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Abstract 

A turbulence model is proposed for the prediction 

of two-dimensional boundary-layer flows near walls. Two 

differential equations are solved: one for the turbulent 

kinetic energy and one for the turbulence-energy-length-

scale product. The constants appearing in the equations 

are determined by reference to experimental data of self-

similar boundary layers. 

The calculations by the model for both incompressible 

and compressible wall boundary layers, with or without 

heat transfer, are found to compare favourable with the 

experimental data. Both qualitative and statistical 

comparisons of some of the predictions with those by other 

methods of calculation reveal that, the two-equation model 

predicts the main features of the boundary-layer flows 

as accurately as other simpler or more complex models. 

Moreover, the two-equation model is found to be more 

general in its application than the simpler models. 

The experimental investigation of radial wall 

jets yields both the mean and turbulent quantities of 

the flow. The data are used to compare with the predictions 

of the two-equation model. 
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CHAPTER 1.  

INTRODUCTION 

1.1 Background of problem considered  

The calculation of turbulent boundary layers is 

an extensive subject of which the present investigation 

is concerned with the prediction of their properties by 

use of turbulence models. The motion of a turbulent Newtonian 

fluid can be divided into two modes: a primary mode 

which is the ensemble average or mean motion; and, 

superimposed on it, the secondary mode which is the 

random fluctuating motion we call turbulence. Theoretically, 

since such a fluid is governed by the Navier-Stokes 

equations, direct solution for the motion of the turbulent 

fluid should be possible. However, because of the random 

and complex nature of the motion, such an exact solution 

is quite impracticable even with the aid of existing 

computers, due to the enormous amount of computing time 

that would be required. Faced with such a difficulty, 

we have to seek approximate solutions of these equations 

which are compatible with our computing capability. 

One way to tackle the problem of turbulent motion 

is to obtain the statistical correlations of the 

turbulence within the flow field. However, because of 

the non-linear nature of the Navier-Stokes equations, the 

correlation equations always include terms of higher-order 

correlations. Thus an infinite number of correlation 

equations have to be chosen and such a set of equations 
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is made determinate by means of additional information 

which may either be based on intuitive assumptions or 

on experimental evidence. The choice of the set of 

equations and the provision of hypotheses in addition 

to the hydrodynamic equations, so as to obtain a closed 

solution, constitute the approach of turbulence modelling. 

Prior to 1965, attempts to calculate fluid 

motions through turbulence models were hampered by two 

main difficulties. The first was the lack of computational 

facilities and of general numerical techniques which 

could handle a large number of simultaneous partial 

differential equations. The requirement springs from the 

aforementioned fact that the complete specification of 

the flow field requires an infinite number of equations; 

therefore, we can expect that a model of reasonable 

universality (i.e. one which can be used to calculate 

a large number of flow situations without having to 

make any change in the governing equations) will in general 

require a large number of differential equations. 

Secondly, there was a dearth of information upon 

which one could build the complete picture of a turbulent 

fluid. The information on the structure of turbulence 

is useful as a guide to the correct physical hypotheses. 

However, despite a number of informative treatises on 

the subject of turbulent motion e.g., Batchelor (1953), 

Townsend (1956) and Hinze (1959), the picture of the 
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mechanism of turbulent flow was; and still remains, far 

from complete. 

Because of these obstacles, understandably, 

calculations of turbulent recirculating flows were non-

existent; and the use of turbulence models was confined 

to two-dimensional boundary layers. These models 

consisted of no more than one differential equation in 

addition to momentum and continuity equations. Models 

which proposed the use of more differential equations, 

such as those of Kolmogorov (1942), Rotta (1951), 

Chou (1945), and Davydov (1961), had either not been 

tested at all or tested only over a limited number of 

classes of flow. However, this situation has been changed 

in recent years with the availability of general 

numerical techniques for the solution of parabolic and 

elliptic partial differential equations, like those of 

Patankar and Spalding (1970) and Gosman et al (1969). 

Furthermore, improved measuring techniques and equipment 

yield more reliable turbulence measurements. 

The object of the present investigation is to 

make use of some of our present-day knowledge to develop 

a two-equation turbulence model applicable for boundary-

layer flows near walls; the model has two equations 

which specify the local turbulence intensity and its 

length scale of the flow. Although the modeltas a 

potential application in recirculating flows, the present 
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investigation is limited to two-dimensional boundary 

layers. By restricting ourselves to the calculation of 

boundary layers rather than more complex flows, the 

mathematical task of devising a solution is reduced. 

This will in turn reduce the amount of computing time 

required in the process of developing the model. 

Moreover, the calculation of turbulent boundary layers 

is of great importance because such phenomena are 

frequently encountered in engineering thermal-fluid 

equipment as well as in Nature. 

1.2 Purposes of the present investigation  

The main object of the investigation has been 

indicated in the above Section. 	It may be stated more 

precisely as follows: 

(1) to survey existing turbulence models. 

(2) to develop a two-equation turbulence model 

based on the local turbulence intensity and its length 

scale for the calculation of two-dimensional boundary 

layers near walls. 

(3) to assess the accuracy of the model by 

comparing calculations with experimental data; the data 

include measurements of the hydrodynamics and heat 

transfer of incompressible and compressible boundary 

layers. 

(4) to compare some of the present predictions 

with those from other models of turbulence. 

(5) to carry out new measurements of the mean 
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and turbulent velocities of radial wall jets; these 

results are used in the development of the model. 

1.3 Limitation of the present investigation  

The present investigation is limited to two-

dimensional boundary layers generated by smooth impermeable 

walls only. The development of the same model for free-

shear flows (i.e. boundary layers without walls) is 

reported by Rodi (1971). 

1.4 Outline of the thesis  

The main body of the thesis is divided into 

eight Chapters headed by the Introduction. 

Chapter 2 first presents the mathematical problem 

by the introduction of equations for momentum and scalar 

transport and for the second order correlations of these 

properties. The closure problem of these equations is 

then posed in Section 2.7. This is followed by a review 

of the existing turbulence models which are classified 

according to the number of equations in the closed system. 

The development of the two-equation model is 

outlined in Chapter 3. 

The constants in the model are determined with 

reference to a selected set of experimental data; the 

procedure is described in Chapter 4. The influence of 

each of these constants on the accuracy of the boundary-

layer calculations is also investigated. 

Chapter 5 presents the method of solutions for 

these equations by the finite-difference method of 



12 

Patankar and Spalding (1970). The boundary conditions 

for the model are given in Section 5.2. 

Comparisons of predictions with experimental data 

are given in Chapter 6. The comparisons include both 

the hydrodynamic and heat-transfer properties of 

boundary-layer flows near walls; the data chosen for the 

comparisons include compressible and incompressible wall 

boundary layers, plane wall jets, radial wall jets, pipe 

flows, and channel flows. The reasons for the discrepancies 

between experiments and calculations which occur in some 

circumstances are discussed. The predicted results 

are also compared with similar predictions of other models, 

both of lower and higher order, in Section 6.3. 

Chapter 7 reports the mean-velocity and turbulence 

measurements in two cases of radial wall jets; some of 

these data have been used in Chapter 6 for the development 

of the present model. 

Finally, Chapter 8 summarises the work of the 

previous Chapters and suggests paths for further 

research of the proposed turbulence model. 
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CHAPTER 2  

THE  EQUATIONS OF MOTION AND THE PROBLEM OF CLOSURE  

2.1 Introduction 

Using the Navier-Stokes equations as a starting 

point, we can derive the transport equations for the 

correlation of the fluctuating velocities. The 

resulting mean-velocity and second-order turbulence-

correlation equations applicable to steady two-

dimensional boundary layers are listed in Sections 2.2 

and 2.3 respectively. However, these equations contain 

more unknowns than the number of equations. Thus, to 

achieve closure, it is required to resort to additional 

physical hypotheses. The same difficulty also applies 

to the transfer of scalar properties; the relevant 

equations are presented in Section 2.4. 

All the equations discussed above hold for a 

' fluid of constant density; the effect of compressibility 

on the equations is discussed in Section 2.6. 

A critical survey of the turbulence models is 

found in Section 2.9, in which these models are - 

classified according to the number of differential 

equations required in the closed system. 

2.2 The mean-momentum equation and the mean-continuity 

equation  
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The equations of mean motion governing the 

motion of a steady two-dimensional boundary layer are 

as follows: 

the continuity equation, 

R--  + R--  ax 	6y (2.2-1) 

the mean-momentum transport equation, 

DU 	( ay rDt = 
	- puv) - dP 	, 2 	2% 

- P--0 - V J. dx bx (2.2-2) 

The meanings of the symbols are defined in 

Nomenclature. 

For a highly turbulent boundary layer, two 

simplifications can be made to the above equation: 

(a) when the Reynolds number of turbultnce 

(defined as eli/v) is large, the laminar shear-stress 

is much smaller than its turbulent counterpart; thus 

the first term on the RHS of equation (2.2-2) can be 

neglected. The exception to this is in the sublayer 

close to the wall where the effect of the laminar viscosity 

plays the dominant role in momentum diffusion. 

(b) the experimental evidence from boundary 

layers shows that the turbulence intensities u2  and v2  

are often small. Thus the normal stresses terms in 
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Equation (2.2-2) can also be neglected. 

2.3 Equations for the transport of second-order  

turbulence-correlations  

All the transport equations of the second-

order turbulence-correlations are listed below in the 

form applicable to two-dimensional boundary layers. 

They entail: 

(a) equation for the transport of u2: 

Due 	a 2 	a2U 	-- au 	au 	au 2  rilE = - 2Ti-(pu V) 	P'by2 	2puv.T. + 2p6x  - 211 	7)7.) 	„ (2.3-1) 

I 	II 	III 	IV 	V 	i=1  VI 

(b) equation for the transport of v2: 

3 
----    3 2 

PE
v 
 = — 2i(PV 4 i ) + 	7 

 2, 	
-  

	
_ 
(
x .) 

I 	II 	III 	V 	i=1  VII- 

(c) equation for the transport of w2: 

Dw2 	b 2 W2 bw 	bw 	2 

pTIE  = - 27-(pvw2) + 	+ 2p-- - 211)- 	) uy 	by 	bz 	bx. 
I 	II , 	III 	V 	i.1 VI 

(2.3-2) 

(2.3-3) 

(d) equation for the transport of UT: 

3 	 

ig b 	2euv 	
-
au '  -

by  bubv (2.3-4) 
D 	- 
	

y(pu + puv) +1b- + play 	2P  
 

bxbx. i i = I 	II 	III 	V 	i VI 

(e) equation for the transport of turbulent 

kinetic energy, e(=--(u2  + v2  + w2)/2), which results from 

the summation of EqUations (2.3-1,2.3-2, 2.3-3) and the 
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elimination of 	terms through the condition of mass i  

conservation: 

3  
/ 2 	% 62e 	bU 	au' 2  

9
1121). et = 

:y
( 	 .pv + kku + v2 + w )1rPf P---r puv-- - 11) 	— ) 

2 	bY 	aY 
1= 	

bx. 
3=1 j  I 	II 	III 	IV 	VI 

(2.3-5) 

These equations represent the transport of 

Reynolds stresses in a boundary-layer flow and have been 

known for a long time. A discussion of these equations 

can be found in Townsend (1956) or Rotta (1964). The 

equations are similar to each other in form. The 

convection of a particular Reynolds stress (I), is 

determined by the turbulent diffusion (II), the molecular 

diffusion (III), the production due to the interaction 

of other Reynolds stresses with the mean strain (IV), the 

interactions between pressure fluctuation and velocity 

fluctuations (V), and the dissipative effects due to the 

presence of viscosity (VI). It must be borne in mind 

here that apart from the last term in Equations (2.3-1, 

2.3-2, 2.3-3, 2.3-5) which is always negative, the other 

terms can either be positive or negative depending on 

the inhomogen ty of the flow. 

For highly turbulent flow we can again neglect 

the molecular diffusion term (III) in Equations (2.3-1 

to 2.3-5). 

The pressure-velocity correlations.  

As can be seen in Equations (2.3-1 to 2.3-5), the 

-f 
see Corrsin (1953), Hinze (1956) p.65. 
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pressure fluctuation appears as correlations with the 

fluctuating velocities. The instantaneous variation of 

p is governed by a Poisson equation (see for example, 

Rotta 1951, Kolovandin and Vatutin 1969): 

3 3 	 3 3

—  
kip  =     2ax1 ax. 

auj 	) (6x
u
.gx 

	

e.u. 	b2 .0  

3-  bx

u
.-Lci). (2.3-6) 

1 	J .1j=1 	1 i=1j=1 J 1 	J i 

This equation shows that p and the pressure-

velocity correlations are completely determined by the 

velocity field. A number of investigators (Chou, Rotta, 

Kolovandin and Vatutin) have proposed formulations br 

modelling the pressure-velocity correlations in 

Equations (2.3-1 to 2.3-5). 

2.4 The equations for the transport of a conservative  

property  

The equation 'for the transport of a conservative 

property reads: 

elf PrE - - "-Vv.%) + 0_ 77F + 

and theequation for the turbulent ii-transport 

flux reads: 

(2.4-1) 

aRY2 	IJJVCPN V T +—(--)+ pv 
'Dt 	by 	by (fay 	6y 

  

(2.4-2). S1V 

+ viscous terms. 

The last term in Equation (2.4-1) represents 

the source or other additional transport properties of 6. 



For the equation of stagnation enthalpy transport, S 

is given by, 

2 
SH* 	by = —[P,(1 .1

by 	+ e)1 . (2.4-3) 

2.5 The transport equations for axisymmetric flows  

Flows in pipes, boundary layers developing 

along the surface of a cylinder with axis parallel to 

the main stream, and radial wall jets are just a few 

of the cases of two-dimensional boundary-layerflows 

which can be more conveniently analysed in cylindrical 

coordinates. All the second-order turbulence correlation 

equations in these coordinates have been derived by 

Rodi (1970). Comparison of these equations with 

Equations (2.3-1 to 5) reveals that additional terms are 

present in the equations for axisymmetric flow. These 

terms represent production due to, Coriolis forces, 

centrifugal forces, and additional pressure-velocity 

correlations. However, for an axisymmetrical boundary 

layer in the absence of axial swirl, these additional 

terms can be neglected. 

+ The stagnation enthalpy, H*, is defined as, 

H* 	U2 H + 	+ e . 

Here, the kinetic energy of the mean motion 

in y-direction has been neglected. 
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2.6 Effect of compressibility on the transport equations  

In supersonic flow and in boundary layers with 

large density variation due to the presence of large 

temperature difference across the layer, we can no longer 

assume p to be a constant. Furthermore, if the flow is 

turbulent there will appear in the transport equations 

correlations involving 7S, the fluctuating component of 

density. However, provided that the intensity of the 

fluctuation fF/p is the same order of magnitude as 
2 

U /u,, all the density-correlation terms are small 

compared with the generation term IV in Equations (2.3-1 

to 5) and therefore can be neglected from these equations. 

Some justification of this assumption comes from the 

data of Harvey et al (1969), who showed that up to a 

free-stream Mach number of 9, for a flat-plate flow1 P/p 

is nowhere greater than 0.1; their result is reproduced 

in Fig.2.1. 

The, current assumption concerning the magnitude 

of density fluctuations is more restrictive than 

Morkovin's hypothesis (1964) which is based on the 

^42 assumption that p /p2  is the same order of magnitude as 

U
2

/U
2
. However, the resulting equations of mean momentum 

and turbulent kinetic energy based on this assumption 

(see Bradshaw and Ferriss 1971) and those based on the 

present assumption are almost identical. Therefore, in 

the present compressible-flow calculations, it is sufficient 

to replace p in the transport equations by its local mean 
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value which is calculated from theaquation of state of 

the fluid. For an ideal gas, the equation of state is: 

P = pRT, 	 (2.6-1) 

where the mean temperature T is to be calculated 

from the enthalpy-transport equation. 

Temperature fluctuations may also induce 

fluctuation of P. However, for air, correlation terms 

associated with 1-1,  should be small as 11  varies only as a 

0.76 power of temperature. 

2.7 The closure problem  

Because of the non-linear nature of the Navier-

Stokes equations from which the set of Equations (2.3-1 

to 6) is derived, this set contains more unknowns than 

the number of equations. Additional equations for higher-

order correlations can of course be derived from the 

Navier-Stokes equations but no determinate (closed) set 

can be found. Thus, in order to close the equations, 

additional information abolA the behaviour of the 

turbulence needs to be introduced. Such information is 

usually formulated from the observation of the characteristics 

of the turbulence structure in simpler flows such as flows 

behind grid wires and from other physical hypotheses. 

With these additional formulations, the resulting 

equations will form a determinate set with a number of 

universal constants or functions;these can then be 

determined from the comparison of the solution from the 
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equations with a number of reliable experiments. 

In the past, various workers have proposed 

different turbulence models composed of different closed 

sets of equations. They differ not only in the transport 

equations used and the physical hypotheses employed, but 

also in the degree of difficulty with which the solution 

can be obtained. A review and a classification of these 

models are found in Sections 2.8 and 2.9 respectively. 

2.8 Classification of the turbulence models  

Turbulence modelling is essentially a problem 

of approximation through closing the exact equation by ' 

semi-empirical formulae; therefore, in principle at 

least, the larger the number of differential equations 

employed to describe the turbulent correlations in a 

model, the more "realistic" it will be. Such a model is 

likely to fit a larger number of flows without having to 

make any change in the model. However, a model which 

requires more differential equations will need not only 

bigger efforts in devising a solution but also more ' 

computing time even if such a solution is possible at all. 

For this reason, we shall follow the approach of Rodi 

and Spalding (1969, 1970) who classified the models 

according to the number of differential equations required, 

in addition to the Navier-Stokes equations, to calculate 

the hydrodynamic developments of a two-dimensional 

turbulent flow. 
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2.9 A survey of the existing turbulence models  

With the proliferation of proposals for turbulence 

models in recent years, it is helpful to make an up-to-

date survey of all of them before attempting any new 

proposals. Furthermore, such a review will be useful in 

documenting the current state of the art in turbulence 

modelling. 

A summary of the models known to the present 

author is tabulated in Appendix 1. These models are 

discussed in Sections 2.9-1 to 4 in which they are 

classified into zero-, one-, two- and multi-equation 

families respectively. The proposal of Deardorff (1970) 

is discussed in Section 2.9-5. 

2.9-1 Zero-equation models  

The name implies that no differential equation 

is employed apart from the mean-momentum and continuity 

equations. This is also known as the mean-field method 

(see Reynolds 1968, 1970) because the apparent shear-

stress in the momentum equation is assumed to be proportional 

to the product of the mean-strain-rate and the mixing 

length or eddy viscosity; these in turn are functions 

of local parameters of the flow. Examples of this approach 

are found in Patankar and Spalding (1970) and Mel]or and 

Gibson (1966). Despite the development of more 

sophisticated turbulence models, Prandtl's mixing-length 

method remains one of the most thoroughly tested and best 

documented methods for calculating boundary layers. 
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However, like the eddy-viscosity methods, it is well 

known that different functions are required to calculate 

the correct mixing length for different flow conditions. 

2.9-2 One-equation models  

For one-equation models, an additional transport-

equation of a turbulence property is employed. The 

transported property can either be the eddy viscosity 

itself as proposed by Nee and Kovazsnay (1969) or the 

turbulent kinetic energy as proposed by Prandtl (1945), 

Emmons (1954), Glushko (1965), Spalding (1967), 

Wolfshtein (1969), Saffman (1970), Gawain and Pritchett 

(1970), and Lundgren (1971). However, rather than use 

the eddy viscosity to calculate the turbulent shear stress, 

Bradshaw et al (1967) proposed that the shear stress is 

proportional to the local turbulent kinetic energy. But 

as will be shown in Section 4.2-2, the gradient-diffusion 

assumption and Bradshaw's assumption are identical in the 

absence of convection and diffusion of turbulent kinetic 

energy. 

As for the zero-equation models, a length scale 

has to be prescribed for all the one-equation models. 

2.9-3 Two-equation model  

All the two-equation models proposed so far are 

similar in two respects:firstly, they all have an equation 

for turbulence-energy transport and, secondly the length 

scale, which is prescribed algebraically in the one- 
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equation model, Is determined from another transport 

equation. Kolmogorov (1942) was the first to propose 

the use of a "frequency"-transport equation in the 

calculation of turbulent boundary layers; the length 

scale is inversely proportional to the "frequency". This 

was followed by proposals for other length-scale equations 

by Harlow and Nakayama (1967, 1968), Spalding (1969a) 

and Wolfshtein (1970). Recently, Jones and Launder (1970) 

also proposed an equation for the transport of "isotropic 

dissipation rate" of the turbulence which was successfully 

applied to the calculation of boundary-layer re-laminarisation. 

Spalding (1971) calculated the fluctuating quantities in 

a free circular jet from a model containing anequation 

for the "square of vorticity fluctuation". 

2.9-4 Three-equation and higher-order models  

In all two-equation models discussed in the 

foregoing Section, shear stress is calculated from the 

product of the mean strain, the square root of the 

turbulent kinetic energy and the length scale. This. 

relation may be applied to equilibrium or near-equilibrium 

flows where the convection and diffusion of the shear 

stress are small compared to its generation and 

dissipation. However, diffusion of shear stress becomes 

important in the near-wall zone of a wall jett and in 

asymmetric channelsl as in the experiments of Hanjalic (1970). 

Accordingly the author introduced a transport equation 

in addition to the turbulent-kinetic-energy and 
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dissipation-rate equations, to account for the effects 

of convection and diffusion of the shear stress. A 

similar approach had been proposed earlier by Rotta (1969), 

who advocated the use of the energy-length equation instead 

of the dissipation equation. 

Donaldson (1969) employed a four-equation model 

for the calculation of boundary-layer transition; instead 

of using the turbulent kinetic energy as dependent 

variable, he calculated u2  v2, w2 1  and uv from the four 

differential equations but used a prescribed length 

scale. A similar method has also been employed by 

Kolovandin (1970) to investigate the scalar transport of 

turbulent boundary layers. Rotta (1951) and Daly and 

Harlow (1970) have separately proposed models possessing 

not only equations for the three components of turbulence 

intensity and shear stress but also a transport equation 

to calculate the length. 

Higher-order models can of course be obtained by 

providing transport equations for the third-order 

correlations. Such models have been proposed by Chou(1945a), 

Davydov (1959, 1961) and Kolovandin and Vatutin (1969). 

Chou proposed to calculate both the second-and third-order 

correlations through a closed set of integral-differential 

equations while Davydov (1961) proposed to calculate the 

energy-dissipation rate through four differential 

equations. Kolovandin and Vatutin, on the other hand, 

chose to calculate six length scales from differential 

equations. One interesting aspect of these models is 
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that the fourth-order correlations which account for the 

turbulent diffusion of the third-order correlations are 

not assumed to be of the gradient-diffusion type; 

instead the fourth-order correlations are either neglected 

as in Chou (1945b) or decomposed into second-order 

correlations through the hypothesis of Millionschtchikov(1941), 

namely, 

u.u.0  u = U.U. . u u + u.0 	u.0 + u.0 . u.0 
1 3 k 1 	1 3 	k 1 	1 k . 3 1 	1 	3 k .(2.10-1) 

Use of this hypothesis serves to reduce the 

number of unknown constants required in the model, but 

there is physical ground for objection in the use of 

Millionschtchikov's hypothesis: it is strictly only 

applicable in turbulence where the probability-density of 

the fluctuation is Gaussian; however, Gaussianity of the 

turbulence is only observed in the final stage of decay 

of isotropic turbulence or at the axis of symmetry of a 

boundary layer. 

2.9-5 Turbulence model for the calculation of large eddies 

The calculation method of Deardorff Z1970, 1971) 

cannot be suitably classified according to the number of 

equations required, as in this method, the time-dependent 

equations are solved for the large eddies which encompass 

the grid distribution used in the calculation, while a 

generalised form of eddy-viscosity hypothesis (Smagorinsky 

et al 1965) is used in the calculation of subgrid-scale 
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turbulence; the size of the grid of course represents 

the length scale of the subgrid turbulence. 

Although some useful turbulence characteristics 

of a channel flow have been predicted by this method a 

large amount of storage and computing time is required 

for a solution (over 104s of CDC6600 running time for a 

rectangular-channel-flow' problem); thus, the method is 

likely to remain as a guide to the future development 

in turbulent flow calculations rather than a general method 

for immediate use in the calculation of general turbulent 

flows. 

2.10 Concluding remarks of the survey  

2.10-1 The length-scale equation of the turbulence model 

Ekamination of Appendix 1 reveals that all the 

turbulence models proposed so far are similar in one 

respect: they all require one or more length scales to 

specify the representative size of the eddies in the 

turbulent fluid. These length scales can present 

themselves in a model under different disguises, e.g. they 

can be calculated from the rate of energy dissipation as in 

the model proposed by Daly and Harlow (1970) or they can 

be retrieved from the vorticity-squared-fluctuation as in the model 

of Spalding (1971). Moreover, the length scale may either 

be an algebraic function as proposed by Prandtl (1925,1945) 

and Bradshaw et al (1967), or it may be calculated from 

a differential equation, which is derived in one of the 
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following ways: 

(a) it is constructed through intuition. 

Examples of this approach are Harlow and Nakayama's(1967) 

. length-scale equation and Kolmogorov's (1942) "frequency"_ 

transport equation. 

(b) it can be derived semi-empirically from the 

Navier-Stokes equations such as the "vorticity-decay" 

equation of Chou (1945), the energy-length equation of 

• Rotta (1951), the dissipation equation of Daly and Harlow(1970) 

and the "vorticity-fluctuation-square" equation of 

Spalding (1971). 

2.10-2 The applicability of the turbulence models  

The basis of assessment for the validity of the 

turbulence models is by comparison between observation 

and theory. However, from. Appendix 1, one notes that 

not many of the proposed turbulence models have been 

compared with a large number of observations. In principle, 

those models which employ a large number of differential 

equations like those of Chou (1945a), Davydov (1961); and 

Kolovandin and Vatutin (1969) should be more universal 

in their applications; but their use as general calculation 

procedures is at present hampered by the difficulty of 

obtaining a solution from a large set of coupled 

differential equations and, by the unknown constants in 

these models, which remain to be determined. These problems 

are less acute in simpler models, for these have smaller 
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number of equations and constants. 

Another reason for the popularity in the use of 

simpler models is thatl in flows usually encountered in 

engineering equipment, there is a need to calculate not 

only the hydrodynamics of the flow but also other properties, 

like heat and mass transfer within the flow. Thus, in 

addition to the equations already in the turbulence model, 

one has to solve the transport equations for relevant 

transport properties like those of Equations (2.4-1, 

2.4-2). 

On the other hand, simple models usually lack 

universality. For example, Prandtl's mixing length works 

quite well in both free-jet flows and wall-boundary-layer 

flows but one needs to take a different constant of 

proportionality between the length and the layer thickness 

for these flows. 

In Chapter 3, a turbulence model which requires 

the solution of only 2 equations is proposed; the 

dependent variables being the turbulent kinetic energy 

and a length scale of turbulence. It is shown later that 

such a model predicts satisfactorily the developments of 

a large number of boundary-layer flows. 
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CHAPTER 3  

A TWO-EQUATION MODEL OF TURBULENCE  

3.1 Introduction 

The turbulence model to be proposed in Section 3.2 

requires the solution of two differential transport 

equations, one for the turbulent kinetic energy and one 

for the kinetic-energy-length-scale product. The exact 

form, of both Equations (3.2-3 and 3.2-5) is first 

derived from the Navier-Stokes equations. However, in 

order to close these exact equationsl the unknown terms 

in the equations have to be related to other determinate 

variables; the proposed expressions are given in Section 

3.2-3. 

The closed form of the turbulent kinetic energy 

and energy-length product equations is given in Section 

3.2-4. A consequence of the closure is the appearance 

of a number of universal constants in these equations. 

The values of these constants are to be determined by 

reference to experimental data; the procedure of which 

will be given in Chapter 4. 

Finally,some remarks on the characteristics of 

the proposed model is given in Section 3.3. 

3.2 The two-equation turbulence model  

One measure of the turbulence field is the joint 
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correlation of the fluctuating velocities between two 

points in the flow field. Rotta (1951) has shown that 

the energy spectrum E, which is defined as the Fourier-

transform of the two-point joint correlation Ri, 

k2  E(k) 	Jr 4n2 	1 Vol 
(3.2-1) 

is governed by a_transport equation. The derivation is 

presented in Appendix 2. For a two-dimensional constant-

property boundary layer the E equation entails: 

DE 	6pF2 (la  bu - Dt 	r-12E7 	21-1k2E - pT1  —,pT2  

II III Iv v VI 

(3.2-2) 

In this equation, terms (I to VI) represent 

convection, diffusion, generation, dissipation, inertial 

transfer and mean-motion-turbulence-interaction transfer, 

of E respectively. The meanings of each of these terms 

are.explained in Appendix 2. Also in the Appendix are 

given the definitions of the functions F2, G12, T1, and 

T2. 

3.2-1 The exact turbulent kinetic energy equation 

The integration of Equation (3.2-2) with respect 

to k from ci to c° of course yields a turbulent-kinetic-energy 

transport equation, 

De bTe ,bU 
D= by 4-  by 

I II III IV 

(3.2-3) 
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' where 	- = 	
2
tu2  + v2 	w2) 	pv) 

co 

	

1L 	
2 

and, 	pfk2dk = X L_ ( --axa) i=lj=1 3  

at high Reynolds number of turbulence. 

Equation (3.2-3) becomes identical to Equation(2.3-5) 

when laminar diffusion can be neglected. 

3.2-2 The exact turbulent-kinetic-energy-length-scale-

product equation  

We define a length scale A as, 

CO 

= 1 	Edk 	(3.2-4) 
0 

Multiplication of Equation (3.2-2) by 1/k 

and integration with respect to k from 0 to co yields a 

transport equation for the product of eA. For a 

boundary-layer flow, it entails: 

	

co 	oo 	co 

DL 	a .  / + nL1 c  dk 
rDt = - bye  ' ray 	-12 k - 21-1 Ekdk - p 	,T4clk 	p 	11.201k lc _ 	— k 

0 	0 	0 	0 
I 	II 	III 	IV 	V • VI 

(3.2-5) 

where LA E 
0 

3.2-3 Physical hypotheses of the turbulence model  

The Equations (3.2-3 and 3.2-5) are in the exact 

form. However, before these equations can be employed 

for the calculation of the dependent variables e and A, a 

number of physical hypotheses need first to be introduced. 
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(i) The eddy-viscosity hypothesis  

It has been suggested that the turbulent 

diffusional flux vcp of a transportable property is 

proportional to the local turbulence intensity, the 

length scale of the turbulence and the mean gradient of 

the property (Prandtl 1945, Hinze p.285). Accordingly, 

we have, 

—vcp = 6e 2 ay 	 (3.2-6) 

where 1) is any transportable property, 1 is 

the length scale defined by Equation (3.2-4) and 

is a constant. Thus according to Equation (3.2-6), 	e 

and 	eL in Equations (3.2-3) and (3.2-5) can be 

expressed as follows; 

1 	4b 
Te = 	pe

1.
26,-T

e  

e 	oy (3.2-7) 

TeA = 	pe10(el)  
6e1 	 (3.2-8) 

Similarly, the turbulent shear stress is given by, 

- puv= Tpe U by 
I 11 bu 

  

(3.2-9) 

If the diffusion of enthalpy, 

 

also obeys 

 

Equation (3.2-6), the diffusion of the stagnation enthalpy 

vh entails 

= 	 2 
= elA[iL1 11Lal ) I 

Hay 
vh

* 
 - vh + Uuv + lv(u2  + v2  +w2) a v 

atOY 2 	e'6 
 

(3.2-10) 
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In Equations (3.2-7 to 10), ° 	L 0.  and 0.H e,  e 1  U  

are assumed constants. The effect of diffusion due to 

pressure fluctuation has been neglected in the expressions 

for e and 7-et. However, these pressure-diffusion 

effects are usually small in boundary-layer flows and 

in any case, their effects can be partially accounted for 

in the appropriate choice of 0-e and 0  

(ii) Physical hypotheses for the source terms in 

Equations (3.2-3 and 3.2-5)  

Apart from the diffusion term in the e-transport 

equation (3.2-3), the viscous dissipation rate (VI) has 

to be expressed in terms of other dependent variables 

also. One can of course derive an exact equation for 

the transport of the dissipation rate as has been done 

by Davydov (1961) and Daly and Harlow (1970) but this 

equation has four more source terms which need to be 

modelled before the equation can be closed. However, the 

mechanism of the turbulent dissipation is well understood. 

Dissipation of turbulence occurs mainly in small-scale 

isotropic fluctuationp; the dissipated energy is supplied 

from the larger-scale turbulence which in turn receives 

its energy from the interaction of the turbulent shear 

stress and the mean-velocity gradient. When the local 

Reynolds number of turbulence (..= e2e/v) is large, 

Kolmogorov 	(1942) 	suggested tht the dissipation 

rate is independent of the laminar viscosity but depends 

on the turbulence intensity and the length scale of the 

larger eddies only. Thus, 
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3 	 

bu 2' 	3/e_ = 	
. 	c,pe• (3.2-11) 

where C1 is taken to be a constant. 

In the et-equation (3.2-5), four source terms 

(III to VI), which represent the generation or destruction 

of the et-entity due to turbulence interactions, need to 

be modelled. 

The integral in (III) represents the spectral 

distribution of uv weighted by k-1. It is assumed that 

the shape of this function is characterised by the product 

of TiV and e; thus, 

(III) = C TOUy  2 b 

where C2 is a constant. 

N 

(3.2-12) 

Likewise, term (IV) represents the dissipation 

spectrum weighted by k-1, therefore, it is assumed, 

(IV) = C3'pe3/ 
	

(3.2-13) 

where C3' is a constant. 

As mentioned earlier in Appendix 2, the function 

T1
represents the inertial transfer of energy from large 

eddies to smaller ones due to the self-stretching motion 

of the turbulence, therefore, it is assumed that term (V) 

obeys the following relation; 

(V) = C3"pe
3/2.. 	(3.2-14) 

where C3
" is a constant. 
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Term (VI) proves to be more difficult to model. 

The function T2represents the transfer of energy from one 

wave number to another through the interaction of the 

mean flow with the turbulent motion. Near a wall, this 

interaction may be strong. Therefore, it is assumed that, 

(vi) = fTe21  ay 

In this equation, f is an empirical function 

defined as, 

(3.2-15) 

e f 	(C4-cr-) (3.2-16) 

where C4  and q are taken as constants, q being 

greater than unity. 

It must be said that the above assumption for f 

is based mainly on intuition and on the requirement for 

the model to satisfy some well known conditions near a 

wall. The latter will be discussed in Section 4.2-2. The 

justification will be the good agreement obtained in our 

subsequent predictions with the model. 

3.2-4 The final form of the e- and e'-equations  

Finally, substitution of Equations (3.2-7,8,9,11, 

12,13,14,15) into Equations (3.2-3 and 3.2-5), with one 

of the arbitrary constants au  set at unity, yields the 

desired e- and ee-equations: 

,Ele 	1 
e 
7

Y 
(, e  Ip y ) 	T u 

	C1pe /f 
	

(3.2-17) 
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nDef 	1 'a in  lebet l 	c  ,utbU 	np - fleU 
rDt = cefay`ve  by ' 	2 ay 	3 	6y , (3.2-18) 

where C3 
= C

3' + C3" • 

The quantities Cl, C2, C3, ue  and aei in 

Equations(3.2-17 and 3.2-18) are taken as constants 

whereas f is an algebraic function defined by Equation(3.2-16). 

Before we can make use of the two-equation model, 

the constants appearing in the equations (3.2-17, 

(3.2-18) have to be first determined. The procedure of 

determining the values of these constants is given in 

Chapter 4. 

3.3 Some remarks on the two-equation model  

3.3-1 Other ways of modelling the mean-motion-transfer  

term in Equation (3.2-2) 

In an earlier attempt, Ng and Spalding (1971) 

assumed that term(VI)in Equation (3.2-6) 

P k dk = C (i)cipe3la  
JP4'  4 y 

0 
( 3.3-1) 

But Equation (3.2-16) appears to be.more plausible 

on physical grounds because, according to the definition 

of Equation (A.2-7), T2 must vanish everywhere in flows 

With no mean-velocity gradient. This occurs in homogenous 

grid-turbulence flows (Batchelor 1953) or when the wall 

is moving at the same velocity of the turbulent fluid 

(Uzkan and Reynolds 1967). However the choice between 

Equations (3.3-1) and (3.2-15) makes little difference in 
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the predicted results of a boundary layer if C4  and 

C4' are correctly chosen because, with negligible convection 

..paU 	a and diffusion of e, L-s— is proportional to pe a  , as can oy  

be seen from the manipulation of Equation (3.2-17), when 

the diffusion and convection terms are neglected. 

However, it was found that the use of the expression in 

Equation (3.3-1) in the prediction of wall jets gave 

inferior results compared with those using Equation (3.2-15). 

Rotta (196, 1971) on the other hand has 

assumed that 

fccf2 AJOU)  -1  
7.ga 8Y (3.3-2) 

As for equation (3.2-16), the above expression 

reduces to a constant value near the wall where both 

bu and are proportional to the distance from the wall. 

3.3-2 Predictions by the model in free shear flows  

For free shear flows where the boundary layer 

is remote from any solid surface, the last term in Equation 

(3.2-18) vanishes. Whereas, the present investigation 

is concerned with calculation of near-wall flows, the 

application of almost the same model for free shear flows 

is reported by Rodi (1971). 

3.3-3 Comparison of the present ee-equation with the 

length-scale equation of other models of turbulence  

It may be illustrative to compare the characteristics 
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of Equation (3.2-18) with the length-scale equation of 

some other models of turbulence. 

Apart from the near-wall term discussed earlier 

in this Section and the diffusion term, the present 

ef-equation (3.2-18) closely resembles that proposed by 

Roata (1951, 1969). In his earlier proposal, Rotta 

neglected the near-wall term but in both proposals he 

assumed that the diffusion flux of ee is governed by the 

following expression, 

fae 	e at - pe-t( 
ci 	+ 	) ef 	j-i G2-37 ' 

where al  and a2 take different values. The 

above expression becomes identical to Equation (3.2-8) 

when, 

a = Cr  2 = 6e 

(3.3-3) 

(3.3-4) 

Instead of using an equation of the et-product, 

we can calculate the length-scale from a dissipation 

equation. An exact dissipation an be derived from the 

Navier-Stokes equation or by integration of Equation 

(3.2-2) with respect to k after it has been multiplied 
2 

by k . (Since dissipation =I 11 
2 

k Edk) 	In the dissipation 

  

0 
equation, the same number of terms as in the eq-equation 

(3.2-5) occurs and they have to be either neglected or 

modelled. Use of the dissipation equation has been 

proposed by Chou(1945a)and Davydov(1961) and more recently 

by Daly and Harlow (1970), and Hanjalic (1970). 
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Spalding (1971), on the other hand, proposed the 
2 

use of a "vorticity-fluctuation-squared" (ae/f ) equation 

for the calculation of the length scale. This equation 

can also be derived semi-empirically from the Navier-Stokes 

equation. However, at present, no measurement of the 

individual terms in each of the above equations is 

available to justify the preference of one equation to 

the other. But when the diffusion term in each of these 

equations is neglected, the present ee-equation, Spalding's 

vorticity-fluctuation-squared equation, and Hanjalic's 

version of dissipation equation become identical. 

3.3-4 Implication of the eddy-viscosity hypothesis(Equation3.2-9)  

Another feature of the proposed two-equation model 

is the use of the eddy-viscosity equation (3.2-9) to 

calculate the shear stress from local mean-velocity gradient, 

local turbulent kinetic energy and length scale. Although 

it will be shown in Section62-5 that in some of the 

calculations, the use of this hypothesis is not correct 

and, the local shear stress has to be calculated from an 

additional equation, it is nevertheless interesting to 

note the implication of the eddy-viscosity expression of 

Equation (3.2-9). 

One way of deriving a semi-empirical equation for 

the transport of shear stress was proposed by Rotta (1951 )  

1969). 
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It reads: 

DITV 	1 a 	101I17) - c C pe2TIVA 	(3.3-5) R5T- - 	-3-7.ve ay 	5v ay 	6 

When the convection and diffusion terms are 

neglected from Equation (3.3-5), we have the following 

expression for the shear stress T. 

T _ 5 C 1paU - 	e L 

`"6 (3.3-6) 

The reader may recognise that this equation is 

identical to theeddy-viscosity relation of Equation (3.2-9) 

au  equals to C5/C6. Thus, the use of either the eddy-viscosity 

expression of Equation (3.2-9) or the shear-stress 

equation (3.3-5) should produce the same results of 

prediction when the convection and diffusion of shear stress 

can be neglected; this condition indeed exists over much 

of the boundary-layer thickness in flows which are far 

downstream of any disturbance or obstacle and are not close 

to separation. 

3.3-5 Effects of Reynolds numbers on the constants  

The physical hypotheses discussed in Section 3.2-3 

imply that the viscosity plays no direct part in the 

turbulent motion. Therefore, the constants in Equations 

(3.2-17 to 18) are independent of the viscosity. This is 

probably correct when the Reynolds number of turbulence 

is large. But when the Reynolds number of turbulence is 

low such as in the final stage of decay of grid turbulence 

or in the viscous sublayer of a boundary layer near the 
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wall, the constants in Equations (3.2-17) and (3.3-18) 

will no longer have unique values but will be functions 

of the Reynolds number of turbulence. The determination 

of these functions lies outside the field of the present 

enquiry. Nevertheless, to bypass this problem in the 

boundary-layer calculations, the detail solution using the 

model is only calculated up to a point close to the 

viscous sublayer next to the wall. The detail procedure 

is, given in Section 5.2. 

3.3-6 Effect of compressibility 

Equations (3.2-17 and 3.2-18) have been derived 

for constant property fluid only. One can of course derive 

these equations incorporating the effect of density 

fluctuations; these equations will include additional terms 

of density-fluctuation correlations. However,, in view 

of the dearth of experimental data regarding these density-

fluctuation correlations and the level of approximations 

used in obtaining Equations (3.2-17 and 3.2-18),such a 

move is felt not justified at present. Following the 

argument in Section 2.6, it is assumed a priori that both 

the equations and constants are unchanged provided that 

the density p in these equations is replaced by its local 

mean value. 
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CHAPTER 4  

DETERMINATION OF THE CONSTANTS IN THE TURBULENCE MODEL  

4.1 Introduction 

The closure scheme of the turbulence-model 

equations (3.2-17 and 3.2-18) proposed in Section 3.2 

produces a number of unknown universal constants 

in these equations. The values of these constants must 

be fixed by comparison with a number of experimental data 

and their solutions using the turbulence model. 

In determining the constants, there are some 

cases of flow which allow analytical solution of the 

equations and, comparison with experiments for these flows 

yields direct information about some of the constants. 

The remaining constants must then be deduced from data 

for more complex flows; the solutions of the equation with 

which these data must be compared have to be obtained 

by numerical integration. 

The validity of the model will then be measured 

by its success in predicting other cases of turbulent 

flows using the same set of constants in the turbulence-

model equations. These comparisons will be given in 

Chapter 6. 

4.2 	Evaluation of constants by reference to some simple  

flows  
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4.2-1 Homo eneous turbulence behind .rids 

When a uniform stream of fluid passes through 

a grid of bars, turbulence is generated downstream of 

the grid. For this flow, Equations (3.2-17 and 3.2-18) 

reduce to: 

de  u 	
3/2

dx = - C1e 
/L 1, (4.2-1) 

and d(et) 	312 
Udx 	= - C3e (4.2-2) 

Combination of these equations yields, 

e dL = C3 - 1 = - a 	(4.2-3) 
L de C1  

According to the experimental data of Batchelor 

and Townsend (1948a, b), a is between 0.5 and 0.8 

depending on the stage of the turbulence decay; this gives 

C3/C1  between 0.5 and 0.2. However, some more recent 

experiments by Uberoi (1963) suggested that for the initial 

period of decay of grid turbulence, a may be as low as 

0.33, resulting C3/C1 to be 0.67. In any case, C3/C1.  

should lie between 0.67 and 0.2. 

4.2-2 Flows in local equilibrium  

The domain of a fluid is said to be in local 

equilibrium when the rate of convection and diffusion of 

turbulent kinetic energy is negligible compared with the 

rate of generation and dissipation. For this situation, 
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Equation (3.2-17) reduces to: 

bU o = ti 	- Cge 3/2 / 	. Oy (4.2-4) 

Elimination of the mean-velocity gradient from 

the above equation using Equation (3.2-9) leads to 

T/ (pe) = C1 
	 (4.2-5 ) 

The reader may recognise that this relation is 

one of the assumptions used in the one-equation model 

of Bradshaw et al (1967) (see Appendix 1) first proposed 

by Townsend (1961), albeit on different grounds. 

The value of C1 
can be determined from experiments. 

Flows in pipes and along flat plates are in a state of 

local equilibrium as can be seen from the turbulent 

kinetic energy balance in Figs. 6.3 and 6.28 . The 

variation of T/(pe) for pipe flow and wall-boundary-layer 

flow are displayed in Fig. 4.1 ; the data are those of 

Laufer (1954) and Klebanoff (1955). Both sets of data 

show that T/(pe) is about 0.3 under local equilibrium 

conditions. Substitution of this value for T/(pe) into 

Equation (4.2-5) leads to a value of 0.09 for Cl. Earlier 

a value of 0.1 for C1  has been used by Ng and Spalding 

(1971) in the same model but the use of such a value 

resulted in an underestimation of the turbulence level 

in the boundary layer. 

Equilibrium flows close to a wall  

One of the outcomes of the condition of local 

equilibrium is Prandtl's mixing-length hypothesis. To 
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show this, the value of e from Equation (4.2-5) is 

substituted into Equation (4.2-4) to yield, 

/2   au
)  - Pc ( a 1  y • (4.2-6) 

The above relationship is identical to Prandtl's 

mixing-length hypothesis if the mixing length /In  is 

related to I as, 

m 
L/C1 	

(4.2-7) 

Experiments show that in the fully turbulent 

"logarithmic" region near a wall, the mixing length is 

proportional to the distance from the wall y. Thus, 

m 
= 	 (4.2-8) 

where n is a constant of the order of 0.4, a 

value concluded from the survey of a large number of 

wall boundary layer flow data by Escudier (1967) and 

recently given support by the theoretical analysis of 

Goldshtik and Kutateladze (196a). Substitution of Equation 

(4.2-8) into Equation (4.2-7) yields the distribution 

of L near a wall namely, 

/ = C14xy 	 (4.2-9) 

Furthermore, T approaches a constant value as can 

be derived from Equation(2.2-2) when the convection, 

mean-pressure gradient, and laminar diffusion terms are 

neglected. Finally-, substitution of Equations (4.2-4, 
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4.2-5 and 4.2-9)into Equation (3.2-17), after neglecting 

the convection term of 	yields 

o = C 274,2a 1  
1A 

	
e/ 	C2 C1 - C3 -C4cIC(14-c1/4)nq ' 

(4.2-10) 

It is found that, when C1,  C 1, C2, C3, ael, and q 

are given values appropriate to experimental data remote 

from wallsi  and x has a value near to 0.4, Equation (4.2-10) 

can be satisfied only by a non-zero value of C4; it is 

this fact that has necessitated the introduction of the 

final term in Equation (3.2-18). The above relation 

can be used for fixing the value of C4  when all the other 

quantities are known. 

4.3 Procedure of optimisation of the constants  

The simple solutions of the turbulence-model 

equations described in the foregoing Section have 

resulted in a number of constraints and relations for 

some of the constants in the model. However, the exact 

values of the constants have to be determined by the 

best predictions these constants give for some simple 

boundary-layer flows. Such a procedure for the determination,  

of the constants is termed optimisation. 

4.3-1 Choice of experimental data for the optimisation 

Apart from Cl, for which we take the value of 0.09 

and, C4  which is determined from Equation (4.2-10), the 

remainder of the constants in Equations (3.2-16, 3.2-17 

and 3.2-18) are chosen so as to obtain the best agreement 
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between predictions and experiments for a number of 

well known characteristic quantities in the following 

self-similar boundary-layer flows, namely: 

(i) boundary layer on a semi-infinite flat 

plate with Ts/(pUG2) = constant; 

(ii)flow in a pipe of uniform circular 

cross-section with T /(pum2) = constant; 

(iii)flow between wide parallel plates with 

Ts/(pUm2) = constant; 

(iv) plane wall jet in stagnation surroundings 

with T /(pumax) = constant; 

(v) plane mixing layer between a uniform 

moving stream and a stagnation stream. 

(vi) plane free jet in a stagnation surrounding; 

(vii) radial fan jet in a stagnation surrounding; 

The characteristic quantities of these flows 

chosen for comparison are tabulated in Table 4.1. The 

flows are calculated from the numerical integration of 

the turbulence-model equations (2.2-1, 2.2-2, 3.2-17, 

3.2-18) using different values for the constants during 

each calculation of the flows; the integration procedure 

is described in Section 5.1. The constants are then 

optimised until the predicted characteristics agree with 

those listed in Table 4.1. In the wall flows listed from 
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case characteristic experimental references predicted 
quantities value value 

(i)  (1 - WIPP 6.1 

6.8 
Hama(54) 

Coles(30) 
6.53 

(ii)  
_ 

Umax 	Um 3.75 

3.50 

Schlichting(126 .76  

Nunner(105) U't  

(iii)  
U max - U 	• m 2.32 

. 
Clark(28) 2.3 U  T 

(iv)  dyl 	0 ,078 

0.075 

Myers(97) 

Tailland(139) 
0.073 

dx 

(v)  d(y.9  - y.1) 0.16 Liepmann 
& Laufer(80) 0.159 dx 

(vi)  dyi 
Y 

0.08 

0.11 
0.106  

Bradbury(8) 

Heskestead(62) 

. 

dx 

(vii)  dyi 0.11 Heskestead(63) 
1 

0.11 
dx 

Table 4.1. Comparison between the measured values of 
the characteristic quantities of the self-
similar boundary layers and the values 
calculated from the two-equation model. 
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(i) to (iv), the constant friction-coefficient is 

supplied as a boundary condition. This ensures that 

the predicted results are independent of laminar viscosity. 

Doing so does not invalidate comparison with the experiments 

because the characteristic quantities chosen for comparison 

are either completely or only slightly dependent on 

the Reynolds number of the flow. Thus, with the friction 

coefficient specified and with the boundary conditions 

for e and A as those given in Section 5.2, the set of 

differential Equations (2.2-1 , 2.2-2, 3.2-17 and 3.2-18) 

can be integrated. 

A value of 2.5 x 10-3 for the friction coefficient 

for flow cases (i) to (iii), has been chosen for the 

present calculations. The predicted characteristic 

quantities for these flows were found to be little 

influenced by the choice of friction coefficient. This 

was confirmed by predicting the characteristic quantities 

using half and twice the chosen friction coefficient. 

However, the predicted growth rate, dy1/dx, of the 

plane wall jet (case iv) is more sensitive to the chOice 

of the friction coefficient, therefore we have chosen 

a value of 2.8 x 10 3 for the friction coefficient, a 

value which is the average of all experimental data. 

4.3-2 Optimisation procedure  

An earlier attempt in optimising the constants 

was reported by Ng and Spalding (1971). The authors 

optimised the constants to give the best predictions 
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for five characteristic quantities of the near-wall 

self-similar flows only. Not surprisingly, it was found 

that the constants thus obtained do not give the best 

predictions for free shear flows due to such a limited 

field of enquiry. These constants have been re-optimised 

through "numerical experiments" to give the best agreements 

with the target quantities for both wall and free shear 

flows. The resultant constants are tabulated in 

Table 4.2; the calculated characteristic quantities 

using these constants are tabulated in the last column 

of Table 4.1. 

C1  C 2 C3  C4 cYe a 
eL q 

0.09 0.98 0.058 4.3 1.0 1.0 6 

Table 4.2. The optimised constants for Equations 
(2.2-16 to 18). 

4.3-3 Influence of the constants on predicted  

characteristic quantities  

Examination of the constants in Table 4.2 

shows that they agree with the constraints discussed 

in Section 4.2. In particular, the ratio of C3 to 

C1  is 0.65, which agrees with the experimental data of 

Uberoi (1963). The sensitivity of the predicted 

characteristic quantities to change of each individual 

constant is tabulated in Table 4.3. In the Table, the 
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percentage change in each characteristic quantity due 

to 5% change of each constant in. Equations (3.2-17, 

3.2-18) is displayed. It is clear that some constants 

exert a bigger influence on the predicted results than 

others. In particular, the change of the predicted 

characteristic quantities due to 5% increase of ce  

or Gel, is less than 1% whereas the corresponding 

percentage increase in Cl, C2, or C3  results in change 

of over 2.9% in each selected target. The result is 

not unexpected: the diffusion of e is negligible 

compared with the generation and dissipation in these 

self-similar boundary layers; thus the predicted quantities 

are much less sensitive to the choice of ae  and ae/ 

than Cl, C2, and C3. 

4.3-4 Other predicted properties of the self-similar  

flows and their comparison with experimental data. 

The predicted mean-velocity profiles for all 

self-similar flows are plotted in Figs. 4.2-4.8. 

In each case of flow, the relevant experimental 

data are also presented. Discussion on the 

comparison of predictions with experiments for free 

shear flows can be found in Rodi(1971). 

We shall refrain from discussing in detail the 

comparison between the predictions and experiments. This 

is because many of the features appearing in Figs (4.2 to 

4.8) will subsequently be covered in the predictions for 

non-similar flows in Chapter 6. It may suffice to mention 



Table 4.3 Percentage variation of the predicted characteristic quantities at 5% increase 
of the individual constants in Equation (3.2-17 and 3.2-18). 

Case i ii iii iv v vi vii 

% 

con-
stants 

(1 - H 	)11G 12 	16.1. Umax - Um U 	U  max 	m dy d(y.9  - y.1) dy dy.i.  

U U dx dx dx dx 

C1  - 3.1 - 3.7 - 3.0 + 5.7 + 2.9 + 3.6 + 3.7 

C2 - 4.2 - 3.7 - 3.6 + 	7.4 + 19.6 + 27.6 + 27.0 

C3 + 2.9 + 3.8 + 3.7 - 5.4 - 5.8 - 7.1 - 	7.3 

K - 1.7 - 2.2 - 2.4 + 2.8 - - - 

ae - 0.4 - 0.6 - 0.9 + 0.2 + 0.1 + 0.2 + 0.3 

ae - 0.3 - 0.7 - 0.6 + 0.9 + 0.7 + 0.4 + 0.4 

q - 0.5 - 0.8 - 0.8 + 0.8 - - - 
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that indeed, self-similarity is attained in these flows 

as can be seen from the asymptotic behaviour of the 

parameters shown in the figure a's in Figs. 4.2 to 

4.8. 
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CHAPTER 5  

METHOD OF SOLUTION AND DETAILS OF BOUNDARY 

CONDITIONS FOR THE TURBULENCE MODEL  

5.1 Method of solution  

Apart from a number of special cases, a 

general analytical solution for a closed set of Equations 

(2.2-1, 2.2-2, 3.2-17, 3.2-18) is unlikely to be found. 

Therefore solution of these coupled equations is only 

possible by numerical methods using computers. The 

implicit finite-difference procedure of Patankar and 

Spalding (1970) was used for the numerical integration 

of the turbulence-model equations throughout the present 

investigation. So much has been reported about the 

Patankar and Spalding (1970) procedure (see Ng et 

al 1968, Patankar and Spalding 1970)2 -that further 

discussion here is unnecessary. It is sufficient to 

. mention that the independent variables of the integration 

are the streamwise distance and a dimensionless stream-

function across the boundary layer. The integration 

marches stepwise downstream of the boundary layer. A 

listing of the program adopted for the present 

.calculations is displayed in Appendix 6. 

5.2 Boundary conditions for the turbulence-model equations  

The calculation of the boundary layer using 

Equations (2.2-1, 2.2-2, 3.2-17, 3.2-18) requires the details 
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of the boundary conditions to be specified. The 

boundary conditions can be classified into two types: 

(i) the boundary conditions at the edges of the 

boundary layer and (ii) the initial profiles of the 

dependent variables at the starting point of the 

integration. The former will be referred to as 

lateral boundary conditions and, the latter as 

starting profiles. 

5.2-1 The lateral boundary conditions  

(a) In the free-stream edge of a boundary layer, 

one-dimensional flow prevails. Thus Equations (2.2-2, 

3.2-17, 3.3-18) degenerate into 

2 
[ 2.dU 	 dP 
l2 dx 	

_ 
dxG  

de 
U G--G  = - C e 

3/2 

dx 	G G 

(5.2-1) 

(5.2-2) 

and 
	 d(e.e)G 	- Cie UGdx 	3 G 
	(5.2-3) 

Other conservative properties are assumed to 

be given at the free stream. 

The value of UG,  eG, and (e2)G can be calculated 

from Equations (5.2-1 to 3). In the absence of any 

free-stream turbulence, 

eG = 0 

(et)G = 



YB ( -ESP )  2  
5 

UB (r- ) 2  = T in. 
/S 

--S - (pe)B 

(z/Y)B = cPx 

(5.2-11) 

(5.2-12) 

(5.2-13) 
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(b) For an axisymmetric or plane-symmetric 

flow, the integration proceeds from one outside edge 

to the line of symmetry only. At the symmetry line, 

aI k7—)
C  0 
	(5.2-6) 

Y  

where I can be U, e, 2 , or other transport 

properties. 

(c) The boundary condition along a solid  

impermeable surface is less straightforward. As 

mentioned in Section 3.3-5 the present model with a 

fixed set of universal constants is strictly valid only 

in regions of the flow where the Reynolds number of 

turbulence is high. Thus the model is not expected to 

be applicable within the viscous sublayer near the wall 

where the Reynolds number of turbulence approaches to 

zero at the wall. To bypass this difficulty, we carry 

out the numerical integration up to a point B just 

outside the sublayer as shown in Fig. 5.1. The 

boundary conditions at the point B are then supplied 

from a number of well known semi-empirical relationships 

based on the couette-flow solutions of the transport 

equations. The boundary conditions at B are: 
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Equation (5.2-11) is the "logarithmic law of 

the wall" where x is 0.41 and E is 7.8 according to 

the data survey of Coles (1968). Equations (5.2-12 and 

5.2-13) are identical to Equations (4.2-5 and 4.2-9). 

The boundary condition at B for any other 

conservative property is,  

1 
(Is  -  IB)(pT3)2 u 	, 	, • 

B Ts 	+ 	+  Q. . ìs 
(5.2-14) 

where Pis a semi-empirical function which 

accounts for the resistance to the transfer of I across 

the viscous sublayer (see Spalding 1964); according to 

Patankar and Spalding (1970), Pobeys the following 

relationship: 

P4a/a 4 = 9.24 [(a/a ) -1.111 - 0.28exp(- 0.007
a 

)1 	(5.2-15) CS 

where a and al,  are the laminar and turbulent 

Prandtl/Schmidt number of respectively; the latter is 

taken as 0.89. 

In the absence of any source of generation or 

other additional transport effects, the function a 

in Equation (5.2-14) vanishes. For stagnation enthalpy, 

Q. is given by, 

2 	1 

UB  
CI_  (aH 1) 2j

: Sp)2 
(5.2-16) 

In the case of calculating flows with large 
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density variations as in the case of supersonic flows, 

the density p in Equations (5.2-11) and (5.2-14) are 

taken to be the arithmetic mean between the wall S, 

and B. Sivasegaram (1969) has found that the use of 

mean density retains the validity of the "log-law" 

(Equation 5.2-11) in supersonic flows. 

5.2-2 Starting profiles for the calculation of 

boundary layers  

In order to calculate the downstream 

development of a boundary layer, we require to specify 

the starting profiles of all dependent variables of 

the two-equation turbulence model, U, e, and 	. In 

practice, A is not a directly measurable quantity but 

it can be deduced from U-, e-, and T- profiles according 

to Equation (3.2-9), if these quantities are given. In 

the absence of any information about the starting profiles 

they have to be invented. The procedure to calculate 

these quantities is shown in Appendix 3 whereby the 

profile ofZis assumed to be a ramp-type and e is a 

cubic function depending on the local pressure-gradient 

and the wall shear-stress. This procedure has been 

employed successfully by Ng and Spalding (1970) for 

wall-boundary-layer calculations. 
• 

If the initial U- profile is not given, it is 

assumed to.obey the 1/7th-power law. For heat-transfer 

calculations, Cro o s temperature profile is employed as 

the starting profile. 

Discussions on the influence of the starting 
profiles on predictions will be found in Section 6.2-1. 
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CHAPTER 6  

COMPARISONS OF PREDICTIONS WITH EXPERIMENTAL DATA 

AND PREDICTIONS BY OTHER MODELS OF TURBULENCE 

6.1. Introductory remarks  

In Chapter 4, a set of constants were selected 

for the two-equation turbulence model so that it calculates 

correctly the characteristics of a number of self-similar 

flows. Although satisfactory predictions were obtained 

for these flows, they nevertheless represent only a limited 

type of two-dimensional boundary layers that are common 

occurence in engineering equipment. Many other important 

parameters which affect the development of boundary layers 

are absent from these self-similar flows; for example, 

they are independent of laminar viscosity and that there 

 is no streamwise pressure-gradient variation, both of which 

are important parameters in real boundary-layer flow. 

Furthermore, only the hydrodynamic properties of the self-

similar boundary layers were compared; no calculation 

of heat transfer using the two-equation model has been 

made. The present Chapter presents the comparisons of 

predictions with experiments which include not only the 

hydrodynamics but also the heat transfer for both 

incompressible and compressible wall boundary layers. The 

main purpose of the comparisons is to assess the accuracy 

of the predictions by the two-equation model. Moreover, 

through these comparisons, modifications to the model, 

so as to increase its accuracy of prediction and range of 
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applicability, can be formulated. 

The assessment would not be complete without 

the comparison of the calculations of the present model 

with those of other models of turbulence. Through the 

comparison, the merits and demerits of using the two-

equation turbulence model can be realised. 

6.2 Comparison of the calculations of the two-equation 

model with experimental data  

All the comparison will be restricted to steady 

boundary-layer flows developing along smooth and 

impermeable walls. 

6.2-1 Hydrodynamics of the constant-property wall  

boundary layers  

Hydrodynamic properties of a flat plate  

The calculation of a constant-shear-stress-

coefficient boundary layer has already been presented in 

Fig. 4.2. Fig. 6.1 presents the comparison of the 

calculated friction coefficient, ss  and shape factor, 

H12, of a flat plate with Coles' correlation (1962). 

In this figure, the friction coefficient and the shape 

factor are plotted against the momentum-deficit-

thickness Reynolds number, R2. The agreement between 

the calculation and the correlation is found to be 

satisfactory. As a further comparison, both the mean-

velocity and the turbulence quantities of a flat plate, 

measured by Klebanoff (1955), and the corresponding 
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calculated values are displayed in Fig. 6.2. Whereas 

the mean-velocity and the shear-stress profiles have 

been correctly predicted by the two-equation model, the 

turbulent kinetic energy is under-predicted close to the 

wall. Fig. 6.2 (c) displays the calculated eddy-

viscosity and mixing-length profiles; the former has 

been normalised by UG51  and the latter by yG. The 

mixing length, tm, was calculated from the following 

equation: 

2 	1  rU
7g

I -1  
1m  = e21 -E (6.2-1) 

As shown in the figure, the predicted eddy-

viscosity profile agrees well with the data. The 

interesting feature of the predicted mixing-length 

profile is that near the wall it is proportional to y 

and having a constant of proportionality of 0.41. 

Furthermore, the mixing length attains a maximum of 

0.09 of yG, a value which was used in the mixing-length 

model of Patankar and Spalding (1970). 

A comparison of predicted contributions of the 

various terms in the turbulent-kinetic-energy equation 

with experimental measurements is displayed in Fig.6.3. 

Considering the difficulty of obtaining accurate 

'measurements of dissipation and total diffusion rates, 

the predictions appear to be satisfactory. 

Hydrodynamics of boundary layers developing under 

varying streamwise pressure gradients  

The wall-boundary-layer experimental data collected 
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by Coles and Hirst (1968) forms the bulk of the data 

used in this comparison. Fig. 6.4 presents the comparison 

of the predictions with the 32 sets of boundary-layer 

measurements which were subjected to different free 

streamwise pressure-gradient variations. Each flow shown 

in the diagram is denoted by an identity number (IDENT); 

the nature of the experiment and the name of the investigator(s) 

can be obtained from the accompanying table. For each 

flow, the predicted variation of H12, ss, and R2  with x 

is compared with the experimental data; the lines 

represent the Predictions, and the circles represent the 

data.' To facilitate more detailed inspection and 

discussion, six representative cases of flow (IDENT = 

1500, 2400, 2500, 2800, 3300, and 4800 in Fig. 6.4) are 

replotted to a larger scale in Figs. 6.5 to 6.10. For 

IDENT = 2400, 2500, 2800 and 3300, the calculated U5  T, 

and e are also compared with the available data at the 

last station of the relevant experiments, which are 

displayed in Figs. 6.12 to 6.15. 

From Fig. 6.4, one can infer that the predictions 

agree tolerably with the experimental data. Inspection 

of the predictions made by other methods for the same 

conditions, reported in the Proceedings of the Stanford 

Conference, shows that where the present method fails, 

e.g. IDENT = 1200, 2900, and 5300,most of the other methods 

fail also; there is reason to believe that our predictions 

are in as good agreement with the data as the experimental 

accuracy warrants. Ng and Spalding (1970) have discussed 

in some detail about the accuracy of the set of data 
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collected by Coles and Hirst (1968). In particular 

they found that the accuracy of each individual 

experiment is affected by the following factors: 

(a) The procedure used for the evaluation of 

skin-friction. The "experimental" values of ss  are 

based not on direct measurements, but on the deduction 

from velocity-profile Measurements by the "Clauser-plot" 

method. Differences as much as 10% in the evaluated 

sS  under the same experimental conditions were found 

between this method of evaluation and other methods of 

measurement such as that of the Preston-tube. 

(b) The lateral convergence or divergence of  

the boundary layer. In wind-tunnel measurements, 

boundary-layer growth along the side walls can cause 

lateral convergence or divergence of the boundary layer 

under investigation; it„then ceases to obey Equations 

2.2-2). This breakdown is shown by the lack of 

momentum-balance of the boundary layer in question. 

Insofar as this is not due to incorrect values of s 

or the breakdown of other boundary-layer assumptions 

(e.g. the neglect of the normal-turbulent-stresses terms 

in Equation 2.2-2), the cause can be attributed to the 

lateral convergence or divergence of the boundary layer. 

Inspection of the Stanford data reveals that flow 

convergence is present in most of the experiments under 

strong adverse-pressure gradients. 
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(c) Inadequate number of points to specify the  

mean-velocity profile. The integral parameters H12  and 

R2 can be wrongly ascribed when there are too few cross-

stream points close to the wall to allow correct determination 

of the velocity profile. This is probably the cause of 

disagreement in H12  between experiment and prediction 

of flows of IDENT = 3100, 3600, 3700, and 4100 in Fig. 6.4. 

Possible sources of errors in predictions  

Of course, the failure to obtain agreement between, 

predictions and experiments is not necessarily due to 

the inaccuracies of the latter. There are also a number 

of possible sources of error in the predictions namely; 

(a) The "wall-law" assumptions (Equations 5.2-11 

to 13) close to the wall. In the present prediction, 

the logarithmic law of the wall (Equation 5.2-11 has 

been employed for the calculation of Ts  from U and y at 

point B (see Fig. 5.1). This practice is relatively 

simple, and in reasonable agreement with experimental 

data over a wide range of flow conditions. In reality 

however, Ts  must depend upon other variables like the 

pressure gradient and turbulence level etc. The effect 

of the former has been accounted for in the "wall-law" 

developed by Townsend (1961), McDonald (1969a,b) and 

Patankar and Spalding (1970, 1971), and the latter 

influence appears in the formulae developed by Spalding 

(1967a, b), Wolfshtein (1969), and Runchal (1969). 

Therefore it may be valuable to establish later, whether 

any of these proposals can improve agreement with reliable 

experimental data. 
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(b) The neglect of the normal-stresses terms in  

the momentum equation (2.2-2). In the calculations, we 

have neglected the contribution of the normal-stresses 

terms in Equation (2.2-2). Although they are usually 

negligible compared with other terms in the equation, 

they may nevertheless be significant when the turbulence 

level in a boundary layer is high as it occurs when the 

flow is near separation ( see for example, Spangenberg 

et al 1967). TherefOre, the result of neglecting the 

normal-stress terms in flows under this situation may 

lead to discrepancies. Corrections for these terms can 

of course be made in the calculations, but the variations 

of the turbulence quantities are not given with the data. 

(c) The assumption concerniny the starting profiles  

For all the predictions shown in Fig.6.4, the initial 

profiles of e and A have to be invented according to 

the procedure in Appendix 3. In order to test the influence 

of the startiny profiles on the predictions, flows 

IDENT = 2400, 2600 and 3300 were re-calculated with the 

initial profiles of e and A identical to those which, 

in these cases, were reported by the experimenters, 

(A is deduced from t, e, and U profiles according to 

Equation 3.2-9). The new predictions show little difference 

from the earlier ones, indicating that the assumed 

profiles for e and £ (Equations A.3-2 and A.3-3) are 

adequate for these flows whose immediate upstream 

conditions are near a state of equilibrium.However, for 

boundary layers downstream of a re-attachment,our assumed 
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starting profiles of e and X are likely to be in error. 

The effects of using the correct starting profiles for 

re-attaching flows can be seen in Fig 6.11. It shows 

the comparison of predictions with some recent measurements 

of Bradshaw and Wong (1971). The calculations were 

started first with the given starting profiles, and then 

with profiles of e and as given in Appendix 3; the poor 

prediction of the latter is evident. Indeed, the poor 

agreement of Tillmann's ledge flow (1945) displayed in 

Fig. 6.5, may be attributed to the same cause 

also. 

Comparison of the predicted U, e, and T profiles with 

experiments  

Figs. 6.12 to 15 display the predicted profiles 

of U/UG T/(pUG2) and el/UG  at the last station of flows 

IDENT = 2400, 2500, 2800 and 3300, and compare with the 

available data. Mindful of the possible inaccuracies 

of the experimental data and the possible errors in 

the calculation discussed above, we see that the mean-

velocity profiles are well predicted for all four cases. 

A more rigorous test of the turbulence model 

is its ability to predict the shear-stress profiles 

accurately. The comparisons of these profiles with data 

are shown in figure b's in Figs. 6.12 to 6.15. It is 

noted that for all cases, the T profile has been well 

predicted except near the free stream where however, the 

value of T is small compared with its local maximum. 
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Mixing-length distributions in flows with varying pressure-

gradient  

Fig. 6.16 presents the predicted mixing-

length distributions of Bradshaw's relaxing boundary 

layer (IDENT = 2400). In this flow, the boundary layer 

is accelerated by the sudden removal of the adverse 

pressure-gradient. The predicted mixing-length 

distributions at three streamwise stations are displayed 

in the figure. It is interesting to note that in the 

outerlayer, the ratio of mixing-length to boundary-

layer-thickness (fin/yG) is predicted to be a constant, 

but the value increases with the diminish of the adverse 

pressure-gradient. This is also evident from the 

mixing-length profiles deduced from the experiment, which 

are displayed in Fig. 6.16 also. 

6.2-2 Heat transfer across constant-property boundary  

layers• 

The prediction of heat transfer in a turbulent 

boundary layer requires the solution of an additional 

transport equation for enthalpy (Equation 2.4-1) where 

the diffusion flux term is modelled according to 

Equation (3.2-6) with aH  equal to 0.89. The data of 

Moretti and Kays (1965) were chosen for the comparison, 

from which three cases of flow are presented in Figs.6.17 

to 19. The heat-transfer rate is plotted as the local 

Stanton number ST vs x. The predictions are shown in 
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solid lines in Figs. 6.17 to 6..19. The first two figures 

show the heat transfer of a wall boundary layer in zero 

and adverse pressure gradients respectively and the 

predictions agree reasonably well with the data. Fig.6.19 

shows the Stanton number variation of a suddenly 

accelerated boundary layer downstream of a flat-plate 

flow;the prediction starts to deviate from the measurements 

in the region where the sudden acceleration was imposed 

on the bbundary layer. Here we encounter a deficiency 

of our turbulence model. The acceleration of the fluid 

diminishes the turbulence level, which subsequently 

causes "laminarisation" resulting in a large reduction 

of the local Stanton number; the prediction fails because 

of the reduction of the Reynolds number of turbulence. 

It has been pointed out in Section 3.3-5 that, when the 

Reynolds number of turbulence is small, the constants 

appearing in Equations (3.2-16 to 18) will no longer 

have unique values as proposed but become functions of 

laminar viscosity. Some of these functions have been 

incorporated in other calculation procedures such as those 

of Graham and Deissler (1967), Jones and Launder (1970). 

Later, it may be interesting to establish the correct 

functions for the constants in the present two-equation 

model. 

6.2-3 Supersonic turbulent boundary layers  

A logical extension of the calculation of 

heat transfer in constant-property flows is the 

calculation of compressible supersonic boundary layers. 
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Based on the available experimental evidence 

of density fluctuations in a supersonic boundary layer, 

it has been suggested in Section .3.3-6, that supersonic 

boundary layers can be calculated from the same turbulence-

model equations for constant-property flows if the 

density,p , appearing in these equations is replaced by 

its local value-in the calculation. Some predictions of 

supersonic flows have already been reported by Ng and 

Sivasegaram (1970) who made us of an earlier version 

of the present two-equation model. Fig. 6:20 presents 

the comparison of the calculated velocity profile with 

experimental data for an adiabatic flat-plate flow at 

different free-stream Mach numbers, MG, from 2.0 to 

4.5. The measurements are those of Coles (1953). The 

agreement of the prediction with data is well within the 

accuracy of the experiments when we note that the 

uncertainties of measurements in compressible flows are 

likely to be greater than those of incompressible flows. 

It may be relevant to compare the calculated skin-

friction coefficient of a flat-plate flow with other• 

existing empirical or semi-empirical correlations such 

as those of Coles or Spalding and Chi, but recent 

measurements of skin-friction as reported by Hopkins 

et al (1969) showed that none of these correlations gives 

accurate estimation of the skin-friction coefficient' 

within the complete range of Mach number from 0.0 to 8.0. 
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Figs. 6.21 and 6.22 display the comparisons 

of predictions with experiment for two cases of adiabatic 

compressible boundary layer under favourable and adverse 

pressure gradients respectively; the measurements are 

those of Sivasegaram (1969). The comparison of the 

predicted and experimental mean-velocity profiles for 

these two flows are shown in Figs. 6.23 and 6.24 respectively 

and the agreement is considered satisfactory. Furthermore 

for both cases of flow, 62 and H12 are well predicted 

as shown in Figs. 6.21 and 6.22, showing that not only 

have we calculated the velocity profiles accurately but 

we have also predicted the local density variations 

correctly. The value of ss, however, is on the average 

over-predicted, but it is worth noting that Sivasegaram 

(1969) has suggested the possibility of the measured ss  

being 5% too low. In the first third of the adverse 

pressure-gradient flow, shown in Fig. 6.22, the value 

of ss  is over-predicted by up to 25%. This is suspected 

to be due to the relaminarisation of the boundary layer 

which has been subjected to strong acceleration in the 

upstream region of the flow. 

Heat transfer in supersonic boundary layers  

As a test case for the ability of the present 

model to predict supersonic flow with heat transfer, 

four of the measured temperature profiles of Lobb et 

al (1955), obtained in zero pressure gradient with heat 

transfer, are compared with their predictions. The 
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comparisons are shown in Fig 6.25 and are found to be 

satisfactory. 

Prediction of the mixing-length distribution  

Lastly, Fig. 6.26 shows comparison of a 

different kind. It presents the mixing-length distribution 

across the compressible boundary layer on a flat plate 

as predicted by the present two-equation model. 

Comparison with the distributions proposed by Maise and 

McDonald (1968) and Sivasegaram and Whitelaw (1971) 

suggests that they all agree reasonably well with each 

other. 

6.2-4 Developed flows in circular pipes and channels"  

Unlike external wall boundary layers, the 

flow in ducts requires different boundary conditions for 

the transport equations as given in Section 5.2. The 

calculation procedure of Patankar and Spalding (1970) 

is capable of calculation of internal flows. Some of 

the results of calculations of internal flows using the 

present model have already been presented in Figs. 4.3 and 

4.4, in which the calculated mean-velocity-defect 

p'rofiles for a pipe and a channel are plotted. Fig. 6.27 

displays a more detailed comparison between prediction 

and experimental data for a pipe flow. The data are 

those measured by Laufer (1954); the Reynolds number of 

the flow, UmaxD is equal to 500,000. The calculated 

/ The term "channel flow"  is taken to mean flows between 

two large parallel plates or flows in a rectangular 

duct with large aspect ratio. 
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mean-velocity profile shown in Fig.6.27(a) is in good 

agreement with the experimental data.As expected, T is 

predicted to be proportional to the radial distance from 

the axis of the pipe, as shown in Fig.6.27(b).Also 

displayed in the same figure is the prediction and data 

of the variation of e; although the turbulence intensity 

is underpredicted near the wall, the prediction nevertheless 

agrees reasonably well near the centre of the pipe, 

where both prediction and experiment attain a minimum. 

The calculated distributions of 	Lm and 2 are displayed 

in Fig.6.27(d).Although the predicted mixing length 

becomes infinite at the centre, it remains proportional 

to £ Over most part across the pipe, at a constant ratio 

of approximately 0.54, as revealed from the plot offam. 

This is identical to the outcome of Equation (4.2-7) for 

C1  equal to 0.09, implying that the flow is in local 

equilibrium over much across the pipe. As a further 

comparison, the predicted turbulent-kinetic-energy 

balance and the relevant experimental data of Laufer(1954) 

and Lawn (1971) are presented together in Fig.6.28. The 

agreement is considered satisfactory. 

The comparison of prediction with experiments 

for a channel flow is displayed in Fig.6.29. The data 

to be compared are those of Laufer (1951). The comments 

for the comparison of the pipe flow are applicable to 

the channel flow also. However, inspection of Fig.6.29(b) 

reveals that the skin-friction is over predicted by about 

10%. Examination of Laufer's data reveals that while 

the mean-velocity profile conforms with the log-law 
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(Equation 5.2-11), the constant E' , obtained from these 

data takes a value much greater than 7.8, which is 

used in the calculations. That this disagreement is 

the main cause for over-prediction of the skin-friction 

is revealed by the good agreement in the velocity-defect 

plot shown in Fig.4.4, where the calculation is independent 

of Equation (5.2-11). There is reason to believe that 

Laufer's skin-friction measurement is in error. Nevertheless 

the important point to learn from the result of the 

comparisons shown in Figs.6.27 and 6.29 is that both the 

pipe and the channel flows are calculated correctly 

using the same set of constants as found applicable to 

external boundary layers. 

- 6.2-5 Wall-jet type boundary layers  

When a stream of fluid is injected tangentially 

to a main stream, which is moving either at a higher or 

lower velocity than the injected fluid, a wall-jet flow 

is developed downstream of the injection slot. The 

comparison of the calculation with experiments to be 

presented will be restricted to constant - property fluids 

only. 

Plane two-dimensional wall-jet flows  

A detailed comparison of the measurements of 

Tailland (1970), for a plane wall jet in a stagnation 

surrounding, with the corresponding predictions 

is displayed in Figs.6.30 and 6.31. The streamwise 

2 
variation of friction coefficient, ts/(pUmax), is 
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plotted in Fig.6.30(b).Although•both the growth rate and 

the velocity decay have been correctly predicted, the 

friction coefficient has been over-predicted by about 

3%. Examination of the mean-velocity and shear-stress 

profiles displayed in Fig.6.31 reveals that the predicted 

positions of velocity maximum and vanishing shear are 

coincident while the measurements indicate that the 

latter lies closer to the wall than the former. The 

failure to predict the different positions of the velocity 

maximum and the vanishing shear lies in the use of the 

eddy-viscosity hypothesis of Equation (3.2-9); it 

implies that the mean-velocity gradient and the shear 

stress must vanish together. As has already been pointed 

out in Section 3.4-5, the use of Equation (3.2-9) implies 

the negligibility of shear-stress diffusion. However, 

near the point of zero shear in a wall jet, the diffusion 

of shear stress is no longer negligible compared to the 

generation of the shear stress., 

Predictions by the incorporation of the shear-stress  

equation 

One of the possible ways of accounting for the 

diffusion of turbulent shear is to solve the shear-stress 

transport Equation (3.3-5) in place of the eddy-viscosity 

, hypothesis (3.2-9). A computer program for the two- 

. equation model was modified to solve this additional 

transport equation. The constants cYT  and C5  in Equation 

(3.3-5) are taken as 0.9 and 0.235 respectively according 
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to the proposal of Hanjalil (1970); C6  is assumed 

equal to C5  according to the requirement that the 

shear-stress equation should reduce to the eddy-viscosity 

Equation (3.2-9) when the convection and diffusion of 

shear stress are neglected, as discussed in Section 

3.3-4. 

The results of calculation for the plane wall 

jet are plotted in dotted lines in Fig.6.31. Comparison 

of the earlier predictions reveals that the mean- 

velocity profile is in better agreement with the 

experiments in the near-wall region of the wall jet. 

A higher value of 'Vmax, however, is predicted as shown 

in Fig.6.31b, but this may be diminished by making more 

careful choice of the constants in the shear-stress 

equation. 

Wall jets in a moving mainstream  

Fig.6.32 compares the predicted result with 

the semi-empirical correlation of Patel (1971) for a 

constant-property wall jet in a slower moving stream. 

The development of the flow proceeds from left to 

right in the diagram. As shown in these figures, the 

predictions agree well with Patel's correlation over 

most part of the flow but deviate progressively from the 

, correlation at the right-hand side of the diagrams. 

Fig. 6.33 presents the comparison of the 

predicted streamwise variation of the hydrodynamic as 

well as the heat transfer properties with the experimental 
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data of Kacker and Whitelaw (1968, 1971). Two cases 

of wall-jet flow are presented for comparison; one in 

which the injected fluid is at a higher velocity than 

the main stream (Umax 1SL/1/G = 2.3) and the other in 

which the injected fluid is at a lower velocity than 

the main stream (Umax St,/UG= 0.75). For both cases, the 5 

prediction starts at ten slot heights from the jet 

exit. As revealed in Fig.6.33, all the hydrodynamic 

properties for the former case are well predicted. For 

the latter case, although the variation of the shape 

factor is reasonably well predicted, the agreement for 

R2  and ss  is rather poor. This may be due to the 

presence of lateral convergence in the flow. This can 

be seen far downstream of the injection slot where our 

calculations underpredict the skin-friction coefficient 

but overestimate the rate of increase of the momentum-

deficit-thickness; since our calculations satisfy the 

integral momentum equation, the data must have suffered 

from the presence of lateral convergence. 

Fig.6.33e presents the heat-transfer property 

of the wall jet in the form of the film-cooling-effectiveness, 

defined as the ratio of the temperature difference between 

. the main-stream fluid and the wall to the temperature 

difference between the main-stream and the injected fluids. 

The agreement between predictions and data for both cases 

of flow is very good. 

A detailed comparison of the predicted U, T and 

e profiles with experiments for the case of 
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Umax,SL/UG = 2.3 are displayed in Fig.6.34. The 

profiles at 50 slot heights and 150 slot heights are 

compared. For both stations, the mean-velocity profile 

is well predicted, but the predicted T and e profiles 

deviate considerably from the experimental data. However, 

the calculations do predict a grLdual decay of the 

turbulence quantities as the flow proceeds downstream. 

Radial wall jets 

Two cases of measurements of radial wall jets 

in a stagnation surrounding have been obtained in the 

experimental investigation described in the next 

Chapter. When the present two-equation model with the 

same constants were used to calculate the development 

of these flows, the growth rate y1/r was found to be 
7 

underestimated by as much as 40%; the predictions are 

shown in dotted lines, in Fig.6.35 where the relevant 

measurements are also displayed. Here, we encounter 

another defect in our turbulence model. It may be 

recalled that the last term in Equation (3.2-18) is 

modelled empirically as proportional to f, which is 

assumed to vary as a function of 1/y according to 

Equation(3.2-16). However, it can be shown from the 

condition of self-similarity that, if a radial wall jet 

is to grow at the same rate as a plane wall jet, the 

length scale of the former should be about if times 

that of the latter. But this increase in £ in a radial 
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wall jet will also increase the. magnitude of the last 

term in Equation (3.2-18) compared to the other terms, 

thus preventing the correct prediction of the radial 

wall-jet flow. To allow the two-equation model to predict 

the behaviour of radial wall jets correctly, it is 

required to modify the algebraic expression of f. Thus, 

the following formula is proposed; 

f . C4y  (--) 
[ 	

Z ( 1 + C74rdx(11.-)1 q  (6.2-2) 

v'--- ri7,,AAA,,T 

where C7 is a constant. It is chosen so that 

the turbulence model with the modified expression for f 

gives the correct prediction of the growth rate of self-

similar radial wall jet (yi/r = 0.085): a value of 

150.0 was found to be suitable. 

The expression for f shown in Equation (6.2-2) 

possesses the following properties: 

(i) for a plane flow, dr/dx vanishes and 

Equation (6.2-2) reduces to Equation 

(3.2-16), 

(ii) as y approaches to zero, becomes 

proportional to y according to Equation 

(4.2- 9); thus, 

C4  e 
"( ---) 

y 

which is independent of r. 
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Although other forms of expressions for f 

have been tried': the functional relationship of Equation 

(6.2-2) was found to be the most satisfactory. 

The resulting predictions for two cases of 

radial wall-jet flows (cases a and b), shown by solid 

lines in Fig.6.35, are compared also with the relevant 

experimental data. As can be seen from the growth rates 

of the two flows, case (b) represents a wall-jet flow 

which is close to the state of self-similarity, while 

case (a) represents a developing radial wall jet. The 

predicted growth rate and velocity decay for both cases 

agree reasonably well with experimental data as shown in 

the figure. Comparisons for the mean-velocity, shear-

stress, and turbulent kinetic energy profiles for case (b) 

are displayed in Fig.6.36. Examination of the mean-velocity 

and energy profiles reveals that, the height of the 

velocity maximum from the surface and the turbulence level 

were not correctly predicted, but, on the whole, the 

(i)  
[ 

= C4Cift ('-q-: 2  ) q ; the expression gives satisfactory 

prediction for radial wall jets but fails to 

predict correctly the developments of the wall 

boundary layers strong adverse pressure gradients. 

[  4 

	
q 

_ (— (ii) f = C 	aZ 2) _ 1C 	; the expression neither , 
i 6  Y Y 

predicts the wall-jet flows nor the flat-plate flows 

correctly. 
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agreement between calculation and data is satisfactory. 

The agreement is perhaps the best justification for the 

proposed modification of the model. 

6.3 Some comparisons of the present calculations with 

similar calculations from other methods  

In the foregoing Section, we have compared 

qualitatively some of our calculations with a large 

variety of wall-boundary-layer measurements; in some cases 

our caldulations agree well with the experimental data 

while in others there are disagreements 1etween our 

predictions and measurements. Therefore, it is useful 

to compare some of those predictions with the predictions 

of other methods. 

Calculations from a number of methods have 

been chosen for these comparisons. They entail the 

zero-equation mixing-length model of Patankar and Spalding 

(1970), the one-equation model of Bradshaw et al (1967), 

the three-equation model of HanjaliC (1970), and the 

five-equation model of Daly and Harlow(1970). 

6.3-1 Comparisons with simpler models  

Statistical comparison for external wall boundary layers  

The Stanford Conference on turbulent boundary 

layers stimulated interest in discrimination between 

various available procedures by comparison with a 

standard set of data. However, no quantitative measure 
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as to the accuracy of prediction of each individual 

:procedure has been reported. Since the accuracy of each 

set of these experimental data varies to a considerable degree, 

a statistical comparison of the deviation of each 

procedure from the data should be more desirable. 

Such a comparison between the Patankar-Spalding 

model, Bradshaw's model, and the two-equation model 

has been undertaken first by Ng and Spalding (1970b). 

The result of such an investigation is presented in Table 

6.1. 

model 

average 
value of 

Patankar- 
Spalding 

Bradshaw 
et al 

two equ. 
model 

two-equ. model 
proposed by Ng 
and Spalding 

the 18 runs (1971)  

1H12 0.06 0.05 0.06 0.05 

Ass  x 103 0.12 0.11 0.11 0.10 

AR2 0.11 ' 0.09 0.09 0.10 

Table 6.1 Mean deviations of predictions from the data 
for three models of turbulence. 

Table 6.1 lists the average value of AH 12,  

Ass, and AR2, calculated by the three models, for all 

the mandatory and optional-requested runs of the 

Stanford Conference. The results calculated from the 

Patankar-Spalding model, Bradshaw's model, and the present 

two-equation model, are displayed in Columns 2 to 4 

respectively. The entry in the fourth column contains 

i exceptions are IDENT = 5000, 5300 
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the results calculated by an earlier version of the 

two-equation model (Ng and Spalding 1971), whose constants 

have been optimised with reference to wall-boundary-layer 

flow only+. The quantities AH12, Ass, AR2  for each flow 

are defined by, 

N 

MI12= 
1  
71•Z 

12,p /i  
i=1 	H

12 ex 
, (6.3-1) 

N 

LS = - sS ex/i 1=1 	5r) 	5 5 (6.3-2) 

and, AR2 

N 
1 /1 	2,p/i  

Ri.1 	R2 ex 
(6.3-3) 

Here N is the number of x-station values for 

which experimental values are available for H12  s5, and 
5 

R2  downstream of the starting point of the calculation; 

subscripts p and ex denote "predicted" and "experimental" 

respectively. 

Mindful of the degree of accuracy of the 

Stanford data, which has been discussed in Section 6.2-1 

inspection of the entries in Table 6.1 reveals that the 

'three methods give about the same degree of accuracy 

constants proposed by Ng and Spalding (1971): 

C1  C2 C3 C4' ae 0-1 02 q 

0.1 0.84 0.55 2.16 2.0 1.2 2.0 4 
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statistically in the calculation of external wall 

boundary layers. The result is perhaps not surprising: 

most of the data collected are very near to the state 

of local equilibrium; as it may be recalled in Section 

4.2 that, when local equilibrium prevails, these three 

models show many identical features. 

Comparison for supersonic flows  

Unlike incompressible flows, the absence of 

a large set of accurate supersonic boundary-layer 

measurements makes a statistical comparison less 

satisfactory. Therefore, the same three methods of 

calculation were compared quantitatively only for the 

two cases of supersonic flows measured by Sivasegaram 

(1969). In Figs. 6.21 and 6.22, curves showing the 

fractional deviation of the two other predictions from 

the predictions of the two-equation model are plotted 

unaer each sub-diagram. Inspection of these curves 

reveals that the predicted ss  and 52  by the three models 

differ by less than 5%. However, the predicted H12  

by Bradshaw's model is about 20% larger than that by the 

two-equation model. Nevertheless, the difference is 

within the degree of uncertainty of the experiments. 

This can be seen from the data of H12 displayed in Figs. 

6.21 and 6.22, in which more than 20% change in H12  

due to a 10% change of the recovery factor used in the 

evaluation of the experimental H12, is observed. 
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6.3-2 Comparisons with higher-Order models  

A statistical comparison of the Stanford data 

for Hanjalic (1970) and the Daly-Harlow (1970) models 

is being undertaken by the present writer and will be 

reported separately. The comparison of predictions from 

the two-equation model and some other higher-order 

models will be restricted to the hydrodynamic properties 

of developed channel flows and wall-jet flows only. The 

former flows are capable of prediction by most of the 

higher-order models as well as by some simpler models 

but the latter flows are unlikely to be predicted 

accurately by simpler models. 

Developed flow in a channel  

Fig. 6.29 also reproduces the prediction by 

Daly and Harlow (1970) for Laufer's channel flow 

experiment. Inspection of both the predicted velocity 

profile and turbulence quantities displayed in the figure 

reveals thatthe two-equation model give predictions 

which are no worse than and in many respects closer - to 

the measurements than the higher-order model of Daly 

and Harlow. Although higher-order models should offer 

closer approximation to the actual turbulence motion 

by the use of a larger number of transport equations, 

they do not however, always give more accurate results; 

this is because in general, they require a larger number 

of constants than simpler models, all of which have to 
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be optimised accurately to give the correct predictions. 

Plane wall jet in a moving main stream 

Fig. 6.34 also displays the U, T, and e profiles 

predicted by HanjaliC (1970), for the film-cooling 

measurements of Kacker and Whitelaw (1971). Comparison of 

the-accuracies of prediction by the two-equation model 

1  and by Hanjalic's model shows that,the general features 

of the flow are predicted to the same degree of accuracy 

by both methods. However, the use of the shear=stress-

transport equation in the latter model to account for 

the diffusion of turbulent shear, results in more 

accurate prediction near the region of velocity maximum 

and zero shear. The implication of the use of the shear-

stress equation has been discussed in Sections 3.3-4 

and 6.2-5. 

6.3-3 Concluding remarks from the comparisons with 

other models of turbulence  

Although it is limited to-the hydrodynamic, 

behaviour of wall boundary layers, the comparison of the 

predictions by the two-equation model with those by other 

simpler models shol4s that the former are as accurate as 

the latter. 

However, the greatest merit of using the two 

equation model is that there are boundary-layer flows for 

which the two-equation model is capable of correct 
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predictions, while simpler models would fail. Two 

examples will suffice to emphasize this point. The 

mixing-length hypothesis allows all the free-jet flows 

to be predicted quite well, but only if the ratio of the 

mixing length to the layer thickness has a different 

value for each flow. The present model, on the other 

hand, allows all the flows to be predicted with a 

single set of constants. The second example concerns 

the wall-jet flow. We have calculated satisfactorily 

the main features with the present model; whereas the 

simpler model of Bradshaw et al provides no predictions 

in which the shear stress exhibits both positive and 

negative values. 

However, when the two-equation model is compared 

with higher-order models, it must ba expected that the 

latter possess a greater ability to fit a larger range 

of experimental data. For example, models which use a 

shear-stress equation instead of the eddy-viscosity 

hypothesis should be better equipped to predict wall-

jet flows. 

Higher-order models, however, take longer time 

to develop; and as a result, it is not possible to put 

to any solid conclusion from this limited demonstration 

that there are greater merits in using higher-order 

models than the two-equation models for the prediction 

of boundary layers. Furthermore from the user's point 

of view, higher-order models will require more computer 
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time to solve the larger number of differential 

equations. The two-equation model appears to be a 

satisfactory compromise between accuracy of the solution 

and economy of execution. 
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CHAPTER 7  

EXPERIMENTAL INVESTIGATION OF RADIAL WALL JETS  

7.1 Introductory remarks  

The calculation procedure for two-dimensional 

turbulent boundary layers developed in CHAPTERS 3 and 4 

rests on the assumption that a number of terms in the 

exact equations are reducible to universal functions 

which include a number of empirical constants. Although 

the equations and their constants had been shown to 

work favourably in plane boundary layers and pipe flows, 

it was nevertheless found that modification to the model 

was required in order to predict radial wall-jet flow 

correctly. The essence of this Chapter is to report the 

measurements of radial wall jets used for the comparison 

with the two-equation model predictions. 

A radial wall jet is resulted from one of the 

two cases of flow (a and b) shown in Fig. 7.1. In case(a), 

the impinging jet is close to the wall and the jet is 

deflected by both the wall and the circular flange fixed 

at the jet exit. In case (b) the distance between the 

jet exit and the wall is large compared with the jet 

diameter such that the jet is deflected by the presence 

of the wall only. Radial wall jets are common occurence 

in process engineering and in aerospace engineering. 

Therefore, the understanding of the radial wall-jet 
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phenomen h is of great practical importance. There 

is another welcoming aspect to the study of radial 

wall-jet flows, i.e. side-wall effects, which very 

often interfere with the wind-tunnel experiments, are 

absent in such flows, allowing a truly two-dimensional 

flow. The measurement of the development of radial 

wall jet in a stagnation surrounding forms the basis of 

the present investigation. Both the mean velocity and 

the turbulence correlations are reported in Section 7.7. 

7.2 A survey of previous investigations  

To the best of the writer's knowledge, the 

first experimental investigation of radial wall jet 

was performed by Bakke (1957) whose work was stimulated 

by the earlier theoretical investigation of Glauert (1956). 

Other experimental investigations of th hydrodynamic 

aspects of radial wall jets were reported by Bradshaw 

and Love (1959), Hodgson (1962), Poreh et al (1967), 

Jayatelleke (1969), and Baker (1969). All these 

investigations are summarised in Table 7.1. It is 

obvious from the Table that, although all the data show 

that the wall jet grows proportionally to the radius 

from the axis of symmetry, there is lack of general 

agreement as to the rate of growth reported by different 

investigators. For example, the reported growth rate 

varies from 0.046 as 'reported by Jayatelleke to 0.093 

by Poreh et al and only recently, Nakatogawa et al (1970) 



investigator/s Geometry 
of 

jet exit 

Range of 
experiment 

 velocity 
transducer 

used 

measurements 
taken 

Yi/r 
deduced from 
measurements 

Bakke 
(Ref.3) 

Z Z1. 

r1  

= 

= 

1.5 cm 

6.3 cm 

14  4.3 cm 

30.3 cm Pitot-tube U 0.077 

Bradshaw 
and Love 
(Ref.16) 

Z2 
r2 

= 

= 

50 cm 

2.54 cm 

12.6 cm 
< r< 

51 cm 

, 

Yaw-meter 

• 

U  0.085 

Hodgson 
(Ref.65) 

Z 
r 

= 
= 

1.91 cm 

7.62 cm 

11.4 cm 
< r< 

30.5 cm hot wire 0.085 U, U27 v2 

Poreh et al 
(Ref.112) 

Z2  r2 

= 
= 
61 cm 
2.54, 
7.62, 
5.08 cm 

* 

45.7 cm 
< r < 

168 cm hot wire 

-1 
= 0.098 (E r2)  
p.. 0.093 at r  

r2 
equal to 	. 

1.75 

u2 	v2 U ,2 	1 	5 
2-- W,UV,  

skinfriction 
byfriction 
balance 

Table 7.1 continued. 



Jayatelleke 
(Ref.67) 

Z1 = 0.165 
0.508 

7.5 cm 
<r< 

0.567 cm 31.8 cm Pitot-tube U 0.046 
r1 = 	7.5 cm 

. . 
Baker Z1 = 0.254 cm 7.6 cm 

(Ref.1) . < r < 
r1  = 	7.6 cm 35.5 cm Pitot-tube U 0.054 

Table 7.1 Survey of experimental data of radial wall jet; r = radius of wall 
jet exit slot; Z1  = slot height; r2  = radius of the impinging jet; 
Z2 = height of the impinging jet. 
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reported that the growth rate of a radial wall jet should be 

0.0683. Far downstream, the radial wall jet should 

attain a self-similar form, and therefore, should be 

independent of its inlet conditions. However, some of 

the disagreement of the results listed in Table 7.1 

may be the result of measurements not far enough downstream 

of the exit. To illustrate this point, the data of 

.Jayatelleke (1969) are plotted as Y2 vs r in Fig.7.6. 

T4is figure shows that, Yi is only proportional to r near 

the downstream end of the region of experiment. If the 

wall jet is self-similar, then, according to the boundary-

layer equations, not only the mean-velocity, but also 

the turbulence quantities should exhibit self-similarity 

also. However none of the investigators listed in 

Table 7.1 have made enough detailed turbulence measurements 

as to aid such a clarification. Although some turbulence 

intensity measurements have been reported by Hodgson(1962) 

and Poreh et al (1967), only the latter provided some 

shear-stress distribution profiles. But, they show such 

a large scatter (see Fig. 7.16) that it is difficult.  

to draw any complete conclusion as to whether the wall-

jet data reported attained self-similarity or not. 

Another possible cause for the difference 

in the reported growth rate may be due to the different 

velocity transducers used in each investigation. As 

shown in Table 7.1 the measurements are made with either 

total head Pitot-tube (including yaw-meters) or constant-

temperature hot wires. Their different characteristic 
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response in low speed flows with a high turbulence 

level, as those existing in radial wall jets, may result 

in different measured velocity profiles. In particular, 

the Pitot-tube 	is likely to underestimate the 

mean-velocity profiles of flows with high turbulence 

levels due to the presence of large instantaneous 

yawing angles (see Fig. 7.7)._ This effect will contribute 

a large error in radial wall-jet measurements, where the 

local turbulence level, e+/U, is greater than 40% over 

most part of the wall jet as displayed in Figs.7.12(f) 

and 7.13(f). Another important influence in pitot-tube 

measurements is its response at low-speed flows. MacMillan 

(1954) has reported that corrections have to be made for 

Pitot-tube measurements at low speed flows, depending 

on the size of the pitot. As the range of velocities in 

a radial wall .jet spans from its local maximum to zero 

at the stagnation surroundings and at the non-slip wall, 

large corrections may be required in part of the measurements. 

On the other- hand, both the mean-velocity 

and turbulence levels can be calculated from the output 

signals of the hot wire as shown in Appendix 4. Furthermore, 

an indirect check on the accuracy of the hot-wire 

measurements can be provided from the comparison of the 

'measured shear stress with that deduced from the integration 

of the momentum equation. 

An example of the difference in measurements 

of a radial wall-jet profile by Pitot-tubes and hot wires 

is displayed in Fig.7.8. In this figure, the same 
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velocity profile, measured by two Pitot-tubes of 

different configuration, is compared with that measured 

by a constant-temperature hot wire. One of the Pitot- 

tubes was a 0.82 mm diameter tubular probe and the other 

was a flattened pitot with 0.10 mm by 1.01 mm rectangular 

opening; the latter is identical to that used by Jayatelleke. 

During the course of the pitot measurements, negative 

total heads were measured on the outer edge of the wall 

jet, but these readings have not been displayed in the 

figure. This phenomen# has formerly been observed by 	61̂- 

Bradshaw and Gee (1960), Heskestad (1965), and Jayatelleke 

(1969) and is due to the severe yawing of the total 

velocity vector in the presence of entrainment at the 

outer edge. Fig.7.8 shows that the resulted Y1's from 
-2-  

the three measurements differ by as much as 15%. 

7.3 Object of the experimental investigation  

In the light of the findings discussed 

in the foregoing section, it was decided to carry out 

new measurements for radial wall jets in stagnation 

surroundings. The area of enquiry will be restricted to 

the mean-velocity profiles and all other second-order 

turbulence quantities, specifically, u
2
, v

2
, w

2
, and 

uv. Through these measurements, we hope (a) to establish 

the asymptotic growth 'rate of the radial wall jet, and 

(b) to provide suitable experimental data for the basis 

of assessment of the two-equation turbulence model. 
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7.4 Methods of measurements and data reduction 

The difficulties of obtaining reliable 

velocity data of radial wall jet from Pitot-tube 

measurements have been discussed in Section 7.2. Hence 

it was decided to employ constant-temperature hot wires 

for both mean-velocity and turbulence measurements in 

the present investigation. Many previous investigators 

have proposed ways of calculating the mean velocity and 

turbulence correlations from the output of hot-wire 

signals. An examination of these methods in Appendix 4 

leads to the proposal of interpreting the mean and 

turbulence quantities from signals generated when a 

single wire was placed at four different angles relative 

to the direction of flow. The values of Ulu2,v2,w —2 , 

and uv, were calculated from Equation (A.4-7 to A.4-11) 

when the d.c. and a.c. components of the hot-wire signals 

were measured. In practice, it is difficult to repeat 

measurements at the identical pOsition for each traverse 

of the hot-wire at one of the four inclinations to the 

flow, so interpolations are required. The interpolations 

and the solutions of Equations (A.4-7 to A.4-11) were 

calculated in a data-reduction program, by a CDC6600 

computer. 

7.5 Experimental apparatus  

7.5-1 The test plate and nozzle assembly  

The experiments reported below were carried 

out with two types of nozzles blowing normally on to a 
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test plate, the general arrangements of which are shown 

in Fig. 7.2 and are designated as case(a) and case (b) 

respectively; the dimensions of these nozzles and test 

plate are also displayed. 

The test plate was a 0.91 m square by 

0.95 cm thick aluminium plate, mounted vertically on 

a steel frame, which was separated from the mounting 

frames of the nozzle and the traversing mechanism of the 

hot wire. This was to prevent the transmission of any 

possible mechanical vibrations. The test-plate mounting 

has three foot screws and a screw jack, which permitted 

adjustments of the "square-ness" of the plate with respect 

to the impinging nozzle. Three identical Pitot-tubes 

were mounted on the plate, at 120°  pitch, and at 43 cm 

radius from the centre of the plate. Furthermore, the 

height of these pitots was fixed at 1 cm so that symmetrical 

flow was assured when the three pitots showed identical 

readings. 

For the nozzle assembly in case (a), air 

was delivered from a centrifugal fan through a plenUm 

box and a 7.6 cm bore PVC pipe of 3.05 m long (see Fig.7.3a) 

The length of the pipe was necessary to eliminate any 

Presence of swirl in the jet. The compressed air was 

regulated to within + 1 deg. C of the ambient temperature 

at exit by an automobile radiator fitted inside the 

plenum box. Before entering the fan, air was passed 

through an electronic air cleaner to remove dust particles 

larger than 0.03 microns. 
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The nozzle and plate assembly of case (b) 

was set up after it had been realised that it was not 

possible to obtain a self-similar wall jet within the 

range of measurements in case(a),due to the limited size 

of the test plate. However, instead of changing to 

another larger test plate, further measurements were 

carried out using a smaller size nozzle as shown in Fig.7.2(b). 

The air supply system is shown in Fig.7.3(b). In this 

case, no air cooler was necessary as it was found that 

within the required range of flow rate, the compressed 

air was at the same temperature as the ambient surroundings. 

The optimum height of 2.54 cm of the nozzle from the test 

plate surface was chosen after a preliminary investigation. 

By traversing a single wire at a fixed radius of 27 cm 

from the axis of symmetry each time the impinging distance 

Z2  is increased, it was found that, when Z2  was greater 

than 1.9 cm, the height of the wire at which its mean 

d.c. signal equals to half the maximum value remained 

unchanged. In this investigation the mass flow rate of 

the compressed air was kept nearly constant at 0.03 kg/min, 

but the increase of flow rate by 50% was found to give 

very much the same result. 

7.5-2 Instrumentation 

The items of the measuring instruments 

are listed below: 

1. A probe traversing mechanism mounted on a GRIMSTON 
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No.1 compound table as shown in Fig.7.4. The combined 

span of the traverse is 65 cm by 15 cm. 

2. A cathetometer, mounted on another compound 

table fitted with a dial gauge, as shown in Fig.7.4 to 

locate the exact distance of the hot wire from the test 

plate. 

3. A DISA 55A01 constant-temperature hot-wire 

anemometer, DISA 55D10 lineariser, DISA 52B30 true 

integrator, DISA 55D35 rms voltmeter, FENLOW 301-A 

digital voltmeter, TELEQUIPMENT D53 oscilloscope. These 

instruments are shown in Fig. 7.5. A TEKTRONIC 564 

storage oscilloscope was used in taking photographs of 

the hot-wire traces shown in Fig. 7.17. 

4. DISA 55F04 gold-plated boundary-layer probe, 

DISA 55F02 gold-plated 45°  slanting probe used in all 

the measurements. 

5. A low turbulence level (g/Ufe0.4%) hot-wire 

calibration wind tunnel with adjustable flow rates from 

0 to 50 m/s; the tunnel and its accessories have been 

described by Melling (1970). 

6. A verticle U-tube manometer, with 90 cm long 

columns filled with paraffin (s.g. 0.787), was used to 

measure mean velocities above 40 m/s. For velocities 

below 40 m/s, a micro-manometer capable of reading an 

accuracy of a head of 0.02 mm of paraffin was used; the 

micromanometer has been described by Baker (1971). 
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7.6 Operating procedure  

7.6-1 Setting up of the test plate and the nozzles  

Before the test plate was placed against each of 

the nozzles, Pitot-tube traverses across the nozzle exit 

were made to ensure that the impinging jets were indeed 

axisymmetrical. At the start of each run, the nozzle 

was first located centrally and perpendicular to the 

test plate. The correct height of the nozzle from the 

plate was checked by means of slip gauges. When the air 

supply was turned on, finer adjustments of the plate were 

made,when necessary, to obtain identical readings from 

the three fixed Pitot-tubes mounted on the plate. 

7.6-2 Hot-wire calibration 

The linearised hot wire was calibrated 

before and after each set of runs, which normally lasted 

about four to five hours. A typical calibration curve 

is shown in Fig. 7.9. If the slope of the two calibration 

curves differed by more than 5%1  the set of runs would 

be rejected. Otherwise, the calibration curve for each 

run was linearly interpolated between the two curves. 

7.6-3 Method of measurements  

In accordance with the results of the 

analysis in Appendix 4, each experimental station was 

traversed by single wires placed at four different 
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inclinations to the main stream. The boundary-layer 

probe (55F04) was first traversed over all the experimental 

stations. It was then replaced by the 45°  slanting 

probe (55F02), and the procedure was repeated with 

the probe in each of the three inclinations. 

For case (a), the first station of the 

measurements is at the exit of the nozzle, but for case 

(b), the first station is 7.3 cm from the nozzle exit; 

no measurements were taken closer to the nozzle because 

the thickness of the wall jet in this region was no 

longer large compared with the length of the hot wire. 

Determination of the distance of the hot wire from the wall  

Each traverse was always started at the 

farthermost point from the test plate. At three 

different positions, the distance between the hot wire 

and its optical image was measured by the cathetometer, 

mounted on a compound table which traversed at right 

angle to the plate as shown in Fig. 7.10. Since both 

the object and its image remained at the same distance 

from the cathetometer, no re-focusing of the cathemometer 

was required during the measurement. 

The constant-temperature hot-wire circuitry 

The block diagram of the hot-wire 

circuitry is displayed in Fig. 7.11. During each traverse 

of the hot wire, both the mean and r.m.s. voltage were 

recorded. The rms-meter was operated at the maximum 
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integration time-constant of 30 seconds, and the mean 

voltage was taken over a period of 200seconds throughout 

the experiments. However, for case (a) the mean voltage 

was read direct from the digital voltmeter because the 

integrator was not available at the time of the experiment. 

In all the measurements, the hot wire was operated at 

an overheat ratio of 1.8 and with a high frequency 

cutoff at 10 kHz. 

7.7 Presentation and discussion of results  

The readings taken for cases (a) and (b) were 

processed in a CDC  6600 digital computer to obtain the 

profiles of U, u v2, w2, e, and uv according to 

Equations (A.4- 7 to A.4-11). These profiles for each 

station were tabulated in Appendix 5. 

7.7-1 Mean velocity and turbulence quantities of the  

wall jets  

The mean velocity, the turbulent shear stress, 

the three components of turbulence, and the turbulent 

kinetic energy of each station, for both cases (a) and 

(b), are displayed in Figs. 7.12 and 7.13 respectively. 

Each of these profiles is nondimensionalised by its local 

Umax 
and yi

7
. The reader may notice that the scatter of 

the mean-velocity profiles for case (a) is greater than 

the corresponding profiles of case (b); this is entirely 

the result of the much shorter averaging time of output 

hot-wire bridge voltage in case (a) compared with case (b), 
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where each signal was integrated over a period of 200 

seconds. The intermittent character of the turbulence 

of the radial wall jet can be seen from the traces of 

the hot-wire signal shown in Fig.7.17. Four traces at 

,different distance from the wall were taken with a 

straight wire placed normal to the flow, the duration 

of the trace being one second. It can be seen that long 

integration period is necessary, especially near the 

outer edge of the wall jet. 

Examination of Fig. 7.13 reveals that while 

the mean-velocity profile attains its self-similar form 

much more readily, the turbulence quantities do not 

become self-similar until much further downstream. 

However, the shear-stress and u2 profiles tend to become 

self-similar earlier that the v
2 

and w
2 
profiles. This 

can be seen from the measurements displayed in Figs. 7.13(b) 

to (e); both the uv and u
2 

profiles are found to attain 

their self=similar shape at the second station, but v
2 

and w
2 

do not become self-similar until the third station. 

this is in agreement with the Navier-Stokes equations 

because in a two-dimensional boundary layer, energy 

taken from the mean motion of the fluid is first converted 

into u2, which is then transferred to the other two 

components of fluctuation through the action of pressure 

fluctuations, as shown in Equations (2.3-1 to 3). The 

. phenomenem discussed above has been observed in many 

free shear flow experiments like those of Wygnanski and 

Fiedler (1969) and Champagne et al (1970). 
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For case (a), the turbulence quantities do not 

exhibit a self-similar state within the range of the 

measurements. 

7.7-2 The rates of growth and mean velocity decay of  

the radial wall jets  

The measured development of y1  and max for 
2 

both cases (a) and (b) are displayed in Figs. 7.14 and 

7.15 respectively. For case (b), ya is found to be 

proportional to r, the constant of proportionality, 

i.e. the growth rate, being 0.085. However, the decay 

of Umax  is found to vary as r
-1.15 as shown in Fig.7.15. 

The exponent is smaller than - 1 , which is the value 

found in the decay of a fan jet (Heskestead 1966), and 

which is also the value should perfect similarity prevail 

in a wall jet; the departure of the exponent from unity, 

albeit small, shows the slight Reynolds number dependence 

of the flow. 

For case (a), the growth rate does not attain 

a constant value; this and the lack of self-similarity 

of the turbulence quantities displayed in Fig. 7.12 show 

that the radial wall jet of case (a) was not yet fully 

developed within the range of measurements. 

7.7-3 Positions of vanishing shear stress and velocity 

maximum  

Examination of the mean velocity and uv profiles 

in Fig. 7.12 and 7.13 reveals that the position of 

zero shear and the position of velocity maximum do not 
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coincide. In particular, the heights at the point of 

velocity maximum and at the point where uv vanishes are 

0.2 and 0.075 of yi  respectively as shown in Figs. 7.13(a) 
2 

and (b). The non-coincidence of these two points in 

wall jets has previously been confirmed by Bradshaw and 

Gee (1960). Poreh et al (1967), Tailland and Mathieu 

(1967, 1970), Manian and Besant (1969) and Kacker and 

Whitelaw (1971). 

7.7-4 Accuracy of the measurements  

The accuracy of the results presented is affected 

by two factors: the accuracy of the measuring equipment 

and the correctness of the method used in the data 

reduction. 

The accuracy of the hot-wire anemometer and 

the other electronic equipments used depends to a very 

large, extent on frequency of the turbulence to be 

measured. As this differs at different parts of a radial 

wall jet, it is therefore not possible to quote an 

absolute figure on the accuracy of the instruments. 

Three factors contribute to the data-reduction 

inaccuracies. 

(i) The most important factor is the accuracy 

of the hot-wire calibrations. As shown in Fig.7.9, the 

calibration curve is indeed linear and the variation of 

the constant of proportionality K in Equation (A.4-2) is 

under 2% within the range of velocity encountered in the 

experiments. 
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(ii) The accuracy of the method of calculation 

of the mean and turbulent quantities from Equations (A.4-7 

to A.4-11) is difficult to estimate without the knowledge 

of the other higher-order correlations, which we have 

neglected in the analysis. However, these higher-order 

correlations must be small compared with the second- 

order correlations in low or moderate turbulence level. 

We have also neglected the V - component of 

the mean velocity in the calculations. However, this 

should not cause large error in the results. As can be 

seen from the V - profile displayed in Fig. 7.13a, V is 

less than 2% of Umax  over most of the wall-jet thickness. 

Nevertheless, near the outer edge of the flow, V/U should 

approach infinity, implying that the neglect of V in 

this region can cause large error in the results. 

(iii) The last factor is the determination of 

the effective centre of the hot wire. In our measurements 

this was treated as the geometrical centre. In places 

where the scale of turbulence is small compared with 

the length of the wire or where there is a large mean-

velocity gradient, the effective centre of the wire may 

deviate from its geometrical centre. The former effect 

has been investigated by Wyngaard (1968) and the latter 

by Gessner and Moller (1971); the results of these 

investigations showed that these effects can cause error 

in the estimation of the turbulence quantities. 

Clearly, with all the uncertainties discussed 

above, the accuracy of the measurements differs at different 
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parts of the wall jet. Therefore, instead of estimating 

the possible errors quantitatively, we shall demonstrate 

the accuracy of the measurements through qualitative means. 

Comparison of the measured turbulent shear stress with 

that deduced from the momentum equation  

A comparison of the measured shear stress with 

that calculated from the momentum equation and continuity 

equation for case(b) is shown in Fig. 7.13(b). The 

calculated shear stress was determined from the integration 

of the following equations for radial flows; 

U aV 
at + r  + ay = 0 (7. 7-1) 

7 -7 	v 2u 0  aU 	aU 	2 	2 	- 	w  ) + v. + T7(11 - v ) + 	 ay2- aY , (7.7-2) 

• 

where the mean velocity, U, is given by the 

measured profiles of the last two stations of case (b). 

The wall shear stress, [ ] y  ,_ 0, is calculated from the 

parabolic fit from the wall to the nearest two points 

of measurement close to the wall. 

From Fig. 7.13 (b), it can be seen that the 

shear stress measured directly by the hot wire is less 

• than that deduced from Equations (7.7-1 and 2). In 

particular the difference is about 12% at y1. This may 
2 

be due to some of the uncertainties discussed previously. 

In particular, the underestimation of the measured shear 

stress may be due to the special characteristics of the 

rms meter used in the measurements, which has a low 
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frequency cutoff of 1 Hzt. Wygnanski and Fiedler (1969) 

have reported that, in jet measurements as large as 

10% of the turbulent shear lies below the frequency of 

1Hz. If the same is true in radial wall jets, the 1 Hz 

cutoff will result in the underestimation of the shear 

stress. 

The effect of the normal turbulent stresses and centrifugal  

tresses in the estimation of shear stress from Equation  

(7.7-2)  

If the centrifugal-stress (fourth) term in 

Equation (7.7-2) is neglected in the calculation of the 

shear stress, a shear-stress profile, as shown in the 

chain-dotted line in Fig..7.13(b) is obtained. The shear 

stress in this case is underestimated by as much as 12%. 

However, when both the centrifugal-stress term and the 

normal-stress (third) term are neglected, the shear-stress 

profile is underestimated by about 7%. Thus it is shown 

that the centrifugal and normal stresses are by no means 

negligible compared with the shear-stress diffusion in 

a radial wall jet. Nevertheless, their contributions 

to the transfer of momentum are opposite to each other. 

Comparison of the measured shear-stress profiles with 

those measured by Poreh et al (1967)  

The T profiles for a radial wall jet were 

measured by Poreh et al (1967). Fig. 7.16 displays the 

.comparison between their measurements and those from 

DISA manual 55D35 
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case (b) of the present investigation. The comparison 

reveals that, apart from the smaller scatter of the 

present measurements, they also display a larger maximum 

of the shear-stress profile than those obtained by Poreh 

et al. 

7.8-  Conclusion from the experimental investigation  

Examination of the growth rates in Fig. 7.14, 

.the velocity decays in Fig. 7.15, and the mean-velocity 

and turbulence profiles in Figs. 7.12 and 7.13, reveals 

that a nearly.self-similar flow has been attained in 

the radial wall jet of case (b) but not in case (a). The 

growth of yl in case (b) was found to be proportional 

to the radius and furthermore, the rate of growth is 

equal to 0.085, which agrees with the findings of Bradshaw 

and Love (1959) and Hodgson (1962) although each of 

these experiments had a different nozzle geometry at the 

exit, showing that the growth rate of a self-similar wall 

jet is independent of its inlet conditions. The rate 

of maximum velocity decay was found to vary as Umax  

r-1'15  for case (b). 

The difference in the position of velocity 

maximum and zero shear is further confirmed in the 

present measurements. In particular, the height of the 

point at maximum velocity and the point of zero shear 

are 0.2 and 0.075 of yi respectively. 

Comparisons of the two cases of radial wall 

jets with the predictions from the two-equation turbulence 

modelhave been given in Chapter 6. 
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CHAPTER•8  

CONCLUSION  

8.1 Principal results of the present investigation  

The main conclusions resulted from the present 

study are listed below: 

1. The review of the available literature 

on the prediction of turbulent boundary layers.in 

Chapter 2 has pointed to the necessity of formulating 

turbulence models which calculate the turbulent kinetic 

energy and length scale distributions from transport 

equations. 

2. A two-equation model, which solves 

the turbulent kinetic energy and a length scale from 

two differential equations, was developed in Chapters 

3 to 5. These differential equations contain a number 

of empirical constants, the values of which were fixed 

with reference to some well known experimental data. 

It was found that the present model predicts accurately 

a large number of characteristics of both free and wall 

boundary layers with only a single set of the constants. 

3. Close to the wall, in the viscous sublayer, 

where the Reynolds number is small, the constants in the 

model will no longer have a unique value but become 

functions of Reynolds number of turbulence. The problem 

of finding the correct functions has been bypassed in 

the present study by matching the integration of the 



differential equations with a set of well known semi-

empirical formulae near the wall. This was discussed in 

Chapter 5. 

4. The model can be readily "upgraded" to a 

higher order models by the introduction of additional 

transport equations, e.g. equation for shear stress or 

equations for the three components of the turbulent 

kinetic energy. The inclusion of some of these equations 

in the turbulence model may be necessary wherever the 

diffusion or the convection of these properties are 

significant. The incorporation of the shear-stress 

equation in the two-equation model for the calculation 

of a plane wall jet has been demonstrated in Chapter 6. 

Heat transfer in boundary layers was calculated 

from the enthalpy-transport equation, which was solved 

simultaneously with other differential equations of the 

turbulence model. 

5. The comparison of the calculations for 

the present turbulence model with the experimental data 

revealed that the predictions agree with the data to the 

accuracy achievable in the measurements. The comparison 

which was discussed in Chapter 6, included both the 

hydrodynamics and heat transfer of incompressible and 

compressible boundary layers. 

For the case of a radial wall jet, one of the 

constants in the model has to be modified in order to 

procure agreement between predictions and experiments. 
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6. The comparison of some of the above predictions 

with those calculated from other turbulence models 

revealed that wherever these models were applicable, 

they gave results very similar to the predictions of the 

present two-equation model. Moreover, multi-equation 

models available at present were not found to give much 

more accurate predictions than the present two-equation 

model. 

7. The experimental investigation reported 

in Chapter 7 showed that a self-similar radial wall jet 

grows at a uniform rate with yi  equal to 0.085 of r. 
7 

The self-similarity of the wall jet was confirmed by 

the self preserving nature of the measured shear-stress 

and turbulence-intensity profiles. 

8.2 Recommendation for further research  

The two-equation model investigated in the 

present study has been shown to predict accurately a 

large variety of two-dimensional boundary layers. 

Nevertheless, there is still scope for further improvements 

and refinements, upon which even more promising predictions 

may result from the model. 

Firstly, there still exist a number of boundary-

layer flows in which the two-equation model will fail to 

predict correctly without some modifications of the 

model. The calculation of the radial wall jet discussed 

in Chapter 6, provides an example, in which one of the 

empirical constants has to be modified. Similar difficulty 
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is encountered in the calculation of round jets (see 

Rodi 1971). Of all the models known to the writer which 

have been applied to the prediction of round jets, at 

least one of the constants has to be changed in order 

to procure ageeement. Perhaps, the change of constants 

may be avoided by solving higher-order transport 

- equation at the expense of the economy of the calculation. 

On the other hand, the range of applicability for the 

two-equation model can be enlarged without the introduction 

of more differential equations, if suitable formulae for 

the variation of some of the constants are established. 

For lack of reliable data of higher-order correlation 

measurements, the latter approach may prove to be more 

fruitful at present. 

Another problem is the dependence of the 

constants on Reynolds number. Although this has been 

bypassed in the present study as discussed in Chapter 5, 

the Reynolds number effect on the constants is critical 

in the correct predictions of the viscous sublayer near 

the wall, and the laminarisation of the flow when it is 

subjected to sudden and severe acceleration. Recent 

theoretical investigation of the laminarised boundary 

layers by Jones and Launder (1970) has yielded encouraging 

results when the constants in the energy-dissipation 

model were varied according to a set of semi-empirical 

functions of Reynolds number of turbulence. There should 

be no difficulty in employing a similar approach to the 

present two-equation model. 
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The two-equation model has only been applied to two-

dimensional boundary layer flows; its validity in 

recirculating flows has still to be verified. With the 

availability of fast computer techniques for the solving 

of two-dimensional elliptic equations, e.g. the 

procedure reported by Gosman et al (1969), the test 

provides the next logical step of the research. The 

ultimate goal is the prediction of three-dimensional 

turbulent flows. For this, however, we have to await 

the development of a suitable solution procedure. Already, 

there are encouraging developments in this direction 

recently, which have been reported by Patankar and 

Spalding (1971). 

At the time of writing, there are already a 

number of two-equation models which have been developed 

and tested against different types of boundary layer 

flows. As discussed in Chapter 3, these models differ 

essentially only in the way in which the diffusion of 

the length scale is modelled. Considering the degree of 

approximation involved in arriving at these equations, 

it is difficult to determine which of these formulations 

are more suitable. The ultimate choice will lie on the 

accuracy of the predictions and the universality of the 

model. We are making some comparisons of boundary layer 

calculations with other two-equations turbulence models, 

but further computations are required to complete the 

picture. 
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NOMENCLATURE  

Symbol  

A,B 

Meaning 	Equation of  
first  

occurrence 

constants of the hot-wire 	A.4-1 
equation 

A A 1,  2** empirical constants or 
functions in the 
turbulence models 
displayed in Appendix 1. 

 

a 	constant 	 4.2-3  

C. 	empirical constants 

Cp 	specific heat at constant 
pressure 

c 	tangential-cooling coefficient A.4-1 

D diameter of pipe or width 
of channel 

d slot-lip thickness 

D 	 = 62 6 — u-T  + v ay 	2.2-2 
5t 

E turbulence energy spectrum 	3.2-1 

e 	=i(T.12  + v2  + w2), turbulent 
kinetic energy 	2.3-5  

F 	function defined by Equation 
(A.2-4) 	 - A.2-2 

f empirical function 	3.2-16 

f frequency 

G function defined by Equation 
(A.2-5) 	 A.2-2  

H time-mean enthalpy 	A.3-4 

U2 H* + 	e, stagnation 
enthalpy 

H12 	= 51/52 ,shape factor 

fluctuating component of H 

h* 	fluctuating component of H* 



3.2-4 

4.2-7 

A.3-4 

6.3-1 

A.4-1 

2.2-2 

2.3-1 

3.2-16 
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JS 	wall flux of I 	• 

K constant of the hot-wire 
calibration curve 

k 	wave number of turbulence 

L length scale 

4e 
	length scale 

tm 	 mixing length 

M 
	Mach number 

N number of x-stations 
downstream of starting point 

constant exponent of the 
hot-wire equation 

mean pressure 

fluctuating component of P 

constant exponent 

gas constant 

= 
UG52 momentum-deficit- 

n 

R 

R2 

Ri 

thic
3
kness Reynolds number 

E u.u• 	sum of the cross- i=1 	1  ' 
diagonal components of the 
joint correlation 	3.2-1 

R 

	

	components of the second- ]. order joint correlation 	A.2-1 

R n' 1 
R1-11 	components of the third- 

order joint correlation 	A.2-1 

r 	 radius 	 7.7-1 

ri 	radius of the wall jet exit 

r2 	radius of the impinging jet 

S 	additional terms in the 1- 
transport equation 	2.4-1  

ST 	= 	JS 	Stanton 
pUG(Is  - 1G) 

number 
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fluctuating component of S 	2.4-2 

sS 
	 Ts/(PUG

2), friction coefficient 

temperature 

function defined by 
Equation (A.2-6) 

function defined by 
Equation (A.2-7) 

t 	- time 

mean velocity in x-direction 

1,U3... 	mean velocities in i. j... 
directions 

A.3-4 

3.2-2 

3.2-2 

2.2-2 

2.2-1 

Ueff 	effective velocity 	A.4-1 

shear velocity 
PS 

fluctuating component of U 	2.2-2 

11. U. 3.  

V 

Vol 

fluctuating velocity components 
in i,j 	 direction 

mean velocity in y-direction 	2.2-1 

volume 	 3.2-1 

fluctuating component of V 	2.2-2 

w 
	fluctuating component of the 

velocity perpendicular to the 
x-y plane 	 2.3-3 

x 	streamwise direction 	2.2-1. 

xi,x2,x3  three directions of the 
cartesian coordinates 

y 	lateral direction measured 
from the wall 	2.2-1 

distance from wall or from 
axis/plane of symmetry where, 

U ='n(Umax 	UG)' 

Z 	slot heights 

yn 
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Z1 
Z2  

0D

064  

13 

AH121Ass,AR2 

1 

52 

E 

slot height of radial wall jet 

height of impinging jet 

turbulent kinetic energy 
dissipation rate 

turbulent diffusion flux 

function defined by 
Equation (5.2-15) 

function 

angle of inclination of the 
hot wire to the x2-x3  plane 

angle of inclination of the 
hot wire to the instantaneous 
velocity 

instantaneous hot-wire bridge 
voltage 

a.c. component of the bridge 
voltage 

, ratio of specific 
Cv 

heats 

mean deviations defined by 
Equations (6.3-1 to 3-) 

Er E (1 - Ttjr )dy, displacement 
o PG 	G 

thickness 
C 0 

= j 	- 	)dy, momentum- 

deficit-thickness 

constant 

3.2-2 

3.2-3 

5.2-14 

5.2-14 

A.4-3 

A.4-1 

A.4-1 

A.4-6 

A.3-4 

6.3-1 to 3 

5.2-11 

6 
211PG d  C1  d: 

function 

TI  y/yG, dimensionless 
boundary-layer thickness 

A. 3-1 
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8 TG - Ts film-cooling- 

  

TG - TSL 
effectiveness 

constant 

A. 	 constant 

viscosity' 

= P I  kinematic viscosity 
5  

4.2-8 

2.2-2 

vt 	turbulent kinematic viscosity 

p 	density 	 2.2-1 

cr 	 Prandtl/Schmidt number 	2.4-1 

ti 	shear stress 	3.2-11 

conservative property 	2.4-1 

cf) 	fluctuating component of 	2.4-1 

W 	fluctuating vorticity 

Superscripts 	Condition pertained to.  

fluctuating component 

vector 

at point o' 

time-mean 

Subscripts  

a 	adiabatic 

B 	at a point outside the 
viscous sublayer ' 

at the symmetry line 

ex 	experimental 

G 	at free stream 

m 	bulk-mean 

,s0 
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max 	maximum 

o 	predicted by other models 

predicted by the two-equation 
model 

S 	 at the surface 

SL 	at slot exit 

of the - entity 



2 
a U1  0 aU 

ax 
2 

ax2  
2 

Taylor 
u2  W=Luu  

1915 (64, 
141) 

jets and wakes 
(142) 

0 
— U lug  

2 
laulUE1 

mi 	idx 
2 	2 

see Patankar-
Spalding model 

Prandtl 	1925 (113) 

0 incompressible and 
compressible wall 

boundary layers 

(61, 91, 92, 93 ) 

Eddy-viscosity model: 

Mellor and 	1966 (92) 	 bU1 
Gibson 	 - uu = v l  2 	tax 

2 
where vt is a prescribed alegbraic 
function 

Appendix 1. Summary of the turbulence models.  

I 
(I) c\J 

3 

H
0 3 

0 
0 4-1 

U) 
• 

4-1 •r-1 O (ll 
4-1 • r-1 H 
.1-1 2, LH 
rc5 0 • rd 	(1) 

(1.) 1-1 U 
4-1 LI • 

rg 
•r-1 rl 

0 

• O, >1 
0 	.‹4 z 11) 

Vorticity transport: 

Momentum transport: 

Proposer/s Year Ref/s Particulars of the model Applications 



Cebeci and 1968 (20) 	similar to Mellor-GibSon model 
	0 	incompressible and 

Smith 	but with a different formula 
	 compressible wall 

for vt 
	 boundary layers. 

(19, 20, 21 ) 

Patankar 	1970 (106) 	similar to Prandtl's (1925)proposal 
and Spalding 	but uses van Driest's formula 

near the wall. 

incompressible and 
compressible boundary 

0
✓ layers, liquid films, 

duct flows, wall 
jets, free jets. 

(2,51,59,76,100,111, 
129 ) 

Prandtl 1945 (114) 

Turbulent kinetic energy equation: 

De 	bU 	e
31 	

3 	3e 	
1 	boundary layers, 

+U 	 free shear flows, —" 	 — — i 	
, U 	+A— -A 	( 2 . 	fi i 

Dt 	ax 	
a
3,x 

Vt 	) 
ax 	recirculating flows. 

a 	1. 	2 	2 
(52, 59) vt  = e22 :2 

Emmons 	1954 (40) 	similar to Prandtl's model (1945) 	1 	duct flows. 

(40) 



Nee and 
Kovasznay 

1969 (99) 	turbulent-viscosity equation: wall boundary 
layers 

(99) 

1. 

v4_2  bv 
+ A 	- A — —t) =0. 

ax,2 	t'"x2 

Dvt  

Dt 
- Aivt aX 

2 

Glushko 	1965 (49) 	similar to Prandtl's (1945) model 	1 	V 	boundary layers 
(7, 49") 

Bradshaw 	1967 (14) 	shear-stress equation: 
et al 

Du 1u2 aU1 	 .1a A 	— u u 	- (-u 	 J 2—  (A U U ) 
Dt 	2ax 	u 2ma.x ax2 

2 1 2 
2 

— ( - u1 u2 )1f2./L = 0 . 

L is -a prescribed length scale 

1. incompressible and 
compressible wall 
boundary layers, 
3-D boundary layers, 

wakes. 

(9, 10, 12, 13, 14, 
110) 

Mellor and 	1968 (93) 	similar to Prandtl's (1945) model. 	1 	wall boundary 
Herring 	 layers 

(93) 



Wolfshtein 	1969 (150) 	Similar to Prandtl's and Glushko's 	1 	1// 	channel flow 
model 	 (150) 

Gawain and 
Pritchett 

1970 (44) 	Turbulent kinetic energy equation: 1. 
2 De 	6U 	7/6 

Dt - A 1 vtx (T  -1 ) + A 2  Ze 2 
6 	?,e 

pipe flow,  
round jet. 

(44) 

7x (A3 vt-FR. ) = 0 ; 
2 	2 

V t  = .A 4 

L and Z are functions. Calculated from 
mean-velocity distributions. 

Lundgren 1971 (84) 	e-equation similar to Prandtl's 	1 	duct flows 
but with vt defined as 

(84) -1  v 	e(. 	+ De) 77 

Kolmogorov 	1942 (73) 	e-equation similar to Prandtl's 
but with another equation for "frequency 
of fluctuation". 

2 mixing-layers 
(111) 

Df 7 
11 - A 6 	) - 0. 117, Tax .— 9  

2 	2 

V
t 

A2e/f 



1970 (69) 	e-equation similar to Prandtl's; 	2 	boundary layer 
equation for dissipation rate: 	 larninarisation 

(69) 

Jones and 
Launder 

DB + A u u 	+ A °V2  Dt 	i 	2 e 3x 	2 pc 
2 

Harlow and 	1967 (56) 	e-equation similar to Prandtl's equation . 2 
Nakayama 	for length scale L: 

DLL bUi 	B 	bli 
- AI 1(  — ) + A e2  - A 	(v 	). . 0; Dt 2 • 	 t -e7  ax 	23x 	 x 

2 	 2 	2' 

vt e2L 

pipe flow 

(56) 

Spalding 	1969 (133) 	similar to Harlow-Nakayama model 	 free shear 
flows 

(133) 

4_ (A ,D  ax) - 0 wx2  2,D bx.s 	; 

vt 	Pe  /09 



2 

	

Ng, Rodi and 1970, (104, 	e-equation similar to Prandtl's; 
Spalding 	1971 	1193 	equation for energy-length product: 

A v (-12 )2  + A t ax2 	2e  

wall boundary 
. 	layers and ' 
free shear flow 

(76, 101, 102, 103, 
104, 119 ) 

De/ 
Dt 

L. 
-R-5-c  (A3vt/4: -  + A4  v4._e—X

) = 0 

2 

vt 	• 

Saffman 	1970 (125) e-equation: 

De 	aul 	 be 
+A2

e(u)  ) — — )= O. 
axe  3 tx  

	

a 		2 

2 wall boundary 
layers, 
jets 

(125) 

equation : 

	

au, 	3/2- 	aw
2 

- A4  w 	+ AS (w2  ) - 	(A6v_u-a ) =0;  , 

	

2 	 2 	2 

vt = A7e/(W2)i 	. 

Du? 
1)t 



Wolfshtein 	1970 (151) 	e-equation similar to Prandtl's; 
	2 	channel flow 

equation for energy-length product: 	
( 151) 

22 DeL 	3/2 	L 6e ) -A v (—) +A
ae +A Dt 	t ax2 	3 'e2 ax 2 

( v  beL ) = 0  . 
- 77 4 t-Ti-c; 2 

vt  Aseil 

Spalding . 1971 (135) 	e-equation similar to Prandtl's; 
equation for "vorticity-fluctuation-
squared". 

DW2 2 	Y2 e ,BU

l2 

, f-wT - 	) 	4- A2 l 	) Dt 	tvt 6x  

2 concentration of 
turbulent free jets, 
wall boundary layers 

(47, 135) 

- A3vtva7u / 2 
 - A.-ai -x 

2 
(v,-- ) = 0 

; 

vt e/( w2)1  



Rotta 	1969 (122) 	e-equation: 	 3 	channel flow 

(122) 
De 	__au . . • e 34  a , 	ae TrE  + u1u2-37 • • + A — - 	e L-- 

aL + A3e 7Tc) = 0 
9 • 2 

shear-stress equation: 

Du1u . aUt u1u2e  	 + 	+ A5 	 0 
Dt. 	ax 	 • 

, A6eL263U a k - 	(A 	au  
ax2 	ax2 

 ax2 

aL + AAeiu u s— ) = 0 . 0 	I 2t9X
2 	 7- 

eL-equation: 

De 	au 	a , , 3  DtL A91111,12Lbx  Aloe'll u i u2L uX- 
U 

2 	 2 

(A eL2ae  + A13 e41.4i )-- 0 • ax2 12 	X 
2 	 2 

IL, 	ax2 	ax2  



Hanj alic 1970 (55) 	e-equation similar to Prandtl's; 
dissipation equation similar to 
Jones-Launder model; 
shear-stress equation: 

3 asymmetric channels; 
wall jets, boundary 
layers, free shear 

flows 

     

(55) 
DuiU 

 

bU 	uu 1 Ale -- A2 	
2 

 axe 	pe Dt 

  

- A a- (2-t• bu1u2
) = 0  

Donaldson 1969 (38) 	Turbulence intensity equation for 
three components; prescribed 
length scale. 

4 boundary layer 
transition 

(38) 

Kolovandin 	1970 (74) 	Similar to Donaldson's model 	4 	natural convection 

(74) 

3  ax 	ax 2 	2 



Rotta 	1951 (120) 	Turbulence-intensity equation for the 	5 
3 components: 

D u2 	6Ui 
iu i u2bX 	

--- /12  i + A + A (ug-) /L 
DE 	2 1 

2 6u- 
g (A3(112) D ---) = 0  X 	X2 2 

channel flow 

(120, 123) 

shear-stress equation: 

Duiu2 -61.11 utu2e 
+U 	+ A4  

DE 	bx2 	-L 

6 
(A (u2)

1U2  
6x 	2 2 	2 

=0 

eL-equation: 

DeL 	611 	3  
+ A6u1tl2L 	+ A7e2  Dt' 	6x2 

ar„ 

2 
+ 6x  (A6 2  (1.12)112, axe-A9  (U2)2eL-- ) = 0' • bx 2 



	

Daly and 
	

1970 (33) 	Differential equations for the turbulent 	5 - 
	

61-iarinel 'flows5 

	

Harlow 	intensities and shear stress; 	 . free flows 
dissipation rate equation: 	 (33, 58, 118) 

D.& 	BaUi  — + A u u — 
Dt 	1 i 	e ax•

2  

pe 	ae 
( u u —) 

e ax 09 1 2ax 2 	2 

1)2  + A 2pe ax 
2 

az , u u e aX--  J = 0 3 1 2  
2 

Chou 1945 (25) 	Differential' equations for the 
turbulence intensities and shear 
stress; equations for third-order 
correlations; equation for "vorticity 
decay" 

9 channel flow and 
flat-plate boundary 

layer. 

(26, 27 ) 

Du? 
+ A Dt 

u1  aU 	 3 
/-7, 17 + A e

U
2 
 ax

1 	
2
a 
 

   

2 

+ A —2= 0 3e 



Davydov 	1961 (34, 	Differential equations for turbulence 	10 	none 

	

35) 	intensities, shear stress, third-order 
correlations, dissipation, dissipation 
flux. 

Kolovandin 	1969 (75) 	Differential equations for turbulence 	16 	none 
and 	intensities, shear stress, third-order 
Vatutin 	correlations, turbulence scales, 

pressure-velocity correlations. 
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Appendix 2  

Spectral balance in non-homogeneous  

turbulence  

Rotta, in 1951, has shown that the quantity 

Ri defined as the sum of the three cross-diagonal 

components of the joint correlation at two points, 

o and 	obeys the following equation: 

Un + Un' bRi _ (U
n - Un 	n 

') aRi 2 	6xn   

+ Ri 1  + Rn n  

n axx
n  

Rin + R.n1 	p un + pun  
ax 
( 

n 	2  

- 	- 0.-11  
6r 

in 1 
n 

V 
a2 R1 

1  

2 bx
n
2 

a2Ri 

- 	- 0 
6r2 	5 
n 

where,  R. = u.0_
T  

	

1 	n 

3 	 , 

	

Ri 	)7 u u u n 	, ii n 
i=1 

3 	 - R.in  = > I  uiu uini i=1 

and 2r is the vector between 0 and o'. 

(A.2-1) 
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Multiplication of Equation (A.2-1) by 

2  
2,1

n 
 r
kr 2 	and integrate over the whole r space leads si

k  

to the equation for the energy spectrum E(k), 

bE 

	

+ G. 	1 + 	n + T 

	

n-- bx 	in-- 	1 
nn 6xn 

I 

v 2E 
2  + T + 2 bx - 	+ 2vk2E = 0 

	

2 	n  

V 	VI 	VII 	(A2-2) 

In this equation E l  GI  F, T1  and T2  are 

defined as: 

E(k) = 1
1 f 	kr 

krdvol  j_Ric;)sin 
2T: Vol2  1 

2TUVol(14-n 

-r-- 
P un)sin kr  dVol Fn(k) 

	
k2 r

p 	kr 

(A.2-3) 

(A.2-4) 

l 
Gin(kY = 2u4  -

s
Vol R1Cr4)

sin krdVol  kr 

3 

(A.2-5) 

2 r 	n, 	kr T 	- 
4u2 	arn( 

Rin  - Ri  ) sin  kr  dVol (A.2-6 ) Ti 
n=1 
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r) + U ( 1) T  k2 	
3  u r  {[n(7 n 2  U(0) 6R.  

2 	 2 	6x 
4172-/kroln=1 	

n 	
n  

+ [U n 2 (E) - U n 2 (- L] 6Ri 

ru.1  (E) 	Bu.(o) 2   n R. 1 6 6xn 	xn  

6Ui(0)11 Ri sin kr  dVol n kr 
3x 	axbxn 	 (A.2-7) 

In equation (A.2-2), Term I represents the 

convection of E at the wave number k. Term II is the 

generation of E due to the working of the mean motion, 

while Term III is the turbulent diffusion of E. Terms 

IV and V deserve more comments. They represent the transfer 

of energy from lower wave numbers to higher ones; IV 

represents the transfer that is produced by the self-

stretching of the turbulence and is called inertial transfer; 

V represents the transfer resulting from the interaction 

of the mean motion with the turbulence (Lumley and Panofsky 

1964). Since both IV and V represent the transfer of the 

energy from one wave number to the other, and no net 

contribution of energy is resulted, the integrals of IV 

and V with respect to k from 0 to a' must vanish. Finally 

thelast two terms in Equation (A.2-2) represent respectively 

the rate of energy dissipation and viscous diffusion of E. 

ar 
n 
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Appendix 3 

The assumed starting profiles  

(a) If the starting mean-velocity profile is 

not given, we assume that it obeys the"-1  -power" law, 7 

(A.3-1) 
G 

where ri = y/y0  

(b) For the starting profile of ewe assume: 

e = a + bit + 2 	d113 (A.3-2) 

In this equation, the quantities a, b, c and d 

are evaluated from the following conditions for e: 

(i)" 	at T1 = (71)B  , 

T 
e = C1-2(T)B  

and de/dri = 6 +Ie, 

YG  dP 
where e = 	1 	' 

2 pc j dx 

at rl = 1, 

e = 0, 

and de/dri = 0. 

5 

(c) For A, we assume: 

(A.3-3) 
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In this equation,tm  is the mixing length; 

thus, 

'gym 	sty for'X/x > 	> 0 

and Lm  = X. yG  for 1 > > 

where X 	0.09, a constant. 

(d) For enthalpy, we assume: 

= TS+ (T
s a 

 - TS)U/(TGUG) 

.... 
H
rs, 1)m2u2

/(2UG2) , (A.3-4) 

the Crocco temperature profile. 

In the above equation
, 
T
s a 

is given by 

aHUG2  
TS'a  = TG + 

For subsonic flows, the last term of Equation 

(A.3-4) can be neglected. 

2C 
p 
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Appendix 4  

Method of evaluating turbulence levels from hot wires.  

Because the hot wire responds to the magnitude 

of the cooling velocity only, but gives no indication as 

to its direction, there will be more unknowns than equations 

available for the deduction of the various turbulence 

correlations. Many previous investigators have proposed 

different ways of obtaining a closed set of equations 

for the hot-wire signals. Two main approaches can be 

identified. 

The first approach reduces the higher-order 

correlations present in the equations into lower-order 

ones by assuming a certain wave-form of the fluctuating 

.velocities. For example, Escudier (1967) reduced all 

even-order correlations into second-order terms and all odd 

order terms to zero by assuming that the fluctuations 
/ 

correspond to a square wave form. On the other hand, Zaric 

(1969) calculated the second-order correlations from the 

mean and rims signals by assuming that the probability 

density of the velocity fluctuation is Gaussian. However 

Durst and Whitelaw (1969) have found that Zaric's method 

is only applicable over a limited part of a.boundary layer. 

The second approach is to neglect the higher- 

order correlations so that the equations become determinate 
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(e.g. Champagne and Sleicher 1967, Guitton 1968). But 

the influerIce on the result due to the neglect of the 

higher-order terms is dependent on the level of the 

turbulence. We choose to follow this approach in the 

present investigation.' 

The hot-wire response equations. 

The response of a constant-temperature hot wire, 

placed at an angle 0 to the effective cooling velocity 

Ueff is given by (Hinze 1959, Champagne et al 1967): 

n 	n/2 
r . A + BUeff(cos2P + c

2sin2(3) • (A.4-1) 

where r is the hot-wire bridge voltage. 

In the present investigation, A, B, n and c 

in Equation (A.4-1) are assumed constants. 

The linearised form of Equation (A.4-1) reads: 

r 	K Ueff(cos2P + c2  sine  p) 
	

(A.4-2) 

where K is a constant. 

For a hot wire in a turbulent field as 

shown below, whose response obeys Equation (A.4-2), 

Champagne and Sleicher have derived an equation for the 

hot-wire bridge voltage in terms of the mean and fluctuating 

velocity components and the angle of inclination a. 
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The equation, re-written in the present 

notation entails: 

F 2  
(17) = COS2AUI  2 

 - U22 2 	sec2a(U 2 
2 	U32) 

I.  

- 2tan, a U U 1 2 

2[2U  2 	2 C L2U 	+ U 	- sec2  a(U 2 	U 2) 3 	2 	3 

+ 2tan a U U 1 2 

+ tan2a (U 2 	U 2  
1 	2 

2 d1 
l 

In the above equation U1' U2 and U3  are taken 

to represent the instantaneous velocities, e.g. Ul  = 111  + 

etc. Taking the time mean and root-mean-square of Equation 

(A.4-3) result the following equations respectively: 

2 

= U/2cos2  a 	+ U1 	U 	
2a 

2 
U 2 u 

U 2 	U 2 	2 u' 2 
sec2a 	+ 	+ 	+ 	) 2 

U
2 U 	U 2 
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U
2 	

11 

2tan 	+ Ui 	U 7  

2 	. u 	u 	U22 
+ C

2 [ tan2  a + 
U1 

+ 4 
U 	U 2 + U 2  i 	I 	1 

.0 	u u 
+ 2 tan a ( 	

I.
2
2
) 

UI  
• • (A. 4-4) 

2 
- u 2  

KZ = ui2cos2c4(1 - tan a e) _  

  

U 2 	1A-
2 

	

sec2a (-2— + 	) 
u12 uI  

	

U
2 	

U2
2 

+ c2  [2tan a Ty— + tan2a (1 + 72) 

 

u  2 

+ sec4 2 11 

U 2  j 

  

(A.4-5) 

In deriving Equation (A.4-5), the third-

and higher-order correlation terms and terms containing 

c4 have to be neglected. 

Subtraction of Equation (A.4-5) from Equation 

(A.4-4) yields an equation for the rms value of the a.c. 

component of the bridge voltage, 

2 	2 
U U 

• = U
1
2
COS

2
ar 

2 	U 
+ tan2a u22 

- 2 tan a 	 2 u 
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c2  tana[tana 
U
1

2 

U 2  
2 

+ tan a (2 + tan2a)-2- 
U1  

+ 2u 1u2  ]} 
Ul2 (A.4-6) 

For two-dimensional flows, further simplification 

to Equations (A.4-4 to 6) results. For such a flow, 

U
3 
= U

2
U
3 
= U

1
U
3 

= 0 . 

. Furthermore, in the present experiments, U2  is 
Ui  

small as can be seen from Fig.7.13(a). Therefore it can be 

neglected also in Equations (A.4-4 to 6). Thus, the 

signals generated by the hot wire at four different 

inclinations, are as follows, 

[r2] 	U 2{1 4- U22 	

2 

c2 U3  

U 2  
U12 (A.4-7) 

(A.4-8) 



2 	2 	2 U1 1 
"-- (1 	c2) 	(1 - 3c2) 	- 2(1 - C2) 

11,112  

2 	 2 

	

1 2 	U1 	Ui  [1
Y 

2  
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(A.4-9) 

2 
r 	U1 

 
2 
U
a
a utu2  

= -2--  1(1 +c2)-
-u1
2 + (1 — 3c )— + 2(1 _ c2) 	 

3 	 U 2  1 	U/2' 

2 	
U

2 

2i j(1+ c2) 42 	
(1 - 3C2  

U 

K4 	2 
4 	U1 	u 

(A.4-10) 

(A.4-11) 

(1) 
	

(2) 	(3) 	(4) 

/Nor hoiNE 
■■=7:1 

 

 

U3 	3 (15 

Determination of the quantities n and c of the hot wire  

The value of n was found by plotting the 

calibration curve of a DISA 55F04 gold-plated probe with 

different values of n. The best fitted value was found 
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to be 0.45, which accords with the value for n found 

by Collis and Williams (1959) and more recently by 

Gebhart et al (1970). This value was used to set the 

lineariser throughout the experiment. A typical sample 

of the linearised calibration curve is displayed in Fig.7.9. 

Champagne et al (1967) suggested that the 

tangential cooling coefficient, c, may not only depend 

on the length to the diameter ratio of the hot wire but 

also the shape and size of the supporting prongs. 

Measurements were carried out to determine its value 

for the gold-plated probes. A linearised DISA55F02 gold-

plated probe was placed at three angles (cc = - 45°, 0°  

45°) to the main stream the flow rate of which could be 

varied from 10 m/s to 30m/s. From the slope of the three 

calibration plots, two values of c were determined 

according to Equation (A.4-2). The mean value of c was 

found to be 0.29. This value is about 30% greater than 

the value of c proposed by Champagne et al (1967) for the 

same length-to-diameter ratio. 

Method of measuring the hot-wire signals  

Although calculation of the turbulence intensities 

from digitised sample data like those by Frenkiel and 

Klebanoff (1967) and Van Atta and Chen (1968) offers many 

other advantages, it nevertheless requires large computer 
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storage and computing time. The mean signals of the 

hot wire in the present investigation were measured from 

true-integration and rms meter. 

Single wires placed at four different inclinations 

were used to obtain the required signals. The use of 

single wires instead of X-wires eliminates the error 

induced by the various mutual interferences of the 

X-wires (see Wyngaard 1968, Jerome et al 1971). 
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Appendix 5  

Tabulated results of experiments  

of radial wall jets  

(Case (a) in Tables (i) to (iv); 

Case (b) in Tables (v) to (viii)). 
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Appendix 6  

Sample listing of the computer program  

The program listed below is suitable for the 

calculation of constant-property boundary layers using 

the two-equation model. Most of the symbols in the 

program are identical to those used by Patankar and 

Spalding (1970) in their GENMIX4 program. Additional 

symbols are explained by way of comment statements in the 

listing. 

A 30-point cross-stream grid has been used for all 

the calculations reported. 



Start 
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MAIN 

Function of individual parts in 

the program 

—(1) 

pU's 
y's 
r's 

Stop 

STAPRO 

Starting 
profiles of 
U, e, e,2 

STRIDE 

(2) 

A,B,C 
coefficients 
near boundary 

F- ( 3) 
A,B,C 

--1  coefficients 

Ielsewhere 
Solve equation 
Step forward 

AUX 

WF 

0 Preliminaries 

1 Parameters 
and control 
indices 

3 Dependent 
variable 
selection 

4 Constants in 
the turbulence 
model 

5 Initial 
conditions 
Free-stream 
pressure 

6 Thermodynamic 
properties 
Negative e 
and a trap 

7 Forward step 

8 Longitudinal 
conditions 

9 Transport 

10 Output 

11 Termination 

Calculate 
wall 
values 

t 

Entrainment 

Source 
terms 
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PROGRAM MAIN(INPUTOUTPUT,TAPESINPUT,TAPE6=OUTPUT) 
C (14.09.71) K H NG 	MECH.ENG.DEPT. 	IMPERIAL COL. 

C*** 	PROGRAM BASED ON THE GENMIX4 VERSION OF THE PATANKAR• 
C***** SPALDING PROGRAM 
C U, E, AND EL EQUATIONS 
C CONSTANT PROPERTY 
C PROGRAM FOR COMPUTING THE STANFORD DATA 
CHAPTER000000000000000000 PRELIMINARIES 000000000000000000000000000000 
CHAPTER 0 ************** DIMENSIONS AND COMMON BLOCKS *************** 

DIMENSION NPROF(14),OP(43),TITLE(9) 
DIMENSION IDEN(40),X(40),UI(40),DUI(40) 
COMMON/GENRAL/ AJE(5),AJI(5),OSALFAtOPDX(43),DX.EMU(43),F(5,43),  
I FS(5,43),H,IFIN,INDE(5),INDI(5),ISTEP,ITEST,ILTRAP,KEX,KIN,KRACt 
2 N9NEO,NPH,NP19NP29NP390M(43),PEI,PR(5),PPEF(5943),PSIE,PSII. 
3 P(43),PHO(43),RME,RMI,RU(43),S0(5,43)1SU(5942),TAUE,TAUI,L(43). 

• 4 XD,XU,Y(43),YE,YI 
COMMON/GM4/AKtALMG,EWALL.IPRINT,BPI 
COMMON/CONST/AQ,C1tC2tC39C4tSRC1.CL 
DATA NPROF/1HY, 1HU, 1HE, 1HL, 2HYDt 1HT, 
1 3HSU19 3HSU2t 2HGE, 2HDEt 3HGEL,3HCEL, 
1 3HWAL/ 

	

C 	  
CHAPTER11111111111111111 PARAMETERS AND CONTRCL INDICES 11111111111111 

20 CONTINUE 
IPRINT=0 
ITEST=0 
IUTRAP=2 
NSTA=20 

	

C 	  
CHAPTER222222222222222222222222 GRID AND GEOMETRY 22222222222222222222 

FRA=.05 
N=30 

NP1=N+1 
NP2=N+2 
NP3=N+3 
OM(1)=0. 
0M(NP3)=1. 
DO 10 I=2,NP2 

10 OM(I)=FLOAT(I-2)/FLOAT(N) 
ISTEP=0 
IFIN=0 

LASTEP=2000 
KRAD=0 
CSALFA=1. 
KIN=1 
'KEX=2 

	

C 	  
CHAPTER333333333333333333333333 DEPENDENT VARIABLES SELECTION 3333332: 

	

C 	U(I)=VELOCITY 

	

C 	F(ItI)=TURPULENT KINETIC ENERGY 

	

C 	F(2,I)=ENERGY-LENGTH PRODUCT 

	

C 	F(39I)=TOTAL.ENTHALPY 
NEQ=3 	- 

NPH=NE0-1 

	

C 	  
CHAPTER444444444444444444444444444 MATERIAL CONSTANTS 4444444444444440 

C1=.09 
C2=.98 
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C3=.058 
AK=.41 
EWALL=7.8 
PREF1=1. 
PREF2=1. 
SRC1=SORT(C1) 
AQ=6, 
PREF(191)=PRFF1 
PREF(291)=RREF2 
CL=AK*SORT(SRC1) 
C4=CL**2/PREF2.C2*C1-C3 
C4=(C4/C1)**(1./AQ)/cL 

CHApTER555555555555555555555555555555555 INITIAL CoNCITIoNS 555'7.55q5=~ 
C 

READ(5141) IDENT,TITLE 
.WRITE(6,44) IDENT,TITLE 

44 FORMAT(1H1,I4,946) 
41 FORMAT(I49946) 

IF(IDENT.E0.9999) GOTO 120 
C UNIFORM DENSITY 

DEN=1. 
DO 4Q I=1,NP3 

40 RHO(I)=DEN 
C 

READ(5912) ANU,SS,H12,UG 
WRITE(6951) ANU,SS,H12,UG 

51 FORMAT(1H ,4E10.3) 
12 FORMAT(4E10.3) 

C CONSTANT VISCOSITY 
AMU=ANu*DEN 
EMU(1)=AMU 

C FREE STREAM PRESSURE GRADIENTS 
READ(5942) NX 

42 FORMAT(I2) 
C READ FREE STREAM VARIATION 
C UI=UG9 DUI=DUG/oX 

READ(5961) (IDEN(LX),X(LX),UI(LX),DUI(LX),LX=1,NX) 
WRITE(6943) (IDEN(LX)9X(LA)9UI(LX)9DUI(LX)9LX=1,Nx) 

61 FORMAT(I491X93F6.3) 
43 FORMAT(1H 1491X93F6.3) 

XU=X(1) 
XULAST=X(NX) 
RMI=,O 
F1G=.0 
F2G=.0 
PSII=.0 

C FIX STARTING PROFILES 
TAUI=SS*RHO(NP3)*UG**2 
DPDDX=-RHO(NP3)*UI(1)*DUI(1) 
DPDX(1)=DPODX 

CALL STAPRO 
PSIE=PSII+PEI 

RmE=-10. 
CHAPTER666666666666666666666666666666 	NEGATIVE E ANC EL CHECK 6666 
C ******************** START OF MAIN LOOP ******************** 

60 CONTINUE 
C 	  TEST 1 
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IF(ITEST.E0.0) GO TO 1001 
TEST=1001. 
WRITE(6,107) TEST9R(1),PRESSIDX,PEI 
WRITE (69101). (U(I),I=19NP3) 
WRITE (6,101) (F(19I)9I=19NP3) 
WRITE (6,101) (F(2,I),I=19NP3) 
WRITE (6,101) (F(31I)9I=1,NP3) 

1001 CONTINUE 
C 

	

	 NEGATIVE E AND EL CHECK 	 
DO 62 J=192 
DO 62 1=39NR1 
IF(F(J9I).GE.0.) GOTO 62 
WRITE(6963) J9I9F(J,I) 

63 FORMAT(3H F(I291H,I293H)= 1PE11.4) 
IFIN=1 

62 CONTINUE 
DO 64 J=1,2 
IF(F(J9NP1)+F(J,NP2).LT..0)GOTO 6S 
IF(F(J,2)+F(J93).LT..0) GOTO 66 
GOTO 64 

65 WRITE(6967) J 
67 FORMAT(2H FI1,8HE IS -VE) 

IFIN=1 
GOTO 64 

66 WRITE(6968) J 
68 FORMAT(2H FI1t8HI IS -VE) 

IFIN=1 
64 CONTINUE 

IF(IFIN.E0.1) GOTO 102 
PRESS=PRESS+DPODX*DX 

C 	  TEST 2 
IF(ITEST.E0.0) GO TO 1002 
TEST=1002. 
WRITE(6,100) TEST 
WRITE(69101) (FS(19I),I=1,NP3) 
WRITE (6,101) (FS(29I),I=19NP3) 
WRITE (69101) (FS(39I)91=19NP3) 
WRITE (6,101) (PHO(I)9I=19NP3) 

1002 CONTINUE 
C 	  
C STRIDE 1 STRIDE 1 STRIDE 1 STRIDE 1 STRIDE 1 STRICE 1 

. 0 

	

	  ADJUST R(1) 

CALL STRIDE(1) 
C 	  
CHAPTER7777777777777777777777777777777777777777 FORWARD .STEP 77777777 

FRA=.0005 
IF(ISTEP.GT.2) FRA=.001 
IF(ISTEP.GT.5) FRA=.003 
IF(ISTEP.GT.10) FRA=.005 
IF(ISTEP.GT.20) FRA=.01 
IF(ISTEP.GT.40) FRA=.02 
DX=FRA*PEI/(RMI-RME) 
IF(DX.GT..1*Y(NP3)) DX=.1*Y(NP3) 
IOUT=ISTEP+1 

71 IF(DX.GT.0.) GO TO 72 
WRITE(69700) 

700 FORMAT(10X922HDX IS ZERO OR NEGATIVE) 
IFIN=1 

• 
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GO TO 102 
72 IF(DX.LE.XULAST—XU) GO TO 73 

DX=XULAST—XU . 
IF(DX.NE.0.) GO TO 73 
DX=1.E-30 
IFIN=1 

73 XO=XU+OX 
C 	  
CHAPTER88888888888888888888888 ADJUST LONGITUDINAL CONDITIONS 888828E 
C 

	

	  PRELIMINARIES FOR PRESSURE GRADIENT 
' 86 UBAR=0, 

DO 83 1=2011°1 
83 	UBAR=URAP+(U(I)+U(I+1))* (OM(I+1)—OM(I)) 

UBAR=.5*UBAR 
XD=XU+DX 

C******************* PRESSURE GRADIENT 
DPDDX=—R1-40(NP3)*UINTER(XU+.5*DX,XtUItNX) 
1 *UINTER(XU+.5*DX,X,DUI,NX) 

87 DO 85 I=10P3 
85 DPDX(I)=DPDDX 

C 	  TEST 3 
IF(ITEST.EO.0) GO TO 1003 
TEST=1003. 
WRITE(6t100) TESTtUBAR,DYNHEDIPDX,DAtCPDDXtREXOtRmItKINtKEX, 

1 	 ISTERtIENC 
WRITE (6.101) (Y(I),I=1,NP3) 
WRITE (6,101) (R(I),I=1,NP3) 
WRITE(6,101) (RU(I)t1=1,NP3) 

1003 CONTINUE 
C 	  
CHAPTER999999999999999999999 TRANSPORT AND ENTRAINMENT PROPERTIES 995c 
C 	  TEST 4 

IF(ITEST.E0.0) GO TO 1004 
TEST=1004. 
WRITE (6.100) TESTtRMItRmEtPEI 
WRITE (69101) (EMU(I),I=1,NP3) 

1004 CONTINUE 
C STRIDE 2 STRIPE 2 STRIDE 2 STRIDE 2 STRIDE 2 	 

. 	95 CALL STRIDE(2) 
C 	  
CHAPTER 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 	OUTPUT 	10 10 1( 

IF(ISTEP.GT.0) GO TO 106 
ANSTA=NSTA 

CHAPTER 10A 	  FEADINGS 
C 

WRITE(6,995) C1tC2,C3tC4,A003REF1tPREF2 
995 FORMAT(1H0,20H ***CONSTANTS*** 	/7H CI= 	F7.3, 

1 5X,7H C2= 	F7.3t5X,7H C3= 	F7.3,5X47i. C4= 	F7,3, 
1 5X,7H AO= 	F7.3t5Xt7HPREF1= F7.3?5Xt71RREF2= F7.3) 

107 FORMAT(1Hlt1P8E 11.3, 416) 
100 FOPMAT(1H t1P8E 11.3, 416) 

WRITE(6,1011) (0M(I)•I=1,NP3) 
1011 FORMAT(6H OM'S 11P11E11.3/(1H t4X,1P11E11.3)) 
101 	FORMAT(1H t5Xt1P11E11.3) 

RRESS1=PRESS 
106 	CONTINUE 

C 

	

	  TEST 5. 
IF(ITEST.E°.0) GO TO 1005 
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TEST=I005. 
WRITE(61100) TESTIRMItRMEIDX 

1005 CONTINUE 
CHAPTER 10B 	  

IPRINT=0 
IF(ISTEP.E0.0) GO TO 102 
IF(ITEST.E0.1) GO TO 102 
IF(IFIN.EO.1) GO TO 102 

TESTS FOR PRINTOUT 

IF(FLOAT(ISTEP/NSTA).EO.FLOAT(ISTEP)/ANSTA) GO TO 102 
IPRINT=0 
GO TO 105 

CHAPTER 10C 	  
102 IPRINT=1 
103 IPRINT=IPRINT+1 

UBAR=.0 
DO 108 I=2INP1 

108 UBAR=UBAR+W(I)+U(I+1))*(0M(I+1)-0M(I)) 

CHAPTER IOD 	  PROFILE VARIABLES"' 
UBAR=.5*URAR 

C 	  TEST 6 
IF(ITEST.E0.0) GO TO 1006 
TEST=1006. 
WRITE (6,100) TEST 

1006 CONTINUE 
IF(IPRINT.LT.2) GO TO 105 
T=PEI/(RHO(NP3)*U(NP3)*R(NP3)) 
DEL1=Y(NP3)-T 
DEL2=T*(1.-UBAR/U(NP3)) 
H12=DELI/DEL2 
R2=DEL2*U(NP3)/ANU 
SS=TAUI/(RHO(NP3)*U(NP3)**2) 
GF=(1.-1./H12)/S0RT(SS) 
WRITE(6,906) XU,DX,H129R2 	,SS,PEI,RME,GF,ISTEP 

906 FORMAT(1H06X.2HXU,8X12NDX0X.3HH12.9Xt2HR2t9Xt2HSSt9X,  
1 3HPEI 7X,3HPME 7X,2HGF 6Xt5HISTEP/(1H 1P8E11.3,I4)) 
UFAC=U(NP3) 
TKFAC=UFAC**2 
TFAC=RU (NP3) *U (NP3) 
YFAC=1. 
ALFAC=Y(NP3) 
VFAC=U(NP3)*DEL1 

C CALCULATE AND WRITE PROFILE VARIABLES 
904 J=0 

IPR=1 
DO 905 IPRO=1,13 
013(1)=0. 

• OP(2)=0. 
OP(NP2)=0. 
OP(NP3)=0, 
GO TO (9101920,930,940,942060,970,975,962,962,962,962, 
1 962), IPRO 

910 DO 911 I=1,NP2 
911 OP(I)=Y(I)/YFAC 

OP(NP3)=Y(NP3) 
GO TO 980 

920 DO 921 I=1,NP3 
921 OP(I)=U(I)/UFAC 

OP(NP3)=U(NP3) 

STATION. VARIAELES 
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GO TO 980 
930 DO 931 I=1,NP3 
931 OP(I)=F(1,I)/TKFAC 

GO TO 980 
940 00 941 I=2,NP2 
941 OP(I)=F(2,1)/(ALFAc*F(1,I)) 

OP(NP3)=F(2,NP3)/F(1,NP3) 
GOTO 980 

942 DO 943 1=3,N 
943 OP(I)=.5*(Y(I)+Y(I+1))/YFAC 

OP(2)=YI/YFAC 
OP(NP1)=(Y(NP3)-YE)/YFAC 
GOTO 980 

960 DO 961 1=2,NP1 
961 OP(I)=EM U(I)*(U(I+1)-U(I))/TFAC 

GOTO 980 
970 DO 971 I=1,NP3 
971 OP(I)=SU(1,I) 

GOTO 980 
975 DO 976 I=1,NP3 
976 OP(I)=SU(2,I) 

GOTO 980 
962 J=J+1 

DO 963 I=1,NP3 
963 OP(I)=FS(J,I) 
980 IF(ISTEP.GT.20,AND.NVE.GE,O) GOTO 981 
982 WRITE(6,991) NPROF(IPRO),(0P(I),I=1,NP3) 

GO TO 905 
981 WRITE(6,991) NPROF(IPRO),(0P(I),I=1,4),(0P(I),I=6,11,3),OP(NP1), 

1 OP(NP2),OP(NP3) 
905 CONTINUE 
991 FORMAT(1H A5,1P11E11.3/(1H 5X,1P11E11.3)) 
105 	CONTINUE 

C 	  
CHAPTER 11 11 11 11 11 11 11 11 11 11 11 11 11 	TERMINATION 	11 11 11 

113 	IF(IFIN.E0.1) GO TO 110 
IF(ISTEP.LT.LASTEP,AND.XU,LT,XULAST) GO TO 112 
GO TO 110 

C 
C STRIDE 3 STRIDE 3 STRIDE 3 STRIDE 3 STRIDE 3 

112 CALL STRIDE(3) 
GO TO 60 

110 GOTO 20 
C 

120 CONTINUE 
STOP 
END 
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SUBROUTINE AUX(K) 
C***** FOR BOUNDARY LAYERS 

DIMENSION YEDGE(6) 
COMMON/GFNRAL/ AJE(5).AJI(5)1CSALFA.DPDX(43).0X,PMU(43).F(5.43). 
1 FS(5.43).H.IFIN.INDE(5),INDI(5),ISTEP.ITESTOUTRAP.KEX.KIN.KRAC. 
2 N.NEO,NPH,NP1.NP2INP3.0M(43),PFI.PR(5),PREF(5.43),PSIEIPSII, 
3 R(43),RHO(43),RME,RMI,RU(43),SD(5,43).SU(5.43),TAUE.TAUI,U(43). 
4 XD,XU,Y(43),YE,YI 
COMMON/GM4/AK,ALMG,EWALL.IPRINT.BPI 
COMMON/CONST/A0sC1.C29C3,C4.SRC1.CL 
GOTO(100,200),K 

100 CONTINUE 
IF( ISTEP.GT.0) GOTO 21 
DO 22 J=1.5 
DO 22 I=1,NP3 
FS(J.I)=.0 
SU(JII)=.0 

22 SP(J.I)=.0 
21 CONTINUE 

EMU(2)=(RHO(2)+RHO(3))*(F(2.2)+F(2.3)) 
1 	/SORT(8.*(F(112)+F(1,3))) 
EMU(NP1)=(RHO(NP1)+RHO(NP2))*(F(2,NP1)+F(2.NP2)) 
I /SOPT(8.*(F(1.NP1)+F(l+NP2))) 

90 	DO 92 I=3,N 
92 EMU(I)=(RHO(I)+RHO(I+1))*(F(29I)+F(29I+1))/ SCRT(8.*(F(19I) 
1 +F(11I+1))) 

20 CONTINUE 
C 	  TEST 10 

IF(ITEST.EQ.0) GO TO 1010 
TEST=1010. 
WRITE(6,101) TEST 
WRITE(6,101) (EMU(I),I=1.NP3) 
WRITE(6,101) (S D(1.1),I=1.NP3) 

1010 CONTINUE 
C 

	

	  MODIFICATION OF EMU ARRAY 
DO 24 I=2,NP1 

24 EM U(I)=EMU(I)/(Y(I+1)—Y(I)) 
IF(KRAD.EQ.0) GO TO 25 
DO 26 I=2,NP1 

26 EM U(I)=EM U(I)*.5*(R(I)+R(I+1)) 
25 CONTINUE 

C 

	

	  PREF'S 	 
IF(ISTEP.GT.0) GO TO 28 
DO 27 J=1,NPH 
DO 27 I=1,NP3 

101 FORMAT(1H .3X.1P11E11.3) 
27 PREF(J,I)=PREF(J.1) 
28 CONTINUE 

C 2 2 2 2 2 2 2 ENTRAINMENT 
IF(KIN.E0.2) RMI=2.*EMU(2) 
IF(KEX.E0.2) RME=-2.*EMU(NP1) 
RETURN 

C 3 3 3 3 3 3 3 SOURCES 
C 	USE OF FS ARRAY 

200 CONTINUE 
BK=(TAUI+YI*DPDX(1))/(SRC1*.5*(RHO(2)+RHC(3))) 
GENKP=C1*BK**1.5*(Y(3)—YI)*.5*(R(2)+R(3))/(CL*YI) 
GENKLP=GENKP*CL*YI 
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DO 11 I=3,NP1 
T=R(I)*RHO(I)*F(1,I)*41.5 
AL=F(2,1)/F(1,I) 
_VPM=.5*(Y(T+1)—Y(I-1)) 
IF(I.EQ.3) YPM=.5*(Y(4)+Y(3))—YI 
IF(I.EQ.NP1) YPM= 	Y(NP3)—YE—.5*(Y(NP1)+Y(N)) 
ALI=(F(20+1)+F(29I))/(F(19I+1)+F(19I)) 
GENKM=GENKP 
GENKP=.5*EM U(I)*(U(I+1)—U(I))**2 
GENKLM=GENKLP 
GENKLP=GENKP*ALI 
IF(I.EO.NP1) GENKP=GENKP*2.*(Y(NP3)—YE—Y(NP1))/(Y(NP2)—Y(NP1)) 
FS(1,I)=(GENKP+GENKM)/YPM 
FS(29I)=C1*T/AL 
FS(3,I)=C2*(GENKLP+GENKLM)/YPM 

.FS(4,I)=C3*T 
FS(59I)•=(C4*AL/Y(I))**AO*FS(39I)/C2 
SU(10)=(FS(10)—FS(2,I))*YPM 
SU(2,I)=(FS(39I)—FS(4,I)—FS(59I))*YPM 

11 CONTINUE 
ALI=(F(29NP1)+F(29NP2))/(F(19NP1)+F(19NP2)) 
GENKLP=GENKP*ALI 
T=.25*(RHO(NP1)+PHO(NP2))*(R(NP1)+R(NP2))* 
1 G5*(Ft1INP1)+F(1iNP2)))**1.5 
FS(1,NP2)=GENKP/(Y(NP3)—YE—Y(NP1)) 
FS(29NP2)=C1*T/ALI 
FS(39NP2)=C2*FS(19NP2)*ALI 
FS(49NP2)=C3*T 
FS(59NP2)=(C4*ALI/(Y(NP3)—YE))**AQ*FS(39NP2)/C2 
IF(KEX.NE.3) GOTO 12 
AL=F(2,NP3)/F(19NP3) 
T=RHO(NP3)*R(NP3)*F(19NP3)**1.5 
FS(2,NP3)=C1*T/AL 
FS(49NP3)=C3*T 

12 SU(19NP2)=,5*(FS(19NP2)+FS( 19NP3)—FS(2,NP2)—FS(29NP3))*YE 
SU(2eNP2)=.5*(FS(39NP2)+FS(3,NP3) —FS(49NP2)--FS(49NP3) 
1 —FS(5,NP2)—FS(59NP3))*YE 

C 	 TEST 11 
IF(ITEST.E0.0) GOTO 1011 
WRITE(6,101) TEST 
WRITE(69101) f(FS(J,I)91=1,NP3),J=195) 
WRITE(6,101) t(SU(J,I),I=1,NP3),J=192) 

1011 CONTINUE 
RETURN 
END 
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SUBROUTINE STRIDE(ISW) 
C*** 	STRIDE ROUTINE BASED ON THE GENMIX4.  VERSION OF THE 
C***** PATANKAR-SPALDING PROGRAM 

- DIMENSION A(5,43),AU(43),B(5143)eBU(43),C(5943).CU(43),FDIFE(5),  
1 FDIFI(5),GE(5),GI(5).TTPF(S) 
COMMON/GENRAL/ AJE(5).AJI(5)4CSALFA,DPDX(43).DXqEMU(43),F(5.43),  

1 F5(59 43),H,IFINtINDE(5)9INOI(5),ISTEP,ITEST9IUTRAP,KEX,KIN,KRAC,  
2 (49NEO,NRH,NPI,NP29NP310(43).REI,PR(5),PREF(5943),RSIE.PSII. 
3 R(43)0H0(43),RmE,Rmitpu(43)95)(5943)9cu(5,43),TAUE,TAu19u(43),  
4 XD,XU,Y(43),YE,YI 
COMMON/GM4/AK,ALMG,EWALL,IPRINT,BPI 
COMMON/CONST/AQ,C1,C2,C3,C4,SRC1,CL 

C 
GO TO (1000,2000,3000), ISW 

C 
c************************************** STRIDE 1 
1000 IF(ISTEP.GT.0) GO TO 1100 

OM(1)=0. 
OM(2)=0. 
OM(NP2)=1. 
OM(NP3)=1. 
OMI=.5*OM(3) 
OME=.5*(1.-0M(NP1)) 
IF(KEX.EQ.2) BPE=1. 
IF(KIN.EQ.2) BPI=1. 
Y(1)=0. 
IF(KRAD.EQ.1) GO TO 1100 
DO 1001 I=1,NP3 

1001 R(I)=1. 
R25=1. 
RN15=1. 
IF(ITEST.E0.0) GO TO 9018 
WRITE(6,9010) (R(1)91=1,NP3).R2S4RNI5 

9010 FORMAT(1H t1P11E11.3) 
9018 CONTINUE 
C 	  CALCULATION OF RHO*U 'S 
1100 DO 1101 1=1,NP3 

IF(RHO(I).GT.0.) GO TO 1101 
WRITE(6,1108) RHO(I),I,RHO(1) 

1108 FORMAT(25H NEGATIVE OR ZERO RHO(I)=91PE11.3.6H AT 1=0396X, 
12JHSET TO ABS OF RHO(1)=9E11.3) 
RHO(I)=ABS(RHO(1)) 

1101 RU(I)=RHO(I)*U(I) 
RU3=RU(3) 
RUN1=RU(NP1) 
DO 1102 1=2,NP1 
RU(I)=.5*(RU(I)*RU(I4.1)) 

1102 CONTINUE 
IF(ITEST.E0.0) GO TO 9019 
WRITE(6,9010) (Ru(I),I=IINP3),RuNitRU3,PEI 

9019 CONTINUE 
CALCULATION OF y SS AND R 'S 

C 	  Y'S FOR PLANE GEOMETRY 
YI=PEI*OMI/(RPI*RU(2)) 
Y(3)=YI+PEI*OM(3)/(RU(2)+RU3) 
Y(2)=2.*YI-Y(3) 
DO 1103 1=4,NP1 

1103 Y(I)=-"(0-1)+pEI*(om(I)-0m(I-1))/Ru(I-1) 

C 
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YN15=Y(NP1)+PEI*(1.-0M(NP1))/(RU(NP1)+RUN1) 
YE=PEI*OME/(BPE*RU(NP1)) 
Y(NP3)=YN15+YE 

-Y(NP2)=2.*YN15-Y(NP1) 
IF(KRAD.EQ.0) RETURN 

Y 1 S AND R'S FOR AXISYMMETRICAL GEOMETRY 
IF(CSALFA.E0.0.) GO TO 1110 

CSALFA NE ZERO 
COSD2=.5*CSALFA 
IF(R(1).NE.0.) GO TO 1105 

R(1)=0. 
DO 1106 I=2,NP3 
Y(I)=SORT(ABS(Y(I)/O0SD2)) 

1106 R(T)=Y(I)*CSALFA 
YI=SORT(ASS(YI/COS02)) 
YN15=SORT(ABS(YN15/C0SD2)) 
GO TO 1107 

R(1) NE 0. 
1105 R102=.5*R(1) 

R1p2S()=R1D2*P102 
DO 1104 I=2.NR3 
Y(I)=Y(I)/(R1D2+SORT(ARS(R102SQ+COSD2*Y(I)))) 

1104 R(I)=R(1)+Y(I)*CSALFA 
YI=YI/CRID2+SORT(ABS(R1D2S0+COSD2*YI))) 
YN15=YN15/(R1D2+SORT(ABS(R1D2SO+COS02*YN15))) 

1107 R25=R(1)+YI*CSALFA 
RN15=R(1)+YN15*CSALFA 
YE=Y(NP3)-YN15 
RETURN 

C 	  CSALFA EQ ZERO 
1110  DO 1111 I=2,NP3 

Y(I)=Y(I)/R(1) 
1111 R(I)=R(1) 

YI=YI/R(1) 
YN15=YN15/R(1) 
R257-R(1) 
RN15=R(1) 
YE=Y(NP3)-YN15 
RETURN 

c************************************** sTRIDE2 **4************i 

C 	  PRELIMINARIES FOR COEFFICIENTS 
2000 CALL AUX(1) 

PX=PEI/DX 
G=RmI-RmE 
PD8=.125*PX 

,PD4=.25*PX 
PG=PX+G 
PG08=.125*RG 

PGD4=PGD8+PGD8 
RMID2=.5*RmI 
GD4=.25*G 
BOMP=Om(3)-OM(2) 

PGOMP=PGD4*-80mP 
P40MP=PD4*B0MP 

C 	  GRID POINT-2 
C 	  TAUI, BPI, T1 

IF(KIN,NE.1) GO TO 2001 
CALL WF(0919243,8PIIT1,TAUI) 

C 

C 
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GO TO 2002 
2001 T1=0. 

IF(KRAD.EQ.C) BPI=.33333+.66667*RU(1)/RU(2) 
-IF(KRAD.E0.1) BPI=(R(1)*(5.*RU(1)+RU(2))+3.*R25* 
1 	 (RU(1)+RU(2)))/6./(R(1)+R25)/RU(2) 

C 	 BOUNDARY COEFFICIENTS FOR VELOCITY 
2002 	HLP=PMID2-604*(0M(2)+0M(3)) 

AHLP=ARS(HLP) 
THLP=HLP+HLP 

TP=EM U(2) 
TTP=TP+AHLP+ABS(TP-AHLP) 
AD=TTP-THLP-T1-PGOMP 
BD=2.*(T1+RMI) 
CD=P4OMP*(3.*U(2)+U(3))-DPDX(2)*(R(1)+R25)*YI 
DU=AD+RD+PX*BOmP 

.AU(2)=AD/DU 
BU(2)=BD/DU 
CU(2)=CD/DU 
	  BOUNDARY COEFFICIENTS FOR F'S 

IF(NEQ.EQ.1) GO TO 2304 
DO 2300 J=1.NpH 
TPF2=TP/PREF(J.2) 
TTPF(J)=TPF2+AHLP+ABS(TPF2-AHLP) 
IF(KIN.NE.1) GO TO 2301 
CALL WF(J,1,2,3,FDIFI(J),T1F,GI(J)) 

IF(INDI(J).E0.2) GO TO 2303 
AJI(J)=GI(J)*(F(J.1)-.5*(F(J.2)+F(J.3))-FDIFI(j)) 
GO TO 2302 

2301 T1F=0. 
FDIFI(J)=0. 

COEFFICIENTS 
2302 ADF=TTPF(J)-THLP-T1F-PGOMP+.5*SD(J,2) 

BDF=2.*(T1F+PmI) 
DF=A0F+BDF+PX*ROMP-2.*SD(J.2) 
T=-T1F*FDIFI(J) 
GO TO 2305 

2303 ADF=TTPF(J)-THLP-PGOMP+.5*S0(J,2) 
BDF=0. 
DF=ADF+PX*POMP-2.*SD(J.2)+RMI*2. 
T=RMI*F(J.1)+AJI(J)*R(1) 

2305 TT=3.*F(J,2)+F(J.3) 
CDF=P4OMP*TT+2.*(T+SU(J.2)) 
A(J,2)=ADF/DF 
B(J.2)=BDF/DF 

2300 C(J,2)=CDF/DF 
C 
C MATCH OF THE COUETTE FLOW SOLUTION FOR K AND KL 
C 

IF(J.GT.2) GOTO 2306 
A(J,2)=-1. 
5(J.2)=.0 
C(J.2)=2.*(TAUI+DPDX(1)*YI)/(SRC1*(RHO(2)+RHO(3))) 
IF(J.E0.2) C(J,2)=C(J.2)*CL*YI 

2306 CONTINUE 
C 
C 
C 
C 

   

	 GRID POINT NP2 
TAUE, BPE, TNP3 

   

   

C 
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.2304 IF(KEX,NE,1) GO TO 2003 
CALL WF(09NP39NP29NP1,BPE,TNP39TAUE) 
GO TO 2310 

2003 TNP3=0. 
IF(KRAD.EO.0) BPE=.33333+.66667*RU(NP3)/pU(NPI) 
IF(KRAD.EQ.1) BPE=(R(NP3)*(5.*RU(NP3)+RU(NP1))+3.*RN15* 

1 	(RU(NP3)+RU(NP1)))/6./(R(NP3)+ RN15)/RU(NP1) 
C 	 BOUNDARY COEFFICIENTS FOR VELOCITY 
2310 ROMM=0M(NP2)-0M(NP1) 

HLM=RMID2-G04*(0m(NP1)+0m(NP2)) 
AHLM=ABS(HLM) 
THLM=HLM+HLM 
TM=EM U(NP1) 
TTM=TM+AHLm+ARS(Tm-AHLM) 
PGOMM=PGD4*BOmm 
P4OMm=PD4*ROmm 
AD=2.*(TNP3-RmE) 
BD=TTM+THLM-TNP3-PGOMM 
CD=P4OMm*(3.*U(NP2)+U(NP1))-0PDx(NP2)*(RN15+R(NP3))*yE 
DU=AD+RD+Px*ROmM 
AU(NP2)=AD/DU 
BU(NP2)=8D/OU 
CU(NP2)=CD/DU 
IF(NEO.E0.1) RETURN 

C 	  BOUNDARY COEFFICIENTS FOR F'S 
CALL AUX(2) 
DO 2320 J=1,NpH 
TMF=TM/PPEF(J9NP1) 
TTMF=TmF+AHLm+ABS(TMF-AHLm) 
IF(KEX.NE.1) GO TO 2311 
CALL WF(J,NP3,NP2,NP1,FDIFE(J),TNP3F,GE(J)) 
IF(INDE(J).E0.2) GO TO 2313 
AJE(J)=GE(J)*(.5*(F(J,NP2)+F(J,NP1))+FDIFE(J)-F(J,NP3)) 
GO TO 2312 

2311 TNR3F=0. 
FDIFE(J)=0. 

C 	  COEFFICIENTS 
2312 ADF=2.*(TNP3F-PmE) 

BDF=TTMF+THLm-TNP3F-PGOmm+.5*SD(J,NP2) 
DF=ADF+BDF+PX*ROmM-2.*SD(J,NP2) 
T=-TNP3F*FDIFE(J) 
GO TO 2315 

2313 ADF=0. 
BDF=TTMF+THLm-PGOmm+.5*50(J,NP2) 
DF=BDF+PX*POmm-2.*SD (J,NP2) -RmE*2. 

. T=-RmE*F (JINP3) -AJE (J)*R (NP3) 
2315 TT=3.*F(J,NP2)+F(J,NP1) 

CDF=P4Omm*TT+2.*(T+SU(JINP2)) 
A(J9NP2)=ADF/DF 
B(J,Np2)=RDF/DF 

2320 C(J,NP2)=CDF/DF 
RETURN 

C************************************** STRIDE, *************** 

3000 DO 3005 I=3,NPI 
BOmm=BOmP 
BOmP=Om(I+1)-0m(I) 

• 80m=ROmm+BOmP 
BOMT3=ROm*3. 
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PGOMM=PGOMP 
PGOMP=PGD4*BOMP 
PBOM=PX*B0m 
THLM=THLP 

HLP=RMID2-GD4*(0M(I+1)+0M(I)) 
THLP=HLP+HLP 

AHLP=ABS(HLP) 
TTM=TTP 

TP=EM U(I) 
TTP=TP+AHLP+ABS(TP-AHLP) 
AD=TTP-THLP-PGOMP 
BD=TTM+THLM-PGOMM 
CD=PD4*(ROMT3*U(I)+ROMP* U(I+1)+ROMM*U(I-1))- 

1 	DPDX(I)*R(I)*(Y(I+1)-Y(I-1)) 
DU=AD+BD+PBOM 
AU(I)=AD/DU 
BU(I)=RD/DU 
CU(I)=CD/DU 

C 	  START OF J LOOP 
IF(NEO.E0.1) GO TO 3005 
DO 3004 J=1,NPH 

3002 TTMF=TTPF(J) 
3003 TPF=EP U(I)/PPEF(J,I) 

TTPF(J)=TPF+AHLP+ARS(TPF-AHLP) 
AD=TTPF (J) -THLP-PGOMP 
BD=TTMF+THLM-PGOMM 
CD=PD4*(B0mT3*F(J,I)+BOMP*F(J,I+1)+BOVV*F(J,I-1)) 
CD=CD+2.*SU(J,I) 
DF=AD+BD+PROM-2**SD(J,I) 

A(J,I)=AD/DF 
B(J,I)=BD/DF 

3004 	C(J,I)=CD/DF 
3005 CONTINUE .  

IF(ITEST.E0.0) GO TO 9013 
WRITE(6,9001) (AU(I),I=2,NP2) 
WRITE(6,9002) (8U(I),I=2,NP2) 
WRITE(6,9003) (CU(I),I=21NP2) 

9001 FORMAT(7H AU(I) ,1P11E11.3) 
9002 FORMAT(7H RU(I) ,1P11E11.3) 
9003 FORMAT(7H CU(I) ,1P11E11.3) 

IF(NEO.E0.1) GO TO 9013 
DO 9000 J=1,NPH 
WRITE(6,9004) (A(J,I),I=2,NP2) 
WRITE(6,9005) (A(J,I),I=2,NP2) 

9000 WRITE(6,9006) (C(J,I),I=2,NP2) 
9004 FORMAT(8H A(J,I) ,1P11E11.3) 
9005 FORMAT(8H B(J,I) ,1P11E11.3) 
9006 FORMAT(8H C(J,I) ,1P11E11.3) 
9013 CONTINUE 
C 

IF(KIN.E0,2,AND.RU(1).NE.0.) U(1)=U(1)-DRDX(1)00X/RU(1) 
IF(KEX.E0.2.AND.RU(NP3).NE.0.) U(NP3)=U(NP3)-DPDX(NP3)*DX/RL(NP3) 

C 	SOLVE FOR DOWNSTREAM U IS 	 
3047 8U(2)=RU(2)*U(1)+CU(2) 

DO 3048 I=3,NP2 
T=1.-BU(I)*AU(I-1) 
AU(I)=AU(I)/T 

3048 BU(I)=(BU(I)*BU(I-1)+CU(I))/T 
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DO 3050 IDASH=2,NP2 
I=N+4-IDASH 
U(I)=AU(I)*U(I+1)+BU(I) 

C TEST FOR NEGATIVE VELOCITY 
C 	IUTRAP=0 NO ACTION, =1 SET U'S TO ZERO, =2 PRINT AND STOP 

IF(IUTRAP.E0.0) GO TO 3050 
IF(I.E0,2.0R.I.Eo.Np2.0R.U(I),GE.0.) GO TO 3050 
IF(IuTRAP.E0.1) GO TO 3051 
IFIN=1 

. ITEST=1 
WRITE(6,3120) 

.3120 FORMAT(10X,33mAT LEAST ONE VELOCITY IS NEGATIVE) 
RETURN 

3051 U(I)=1.E-30 
3050 CONTINUE 

IF(KIN.E0.3)0(1)=.5*(U(2)+u(3)) 
'IF(KEx.E0.3)u(NP3)=.5*(u(NP1) 4-u(NP2)) 

72 IF(NEQ.EO.1) GO TO 3060 
DO 3320 J=1,NPH 

C 	SOLVE FOR DOWNSTREAM F 'S 	 
B(J92)=B(J,2)*F(J,1)+C(J,2) 
DO 3148 1=3,Np2 
T=1.-B(J,I)*A(J,I-1) 
A(J,I)=A(J,I)/T 

3148 B(J,I)=-(A(J,I)*B(J,I-1)+c(J,I))/T 
DO 3150 IDASH=2,NP2 
I=N+4-IDASH 

3150 F(J,T)=A(J,I)*F(J,I4.1)+8(J,I) 
C 	  ADJUST F(J91) AND F(J,NP3) 	 

GO TO (3210,3220,3230)0<N 
3210 IF(INDI(J).E0.2) F(J,1)=FDIFI(J)+.5*(F(J,2)+F(J,3))+AJI(J)/GI(J) 

GO TO 3220 
3230 F(J,1)=.5*(F(J,2)+F(J93)) 
3220 GO TO (331O,332O,3330)•KEX 
3310 IF(INDE(J).EO.2) F(J,NP3)=FDIFE(J)+,5*(F(J,NP2I+ 

1 	 F(J,NP1))-AJE(J)/GE(J) 
GO TO 3320 

3330 F(J,NP3)=.5*(F(J,NP1)+F(J,NP2)) 
3320 CONTINUE 
3060 XU=X1) 

PSII=PSII-RMI*DX 
PSIE=PSIE-PmE*Dx 
PEI=PSIE-PSII 
ISTEP=ISTEP+1 
RETURN 
END 
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SUBROUTINE WF(J911,I2,13,OUT1,OUT2,OUT3) 
COMMON/GENRAL/ AJE(5),AJI(5),CSALFA,DPDX(43),DX,EMU(43),F(5,43),  

1 FS(5,43),H,IFIN,INDE(5),INOI(5),I5TEP,ITEST,IUTRAP,KEX,KIN,KRAC,  
2 N,NEO,NPH,NPI,NP2,NP3,OM(43),PEI,PR(5),PREF(E,43),PSIEIPSII,  

- 3 R(43),RHO(43),RME,RmI,RU(43),S0(5943),SU(5,43),TAUE,TAUI,U(43),  

4 XD,XUtY(43),YE,YI 
COMMON/GM4/AK,ALMG,EWALL,IPRINT,PPI 
COMMON/CONST/A0,C1,C2,C3,C49SRC1,CL 

C EFFECTS OF PRESSURE GRADIENT, MASS TRANSFER AND 
C 	RADIUS VARIATION ARE NEGLECTED 
C 	FOR VELOCITY, 	OUT1=BP, 	OUT2=T, OUT3=TAU 
C 	FOR F'S, 	OUT1=FIDIFf OUT2=7, 003=6 
C 

125=13-1/11 
JDASH=J+I 
GO TO (100,200,200,200), JDASH 

C LOG-LAW 
100 UREF=.5*(U(12)+U(I3)) 

RHOREF=.5*RHO(I1)+.25*(RHO(I2)+RHO(I3)) 
RREF=.5*(R(12)+R(I3)) 
VREF=EMU(I1) 
YREF=YI+((E-YI)*OM(I1) 
RE=UREF*RHOREF*YREF/VREF 
RRUREF=RREF*RU(I25) 

C 	  LOG LAW 

ER=RE*EWALL 
NIT=0 
SHALF=SORT(TAUI/(RHOREF*UREF**2)) 

101 SHALF1=SHALF 
SHALF=AK/ALOG(ER*SHALF) 
IF(ABS(SHALF 	-SHALF1).LT..0001.OR.NIT.GT.10) GO TO 102 

NIT=NIT+1 
GO TO 101 

102 S=SHALF**2 
OUT1=AK/(AK+SHALF) 
EM U(I25)=.25*RHOREF*RREF*ABS(U(I3)-U(I2))*(AK/OUT1)**2 

103 OUT2=S*RPUREF 
OUT3=OUT2*UREF/R(I1) 
RETURN 

200 CONTINUE 
OUT1=.0 
OUT2=.0 
OUT3=.0 
RETURN 
END 
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SUBROUTINE STAPRO 
C CALCULATION OF THE STARTING PROFILES 

DIMENSION DOM(50),DY(50),DU(50),DRHO(50) 
COMMON/GENRAL/ AJE(5),AJI(5),CSALFA,DPDX(43),CX,EMU(43),F(5,43)q 
1 FS(5943),H,IFIN,INDE(5),INDI(5),ISTEP,ITESTOUTRAP,KEX,KIN,KRAD,  
2 N9NEO,NPH,NPI,NP29NP3,0M(43),PEI,PR(5),PREF(5943)1PSIE,PSII, 
3 R(43),RHO(43),RME,RMI,RU(43),SD(5,43),SU(5943),TAUE,TAUIlL(43), 
4 XD,XU,Y(43),YE,YI 
COMMON/GM4/AK+ALMG,EWALL'IPRINTeRPI 
COMMON/CONST/AO,C1,C29C31C49SRC19CL 
READ(5,41) L'UG9(0Y(I),DU(I),I=1,L) 
WRITE(6,42) LqUG,(DY(I),DU(I),I=1,L) 

42 FORMAT(1H 129P10.4/(6F10.4)) 
41 FORMAT(I29F10.4/(6F10.4)) 

DOM(1)=.0 
DRU=RHO(1)*DU(1)*UG 
DO 39 I=2,L 
DU(I)=DU(I)*UG 
DRUM=DRU 
DRU=RHO(I)*DU(I) 

39 DOM(I)=00M(I-1)+(DRU+DRUM)*(DY(I)—DY(I-1))**5 
PEI=DOM(L) 
DO 38 I=1,L 

38 DOM(I)=DOM(I)/PEI 
DO 40 I=1,NP3 
Y(I)=UINTER(OM(I),DOMIDY,L) 
U(I)=UINTER(OM(I),DOM,DU,L) 

40 CONTINUE 
C CALCULATE INITIAL VALUE OF U(2) AND BPI 

UT=SORT(TAUI*2./(RHO(2)+PHO(3))) 
SHALF=UT/U(3) 
DO 43 IT=1.2 
BPI=AK/(AK+SHALF) 

43 SHALF=AK/(ALOG(EWALL*.5*OM(3)#PEI*SHALF#BPI/EML(1))) 
U(2)=2.*UT/SHALF—U(3) 

C 
C INITIAL E PROFILE 

ATK=TAUI/(PHO(1)*SRC1) 
8TK=—Y(NP3)*DPDX(1)/(RHO(1)*SRC1) 
BTK=.5*(87K+ABS(BTK)) 
DTK=2*ATK+RTK 
CTK=ATK-2.*DTK 
DO 603 I=3,0.1P1 
ETA=Y(I)/Y(NP3) 

603 F(19I)=ATK+BTK*ETA+CTK*ETA**2+DTK*ETA**3 
C 
C INITIAL EL PROFILE 

'ALEMG=.09 
ALEMG=ALEMG*SOPT(SRC1) 
DO 604 I=3,NP1 
F(2,I)=ALEMG*Y(NP3) 
DUMMY=CL*Y(I) 
IF(F(29I).GT.DUMMY) F(29I)=DUMMY 
F(29I)=F(1,I)*F(20) 

604 CONTINUE 
F(191)=.0 
F(291)=.0 
F(1,2)=F(1,3) 
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F (292)=•0 
F (19NR3)=.0 
F(2,NP3)=.0 
F(1,NP2)=.5*(F (19NR1) +F (1,NR3) ) 
F(29NP2)=.5*(F (29NP1)+F (29NP3) 
RETURN 
END 
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FUNCTION UINTER(A;B,C,I) 
C LINEAR INTERPOLATION ROUTINE 

DIMENSION R(I),C(I) 
IF(A.LI.13(1))G0 TO 23 
J=2 

69 IF(A-B(J))212,211,210 
210 J=J+1 

IF(J.LE.I)GO TO 69 
WRITE(6921) 

21 FORMAT(1X95HSTOP2) 
STOP 

211 UINTER=C(J) 
RETURN 

212 UINTER=C(J-1)+(C(J)-C(J-1))*(A-B(J-1))/(8(J)-8(J-1)) 
200 RETURN 
23 WRITE (6,20) 
20 FORMAT(1X,5HSTOP1) 

STOP 
END 
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Moses 

Mild adverse 
pressure gradient 

Strong adverse 
pressure gradient 

Accelerating flow 

Flat plate flow 

Ledge flow 

Flow No. 1  

Flow No. 2 

Relaxing flow 

a . -.15 

a = -.255 

- 	. -.35 

. -.53 

Constant pressure 

Series D 

Series E 

a = 0 -.. -.255,C 

Airfoil, Series 2 

Case 1 

Case 2 

Case 3 

Case 5 

Case 6 

1949 

1949 

1949 

1944 

1945 

1950 

1954 

1954 

1965 

1966 

1965 

1.967 

1967 

1966 

1966 

1966 

1966 

1967 

1951 

1964 

1964 

1964 

1964 

1964 

Table 6.4-I continued. 
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IDE NT Investigator/s Nature of experiment Year 

4400 

4500 

4800 

5000 

5100 

5200 

5300 

6300 

Schubauer and 
Spangenberg 

Schubauer and 
Spangenberg 

Schubauer and 
Spangenberg 

Fraser 

Fraser 

Stratford 

Stratford 

Bauer 

Flow A 

Flow B 

Flow E 

Flow A 

Flow B 

Experiment 5 

Experiment 6 

Spillway, 60°  

1960 

1960 

1960 

1956 

1956 

1959 

1959 

1951 

Table 6.4-I Name of investigator/s, and nature of 
the experiment for flows shown in Fig.6.4. 
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Figure 7.4 Traversing mechanism and test plate 
for case (b) 

Figure 7.5 Hot-wire instrumentation 
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of a radial wall jet (case b); signals from a 55F04 
probe at r = 42.1 cm. 


