

1.4 Outline of the thesis

The main body of the thesis is divided into
eight Chapters headed by the Introduction.

Chapter 2 first presents the mathematical problem
by the introduction of equations for momentum and scalar
transport and for the second order correlations of theée
properties. Tﬁe,closure problem of these equations is
then posed in Section 2.7. This is followed by a review
of the existing turbulence models which are classified
according to the number of equations in the closed system.

The development of the two—-equation model is’
outlined in Chapter 3. |

The constants in the @odel are determined with
 reference to a selected set of experimental data; the
procedure is described in Chapter 4. The influence of
each of these constants on the accuracy of the boundary-
layér calculations is also investigated.

Chapter 5 presents the method of solutions for

these equations by the finite—-difference method of
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Patankar and Spalding (1970). The boundary conditions
for the model are given in Section 5.2.

Comparisons of predictioné with experimental data
are given in Chapter 6. The comparisons include both
the hydrodynamic and heat-transfer properties of
boundary-layer flows near walls; the data chosen for the
comparisons include compressibie and incompressible wall
boundary layers, plane wall jets, radial wall jets, pipe
lews, and channel flows. The reasons for the discrepancies
between experiments and calculations which occur in some
circumstances are discussed. The predicted results
are also compared with similar predictions of other models,
both of lower and higher order, in Section 6.3.

Chapter 7 reports the mean-velocity and turbulence
measurements in two cases of radial wéll jets; some of "
these data have been used in Chapfer 6 for the development

of the present model.
Finally,Chapter 8 summarises the work of the
previous Chapters and suggests paths for further

research of the proposed turbulence model.
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CHAPTER 2

THE EQUATIONS OF MOTION AND THE PROBLEM OF CLOSURE

2.1 Introduction

Using the Navier-Stokes equations as a starting
point, we can derive the transﬁort equations for the
correlation of the fluctuating velocities. The
resulting mean-~velocity and second-order turbulence-
correlation equations applicable to steady two-
dimensional boundary layers are listed in Sections 2.2
and 2.3 respectively. However, these equations contain
more unknowns than the number of equations. Thus, to
achieve closure, it is required to resort to additional
physical hypotheses. The same difficulty also applies
to the transfer of scalar prOperties; the relevant

equations are presented in Section 2.4.

All the equations discussed above hold for a
fluid of constant density; the effect of compressibility

on the equations is discussed in Section 2.6.

A critical survey of the turbulence models is
found in Section 2.9, in which these models are
classified according to the number of differential

equations required in the closed system.

2.2 The mean-momentum equation and the mean-continuity

equation
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The equations of mean motion governing the
motion of a steady two-dimensional boundary layer are
as follows:

the continuity equation,

U . dV _ - _
p-é; + p-6§ = O, (2.2-1)

the mean-momentum transport equation,

DU _d U _ ,—y _dP _ B 3 _ = _
PDt = ay(u_6§ puav) e Pa—x(u ve). (2.2.‘2)

The meanings of the symbols are defined in

Nomenclature.

For a highly turbulent boundary layer, two
simplifications can be made to the above equation:

(a) when the Reynolds number of turbulénce
(defined as e%l/v) is large, the laminar shear-stress
is much smaller than its turbulent counterpart; thus‘
the first term on the RHS of equation (2.2-2) can be
neglected. The exception to this isg.in the sublayer
close to the wall where the effect of the laminar viscosity
plays the dominant role in momentum diffusion.

(b) the experimental evidence from boundary
layers shows that the turbulence intensities u® and v°

are often small. Thus the normal stresses terms in
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Equation (2.2-2) can also be neglected.

2.3 Equations for the transport of second—order

turbulence-correlations

All the transport equations of the second-
order turbulence-correlations are listed below in the
form applicable to two-dimensional boundary layers. |
They entail:

' (a) equation for the transport of u?:

3

- 2%u” U . . 3u Z du 2
PHBE = - ZBy(pu v) + Ps§g - Zpuv§§ + 2p3g 29. (ggi)
I T III IV v =1y
(b) equation for the transport of V2.
Dv? _.,0 v3. 82;5 - AN - dv L, °
PpE T T glev Py ) v bggE 4 2pgy - Z“Z%‘;i ;
I IT IIT v 1=1 yr
(c) equation for the transport of we
-2 27 2 —_ s 3
Dw 3 ) 3w dw E:'_Qg
pﬁE = - Zw(PVW ) + [J'—a'—y—z- + Zp—B—Z- - 21 (axi
I 0 ITI v =1y
(d) equation for the transport of uv:
- 3
DUv _ 9 . % d7uv du , ov Suadv
PET = ay(pu + puv”®) +w§§g— + p(ay + ax) 2u§: SXPX,
I 1T IIT v =1y

(e) equation for the transport of turbulent
kinetic energy, e(=(u® + v® + w®)/2), which results from

the summation of Equations (2.3-1,2.3-2, 2.3-3) and the

, (2.34)

(2.3-2)

(2.3-3)

(2.3-4)
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elimination of p%;% terms through the condition of mass

conservation:

De = 3 _ 2 z z 3%e —3U _ = dui,°
PHT ay(pv + %(u + VS o+ w )v)+w§§§ - puv§§ - (§§j)
I ' IT IIT IV 1=13=1 71

These equations represent the transport of
Réynolds stresses in a boundary-layer flow and have -been
known for a long time. A discussion of these equations
can be found in Townsend (1956) or Rotta (1964). The
equations are similar to each other in form. The
convection of a particular Reynolds stress (I), is
determined by the turbulent diffusion (II), the molecular
diffusion (III), the production due to the interaction
of other Reynolds stresses with the mean strain (IV), the
interactions between pressure fluctuation and velocity
fluctuations (V), and the dissipative effects due to the
presence of viscosity (VI). It must be borne in mind
here that apart from the last term in Equations (2.3-1,
2.3-2, 2.3-3, 2.3-5) which is always negative, the other
terms can either.be positive or negative depending on

the inhomogen@%#y of the flow. ‘ L/?
For highly turbulent flow we can again neglect
the molecular diffusion term (III) in Equations (2.3-1

to 2.3-5).

The pressure-velocity correlations.

As can be seen- in Equations (2.3-1 to 2.3-5), the

_I.
see Corrsin (1953), Hinze (1956) p.65.
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pressure fluctuation appears as correlations with the
fluctuating velocities. The instantaneous variation of
p is governed by a Poisson equation (see for example,

Rotta 1951, Kolovandin and Vatutin 1969):

1 - _ oUj duj _ 8 ujuy d%u-u. -
ﬁ\fp - }: ZZ xl B—x Z Z(Bx 2§:><1 - axjéx:.L)' (2.3-5)

i= 13=1 i=1j=1

This equation shows that p and the pressure-
velocity correlations are completely determined by the
velocity field. A number of investigators (Chou, Rotta,
Kolovandin and Vatutin) have proposed formulations Dr
modelling the pressure-velocity correlations in

2.4 The equations for the transport of a conservative

property

The equation for the transport of a conservative

‘property § reads:

D® b 3°%
PD-E = - '5"‘9 t 5 -?y-'z— + SQ . (2.4-1)

and theequation for the turbulént’@-transport

flux reads:

oo
<
8
il

o 42 (M), o7

> - BITE % . — |
t - 5PV ay('c?ay )+ pv cpg% + 5% (2.4-2).

cv|o)
w {iet
1

+ viscous terms.
The last term in Equation (2.4-1) represents

the source or other additional transport properties of d.
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For the equation of stagnation enthalpy +transport, S

is given by,

2
S Lo g L o], (2.4-3)

_ 9 '
= 5§[H(1-0 y\2

H#*

'

2.5 The transport equations for axigymmetric flows

Flows in pipes, boundary layers developing
along the surface of a cylinder with axis parallel to
the main stream, and radial wall jets are just a few
of the cases of two-~dimensional boundary-layer flows
which can be more conveniently analysed in cylindrical
coordinates. All the second-order turbulence correlation
equations in these coordinates have been derived by
Rodi (1970). Comparison of these equations with
Equations (2.3-1 to 5) reveals that additional terms are
present in the equations for axisymmetric flow. These
terms represent production due to, Coriolis forces,
centrifugal forceé, aﬁd additional pressure-velocity
correlations. However, for an axisymmetrical bounda;y
layer in the absence of axial swirl, these additional

terms can be neglected.

T The stagnation énthalpy, H*, is defined as,

' U

1l
jant
+

I
+
]
.

Here, the kinetic energy of the mean motion

in y~-direction has been neglected.
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2.6 Effect of compressibility on the transport egquations

In supersonic_flow and in boundary layers with
large density variation due to the presence of large
temperature difference across the layer, we can no longer
assume P to be a constant. Purthermore, if the flow is
turbﬁlent there will appear in the transport eqguations
correlations involving 5, the fluctuating component of
density. However, provided that the infensity of the
fluctuation fgg/p is the same order of magnitude as
EE/U?, all the density-correlation terms are small
compared with the generation term IV in Equations (2.3-1
to 5) and therefore can be néglected from these eqguations.
Some justification of this assumption comes from the
data of Harvey et al (1969), who showed that up to a
free-stream Mach number of 9, for a flat-plate flow, pg/p
is nowhere greater than 0O.1; their result is reproduced

in Fig.2.1.

The current assumption concerning the magnitude
of density fluctuations is more restrictive than
Morkovin's hypothesis (1964) which is based on the
assumption that ga/pz is the same order of magnitude as
u®/U®. However, the resulting equations of mean momentum
.and turbulent kinetic energy based on tﬁis assumpfion
(see Bradshaw and Ferriss 1971) and those based on the
present assumption are almost identical. Therefore, in
the present compressible-flow calculations, it is sufficient

to replace p in the transport equations by its local mean:



20

value which 1is calculatéd from the equation of state of

the fluid. For an ideal gas, the equation of state is:
P = PRT, (2.6-1)

where the mean temperature T is to be calculated

from the eﬂthalpy—transport equation.

Temperature fluctuations may also induce
fluctuation of #. However, for air, correlation terms
associated with % should be small as W varies only as a

0.76 power of temperature.

2.7 The closure problem

Because of the non—linear nature of the Navier-
Stokes equations from which the set of Equations (2.3-1
to 6) is derived, this set contains more unknowns than
the number of equations. Additional equations for higher-
order correlations can of course be derived from the
Navier-Stokes equations but no determinate (closed) set
can be found. Thus, in order to close the equations,
additional information about the behaviour of the
turbulence needs to be introduced. Such information is
usually formulated from the observation of the characteristics
of the turbulence structure in simpler flows such as flows
lbehind grid wires and from other physical hypotheses.
With these additional formulations, the resulting
equations will form a determinate set with a number of
universal constants or functions;these can then be

determined from the comparison of the solution from the
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equations with a number of reliable experiments.

In the past, various workers have proposed
different turbulence models composed of different closed
sets of equations. They differ not only in the transport
equations used and the physical hypotheses employed, but
also in the degree of difficulty with which the solution
cén be obtained. A review and a classification of these
models are found in Sections 2.8 and 2.9 respectively.

2.8 Classification of the turbulence models

Turbulence modelling is essentially a probiem
of approximation through cloéing the exact equation by
semli-empirical formulae; therefore, in principle at
least, the larger the number of differential equations
employed-to describe the turbulent correlations in a
model, the more "realistic" it will be. Such a model is
likely to fit a larger number of flows without having to
make any change in the model. However, a model which
requires more differential equations will need»not only
bigger efforts in devising a solution but also more
computing time even if such a solution is possible at all.
For this reason, we shall follow the approach of Rodi
and Spalding (1969, 1970) who classified the models
éccording to the number of differential equations required,
in addition to the Navier-Stokes equations; to calculate
the hydrodynamic developments of a two-dimensional

turbulent flow.
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2.9 A survey of the existing turbulence models

With the proliferation of proposals for turbulence
models in recent years, it is helpful to make an up-to-
date survey of all of them before attempting‘any new
proposals. Furthermore, such a review will be useful in
documenting the current state Qf the art in turbulence

modelling;

A summary of the models known to the present
author is tabulated in Appendix 1. These models are
discussed in Sections 2.9-1 to 4 in which they are

classified into zero~-, one-, two- and multi-equation

bl

families respectively. The proposal of Deardorff (1970)

is discﬁssed in Section 2.9-5.

2.9-1 Zero—equation models

The name implies that no differential equation
is employed aparf from the mean-mohentum and continuity.
equations.: This is also known as the mean-field method
(see Reynolds 1968, 1970) because the apparent shear-
stress in the momentum equation is assumed to be proportional
to the product of the mean-strain-rate and the mixing
length or eddy viscosity; these in turn are functions
of local parameters of the flow. Examples of this approach
are found in Patankar and Spalding (1970) and Mellbbr and
Gibson (1966). Despite the development of more
sbphisticated turbulence models, Prandtl's mixing-length
method remains one of the most théroughly tested and best

documented methods for calculating boundary layers.
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However, like the eddy-viscosity methods, it is well
known that different functions are required to calculate

the correct mixing length for different flow conditions.

2.9-2 One—equation models

For one-equation models, an additional transport-
equation of a turbulence property 1s employed. The
transported property can either be the eddy viscosity
itself as proposed by Nee and Kovazsnay (1969) or the
turbulent kinetic energy as proposed by Prandtl (1945),
Emmons (1954), Glushko (1965), Spalding (1967),
Wolfshtein (1969), Saffman (1970), Gawain and Pritchett
(1970), and Lundgren (1971). However, rather than use
the eddy viscosity to calculate the turbulent shear stress,
Bradshaw et al (1967) proposed that the shear stress is
proportional to the local turbulen. kinetic energy. But
as will be showh in Section 4.é—2, the gradient-~diffusion
aséumption and Bradshaw's assumption are identical in the
absence of convectlon and diffusion of turbulent kinetic

energy.

As for the zero-equation models, a length scale

has to be prescribed for all the one-—equation models.

2.9~-3 Two-~equation model

All the two-equation models proposed so far are’
similar in two respects:firstly, they all have an equation
for turbulence-energy transport and, secondly the length

scale, which is prescribed algebraically in the one-
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- equation model, 'is determined from another transport
equation. Kolmogorov (1942) was the first to propose

the use of é»"frequency"—transport equation in the
calculation of turbulent boundary layers; the length

scale is inversely proportional to the "frequency". This
was followed by proposals for other length—scale equations
by Harlow and'Nakayama' (1967, 1968), Spalding (1969a)

and Wolfshtein (1970). Recently, Jones and Launder (1970)
also proposed an equation for the transport of "isotropic
dissipation rate" of the turbulence which was éuccessfully
'applied to the calculation of boundary-layer re-laminarisation.
Spalding (1971) calculated the fluctuating quantities in

a free circular jet from a model containing anequation

for the "square of vorticity fluctuation".

2.9-4 Three-—eqguation and hiqher-ofder models

In all two-equation models discussed in the
foregoing Section, shear stress is calculated from the
product of the mean strain, the square root of the
turbulent kinetic energy and the length scale. This.
relation may be applied to equilibrium or near=-equilibrium
flows where the convection and diffusion of the shear
stress are small compared to its generation and
dissipation. However, diffusion of shear stress becomes
important in the near-wall zone of a wall jet,and in
asymmetric channels, as in the experiments of Hanjalic (1970).
Accordingly the author introduced-a transport equation

in addition to the turbulent-kinetic-energy and
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dissipation-rate equations, to account for the effects

of convection and diffusion of the shear stress. A

similar approach had been proposed earlier by-Rotta (1969),
who advocated the use of the energy-length equation instead

~of the dissipation equation.

Donaldson (1969) employed a four-equation model
for the calculation of boundary-layer transition; instead

of using the turbulent kinetic energy as dependent

variable, he calculated u®, v®, w°, and Uv from the four

differential equations but used a prescribed length
scale. A similar method has also been employed by
Kolovandin (1970) to investigate the scalar transport of
turbulent boundarf layers. Rotta (1951) and Daly and
Harlow (1970) have separately proposed models possessing
not only equations for the three components of turbulence
intensity and shear stress but also a transport equation

to calculate the length.

Higher—order models can of course be obtained by
providing transport equations for the third-order
correlations. Such models have been proposed by Chbu(1945a),
Davydov (1959, 1961) and Kolovandin and Vatutin (1969).
Chou proposed to calculate both the second-and third-order
correlations through a closed set of infegral-differential
equations while Davydov (1961) proposed to calculate the
energy-dissipation rate through four differential
equations. Kolovandin and Vatutin, on the other hand,
chose © calculate six length scales from differential

equations. One interesting aspect of these models is
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that the fourth-order correlations wﬁich account for the
turbulent diffusion of the third-order correlations are

not assumed to be of the gradient-diffusion type;

instead the fourth-order correlations are either neglected

as in Chou (1945b) or decomposed into second-order
correlations through the hypothesis of Millionschtchikov(1941),

namely,

u u.u. . u u +uiu

k'L T Uiy ot Ykl

u;uy k .(2.10-1)

u.u, + u.u
J

1 91 - 9y

Use of this hypothesis serves to reduce the
number of unknown constants required in the model, but
there is physical ground for objection in the use of
Millionschtchikov's hypothesis: it is strictly only
applicable in turbulence where the probability-density of
the fluctuation is Gaussian; however, Gaussianity of the
turbulence is only observed in the final stage of decay
of.isotropic‘turbulence or at the axis of symmetry of a

boundary layer.

2.9-5 Turbulence model for the calculation of large eddies

The calculation method of Deardorff (1970, 1971)
cannot be suitably classified according to the number of
equations required, as in this method, the time-dependent
equations are solved for the large eadies which‘encompass
the grid distribution used in the calculation, while a
generalised form of eddy—vigcosity hypothesis (Smagorinsky

et al 1965) is used in the calculation of subgrid-scale
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turbulence; the size of the grid of course represents

the length scale of the subgrid turbulence.

Although some useful turbulence characteristics
of a channel flow have been predicted by this method a
large amount of storage and computing time is required
for a solution (over 1045 of CDC6660 running time for a
rectangular-channel-flow problem); thus, the method is
likely to remain as a guide to the future development
in turbulent flow calculations rather tﬁan a general method
for immediate use in the calculation of general turbulent

flows.

2.10 Concluding remarks of the survey

2.10-1 The length-scale eguation of the turbulence model

Examination of Appendix 1 feveals that all the
turbulence models proposed so far are similar in one

respect: they all require one or more length scales to

specify the representative size of the eddies in the

turbulent fluid. These length scales can present

themselves in a model under different disguises, e.g.jthey

can be calculated from the rate of energy dissipation as in

the model proposed by Daly and Harlow (1970) or they can

be retrieved from the vorticity—squared-fluctuation as in the modd
of Spalding (1971). Moreover, the length scale may either

he an algebraic function as proposed by Prandtl (1925,1945)

and Bradshaw et al (1967), or it may be calculated from

a differential equation, which is derived in one of the
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following ways:

(a) it is constructed through intuition.
Examples of this approach are Harlow and Nakayama's(1967)
length-scale equation and Kolmogorov's (1942) "frequehCy"_

transport equation.

(b) it can be derived semi-empirically from the
Névier—sfokes equations such as the "vorticity-decay"
equation of Chou (1945), the energy-length equation of
- Rotta (1951), the dissipation equation of Daly and Harlow(1970)
and the "vorticity-fluctuation-square" equation of

Spalding (1971).

2+ 10-2 The applicability of the turbulence models

The basis of assessment for the validity of the
turbulence models is by comparison between observation
and theory. However, from Appendix 1, one notes that
not many of the proposed turbulence models have been
compared with a large number of observations. In principle,
those models which employ a large number of differential
equations like those of Chou (1945a), Davydov (1961), and
Kolovandin and Vatutin (1969) should be more universal
in their‘applications; but their use as general calculation
procedures 1is at present hampered by the difficulty of
6btaining a solution from a large seﬁ of coupled
differential equations and, by the unknown constants in
these models, which remain to be determined. These problems

are less acute in simpler models, for these have smaller



29
number of equations and constants.

Another reason for the popularity in the use of
simp}er models is that,in flows usuaily encountered in
engineering equipment, there is a need to calculate not
only the hydrodynamics of the flow but also other properties,
like heat and mass tfénsfer within the flow. Thus, in
addition to the equations already in tﬁe turbulence model,
one has to solve the transport equations for relevant
transport properties iike those of Equations (2.4-1,

204'—2) .

On the other hand, simple models usually lack
universality. For example, Prandtl's mixing length works
quite well in both free-~jet flows and wall-boundary-layer
flows but one needs to take a different constant of
proportionality between the length and the layer thickness

for these flows.

In Chapter 3, a turbulence model which requires
the solution of only 2 equations is broposed; the
dependent variables being the turbulent kinetic energy
and a length scale of turbulence. It is shown later that
such a model predicts satisfacforily the developments of

a large number of boundary-layer flows.



30

CHAPTER 3

A TWO~EQUATION MQDEIL. OF TURBULENCE

3.1 Introducfion

The turbulence model to be proposed in Section 3.2
requilres the solution of two differential transport
equations, one for the turbulent kinetlc energy and one
for the kinetic—ehergy—length—scalé product. The exact
form of both Equations (3.2-3 and 3.2-5) 1is first
derived from the Navier-Stokes equations. However, in
order to close these exact equations,the unknown terms
in the equations have to be related to other determinate

variables; the proposed expressions are glven in Section

3.2"30

The closed form of the turbulent kinetic energy
and energy-léngth product equations is given in Sectilon
3.2-4. A consequence of the closure 1s the appearance
of a nﬁmber of universal constants in these equations.
The values of these constants are to be determined by
reference'to experimental data; the procedure of which

will be given in Chapter 4.

Finally,some remarks on the characteristics of

the proposed model is given 1in Section 3.3.

3.2 The two—equation turbulence model

One measure of the turbulence field is the joint
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correlation of the fluctuating velocities between two
points in the flow field. Rotta (1951) has shown that
the energy spectrum E,-which is defined as the Fourier-

transform of the two-point joint correlation Ri,
_x° i
- E(k) = ane Ry (r)dvol, (3.2-1)
i
Vol

is governed by a .transport equation. The derivation is
presented in Appendix 2. For a two-dimensional constant-

property boundary layer the E equation entails:

pﬁE = %%EZ_pgizgg - 2UkK®E - pTi -‘pT2 (3.2-2)
1T IIT v v VI

DE
In this equation, terms (I to VI) represent

convection, diffusion, generation, dissipation, inertial

transfer and mean-motion-turbulence-interaction transfer,

of E respectively. The meaning of each of these terms

are explained in Appendix 2. Also in the Appendix are

given the definitions of the functions F,, Gyp, T,, and

TZ'

3.2-1 The exact turbulent kinetic energy equation

The integration of Equation (3.2-2) with respect

to k from Q to * of course yields a turbulent-kinetic-energy

transport equation,

, (3.2-3)



where ?; = (E%(u2 + vZ o+ w®) + pv)

® 3 8 2
anda, ® = kazdk =uy > (%—‘3%)
(]

at high Reynolds number of turbulence.

Equation (3.2-3) becomes identical to Equation(2.3-5)

when laminar diffusion can be neglected.

'3.2-2 The exact turbulent-kinetic-energy-length-scale—-

product eguation

We define a length scale /4 as,

s = 1 EQE -4
& \[ k . (3.2-4)
(o]

Multiplication of Equation (3.2-2) by 1/k
and integration with respect to k from O to @ yields a
transport equation for the product of ef4. For a

boundary-layer flow, it entails:

[]

© © ~ 0 @
Ded _ _ oF oU dk _ ol ZTag - T2
o
I IT IIT Vv A" ' VI

where ?éﬂ = ijgzdk
Q

3.2-3 Physical hypotheses of the turbulence model

The Equations (3.2-3 and 3.2-5) are in the exact
form. However, before these equations can be employed
for the calculation of the dependent variables e and ﬂ, a

number of physical hypotheses need first to be introduced.
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(i) The eddy-viscosity hypothesis

It has been suggested that the turbulent
diffusional flux v® of a transportable property ¢ is
proportional to the local turbulence intensity, the
length scale of the turbulence and the mean gradient of
‘the property (Prandtl 1945, Hinze p.285). Accordingly,

we have,

o/

~ve = %G%LS% | (3.2-6)
o
where $ is any transportable property, 4 is
the length scale defined by Equation (3.2-4) and 0@‘
is a constant. Thus according to Equation (3.2-6), Fe
and JYel in Equations (3.2-3) and (3.2-5) can be
expressed as follows;

?7 1 . ae.
e = — pe2£,_._

Fes =1 pePadled)
e TS PR (3.2-8)

Similarly, the turbulent shear stress is given by,

%y 3U

v = L
- Puv = et Ny (3.2-9)

If the diffusion of enthalpy, Vh, also obeys

Equation (3.2-6), the diffusion of the stagnation enthalpy

—

vh* entails

_ — — 1,r 3 2
vh® = Yh + Uuv + Iv(u® + v® +wt) = e24[ 5 22 +-%~§—(% ) + %<§—
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In Equations (3.2-7 to 10), ©_, ©°_,, O and 0
are assumed constants. The effect of diffusion aue to
pressure fluctuation has been neglected in the expressions
for ?% and ?éﬂ. However, these pressure-diffusion
effects are usually small in boundary-layer flows and

in any case, their effects can be partially accounted for

in the appropriate choice of Ue and Geﬂ'

(ii) Physical hypotheses for the source terms in

Equations (3.2-3 and 3.2-5)

Apart from the diffusion term in the e-transport
“equation (3.2-3), the viscous dissipation rate (VI) has
to be expressed in terms of other dependent variables
also. One can of course derive an exact equation for

the transport of the dissipation rate as has been done
by Davydov (1961) and Daly and Harlow (1970) but this
equation has four more source terms which need to be
modelled before the equation can be closed. However, the
mechanism of the turbulent dissipation is well understood.
Dissipation of turbulence occurs mainly in small-scale
isotropic fluctuation§; the dissipated energy 1is supplied
from the larger-scale turbulence which in turn receives
its energy from the interaction of the turbulent shear
stress and the mean-velocity gradient. When the local
Reynolds number of turbulence (= e2e/v) is large,
qumogorov _ (1942) suggested that the dissipation
rate 1is independent.of thé laminar viscosity but depends
on the turbulence intensity and the length scale of the

larger eddies only. Thus,
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3
P - u}: E:(%§§)3'= cipe*@/g (3.2-11)

where C1 is taken to be a constant.

In the ef-equation (3.2-5), four sburce terms
(III to VI), which represent the generation or destruction
of the ef-entity due to turbulence interactions, need to

be hodelled.

The integral in (III) represents the spectral
distribution of uv weighted by k_i. It is assumed that
the shape of this function is characterised by the product

of Uv and {; thus,

U
(III) = c2r53§ , (3.2-12)

where C2 is a constant.

.

Likewise, term (IV) represents the dissipation

spectrum weighted by k_i, therefore, it is assumed,
3
(IV) = cyrpe (3.2-13)

where C3' is a constant.

As mentioned earlier in Appendix 2, the function
Tirepresents the inertial transfer of energy from large
eddies to smaller ones due to the self-stretching motion

of the turbulence, therefore, it is assumed thatterm (V)

obeys the following relation;

(V) = c e , (3.2-14)

where C3" is a constant.
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Term (VI) proves to be more difficult to model.
The functioﬁ Torepresents the transfer of energy from ong'
wave number to another through the interaction of the
mean flow with the turbulent motion. ©Near a wall, this

interaction may be strong. Therefore, it is assumed that,
(v1) = £102 (3.2-15)
ay - -

In this equation, f is an empirical function
defined as,

- £Ha
£ = (Cp) , (3.2-16)

-

where C, and q are taken as constan#s, g being

greater than unity.

It must be said that the above aésumption for £
is based mainly onlintuition and on the requirement for
the model to satisfy some well knoﬁn conditions near a
wall. The latter will be discussed in Section 4.2-2. The
justification will be the good agreement obtained in our

subsequent predictions with the model.

3.2-4 The final form of the e- and ef-equations

Finally, substitution of Equations (3.2-7,8,9,11,
12,13,14,15) into Equations (3.2-3 and 3.2-5), with one
of the arbitrary constants 9%; set at unity, yields the

desired e- and ef—equations;

De _ 13 . 7p%e U _ e,
pEE = 3é—§(pe an) tTyy T CqPe /T, (3.2-17)
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Def _ 1

13, 32t U o o 2
Dt = Oeaf ay(pe fay } o+ CZTKW - C3pe - fo"g};

, (3.2-18)

‘where C3 = C3' + C3".

iti o o
The quantities Cl’ Cys €y, 9, and el

in

Equations(3.2-17 and 3.2-18) are taken as constants

whereas f is an algebraic function defined by Equation(3.2-16).
Before we can make use of the two-equation model,

‘the constants appearing in the equations (3.2-17,

(3.2-18) have to be first determined. The procedure of

determining the values of these constants is given in

Chapter 4.

3.3 Some remarks on the two-equation model

3.3-1 Other ways of modelling the mean-motion-transfer

term in Equation (3.2-2)

In an earlier attempt, Ng and Spalding (1971)

assumed that term(VI)in Equation (3.2-6)

QT e ' ‘E q 3/2 ' \
ij‘?dk = C4 (S,') pe (3.3-1)

But Equation (3.2-16) appears to be more plausible
on physical grounds because, according to the definition
of Equation (A.2-7), T2 must vanish everywhere in flows
with no mean-velocity gradient. This occurs in homogenous
grid-turbulence flows (Batchelor 1953) or when the wall
is moving at the same velocity of the turbulent fluid
(Uzkan and Reynolds 1967). However the choice between

Equations (3.3-1) and (3.2-15) makes little difference in
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the predicted results of a boundary layer if C4 and

C4' are correctly chosen becausé7 with negligible convection

and diffusion of e, f%% is proportional to pé%a, as can

be seen from the manipulation of Equation (3.2-17), when

the diffusion énd convection terms are neglected.

However, it was found that the use of the expression in

Equation (3.3-1) in the prediction of wall jets gave

inferior results compared with those using Equation (3.2-15).
Rotta (1969, 1971) on the other hand has

assumed that

23y, 0u, 1 -
=<l 3535y . (3.3-2)

As for equation (3.2-16), the above expression
reduces to a constant value near the wall where both

~%% and £ are proportional to the distance from the wall.

3.3~2 Predictions by the model in free shear flows

For free shear flows where the boundary 1ayér
is remote from any solid surface, the last term in Equation
(3.2-18) vanishes. Whereas, the present investigatiqﬁ
is concerned with calculation of near—wéll flows, the
application of alhost the same model for free shear flows

is reported by Rodi (1971).

3.3-3 Comparison of the present ef-equation with the

length~scale equation of other models of turbulence

It may be illustrative to compare the characteristics
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of Equation (3.2-18) with the length-scale equation of

some other models of turbulence.

Apart from the near-wall term discussed earlier
in this Section and the diffusion term, the present
ef-equation (3.2-18) closely resembles that proposed by
Rbétav(1951, 1969). 1In his earlier proposal, Rotta
neglected the near-wall term but in both proposals he
assumed that the diffusion flux of ef is governed by the

following expression,:
1p f3e e 3t
= pe2f (i€ ., & -
- Fop = pe €(°i<3y t 5y (3.3-3)

where 0, and 9; take different values. The

above expression becomes identical to Equation (3.2-8)

when,
Oy = 05 = Ue{ . (3.3-4)
Instead of using an equation of the ef-product,
we can calculate the length-scale from a dissipation X
equation. An exact dissipatio?fgan be derived from the

Navlier-Stokes equation or by integration of Equation
(3.2-2) with respect to k afteiyit has been multiplied

by ka. (Since dissipation = Hjﬂszdk) In the dissipation
equation, the same number of Eerms as in the'e{-equation;-
(3.2-5) occurs and they have to be either neglected or
modelled. Use of the dissipation equation has been
proposed by Chou(1945a)and Davydov(1961) and more recently

by Daly and Harlow (1970), and Hanjalic (1970).
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1

Spalding (1971), on the other hand, proposed the
use of a "vorticity-fluctuation-squared" (ae/{a) equation
for the calculation of the length scale. This equation
can also be derived semi-empirically from the Navier-Stokes
equation. However, at present, no measurement of the
individual terms in each of the above equations is
available to justify the preference of one equation to
the other. But when the diffusion term in each of these
equations is neglected, the present eﬁ—equation, Spalding's
vorticity-fluctuation-squared equation, and Hanjallc's

version of dissipation equation become identical.

3.3-4 Implication of the eddy-viscosity hvpothesis(Equation3.2-9)

Another feature of the proposed two-equation model
is the use of the eddy-viscosity equation (3.2-9) to{
calculate the shear stress from 1oéal mean-velocity gradient,
local turbulent kinetic energy and length scale. Although
it will be shown in Section62-5 that in some of the
calculations, the use of this hypothesis is not correct
and, the local shear stress has to be calculated from an
additional equation, it is nevertheless interesting té
note the implication of the eddy-viscosity expression of

Equation (3.2-9).

One way of deriving a semi-empirical equation for
the transport of shear stress was proposed by Rotta (1951,
1969).
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It reads:
DUGv _ 1 3 1, 3Gv U S ‘
P = U£§§(pe {By ) - C5pe§§ - CgPe uv /¢ (3.3-5)

When the convection and diffusion terms are
neglected from Eguation (3.3-5), we have the following
expression for the shear stress‘Tg
x 3pU
P e oY (3.3-6)

The reader may recognise that this equation is
identical to theeldy-viscosity relation of Equation (3.2-9)

Oy equals to Cg/Cg. Thus, the use of either the eddy-viscosity
expression of Equation (3.2-9) or the shear-stress

equation (3.3-5) should produce the same results of

prediction when the convection and diffusion of shear stress v
can be neglected; this condition indeed exists over much

of the boundary—iayer thickness in flows which are far
downstream of any disturbance or obstacle and are not close

to separation.

3.3-5 Effects of Reynolds numbers on the constants

The physical hypotheses discussed in Section 3.2-3
imply that the viscosity plays no direct part in the
turbulent motion. Therefore, the constants in Equations
(3.2-17 to 18) are independent of the viscosity. This is
probably correct when the Reynolds number of turbulence
is large. But when the Reynolds number of turbulence is
low such as in the final stage of decay of grid turbulence

or in the viscous sublayer‘of a boundary layer near the



42

wall, the constants in Equations (3.2—17) and (3.3-18)
will no longer have unique values but will be functions
of the Reynolds number of turbulence. The determination
of these functions lies outside the field of the present
enquiry. Nevertheless, to bypass this problem in fhe
boundary-layer calculations, the detail solution using the
model is only calculated up t6 a point close to the
viscous sublayer next to the wall. The.detail procedure

is.given in Section 5.2.

3.3-6 Effect of compressibility

Equations (3.2-17 and 3.2—18)-have been derived
for constant property fluid only. One can of course derive
these equations incorporating the effect of density
fluctuatioﬁs; these equations will include additional terms
of density-fluctuation correlationé. However, in Vview
of the dearth of experimental data regarding these density-
fluctuation correlations and the level of approximations
used in obtaining Equations (3.2-17 and 3.2-18),such a
move is felt not justified at present. Following the

argument in Section 2.6, it is assumed a priori that'both
the equations and constants are unchanged provided that
the density p in these equations 1s replaced by its local

mean value.
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CHAPTER 4

DETERMINATION OF THE CONSTANTS IN THE TURBULENCE MODEL

4.1 Introduction

The clésure scheme of the turbulence-model
equations (3.2-17 and 3.2-18) proposed in Section 3.2 -
produces a number of unknown universal constants
in these equations. The values of these constants must
be fixed by comparison with a number of experimental data

and their solutions using the turbulence model.

In determining the constants, there are some
Vcases of flow which allow analytical solution of the
equations and, comparison with experiments for these flows
yields direct information about some of the constants.
The remaining constants mugt then be deduced from data
for more complex flows; the solutions of thé eguation with
which these data must be compared have to be obtained

by numerical integration.

The validity of the model will then be measured
by its success in predicting other cases of turbulent
flows using the éame set of constants in the turbulence-
model equations. These comparisons will be given in

Chapter 6.

4.2 Evaluation of constants by reference to some simple

flows
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4,2-1 Homogeneous turbulence behind grids

When a uniform stream of fluid passes through
a grid of bars, turbulence is generated downstream of
the grid. For this flow, Equations (3.2-17 and 3.2-18)

reduce to:

U-a; = - Cie / ) (4.2—1)
and d(ef) _ )
Combination of these equations yields,
d2 = C3 - 1= - a (4.2-3)

According to the experimental data of Batchelor
and Townsend (1948a, b), a is between 0.5 and 0.8
depending on the stage of the turbulence decay; this gives
C3/C1 between 0.5 and 0.2. However, some more recent
experiments by Uberoi (1963) suggested that for the initial
period of decay of grid turbulénce, a may be as low as
0.33, resulting C4/Cq4 to be 0.67. In any case, C3/Cq-

should lie between 0.67 and 0.2.

4,2-2 Flows in local eqguilibrium

The domain of a fluid is sald to be in local
equilibrium when the rate of convection and diffusion of
turbulent kinetic energy 1s negligible compared with the

rate of generation and dissipation. For this situation,
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Equation (3.2-17) reduces to:
o = T%E - cqppe®/e . (4.2-4)
Y

Elimination of the mean-velocity gradient from

the above equation using Equation (3.2-9) leads to

T/ (pe) = c1V2 S (4.2-5)

The reader may recognise that this relation is
one of the assumptions -used in the one-equation model
of Bradshaw et al (1967) (see Appendix 1) first proposed

by Townsend (1961), albeit on different grounds.

The value of C1 can be determined from experiments.
Flows in pipes and along flat plates are in a state of
local equilibrium as can be seen from the turbulent
kinetic energy balance in Figs. 6.3 and 6.28 . The

. variation of T/(pe) for pipe flow and wall-boundary-layer
flow are displayed in Fig. 4.1 ; the data are those of
Laufer (1954) and Klebanoff (1955). Both sets of data
show that 7/(pe) is about 0.3 under local equilibrium
conditions. Substitution of this wvalue for T/(pe) into
Equation (4.2-5) leads to a value of 0.09 for C,. Earlier
a value of 0.1 for C1 has been used by Ng and Spalding
(1971) in the same model but the use of such a vélue
resulted in an unaerestimation of the turbulence level

in the boundary layer.

Equilibrium flows close to a wall

One of the outcomes of the condition of local

equilibrium is Prandtl's mixing-length hypothesis. To
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show this, the value of e from Equation (4.2-5) is
substituted into Equation (4.2-4) to yield,
L2 3u,? :
T = p=z(z=) . (4.2-6
C12 Yy )
The above relationship is identical to Prandtl's
mixing-length hypothesis if the mixing length £ is

related to 4 as,

A
L o= kst

m 1 . (4.2-7)

Experiments show that in the fully turbulent
"logarithmic" region near a wall, the mixing length is

proportional to the distance from the wall y. Thus,

where # is a constant of the order of 0.4, a
value concluded from the survey of a large number of
" wall boundary layer flow data by Escudier (1967) and
recently given support by the theoretical analysis of
Goldshtik and Kutateladze (1969). Substitution of Equation
(4.2-8) into Equation (4.2-7) yields the distribution

of % near a wall namely,

Furthermore, 7 approaches a constant value as can
be derived from Equation(2.2-2) when the convection,
mean-pressure gradient, and laminar diffusion terms are

neglected. Finally, substitution of Equations (4.2-4,
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4.2-5 and 4.2-9)into Equation (3.2-17), after heglecting

the convection term of 4, yields,

k]

o - Ci%nacezi ey - gy - C4qci<1+q/4>nq‘. (4.2-10)
It is found that, when Ci’ C2, C3, ceﬂ’ and g
are given values appropriate to éxperimental data remote
from walls, and # has a value near to 0.4, Equation (4.2-10)
can be satisfied only by a non-zero value of C4; it is
"this fact that haé necessitated the introduction of the
final term in Equation (3.2-18). The above rélation
can be used for fixing the value of C4 when all the other

quantities are known.

4.3 Procedure of optimisation of the constants

The simple solutions of the turbulence-model
equations described in the foregoing Section have
resulted in a number of constraints and relations for
some of the constants in the model. Héwever, the exact
values of the constants have to be determined by the
best predictions these constants give for some simple
boundary~layer flows. Suchra procedure for the determination,

of the constants is termed optimisation.

-

4,3~1 Choice of experimental data for the optimisation

Apart from C for which we take the value of 0.09

19
and, C, which is determined from Equation (4.2-10), the
remainder of the constants in Equations (3.2-16, 3.2-17

and 3.2-18) are chosen so as to obtain the best agreement
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between predictions and experiments for a number of
well known characteristic quantities in the following

self-similar boundary-layer flows, namely:

(i) boundary layer on a semi-infinite flat

plate with TS/(PUGZ) = constant;

(ii)flow in a pipe of uniform circular

cross-section with TS/(PUmg) = constant;

(iii)flow between wide parallel plates with

TS/(PUmz) = constan?;

(iv) plane wall jet in stagnation surroundings

N <
with TS/(pUmax) = constant;

(v) plane mixing layer between a uniform

moving stream and a stagnation stream.
(vi) plane free jet in a stagnation surroundingi
(vii) radial fan jet in a stagnation surrounding;

The characteristic quantities of these flows

chosen for comparison are tabulated in Table 4.1. The
flows are calculated from the numerical integration of
the turbulence-model equations (2.2-1, 2.2-2, 3.2-17,
3.2-18) using different values for the constants during
each calculation of the flows; the integration procedure
is described in Section 5.1. The constants are then

. optimised until the predicted characteristics agree with

those listed in Table 4.1. In the wall flows listed from
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case | characteristic|experimental| references |[predicted
guantities value . value
T 6.8 Coles(30)
Ug 3.50 Nunner (105)
YUnax = Ynm
(iii) T 2.32 Clark(28) 2.3
T
(iv) dyi 0.078 Myers(97) 0.073
ax 0.075 Tailland(139)
(v) d(y.g = ¥-q) 0.16 Liepmann - 0.159
dx & Laufer(80) ~°
(vi) EZ% .08 .BraQbury(S) 0.106
3 0.11 Heskestead (62)
X ’ B
(vii) dyi 0.11 Heskestead (63) 0.11
dx
Table 4.1. Comparison between the measured values of

the characteristic quantities of the self-
similar boundary layers and the values
calculated from the two~equation model.




50

(i) to (iv), the constant friction-coefficient is

supplied as a boundary condition. This ensures that

the predicted results are independent of laminar viscosity.
Doing so does not invalidate comparison with the experiments
because the characteristic quantities chosen for comparison
are either completely or only slightly dependent on

the Reynolds number of the flow. Thus, with the friction
coefficient specified and Qith the boundary conditions

for e and 4 as those given in Section 5.2, the set of
differential Equations (2.2-1 , 2.2-2, 3.2-17 and 3.2-18)

can be integrated.

A value of 2.5 x 10_3

for the friction coefficient
for flow cases (i) to (iii), has been chosen for the
present calculations. The predicted charécteristic
quantities for these flows were found to be little
influenced by fhe choice of friction coefficient. This
was confirmed b& predicting the characteristic quantities
using half and twice the chosen friction coefficient.
However, the predicted growth rate, dY%/dx, of the

plane wall jet (case iv) is more sensitive to the choice
of the friction coefficient, therefore we have chosen

a value of 2.8 x 10—3 for the friction coefficient, a

value which is the average of all experimental data.

4,3~-2 Optimisation procedure

An earlier attempt in optimising the constants
was reported by Ng and Spalding (1971). The authors

optimised the constants to give the best predictions
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for five characteristic quantities of the near-wall
self-similar flows only. Not surprisingly, it was found-
that the constants thus obtained do not give the best
predictions for free shear flows due to such a limited
field of enqﬁiry. These constants have been re-optimised
_-through "numerical experiments" to give the best agreements‘
with the target quantities for both wall and free shear
flows.  The resultant constants are tébulated in

Table 4.2; the calculated characteristic quantities
using these constants are taleated in the last column

of Table 4.1.

0.09 { 0.98 0.058 4.3 1.0} 1.0 6

Table 4.2. The optimised constants for Equations
(2.2-16 to 18).

4.3-3 Influence of the constants on predicted

characteristic guantities

Examination of the constants in Table 4.2

- shows that they agree with the constraints discussed
in Section»4.2. In particular, the ratio of C3 to

C4 is 0.65, Which agrees with the experimental data of
Uberoi (1963). The sensitivity of the predicted
characteristic guantities to change of each individual

constant is tabulated in Table 4.3. In the Table, the
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percentage change 1n each characteristic quanﬁity due
to 5% change of each constant in Equations (3.2-17,
3.2-18) is displayed. It is clear that somé constants
exert a bigger influence on the predicted results than
others. In particular, the change of the predicted

- characteristic quantities due to 5% increase of Jg

or o_yg is less than 1% whereas the corresponding

- percentage increase in Ci, C2, or C3 fesults in change

~of over 2.9% in each selected target. The result is

not unexpected: the diffusion of e is negligible

compared with the generation and dissipation in these
self-similar boundary layers; thus the predicted quantities

are much less sensitive to the choice of 9, and 94

than Ci, C2, and C3.

4.3-4 Other prediéted properties of the self-similar

flows and their comparison with experimental data.

The predicted mean-velocity profiles for all

self-similar flows are plotted in Figs. 4.2-4.8.

In each case of flow, the relevant experimental
data are also presented. Discussion on the
comparison of predictions with experiments for free

shear flows can be found in Rodi(1971).

We shall refrain from discussing in detail the
comparison between the pfedictions and experiments. This
is because many of the feétures appearing in Figs (4.2 to
4.8) will subsequently be covered in the predictioné for

non-similar flows in Chapter 6. It may suffice to mention



Percentage variation of the predicted characteristic quantities at 5% increase

Table 4.3
of the individual constants in Equation (3.2-17 and 3.2-18).
Case i ii iii iv v vi vii
* (1 - 57 H3 U - U U -U dy d(Yeg = Yeq) d d
12 UT max max ____'} "9 1 _E% _._Y.%
con— Ur : UT dx dx dx dx
stants
C1 3-1 - 3-7 - 3-0 + 5.7 + 2.9 + 306 + 3-7
C2 4-2 - 3-7 - 3-6 + 7.4 + 1906 + 27.6 + 27.0
C3 2-9 + 3-8 + 3-7 - 5.4 - 5.8 - 7-1 - 7-3
M 1-7 - 202 - 204 + 2-8 - - -
ce 0-4 - 006 fand 009 + 0.2 + Ooj. + 002 + Oa3
o 0.3 - 0.7 - 0.6 + 0.9 + 0.7 + 0.4 + 0.4
0-5 - 0-8 - Ol8 0-8 -— - -

€9
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that indeed, self-similarity is attained in these flows
as can be seen from the asymptotic behaviour of the
parameters shown in the figure a's in Figs. 4.2 to

4.8.
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CHAPTER 5

METHOD OF SOLUTION AND DETATILS OF BOUNDARY

CONDITIONS FOR THE TURBULENCE MODEL

5.1 Method of solution

Apart from a number of special cases, a
general analytical solution for a closed set of Equations
(2.2-1, 2.2-2, 3.2-17, 3.2-18) is unlikely to be found.
Therefore solution of these coupled equations is only
possible by numerical methods using computers. The
implicit finite-difference procedure of Patankar and
Spalding (1970) was used for the numerical integration
of the turbulence-model equations throughout the present
investigation. So much has been reported about the
Patankar and Spalding (1970) procedure (see Ng et
al 1968, Patankar and Spalding 1970), that further
discussion here is unnecessary. It is sufficient to
mention that the independent variables of the integration
are the streamwise distance and a dimensionless stream-
function across the boundary layer. The integratioﬁ
marches stepwise downstream of the boundary layér. A
listing of the program adopted for the bresent

- calculations is displayed in Appendix 6.

5.2 Boundary conditions for the turbulence-model equations

The calculation of the boundary layer using

Equations (2.2-1, 2.2-2, 3.2-17, 3.2-~18) requires the details
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of the boundary conditions to be specified. The
boundary conditions can be classified into two types:
(i) the boundary conditions at the edges of the
boundary layer and (ii) the initial profiles of the
dependent variables at the starting point of the
integration. The former will be referred to as

lateral boundary conditions and, the latter as

starting profiles.

5.2~1 The lateral boundary conditions

(a) In the free-stream edge of a boundary layer,

one-dimensional flow prevails. Thus Equations (2.2-2,
3.2-17, 3.3-18) degenerate into

2

pavt _ _ db —
deg _ _ 32 _
, d(e K)G _ 3 '
anhd Ude = - C3e G . : ‘5.2—3)

Other conservative properties are assumed to

be given at the free stream.

The value of Uy, ey, and (ef); can be calculated
" from Equations (5.2-1 to 3). In the absence of any

free-stream turbulence,
eg = O (5.2-4)

(QZ)G = 0 (5.2‘—5)
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(b) For an axisymmetric or plane-symmetric
flow, the integration proceeds from one outside edge

to the line of symmetry only. At the symmetry line,

(%%) -0 ] _ (5.2-6)

where § can be U, e, £, or other transport

properties.

(c) The boundary condition along a solid
impermeable surface is less straightforward. As
mentioned in Section 3.3-5 the present model with a
fixed set of universal constants is strictly valid only
in regions of the flow where the Reynolds number of
turbulence is high. Thus the model is not expected to
be applicable within the viscous sublayer near the wall
where the Reynolds number of turbulence approaches to
zero at the wall. To bypass this difficulty, we carry
out the numerical integration up to a point B just
outside the sublayer as shown in Fig. 5.1. The
boundaryiconditions at the point B are then supplied
from a number of well known semi-empirical relationships
based on the couette-flow solutions of the transport

equations. The boundary conditions at B are:

1
e 2
UBE%S)2= %‘a‘ EYB(TSP)

m : . (5.2-11)
Ts. - .2 (5.2-12)
(Pe)p 1 ’ :
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Equation (5.2-11) is the "logarithmic law of
the wall" where * is 0.41 and £ is 7.8 according to
the data survey of Coles (1968). Equations (5.2-12 and

5.2-13) are identical to Equations (4.2-5 and 4.2-9).

The boundary condition at B for any other

conservative property ¢ is,

1
(35 - 8p) (PT)Z .
LI (5.2-14)
Jg s

Where P is a semi—gmpirical function which
accounts for the resistance to the transfer of ¢ across
the viscous subiayer (see Spglding 1964); according to
Patankar and Spalding (1970); P obeys the following

relationship:

[
H

73 o
P40/ = 9.24[}c/c§) ~1][1 - o.28exp(- o.oo7g§)], (5.2-15)
where 9 and GQ are the laminar and turbulent
Prandtl/Schmidt number of § respectively; the latter is

taken as 0.89. ' . . '

In the absence of any soufce of generétion or
other additional transport effects, the function Q
- in Equation (5.2-14) vanishes. For stagnation enthalpy,
€ is given by, ~
2 i
Ug (T4P)2 -
Q = (GH -1)——2‘3—5——' . (5.2-16)

In the case of calculating flows with large

*
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density variations as in the case of supersonic flows,
the density p in Equations (5.2-11) and (5.2-14) are
taken to be the arithmetic mean between the wall S,
and B. Sivasegaram (1969) has found that the use of
mean density retains the validity of the "log-law"

(Equation 5.2-11) in supersonic flows.

5.2-2 Starting profiles for the calculation of

boundary lavers

In order to calculate the downstream
develobhent of a boundary layer, we require to specify
the starting profiles of all dependent variables of
the two-equation turbulence model, U, e, and £ . 1In
practice, £ is not a directly measurable quantity but
it can be deduced from U-, e-, and T- profiles according
to Equation (3.2-9), if these quantities are given. 1In
the absence of‘any information about the starting profiles
_they have to be invented. The procedure to calculate
these quantities is shown in Appendix 3 whereby the
profile of £ is assumed to be a ramp-type and e is a
cubic function depending on the local pressure-gradient
and the wall shear-stress. This procédure has been
employed successfully by Ng and Spalding (1970) for

wall-boundary-layer calculations.

If the initial U- profile is not given, it is
assumed to obey the 1/7th-power law. For heat-transfer
calculations, Cro?é's temperature profile is employed as 6/

N

the starting profile.

Discussions on the influence of the starting
profiles on predictions will be found in Section 6.2-1.
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CHAPTER 6

COMPARISONS OF PREDICTIONS WITH EXPERIMENTAL DATA

AND PREDICTIONS BY OTHER MODELS OF TURBULENCE

6.1. Introductory remarks

In Chapter 4, a set of constants were selected
for the two—equation turbulence model so that it calculates
.correctly the characteristics of a number of self-similar
flows. Although satisfaétory predictions were obtained
for thése flows, they nevertheless represent only a limited
type of two-dimensional boundary layers that are common
occurence in engineering equipment. Many other important
parameters which affect the development of boundary layers
are absent from these self-similar flows; for example,
they are independent of laminar viscosity and that there
is no streamwise pressure-gradient variation, both of which
are important parameters in real boundary-layer flow.
Furthermore, only the hydrodynamic properties of thé self-
similar boundary layers were compared; no calculation
of heat transfer using the two-equation model has beén
made. The present Chapter presents the comparisons‘of
predictions with experiments which include not only the
hydrodynamics but also the heat transfer for both
incompressible and compressible wall boundary lajers. The
main purpose of the comparisohs is to assess the accuracy
of the predictions by the two-equation model. Moreover,
through these comparisons, modifications to the model,

so as to increase its accuracy of prediction and range of

~



61
applicability, can be formulated.

The assessment would not be completé without
'the comparison of the calculations of the present model
with those of other models of tﬁrbulence. Through the
comparison, the merits and demerits of using the two-

equation turbulence model can be realised.

6.2 Comparison of the calculations of the two—eguation

model with experimental data

All the comparison will be restricted to steady
boundary-layer flows developing along smooth and

impermeable walls.

6.2-1 Hydrodynamics of the constant—-property wall

boundary layers

Hydrodynamic properties of a flat plate

The caléulation of a constant-shear-stress-
coefficient boundary layer has already been presented in
Fig. 4.2. Fig. 6.1 presents the comparison of the
calculated friction coefficient, sq and shape factor,
Hy,, of a flat plate with Coles' correlation (1962).

In this figure, the friction coefficient and the shape
factor are plotted against the momentum—deficitf
thickness Reynolds number, R,. The agreement between
the calculation and the correlation is found to be
satisfactory. As a further comparison, both the mean-
velocity and the turbulence quantities of a flat plate,

measured by Klebanoff (1955), and the corresponding
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calculated values are displayed in Fig. 6.2. Whereas
the mean-velocity and the shear;stress profiles have
been correctly predicted by‘the two~-equation model, the
- turbulent kinetic energy is under-predickted close to the
wall. Fig. 6.2 (c) displays the calculated eddy-—
viscosity and mixing-length profiles; the former has
been normalised by UG61 and the latter by yg- Tﬁe

mixing léngth, L was calculated from the following

m>»

equation:

(6.2-1)

As shown in the figure, the predicted eddy-
viscosity profile agrees well with the data. The
interesting feature of the predicted mixing-length
profile is that near the wall it is proportional to y
and having a constant of proportionality of 0.41.
Furthermore, tﬁe mixing length attains a maximum of
0.09 of yg, a Yglue which was used in the mixing-length

model of Patankar and Spalding (1970).

[

A Compafison of predicted contributions of the
various terms in the turbulent-kinetic-energy equation
with experimental measurements is displayéd in Fig.6.3.
Considering the difficulty of obtaininé accurate

"measurements of dissipation and total diffusion rates,

the predictions appear to be satisfactory.

Hydrodynamics of boundary lavers developing under

varyving streamwise pressure gradients

The wall-boundary-layer experimental data collected



63

by Coles and Hirst (1968) forms the bulk of the data

used in this comparison. Fig. 6.4 présents the comparison.
of the pfedictions with the 32 sefs of boundary-layer
measurements which were subjected to different free
streamwise préssure—gradient variations. Each flow shgwn
in the diagram is denoted by an identity number (IDENT);
the nature of the experiment and the name of the investigator(s)
can be obtained from the accompanying table. For each
flow, the predicted variation of H,,, sg, and Ry with x

is compared with the experimental dataj; the lines

. represent the predictions, and the circles represent the
data. To facilitate more detailed inspection and
discussion, six fepresentative cases of flow (IDENT =

1500, 2400, 2500, 2800, 3300, and 4800 in Fig. 6.4) are
replotted to a larger scale in Figs. 6.5 to 6.10. For
IDENT = 2400, 2500, 2800 and 3300, the calculated U, T,
and e are also compared with the available data at the
last station of the reievant experiments,'which are

displayed in Figs. 6.12 to 6.15.

From Fig. 6.4, one can infer that the predictions
agree tolerably with the experimental data. Inspection
of the predictions made by other methods for the same
conditions, reported in tﬁe Proceedings of the Stanford
Conference, shows that where the present method fails,
e.g. IDENT = 1200, 2900, and 5300,most of the other methods
fail also; there is reason to believe that our predictions
are in as'good agreement with the data as the experimental
accuracy warrants. Ng and Spalding (1970) have discussed

in some detail.about'the accuracy of the set of data

4
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~

collected by Coles and Hirst (1968). In particular
they found that the accuracy of each individual

experiment is affected by the following factors:

(a) The procedure used for the evaluation of

-

skin-friction. The "experimental" values of Sq are
based not on direct'meaéurements; but on the deduéfion

" from velocity-profile measurements by the "Clauser-plot"
method. Differences as much as 10% in the evaluated

Sg under the same experimental conditions were found
between this method of evaluation and other methods of

measurement such as that of the Preston-tube.

(b) The lateral convergence‘or divergence of

the boundary layer. In wind-tunnel measurements,

boundary-layer growth along the side walls can cause
lateral convergence or divergence of the boﬁgdary layer
under investigafidn; it then ceases to obey Equations
(2.2-1, 2.2-2). This breakdown is shown by the lack of
momentum—-balance of the bounda:yllaye; in question.
Insofar as this is not due to incorrect values of Sg

or the breakdown of other boUndary;layer assumptions'
(e.g. the neglect of the normal-turbulent-stresses terms

in Equation 2.2-2), the cause can be attributed to the

lateral convergence or divergence of the boundary layer.

Inspection of the Stanford data reveals that flow
convergence is present in most of the experiments under

strong adverse-pressure gradients.
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(¢) Inadequate number of points to specify the

mean-velocity profile. The integral parameters H and

12
R2 can be wrongly ascribed when there are too few cross-—
stream points close to the wall to allow correct determination
of the velocity profile. This is probably the cause of
disagreement in H

12 between experiment and prediction

of flows of IDENT = 3100, 3600, 3700, and 4100 in Fig. 6.4.

Possible sources of errorg in predictions

Of course, the failure to obtain agreement between
predictions and experiments is not necessarily due to
the inaccuracies of the latter. There are also a number

of possible sources of error in the predictions namely;

(a) The "wall-law" assumptions (Equations 5.2-11

to 13) clase to the wall. In the present prediction,

the logarithmic law of the wall (Equation 5.2-11 has
been employed for the calculation of Tg from U and y at
point B (see Fig. 5.1). This practice is relatively
\simple, and in reasonable agreement with experimental
data over a wide range of flow conditions. 1In reality
however, Tg must depend upon other variables like the
pressure gradient and turbulence level etc. The effect
‘of the former has been accounted for in the "wall-law"
developed by Townsend'(1961), McDonald (1969a,b) and
Patankar and Spalding (1970, 1971), and the latter
influence appears in the formulae developed by Spalding
(1967a, b), Wolfshtein (1969), and Runchal k1969).
Therefore it may be valuable to establish later, whether
any of these proposéis can improve agreement with reliable

experimenctal data.
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(b) The neglect of the normal-stresses terms in

the momentum equation (2.2-2). In the calculations, we

have neglected the contribution of the normal-stresses
terms in Equation (2.2-2). Although they are usually
negligible compared with other terms in the equation,
they may nevertheless be significant when the turbulence
lével in a boundary layer is high as it occurs when the
flow is near separation t see for éxample, Spangenberg

et al 1967). Therefore, the result of neglecting the
normal-stress terms in flows under this situation méy.
lead to discrepancies. Corrections for these terms can
of course be made in the calculations, but the variations

of the turbulence quantities are not given with the data.

(c) The assumption concerning the starting profiles

For all the predictions shown in Fig.6.4, the initial
profiles of e and £ have to be invented according to

the procedure in Appendix 3. 1In order to test the influence
" of the starting profiles on the predictions, flows

IDENT = 2400, 2600 and 3300 were re-calculated with the
initial profiles of e and £ identical to those which,

in these cases,‘were reported by the experimenters,

(4 is deduced from T, e, and U profiles according to

)
Equation 3.2-9). The new predictions show little difference
'from the earlier ones, indicating that the assumed

profiles for e and £ (Equations A.3-2 and A.3-3) are

adequate for these flows whose immediate upstream

conditions are near a state of equilibrium.However, for

boundary layers downstream of a re-attachment,our assumed
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starting profiles of e and £ are likely to bé in error.

The effects of using the correct starting profiles for
re—attaching flows can be seen in Fig 6.11. It shows

the comparison of predictions with some recent measurements
of Bradshaw and Wong (1971). The calculations were

started first with the given starting profiles, and then
with profiles of‘e and £ as gi&en in Appendix 33 the poor
prediction of the latter is evident. 1Indeed, the. poor
agreement of Tillmann's ledgé flow (1945) displayed in

Fig. 6.5, may be attributed to the same cause

also.

Comparison of the predicted U, e, and T profiles with

experiments

Figs. 6.12 to 15 display the predicted profiles
of U/UG,T/(pUGZ) anQAe%/UG at the last station of flows
IDENT = 2400, 2500, 2800 and 3300, and compare with the
availablé data. Mindful of the}péssible inaccuracies
of the experimental data and the possible errors in

the calculation discussed above, we see that the mean-

velocity profiles are well predicted for all four cases.

A more rigorous test of the turbulence model
is its ability to predict the shear—st:ess profiles
accurately. The comparisons of these profiles with data
are shown in figure b's in Figs. 6.12 to 6.15. It is
noted that for all cases, the T profile has been well
predicted except near the free stream where however, the

value of T is small compared with its local maximum.
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Mixing-length distributions in flows with varying pressure-—

gradient

Fig. 6.16 presents the predicted mixing-

length distributions of Bradshaw's relaxing boundary

‘layer (IDENT = 2400). In this flow, the boundary layer

is accelerated by the sudden removal of the adverse
preésure—gradient. The predicted mixing—length
distributions at three streamwise stations are displayed
in the figure. It is interesting to note that in the
outerlayer, the ratio of mixing-length to boundary-
layer-thickness (Zh/yG) is predicted to be a constant,
but the value increases with the diminish of the adverse
pressure-gradient. This is also evident from the
mixing-length profiles deduced from the experiment, which

are displayed in Fig. 6.16 also.

6.2-2 Heat transfer across constant-property boundary

layers.

The prediction of heat transfer in a turbulent
boundary layer requires the solution of an additional
transport equation for enthalpy (Equation 2.4-1) where

the diffusion flux term is modelled according to

- Equation (3.2-6) with 4 equal to 0.89. The data of

Moretti and Kays (1965) were chosen for the comparison,
from which three cases of flow are presented in Figs.6.17
to 19. The heat-transfer rate is plotted as the local.

Stanton number ST vs x. The predictions are shown in



69

solid lines in Figs. 6.17 to 6.19. The first two figures
show the heat t;ansfer of a wall boundary layer in zero
and adverse preséure gradients respectively and the
predictions agree reasonably well with the data. Fig.6.19
shows the Stanton number variation of a suddenly
accelerated boundary layer downstream of a flat-plate
flow;the prediction starts to deviate from the measurements
in the region where the sudden accelefation was imposed

on the bbundary layer. Here we encounter a deficiency

of our turbulence model. The acceleration of the fluid
diminishes the turbulence level, which subsequently

causes "laminarisation" resulting in a large reductioﬁ

of the local Stanton number; the prediction fails because
of the reduction of the Reynolds number of turbulence.

It has been pointed out in Section 3.3-5 that, when ther
Reynolds number of turbulence is small, the constants
appearing in Equations (3.2-16 to 18) will no longer

have unique values as proposed but become functions of
laminar viscosity. Some of these functions have been
incorporated in other calculation procedures such as those
of Graham and Deissler (1967), Jones and Launder (1970).
Later, it may be interesting to establish the correct
functions for the constants in the present two-equation

model.

6.2-3 Supersonic turbulent boundary lavers

A logical extension of the calculation of
heat transfer in constant-property flows is the

calculation of compressible supersonic boundary layers.

v
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Based on the available experimental evidence
of density fluctuations in a supersonié boundary layer,
it has been suggested in Section .3.3-6, that supersonic
boundary layers can be calculated from the same turbulence-
model equations for constant-property flows if the
density,p , appearing in these equations is replaced by
its local value -in the calculation. Some predictions of
~supersonic flows have already been reported by Ng and
Sivasegaram (1970) who made us of an earlier version
of the present two-equation model. Fig. 6:20 presents
the comparison of the calculated velocity profile with
experimental data for an adiabatic flat-plate flow at

different free-stream Mach numbers, from 2.0 to

Mg,
4.5. The measurements are those of Coles (1953). The
agreement of the prediction with data is well within the
accuracy of the experiments when we note that the
uncertainties of measurements in compressible flows are
likely to be greater than thosé of incompressible flows.
It may be relevant to compare the calculated skin-
friction coefficient of a flat-plate flow with other .
existing empirical or semi-empirical correlations such

- as those of Coles or Spalding and Chi, but recent
measurements of skin-friction as reported by Hopkins

et al (1969) showed that none of these correlations gives

accurate estimation of the skin-friction coefficient

within the complete range of Mach number from 0.0 to 8.0.
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Figs. 6.21 and 6.22 display the comparisons
of predictions with expériment for two cases of adiabatic
compressible boundaryAlayer under favourable and adverse
pressure gradientg respectively; the méasurements are
those of Sivasegaram (1969). The comparison of the
predicted and experimental mean-velocity profiles for
these two flows are shown in Figs. 6.23 and 6.24 respectively
and the agreement is considered satisfactory. Furthermore

" for both cases of flow, &, and H,, are well predicted

12
as shown in Figs. 6.21 and 6.22, showing that not only
have we calculated the velocity profiles accurately but
we have also predicted the local density wvariations-

correctly. The value of s however, is on the average

S
over-predicted, but it is worth noting that Sivasegaram
(1969) has suggested the possibility of the measured Sq
being 5% too low. In the first third of the adverse
pressure-gradient flow, shown in Fig. 6.22, the Qalue

of sg is over-predicted by up to 25%. This is suspected
to be due to the relaminarisation of the boundary layer

which has been subjected to strong acceleration in the

upstream region of the flow.

Heat transfer in supersonic boundary layers

As a test case for the ability of the present
model to predict supersonic flow with heat transfer,
four of the measured temperature profiles of Lobb et
al (1955), obtained in zero pressure gradient with heat

transfer, are compared with their predictions. The
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comparisons are shown in Fig 6.25 and are found to be

satisfactory.

Prediction of the mixing-length distribution

Lastly, Fig. 6.26 shows comparison of a
different kind. It presents the mixing-length distribution
across the compressible boundary layer on a flat plate
as predicted by the present two-equation model.
Comparison with the distributions proposed by Maise and
McDonald (1968) and Sivasegaram and Whitelaw (1971)
suggests that they all agree reasonably well with each
other.

#

6.2-4 Developed flows in circular pipes and channels

Unlike external wall boundary layers, the
fiow in ducts requires different boundary conditions for
the transport equations as given in Section 5.2. The
calculation procedure of Patankar and Spalding (1970)
is capable of calculation of internal flows. Some of
the results of calculations of internalrflbws using the
present model have already been presented in Figs. 4.3 and
4.4; in which the calculated mean-velocity-defect
pfofiles for a pipe and a channel are plotted. Fig. 6.27
displays a more detailed comparison between prediction
and experimental data for a pipe flow. The data are
those measured by Laufer (1954); the Reynolds number of

UmaxP is equal to 500,000. The calculated
v

?

the flow,

# The term "channel flow" is taken to mean flows between
two large parallel plates or flows in a rectangular
duct with large aspect ratio.
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mean—-velocity profile shown in Fig.G.Z%(a) is in good
agreement with the experimental data.As expected, T 1is
predicted to be proportional éo the radial distance from

the axis of the pipe, as shown in Fig.6;27(b).Also

digplayed in the same figure is the prediction and data

of the variation of ej; although the turbulence intensity

is underpredicted near the wall, the prediction nevertheless
agrees reasonably well near the centre of the pipe, |
where both prediction and experiment attain a minimum.

The calculated distributions of ,&m and £ are displayed

in Fig.6.27(d).Although the predicted mixing length
becomes infinite at-the centre, it remaing proportional
to £ over most part across the pipe, at a constant ratio
of approximately 0O.54, as revealed from the plot ofl/im.
This is identical to the outcome of Equation (4.2-7) for
C4 equal to 0.09, implying that the flow is in local |
equilibrium‘over much across the pipe. As a further
comparison, the'predicted turbulent-kinetic—~energy .
balance and the relevant experimental data 6% Laufer(1954)
and Lawn (1971) are presented together in Fig.6.28. "The

agreement is considered satisfactory.

The comparison of predicfion with experiments
for a'channel flow is displayed in Fig.6.29. The daté
to be compared are those of Laufer (1951). The comments
for the comparison of the pipe flow are applicable to _
the channel flow also. However, inspection of Fig.6.29(b)
reveals that the skin-friction is over predicted by about
10%. Examination of Laufer(s data reveals that while

the mean-velocity profile conforms with the log-law
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(Equation 5.2-11), the constan£ £ , obtained from these
data takes a value much greater than 7.8, which is

used in the calculations. That this disagreement is

the main cause for over-prediction of the skin-friction

is revealed by the good agreement in the velocity-defect
plot shown in Fig.4.4, where the calculation is independent
of Eduation (5.2-11). Thefe is reason to believe that
Laufer's skin-friction measurement is in error. Nevertheless
the important point to learn from the result of the
comparisons shown in Figs.6.27 and 6.29 is that both the
pipe and the channel flows are calculated correctly

using the same set of constants as found applicable to

external boundary layers.

6.2~5 Wall-jet type boundary lavyers

When a stream of fluid is injected tangentially
to a main stream, which is moving either at a higher or
lowe; velocity than the injected fluid, a wall-jet flow
is developed downstream of the injection slot. The
comparison of the calculation with experiments to beé
presented will be restricted to constant - property fluids

only.

Plane two-dimensional wall-jet flows

A detailed comparison of the measurements of
Tailland (1970), for a plane wall jet in a stagnation
surrounding, with the corresponding predictions
is displayed in Figs.6.30 and 6.31. The streamwise

. ps . s 2 .
variation of friction coefficient, Tq/(pUmax), is
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plotted in Fig.6.30(b).Although both the growth rate and
the velocity decay have been correctly predicted, the
friction coefficient has been over-predicted by about

3%. Examination of the mean-velocity and shear-stress
profiles displayed in Fig.6.31 reveals that the predicted
positions of velocity maximum and vanishing shear are
coincident while the measurements indicate that the
latter lies closer to the wall than the former. The
failure to predict the different positions of thg'velocity
maximum and the vanishing shear lies in the use of the
éddy—viscosity hypothesis of Equation (3.2-9); it

implies that the mean-velocity gradient and the shear
stress must vanish together. As has already been pointed
out in Section 3.4-5, the use of Equation (3.2-9) implies
the negligibility of shear-stress diffusion. Howéver,
near the point of zero shear in é wall jet, the diffusion
of shear stress is no longér negligible compared to the

generation of the shear stress..

Predictions by the incorporation of the shear-stress

equation

*

One of the possible ways of accountiné for the
diffusion of turbulent shear is to soive the shear-stress
transport Equation (3.3-5) in place of the eddy-viscosity
| hypothesis (3.2-9). A computer program for the two-
equation model was modified to solve this additional
transport equation. The constants 9_ and Cg in Equation

T

(3.3-5) are taken as 0.9 and 0.235 respecfively according
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to the proposal of Hanjalil (1970); C. is assumed
equal to Cg according to the requirement that the
shear-stress equation should reduce to the eddy-viscosity

Equation (3.2—9) when the convection and diffusion of

shear stress are neglected, as discussed in Section

) 303_4-

The results of calculation for the plane wéll
jet are plotted in dotted lines in Fig.6.31. .Comparison
" of the earlier predictions revéals that the mean-
velocity profile is in better agreement with the
experiments in the near-wall region of the wall jet.

A higher value of 7T however, is predicted as shown

max»
in Fig.6.31b, but this may be diminished by making more
careful choice of the constants in the shear-stress

equation.

Wall jets in a moving main 'stream

Fi§.6.32 compares the predicted result with
the semi-empirical correlation of Patel (1971) for a
Vconstanteproperty wall jet in a slower moving stream.
The development of the flow proceeds from left to
right in the diagram. As shown in these figures, the
' predictions agree well with Patel's correlation over
most part of the flow but deviate progressively from the

correlation at the right-hand side of the diagrams.

Fig. 6.33 presents the comparison of the
predicted streamwise variation of the hydrodynamic as

well as the heat transfer properties with the experimental



77

data of Kacker and Whitelaw (1968, 1971). Two cases

of wall~jet flow ﬂare presented for comparison; one in
which the injected fluid is at a higher velocity than
the main stream (U __,51/Ug = 2.3) and the other in
which the injected fluid is at a lower velocity than
Fhe main stream (Umax,S£/UG= 0.75). For both cases, the
prediction starts at ten slot heights from the jet
exit. As revealed in Fig.6.33, all the hydrodynamic
properties for the former case are well predicted. For
the latter case, although the variation of the shape
factor is reasonably well predicted, the agreement for
Ry, and sg is rather poor. This may be due to the
presence .of lateral convergence in the flow. This can
be seen far downstream of the injection slot where our
calculations underpredict the skin-friction coefficient
but overestimate the rate of incfease of the momentum-
deficit-thickness; since our calculations satisfy the
integral momentum equation, the data must have suffered

from the presence of lateral convergence.

Fig.6.33e presents the heat-transfer property
of the wall jet in the form of the film-cooling-effectiveness,
defined as the ratio of the temperature difference between
. the main-stream fluid and the wall to the temperature
difference between the main-stfeam and the iﬁjected fluids.
+ The agreement between predictions and data for both cases

»

of flow is very good.

A detailed comparison of the predicted U, T and

e profiles with experiments for the case of
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Umax,SL/UG = 2.3 are displayed in Fig.6.34. The
profiles at 50 slot heights and 150 slot heights are
compared. For both sta£ions, the mean-velocity profile

is well predicted, but the predicted T and e profiles
deviate considerably from the experimental data. However,

the calculations do predict a gradual decay of the

turbulence quantities as the flow proceeds downstream.

~Radial wall jets

Two cases of measurements of radial wall jets
in a stagnation surrounding have been obtained in the
experimental investigation described in the next
Chapter. When the present two-equation model with the
same constants were used to calculate the development
of these flows, the growth rate Y%/r was found to be
underestimated by as much as 40%; the predictions are
shown in dotted lines, in Fig.6.35 where the relevant
measurements are also displayed. Here, we encounter
another defect in our turbulence model. It may be
recalled that the last term in Equation (3.2-18) is.
modelled empirically as proportional to f, which is
assumed to vary as a function of Z/y according to

Equation(3.2-16). However, it can be shown from the
condition of self-similarity that, if a radial wall jet
is to grow at the same rate as a plane wall jet, the
iength scale of the former should be about /5 times

that of the latter. But this increase in £ in a radial
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wall jet will also increase the magnitude of the last

term in Equation (3.2-18) compared to the other terms,
thus preventing the correct prediction of the radial
wall-jet flow. fo allow the two-equation model to predict
the behaviour of radial wall jets correctly, it is
required to modify the algebraic expression of f. Thus,

the following formula is proposed;

-1 q.
£ = [c £y(1 + cALE ]

rdx
A A A e AT N

where C7 is a constant. It is chosen so that

(6.2-2)

the turbulence model with the modified expression for £ -
gives the correct prediction of the growth rate of self-
similar radial- wall jet (y%/r = 0.085): a value of

150.0 was found to be suitable.

The expression for £ shown in Equation (6.2-2)

possesses the following properties:

(i) for a plane flow, dr/dx vanishes and

Equation (6.2-2) reduces to Equation

(3.2-16),

(ii) as y approaches to zero, £ becomes
proportional to y according to Equation
(4.2- 9); thus,

C4Z,q

(—)
h 4

H
[H

which is independent of r.
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Although other forms of expressions for f
have been triedf the functional relationship of Equation
(6.2-2) was found to be the most satisfactory.

N

The resulting predictions for two cases of
radial wall-jet flows (cases a and b), shown by solid
lines in Fig.6.35, are combaréd also with the relevant
ekperimental data. As can be seen from the growth rates
of the two flows, case (b) represents a wall-jet flow
which is cloée to fhe state of self-similarity, while
case (é) represents a developing radial wall jet. The
predicted growth rate and velocity decay for both cases
‘agree reasonably well with experimental data as shown in
the figure. Comparisons for the mean-velocity, shear-
stress, and turbulent kinetic energy profiles for case (b)
are displayed in Fig.6.36. Examination of the mean-velocity
and energy prqfiles reveals that,bthe height of the
velocity maximuﬁ from the surface and the turbulence level

were not correctly predicted, but, on the whole, the

£ (i) £ = |cge 2R -
L= 4-1y Tg ; the expression gives satisfactory
prediction for radial wall jets but fails to
predict correctly the developments of the wall

boundary layers strong adverse pressure gradients.

(i1) £ = |Ca  2£7£]7

— w— — b

the expression neither

’ - predicts the wall-jet flows nor the flat-plate flows

correctly.
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agreement between calculation and data is ~ satisfactory.
The agreement is perhaps the best justification for the

proposed modification of the model.

6.3 Some comparisons of the present calculations with

similar calculations from other methods

In the foregoing Section, we have compared
qualitatively some of our calculations with a large
variety of wall-boundary-layer measurements; in some cases
our calculations agree well with the experimental data
while in others there are disagreements hetween our
predictions and measurements. Therefore, it is useful
to compare some of those predictions with the predictions

of other methods.

Calculations from a number of methods have
been chosen for these comparisons. They entail the
zero—equation mixing-length model of Patankar and Spalding
(1970), the one-equation model of Bradshaw et al (1967),
the three-equation model of Hanjali¢ (1970), and the

five-equation model of Daly and Harlow(1970).

.6.3—1 Comparisons with simpler models

Statistical comparison for external wall boundary lavers

The Stanford Conference on turbulent boundary
layers stimulated interest in discrimination between
various available procedures by comparison with a

standard set of data. However, no quantitative measure
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as to the accuracy of prediction of each individual

-procedure has been reported. Since the accuracy of each’

set of these experimental data varies to a considerable degree,
a statistica; comparison of the deviation of each

procedure from the data should be more desirable.

Such a comparison between the Patankar-Spalding
model, Bradshaw's model; and the two-equation model
has been undertaken first by Ng and Spalding (1970Db).

" The result of such an investigation is presented in Table

6.1.
model Patankar- | Bradshaw|two edqu.| two—-equ. model
averagd Spalding et al model proposed by Ng
and Spalding
value of (1971)
the 18 runs
Asg x 10° 0.12 0.11 0.11 0.10
AR2 0.11 0.09 0.09 0.10

Table 6.1 Mean deviations of predictions from the data
for three models of turbulence.

Table 6.1 1lists the average'value of AH12,
Asg, and ARy, calculated by the three models, for all
theqmandatory and optional-requested runs* of the

Stanford Conference. The results calculated from the
Patankar-Spalding model, Bradshaw's model, and the-present

two~equation model, are displayed in Columns 2 to 4

respectively. The entry in the fourth column contains

# exceptions are IDENT = 5000, 5300
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the results calculated by an earlier version of the
two-equation model (Ng and Spalding 1971), whose constants

have been optimised with reference to wall-boundary-layer

_’..

flow only. The quantities AH12 Asg, AR, for each flow

k]

are defined by,

N . N
) H
) = 9o ex i
?
N
1 -
Bss = Ngé%/SSaP - sS,ex/l ) . (6.3-2)
N
1 R
=nds ARy = —Z/’l - 2By . (6.3-3)
Ni=1 Ro ex

Here N is the number of x-station values for
which experimental values are available for H12,SSa and
R, downstream of the starting point of the calculation;
subscript;;>and>ex denote "predicted" and '"experimental
respectively.

%indful of the degree of accuracy of the
Stanford datgtjghich has been discussed in Section 6.2-1

inspection of the entries in Table 6.1 reveals that the

~

" three methods give about the same degree of accuracy

+ constants proposed by Ng and Spalding (1971):

2 €3 Cyq' Oe 04 02 g
0.1 0.84 0.55 2.16 2.0 1.2 2.0 4
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statistically in the calculation of external wall
boundary layers. The result is perhaps not surprising:
most of the data collected are very near to the state
‘of local equilibrium; as it may be recalled in Section
4.2 that, when local equilibrium prevalls, these three

models show many identical features.

Comparison for supersonic flows

Unlike incompressible flows, the absence of
a large set of accurate supersonic boundary-layer
measurements makes a statistical comparison less
satisfactory. Therefore, the same three methods of
calculation were compared quantitatively only for the
two cases of supersonic flows measured by Sivasegaram
(1969). 1In Figs. 6.21 and 6.22, curves showing the
fractional deviation of the two other predictions from
the predictions of the two-equation model are plotted
under each sub-diagram. Inspecpion of these curves

reveals that the predicted s, and 62 by the threse models

S
differ by less than 5%. However, the predicted H,,
by Bradshaw's model is about 20% larger than that bj the
two-equation model. Neverthelesé, the difference is
within the degree of uncertainty of the experiments.
This can be seen from the data of Hié displayed in Figs.
6.21 and 6.22, in which more than 20% change in.H12

due to a 10% change of the recovery factor used in the

evaluation of the experimental H12 is observed.

?
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6.3-2 Comparisons with higher-order models

A statistical comparison of the Stanford data

for Hanjalic (1970) and the Daly-Harlow (1970) models

is being undertaken by the present writer and will be
repo;ted separately. The comparison 6f predictions from
Ehe two-equation model and some other higher-order
models will be restricted to the hydrodynamic properties
of developed channel flows and wall-jet flows only. The
former flows are capable of prediction by most of the
higher-order models as well as by some simpler models
but the latter flows are unlikely to be predicted

accurately by simpler models.

Developed flow in a channel

AY

Fig. 6.29 also reproduces the prediction.by
Daly and Harlow (1970) for Laufer's channel flow
experiment. Inspection of both the predicted velocity
profile and turbulence quantities displayed in the'figure
reveals that the two-equation model give predictions
which are no worse than and in many respects closer ‘to
the measurements than the higher—-order model of Daly -
and Harlow. Although higher-order models should offer
~ closer approximation to the actual turbulence motion
by the use of a larger number of transport equations,
they do not however, always give more accurate results;
this is because in general, they require a larger number

of constants than simpler models, all of which have to
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be optimised accurately to give the correct predictions.

Plane wall jet in a moving main stream

Fig. 6.34 also displays the U, T, and e profiles
predicted by Hanjalié (1970), for the film-cooling
measurements-.of Kacker and Whitelaw (1971). Comparison of
the _accuracies of prediction by the two-equation model
and by Hanjalié's model shows that,the general features
of the flow are predicted to the same degree of accuracy
by both methods. However, the use of the shear-stress-
transport equation in the latter model to'account for
the diffusion of turbulent shear, results in more
accurate prediction near the region of velocity maximum
and zero shear. The implication of the use of the shear-
stress equation has been discussed in Sections 3.3-4

and 6.2-5.

6.3-3 Concluding remarks from the comparisons with

other models of turbulence

Although it is limited to-the hydrodynamic
behaviour of wall boundary layers, the comparison of the
predictions by the two-equation model with those by other
simpler models shows that the former are as accurate as

the latter.

However, the greatest merit of using the two
equation model 1is that there are boundary-layer flows for

which the two-equation model is capable of correct
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prédictions, while simpler models would fail. Two
examples will suffice to emphasize this point. The
mixing-length hypothesis allows all the free-jet flows
to be predicted quite well,vbut only if'the ratio of the
mixing length to the layer thickness has a different
value for each flow. The present model, on the other
hand, allows all the flows to be predicted with a

single set of constants. The second example concerns
the wall-jet flow. We have calculated satisfactorily
the main features with the present model; whereas the
simpler model of Bradshaw et al provides no predictions
in which the shear stress exhibits both positive and -

negative wvalues.

However, when the two-equation model is compared
with higher-order models, it must b2 expected that the
latter possess a greater ability to fit a larger range
of experimental data. For example, models which use a
shear-stress equation instead of the eddy-viscosity
hypothesis should be better equipped to predict wall-

jet flows.

Higher-order models, however, take longer time
to develop; and as a result, it is not possible to put
to any solid conclusion from this limited demonstration
that there are gfeater merits in using higher-order
models than the two—equatibn models for the prediction
of boundary layers. Furthermore from the user's point

of view, higher-order models will require more computer
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time to solve the larger number of differential
equations.: The two-equation model appears to be a

satisfactory compromise between accuracy of the solution
>

and economy of execution.
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CHAPTER 7

EXPERIMENTAIL INVESTIGATION OF RADIAL WALL JETS

7.1 Introductory remarks

The calqulation procedure for two-dimensional
‘£urbulent boundary layers developed in CHAPTERS 3 and 4
rests on the assumption that a number of terms in the
exact equations are reducible to universal functions
which include a number of empirical constants. Although
the equations and their constants had been shown to
work favourably in plane boundary layers and pipe flows,
it was nevertheless found that modification to the model
was required in order to predict radial wall-jet flow
correctly. The essence of this Chapter is to report the
measurements of radial wall jets used for the comparison

with the two-equation model predictions.

A radial wall jet is resulted from one of the
two cases of flow (é and b) shown in Fig. 7.1. In case(a),
the iméinging jet is close to the wall and the jet is
deflected by both the wall and the circular flange fixed
‘ at the jet exit. In case (b) the distance between the
jet exit and the wall is large compared with the jet
'~ diameter such that the iet is deflected by the presence
of the wall only. Radial wall jets are common occurence
in process engineering and in aerospace engineering.

_ Therefore, the understanding of the radial wall-jet
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phenomenﬁﬁ is of great practical importance. " There

is another welcoming aspect to the study of radial
wall-jet flows, i.e. side-wall effects, which very
often. interfere with the wind—tunnei experiments, are
absent in such flows, allowing a truly two-dimensilonal
flow. The measurement of the development of radial
wall jet in a stagnation surrounding forms the basis of
the present investigation. Both the mean velocity and

the turbulence correlations are reported in Section 7.7.

7.2 A survey of previous investigatidns

To the best of the writer's knowledge, the
first experimental investigation of radial wali_jet
was performed by Bakke (1957) whose work was stimulated
by the earlier theoretical investigation of Glauert (1956).
Other experimental investigations of the hydrodynamic
~aspects of radial wall jets were reported by Bradshaw
and Love (1959), Hodgson (1962), Poreh et al (1967),
Jayatelleke (1969), and Baker (1969). All these
investigations are summarised in Table 7.1. It is
obvious from the Table that, although all the data show
that the wall jet grows proportionally to the fadius
from the axis of symmetry, there is lack of general
agreement as to the rate of growth reported by different
investigators. For example, the reported growth rate
varies from 0.046 as reported by Jayatelleke to 0.093

by Poreh et al and only recently, Nakatogawa et al (1970)



measurements

Investigator/s Geometry Range of velocity Yi/r
of experiment transducer taken deducéed from
jet exit used measurements
(Ref.3) . <rs .
’ r, =6.3 cm 30.3 cm Pitot-tube U 0.077
Bradshaw 22 = 50 cm 12.6 cm R
and Love r. = 2.54 < r<g
(Ref.16) 2 T &* cm 51 cm Yaw-meter [9) 0.085
Hodgson 2, = 1,91 cm 11.4 cm
(Ref.65) o 7,62 < r< — =
= /.0c cm 30.5 cm hot wire U, uc, v 0.085
2 2 r 1
Poreh et al Z, = 61 cm 45.7 cm U,ou™, v, = 0.098(= )
(Ref.112) ry = 2.54, <r< - - r2
7.62, 168 cm hot wire w v, | =~ 0.093 at
5.08 cm skinfr;ct;on ro
pyfriction | equa to

Table 7.1 continued.

16



Jayatelleke Zq = 0.165 7.5 cm
(Ref.67) 0.508 Lr<
‘ 0.567 cm 31.8 cm Pitot-tube [9) 0,046
Y1 =7.5 cm
Baker Zq = 0.254 cm 7.6 cm
(Ref.1) ) - 7.6 <rg
Fpo T A em 35.5 cm Pitot-tube U 0.054
Table 7.1 Survey of experimental data of radial wall jet; r, = radius of wall
jet exit slot; Z, = slot height; r, = radius of the impinging jet;

Zy ¥ height of the impinging jet.

6
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reported that the grdwth rate of a radial wall jet should.be
0.0683. Far downstream, the radial wall jet should

attain a self-similar form, and therefore, should be
independent of its inlet conditions. However, some of

'~ the disagreement of the results listed in Table 7.1

‘may be the result of measurements not far enough downstream
of the exit. To illustrate this point, the data of
.Jayatelleke (1969) are plotted as Y% vs r in Fig.7.6.

‘This figure shows that, Y% is only proportional to r near
the downstream end of the region of experiment. If the
wall jet is self-similar, then, according to the boundary-
layer equétions, not only the mean-velocity, but also

the turbulence qﬁantities should exhibit self-similarity
also. However none of the investigators listed in

Table 7.1 have made enough detailed turbulence measurements
as to aid such a clarification. Although some turbulence
intensity measurements have been reported by Hodgson(1962)
and Poreh et al (1967), only the latter prévided some
shear-stress distributioﬁ profiles. But, they show such

a large scatter (see Fig. 7.16) that it is difficult

to draw any complete conclusion as to whether the wall-

jet data reported attained self-similarity or not.

Another possible cause for the difference
in the reported growth rate may be due to the different
velocity transducers ﬁséd in each investigation. As
shown in Table 7.1 the measurements are made with either
total head Pitot-tube (including yaw-meters) or constant-

temperature hot wires. Their different characteristic
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response in low speed flows with a high turbulence

level, as those existing in radial wall jets, may result

in different measured velocity profiles. In particular,
the Pitot-tube is likely to underestimate the
mean-velocity profiles of flows with high turbulence

levels due to the presence of large instantaneous

yawing angles (see Fig. 7.7).,7This effecf will contribute
a large error in radial wall-jet measurements, where the
local turbulence level,ve%/U, is greater than 40% over

most part of the wall jet as disﬁlayed in Figs.7.12(f)

and 7.13(f). Another important iﬁfluence in pitot-tube
measurements is its response at low-speed flows. MacMillan
(1954) has reported that corrections have to be made for
Pitot~tube measurements at low speed flows, depeﬁding

~on the size of the pitot. As the range of velocities in

a radial wall jet spans from its local maximum to zero

at the stagnation surroundings and at the non-slip wall,

large corrections may be required in part of the measurements.

- On the other- hand, botﬂ the mean-velocity
and turbulence levels can be calculated from the output
signals of the hot wire as shown in Appendix 4. Furthermore,
an indirect check on the accuracy of the hot-wire
measurements can be provided from the comparison of the

" measured shear stress with that deduced from the integration

of the momentum equation.

An example of the difference in measurements
of a radial wall—jet profile by Pitot-tubes and hot wires

is displayed in Fig.7.8. 1In this figure, the same
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velocity profile, measured by two Pitot-tubes of

different configuration, 1s compared with that measured

by a constant-temperature hot wire. One of the Pitot-
tubes was a 0.82 mm diameter tubular probg and the other

was a flattened pitot with 0.10 mm by 1.01 mm rectangular
opening; the latter is identical to that used by Jayatelleke.
During the course of the pitot-measurements, negative

total heads were measured on the outer edge of the wall

jet, but these readings have not been displayed in the
figure. This phenomeéﬁ% has formerly been observed by S
Bradshaw and Gee (1960), Heskestad (1965), and Jayatelleke
(1969) and is due to the severe yawing of the total

velocity vector in the presence of entrainment at the

outer edge. Fig.7.8 shows that the resulted Y%'s from -

the three measurements differ by as much as 15%.

7.3 Object of the experimental investigation

In the.light of the findings discussed
in the foregoing section, it was de;ided to carry out
new measurements for radial wall jets in stagnation’-
surroundings. The area of enquiry will be restricted to
the mean-velocity profiles and all other second-order
turbulence quantities, specifically, ;E,.;E, :?, and
uv. Through these measurements, we hope (a) to establish
the asymptotic growth rate of the radial wall jet, and

(b) to provide suitable experimental data for the basis

of assessment of the two-equation turbulence model.
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7.4 Methods of measurements and data reduction

The difficulties of obtaining reliable
velocity data of radial wall jet from Pitot-tube
measurements have been discussed in Section 7.2. Hence
it was decided to employ constant-temperature hét wires
for both mean-velocity and turbulence measurements in
the present investigation. Many previous investigators
have proposed ways of calculating the mean velocity and
turbulence correlations from the output of hot-wire
signals. An examination of these methods in Appendix 4
leads to the proposal of interpreting the mean and
turbulence quantities from signals generated when a
single wire was placed at four different angles relative
to the direction of flow. The values of U,lﬁi,';i,'az, '
and uv, were calculated from Equation (A.4-7 to A.4—11)
when the d.c. and a.c. components of the hot-wire signals
were measured. In practice, it is difficult to repeat
measurements at the identical pésition for each traverse
of the hot-wire at one of the four inclinations to the
flow, so interpolations are required. The interpolations
and the solutions of Equations (A.4-7 to A.4-11) were
calculated in a data-reduction program, by a CDC6600

computer.

7.5 Experimental apparatus

7.5-1 The test plate and nozzle assembly

The experiments reported below were carried

out with two types of nozzles blowing normally on to a
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test plate, the general arrangements of which are shown
in Fig. 7.2 and are designated as case(a) and case (Db)
respectively; the dimensions of these nozzles and test

plate are also displayed.

. The test plate was a 0.91 m square by
0.95 cm thick aluminium plate, mounted vertically on
a steel frame, which was separated from the mounting
frames of the nozzle and the traversing mechanism of the
hot wire. This was to prevent the transmission of any
possible mechanical vibrations. The test-plate mounting
has three foot screws and a screw jack, which permitted
adjustments of the "square-ness' of the plate with respect
to the impinging nozzle. Three identical Pitot-tubes
were mounted on the plate, at 120° pitch, and at 43 cm/
radius from the centre of the plate. Furthermoge, the
height of these pitots was fixed at 1 cm so that symmetrical
flow was assured when the three pitots showed identical

readings. S

For the nozzle assembly in case (a), air
was delivered from a centrifugal fan through a plenum
box and a 7.6 cm bore PVC pipe of 3.05 m long (see Fig.7.3a)
The length of the pipe was necessary to eliminate any
‘presence of swirl in the jet. The compressed air was
regulated to within + 1 deg. C of the ambient temperature
at exit by an automobile radiator fitted inside the
plenum box. Before entering the fan, air was passed
through an electronic éir cleaner to remove dust particles

larger than 0.03 microns.
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The nozzle and plate assembly of case (Db)
was set up after it had been realised that it was not
possible to obtain a self-similar wall jet within the
range of measurements in case(a), due to the limited size
of the.test plate. However, instead of changing to
another larger test plate, further measurements were
éarried out using a smaller size nozzle as shown in Fig.7.2(b).
The air supply system is shown in Fig.7.3(b). " In this
case, no air cooler was necessary as it was found that
within the required range of flow rate, the compressed
air was at the same temperature as the ambient surroundings.
The optimum height of 2.54 cm of the nozzle from the test
plate surface was chosen after a preliminary investigation.
By traversing a single wire at a fixed radius of 27 cm
from the axis of symmetry each time the impinging distance
Z, is increased, it was found thét, when Z, was greater
than 1.9 cm, the height of the wire at which its mean .

d.c. signal equals to half the maximum value remained
unchanged. In this investigation the mass flow rate of
the compressed air was kept nearly constant at 0.03 kg/min,
but the increase of flow rate by 50% was found to give

very much the same result.

. 7.5=2 Instrumentation

The items of the measuring instruments

are listed below:

1. A probe traversing mechanism mounted on a GRIMSTON
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No.1 compound table as shown in Fig.7.4. The combined

span of the traverse is 65 cm by 15 cm.

2. A cathetometer, mounted on another compound
table fitted with a dial gauge, as shown in Fig.7.4 to

locate the exact distance of the hot wire from the test

plate.

3. A DISA 55A01 constant-~temperature hot-wire
anemometer, DISA 55D10 lineariser, DISA 52B30 true
integrator, DISA 55D35 rms voltmeter, FENLOW 301-A
digital voltmeter, TELEQUIPMENT D53 oscilloscope. These
instruments are shown in Fig. 7.5. © A TEKTRONIC 564
Storage oscilloscope was used in taking photographs of

the hot-wire traces shown in Fig. 7.17.

4, DISA 55F04 gold-plated boundary-layer probe,
DISA 55F02 gold-plated 45° slanting probe used in all

the measurements.

5. A low turbulence level (Juz/UzO.4%) hot-wire
calibration wind tunnel with ad}ustable flow rates from
O to 50 m/s; the tunnel and its accessories have been

described by Melling (41970).

6. A verticle U-tube manometer, with 90 cm long
columns filled with paraffin (s.g. 0.787), was used to
measure mean velocities above 40 m/s. For velocities
below 40 m/s, a micro-manometer capable of reading an
accdracy of a head of 0.02 mm of paraffin was used; the

micromanometer has been described by Baker (1971).

N
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7.6 Operating procedure

7.6—-1 Setting up of the test plate and the nozzles

Before the test plate was placed against each of
the nozzles, Pitot-tube traverses across the nozzle exit
were made to ensure that the impinging jets were indeed
axisymmetrical. At the start of each run, the nozzle
was first located centrally and perpendicular to the
test plate. The correct height of the nozzle from the
plate was checked by means of slip gauges. When the air
supply was turned on, finer adjustments of the plate were
made, when necessary, to obtain identical readings from

the three fixed Pitot-tubes mounted on the plate.

7.6-2 Hot-wire calibration

+The linearised hot wire was calibrated
before and after each set of runs, which normally lasted
about four to five hours. A typical calibration curve
is shown in Fig. 7.9. If the slope of the two calibration
curves differed by more than 5%, the set of runs would
be rejected. Otherwise, the calibration curve for each

run was linearly interpolated between the two curves.

7.6~3 Method of measurements

In accordance with the results of the
analysis in Appendix 4, each experimental station was

traversed by single wires placed at four different



101

inclinations to the main stream. The boundary-layer

probe (55F04) was.first traversed over all the experimental
‘stations. It was then replaced by the 45° slanting

probe (55F02), and the procedure was repeated with

the probe in each of the three inclinations.

For case (a), the first station of the
measurements is at the exit of the nozzle, but for case
(b), the first station is 7.3 cm from.the nozzle exit;
no measurements were taken closer to the nozzle because
the thickness of the wall jet in this region was no

longer large compared with the length of the hot wire.

Determination of the distance of the hot wire from the wall

Each traverse was always .started at the
farthermost point from the test plate. At three
different positions, the distance between the hot wire
and its optical image was measured by the cathetometer,
mounted on a compound table which traversed at right
angle to the plate as shown in gig. 7.10. Since both
the object and its image remained at the same distance

from the cathetometer, no re-focusing of the cathemometer

was requiggd during the measurement.

The constant-temperature hot-wire circuitry

The block diagram of the hot-wire
circuitry is displayed in Fig. 7.11. During each traverse
of the hot wire, both the mean and r.m.s. voltage were

recorded. The rms-meter was operated at the maximum
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integration time-constant of 30 seconds, and the mean
voltage was taken over a perioa of 200seconds throughout
the experiments. However, for case (a) the mean voltage
was read direct from the digital voltmeter because the
integrator was not available at the time of the experiment.
In all the measurements, the hot wire was operated at

an overheat ratio of 1.8 and with a high frequency

cutoff at 10 kHz.

7.7 Presentation and discussion of results

The readings taken for cases (a) and (b) were

processed in a CDC 6600 digital computer to obtain the
2.2 32

profiles of U, u , v, , €, and uv according to

Equations (A.4- 7 to A.4-11). These profiles for each

station were tabulated in Appendix 5.

7.7-1 Mean velocity and turbulence guantities of the

wall jets

The mean velocity, the turbulent shear stress,
the three components of turbulence, and the turbulent
kinetic energy of each station, for both cases (a) and
(b),'are displayed in Figs. 7.12 and 7.13 respectively.
Each of these profiles is nondimensionalised by its loéal
' Umax and Y%- The reader may-notice that the scatter of
the mean-velocity profiles for case (a) is greater than
the corresponding profiles of case (b); this is entirely

the result of the much shorter averaging time of output

hot-wire bridge voltage in case (a) compared with case (b)),
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where each signal was integrated over a period of 200
seconds. The intermittent character of the turbulence
of the radial wall jet can be seen from the traces of
the hot-wire signal shown in Fig.7.17. Four traces at
Adifferent distance from the wall were taken with a
straight wire placed normal to the flow, the duration

of the trace being one second. It can be seen that long
integration‘period is necessary, espeéially near the

~outer edge of the wall jet.

Examination of Fig. 7.13 reveals that while
the mean-velocity profile attains its self—similér form
much more readily, the furbulence quantities do not
become self-sgsimilar until much further downstream.

However, the shear-stress and u2 profiles tend to become

self-similar earlier that the v2 and w2 profiles. This
can be seen from the measurements displayed in Figs. 7.13(b)

to (e); both the uv and u2 profiles are found to attain

" their self-similar shape at the second station, but v2
andi&i do not become self-similar until the third station.
this is in agreement with the Navier-Stokes equatioqs
because in a two-dimensional boundary layer, energy

taken from the mean motion of the fluid is firsf converted
into ;E, which is then transferred to the §ther two
components of fluctuation through the action of pressure
fluctuations, as shown in Equations (2.3-1 to 3). The

. phenomenem discussed above has been observed in many

free shear flow experiments like those of Wygnanski and

Fiedler (1969) and Champagne et al (1970).
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For case (a), the turbulence quantities do not
exhibit a self-similar state within the range of the

measurements.

7.7-2 The rates of growth and mean velocity decay of

. the radial wall jets

The measured development of y4 and U for
: 5 max

both cases (a) and (b) are displayed in Figs; 7.14 and
© 7.15 respectively. For case (b), y; is found to be

2
proportional to r, the constant of proportionality,

i.e. the growth rate, being 0.085. However, the decay
_10 15

, as shown in Fig.7.15.

of Um is found to vary as r

ax

which is the wvalue

The exponent is smaller than - 1 ,

found in the decay of a fan jet (Heskestead 1966), and
which is also the value should perfect similarity prevail
in a wall jet; the departure of the exponenﬁ.from unity,

albeit small, shows the slight Reynolds number dependence

- of the flow.

.

For case (a), the gfowth rate does not attain
a constant value; this and the lack of self-similarity
of the turbulence quantities displayed in Fig. 7.12<show
that the radial wall jet of case (a) was ﬁot yet fully
developed within the range of measurements.

7.7-3 Positions of.vanishing shear stress and velocity

‘maximum

EXamination Of the mean velocity and Uv profiles
in Fig. 7.12 and 7.13 reveals that the position of

zero shear and the position of velocity maximum do not
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coincide. In particular, the heights at the point of
velocity maximum and at the point where Uv vanishes are
0.2 and 0.075 of Y3 respectively as shown in Figs. 7.13(a)
and (b). The non-coincidence of these two points in

wall jets has previously been confirmed by Bradshaw and
Gee (1960). Poreh et al (1967), Tailland and Mathieu
(1967, 1970), Manian and Besant (1969) and Kacker and

Whitelaw (1971).

7.7-4 Accuracy of thé measurements

The accuracy of the results presented is affected
by two factors: the accuracy of the measuring equipment
and the correctness of the method used in the data

reduction.

The accuracy of the hot-wire anemometer and
the other electronic equipments used depends to a very
_ large. extent on frequency of the turbulence to be
measured. As this differs at different parts of a radial
wall jet, it is therefore not possible to quote an

absolute figure on the accuracy of the instruments.

Three factors contribute to the data-reduction

inaccuracies.

(i) The QOSt important factor is the accuracy
of the hot—wife calibrations. As shown in Fig.7.9, the
calibration curve is indeed linear and the variation of
the constant of proportionality K in Equation (A.4-2) is
under 2% within the-range of veiocity encountered in the

experiments.
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(ii) The accuracy of the method of calculation
of the mean and turbulent quantities from Equations (A.4-7
-to A.4-11) is difficult to estimate without the knowledge
of the other higher-order correlations, which we have
neglected in the analysis. However, these higher-order
correlations must bé small compared with the second-

order correlations in low or moderate turbulence level.

We have also neglected the V - component of
the mean velocity in the calculations. However, this
should not cause large error in the‘results. As can be
seen from the V - profile displayed in Fig. 7.13a, V is
less than 2% of Umax over most of the wall-jet thickness.
Nevertheless, near the outer edge of the flow, V/U should
approach infinity, implying that the neglect of V in

this region can cause large error in the results.

(iii) The last factor is the determination of
the effective centre of the hot wire. In our measurements
this was treated as the geometr;cal centre. In places
where the scale of turbulence is small compared with
~ the length of the wire or where there is a large mean-
velodity gradient, the effective centre of the wire may
deviate from its geometrical centre. The former effect
has been investigated by Wyngaard (1968) and the latter
by'Gessner and Moller (1971); fhe results of these

investigations showed that these effects can cause error

in the estimation of the turbulence quantities.

Clearly, with all the uncertainties discussed

above, the accuracy of the measurements differs at different
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parts of the wall jet. Therefore, instead of estimating
the possible‘errors gquantitatively, we shall demonstrate

the accuracy of the measurements through qualitative means.

Comparison of the measured turbulent shear stress with‘

that deduced from the momentum eguation

A comparison of the measured shear stress with ‘
that calculated from the momentum equétion and continuity
equation for case(b) is shown in Fig. 7.13(b). The .
calculated shear stress was determined from the integration

of the following equations for radial flows;

. U ‘U oV
‘ St Tt Ey - o) , (7.7-1)
- . -5 -3 _— 2
d U d 2 _ 3 (u” - w%) | 3uv _ 37U, _ '
Usr * Yoy tIple TV T FToy T T 0 (g.9-2)

where the mean velocity, U, is given by the

measured profiles of the last two stations of case (b).
oU . '

The wall shear stress, [§§1Y - o> 1s calculated from the

parabolic fit from the wall to the nearest two points

of measurement close to the wall.

From Fig. 7.13 (b), it can be seen that the
shear ;tress measured directly by the hot wire is less
* than that deduced from Equations (7.7-1 and 2). In
particular the difference is about 12% at Yg- This may
be due to some of the uncertainties discussed previously.
In particular, the underestimation of the measured shear
stress may be due to the special characteristics of the

rms meter used in the measurements, which has a low
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frequency cutoff of 1 Hz%. Wygnanski and Fiedler (1969)

have reported that, in jet measurements as large as

10% of the turbulent shear lies below the frequency of
1Hz. If the same is true in radial wall jets, the 1 Hz
cutoff will result in the underestimation of the shear

stress.

The effect of the normal turbulent stresses and centrifugal

stresses in the estimation of shear stress from Equation

(7.7-2)

If the centrifugal-stress (fourth) term in
Equation (7.7¥2) is neglected in the calculation of the
shear stresé, a shear-stress profile, as shown in the
chain-dotted line in Fig..7,13(b) is obtained. The shear
stress ih this case is underestimated by as much as 12%.
However, when both the centrifugal-stress terﬁ and the
normal-stress (third) term are neglected, the shear—stresé
profile i1s underestimated by about 7%. Thus it is shown
that the centrifugal and normal stresses are by no means
negligible compared with the shear-stress diffusion in

a radial wall jet. Nevertheless, their contributions

to the transfer of momentum are opposite to each other.

Comparison of the measured shear-stress profiles with

_ those measured by Poreh et al (1967)

The T profiles for a radial wall jet were
‘measured by Poreh et al (1967). Fig. 7.16 displays the

‘comparison between their measurements and those from

# DISA manual 55D35
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case (b) of the present investigation. The comparison
reveals that, apart from the smaller scatter of the
present measureﬁents, they also‘display a larger maximum
ofAthe shear—-stress profile than those obtained by Poreh

et al.

7.8 Conclusion from the experimental invéstigation

Examination of the growth rates in Fig.'7.14,
. the velociﬁy decays in Fig. 7.15, énd the mean-velocity
and turbulence profiles in Figs. 7.12 and 7.13, reveals
that a nearly. self-similar flow has been attained in

the radial wall jet of case (b) but not in case (a). The
growth of Yi in case (b) was found to be proportional

to the radius and furfhermore, the rate of growth is
equal'to 0.085, which agrees with the findings of Bradshaw
and Love (1959) and Hodgson (1962) although each of

these experiments had a different nozzle geometry at the
.exit, showing that the growth rate of a self-similar w§ll
jet is independent of its inlet conditions. The rate

of maximum velocity decay was found to vary as U,

max
r—1.15 for case (b). .

The difference in the position of velocity
maximum and zero shear is further confirmed in the
present measurements. In particular, the height of the
point at maximum velocity and the point of zefo sheér

are 0.2 and 0.075 of Y% respectively.

| Comparisons of the two cases of radial wall
jets with the predictions from the two-equation turbulence

model have been given in Chapter 6.
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CHAPTER- 8

CONCLUSION

8.1 Principal results of the present investigation

The main conclusions resulted from the present

'study are listed below:

1. The review of the available literature
on the prediction of turbulent boundary layers in
Chapter 2 has pointed to the necessity of formulating
turbulence models which calculate the turbulent kinetic
energy and length scale distributions from transport

equations. .

2. A two-equation model, which solves
the turbulent kinetic'energy and a length scale from
two differential equations, was developed in Chapters
3 to 5. These differential equations contain a number
of empirical conséants, the values of thch were fixed
with reference to some well known experimental data.
It was fouhd_that the present model predicts accurately
a large number of characteristics of both free and wall

‘boundary layers with only a single set of the constants.

3. Close to the wali, in the viscous sublayer,
where the Reynolds number is small, the constants in the
model will no longer have a unique value but become
functions of Reynolds number of turbulence. The problem
of finding the correct functions has been bypassed in

the present study by matching the integration of the
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differential equations with a set of well known semi-

empirical formulae near the wall. This was discussed in

Chapter 5.

4. The model can be readily "upgraded" to a
higher order models by the introduction of additional
transport equations, e.g. equation for shear stress or
équations for the thrée components of the turbulent
kinetic energy. The inclusion of some of these equations
in the turbulence model may ke necessary wherever the
diffusion or the convection of these properties are
significant. The incorporation of the shear-stress
eguation in the two-equation model for the calculation

of a plane wall jet has been demonstrated in Chapter 6.

Y

Heat transfer in boundary layers was calculated
from the enthalpy-transport equation, which was solved
simultaneously with other differential equations of the

turbulence model.

5. The comparison of the calculations for
the present turbulence model with the experimental data
revealed that the predictions agree with the data té the
accuracy achievable in the measurements. The comparison
which was discussed in Chapter 6, included both the
. hydrodynamics and heat transfer of incompressible and

compressible boundary layers.

For the case of a radial wall jet, one of the
constants in the model has to be modified in order to

procure agreement between predictions and experiments.
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6. The comparison of some of the above predictions
with those calculated from other turbulence models
revealed that wherever these models were applicable,
they gave re;ults very similar to the predictions of the
present two-equation model. Moreover, multi-equation
models available at present were not found to give much
more accurate predictions than the present two-equation

model.

7. The experimentél investigation reported
in Chapter 7 sﬁowed that a self-similar radial wall jet
grows at a uniform rate with Y% equal to 0.085 of r.
The self-similarity of the wall jet was confirmed by
the self preserving nature of the measured shear-stress

and turbulence-intensity profiles.

8.2 Recommendation for further research

The two—-eguation model investigated in the

- present study has been shown to predict accurately a

large variety of two-dimensional boundary layers.
Nevertheless, there is still scope for further improvements
and refinements, upon which even more promising predictions

may result from the model.

Firstly, there still exist a number of boundary-
layer flows in which the fwo—equation model will fail to
predict correctly without some modifications of thé
model. The calculation of ﬁhe radial wall jet discussed
in Chapter 6, provides an example, in which one of theA

empirical constants has to be modified. Similar difficulty
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is encountered in the calculation of round jets (see

Rodi 1971). Of all the models known to the writer which
have been applied to the prediction of round jets, at
least one of the constants has to be changed in order

to procure ageeement. Perhaps, the change of constants
may be avoided by solving higher-order transport

- equation at the expense of the economy of the calculation.
On the other hand, the range df applicability for the
two—eQuation'model can be enlafged without the introduction
of more differential equations, if suitable.formulae for
the &ariation of some.of the constants are established.
For lack of reliable data of higher-order correlation
measurements, the latter approach may prove to be more

fruitful at present.

Another problem is the dependence of the
constants on Reynolds number. Aithough this has been
bypassed in the present study as discussed in Chapter 5,
the Reynolds number effect on the constants is critical
in the correct predictions of the viscous sublayer near
the wall, and the laminarisation of the flow when it is
subjected to sudden and severe acceleration. Recent
theoretical investigation of the laminarised boﬁndary
layers by Jones and Launder (1970) has yielded encouraging
results when the constants in the energy—dissipation
model were varied according to a séé of semi-empirical
functions of Reynolds number of turbulence. There should
be no difficulty in employing a similar approach to the

present two-equation model.
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The two-equation model has only been applied to two-
dimensional boundary layer flows; its validity in
recirculating flows has still to be verified. With the
availability of fast computer techniques for the solving
of two-dimensional elliptic equations, e.g. the
procedure reported by Gosman et al (1969), the test
provides the next logical step of the research. The
ultimate goal is the prediction of thfee—dimensional
turbulent flows. For this, however, we have to await
the development of a suitable solution procedure. Alréady,
there are encouraging developments in this direction
recently, which have been reported by Patankar and

Spalding (1971).

At the time of writing, there are already a
number of two-equation models which have been developed
and tested against different types of boundary layer
flows. As discqssed in Chapter 3, these models differ
essentially only in the way in which the diffusion of
the length scale is modelled. Considering the degree of
approximation involved in arriving at these equatiops,
it is difficult to determine which of these formulations
are more suitable. The ultimate choice will 1ié on the
accuracy of the predictions and the universality of the
model. We are making some comparisons of boundary layer
calculations with other two—-equations turbulence models,
but‘further computations are required to complete the

picture.
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NOMENCLATURE
- Symbol Meaning Equation of
first
occurrence
A,B constants of the hot-wire A.4-1
equation
Ai,A2.. empirical constants or
‘ functions in the
turbulence models -
displayed in Appendix 1.
a A constant 4,2-3
C; empirical constants
Cp specific heat at constant
pressure
c tangential-cooling coefficient A.4-1
D diameter of pipe or width
of channel :
d slot-1ip thickness
D =ud- v v 2.2-2
E turbulence energy spectrum 3.2-1
o = %(;ﬁ + v2 + w?), turbulent
kinetic energy 2.3-5
F function defined by Equation
(Ao 2—4) o A. 2"'2
f empirical function 3.2-16
£ frequency
G function defined by Equation
H time-mean enthalpy A.3-4
2
H* =H + 3 4 e, stagnation
enthalpy
Hy» ‘ = 064/63,shape factor
h- . fluctuating component of H

h* 7 fluctuating component of H*



ST

= UG62
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wall flux of @

constant of the hot-wire
calibration curve

wave number of turbuleﬁce
length scale

length scale

mixing length

Mach number

number of x-stations
downstream of starting point

canstant exponent of the
hot-wire equation

mean pressure

fluctuating component of P
constant exponent

gas constant

momentum—deficit-

——

v H
thickness Reynolds number

3
= E;%uiui , sum of the cross-

diagonal components of the
joint correlation

components of the second-
order joint correlation

components of the third-
order joint correlation

radius
radius of the wall jet exit
radius of the impinging jet

additional terms in the §-
transport equation
= ' J S

PUG(3g - Bg)
number

Stanton

5.2—14

A.4-2

3.1-1

3-2_4
4.2-7

Ac3—4

Ao4-1
2.2—2
2-3—1

3-2_16

Ao 2"'1

7. 7—1

204—1
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fluctuating component of S

= 1g/(pus’), friction coefficient

temperature

function defined by
Equation (A.2-6)

function defined by
Equation (A.2-7)

time
mean velocity in x-direction

mean velocities in i4 j...
directions

effective velocity
E,I§ , shear velocity
Ps
fluctuating component of U

fluctuating velocity components

in i,j..... direction

mean velocity in y-direction
volume

fluctuating component of V
fluctuating component of the
velocity perpendicular to the
X-y plane

streamwise direction

three directions of the
cartesian coordinates

lateral direction measured
from the wall

distance from wall or from
axis/plane of symmetry where,

slot heights

2.4-2

2.2"2

2.2-1

2.2~1
302_1

2.2-2

2.3-3
202_1.
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Z1 slot height of radial wall jet
Zy height of impinging jet

turbulent kinetic enefgy
39 dissipation rate 3.2=-2
x turbulent diffusion flux 3.2-3

» function defined by |

P Equation (5.2-15) 5.2-14
a function 5.2-14
o angle of inclination of the

hot wire to the Xy~Xa plane A.4-3
B angle of inclination of the

hot wire to the instantaneous

velocity A.4-1
r instantaneous hot-wire bridge

voltage A.4-1
Y " a.c. component of the bridge

voltage ) A.4-6
Y = gg , ratio of specific

heats | A.3-4
AH,5,Aso,0R, mean deviations defined by
: Equations (6.3-1 to 3.) : 6.3-1 to 3

: (o U
o] =J £ (1 - Jdy, displacement
1 o PG U ™

thickness

oP ' = JP Egﬁ—(l - g )dy, momentum-
o pG G G

deficit~thickness
E constant 5.2-11
€ | = YG ap
C function
N = y/Yg, dimensionless A.3-1

boundary~layer thickness



%
A
]
v
vt
0
T
]
P
"
Superscripts
t
Subscripts
a
B
c
ex
G
m

T

TG_T
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S . .
, film-cooling-

¢ - Tgr,

effectiveness

constant

constant

viscosity

= H, kinematic viscosity

turbulent kinematic-viscosity

I

density

Prandtl/Schmidt number

shear stress

conservative property

. fluctuating component of §

fluctuating vorticity

Condition pertained to.

fluctuating component
vector
at point o'

time-mean

adiabatic

at a point outside the
viscous sublayer

at the symmetry line
experimental
at free strean

bulk-mean

2.2-1
2.4-1
3.2-11
2.4-1

2.4-1



max

SL

. model
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maximum

predicted by other models

predicted by the two-equatio

at the surface
at slot exit

of the § - entity



Appendix 1. Summary of the turbulence models.

= =
P S8
g —~
IR oW
.2 b
Proposer/s Year Ref/s Particulars of the model & 53 v o Applications
‘ Y e .
SoE 7%
T O . @ 0
O+ UT
Woyoe
O +Q. HO
g 85
o g
20 <&
Vorticity transport:
Taylor 1915 (64, 3U 82U o) jets and wakes
T ———1 ]
141) u W=k l==! | 573 (14 2)
. 2 2
Momentum transport:
Prandtl 1925 (113) _Tu = E-15P% -1 PR 0 see Patankar-
U,Uy T &g Bxé ax8 ‘ Spalding model
Eddy-viscosity model:
~Mellor and 1966 (92) ‘ 3y ' o) incompressible and
Gibson ‘ -uu = v€§;1 compressible wall
18 2 boundary layers

‘where V{ is a prescribed alegbraic
function , (61, 91, 92, 93 )

€etl



Cebeci and

sihilar to Mellor-Gibson model

incompressible and

Smith but with a different formula compressible wall
for Vi . boundary layers.
(19, 20, 21 )
" Patankar similar to Prandtl's (1925)proposal incompressible and

and Spalding

but uses van Driest's formula
near the wall.

compressible boundary
layers, liquid films,
duct flows, wall
jets, free jets.

(2,51,59,76,100,111,
1297)

Prandtl

Turbulent kinetic energy equation:

boundary layers,

%
De u,u CILC Aigz - a2 (V£§§ ) free shear flows,
Dt aéxa £ N Baxa CE recirculating flows.
= 2
vp = e 2 (52, 59)
Emmons similar to Prandtl's model (71945) duct flows.

(40)

pET



Glushko

similar to Prandtl's (1945) model

boundary layers
(7, 49°)

Bradshaw

et al

shear~stress equation:

Duiug an o)

u

1
ar———— — — . {m [ S——
A a_u T ax) (Aau.u )

‘Dt 1 2ax {1 g

1 2
ox
2 2

( - ¥
- uiuz) /L =0 .

L is a prescribed length' scale

incompressible and

compressible wall

boundary layers,

3-D boundary layers,
wakes.

(9, 10, 12, 13
110)

14

? ?

Mellor and

similar to Prandtl's (1945) model.

wali boundary

Herring layers
(93)
Nee and turbulent-viscosity equation: wall boundary
Kovasznay layers
DV d3U v, ® d 3V (99)
t .
—" - A v |+ Az—t - A — (v,—5) =o. )
Dt BxB 2 X, ox,

GET



Wolfshtein 1969 (150) Similar to Prandtl's and Glushko's 1 2\ " channel flow

model (150)
Gawain and 1970 (44) Turbulent kinetic energy equation: 1 | pipe flow,
Pritchett 5 5 5 " ‘ round jet.
e . U4 6
5t ~ M VelEx) ot A Ze (44)
-] de  _ .
3x_ (B Vtax ) T O
2 2
Ve T A4e%L

L and Z are functions.calculated from
mean-velocity distributions.

Lundgren 1971 (84) e—equation similar to Prandtl's 1 duct flows
but with V. defined as .
- -1 (84)
v, = e + De
t L DE
Kolmogorov 1942 (73) e—equation similar to Prandtl's 2 mixing~layers
but with another equation for "frequency (111)

of fluctuation".

' ) edf
TE * 14f ~ Aox (F5% )
. 3 -

= O3

»

v, = Aze/f

9¢tl



Harlow and 1967 (56) e-—equation similar to Prandtl's equation 2 ~pipe flow
Nakayama for length scale L:

(56)
2 1
B - A2 AT 4 oae? - A (v = o
. e2 dx 2 ©3x 9x
2z z
- A
Vg T el ,
Spalding 1969 (133) similar to Harlow-Nakayama model 2 \/ free shear
flows
(133)
Jones and 1970 (69) e-equation similar to Prandtl's; 2 boundary layer
Launder equation for dissipation rate: - - laminarisation
2 : (69)
DD, , ——B g |
Bt + Aiuiu:a_e_ 3% Az be ‘ )
- N 2

_ 9 e?3.9, _
T}Ez (Aa-eo—a- 'E;C-) = O

-3

Ve = pe”/H

LEL



Ng, Rodi and 1970, (104 e—equation similar to Prandtl's; 2 wall boundary
3palding 1971 119} equation for energy-length product: layers and
free shear flow
) 2 "
%%_ _ Aivt(%91) + Ae (76, 101, 102, 103,
- OXa 104, 119 )
-2 (A Vv 122 4 Av Qﬁ) = 0
T}(- 3 t ax 4 teax - -
< 2 2 4
v, = e%z .
Saffman 1970 (125) e—equation: 2 wall boundary
layers,
De _ oU4 Wyl 2 de _ jets
DE Ajelsx | + Aje(w )é- 3% (Aa\’t " )= O; /
: 2 2 (125)

E .
W”~ equation ¢

DE T AW 3x, * AT - gx (AeVimy

8el



Wolfshtein 1970 (151) e-equation similar to Prandtl's; - 2 V/ - channel flow
equation for energy-length product:

(151)
Del _ Ay, ? ] L. 2e c -
-D? A Vt( ) + A e” + As ‘e%( Xg)
oeL
Tz(Atth'axz) =0,
Vt = Ase%L
Spalding . 1971 (135) e-equation similar to Prandtl's; 2 concentration of
) - equation for "vorticity-fluctuation- turbulent free jets,
squared". ' wall boundary layers
— | | (47, 135)
Dw? e ,dU; %2 —5 % ’
oE Af;; 3% A, (w%)
3°%U, 7 dW?
"A\Jt( 21) —A4a (t )"'O;

<
o
11}
0]
~
e
N

6€1



Rotta

1969 (122) e-equation: 3 channel flow

‘ : . - (122)
3,
Dt + u1u25x£ + AT -3 (Aje dx, ' ’

shear-stress equation:

Duiua aUL T, e
— + Age—— + Agj
Dt . . ) axz I, .

3
22°U 2y e% du,u,

BXZ dx, dx,

+ AoeL

eL—équation:
DeL 3U % ad®u
5t " Ag“i?z 39X, *AoeT t Ay & ax;”

- _a_ (A ‘%'aae % oL _
3 , eL5§2+A13e Xg)-o.

0}747




Hanjalic

1970 (55) e-equation similar to Prandtl's;
dissipation equation similar to
Jones-Launder modelj;
shear—-stress equation:

Du u, d3U, u,u,
—— - Aje—= + A,
Dt ox, - pe

2 tns—
- A O (gg Buluz) = 0

asymmetric channels;

wall jets, boundary

layers, freé shear
flows

(55)

3 .
| Bxa D ox, -
Donaldson 1969 (38) Turbulence intensity equation for boundary layer
three components; prescribed transition
length scale. (38)
Kolovandin

1970 (74) Similar to Donaldson's model

natural convection

(74)

|%74%



Rotta

1951 - (120)

Turbulence-intensity equation for the
3 components:
Du: ' 3U. — %
i _—_ 2
5T + Aiulugaxé + Az(ui) /L

7

o) - ou’
— (A (u?)%L——i) = 0
sz 8= sz

e

shear-stress equation:

P

Du,u oU u,u_e
L
-1 3 +,E§""‘"“"’ + A4 2
Dt . Ox, -L
e) — 41 Ou u‘
— 2yIL—t?) =
eL—equationi
DeL 3U s
— + A_u,u_L + A €%
Dt 6712 3 v
<
9 3 20e ) oL a
4+ 9 27,20¢€ _ 2 -
Bxa(As(ua) L 3%, Ag(u3) eL§§2) o

channel flow

(120, 123)

474"



Daly and 1970 (33) "Différential'equaﬁionS'fér the turbulent N channel flows,
- Harlow intensities and shear stress; . free flows
dissipation rate equation: (33, 58, 118)
DD U, pd pe_ 2e
1 :
— +AuuUu —— =—— (—uu-—)
Dt e dx e dx. B ' ®ax
L2 oaered? )
* Azpe Bxa(Asu1ue sz) B O.
Chou 1945 (25) Differential equations for the channel flow and
' turbulence intensities and shear flat-plate boundary
stress; equations for third-order layer.
correlations; equation for "vorticity
‘ decay" ' (26, 27 )
Dw? : E"uiu2 an 15%
DT Y AT 3%t AW
E
+A==0 .

eyl



Davydov 1961 (34, Differential equations for turbulence 10 none
35) intensities, shear stress, third-order
correlations, dissipation, dissipation
flux.
Kolovandin 1969 (75) Differential equations for turbulence 16 none
and intensities, shear stress, third-order
Vatutin correlations, turbulence scales,

pressure-velocity correlations.

174’2"
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Appendix 2

Spectral balance in non-homogeneous

turbulence

Rotta, in 1951, has shown that the quantity

R;,—defined as the sum of the three cross—-diagonal
components of the joint correlation at two points,

o and o', obeys the following equation:

i : i
Un + Un' 3Rj ' 3RJ
2 9x (Un - Un ) Brl
n n
; dU, 0 U;
+ Rt —% 4 rOZ1
T dx ox
3 i Rin _ ' '
+ ( in i pu, + pun)
— +
ox 2 p
n :
i
d . . d°R;
- (R R%) - =
3p in i .
n 2 ¥x
32Ri
_2\3_2{_0
b
Brn
. n . —
- where Ri uiun ,
3
i = ' '
Rln EE: usu; vy 5
i=1
R = }%: u.u u '
i £ ini ,

and 2; is the vector between O and O'.

(A.2-1)
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Multiplication of Equation (A.2-1) by
k® sin kr
2m" kr

to the equation for the energy spectrum E(k),

and integrate over the whole r space leads

U oE + Gi an + aFn + T1
bxn an an
I 1T IIT Iv
+ T+ > °E + 2Vk®E = O
2 2 dx @ - .
n
\Y VI VII (A2-2)

In this equation E, G, F, T, and Ta are

defined as:

k2 n kr '
E(k) = 57 J&olzR (r)ﬁiE;——del , (A.2-3)
2 i p _unysin kr
= X_ 1 . n _
F_(k) = 55 [o o (3RT, + S2) S qvel (A.2-4)
G, (k) = anjbolR (S K gy (A.2-5)

S Z.a__ i _ pinysin kr
T1 = _.4F21§ol dr (Rin Ry )="7dvol, (A.2-6)
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- -

3 r r i
B U () + U (- =) R,
TB__:__Z[ Z]:nZ n 2 —Un(O)] i
4T Voln=1 2 axn
- i
+ l:U E) - v (- 5)] OR
n 2 5
: r
dU. (£) oU. (0)
+ [ 1 2 - L ]R?
an an
an(--’é:) 30, (03] 4)aip xr
+ - Rn *r dvol
an axn . (A.2-7)

In equation (A.2-2), Term I represents the
convection of E at the wave number k. Term II is the
generation of E due to the working of the mean motion,
while Term III is the turbulent diffusion of E. Terms
IV and V deserve more comments. They represent the transfer
of energy from lower wave numbers to higher onesj; IV
represents the transfer that is prodﬁced by the self-
stretching of the turbulence and is called inertial transfer;
V represents the transfer resulting from.the interaction
of the mean motion with the turbulence (Lumley and Panofsky
1964). Since both IV and V represent the transfer of the
energy from one wave number to the other, and no net
contribution of energy is resulted, the integrals of IV
and V with respect to k from O to ® must wvanish. Finally
the last two terms in Equation (A.2-2) represent respeétively

the rate of energy dissipation and viscous diffusion of E.
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Appendix 3

The assumed starting profiles

(a) If the starting mean-velocity profile is

not given, we assume that it obeys the"%—power" 1aw,'

U : ' )
ﬁ = Tl ’ . (A03—1)

where n = y/yG

14

(b) For the starting profile of ewe assume:

e =a+ by + cn® + dan° . ' (A.3-2)

-In this equation, the quantities a, b, ¢ and d

are evaluated from the following conditions for e:

(1)~ : at n = (n)B R
_ -2 X
e = C1 (p)B
and de/dn = ¢ + | € |
Yo dP :
where € = 1 ’
2pC1 dx
(ii) | at n = 1,
e = 0,
and de/dn = O.

(c) For £, we assume:

1
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In this equation,,em is the mixing length;j

thus,
Zm = ny for A/u > 1 > Q
= > q >
and £ = A. yg for 1> m A,
where A = Oﬂ09, a constant.
. (d) For enthalpy, we assume:
T ' ‘
H S
= =" + (7T - T )U/(T.UL)
HG TG S,a S GG
2.2 2 '
y , - UH(Y - 1M°U ((ZUG ), (A.3-4)

the Crocco temperaturé profile.

In the above equation, TS a is given by
. 9 .

2
RYTEre

- 2C
p

For subsonic flows, the last term of Equation

(A.3-4) can be neglected.
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Appendix 4

Method of evaluating turbulence levels from hot wires.

Because the hot wire responds to the magnitude
of;thé cooling velocity only, but gives no indication as
to its direction, there will be more unknowns than equations
‘availlable for the deduction éf the various turbulence
correlations. Many previous investigators have proposed
different ways of obtaining a closed set ofvequations
for the hot-wire signals. Two main approaches canrbe

identified.

The first approach reduces the higher-order
correlations present in the equations into lower-order
ones by assuming a certain wave-form of the fluctuating
.velocities. For exaﬁple, Escudier (1967) reduced all
even-order correlations into second-order terms and all odd
order terms to zero by assuming that the fluctuations
correspond to a square wave form. On the other hand, Zarié
(1969) calculated the second-order correlétions from éhe
mean and ‘rms signals by assuming that the probability
density of the velocity fluctuation is Gaussian. However
Durst and Whitelaw (19695 have found that Zaric's method

is only applicable over a limited part of a.boundary layer.

The second approach 1is to-neglect the higher-

order correlations so that the equations become determinate
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(e.g. Champagne and Sleicher 1967, Guitton 1968). But
the influenCe on the result due to the neglect of the
higher-order terms is dependent on the level of the

turbulence. We choose to follow this approaéﬁ in the

present investigation.’

The hot-wire response equations.

The response of a constant-temperature hot wire,
placed at an angle B to the effective cooling velocity
" Ueff is.givén by (Hinze 1959, Chaﬁpagne et al 1967):
n n/2

I''= A+ BU (cos®B + c?sin®PB)
eff L) (A.4—1)

where I' is the hot-wire bridge voltage.

In the present investigation, A, B, n and c

in Equation (A.4-1) are assumed constants.

The linearised form of Equation (A4-~1) reads:

Ya,

I' - K Ueff(cos‘?B + c? sin®B) © (A.4-2)

where K is a constant.

For a hot wire in a turbulent field as
. shown below,k whose response obeys Equation (A.4-2),
Champagne and Sleicher have derived an equation for the
hot-wire bridge voltage in terms of the mean and fluctuating

velocity components and the angle of inclination «.
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Hor wearse

The equation, re-written in the present

notation entails:

2

) = COSza{U 2

1

=| =

(

- U ? 4+ sec?a(U ® + U ®)
2 2 3

2tan o U U
1 2

+ c®?{2u ® + U ® - sec® (U ® + U ®)
] 3 2 3
+ 2tan o U U
1 2
2 2 .2 ]
+ tan®a (U1 o+ U7+ U )]} . ‘(A.4—3)

In the above equation U,, U, and U_ are taken
to represent the instantaneous velocities, e.qg. u, = Ui +u,,
et¢g. Taking the time mean and root-mean-square of Equation

(A.4-3) result the following equations respectively:

Tz 2 2 2
— = U,°cos® o {1 T
K 2 2 2
U1 U1 U1
. U U22 u ® uaa
+ seca ( °2 + -+ =S )
U U u,® u-?®



153 IR

' U® uiﬁ;
=
- 2tan o (U1 5 )
1
2 -
u U
+ c® [tanzot. + —-'l—a + + —=
: . U u,®
1 1
+ 2 tan o (—— +

)]} | (A.4-4)

2

I 2 2 .UB ?
%z = U,"cos a{(i - tan a_ﬁi)
u_* u,
+ sec®o (— + —)
u,® Ui2

+ o[t 022, rant ( ’P—z-z)
C an o U: + tan“o 1 + U. 2

-1

o

u .
+ sec4 "-?—2 :}}
Ui

. (A.4-5)

In deriving Equatian- (A.4-5), the third-

and higher-order correlation terms and terms containing
c4 have to be neglected.

Subtraction of Equation (A.4-5) from Equation

(A.4-4) yields an equation for the rms value of the a.c.

component of the bridge voltage,

Y? 2 2 uie 2 uaa 4,Y,
%; = U,"cos”w — t tan"o ——
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=2
u

+ cztan a[ﬁana L
2
Uz

——

2

+ tan o (2 + tana)—=

]
Ui

.20 . - (A.a-6)

For two-dimensional flows, further simplification

to Equations (A,4-4 to 6) results. For such a flow,

Furthermore, in the present experiménts, Ei is
_ U,

small as can be seen from Fig;7.13(a). Therefore it can be
neglected also in Equations (A.4-4 to 6). Thus, the
signals generated by the hot wire at four different

inclinations, are as follows,

3 NE NE
z = Uta{i + -32 + c® “32}
i U U, \ (A.4-7)

2 A u, 2 ‘
~1

=1 =
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= 2 2 . 2
|y U, u u u,u,
[KZJ = 5= {(1 + cz)—l2 + (1 - 3c®%) =& - 2(1 - cz)—lf }

2 ) U, u,? ' u,© o

(A.4-9)

—— —

2 ] [ o
Y> Uy uy Ys U1l
J = 5 {(1 +e®)—_ + (1 - 3c®)—_ + 2(1 - c®) =

3 ; 2 . e _ )

K? U, Uy u,*
, (A.4-10)
o U 2 B 2 G*ﬁ
[%é] =-§i {(1 b e?)—= & (1 - 3¢*)= } .
¥ U 2 U -]
4 1 : ! . (A.4-11)
(1) - (2) (3) (4)
Cé.

Ul—b

{ 5 - g
U, 0 V2

/ﬂor WiRE

t Y, Us %
Us

Determination of the quantities 1 and ¢ of the hot wire

The value of N was found by plotting the
calibration curve of a DISA 55F04 gold-plated probe with

different values of n.« The best fitted value was found
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- to be 0.45, which accérds with the value for n found
by Collis and Williams (1959) and more recently by
Gebhart et al‘(1970). This value was used to set the
lineariser throughout the experiment. A typical sample

-of the linearised calibration curve is displayed in Fig.7.9.

Champagne et al (1967) suggested that the

tangential cooling coefficient, ¢, may not only depend

’
on the length to the diameter ratio of the hot wire but
also the shape.and size of the supporting prongs.
Measuremenfs were carried out to defermine its value

for the gold—piated probes. A linearised DISA55F02 gold-
plated probe was placed at three angles (o = - 450, ,
45°) to the main stream,therflow rate of which could be
varied from 10 m/s to 30m/s. From the slope of the three
calibration plots, two values of ¢ were determined
according to Equation (A.4f2), The mean value of ¢ was
found to be 0.29. This value is about 36% greater than
the value of c proposed by Chémpagne et al (1967) for the

same length-to-diameter ratio.

Method of measuring the hot-wire signals

Although calculation of the turbulence'intensities
from digitised sample data like those by Frenkiel and
Klebanoff (1967) and Van Atta and Chen (1968) offers many

other advantages, it nevertheless féquires large computer
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storage and computing time. The mean signals of the
hot wire in the present investigatiaon were measured from

true-integration and rms meter.

Single wires placed at four different inclinations
were used to obtain the required signals. The use of
single wires instead of X-wires eliminates the error
induced by the various mutual interferences of the

X-wires (see Wyngaard 1968, Jerome et al 1971).
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Appendix 5

Tabulated results of experiments

of radial wall jets

(Case (a) in Tables (i) to (iv);
Case (b) in Tables (v) to (viii)).
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1A e Q4 « 333 s 2RB2 e300 e 375 « 02772
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. 930 YA C 307 . P54 ez . 334 07920
1.107 “bP7 e 2TH e 253 e 749 e14 « D581
1.330 «713 T e PR o Pih e PPT « P24 «(1H729
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ollq «GTH .34 199 -.“21 -3“5‘9 +0104
« 1R6 l1.00¢ 332 256 . 374 . 375 +01001
+203 975 « 437 277 « 3720 <391 «014571
400 TS . 337 .303 327 . 393 07582
+ 547 P47 e 337 295 «313 <346 « 03049
ARG . 779 337 e 2973 <318 « 3RS s032G6
JRP6 AR 31K c2R? 250 N <032A1
¢ Q&R SP6 0304 o 248 U e 376 0P721
1.110 L1l 269 e 2739 .36 - <304 022173
1.757 371 .l 220 . 156 270 <01 734
1.410 « 205 e} -21] e lH/7 -84‘3 .016‘41
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Appendix 6

Sample listing of the computer program

The program listed below is suiltable for the
calculétion of constant-property boundary layers using
the two-equation model. Most of the symbols in the
program are identical to those used by Patankar and
Spalding (1970) in their GENMIX4 program. Additional
“symbols are explained by way of comment statements in the
listing.

A 30-point cross-stream grid has been used for all

the calculations reported.



Start
MAIN

0

1

9

Preliminaries

Parameters
and control
indices

Dependent
variable
selection

Constants in
the turbulence

.model

Initial
conditions
Free-stream
pressure

Thermodynamic
properties
Negative e
and el trap
Forward étep

Longitudinal
conditions

Transport

10 Output

11 Termination

1

168

STAPRO

Starting
profiles of

U, e,el

STRIDE

(1)

R G
v n

L

[ 1(2)

A,B,C
coefficients
near boundary

I

Stop

WE

Calculate
wall
values

Entrainment

1N

(3)

A,B,C
coefficients
elsewhere
Solve equation
Step forward

Function of individual parts in

the program

Source
terms
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PROGRAM MAIN(INPUTsOUTPUTsTAPES=INPUT s TAFPE6=0UTPUT)
C (14.09.71) K H NG MECH.ENG,DEPTe IMPERIAL COL.
Ceunsex  PROGRAM BASED ON THE GENMIX4 VERSION OF THE PATANKAR~-
Ceexee  SPALDING PPOGRAM
C Us Eo AND EL EQUATIONS
C CONSTANT PROPERTY
C PROGRAM FOR COMPUTING THE STANFORD DATA
CHAPTERO00000006000000000 PRELIMINARIES 0000000000000000000000000000CC
CHAPTER 0  sxwstsssxazszs DIMENSIONS AND COMMCN BLOCKS  ###us#sstussupiad
DIMENSION MPROF (14) +OP (43) s TITLE(9)
- DIMENSION TIDEN(40) ¢X(40)UT(40)+DUT(40)
COMMON/GENRAL/ AJE(S) sAJTI(S5) «CSALFASDPDX(43) sDXeEMU(43) sF (Se43) 0
1 FS(5443) sHeIFINGINDE(S) ¢ INDI(S) ISTEP9ITESTs ILTRAPGJKEX s KINJKRACS
2 NoNEQsNPH NP1 sNP2sNP3s0M(43) ¢PETsPR(S) ¢PREF (S 943 1) sPSIEWPSITe
3 R(43)!RH0(43)9QMFQPM19QU(43)950(5943)9CU( s42) s TAUE « TAUT 4L (43)
4 XDeXUsY(43)aYESYI . :
COMMON/GM4/AK s ALMGsEWALL » IDRINTqFPI
" COMMON/CONST/AQ+C14C2+4C34C44SRC1sCL
DATA NPROF/1HYs 1HUs 1HEs 1HLs 2HYDs 1HT,
1 3HSUls 3HSUZ2sy 2HGEs 2HDEs 3HGELs3HDEL
1 3HWAL/

CHAPTER11111111111111111 PARAMETERS AND CONTRCL INCICES 11111111111111
20 CONTINUE
IPRINT=0
ITEST=0
TUTRAP=2
NSTA=20

CHAPTER222222222222222222222222 GRID AND GEOMETRY z2222222z2222222222z¢
FRA=,05 '
N=30
NP1=N+]
NP2=N+?2
NP3=N+3
OM(1)=0.
OM(NP3)=1.
DO 10 I=2sNP2
10 OM(I)=FLOAT(I-2)/FLOAT (N)
ISTEP=0
IFIN=0
LASTEP=2000
KRAD=0
CSALFAzlu
KIN=]
‘KEX=2
C - e - - o . - - > - - - 0 e S - - S . - - - - .
CHAPTER333333333333333333333333 DEPENDENT VARIABLES SELECTION 3333233:
Cc U(I)=VELOCITY
C FO(lsT)=TURRULENT KINETIC ENERGY
c F(2+1)=ENERGY-LENGTH PRODUCT
o F(3s1)=TOTAL ENTHALPY Y
NEQ=3
NPH=NEQ-1
CHAPTER44 444G bLG4uabaGL846404044 MATERTAL CONSTANTS  444444444444444:
Cl=.09 . '
C2=098

o
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C3=.058
AK=441
EWALL=7.8
PREF1=1C
PREF2=1. ‘
SRC1=SQRT(C1) h
AQ=6, _
PREF (1+1)=PRFF1
PREF (241)=PREF2
CL=AK#¥SQRT (SRC1)
T C4=CL=%2/PREF2+C2¥C1-C3
Ca=(C4/Cl)*%(1,/AQ) /CL

CHAPTER555555555555555555555555555555555  INITIAL CoNCITIONS 555E55558s¢

C
READ(5+41) IDENTSTITLE
-WRITE(6944) IDENTLTITLE
44 FORMAT(1H14I44GA0)
41 FORMAT(I449A6)
IF(IDENT.EQ.9999) GOTO 120
C UNIFORM DENSITY . | (.
DEN=1. -
DO 40 I=1,NP3
40 RHO(I)=DEN

READ(S+12) ANU,SSsH124UG
WRITE(6951) ANUsSS+H1I2sUG
51 FORMAT(1H +4E1043)
: 12 FORMAT (4E10.3)
C CONSTANT VISCOSITY
AMU=ANU=DEN
EMU (1) =AMU
C FREE STREAM PRESSURE GRADIENTS
READ (5942) NX
. 42 FORMAT(I2)
C READ FREE STREAM VARIATION
C UI=UGs DUI=DUG/DX
READ(S961) (IDEN(LX) eX (LX) sUI (LX) sDUI(LX)sLX=14NX)
WRITE(6943) (IDEN(LX) ¢ X(LX)sUI(LX)¢DUT(LX)sLX=19NX)
61 FORMAT (I441X43F643)
43 FORMAT (IR T441X93F6e3)
' XU=X(1)
XULAST=X (NX)
RMI=,0
Fl16=,0
F26=.0
PSII=.0
C FIX STARTING PROFILES
TAUI=SS#RHO (NP3) #UGH%2
DPDDX=~RHO(NP3)#UT (1) *pUI (1)
DPDX(1)=DPDDX
CALL STAPRO
PSIE=PSII+PEI
RME==10.
CHAPTERE66666666A66666666660666666666 - NEGATIVE E ANC EL CHECK
c L 22 X 2-2-2- 8- 2-2-F-2-2-2:2-2-2°2-] START OF MAIN LOOP L2 L 220X -2-R-2-2-2-2-F-2-F--F-X-£-3

60 CONTINUE
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IF(ITEST.EQ.0) GO TO 1001
TEST=1001.
WRITE(64107) TEST,R(1)¢PRESS+sDXsPEIL
WRITE (6+s101) (U(I)sI=1sNP3)
WRITE (645101) (F(lel)sI=1+sNP3)
WRITE (64101) (F(2+I)+I=1+NP3)
WRITE (6+4101) (F(341)9eI=1+NP3)
1001 CONTINUE
Crmmmmmmmcaee NEGATIVE E AND EL CHECK ====cc=c-e~ccc=-
: DO 62 J=l1s+2
DO 62 I=34NP1
IF(F(Ja1)GEL.0s) GOTO 62
WRITE(6963) JsIsF (JeT)
63 FORMAT(3H F(IZ2+s1HsI2+3H)= 1PELll.4)
IFIN=1
62 CONTINUE
DO 64 J=1+2
IF(F (JoNPL) +F (JsNP2) sLT.+0)GOTO 65
IF(F(Js2)+F (Jo3) eLTee0) GOTO 66
GOTO 64 .
65 WRITE(6+67) J | B
67 FORMAT(Z2H FI1+8HE IS =VE) T
IFIN=1 '
GOTO 64
66 WRITE(6+68) J
68 FORMAT (2H FIl.8HI IS ~VE)
IFIN=}
64 CONTINUE
IF(IFINJEQL1) GOTO 102
PRESS=PRESS+DPDODX%#DX

IF(ITESTL.EQ.0) GO TO 1002

TEST=1002.

WRITE(6+100) TEST

WRITE(69101) (FS(1sI)sI=14NP3)

WRITE (64101) (FS(241I)sI=14NP3)

WRITE (6+101) (FS(3+1)eI=14NP3)

WRITE (64101) (RHO(I)sI=1sNP3)
1002 CONTINUE

om0 et o o e T o Ol O e Y 0 e e e
- C STRIDE 1 STRIDE 1 STRIDE 1 STRIDE 1 STRIDE 1 STRICE 1
c-------——_—_-—-----------—---«---—-----—--—---—-c'- ADJUQT R (1)

CALL STRIDE(1)
c ---------------------------------------------------------------------
CHAPTER77777777777777777777777177777777777777777 FORWARD 'STEP 777777177

FRA=,0005
IF(ISTEPOGToZ) FRA=.001
IF(ISTEPOGTOS’ FRA=.003
IF(ISTEP.GT.10) FRA=4,005
JF(ISTEP.GT.20) FRA=,01
IF(ISTEP.GTW.40) FRA=,02
DX=FRA*PEI/ (RMI=RME)
IF(DXeGT,o1%2Y(NP3)) DX=,1%Y(NP3)
TOUT=ISTEP+1

71 IF(DX«GTe0e) GO TO 72
WRITE(64700)

700 FORMAT{10X,22HDX IS ZERO OR NEGATIVE)

IFIN=1
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: : GO TO 102
72 IF (DX LE«XULAST=-XU) GO TO 73
DX=XULAST=XU .
IF(DX.NE.Os) GO TO 73

DX=1.E~30
IFIN=1
T3 XD=XU+DX
( mecmermcecccmm; e e e e e m e e e meaeemee~e e emeeee e~ e m——————
CHAPTERR888888838838R88888888888 ADJUST LONGITUDINAL CONDITIONS
Commmr v wnccccrsrcem— e PRELIMINARIES FOR PKRESSURE GRADIENT
" '86 UBAR=0., _
: DO 83 I=24NP1
83 UBAR=UBAR+ (U(I)+yU(I+1))% (OM(I+1)-CM(I))
UBAR=,5%UBAR
XD=XU+DX

Conupnnnnpsunsssnsssr PRESSURE GRADIENT
© DPDDX==RHO(NP3)#UINTER (XU+,5%¥DXsXsUT sNX)
1 HUINTER(XU+,5%#DXs X9DUT sNX)
87 DO 85 I=]1,NP3
85 DPDX (1) =DPDDX

IF(ITEST.EQ.0) GO 7O 1003
TEST=1003.

WRITE(6+100) TESTyUBAReDYNHEDIDXsDAsDPDOXIREXDIRVIsKINIKEX
1 ISTEPsIENGC

WRITE (6+4101) (Y(I)esI=19NP3)

WRITE (6+101) (R(I)sI=14NP3)

WRITE(69101) (RU(I)sI=14NP3)
1003 CONTINUE

c .............................................................

- - -

CHAPTER999999999999599699999 TRANSPORT AND ENTRAINMENT PROPERTIES GGG¢
C e-ccccecmcmecnee- e m - e e - TEST 4

IF(ITEST.EQ.0) GO TO 1004

TEST=1004.

" WRITE (6+100) TESTsRMISRMELPEI
WRITE (6+4101) (EMU(I)sI=1+NP3)
1004 CONTINUE
C STRIDE 2 STRIDE 2 STRIDE 2 STRIDE 2 STRICE Zeeecesce
95 CALL STRIDE(2)

CHAPTER 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 OUTPUT
IF(ISTEP.GT.0) GO TO 106 -
ANSTA=NSTA -
CHAPTER 10A cceccccccmmccccccnccccccaccrccccacam—a FEADINGS
Cc : .
WRITE(6+995) C1+C24C3+C44AQ4PREF]14PREF2
995 FORMAT(1HO,2GH *###CONSTANTS##% /7H Cji= Fle3,
1 BXs7H C2= F7¢3¢5Xe7H C3= FTe395Xe7k C4= FTle3
1 5X,7H AO= F743+45Xe7HPREF]1= FT74395X9THPREF2= F743)
107 FORMAT(1HL1+1P8BE 11,39 416)
100 FORMAT(1H +1P8F 11,3+ 416)
WRITE(641011) (OM(TI)eI=1eNP3I)
1011 FORMAT(6H OM!'S +1P11E11,3/7(1H +4Xs1P11E11,3))

101 FORMAT(1H ¢5Xs1P11E1143)
- PRESS1=PRESS -
106 CONTINUE
S ittt ettt ittt TEST s.

IF(ITEST.EQ.0) GO TO 1005

10 10 1<
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TEST=1005,
WRITE(65100) TEST4RMIsRME DX
1005 CONTINUE :
CHAPTER (0B ===mm=mm——me— oo e e meman TESTS FOR PRINTOUT
IPRINT=0 '
IF (ISTEP.EQ.¢) GO TO 102
IF (ITEST.EN.1) GO TO 102
IF (IFINJEQ,1) GO TO 102
IF(FLOAT (ISTEP/NSTA) LEQ.FLOAT (ISTEP) /ANSTA) GO TO 102

- IPRINT=0
GO To 105

CHAPTER 10 ====—ee—emccmccecccc e e e —acce—an STATION VARIAELES
102 IPRINT=1 ‘ :
103 IPRINT=IPRINT+1
UBAR=,0
DO 108 I=2,NP1
108 UBAR=UBAR+(U(I)+U(I+1))#(OM(I+1)=-0M(I)) )
UBAR=15*UBAR

CHAPTER 10D ======m=e-—mmee— e ccmcme o cmeooen—ee FROFILE VARIABLES™
C ------------------------------- TEST é i
IF(ITEST.EQ.0) GO TO 1006
TEST=1006,.

WRITE (6+100) TEST
1006 CONTINUE
IF(IPRINT.LT.2) GO TO 105
T=PEI/ (RHO(NP3)®#U(NP3) %R (NP3))
DELI=Y(NP3)-T
DEL2=T*(1.~UBAR/Z/U(NP3))
Hi2=DEL1/DEL2
R2=DEL2#U (NP3} /ANU
SS=TAUI/ (RHO (NP3) ®¥U(NP3) ##2)
GF=(le=1./H12)/SQRT(SS)
WRITE(6+906) XUsDXsH]12eR2 sSSsPETsRMESGF o ISTEP
906 FORMAT(IHOARX ¢2HXUsBXs2HDX 97X e3HH12eGX9ZHRZ29GX9Z2HSES 99X
1 3HPEI 7Xe3HRME 7Xe2HGF 6XsSHISTEP/(1H 1PBE1143+414))
UFAC=U(NP3)
TKFAC=UFAC#H#?
TFAC=RU (NP3) #U (NP3)
YFAC=1.
ALFAC=Y (NP3)
VFAC=U(NP3) #DEL1
C CALCULATE AND WRITE PROFILE VARIABLES
904 J=0
IPR=1
DO 605 IPRO=1,13
OP(1)=0.
« OP(2)=0.
0P (NP2)=90.
OP(NP3)=OQ ‘ -
GO TO (910+92099309940594249604970s975496295629362+562,
1 962)s IPRO
910 DO 911 I=1,NP2
911 OP(I)=Y(I)/YFAC
OP (NP3) =Y (NP3)
GO TO 980
920 DO 921 I=1+NP3
951 OP(I)=U(1)/UFAC .
OP (NP3)=U(NP3) ‘
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GO 710 <80
930 DO 931 I=1,NP3
931 OP(I)=F(141)/TKFAC
GO TO 98¢0
940 DO 941 I=2+NP2
941 OP(1)=F(2+1)/(ALFAC*F(141))
OP (NP3) =F (24NP3) /F (14NP3)
GOTO 980
942 DO 943 I=3,N
943 OP(I)=5%(Y(1)+Y(I+1))/YFAC
OP(2)=YI/YFAC
OP(NP1}=(Y(NP3)~YE) /YFAC
GOTO 980
960 DO 961 I=2.NP1
961 OP(I)=EM U(I)#(U(I+1)=U(I))/TFAC
‘ GOTO 980
970 DO 971 I=1,NP3
971 OP(I)=SU(1l,1)
GoTo S80
975 DO 976 I=1.NP3
976 OP(I)=SU(2,1)
GOTO 9890
962 J=J+1
DO 963 I=1,NP3
- 963 OP(I)=FS(JsI)
980 IF(ISTEP.GT«20AND.NVE.GEL0) GOTO S81
982 WRITE(64991) NPROF (IPRO) ¢« (OP (1) +sI=1sNP3)
GO TO S90S
981 WRITE (6,991) NPROF(IPRO),(OP(I),I 194) 4 (OP(I),1=6,N43),0F (NP1),
1 OP(NP2) 40P (NP3)
905 CONTINUE
991 FORMAT (1H AS5.1P11E1143/7(1H 5Xs1P11E11l. 3))

105 CONTINUE
C .....................................................................
CHAPTER 11 11 11 11 11 11 11 11 11 11 11 11 11 TERMINATION 11 11 1}
113 IF(IFINJEQe«1) GO TO 110
IF(ISTEPLT.LASTEPAND2aXUsLT(XULAST) GO TO 112
GO TO 110
C w1 e e o e e % e e

C STRIDE 3 STRINE 3 STRIDE 3 STRIDE 3 STRICE 3
112 CALL STRIDE(3) :
GO TO 60
110 GOTO 20

120 CONTINUE
STOP
END
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SUBROUTINE AUX(K)
CHeustst FOR BOUNDARY LAYERS
- DIMENSION YEDGE(6)
COMMON/GENRAL/ AJE(S) sAJUT(S) sCSALFASDPOX (43) sDXeEMU(43) sF (5943)
1 FS(5943) sHeIFINGINDE(S) INDI(S) 4 ISTERP9ITEST9IUTRAP ¢KEXsKINIKRAC Y
2 NoNEQyNPHsNP1sNP2yNP3sOM(43) «PET sPR(S) yPREF (S+43) sPSIELPSII,
3 R(43) yRHO(43) yRMEsRMI gRU(43) ¢+SD(S5s43) 9SU(S5+43) s TAUEs TAUI 4L (43),
4 XDeXUsY{43)sYESYI
COMMON/GM4/AK s ALMGsEWALL « IPRINT«BPI
COMMON/CONST/AQsCl+C29C3+4C4sSRC1sCL
< GOTO(1004200) oK
100 CONTINUE
IF( ISTEP.GT.0) GOTO 21
DO 22 J=1+5
DO 22 I=1sNP3
FS(JsI)=.0
SU(JeI) =40
22 SD(J1)=4e0
21 CONTINUE
EMU(2)=(RHO (2) +RHO(3) ) # (F(24+2) +F (243))
1 /SQRT(B.#(F(1s2)+F(143))) ‘ B
EMU(NPI)‘(RHO(NPl)+QHO(NDZ))4(F(29NP1)*F(29NPC)) ‘
1 /SOPT(8.% (F(1oNP1)+F (1,NP2)))
90 DO 92 I=3sN
92 EMU(I)=(RHO(T) +RHO(T+1))#(F(2s1)+F(291+1))/ SCGRT (8% (F(ls1)
1 +F(1lsI+1)))
20 CONTINUE
ol ettt L g Gkt dodedd TEST 10
IF(ITEST.EQ.0) GO TO 1010
TEST=1010.
WRITE(6s101) TEST
RITE(69101) (EMU(I) +I=14NP3)
WRITE(6+101) (S D(1sI)sI=1s4NP3)
1010 CONTINUE

Crrmmmmncccccccnc—aca=- MODIFICATION OF EMU ARRAY  =wccccccc—cccaac-o
DO 24 I=24NP1
24 EM U(D)=EMU(T) /(Y (I+1)=Y(I))
IF (KRAD.EQL0) GO TO 25 ’
DO 26 I=24NP1 -
26 EM U(I)=EM U(I)#.5%¥(R(I)+R(I+1))
25 CONTINUE
o e L EE P L P e et Lt PREF!S wececccccccccccaccccmerenana:
IF(ISTEP.GT«.0) GO TO 28
DO 27 J=14NPH
DO 27 1I=1.NP3
101 FORMAT(1H +3Xs1P11E11.3)
27 PREF (JyI)=PREF (Jel)
28 CONTINUE
C 2 2 2 2 2 2 2 ENTRAINMENT
: IF(KINJEQ.,2) RMI=2,%#EMU(2)
IF(KEX.EQ.2) RME==~2,%¥EMU(NP1)

RETURN
C 3 3 3 3 3 3 3 SOURCES
c USE OF FS ARRAY

200 CONTINUE
BK=(TAUL+YI*DPDX (1)) /(SRC1#,5% (RHO(2)+RHC(3)))
GENKP=C1#BK##] ,5% (Y(3)=YI)#.5%(R(2)+R(3))/(CL*YI])
GENKLP=GENKP#CL#*YI
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DO 11 I=3.NP1

T=R(I)*RHO(I)H#F(1,1)%%],5

AL=F (2, 1) /F (1,41)

_YPM=.5%¥(Y(T+1)=-Y{(I~-1))

IF(I.EQe3) YPM=,5#(Y(4)+Y(3))=-YI ’ .
IF(I.EQeNPl) YPM= Y(NP3)~YE=45# (Y(NP1) +Y(N)) v
ALTI=(F (24 1+1)+F(24I))/(F(1leI+1)¢F(1s1))

GENKM=GENKP

GENKP=(5%¥EM U(I)#(U(I+1)-U(I))%%2

© GENKLM=GENKLP

GENKLP=GENKP#ALT

IF(1.EQeNP1) GENKP=GENKP#2,% (Y (NP3)=YE-Y(NP1)) /(Y (NP2)-Y(NP]1))
FS(1,1)=(GENKP+GENKM) /YPM

FS(241)=C1*T/AL

FS(341)=C2% (GENKLP+GENKLM) /YPM

.FS(441)=C3%T

FS{Se I =(CaraL/Y(I))##AQ#FS(3+1)/C2
SU(LsI)=(FS(14I)=FS(2s1))%YPM
SU(2¢1)=(FS{391)=FS(4sI)~=FS(5+s1))=#YPM

11 CONTINUE

ALI=(F (24NP1) +F (24NP2) )/ (F (LoNP1)+F (14NP2))
GENKLP=GENKP+ALI

T=e25%# (RHO (NP 1) +RHO (NP2) )Y ¥ (R(NP]1)+R (NP2) ) *

1 (SH(F(1aNPL)+F (1aNP2)))#%#],6
FS(14NP2)=GENKP/(Y{(NP3)~=YE=Y (NP1)})

FS(2:NP2)=C1%#T/ALI

FS(34NP2)=C2#FS(14NP2)*ALI

FS(44NP2)=C3*T

FS(S54NP2)=(Cu*ALI/ (Y (NP3)~ YE))**AQ*FS(39NP2)/C:

IF(KEX NE,3) GOTO 12

AL=F (24NP3) /F (1eNP3)

T=RHO (NP3) #*R (NP3) #F (1 sNP3) #%] .5

FS(2NP3)=C1%T/AL

FS(44NP3)=C3*T

12 SU(LNP2)=,5%(FS(1sNP2)+FS( 1eNP3)=FS(2sNP2)=FS{2+NP3))*#YE

SU(2¢NP2)=,5# (FS(3sNPZ2) +FS(34NP3) ~FS(4sNP2)=FS(44NP3)

1 ~FS(5«NP2)=FS(54NP3) ) #YE

Cromemrrr e cccrc e caa— TEST 11

IF(ITEST.EQ.0) GOTO 1011

WRITE(69101) TEST

WRITE(69101) ((FS(JsI)eI=1eNP3)sJd=145)

WRITE(69101) ((SUCJeI) 9I=1sNP3)eJd=]+2)

1011 CONTINUE
RETURN
END
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SUBROUTINE STRIDE(ISW)
Coeassr STRIDFE ROUTINE BRASED ON THE GENMIX4 VERSION OF THE
C***** PATANKAR=-SPALDING PROGRAM
"DIMENSION A(2943),AU(43)qn(5,43)95U(43)9C(5943)-Cu(43)9FDIFE(5),
1 FDIFI(S)+GE(S)sGI(5)TTPF(5)
COMMON/GENRAL / AJE(S) sAJI(S) yCSALFAIDPDX(43) ¢DXsEMU(43) sF (S943)
1 FS(5443) yHyIFINJINDE(S) s INDI(S) 4 ISTEPsITESTs IUTRAPYKEXsKINGKRAC s
2 NINEQoNPHsNPLsNP2INP390M(43) «PELIsPR(S) «PREF (54431 9PSIESFSIT,
3 R(43) yRHO(43) sRMEsRMIsRU(43) 4SD(5043) 9SU(S5+43) s TAUESTALT U (43)
4 XDeXUsY(43)sYEWYI
COMMON/GM4/AK ¢ ALMGsEWALL s IPRINT¢BPI
COMMON/CONST/AQ+sC14C2+4C34C49SRC1sCL
C
GO TO (1000+2000+3000)s ISW
(c:ﬁ'%*ﬁ&*ﬁ****{v*ﬁ"ﬁ'%*ﬁ"ﬂ'%ﬁ'**&ﬁ**ﬁﬁ**ﬁ****** s T R I D E 1 L-X-F-X-2-R-2-2-F-2-X-X-F-X-2-2-]
1000 IF(ISTEP.GT.0) GO TO 1100
0M(1)=0.
OM(2)=0C. ’ )
OM{NP2) =1, T
OM(NP3) =1, -
OMI=,5#0M(3)
OMEzoS*(lo'ON(Npl))
IF(KEX.EQ.2) BPE=]l.
Y(1)=0C.
IF (KRAD.EQ.1) GO TO 1100
DO 1001 I=1.NP3
1001 R(1I)=1,
R25=1,
RN15=1.,
IF(ITEST.EQe0) GO TO 9018
WRITE(6+9010) (P(I)sI’IsNP3)qR259RN15
9010 FORMAT(IH +1iP11E11.3)
9018 CONTINUE
(mrmmm—rc e rcc e cwr e r e ———— CALCULATION OF RHO®U !S ~eeccmecrecncaccc.
1100 pO 1101 I=1sNP3 .
IF(RHO(I) «.6T.0.) GO TO 1101
WRITE(6+1108) RHO(I)«IsRHO(L)
1108 FORMAT (25K NEGATIVE OR ZERO RHO(I)=s1PE11e39€H AT I=913+6Xs
121HSET TO ABS OF RHO(1)=4E11.3)
RHO (1) =ABS(RKO(1))
1101 RU(CIY=RHO(I)#*y(I)
RU3=RU(3)
RUN1=RU(NP1)
- DO 1102 1=2sNP1
RU(I)=,5%(RU(I)+RU(I+1))
1102 CONTINUE
IF(ITEST.EQ.0) GO TO 9019
WRITE(6s9010) (RU(I)«I=14NP3)sRUN1sRUISPEI
9019 CONTINUE
Crommrcm e crccccncncenrcne——— CALCULATION OF Y 'S AND R IS ~e-emccaaa
(o et DL L L D L e L DL L DLl DL Pl YIS FOR PLANE GEOMETRY.
YI=PEI#OMI/ (RPI®RU(2))
Y(3)=YI+PEI#*OM(3) /7 {RU(2) +RU3)
Y(2)=2.%#YI-Y(3) : o
DO 1103 I=44NP1 A T
1103 Y(I)=Y(I-1)+PEI#(OM(I)~-OM(I~ 1))/RU(I 1)
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YNIS=Y(NP1)+PEI#(1,-0M(NP1))/(RU(NP1)+RUN1)
YE=PEI#OME/ (BPE#*RU(NP1))
Y(NP3)=YNIS+YE
-Y(NP2)=2.%YN15=Y(NP1)
IF (KRADSEQs0) RETURN
C emmccccnccccar e e Y's AND R1g FOR AXISYMMETRICAL GEOMETRY
; IF (CSALFAL.EQ.0.) GO TO 1110 _
o e e S L it L Dl e e LS D CSALFA NE ZERO
- COSD2=.5%CSALFA
IF(R(1)eNEsO.) GO TO 1105
C~-- --------------------------------------- R(1l)=0,
DO 1106 I=2.NP3
Y(I)=SQRT(ABS(Y(I)/C0SD2})
1106 R(1)=Y (1) *CSALFA
: YI=SQRT(ARS(YI/CQSD2))
YN1S5=SQRT (ABS(YN1S/CoSD2))
GO 1O 1107
C mrrrrrccscccrccerr e n e r e e e cr e e a - R(1) NE 0.
1105 R1D2=.5%R (1)
R102SQ=R1D2%R1D2 RS
DO 1104 I=24NP3 N
Y(I)—Y(I)/(RlDZ+SQRT(ABS(RIDZSQ+COSDZ*Y(I))))
1104 R(I)=R(1)+Y(1)#CSALFA
Y= YI/(RID?*SQRT(ABS(PIDZSO*COSDZ*YI)))'
YN1IS5=YN1S/(RIU2+SQRT(ABS(R1D2SQ+COSE2#YN15)))
1107 R25=R (1) +YI#CSALFA
RN1S=R (1) +YN]1S#CSALFA
YE=Y (NP3)=YN15
: RETURN )
C =rcermccmacrmscrrcer e r e a - CSALFA EQ ZERO
1110 DO 1111 I=2.NP3
Y(I)=Y(I)/R(])
1111 R(I)=R (1)
YI=YI/R(})
YN1S=YN1IS/R (1)
R25=R (1) )
RN15=R (1)
YE=Y(NP3)=-YN1S
RETURN
c&*&**&**&********44**#***4***&***#&*&* S TR I DE 2 sassusataitatasts
C =mmmemmccme oo PRELIMINARIES FCR CCEFFICIENTS
2000 CALL AUX(1) '
PX=PEI/DX
G=RMI-RME
‘PD8=,125#PX
.PD4=,25%PX
PG=PX+G
PGD8=,125%*PG
PGD4=pPGDB+PGDS
RMID2=.5#RMI
GD4=,25%6
BOMP=0M (3)=0M(2)
PGOMP=PGD4#BOMP
P4OMP=PD4%BOMP
C =memmcmccsccccctr et e aee GRID POINT -2
R R DL P T D ettt D D P TAyl, BPIy T1
IF(KINJNE.1) GO TO 2001
CALL WF (09192+3¢BPIeT1sTAUT)

~
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GO TO 2002
2001 T1=0.
IF (KRADEQ.C0) BPI=¢33333+.66667%RU(1)/RU(2)
- IF (KRADWEQs1) BPI=(R(1)* (S5.#RU(1)+RU(Z))+3,%*R25*

1 (RU(1)+RU(2))1) /64,7 (R(1)+R25)/RU(2)
C --—meerromrmrcesesome- ROUNDARY COEFFICIENTS FOR VELOCITY

2002 HLP=RMID2~GD4* (OM(2) +OM(3))
’ AHLP=ARS (HLP)
THLP=HLP+HLP
) TP=EM U(2) :
TTP=TP+AHLP+ABS(TP-AHLP) -
AD=TTP-THLP~T1-PGOMP ‘ . :
BD=2,.,% (T1+RMI)
CO=P40OMP* (3,%U(2)+U(3)) - DPDX(Z)*(R(I)*REQ)*YI
DU=AD+RD+PX#R0OMP
- AU(2)=AD/DU
BU(2)=80/0U
Cu(2)=CDh/0DU
o BOUNDARY COEFFICIENTS FOR FIS
IF(NEQeEQ.1) GO TO 2304 -
DO 2300 J=14NpH
TPF2=TP/PREF (J4+2)
TTPF(J)=TPF2+AHLP+ABS (TPF2-AHLP)
IF(KIN.NE,1) GO TO 2301
CALL WF(Jsle243+FDIFI(J) ¢ TIFGI(J))
IF(INDI(J)«EQe2) GO TO 2303
AJT (D =GT (N = (F(Jgl)=eS%(F (Js2)+F (J93))-FDIFI(J))
GO TO 2302 .
2301 T1F=0.
FDIFI (J) =0, ,
o i Sttt d ettt COEFFICIENTS
2302 ADF=TTPF(J)-THLP~T1F=PGOMP+,5%SD(Js2) :
: BOF=2+* (T1F+RMI)
DF=ADF +BDF +PX#RBOMP=24%SD (Js2)
T==T1F#FDIFI (J)
GO TO 2305
2303 ADF=TTPF (J)=THLP=PGOMP+,5S%SD (J,2)
BDF=0.
DF =ADF +PX%¥ROMP=2.#SD (Je2) +RMI*2,
T=RMI®F (Js1) +AJT (J) #R (1)
2305 TT=3,%#F(Je2) +F (J93)
CDF=P4OMP*#TT+2,*(T+SU(Je2))
A(Je2)=ADF/DF ’
B(Js2) =RDF/DF
C2300 C(J+2)=CDF/DF
C MATCH OF THE COUETTE FLOW SOLUTION FOR K AND KL
C
IF(JoGTe2) GOTO 2306
A(Jy2)=~1.
B(J92)=00
C(J92)=2.#(TAUI+DPDX (1) *YI)/(SRC1#(RHO(2)+RHO(3)))
IF(J.EQe2) C(Js2)=C(Js2) #CLEYI]
2306 CONTINUE

C == GRID POINT NP2
B TAUE, BPEs TNP3
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2304 IF(KEX,NE 1) GO TO 2003
CALL WF (0sNP3+NP2sNP19BPEsTNP3sTAUE)
GO 70 2310

2003 TNP3=9Q. .
IF (KRADJEQe Q) BPE=433333+.66667T#RU(NP2)/RU(NPY])

IF(KRADEQ,1) BPE=(R(NP3)#(5,%RU(NP3) +RU(NP1)) +3,#RN1S*
§ (RU(NP3) +RU(NP1)))/76,/(R(NP3)+ RNIS)/RU(NP])

C ~-mmemmcmmcmccecne=— BOUNDARY COEFFICIENTS FOR VELCC

2310 BOMM=0OM (NP2)=-0OM(NP1)
HLM=RMID2=-6D4¥* (OM(NP1) +OM(NP2))
AHLM=ABS (HLM)
THLM=HLM+HLM
TM=EM U (NP])
TTM=TM+AHLM+ABRS (TM=AHLM)
PGOMM=PGD4#BOMM
P4OMM=PD4& #ROMM
AD=2,% (TNP3=-RMF)
BD=TTM+ T THLM=TNP3=-PGOMM
CD=P4OMM {3,%U(NP2) +U(NP]1))=DPDX (NP2)# (RN1S+R (NP2)
DU=AD+RD+PX#R30MM
AU(NP2)=AD/DU
BU(NP2)=RD/DU
CU(NP2)=CD/DU
IF(NEQ.EQ.1) RETURN
C mecmrrcccecmcccccace—a BOUNDARY CQEFFICIENTS FQR F1S
CALL AUX(2)
DO 2320 J=1eNPH
TMF=TM/PPEF (JsNP1)
TTMF =TMF + AHLM+ ABS (TMF=AHLM)
IF(KEX.NE.1l) GO TO 2311
CALL WF (JsNP3sNP2sNP1sFDIFE(J) ¢« TNP3FsGE(J))
IF(INDE (J) 4EQe2) GO TO 2313

ITY

) #YE

AJE (J)=GE(J) # (S (F(JsNP2) +F (J4NP1) ) +FDIFE (J)=F (J4NP3))

GO TO 2312

2311 TNP3F=0.

FDIFE(J)=0.

C ommcmemmmmcmmmc e e—ccs e ctceccma—ee COEFFICIENTS

2312 ADF=2.# (TNP3F-RME)
BDF=TTMF +« THLM=TNP3F~PGOMM+ ,545D (JyNP2)
DF=ADF +3DF +PX#BOMM=2,%#5D (JyNP2)
T==TNP3F#FDIFE (J)

60 TO 2315 - | oo

2313 ADF=0.
BDF =7 TMF + THLM=-PGOMM+ , S#gD (J4NP2)
DF=BDF +PX#ROMM=2,%#5D (J4NP2) ~RME#*2,
. T==RME#F (JsNP3)=AJE (U} #R (NP3)

2315 TT=3.#F (JsNP2) +F (JsNP1)
CDOF=P4OMM#TT+2,# (T+SU(JsNP2))
A(JsNP2) =ADF /DF
B(JyNp2) =RDF /DF

2320 C(JsNP2)=CDF/DF

RETURN
CHitedt it b drdesedrdrde 2t e b P drdt e bbb dbdbdedrdedb e e e &t STRID E 3
3000 DO 3005 I=34NP]
BOMM=BOMP
BOMP=OM(I+1)-0OM(I)
BOM=ROMM+BOMP -~
BOMT3=ROM#3,

L2 2-X-2-2-2-2-F-2-2-%-X-X-F-X
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B O S B RIS .

PGOMM=PGOMP
PGOMP=PGD4*BOMP
PBOM=PX*#BQOM
THLM=THLpP
HLP=RMID2=GD4%* (OM(I+]1) +OM(I))
THLP=HLP+HLP
AHLP=ABS (HLP)
TTM=TTP
‘ TP=EM U(T)
TYP=TP+AHLP +ABS(TP-AKLP)

© AD=TTP=-THLP-PGOMP

1

BD=TTM+THLM-PGOMM
CD=PD4# (ROMT3#U(I) +BOMP# U(T+]1) +BOMM#U(I-1))~
DPDX(I)*R(I)# (Y (I+1)=Y(I-1))
DU=AD+RBRD+PBOM
- AU(I)=AD/DU
BU(I)=RD/DU
Cu(1)y=CDO/DU

IF(NEQ.EQ.1) GO TO 3005
DO 3004 J=14NPH

3002 TTIMF=TTPF (J)

3003

3004
3005

TPF=EM U(1)/PREF (Js1)

TTPF (J) =TPF +AHLP+ARS (TPF=AHLP)

AD=TTPF (J) = THLP-PGOMP

BD=TTMF + THLM=PGOMM

CD=PDa#* (ROMT3*F (Js 1) +BOMPHF (JsT+1) «BOMMEF (JsI=1)

CD=CD+2,%SU(Js1)

DF=AD+BD+PROM=24#SD (Js 1)
A(Js1)=AD/DF
B(Jy1)=BD/DF
C(JsI1)=CD/DF

CONTINUE -

IF(ITEST.EQ.0) GO TO 9013

- WRITE (6+9001) (AU(I) +I=2,NP2)

S001
9002
9003

WRITE (649002) (BU(I)+I=24NP2)
WRITE(699003) (CU(I) sI=24NP2)
FORMAT (7H AU(I) +1P11E11.3)
FORMAT (7H BU(I) +1P11E11.3)
FORMAT(7H CU(I) +41P11E11.3)
IF(NEQ.EQ.1) GO TO 9013

DO 5000 J=14NPH

HRITE(6+9004) (A(JeI)sI=24NP2)
WRITE(649005) (BE(JyI)sI=24NP2)
WRITE(6+49C06) (C(JsI)sI=24NP2)
FORMAT (8H A(JyI) +1P11E1163)
FORMAT(8H R(JsI) 41P11E1143)

)

1S

START OF J LOOP

9006 FORMAT(8H C(JsI) 9s1P11E1143)
9013 CONTINUE
Crrercrnccaccerccrccen e ———
IF(KINJEQ.2,AND4,RU(1)4NE,0,) U(1)=U(1)-DPDX(1)%#DX/RU(1)
IF(KEXeEQe2e ANDeRU(NP3) eNEoDWs) UINPI)=U(NP3)~DFCX (NP3)#DX/RL (NP2)
B et D D L L ity SOLVE FOR DOWNSTREAM U
3047 BU(2)=Ry(2)=U(1)+CU(2)
DG 3048 I=3,NP2 :
T=1le=-BU(T)*AU(I=1) ’
AUCT)Y=AU(T) /T {
3048

BU(I)=(BU(I)®RU(I-1)+CU(I))/T
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- DO 3050 IDASH=2sNP2

I=N+4-1IDASH
UCIY=AU(T)*U(I+1)+BU(I)

c TEST FOR NEGATIVE VELOCITY
IUTRAP=0 NO ACTIONs =1 SET U'S TO ZEROs =2 PRINT AND STOF

C

IF (IUTRAP.EQ.0) GO TO 3050
IF(1eEQe2+.0RaI+EQeNP2e0RU(I)«GELOs) GO TO 3050
IF(IUTRAP.,EQ.1) GO TO 3051

IFIN=]

. ITEST=1

3120

3051
3050

WRITE(6+3120)

FORMAT(L10Xe33HAT LEAST ONE VELOCITY IS NeGATIVE)
RETURN

UlI)=1.E=30

CONTINUE

IF(KINSEQe3) U (1) =.5%(U(2)+U(3))

"IF(KEX<EQa3)U(NP3)=,5% (U(NP1) +U(NP2))

IF(NEQ.EQ.1) GO TO 3060

DO 3320 J=19+NPH

----------------------- SOLVE FOR DOWNSTREAM F 1S
B(J92)=B(Js2) ¥F (Js1)+C(J,2)
DO 3148 I=3+NP2
T=1le=B(Js ) #A(JsI~1)
A(JeT)=A(Js I /T
B(JeI)=(R(Js1)¥B(JyI=1)+C(Js 1)) /T
DO 3150 IDASH=2sNP2

I=N+4-1DASH
FUJaT)=A(JeIIHF (U I+1)+B(Je])

Commmmmcrccmccmmcce e ADJUST F(Jsl) AND F(JsNP3)

3210

3230
3220
3310

1

3330
3320
3060

GO TO (321043220+3230) «KIN

G Gy W AP D o R e

IF(INDI(J) 4ERL2) F(Jel) FOIFI(J)+.5*(F(Jq2)+F(Jv3))+AJI(J)/CI(J)

GO TO 3229

F(Jel)=e5%(F (Js2)+F (Js3))

GO TO (33104332093330) +KEX

IF (INDE(J) «£Qe2) F(JINPI)=FDIFE(J) +e5% (F(JyNPZ) +
F(JqNPl))-AJE(J)/CE(J)

GO TO 3320

FOJeNP3) =eS#(F (JaNP1) +F (JsNP2))

CONTINUE

XU=XD

PSII=PSII-RMI*DX

PSIE=PSIE~-RME#DX

PEI=PSIE~-PSII

ISTEP=ISTEP+1

RETURN

END

e



c
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SUBROUTINE WF(JsI1912413,0UT190UT2,0UT2)
COMMON/GENRAL/ AJE(S)sAJI(S)9CSALFAoDPDX(43)9DX¢EMU(43)’F(=943)0
FS(5443) sHy IFINs INDE(5) s INDI(5) o ISTEP S ITEST s IUTRAPSKEXsKINoKRAL s

.2 NsNEQsNPHs NP1 oNP2oNP3s0OM(43) ¢ PEIsPR(5) 4PREF (S¢43) 9PSIESPSIT,
-3 R{43) sRHO(43) sRMEsRMIZRU(43) 9SD(5943) sSU(S+43) s TAUESTAUL 4L (43)
4 XDoeXUsY(43)sYEeYI '

COMMON/GM4/AK ¢ ALMG ¢ EWALL 4 IPRINTSRPI
COMMON/CONST/AQ9C14C29C39C49SRC1sCL

EFFECTS OF PRESSURE GRADIENTs MASS TRANSFER AND

RADIUS VARIATION ARE NEGLECTED
FOR VELOCITY, OUT1=BPs oUT2=Ts OUT3=TAU
FOR F!S, OUT1=FIDIF, 0OUT2=T, OULT3=G

125=13-1/11
JDASH=U+]
GO TO (100+200+2004+200) s JDASH

C LOG-LAW
100 UREF=,5%(U(12)+U(13))

RHOREF=+5#RHO(11) +425% (RHO(I12) +RHO(13))
RREF=¢5# (R (I2)+R(I3))

VREF=EMU(I1)

YREF=YI+{YE-YI)#OM(Il)
RE=UREF*RHOREF*YREF/VREF
RRUREF=RREF#RU(125) '

oAU SR LOG LAW

101

102

103

200

cmw

£

Dt e

ER=RE*EWALL

NIT=0 )

SHALF=SQRT(TAUI/ (RHOREF*UREF#%#2))

SHALF 1=SHALF

SHALF=AK/ALOG (ER¥SHALF)

IF (ABS (SHALF ~SHALF1) eLTee0001¢OReNIT4GT410) GO TO 102
NIT=NIT+1

G0 T0O 101

S=SHALF##2

OUT1=AK/ (AK+SHALF)

EM U(I25)=,25#RHOREF#*RREF#ABS(U(I3)=-U(12) )= (AK/CLT1) #%2
OUT2=S*RRUREF

OUT3=0UT2#UREF/R(I1)

RETURN

CONTINUE

OUT1=,0

ouT2=.0

OUT3=.0

RETURN

END

R R
D el
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SUBROUTINE STAPRO :
C CALCULATION OF THE STARTING PROFILES
DIMENSION DOM(S0) +sDY (50) 4DU(SQ) +DRHO(S0)
COMMON/GENRAL/ AJE (5) sAJT (5) s CSALFAsDPDX(43) sDX9sEMU(43) oF (S9423) s
_ 1 FS(5+43) sHyIFINCINDE(S) s INDI(S) s ISTERP+ITESTsIUTRAPSKEXaKINIKRACY
2 NJNEQyNPH NP1 sNP2sNP34,0M(43) oPEI+PR(5) ¢PREF (5943) yPSIELFSII,
3 R(43) yRHDO (43) sRMEZRMI gRU(43) 4SD(5+43) ¢SU(54423) s TAUESTAUTI 4L (43)
4 XDeXUsY(43)YsYESYI
COMMON/GMA/AK e ALMGLEWALL s IPRINToBPI
COMMON/CONST/AQsC14C29C3sC49SRC1sCL
READ(Se41) LsUGe(DY{I)sDU(I)sI=1sL)
T WRITE(6942) LaUGe (DY (I)4DU(I)sI=1,4L)
42 FORMAT(1IH I2,F10e4/(6F1044))
4] FORMAT(I24F10.4/(6F10e4))
DOM(l):.O
DRU=RHO (1) #*DU (1) #UG
DG 39 I=2,L
- DU(IY=DU(]) *UG
DRUM=DRU
DRU=RHO (1) *DU(I)
39 DOM(I)=DOM(I~-1)+ (DRU+DRUM)# (DY (I)=DY(I-1))#,5
PEI=DOM(L)’
DO 38 I=1lsL
38 DOM(I)=DOM(I)/PEI
DO 40 I=14+NP3 .
Y(I)=UINTER(OM(I) +DOMsDY,4L)
UCT)=UINTER(OM(I) +DOMsDU,L)
40 CONTINUE
C CALCULATE INITIAL VALUE OF u(2) AND BPI
UT=SORT(TAUI#2,/ (RHO (2) +RHO(3)))
SHALF=UT/U(3)
DO 43 IT=1Q2
BPI=AK/ (AK+SHALF)
43 SHALF=AK/ (ALOG(EWALL*«S#0M(3)#PEI*ShALF*RPI/EML(1)))
U(2)=2.%UT/SHALF=U(3)

C INITIAL E PROFILE : o
ATK=TAUI/ (P=0(1)#SRC]) : .
BTK==Y(NP3)*DPDX{1)/(RHO (1) #SRC])

BTK=,5% (RTK+ARBS (BTK))
DTK=2#ATK+RTK
CTK=ATK=2.%#DTK

DC 603 I=3+hP1
ETA=Y(I) /Y (NP3)

c 603 F(lyI)=ATK+BTK#ETA+CTKH*ETA®#2+DTK*ETA##3

C INITIAL EL PROFILE
"ALEMG=.09
ALEMG=ALEMG#SQRT (SRC1)

DO 604 I=3.NP} ‘ o
F(291)=ALEMG*Y (NP3) ’ .
DUMMY=CL*Y (I}
IF(F(2+1).,GT,DUMMY) F (241)=DUMMY
F(2e1)=F(1leI)%F (241}
604 CONTINUE
F(lsl)=e0
F<2!1)=00
F(le2)=F(1+3)
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F(242)=40

F(1sNP3)=.0

F(2yNP3)=,0
F(14NP2)=o5% (F (1,NP1)+F (14NP3))
F(24NP2) = S®(F (29NP1) +F (24NP3))
RETURN

END
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FUNCTION UINTER(AsBsCs1)
C LINEAR INTERPOLATION ROUTINE
DIMENSION B(I)sC(D)
IF(A.LT«B(1))GO TO 23
J=2
69 IF(A-B(J))212+2114210
210 J=J+1
IF (J.LELIIGO TO 69
WRITE (64+21)
21 FORMAT (1XsSHSTQOP2)
STOP
211 UINTER=C(J)
RETURN
212 UINTER=C(J=1)+(C(J)=C(J=1))#(A=B(J=1))/(BR(J)=B(J-1))
200 RETURN
23 WRITE(6420)
. 20 FORMAT(1X+SHSTOP])
STOP
END

T T
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LAUFER,
(1954)
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IDENT Investigator/s Nature of éxperiment Year
Ludwieg and Mild édversé '
1100 Tillmann pressure gradient 1949
Ludwieg and Strong adverse
1200 Tillmann pressure gradient 1949
Ludwieg and . .
1300 Ti1lmann Accelerating flow | .1949
Wieghardt and ' -
1400 Tillmanq Flat plate flow 1944
1500 Tillmann Ledge flow 1945
Schubauer and
2100 Klebanoff 1950
2200 Clauser Flow No. 1 ) : 1954
2300 Clauser Flow No. 2 1954
Bradshaw and .

2400 Ferriss Relaxing flow 1965
2500 Bradshaw o = —-.15 1966
Bradshaw and ' '

2600 Ferriss o = —-.,255 o : 1965

Herring and - o :
2700 Norbury B = =.35 1967
Herring and _
2800 Norbury B = -.53 ' 1967
2900 Perry 1966
3000 Bell - Constant pressure 1966
3100 Bell Series D , 1966
3200 Bell Series E . 1966
3300 Bradshaw &= 0 - -,255,C 1967
3500 Newman Airfoil, Series 2 1951
3600 - Moses Case 1 - 1964
3700 Moses Case 2 1964
3800 Moses Case 3 1964
4000 Moses Case 5 1964
4100 Moses Case 6 1964

Table 6.4~1 continued.




IDENT Investigator/s Nature of experiment Year
Schubauer and

4400 Spangenberg Flow A 1960
Schubauer and

4500 Spangenberg Flow B 1960
Schubauer and

4800 Spangenberg Flow E 1960

5000 Fraser Flow A 1956

5100 Fraser Flow B 1956

5200 ‘Stratford Experiment 5 1959

5300 Stratford Experiment 6 1959

6300 Bauer Spillway, 60° 1951

Table 6.4-I Name of invéstigator/s.and nature of

the experiment for flows shown in Fig.6.4.
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(c) yf = 0.528; y/y; = 0.85

(a) Y/ = 0.510;5 y/ys = 0.014
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probe at & 17 .71 cme



