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Abstract  

CO 

Let f(z) = E a nzn  be analytic in 1z1<1 and let 

1 
V(f,e) = f If'(rei0)Idr. 

0 

0. The series E ane
in   is said to be summable IAI if V(f,0)<°°. 

The concept of summability IAI  was introduced by Whittaker, 

and some results concerning summability IAI  and other connected 

subjects were obtained by Whittaker, Prasad, Zygmund, Mergelyan, 

Rudin and Piranian. 

In this thesis we give some significant examples of functions 

for which V(f,0) <00 for almost all values of 0; for example 

areally mean p-valent functions. 

We then construct a function f(z) analytic in 151<1 and 

continuous in IzIl such that V(f,e) = c° a.e., and w (t) 

the modulus of continuity of f(e
i0

) satisfies the condition 

w(t) = 0 ( 1  ) P.  
log 1 

t 

Note that one of Whittaker's result shows that as far as this 

result is concerned cannot be replaced by any number greater 

than one. 

Clearly, if Eane
in0 is summable IAI  it, is also summable A 

(ordinary Abel summable) and therefore any Tauberian condition 

for summability A is also a Tauberian condition for summability 

IAI. We have proved that some of,the well-known Tauberian condit-

ions for summability A are also best possible for summability IAI. 

Again if f(z)=Eanzn  is analytic in Iz1<1 and of bounded 

characteristic, V(f10) may not be finite for any 0. It is however 

00 



F(z) = E 	
anz

n 
 
11=2 1/log n (log log n)1  

Co 

proved that if T>1 and 

then V(F,O)<00 a.e.0 Examples show that the index z  of (log n) 

above is "best possible". 
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CHAPTER I 

Introduction 

00 

E Let fa lw be a complex sequence such that a xn 
n o 

00 0 

converges for 0<x<1 and for such x let cp(x) = 	E an
x
n
. 

0 

Then 4(x) maps (0,1) onto some curve in the complex plane. 

The series E an 
is said to be absolutely Abel summable or 

summable IAI if this curve is of finite length. This is 

equivalent to saying that gx) is of uniformly bounded 

variation on [0, El for 0<<1; or 

fl 14f(x)1 dx < 00 

0 
CO 

Clearly 	E a
n 
is summable IA1 only if Lim ~(x) 

x÷1- 

exists finitely, since otherwise the curve considered above 

cannot be of finite length. Thus a series which is summable 

1A1 is also summable A (or Abel summable), but the converse is 
CO 

not necessarily true. When E a, is summable IA1 and 
o " 

£ = Lim gx), we write 
x÷1- 

CO 

E a
n 

= t (IA1) 

00 

and call t the absolute Abel sum of E an
. 

0 

03 

It is obvious that it E an 
is absolutely convergent 

0 

then it is absolutely Abel summable and the ordinary sum of 
00 	 00 

E a
n 
and the absolute Abel sum of E an 

are the same. 
- o.. 

* Note that multiple covering is taken account of. 



However, unlike the case for ordinary Abel summability, 
CO 

convergence of E an  need not imply that the series is 
o 	 co 

absolutely Abel summable. For example the series E bn  with 
0 

log n/log 2 
(-1)  (n=2,22,23,....) 

bn = 
log n  

Lo (otherwise) 

converges, but it is not absolutely Abel summable. 

Now let us consider the function f(z) analytic in the 

unit disc U =11z1<1.1 and suppose that 

CO 

f(z) = E anzn  ((z1<1). 

With z = re
i0 we have 

co 
f(rei0) = 	E a rnein® (0<r<l). 

0 

we use the notation 

w(f,r,O) = frIfi(pei°)Idp 

w(f,1,0) = V(f,0) = 	 )ldP. 
0 

Evidently V(f,0) is the total variation of f on the 

radius of U which terminates at the point ei°, and 

geometrically speaking V(f,0) is the length (finite or 

infinite) of the curve which is the image of this radius 
co 

under f. If V(f,0) is finite, the series E anein°  is 

absolutely Abel summable. V(f, 0) is called the radial 

variation of f. If f is bounded in U , by Fatou's Theorem 

t(3), p. 17], Lim f(rei°) exists finitely almost everywhere, 
r±1- 

2 

0 



almost all values of 0. In other wordS iffeH,Eane
in0 

0 

is summable A for almost all values of 0 but not necessarily 

but as we shall see later V(1,0) may not be finite for 

3 

summable 1AI for almost all values of 0 . 

The idea of absolute Abel summability seems to have been 

first introduced by J.M. Whittaker [(15)]. 	He 

considered summability lAl of Fourier Series and gave some 

sufficient conditions for such summability. He proved the 

following theorem. 

Theorem 1.1. Let f 6 L1  (0,_27) and have the Fourier  Series  

(1.2) 00 
ao E (an cos n 0 + bn .sin n 0 ). 2 n=1 

Let 

4(t) = f 0 + 2t) + f(0 - 2t) -2k 

2 

Then (1.2) has absolute Abel sum 2, provided 

IS 1 4)("1 dt 
0 	t 

exists for some 8>0. 

In other words a Fourier series which converges in  

virtue of Dini's condition is absolutely Abel summable. 

About the same time Prasad 	[(11)] 	gave other 

sufficient conditions for absolute Abel summability of a 

Fourier series. He proved the following theorem. 

Theorem 1.2 .' In the notation of Theorem 1.1, (1.2 is 

absolutely Abel summable provided 

(i) (I)(t) is absolutely continuous in (O,&) for some  

o>0; 



4 

e 	1)(t) (ii) j dt exists for some 	6>0, 
0 	t 

 

where 
	(DM = ft gu) du. 

In this case the  absolute Abel sum of (1.2) is R. 

It is pointed out by Prasad that (i) and Whittaker's 

condition are independent, but that Whittaker's condition 

is included in (ii), i.e. if Whittaker's condition is 

satisfied then so is (ii). 

Later Prasad [(12)] 	obtained a number of other 

results. He proved the following theorems. 

Theorem 1.3. In the notation of Theorem 1.1 (1.2) is 

absolutely Abel summable at 00  if there is some neighbourhood 

of On  in which f(o) is of bounded variation. 

Theorem 1.4. In the notation of Theorem 1.1, given any 

integer 	and y>1  

	

CO 	

an cos n 0 + bn sin n 0 

n=N log n log
2  n 
	(logkn)Y 

is absolutely Abel summable for almost all 0, where login = 

log n and logvn = log (log _,n) provided log n> 0;.  and N is 
v-1  

taken large enough to ensure that all terms in the series are  

well defined. 

The later paper of Prasad contains other results, but 

as they are not relevant to the problems we shall be concerned 

with there seems little point in quoting them. 

After these studies by Whittaker and Prasad of absolute 

Abel summability of Fourier series, Zygmund [(16)] 

obtained some results concerning absolute Abel summability of 

power series which are of intrinsic interest. 
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The "high indices" theorem of Hardy and Littlewood 
Co 

[(5), p. 173 ] asserts that if a series E an  with 'Hadamard 
O 

gaps' (i.e. an=0 for nk<n<nk+1 where nk is an increasing 

sequence of positive integers satisfying, for some fixed q>1, 

the relation nk+1  >q, k=1,2,3...) is summable A, then it 

nk 
is convergent. Zygmund proved a parallel result for 

summability IAI in the following form. 
CO 

Theorem 1.5. Let the series E a_
" 
 have Hadamard Gaps and  

00 
let f(z) = E anz

n be analytic in 1z1<1; then if Eane
ine 

is summable IAI, it is absolutely convergent. More over, 

1 
E 	la I < A f Ifi(reie) Idr, 
1 	v  

where A is a constant depending on f. 

Zygmund also obtained an estimate for w(f,r,O) as r-4-1 

in the following form. 

Theorem 1.6. Let f(z) be analytic in Izl < 1 Let E be the  

set of 0 in [0,2 1T ] such that f(z) has a finite angular  

limit at e10, i.e. lim f(z) exists finitely as 1z1÷' in any  

stolz angle at e
i0, then 

w(f,r,0) = f If' (peie  )1cip = o {log2  
0 

1) ) 

717-1;1' (r4-1) 

almost everywhere  in E. 

Proof: It is known that 	(17) ] 

i0 2  
g(0) = (f1  (1-P) Ift(Pe ) 1 dP)2  

is finite for almost every OcE. For every such 0, Schwarz's 

inequality gives 



co 2 	2 1  E { E 	ICv I }2 
n=o v=2n+1 

n+1 

(1.3) 

6 

	

f Ift(Re
10)1dR < { f 	

1 	P   
(1-R)If'(He

10  ) I2 
	dR 
dR}2  ff 	}2  1-R  

0 	 0 	 0 

 0 {log' 	1 	1, 

and it is immediate that 0 may be replaced by o. Thus we 

obtain 

r 1 1 
w(f,r,o) = 	Ifi(Rei0)idR = o {log2( ---D 

o 	 1r  

for almost every point 0 at which f(z) has a nontangential 

limit. 

Zygmund then showed that the above result is best 

'possible by proving the following theorem. 

Theorem 1.7. For every function c(p),(o ...p<l)positive and  

tending to zero as p÷1 there is a regular function f(z), Izi<1  

of the class H2 (and so having a nontangential limit almost  

everywhere) such that  

w(f, r,O) f 0 {c(p)log 2  (li )} 

for almost every 0. 

In the same paper Zygmund considered the effect of a 

random change of the signs of the co-efficients upon the 

behaviour of the function V(f,0) and obtained the result: 

Theorem 1.8. For every o<t<1, let 

Co 

cpt(z) = 	E Cv v  (z) zy  

	

v=o 	• 

where  po(t), p1(t) 	 are Rademacher's  

functions. 	If the series 
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converges, then for almost every t the expression V(h,0) 

is finite almost everywhere in 0 , and if the series (1.3) 

diverges then for almost every t the expression V(h,0) is 

infinite almost everywhere in 8. 

After Zygmund there seem to be no contributions to absolute 

Abel summability till a paper of Rudin [(13)] 	in which the 

following results are proved. 

Theorem 1.9. There exists a function f(z) analytic and bounded  

in the unit disc U(1z(<1), such that V(f,0) = 00 for almost all 8, 

where V(f,0) has its usual meaning. 

Theorem 1.10. There exists'a Blaschke product B(z) such that  

V(B4 O) = co for almost all O. 

Theorem 1.11. There exists a function,f, analytic in Izi<1 and  

continuous in Iz141 such that V(f,0) = 00 for almost all 0. 

The problem as to whether or not 'almost all' in Theorem 

1.9, Theorem 1.10 and Theorem 1.11 can be replaced by 'all' is 

still outstanding. However, by considering the Riemann surface 
00 

onto which 1z1<1 is mapped by a function f(z) in H one sees 

that there are paths in 1z1<1 going to boundary points on Iz1=1 

along which f(z) is of bounded variation. This is some evidence, 

but only very slight, in favour of a negative answer to the 

above problem of Rudin. 

It follows from Theorem 1.9 that there is a function f(z) 
co 

cH such that 1 	2ff 
I 	I If'(re

i0)1rdrd0 = co 
0 0 

and this was proved prior to Rudin's work by Mergeylan [(9)] 

Much more recently Piranian [(10)] 

constructed a Blaschke product for which the prededing integral 

result holds. That there is such a Blaschke product is of 

course also a consequence of Rudin's Theorem 1.10. However 



Rudin's methods were non-constructive, and it is the 

constructive element in Piranian's work which makes it of 

significance. 

Let F be a family of functions analytic in 1z1<1. 

Then we call {An}  a multiplier sequence for F 	(relative to 

absolute Abel summability), if whenever f s F and f(z) = 

00 
1 E anz

n  (1z1<l) then E Anane
in° is absolutely Abel summable 

for almost all 0. In this terminology we can express the 

result of Theorem 1.4, in a special case, as; if Xn=o 

(n=o,1,2) and 

n = 	1 

log n (log log n)Y 
	

(n = 3,4 	 ;y>1) 

then (An) is a multiplier sequence for Hl. We shall show 

later that in factifkis a positive integer and An=o (n=o, 

1,2....N-1), y>1, 
0 

n = 
	{(log n)2  log2  n . . . .(logk  n) }-1 

N41,...) where Nois chosen (fixed) large enough to 

ensure that everything is well defined, then (an) is a 

multiplier sequence for N , the set of functions analytic 

in 1z1<1 and of bounded characteristic. This is an 

improvement of the result of Prasad. 

As far as the index 	of log n in An  is concerned this 

result is best possible. If n(c■ < n < 1) is given then 

f(z) = E z2n  is of bounded characteristic since in fact 
FITTn 

f(z) EH2, but f*(z) _ E  z2n  is not absolutely Abel summable 
n 

anywhere on 1z1=1. This shows that we cannot replace 1 by 2-71, 

clearly somewhat more than this is true, but we shall deal with 
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this later. 

Of course in the result of Prasad or that alluded to 

above, one would like not specific forms of An  to be 

considered, but rather forms of Xn 
satisfying some general 

condition that included the special forms. For example one 

would like smoothness conditions'on 4(x) which together with 
00 

perhaps a condition like f 	1 	dx <co would ensure that 
xci)(x) 

An =  1 	
defines a multiplier sequence for N . We have not 

(n) 

been able to obtain any such result although it would appear 

likely that there must be 	nontrivial results of this kind. 

With any summability method one can consider associated 

Tauberian conditions, such a condition being one which together 

with summability ensures convergence. Since to be absolutely 

Abel summable is a stronger restriction on a series than 

ordinary Abel summability, any Tauberian condition for 

ordinary Abel summability is a fortiori, a Tauberian condition 

for absolute Abel summability. But one might imagine that such 

conditions could be weakened and still lead to ones for absolute 

Abel summability. As regards the status of the well known 

Littlewood's Tauberian condition [(5) p. 154 	] for ordinary 

Abel summability the following result was proved by Shapiro 

[(14)]. 

Theorem 1.12. Let 11(0<n<l) be given. Then there is a divergent  
CO 

series  E an 
with an = 0(  1 	(n.400) which is absolutely Abel 

o 	n1-ni  

summable. 

This shows that the index in Littlewood's condition is best 

possible relative to a Tauberian condition for absolute Abel 

summability. Later Kennedy and Szilsz [(8) 	showed 

that in fact no weakening of Littlewood's condition at all was 

possible as far as a Tauberian condition for absolute Abel 
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summability is concerned. They proved the following result. 

Theorem 1.13. Let (p(n)>o (n=o,1,2...) and Cn)tco(ntco). Then 
CO 

there is a divergent series
o  an 

 with an =0 ( 	) 
(n-°) 

which is absolutely Abel summable. 

If we define absolute Abel summability of order n, 

denoted by (IAI, n) by the condition 

(1.4) 	
I 
1 
 f 

xi 
 I 

x
... f
2 	xn._2 fn-lif(n) 

(xn)l dxndxn_i 	dx, 

0 0 0 

CO 

then (IAI, 1) = IAI . However, we shall see that the result.  

of Theorem 1.13 is equally applicable to summability (Al,1 	n). 

It is natural to consider other forms of Tauberian 

conditions for Abel summability and see to what extent they can 

be modified to give Tauberian conditions for summability I Al. 

There do not seem to be many such conditions, but one that is 

of interest is that of Fejer [ (4), p. 817] . 	This says 
00 

that if for some (I), E 	anew is Abel summable and Enlan1 2<00 
n=o 

then Eane
ig) converges. It follows easily that if Enlan1 2<00 

then Ean
eine  is Abel summable for almost all 0 , and so in 

fact Ea
ne
in0 converges for almost all 0 . There is a local 

form of this theorem which depends on the interpretation of 
00 

Enlani2 as an area integral, 
1 

i.e. P 	2 
I u  1P(rei°)IrdOcir = Tr E n la I 2 _2n

.  

0 0 	 1 n  
CO 

This form is: If f(z) = E anzn  (IzI<l) and for some (1,,I cP,
< a < Tr 

f(z) maps the sector {z:z = re10, 101<m,o<r<1} onto a Riemann 

surface of finite area and an-+o (n÷c°), then Ean 
is Abel summable. 

We shall see later that there are  essentially no weaker forms of 

these conditions that give Tauberian conditions for absolute 

Abel summability. 



00 

CHAPTER 2  

Absolute Abel summability relative to certain classes 

of analytic functions 

Let 
CO 

(2.1) f(z) = E a_zn  (1z1<1) 
0 " 

be analytic in the unit disc U (1z1<l) and let V(f,0) be 

defined by (1.1) so that 

1 
V(f,0) = ilf'(rele)ldr 

0 

and therefore by definition if for some 0 V(f,0)<00, then 

E a ein0 is summable IA I. 

We consider below some functions defined by (2.1) which 

have V(f,0)<co for almost all values of 0 . 

Theorem 2.1. If EIanl<co, then V(f,0)<co for all values of 0. 

Proof: By definition (1.1) 

1 
V(1,0) = fIff(rei0)1dr 

0 

< E f.
1  

nIr
n-1 dr = Zianl<00 

o 

so we get, for all values of 0, 

V(f,0) <co 

Theorem 2.2. If the area of the image of U (1z1<l) under 

f is finite, taking multiplicity into account then  

V(f,0) <co 	a.e. 
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Proof: 	By hypothesis 

271-  1 	Ift(pe
ie)1 2pdpde < co 

p=o 0=o 

so that 

1
if"(pe

10
)12d p <  03 	a. e . 

p=0 

Now by Schwarz's inequality we have 

1 	1 
Ift(pei0)1dp < (1 Ifl(pei0  )1 2  dp)21  

co 	a.e. 

and so we get 

V(f,0) < 00 	a.e. 
co 

and therefore E ane
in° is summable IA1 for almost all values 

of 0. 

Remark: Fejer [(), p. 819 ] has shown that under the 

hypothesis of Theorem 2.2, the series (2.1) converges almost 

everywhere on the circumference 1z1=1 and so in this case we 

have 

(1) Ea eine converges for almost all 0. 

(ii) Zaneine is summable IAI for almost all 0. 

It should however be remembered that in general (i) does 

not imply (ii) or vice-versa. 

Theorem 2.3 (Hardy and Littlewood [(6)]). 	If f(e) = Lim f(reie) 
r-+1- 

and f*eLip a, (o<a<l), then V(f,0) is bounded. In fact 

the hypothesis implies ft(reie) = 0{(1-r)a-1 
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Proof: 	By Cauchy's Integral formula, we have 

ff(rei6) = 	f27rf*(fleici)  d(I)  
o ( 

e 
 1$ 

 -re 
 io

) 
 2 

1 	2ffp*4) e-210ei() 
= 27.  f 	14 -1-0 	2 " 

o (e e -r) 

27 1 	_ie 
f e f*(04-(p)e 

• 27 

=  2f2fflf*(0.i_c_f*(0)lei($-0) 
	 d$) 7 

o (ei(I) _ r)2 

and so we have 

I f 
t 
(Tel-6) N 1 

27 f2ff If*(0+$) - 1'4:01 	d(I) 
o % 	_ ri2 

270A) 

a 0  
0 

(1 I 	I 	2)  
o le 	- rl 

0 (f 14)1a  "  
o (1-r)24-(1)

2) 

If we put (I) = (1-r) tan 4) in the above integral, we get 

7/2  
Ifl(rei6)1 = 0 (1 (1-0-

,_1 
 tans dip) 

0 

= 0 (1-0(171 	(o<a<l) 	• 

Now 
1 	

ie 
V(f,0) = I If' re )Idr 

0 

 

 

4l 	1  , 
a 
 dr 

(1-r)-L  
(o<a<l) 

where K is a constant 

o (eiO r)2 



Let B(z) be a Blaschke product 

and hence 

V(f,0) < 0,,  for all values of 0. 

itr 

Theorem 2.4  Tudin [(1311,) 

given by bn 	z 
(2.2) 	B(z) = II 

n=1 	1 -bn z 

where  

bn  ' 

<1 and E(1-lbnI) < 

If 
CO 

(2.3) 	E 	(1-lbn1) log ( 	1 	) 	
< co 

n=1 	1-Ibd 

then 

27r V(B4O) de < OD 

0 

and hence  

V(B4O) 	< 	00 	a.e.. 

Proof: 	Consider 

g(z,b) 	b-z  
1-5z 

so that 

	

ge(z,b) 	1-1°2 
(1-Uz)2  

Now 

• 

00 CO 

log B(z) = E log bn + E log (g(z,bn)) . 
n=1 	b 	n=1 
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By differentiating we get 

Bt(z)  = 	gt (z,bn) 

B(z) n=1 s(z,bn)  

so that we have 

CO 

IB'(z)1 < 	E 	Ig1 (z,bn)1 
n=1 

and so 

	

2w 	 C'D 	1 2 R 

	

I 	IB'(pei°)Ipdpd0 <EffIg'(pei0bn 
 )1pdpd0 

p=o0=0 	 1 0 0 

	

= E 	fl 	f211- 1-1bn12 	pdpd0 . 

1 p=o 0=o 11-15nz12 

	

Let bn 
= lbn 	

= c
n
eic n so that 

1 2ff 
(1-cn

2
) 
	

pdpd0 

p=o 	0=o 
(P2C112-2PCn  COS(4)-0) + 1) 

<1-Ibn12) 	
1  

log 

lbnl
2 	

1-1bn12 

Now B(z) has no zeros at the origin and so we have 

b >o for all n. Also we can assume that o<lb1 
	2 1 < lb I < lb3 ( < —   

•••• <1bni .< Ibn+11 •••• 

Thug we get 

2ff 
1 

1 
ID= 0 	0 

B' peie)1 pdpd0 

00 
E 	(1-1bnl

2
) 	1  

log 
n=1 	lbn12 	

1-1b n12 



CO 

< 	K 	E {(1-1bn)) log 	1 	} 
n=1 	

1-lbnl 

where K is a constant. 

By hypothesis 

CO 

(1-lbni) log 	1  
n=1 	(1-1bni) 

and so we get 

2ff 
f 1131  

fl 	
(pe

10
)1 pdpd0 

p=o 0=o 

and so we have 

27r 
f V (B 4 O)de 
	

CO 

0=o 

so that 	V(B4 O) < 00 	a.e. 

and so the theorem is proved. 

Theorem 2.5 (Piranian [(10)4. There exists a Blaschke  

product  

B(z) =  II 	
b
n
-z 
 ) 	Ibnl  

n=1 1-Enz 	bn  

such that  

CO 

[(2.14) 	E (1-1bnI) log 	1 	= 
n=1 	1-lb I 

and ] 

2ff 

(2.5) f 
V(B4O)d0 = CO 

16 

CO 

CO 

an-zn Probf: 	First consider the function 
1-anzn' 

where 2-1/n<a<1. 
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We write an  = a and zn =c , and observe that for o<p<a, the 

maximum and minimum values of1-acI  on the circle 1C1=p are 

a+p 	a-p  and  li-ap 	1-ap , respectively. The difference between the two 

2p(1-a2) . 	 an-zn whose 2n 
moduli is 	Therefore the function i 

1-a2p2 	
_anzn  

points of maximum and minimum modulus on the circle 1z1=r 

separate each other maps that circle onto a curve of length 

greater than 2n 2rn (1-a: 2n

2 
 where o<r<a. 

1-a r 

The integral of this quantity taken over the interval 

3-1/n<r<a, is greater than kin(1-a) flog n (1-a)1, where ki  

is a constant independent of a and n. 

We now consider the Blaschke product. 

(2.6) 	B(z) = II aknk - znk 
k( 

	

	) , 
1-ak

"kznk 

where o<ak<1 and nk
top 	(kto.) . 

The product converges if 

Enk(1-ak) < 
co 

in particular if 

nk(1-ak)  = 	1  

k(log k)3/2 

k = 2,3,4 	 

From 

log(nk(1-ak)) = log nk  + log (1-ak) 

it follows that 

log (1-ak) 	log k - 3 log log k - log nk  
2 

and so we have 



E nk(1-ak) log 1
1_ak  

CO 

= 	= 	1 	{log k + 	log log k + log nk} k=2 k(log k)3/2 	2  

00 

> E 1 
k=2 	k,/log k 

00 

Thusthe Blaschke product defined by (2.6) satisfies the 

condition (2.14). We now want to prove that (2.5) is also true 

in this case. 

Let the sequenceinkl increase sufficiently fast so that 

we obtain disjoint intervals rk<r<ak  such that 

ak 2w  0 la (re )IrdOdr 
rk 

2 k(1-ak) I log nk(1-ak)I 

(where K2 is a constant independent of k) 

> K
2 1  

k(log k)2  

Therefore summing over all such intervals we get 

1 	2n  
I 	I IB' (rei  ) I rdedr 
0 	0 

co ak 	2n ! 0  > EIIIB -(re' )I rdedr 
k=2 rk o 

Thus (2.5) holds. 

This completes the proof of the theorem. 

18' 



(2.7) 1 
En lb 12  1 

n=1 n  

CO 
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Theorem 2.6, 	Let f(z) = z+a2 z2  + . . . be univalent in 

izl<1. Then 

V( f,0) < co, 

for almost all values of 0. 

Remark: 	We could consider this theorem as a corollary to 

Theorem 2.7. However we give the following proof as it is much 

simpler than that of Theorem 2.7. 

Proof: 	Consider 

1 g(z) = 	1 	= i + bo + b1z + b2
z2 + . . . 

f(z) 

Then g(z) is univalent in o<lzl<1, and therefore by the area 

theorem 	[(7), p. 3 I 
	

we have 

Now 

gT(z) = 	+ bl 	+ nb 
zn-1  

2b2z+ . . 	+ . . 
z 

and so 

2ff 	, 	2ff 
f IgT(re

i0
)1
2 

dO = 	f IgT(re
i0

)1IgT(re
i0

)1 de 
0 	 0 

00 

	

= 1 	n2110,1 12 r2n-2 

;4  n=1 

and so we have 



1 2 	 00 	1 

1 

- f f
.a. 
 Igi(rei0)1

2
rdedr = 	2 	E n lb 12 r2n ] 

21i 	 n  2 0 	 2 

4. 	nibill2 (1 	, 
2 	22n)  

1 2 

< co (by using (2.7)). 

By substituting the value of g(z) in terms of f(z) in the 

above result we have 

1 
I

ff 
Iff (rei())1 2  f 	rdOdr < 

1 	
o If (re

10)1 4  
00 

and so 

20 .  

(2.8) 
1  
f I 

2ff I ff(relp)12  dBdr < Co 

2  0 

If (reie). 

Now since f(z) is univalent in 1z1<1, it is of bounded 

characteristic and therefore for alMost all values of 0 ,[(3) p.411 

Lim f(rei°) = f(e10) 
r4-1- 

Let 

En = 	{06 [o,2Tr , If(re1C))1 	n (o‘r<1)1 

(n = 1,2,3,4 . . . • 

For sufficiently large n, m(En)>o. 



21' 

Clearly for all n, 

E
n 
C En+1 

and so 

Lim m(En) = m(U En
). 

n.4-.0 	n=1 

Now U E contains all 0 such that f(re
10) -+ a finite 

n=1 n  
limit as r-->-1-, and therefore 

00 
m(U E ) = 271.  
n=1 n  

Thus 

Lim m(En)=2ff. 
rico 

From (2.8) we obtain 

1 Ifl(reie)1 2  
1 f 	d0dr < 00 . 
i 	En 	If (rei0)I4  

I 
Since If(rei())1 .5 n for ,r<1 and Os En, therefore we have 

1 
I 	I If1(rei0)12  dOdr 	< 
1 En 2 

CO 

and so 

1 
f Iff(reie)12  dr 	< 
2 

00 

CO 

for almost all values of OeEn and for all n. 
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Now Lim m(E
n
) = 27 and ao we have 

1 
I Ift(reie)1 2 dr < 00 

for almost all values of 0(except perhaps those lying in a 

set of Lebesgue measure zero). 

Thus we have 

1 
li"(reie) 12  dr < 

- 	1 
2 

and so we get 

a. e . 

1 
If"(rei0) 12  dr < 	co 	a.e. 

0 

By Schwarz's inequality we get 

1 	1 
v(',e) = I 11"(reie)1 dr i   

(I 119(re e)1
2  dr)2  

0 0 	• 

Hence 

V(f10) 
	

CO 	 a. e . 

This proves the theorem. 

We shall now prove a result similar to that of Theorem 

2.6, when f(z) is p-valent in 1z1<1. Before proceeding to 

prove the theorem, we give the definition of p-valent functions, 

and state some earlier results concerning them, which will be 

required for our proof. 

Let f(z) be regular in U(1z1<l) and let n(w) be the number 

of roots in U of the equation f(z) = w. Let 

27r 1 P(R) = 	I n(Rei(1)) c14) 
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n 2Tr R 
. 

	

2 = 	l)) PdPd(i) W(R) = I P(P)dP 	- 	I 	I n(Pei 
0 	o 0 

The function f(z) is said to be mean p-valent in U 

[(7) p. 23] 	if p is a positive number, and 

(2.9) 	W(R).pR2 	(o<A< co) . 

00 
. 

Suppose that f(z) = E anzn 
is mean p-valent in Izi<1, 

and let 

	

M(r,f) = max 	If(z)1 	(o<r<l) 

and 

= max lav I 
v‘q 

Then 	[(7) p. 31 ] 

(2.10) 	M(r,f) < A(p) pp (1-r)-2P 

where o<r<1 	and [(7) p. 45] 

(2.11) jff If(reio)1
A 
de 2~r 

M(ro,f)X + pA I 	M(t,f)X dt 
ro 

where X>o,A = max (A, A2) and (o<r0<r<1). 
2 

If we further suppose that 2‘r<1, o<A42, then [(7), p.46] 

there exists p such that 2r-14p..< r and 

2ff 	. 	2 
(2.12) 	-1 	If t (Pel

0 
)1 	lf(Pe

i0
)1

X-2 dO 
2ff 
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pM(r,f)A 

A(1-r) 

Theorem 2.7. Let f(z) = E anz
n be p-valent in 1z1<1 i.e. 

n=o 
f(z) satisfies the condition (2.9). Then for almost all values  

of 0 (o<0210, 

1 
V(f,0) = I If'(re10)1dr < 

Proof: 	From (2.10) and (2.11), if we choose ro ' =1 we have 

2Tr  
21T 	f f (reie  )1 A  dO < M(1,f)X  

r 
+ 2p A rIA(P)11  p  (1-t)-2p , X dt 

2 

r 
= M(l.f)x + 2pA {A(p)p p1 	f (1-t) 	dt 

2 

m (1,f) + 201_ {11(P) pp}X  

1-2—  
(1-t)(  1) 
1-20. 

  

Therefore if o<X<1 , then 
2p 

CO 
• 

Lim 
r-+1- 

2 1 1.27w 	f If(reie) I X  del < 

0 

00 

which shows that f(re
10  i ) is of bounded characteristic and 

therefore Lim f(rei0) exists finitely for almost all values of 
r4.1- 

0(o404270. 



R 
JR(En

) = f 	dp flfl(pei0)1 dO 
2R-1 	En 

l<R< 1 . 

Let 

(2.13) 	En  = {06[0,27], 	If(reie)1.< n1 	(orK1) 

	

(n = 1,2,3,4 . 	). 

For sufficiently large n, m(En)>o. 

Clearly En C Eni-1 
for all n and so 

co 
Lim m(E ) = m(U En) n±co 	n 	n=1 

00 
Now U E contains all 0 such that f(re

10) 	a finite limit 
n=1 n  

as r-4-1-, and therefore 

00 
m(U E ) 	27 
n=1 n  

Thus 

Lim 111(E n) = 27 . 

Now consider the integral 

25 

By applying Schwarz's inequality to the inner integral we 

JR(En) < f dp 
2R-1 

(f1f1(pei0) 12  d0)1 	(m(E ))1  
n 	• 

E‘ 

get 

Now applying Schwarz's inequality to the outer integral we get 
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1 	R 

 

R 
(2.14)JR(En) 	(m(En))2 	(f 	dP)2(f dp fift(Pe°) 1 2  do)1. 

2R-1 	- 	E 2R-1 	n 

1 	i 	R 	 1 

	

= (m(En))2  (1-R)2 	( f 	dp 	flf'(peie)1 2 de)2  
2R-1 	En 

1-r From (2.12) there exists a 'po' 	o`1 
	such that 2 

(2.12)' 1 2ff 
flfl(p eie)1 2If(p

oe
ie)1 X-2 de 	8°1(  2 'f)  

o 	 X(1-r) 2Tr 

Now f(z) is mean p-valent in IzI<1  and therefore f(z) can 

have at most p zeros in IzI<1.  Let them be al'  a2, • . ak 

(k.<p)* lying in 1z1<r0<1, and suppose r>1 is chosen near enough 

to 1 so that 

la.1 	< ro < 2r-1 
	

(i=1,2,3....k). 

Again, 

{f(z)/(z-al) (z-a2) 	 z - ak  DA-2  

is analytic in 1z1<1, and so 

2 

	

f(z) 	X-2 
{fl(z)} 	{(z-al) 	 (z-ak)1  

is analytic in I z I <1, and so 

1  2 2n flfl(pei0)1

10) 12-A 	
Apei0 _all 

olf (pe  

 

IPe
10 -

ak112-A  de 

 

* Footnote: The following discussion includes the case when f(z) 
has no zeros at all in 1z1<1, mutatis mutandis.. 
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‘ 	
1 2ff 1 	1_0 1  

r  ID(Poe )1
o
ei0-a1I  	

i0 	2-A 
ipoe - 11 2ff 	 ak o If. (poe-  )1 

where ro‘2r - 1p‘r and p is chosen so that (2.12)' holds. 

Hence for such p, assuming o<A2, we have 

.1- 71- 1 1" (Pel-0 )1  

1.1 o If (Pei0)I 2-X  
dO 

1 {(14-a1
) 	 (1+ak) 2-A 

f Iff (Poe 10)1 	dO 
{(r0-al) 	 (ro-ak)12-X 	

0  if(p0
e1U)1

2-X  

(1+ak) 2-A 
4 	 p. 	(14-a

1
) 	 4- 

A 
(r0-al) . . . . (r0-ak) 

11-r  f)A  
2 '  

(1-r) 

K (1-r)-2pX-1 
	

(by using (2.10)), 

where 	K = K(p,X,p,f). 
1 When OcEn 	If(pei0  )1 n for o‘p<1, and so the above 

inequality gives 

I Ifl(pe1())1 2  dO 4 	n2-A  K(1-r)-2pX-1 

En 

for all p satisfying 

ro 	2r-1 	..p4r 	(and r<1). 

Thus we have 

r 
I dp 
2r-1 

n2-X K(1-r)-2PX iff(Pei())1 2  dO 
En 
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so that 

(2.15) 
	

( f 	dp Ilf'(pei0)1 2  d0 )2 45 n' 2  K(1-r) PX 	. 
2r-1 	En 

Now consider a sequence {NY of positive integers such that 

Rv+1 = 2Rv+2 -1; with R1 = 

so that 

1 1 Rv
2 + — 

2z  

 

1 = 1- 1 

2
v 

 

(v = 1, 2, 3,  	). 

Let 'm' be the smallest positive integer such that 

1 ro  <Rm  = 1- 21T1 , 

and so (2.15) is satisfied for 

r =Rv 	= m+1, m+2, 	 ). 

From (2.14) and (2.15) we have for v= m+1, m+2, 	 

JR 	(En) 4 K'(1-R )1-PX  

where KI=K'(n,K). 

Let a = 1-1DX and choose A so small that a>o, Then 

with this choice of A we have for v= m+1, m+2, 	 
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JR 	(En) 	‘ K' 2" 	(a>o). 

Hence for each integer n>o, 

00 

	

J 	(E ) 
v=m+1 Rv n 

which gives 

1 
I 	I Ift(peie)idedp < 

(1-1 ) En  

so that 

1 	i0 I Ift(pe ) Idp 
1-(1)m 

00 

for almost all values of OcEn 
and since Lim m(En) = 27f, we n+0 

have 

ilf 1 (pei())1dp < 00 	a.e. 
1-(1)m 

Hence 

1 
V(f,O) = f(ft(pei0)Idp < CO 	a.e. 

o 

00 

00 

This completes the proof of the theorem. 
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CHAPTER 3 

Tauberian conditions for absolute Abel summability  

We consider a function f(z) analytic in the unit disc U (1z1 <1) 

with V(f,0)<co for some 0, where as defined in (1.1) 

V(f,0) = I
1 
 I f'(re

i0  )Idr . 
0 

Let 

CO 

f(z) = E anz no 

n ( I z I <1) 

00 
so that in this case E anew  is summable IAI and therefore 

n=o 

summable A for those values of 0 for which V(f,0)<00. If 

further 

an  . 0 (171-1  ) , 

then by Littlewood's Tauberian condition [(5), p. 154] 

Ea ein0  is convergent. From Theorem 1.12 and Theorem 1.13 it 
n=on 	

i 

follows that as far as this conclusion is concerned, the 

condition an = 0 () cannot be weakened. 

Fejer's Tauberian condition [(4), p. 817 ] 	states that 

if for some 0 

E a  e 
 

(i) is summable A 
n=6 n 	

i 
 

and 
0. 

(ii) E nlan 
n=1 

E an
e in° is convergent. 

n=1 

CO 

then 	03 



• 
CO 
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In the next theorem we want to prove that like Littlewood's 

Tauberian conditon, Fejer's Tauberian condition is also best 

possible when E ane
in0  is summable IAI or even summable 

no 
00 

(IAI,n), where as defined by (1.4), E ane
in0 is said to be 

0 

summable (IAI,n) if 

1 r r2 
I f

1 
 f . 

.
In 1 

if(n) 
(r eie)ldr

'  dr2 '' . drn .0 0 0 	 0 	 1 

Theorem 3.1. 	Given any positive sequence {c r such that  c
n
+0 

00 	n 1  

(nl'oo), there exists a series E an  satisfying the following  
n=1 

conditions: 
00 

(i) 	E an n=1 
is divergent; 

00 
(ii) E n nlan12 < n=1 

c0 
ine. (iii) E a e 	is summable (IAI,2) for all 0. 

n=1 n  

Remarkl: 	For simplicity we have restricted ourselves to the 

case n=2. However it should be clear from the proof that the 

result is true in general, i.e. for (IAI,n), where n is a positive 

integer 

Proof: 	Let cn+o (n+oo) be such that 

(3.1) 	o < 1 < c < 1 	(nno). n 

We can find a sequence {dj} cc' d n+co (nt00), and a subsequence 

{N. .J1 }w  of positive integers such that 

CO 

6N• dN • < j=1 

CO 



E nk  

1 	 00 
k1 log(1 ) = 

(3.4) 

For example choose 

dn 
1/En  

 

log 1/ en' 

and then choose {N.} so that 

CO 

(3.2) 1  o
log (1 ) j =1 

6  Ni  

Now choose {n 	a subsemlence of {i1-. }such that klc=i 

(3.3) 
	

nk+1 
	

3nk 
	(k = 1,2,3...). 

From (3.2) we get 

OD 
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For large n, define m(n) to be the smallest positive 

integer such that 

1 	1  
1 1  (n=1,2,3...) 

m(n) 	log (1 n en  
n 

which gives 

(3.5) 	1  < 1 1- log 11 	< 	1  
n E

n 	
En  m(n) 	 m(n)-1 

• 

By using the inequality (3.1) we get 

	 4  1 In log In 	o (n4-co) 

m(n) 

so that 

(3.6) 	m(n) 	co 	(n÷cc.). 

Also since m(n) is the smallest positive integer satisfying 

the inequality (3.5) we must have 

(3. 7) 
	

m(n) . < n. 
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Let mk be defined as m(nk), and so for the sequence 

'{nk} we have 

(3.5)' 1 < 1 	1 	log (1  ) <  1  
nk (6;1 ) k 	mk 

(3.6)' 	mk  -4- CO 
	

(k÷o.) 	, 

(3.7) , 	mk < nk 

Now consider the nth Fejer polynomial 

fn(z) = 1 	z 	zn-1 

n-1 " • • 1 

z  zn+2 z2n 

1 	2 

If z = e10, then 

z-nfn(z) = - 2i(sin 0 + sin220 + . . 	
sin n 0) 

n 

and so by a known result 	[(1), p. 91 I 

(3.8) 	Ifn(z)1 < K (1z1=1), (n=1,2,3...) 

for some constant K. By the maximum modulus principle, 

Ifn(z)1 < K 	n=1,2,3...) . 

For convenience we define f (z) E o. Now for n = 1,2 ..., 

m=1,2...n, let us define 

n-m 
Fn,m(z) = 1  + 

z 	z 	2 

	

+ 	+ . . . + z  n n-1 n-2 	m 

zn+m zn+m+1 . . . 	z2n —  m -  m+1 	n 

n-m+1 

	

= Fn(z) - z 	Fm-1 (z) 

where for m=1, Fm-1(Z) E O. 

• 
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We have from (3.8) that 

IFnm(z)I < 2K 

for (1z1<1), (n=1,2,3....; m=1,2,3 ....n). 	In particular 

for the sequence {nk} we have 

(3.9) 	iFn 	(z)I < 2K 
k' mk 

for (1z1<l),  (k=1,2,3....). 

Define 

(3.10) 

nk z Fn m (z)  k, k 
f(z) = E 	= an  

k=1 log (i_ ) 
nk  

where mk, nk  satisfy (3.3), (3.4), (3.5 ) (3.6 ) and (3.7)1. 
nk  

Now the degree of the polynomial z Fnk,mktl  is 3nk,  and the 

least degree of the non zero terms in 	z 	- Fn 	m . (z) is  k+1 k+1 
nk+1 and since, by (3.3) 

nk+1 > 	3nk 
	(k = 1,2,3...), 

it follows that there is no overlap among the terms in the 

above sum for f(z). 

Proof of (i)., 	Let 

n 
Sn = E ak k=o 

and then considering the definition of Fnk,mic(z) we have 

- 
S2nk mk 	

S n
k-1 

1
k 
 1 — 	+ • . . • n 

1 
log nk) 
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Now since m., nk 	co as k -4- 00, we have 

(3.11) 1 +  1 
nk 	nk-1 

 

log nk  

mk • 

 

Also from (3.5)' we have 

	

log nk 	log 1-1  1-,  log (-)1 	log nk 
e 

	

mk 	n 	nk 
mk-1  

and so 

log nk .< log 
	

1 	+ log log 1 	log nk 

	

mk 
	 e

n 	
enk 	m -1  

so that when k.4-co, since En- 001Are have k k' k 

(3.12) 	log nk 	log 1 

mk k 
• 

Thus, from (3.11) and (3.12), we obtain for large k 

1 

	

... 1

k 
> 	log -- nk n 1 + -1 	m 

k • 	nk 

and so we have for large values of k 

S2nk-mk 
	

Sn -1 	2 

00 
Hence 	E a diverges. 

1 n  

Proof of (ii)  

We know that an=o except when 

(nk n-f.3nk) 
	

(k=1,2,3 ...), 

and 

e3nk 
<e 	(since en4,o) nk 

so that we have, 
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E nen  lan 12 = 

n=o 	k=1 	{ 	
nenlan1

nkfn3nk 

CO 

< e 	6nk 	1 	1 
k
:
1 	

nk{11-2 + • • • T72f _ 

	

(log 1 )2 	k 	k 
en 

Co 	k 
< E 	6 _ 	K_I 121. 	f1  - 1  1 k=1 	____ 

	

(log 1 )2 Lmk 	nkJ  
e
nk 

CO 

E 	6K  
k=1 	(log 1 ) 
	

(by using (3.5)1 ) 
6.1-1
k 

• co 	 (by using (3.4)) 

Hence 
CO 

E n 
n=o 

Proof of (iii) 

From (3.10) we have 

Hence 

CO 

ft(z) = E 
k=1 

n1 	nk  
nkz 	Fnk,mk(z) + z Fn k 	(Z) 

log( 1   ) 
'nk  

co 
f"  (z) = E 	1 	(nk_ 2 )F  

k=1 

	

	nk(nk.-1) 	nk'mk
() 

log(61  ) 
nk  

nk_i Fn ' 	 nk 	(z)} 21kz kA mk (z..)  + z Fn
k 	

m
k 

Now, since 
Fn

k ,Mk (z) is a polynomial of degree 2n bounded 

by 2K in 1z1<1 (from (3.9)), we have by Bernstein's Theorem, 

[(1), p. 35 ] that 

(3.11)1 	10' nk'mk (z)1 < 4Knk(lzEl) . 

Therefore F'nk,mk(z) is a polynomial of degree (2nk-1) bounded in 

IzI<l 

(for some constant K) 

2 
En an 	OD 
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by n 
- k

K, and so it follows again from Bernstein's Theorem, 

that 

(3.12) 	IFn 	
'm

(z)I 	< 241-Cnk(2nk- 1) (Izi<l). 
k 	k 

 

1 
Thus for o;:r<1 we have by using (3.11) and (3.12) that, for 

all values of 0 

2 
If"(re

i0)1< E 	frik(nk7i)r
nk- 

k=1 log (2-1.- ) 
En 

k-1 kl 
+ 	2flk

.2nk  r 
	+

k(2nk-1)r s 

and therefore for o<p<1 we have, 

flf"(re10) I dr < 	
E° 	2K 	P n

k  P 

o 	k=1 log (]„- 	) 
n
k 

+ linkp
nk 
 + 2nk (2flk-1) p 

nlc+11 

-fl +1 
k 

n- 	n-1 	nk-1 
< 	E 	In p k 

	

k 	k 
2K 	 k 

1 	+ LInp 	+ ilnp 
k=1 	log (7:— ) 

k 
brik  

= E 18K
kp

nk-1  

k=1 	1 log (,--) 
nk  

so that 

00 

fl  IPlf"(rei°)Idr dp . < 	E 	18K  
0 o 	k=1 (1 

log.krH
k 

< 	(by (3.4)). 

Thus we have 

1 
I 	rif"(re

ie)Idr dp 
0 0 

(for all values of 0). 
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Therefore E ane
in° is summable (IA!, 2) for all values of 0. 

n=o 

Remark 2: We notice that if in the above theorem we make 

the substitution 

1 = 4)(n) , 

we get a positive sequence ¢(n)tco (n+°) with gn) < i/n and it 

follows from (3.10) that 

lan I ‘ 1 	1 

loggnk) mk 
n k  

k = 1,2,3.... 

and an 
= o for all other values of n. 

By using the relation (3.5) we get 

gnk) 	34)(nk) 
nk 	3nk  

where 	nk<n<3nk  

so that 

lanl < 34(n)  (nk<n<3nk) 

and so we have in this case 

an = 0 ((n))  
) 

Thus the above condition together with (i) and (ii) shows 

that Littlewood's Tauberian condition is also best possible when 

Ea ein0 is summable (IAI,n). 

00 
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Remark 3: In theproofof Theorem 3.1 one might, of course, consider 

an example of the kind introduced by Kennedy and SZLisz in the 

proof of their theorem, i.e. Theorem 1.13. However it would 

appear that when one does this, difficulties arise in dealing 

with the higher derivatives. 

This example, in order to shoW that given 4.(n)1-90 (n-hx), 

an=0 ((P(n))  (n÷.) is not a Tauberian condition for summability 

IAI, is the following 

, 	, k2 fk2ni,c ri.ok2  +1)nkr 

-k2{(k2+1)nk r1/4(k24-2)nk} 
n 

0 for all other values of k 

where {nk
} is a sequence of positive integers such that 

Cnk)>k2  • 

That this example satisfies the requirements follows from 

observing that Ear, diverges, f(z) is bounded, and f(x) increases 

with x for b <x <a. 

a
n 



00 
unless f(z)Eo. In other words Eane

in0 is summable A for almost 
0 

all values of 0. But as we shall see later, for almost all 

140 

CHAPTER 4  

Almost everywhere non-summability IAI  

Suppose that 

( 14. 1) 
CO 

f(z) = E anzn  0 
(1 z 1<l) 

is analytic and bounded in the unit disc U = (1z1<1), and as 

defined by (1.1) 

1 
(14.2) 	V(f,0) = 	f If'(re10)1dr. 

0 

By Fatou's Theorem [ (3), p. 17 	], in this case 

Lim f(rei0) exists and is nonzero for almost all values of 0, 
r+1- 

CO 

values of 0, 	Ea ein0 may not be summable lAl. By definition 
o n 	co 

V(f,0) = co at all points where Ea ne
in0 is not summableI Al.  

In this chapter we shall consider various classes of 

functions defined by (4.1) such that V(f, 0) = co for almost all 

values of 0. 

Mergelyan [ (9) 	] proved that there exists a 

function f(z), analytic and bounded in 1z1<1,such that 

1 	21.1. 
I 	f (re

i0)Irdedr = co 
_r=o 0 r..0 

and by using (4.2), the above result takes the form 

2ir 
I V(f,0) de = 
0 

Rudin [ (13) 	] has proved a proposition stronger 

than Mergelyan's, namely, that there exists a function f(z), 



analytic and bounded in 1z1<1  and continuous in 1z1<1 such 

that V(f,0) = co for almost all O. In order to prove this 

result, Rudin first constructs a function F(z) analytic and 

bounded in 1z1<1, such that for almost all e 

2ff 

	

V(F,O) < co and 
	

S ,V(F,O)d0 = co , 
0 

and then obtains the required function in the form 

CO 

	

f(z) = E 	CkF(znk) 
k=1 

where'{nk} is some sequence of positive integers and {ck} is 
00 

some sequence of positive numbers such that Eck < 00 
k=1 

Both Mergelyan's and Rudin's arguments involve non- 

constructive steps and it was Piranian j (10)) 

who first gave two explcit constructions that prove Mergelyan's 

result. They are however inadequate to prove Rudin's result. 

We are going to construct a class of functions f(Z) E H°°  

(1z1<1) for which Rudin's Theorem 1.9 and Theorem 1.10 hold. 

Suppose that f(z) is analytic and bounded in the unit disc 

U (1z1<l). i.e. feH
00 
 . If the Taylor series for f(z) is 

absolutely convergent on Iz1=1, then by Theorem 2.1 V(f,0) < 00 

for all values of O. Thus if one wishes V(f,0) to be infinite 
CO 

0 
from this is that we cannot have V(f,0) = for some 0 and any 

fee such that the series for f(z) has Hadamard gaps. It is in 

fact well known that such an fee if and only if its Taylor 

series converges absolutely on (z; <1. 

The lacunary nature of a series with Hadamard gaps usually 

means that its behaviour and those of its derivatives can be 

relatively easily estimated, so that in looking for particular 

for some 0, where feH
00

then we must have E lan1 =co where 00 	 n=o 
f(z) = E an

znOzl<11 One consequence that follows immediately 
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examples, as in the situation we are considering, one tends 

first of all to find examples with Hadamard gaps if this is 

not excluded by general considerations. However, such 

considerations as above, exclude the use of such series in this 

case. 

However, one can easily find anfEH°  for which V(f,0) = 00 

for some 0. All we have to do is to take f(z) to be a Blaschke 

product whose zeros are sparse and lie on the ray arg z = 0. 

In this case Lim f(rei°) will not exist and so flIf T(reie)ldr, 
r4.1- 

which is the length of theimageof[ci,eie) by f(z), must be 

infinite. It is clear that we can also find .a Blaschke product 

f(z) so that V(f,0v)= 00 where 01, 02„.0v),..nOn  are given real 

numbers in [o, 27]. With a little bit more work one sees that 

one can do the same thing for any given countable set 

{01' 02' . . 0n 
If one wishes to find an f6e)  for which V(f,0) =00 for 0 

in an uncountable set it appears that one has now to consider 

very much more sophisticated approaches to the problem. These 

lead in fact to functions in H`")  for which V(f,0) = 00 for 

almost all O. 

The functions we are going to consider will in fact have 

one sided gaps and they are similar to those considered by 

Clunie [ (2)] . 

Let fo  (z).go  (z)=1 and suppose fn(z) and gn
(z) have been 

defined. We assume {nn  }c° is a decreasingsequence of positive 

numbers such that 

(14.3) 
CO 

E 
1 n  

00 
E 	< 	. 
1 n

2 
co 

*This condition is not essential for the proof of the theorem, 
but we assume it in order to simplify the arguments. 
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v n 1 
r is an increasing sequence of positive integers such 

that 

(4.4) 

so that 

n 
v1=1 ' n+1 	>> 	E vk k=1 

n 
E v  

k=1 	o 	(n 	c()) 

vn+1 

Define 

fn+1(z) = fn
(z) 	n e  n+1 z  n+1 

6-
n(z)  

n+1  

(4.5) 
f (z) + ei(Pn+1 zvn+1 

gn+1(°  = -11n+1 n 	
g
n(z), 

  

where l(Prill is an arbitrary real sequence. 

For no it follows that, on 1z1=-1, we have 

2 = (14.nn+12)( I fn(z)12 	
(
gn(z)12)  

I fn+1(z)12 	I gn+1(z)I 

Hence for nao, we have on Izl= 1 

2 
1, 	,.. (4.6) 	Ifn+1(z)

I2 4. 	
len1‘

( )̀12 = 2(1+T4_ 	)(1-1-n
2
) 	(i+nn+1)  

of0 12 	i g0(2 = 2, by construction). 

CO 

Since E fl 
2 

< 00 	(by (4.3)), the right-hand side of (4.6) 
1 k 

istoundedfcrall n?-o, by a number which is independent of {via} and 

From the construction it also follows that the degree of 

fn(z) is at most (v1.2 	 vn
). It is also apparent that 

v  the terms of 1114.1e i(Pn+1  z  11+1  gn(z) are all of degree at least 

vn+1 and since by (4.4) E vk << vn+1 	it follows that fn4.1(z) 
k=1 

is obtained from fn
(z) by adding on terms of degrees higher than 
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vn+1 
that of fn(z) itself, i.e. fn

(z) and z 	gn(z) have no terms 

of common index with respect to the dependence on z and from 

(4.6) fn(z) is bounded for all no in 1z11. Thus we see that 

(4.7) 	fn(z) 	f(z) 	(n 	00), 

where fcH
00 
 , the convergence being locally uniform in 1z1<1. 

It also follows from (4.6) that the bound for f(z) is independent 

of the sequences {vn} and {(f)11} and depends only on the 

sequence'innl. Clearly we have 

(4.8) 	f(z) . 1 i-Ene j-k+1 zvk+1 g(z) 
k=o kfl 

so that f(z) is analytic and bounded in lzki and therefore 

by Fatou's theorem Lim f(re
i0) exists and is nonzero for 

r÷1- 
almost all values of 0. Let 

(4.9) 	Ef 	
{0: Lim 	f(reie) f o} 

rl- 

so that 	m(Ef) = 2ff, 

We write 

kn 
z = Fn(z) 

(4.10) kn 	1  
z 	gn(-E) = Gn(z) 

where lkn
1 is a sequence of positive integers to be specified 

later, with ko=o, so that Go(z)EF0(z)=1. 

From (4.10) we have 

(kn+i-kn) F tz  
F 	= z 	n‘

%  
I  

(kn+1 - kn - vn+1
) 

e/1+1  z 	Gn(z) n+1 

, 



(kn+1-kn)  
Gn+1(z)  =- n+1 z 	Fn(z) 

+ eiq'n+1 e
(k n+1-kn-vn+1) G(z) n  

Now we choose'{kn} so that 
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kn+1-kn = vn+1 
(n=0,1,2 

• 

Clearly kn  = v1+ v2+ ... vn, so that Fn(z) and Gn(z) are 

polynomials and we have 

Fn+1(z)  = n+ ei(l)n+1  Gn(z) + zn+1  Fn(z) 

(4.11) 
eic)n+1 G (z) - n+1 zn+1  Fn(z) Gn+1(z) = 

and so on Iz1=1, 

IFn+1 (z)I 2  + IGn+1 	rin+1In (z)I2  = (1+  	)( F (z)I 2 	IG (z)I2) 

= 	2(141121) (1+11
2) 	(1+111214.1) . 2 

Since E fl 
2 

< 0° 	by the maximum modulus principle 
k=1 k 

Fn+1(z) and Gn+1(z) 
 are bounded by M (say) in 1z1..4 for 1-1.1 

and since (vk 
satisfies (4.4), by an argument similar to the 

one used before, zvn+1 Fn(z) and G (z) have no terms of common 

index with respect to the dependence on z. So we get 

Gn(z) 	G(z) (ew), 

where GcH
co 
 , the convergence being locally uniform in 1z1<1 

since E n,2 < 	, and by Fatou's Theorem Lim G(rei0) exists 
k=1 	• 	 r÷1- 

and is non zero for almost all values of 0 . i.e. if 

00 

co 
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(4.12) 	EG = .{8: Lim 	G(rei()) I o} 
r+1- 

then 

m(EG) = 2Tr 

Clearly the bounds for fn(z) 	gn(z) 	Fn(z) 	and Gn(z) 

are all independent of {(I)n} , and therefore to avoid unnecessary 

calculations, let us choose (1)n  = o for all n, so that 

fn+1(z) = fn(z) + nn+1 z
n+1 gn(z) 

(4.13) 

gn+1(z) =-11n+1n f  (z) 	
v 
z
n+1 g (z) 

F +1 (z) = rin+1 Gn(z) + z
n+1 Fn(z) n 

(4.14) 

Gn+1(z) = Gn(z) -nn+1 z
n+1F

n(z) • 

Then 

f(z) = 1+ E zk+1 g (z) --- 
k=o 1(4'1  

(4.15) 
k+1 

G(z) = 1-  E nk+1 v z 	
Fk(z) 	• 

k=o 

From the construction of Fn(z)'and Gn(z) we also have on 

1z1=1, say at z=e P 

Ifn(e-ie)1 = 1Fn(ei())1 	< M ( for all n) 

(4.16) 

ign 
	1 = IGn(e10)1 < M (for all n) 

After this preliminary discussion we shall prove the 

following two lemmas. 
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Lemma 4.1. Let OcEG, where EG   has been defined by (4.12). 

Then there exists a positive integer  no=n0(0), and a c(0)>o 

such that 

Ig.(re-10)1 > c(0)?0., 

-2 ft+1 
where n>no  and e  

Proof: We know that for OcEG' 

Lim G(rele) = G(eie)f o. 
r÷1- 

Suppose that 

(4.17) 	1G(e10 )1 = 2P, (0)>o. 

There then exists a value r o  =ro  (0), such that 

(4.18 ) 	icl (re10)1 
	

(ro<r<l). 

From (4.15) we have 

v, 
IG(z)-Gn(z)I 	flk 	iz - Fk_i  ( z ) 1 	z <1 ) 

k=n+l 

From (4.16), 1Fn(z)14M (1z1 <l) for all n, and by (4.3) 

o<nk+1 " 471 (1..1). Hence for o‘r<1, from (4.14) and (4.15), 

co 
1G(reie) - Gn(rei0)1 4 nn+1 M 

	E rvk  . 
k=n+1 

-1tVn 1 Take r = e 	and then 

co 	-vk  

1G(reie) Gn(re
10)1 n+1 k=n+1 v

n.4.1 

o - (n-4-co) 

since vk+1 >> vk for all k and nk 	
(k÷ co). 
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Therefore, from (4.18), it follows that for a given Os EG  and 

for all" large 'n' we have 

-1 

(4.19) 	IGn(e vn+1 e10 )1 	(0)/2 . 

Now Gn(z) is a polynomial of degree (v1 + v2 + 	vn 

bounded by M in lzkl, therefore by Bernstein's Theorem 

IGns(z)I,M (v1  + v 2   vn ) 	 ( Iz(<l). 

Since Gn(z) is analytic in Izi<1, we have for o<r<l, 

10 
Gn(e5-0)- Gn(rei0) = fe  G'n(O dz; 

re3_0  

so that for o<r<1 and for all n 

IGn (ei0 ) 	Gn(rei0)1 	M(1-r)(vi  + v2  + 	 vn). 

Consider now ChEG  and those n for which (4.19) holds, and 
-1/vn+1 . take r=e 	in the preceding inequality. This gives 

-1 

IGn(e10) - Gn(e-v
n+1 e10)1 

-1 

;.‹ M(1-e vn+1)(v, + v2 + 	 vn) 

M1 + V 2  + 	 vn  

n+1 



and so for all large n, n>ni(0) say, we find from (4.19) 

that 

(4.20) 	IGn (e10 ) S((0-), 	. 
4 

Now from (4.16) it follows that for ee EG  and n>nl' 

(4.21) 
	

Ign(610)1 = I Gn(e10)I • 	13 (0)  

Again, since gn(z) is a polynomial of degree 

(V
1 
+ v

2 
+ 	 n) and bounded by M in 1z1.<1 , 

therefore by an argument similar to the one used for Gn(z) 

to obtain (4.20) from (4.19), we conclude 
	

from (4.21)that 

there exists a positive integer no>n such that for all n:no 

-2 

and e-vn+1.<1, < 1 

gn(re-10) i 	13(80)  > 0 

where 
	OEE

G 

49 , 

cont/.... 



Writing 

c (0) = 13(0) 
8 	' 
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for 0 CEG, and for all 1-1.n.o, where no  is a-positive integer 

we get 

1 gn(re40)1 	c(0) >0. 

This proves the lemma. 

Lemma4.2 Let f(z) be defined by (4.8) and we assume in addition 

to conditions (4.3) and (4.4) that 

v + v
2 + 	

vn = 0 ln+1) (r1-"3).  

 

vn+1 

If OCEG  where EG is defined by (4.12) then there exists a 

positive integer  No=N0(0) and a d(0)>o such that  

e-1/vn+1 
I 	 If'(re-i 0  )1 dr >. d(C))  nn+1 	(nNo) . 

e-2/vn+1 

Proof: 	From (4.8) we have 

co  
f(z) = 1+ k-E n1 'k+1 

zvk+1 
 gk`zi (1 zl <1). 

By differentiating we get 

-1 	vk+1 	(z)) 
co 

zyk+1 	g  (z) + z 	g k fl(z)  = 	nk+1 (vk+1 k=1 
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n-1 . k+1 	k+1-1  

= 
nk+1 (vk+1 z 	

gk(z) + z 	
glk(z)) 

k=1 

	

vn+1-1 	
vn+1 

▪ (n114.1 vn+1 	
g
n
(z)) + n+1 z 	gn1(z)) 

co 	vk+1  

• E 	ilk+1 (vk+1 z 	g (z) + z
vk+1 g' (z)), 

k=n+1 

where n is a positive integer satisfying n>no  with no  as specified 

in Lemma 4.1. 

Let z=re-10  where o<r<1, so that 

f'(re-i0)=,  

 
ri-.1 	- vi0)k+1 -1 

	-i0 	-i0vk+1 
__.. 

k+1 k+1 k=1 g' (re-i0)1 k 

v -1 
+[{nn+ivn+1(re-10) n+1 	gn(re-i0)]  

v)n+1 g  +1 nn+1(re- 
i0 	

n'(re-i0)] 

ek+1 
E 	nk+1  {vk+l(re

-i0) 	gk(re
-i0)+ (re-i  ). 	 

k=n+1
glk(r 

e
-i0) 

1 

= T1 + T2 + T3  + T4  4 (say) 

Since gk(z) is a polynomial of degree vi+v2  + 	vk  

bounded by M inl 1<1, we have 

Fi gk(z ) 1 s m, 

(4.1)!  

Igkt(z)l< M (vi+v2  + 	vk) (By Bernstein's Theorem) 

< Mvk+1 
(from (4.4D) 

wherelzl<1, k = 1,2,3,.... . 

vk+1-1  



n-i 

=  k1 nk+1 = 

-2(9  )— k+1 
v , e n+.1. 	e 

vn+1 

v k+1 
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Now we have 

IT, 1 < 
n-1 

k1 nk+1 = 
k+1 	11-  

rvk+1-1 1,
5'10, 
(:i0)1 	rvk+1,g  

k'(re-ie)I 

By using (4.21)'we get 

n-1 	v1(4.1-1 
1T11 	< 	E k+1k+1 r k=1: 

(o<r<l) 

so that 

e-1/-tYn+1 n-1 	v1,4.1 	
1 

e 
f IT1 	nk+1 	 1 dr < 	E 2M 	 rg'-' -  

-2/v 	k=1 	-- 
e 	n+1 	 e 

2/vn+1 

n-1 	k+1vk+1 	= 2M 	nk+1 	(1- evn+1). k=1 	vn+1 
e 

Now k<n, so that by (4.4) 
vk+1 << vn+1 ' 

so that 
-1/v n+1 

f IT 	
n-
E
1 

nk+1 v
k+1  (1+0( k+1)) 4 1Idr 	2M 

k=1 	-vn+1 	• vn+1  
-2/vn+1 e  

Again 

	

	by (4.3), since Ink} is a positive decreasing 

sequence, therefore o<ri,,<n for all k. Thus we get 
1 

k=1 	n+1 
e-2 tvn+1 

e-14)  n+1 n-1 	.v. 
f IT1Idr 	

E 	(vic+1) 
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MI 	-v1. 4 v2 4--"n 
vn+1 

	

= 	(nn+1) 	(n÷c0) 

since by the assumption of the lemma 

v1 4. v2 
+ n 

= °(nn+1) (r14-c).  

 

n+1 

Hence 

-1/v n+1 e 
I 1T11 dr =o(n 	) n+1 

e
-2/vn+1 

(n--)-00) 

We have 

- 	t 
1T21 = n n+1 r v

n+1-1 v

n+1 I gn(reie  )1. 

-2 

We now suppose that eeEG  and e -Vn+1 <r<1, so that by Lemma4.1 

since we are assuming n>no, 

Ign(re-ie)I3 c(0)>o 
	

(n3no) 

and therefore 

e-1/vn+1 
(4.22) 	I IT 

2
I dr 

-2/v e 	n+ 

-c(0) (e-1 	e-2)nn+1 (n3no) 

c(0)  
"n+1 
	(n 3no) 

12 



Again 

v  i0,n+1 gnt(re-10)1 IT3I = Inn+1(re- ) 

v
n+1 n ,r 

n+.1. M(v1 	v2 vn) (By (14.21)') 

vn+1-1  nn+1 r 	M(v1 +v2 + ....vn
) (r<1), 

so that 

514 

e-1/vn+i 
I IT

3
1 dr < mnn+1 (V1 I-  v2 	vn)  

v r  n+1 
-14)  
e n+1 

    

n+1 

   

-21 
e 	n+1 

   

-2/vn+1 
e 

 

    

N I 4. v 	. Nn  M 	
.

n
-1-2 

n+1 	(e -e ) 
vn+1 

= o (nn+1) 	 (n÷00) . 

Now 
co 	vk+1-1 Igk(re-i0)1 

1r214 1 	< k=n+1 Tik+1 .ivk+1 r  

vk+1 + r 	14 (re-10)1} 

From (4.21) we obtain 

co 	vk+1-1 n 	r 	(vk+1M + ryk+1 M) 
k=n+1 

co 	vk+1-1 

< 	nk+1 r  
k=n+1 

2M 	(o<r<1), 

so that 



e-1/ vn+1 

IT I 	dr < 2M 	n
k+1 

	

-2/v .1._ 	k=n+1 
e 	n 1  

 

-1/v n+i  
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rvk+1 
e 

e
-2/vn+1 

 

   

CO 

2M E  nk+1 
k=n+1 

vk+1 	vk+1 

e v n+1- -e v n+1 

  

Co 	.v
k+1 	

v
k+1 

2M E  nk+1 -Vn+1 
..-v 

n+1, 
= 

k=n+1 	e 	(1-e 	) 

In this case k>n, so that vni.1 < vic4.1  and therefore vk+1  
(v 

n+1)> 
 1. 

We shall therefore get for all such k 

vk+1  
vn+i 

(
vk1) > 1, 

e 	k._vn+1 

and so 

vk1  

o<e 
Vn+1 

and 

	

-vk+1 
	v

n+1 

	

e n+1 
	vk+1 

• 

Thus we obtain 

-1/vn+1 
e 

 

f IT 4 I dr < 

e-
i  
n+1 

CO 

2M E  nk+1 k=n+l 
vn+1  
vk+1 

We know that 

Vk 0  
v
k+1 

(k->. co) . 

Let 



-2/v 
e 	n+1  

-1/vn+1 e 
IT4Idr< 2M nn+1 (a  4- a

2 	
a
3 	.... ) 

-1/v n+1 
-e 

f IT4Idr 	ZM n n+1 
-2/v 
e 	n+1 

00 

E 	 +1 
k=n+1 v

k+1 
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.1) k < 	a <1, 	(k>n) 

k +1 

so that 

vn+1 
v
n+2 

< a 

vn+1 = vn+1 vn+2 	a2 -1 

v114.3 	vn.1.2 v114.3 

vn+1 _ 
vn+1 
	v

n+2 . 	. vn+k1 	a k -1 

vn+k vn+2 vn+3 	
vn+k 

Again since {flk}is a positive decreasing sequence we 

have 

nk+1 — 
< n+1 for all k>n 

Hence 

= 21v1, 
.a 

   

1-a n+1 • 

Now a can be chosen so that it tends to zero as n-'- since 

vn+1 o 	 (r1.--"°) vn+2 

so that 
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2E2 n  

1-a 	11+1  

o(flni-1) 
	

(n.4.c.°) 

We have now obtained 

-1/vn+1 	-1/vn+1 	-1/vn+1 e 	 e 	 e 
I IT1Idr 	+ 	f IT2 1dr 	+ 	f IT3 Idr 

e 
2/v 	 e-2/Vn+1 n+1 	 e

-2/vn+1 

(4.23) 

0(nni-1) 

Therefore there exists a positive number N1, such that 

e-1/vn+1 
I (1T11 + IT31 + 1T41)dr 

e 
-2/ vni.a  

c(0)11n+1 
24 

(n N ) 1 

Thus 

e 
-1/ v 	

e 	e 
-1/v n+1 	-1/v n+1 	 n+1 

I Ift(re
-i°

) dr > I IT2 I dr- f 	(1T11 + 1T31 + 1T41) dr 
/v 	v 

e-2/) n+1 	 e-2 n+1 	e-2/  n+1  

c(e)  
24 nn+1 

for all n>,max (no ,N1) = No(say) 	. 
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Writing 

d(0) = c(0) , we have 
24 

e-1/vn+1 

(4.24) 	f Ift(re-ie) Idr 	(0)n 'n+1 	(nNo) 

-2/vn+1• e  

where d(0)>0. 

This proves the lemma. 

Theorem 4.1: 	Let f(z) be defined by (4.8). Then  

under the assumption of Lemma 4.2 

Illf '(reit) )I dr 	CO 

0 

for all values of 0, except perhaps those lying in a set of 

Lebesgue measure zero. 

Proof: 	Suppose OEG  and I\Ti\To=No((p), where N0 is defined in 

Lemma 14.2. Then by Lemma 4-.2 

-1/v n+1 

I Ife(re-14)1  dr % d(Orin+, 	(n>-N0) 

e  

where d(Wo. 

Since m(EG) = 271.  (by (4.12)), the above result is true for 

almost all values of (P. If we write 	0, we obtain 

e-1/vn+l 

	

f Ift(re1e)1 dr 3  d' (°)TIn+1 	( /1.1\1 1 ) 

-2/ vn+1 



• CO 

CO 

filf'(re10)1 	E 
o 	n=No 

e-1/vn+1  

I Ift(reie)ldr 

where d'(0) = d(-0),1\1j)(0) = No(-0) and the above result is 

true for almost all values of 0. 

We deduce that for almost all values of 0, 

e-1/vn+1 

E flf'(rei0)1dr 	d'(0) E n.Nin+1. 
n=N' 

0 
-2A114.1  

e 

CO 

But by (4.3), we know that N.] 1 n i-n =1- and therefore 11=  

n= 	
= 

nn+1 1\1' 

Hence for almost all values of 0 

e 
E 	I Ift(re10)Idr 

n=N" 

-2/ e vn+1 

Clearly 
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-11\)n+1 

e
-2/vn+1 

CO 	 • 

Thus for almost all values of 0, 

filft(re
Jo)Idr 

0 

This completes the proof of the theorem. 



60 

Now we want to construct a function H(z) which is 

analytic in 1z1<1 and continuous in 1z1<1, and for which the 

result of the preceding theorem holds true. 

From (4.5) we have 

1 
(4.25) fn+1(z) = 1 + E nk+1 

z k(z) k=o 

Let {X }l {1.1 n }1  be sequences of positive integers such  

that for all n, 

co 	Pn 
(4.25)T Xn+1 	Pn > n > n and 	E 	E k+1 n=1 An 

CO 

Let {c n1  lw  be a decreasing sequence of positive numbers 

chosen sb that 

(4.26) 
co 
E n  n=1 

00 

and 

P n 

	

(4.27) 	E en E k+1 
= co 

n=1 n 

We now consider 

00 	Pn 	vk+1 

	

(4.28) 	--gz) = E en{E  nk+lz 	g (z)} k 	1  
n=1 	Xn 

where the vk have been chosen to satisfy the following conditien(4.4: 

(and-  hence -(4.4)). 

	

(4.4)1 	v1  v2 	. . . . 
vp+1 	P  = ° (eNqp+1)  (XN9f-PN'N-"°) 
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Since by (4.6) and (4.25) for all n, 1+Z'flk+lz
vk+1 
 gk(0) k=o 

is bounded for 1z1<1, we deduce that for all 11.1, 

v
k+1 gk

(z) is bounded by k (say) for Iz1<1. 
k=o n

k+1 z 
 

Therefore 

Pn 
(4.29) I E k+1 k+1 z 	gk(z) 	2K (1z1<l) 

An 

for all An, Pn and for all n. 

From (4.26) and (4.29) we conclude that the series of 

blocks for H (z) in (4.28) converges uniformly- in 1z1<1, and 

since each block is a polynomial, g (z) is continuous in lz1<1, 

and analytic in Iz1<1. 

Now we want to prove the following theorem. 

Theorem 4.2. 	Let .H(z) be defined by (4.28). Then for almost  

all values of 0  , 

flH'( Peie  )IdP = - • 
0 

Proof: Suppose p is a positive integer chosen so that 

A < <p  p 
N _ p _ N, 

where N is a positive integer to be specified later. 

We shall first consider 

e 

e -1/vp+.1. 
, 

fliOrei0)Idr 

-2/vp+1 

(A <P< 11 ) N- N 
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From (4.28) 

znn 	v
k+1

-1 	v 
gk(z) + z

k+1
gi'c(z))) Ht (z) = E en{ 	k+1 (vic.1.1  z 

n=1 k=A
n 

N-1 	
Pn 	(vk+171)

g (z) + zk+1 = 	E e
n { E k+1 (vk+1z 	

gk(z))} 

n=1 	A 

	

PA 	(v
k+1

-1) 
c
N 

lz n
k+1 

(v
k+1

z 	g
k
(z) + z 	' (z))} 

+ 	
gk 	)} z  

A
N 

00 	, 	v
k+1

-1 	v
k+1 

+ 	E en {E nk+1 (vk+1 z 	
g
k
(z) + z 	4(z))1 

n=N+1 	an 

N-1 	Pn 	v
k+1

-1 	v
k+1 

gk(z))) g
k
(z) + z {E n 	E (11k+1 

(v
k+1 

z 
n=1 	k=A

n 

	

p-1 	v 	, 	gk(z))}  
k+1 	gk(z) 	

z k+1 
gk(  )) e 	Ilk+1 

(v 
k+1 

z 
N 

 
k=A k+1 

v -1 
{cN np+1p+1 

p+1 
gP(z)}  

Np+1 
z
v
P+1  q(z)} 

r- 	/IN 	vk+1-1 
 

6N 	E 	k+1 (vk+1
z 	

v
k+1 

{ 

	

p+1 	
g
k
(z) + z 	gk(z))} 

co 

	
En 	

v
k+1

-1 
I . .• 

+ 	E e
n E 	n 	(v

k+1 
z 	g

k
(z) + z k+1 gk(z)) 

N k=A
n 

k+1 

= 	H
i 
+ H

2 
+ H

3 
+ H

4 
(say). 

By using arguments similar to those used in Lemma 4.2 

to obtain an estimate for 

n 



IiHildr < 2M E- n 
En  

n=1 	nk+1 vk+1 p+1 
(1+0(vk+1)) 

K-A 	p+1 
n 

-1/v p+1 eN-1 
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e-1/vn+l 

I 1Tj1dr, 	(j=1,2,3,4) 

-2/vn+1 
e 

 

-1/v p+1 

we shall get the following estimates for I IHjidr 	(j=1,2,3,4) 

-2/v p+1 

Now 

-2/v p+1 

2M 6N 	nk+1 
{v  k+1  
vk+1  (1+0( k+1))1. E 

k=XN 	p+1 	"p+1 

Since{En
}, 	} are positive decreasing sequences, for 

all n and k 

en e1 

nk1 

Also, in this case k<p, and therefore 

vk+1 
vp+1 

Hence 

-1/v 
e p+1 

1 H 1 dr < M' vl + v2 + . . . vP 	(1+0(
1)2 
 )) 1 

-2/vp+1 	
vp+1 p+1 

e  



( from (4.4)? 	
vl 	

v
2
+ . . . . v

p 

Again vp+1 
= °(61\1 np+1)).  
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o(11p+1 EN) 
	

(AN<P <111 ; N÷°3)  

-1/v p+1 e v1 + v2 + . . . v 
I IH31dr 	2M"EN 	

( 	
vp+1 	

P) n p+1 

-2/vp+1 e  

o (EN p+1) 	
(X lo<1 • N--°)
N- - ' 

since (v1 + 2 + • • vp )/vp+1  +0 (1D+c°) 

Now 

1/v  
p+1 e 	 141 	co 	li 

.1 IH41dr < (ENE 	k+1 + E 
E
n 

En 	)(
21\1

p+1) 

	

p+1 	N+1 n
nk+1 	vk+1 

e
-2/vp+1 

p+1 po-E1 

vp+1  

k+1 
(since the En  and nn decrease with n 

= o( Elinp4.1) la<P<I1 	 co)N÷ 
"— N" 

since p+1 	o as p-0-00. 
p+ 2 

Again, for N>no  by using Lemma 4.1 we have 

-1/v 
e p+1 

I IH21dr N 	c(0) n 	( -1  T--2)e p+1 

e -2/vp+1 
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EN np+1 	c(0) 

12 

Hence if GEEG 

-1/v p+1 
e 

I Ill' (re-i°) I dr 6N flp+1 q(0) 	 o") 

-2/vp+1 e  

where q(0)> 0 and No">no 	• 

Nzyw 

-1/Vp+1 1 	. 	pm e 
f IH'(re-i0  )Idr 	E 	E 

	
/ IH'(re-  )Idr 

o 	N=N" p=AN  
0 

to 	PA. 
q(0) 	E • 	e 	E n + 

	

N=N" 	N 	p 1  
0 

Pn .7: co 	(since E en  E 
A k+1 

= co). 
n1 	n 

Since m(EG) = 271-  by changing 0 to -0 we get for almost 

all values of 

..11H'(rei0  )Idr = 00. 
0 

This completes the proof of the theorem. 

Let H(z) be defined by (4.28), so that H(z) is analytic 

in Iz1<1 and continuous in Izl<1. We now consider particular 

functions of this kind and obtain estimates for the modulus of 

2/v p+1 
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continuity of H(e10  i ) in these cases. We shall give particular 

values to nk' vk' An' 
pn' and E

n 
such that all the conditions 

of Theorem 4.2 are satisfied, and estimate the modulus of 

continuity of the corresponding H(e10). 

Let us choose 

(1) k = 	(1<a<l) 

(ii) Vk = kk 

(iii) {An = 2n 

4n = 2ni-1-1 

(iv) 	en = tin 	(y>o, .a+y <1) 

From (i) it is obvious that {nk} is a decreasing 

sequence of positive numbers satisfying the conditions 

00 

E n  = 
k=1 k  

E n2 
• co 

= E 
k=1 k2a 

CO 

so that (14.3) is satisfied. 

  

Again from (ii), we have 

 

 

v1  +  v .+ . . . 	v 

 

1 + 22  + 	pp  

(p+1)P+1  

   

P(PP-1)  
(p-1)(p+1)P+1  

p+1 

where K is a constant. 



Now if AppN' then from (iii) we get 

1 	< 1
f- 

1 
-  2N+1 p+1 	2N +1 

which gives 

1 _ 	1 	1 	1  
p+1 (p+1)a  (p+1)Y (p+1)1-c4-Y  

	

< 1 	1 p+1 
(2N+1)y (p+1)1-a-y 

< p+1 1 	1 

 

2Ny (p+1)1-a-y 

= 	0(fl
p+1 

eN
) 	(Xpp

N; p÷c°). 

since 1-a-y>o. 

This gives 

v1 + v2 

 

vp  o 	(P÷°°) 

 

 

p+1 

  

and if 	AN- <p<pN'  then 

vl 4 v2 '"E 
	vp  =o (EN flp+1)  

vp+1 

( xii-‹-P<PN; 

67 
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Therefore v k  given by (ii) satisfy 	(4.4)'. 

From (i) and (iii) we get 

m. 2n+1-1 co
n E nk+1 = E 	E 	1  

n=1 An 	n=1 2n (k+l)a  

00 

= , 	1 	1  	1 
)(/ ) n=

E  
1  (211+1)a  (2n+2)-  2(

n+1  

E 2 
n=1 -TH+1)a 2 

1 	2  n(1-a) t. 
n=1 27  

= 	00 	(1-a>0) 

and so (4.25P is satisfied. 

Also from (iv) we get 

co co 1 

E  6n = E 1  	2Y  
n=1 	n=1 -in 2 	, 1 < ... - 

2Y 

and from (i), (iii) and (iv) we get . 

n+1- 
2, 	-1 

11 	 1 	1 en 	nk+1 
=  

2ny 2n (k+l)a  

which gives 

en E nk+1 
An 

1 	2n 2n (1-a-Y) 
7T-1.7-1)e   2a 2nY 

co 
n 

00 

CO 

n 
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for all values of n. This shows that 

Pn 
 k+1 n n=1 n 

CO 

since 1-a-y>o, and so (4.26) and (4.27) are satisfied. 

Thus with the choice of Inb'ivkl,"{Ak}, 	{Ed 

given by (i), (ii), (iii) and (iv) we notice that all the 

conditions of Theorem 4.2 are satisfied. 

Let us consider 

(4.30) 
2n+1-1 1 	1 	z(k+1 k+1) h(z) = E 	 gk(z); n=1 2ny 2n 	(k+l)a  

where 1<a<1 and u+y<1 . 

Now h(z) is obtained from H(z) by substituting the values of 

nk, vk, An, pn, en  from (i), (ii), (iii) and (iv) respectively. 

Hence h(z) satisfies the conditions of Theorem 4.2, and so we 

have 

f 110(re
i0)Idr 

1 
Co 

for almost all values of 0. 

Now we prove the following theorem: 

Theorem 4.3. 	Given f3(o<f2.<1), choose yo  so that f3<yo<1 and then 

choose  ao  such that 1<ao <1 and ao 
 +yo  <1. If h(z) is the function 

given in (4.30) with a=ao and y=yo
,  then w(t), the modulus of 

continuity of h(e10), satisfies the condition 

w(t) = 0{(log t)-13} 	(t4-04.) 
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Proof: 	We first consider the function H(z) defined by 

(4.28) and get an estimate for 

111(ei(04t)) - H(10)1 

for small values of t. Then by substituting the values of nk, 

vk' Xn' pn' en' from (i), (ii), (iii) and (iv), we shall obtain 

an estimate for 

I h (ei (0+t ) ) - h (ei0 ) 1. 

From (4.28) we have 

1 11(ei(0+t)) 	10 H(e-  )1 

co  
E en 	E n nk+1 {e 

ivk+1(0+t) gk(ei(0-1-t))  
n=1 	k=An 

eivk+l0 g (eio) 1 1 1  

no 	Pn 	O 
iyk+1(0+t) 	, i(0-1-t) 

E en 1 E flk+1 io- 	ge 	
) 

 
n=1 	k=Xn 

e1Vk+10 
 

g (e10) )1 

Pn 	ivk+1(0+t) g (ei(0+t)) 
co 
E 	s 	1 	E 	nk+1 le 

n=no+1 	k=Xn 

iv
k+1

0 	i0 
e 	gk(e 	1 , 

(where no is a positive integer, to be specified later.) 

=  E
1  4 E

2  (say). 
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Now from (4.29), 

En 
",k+1  v

k+1 g
k(z)1 ‘ 2K 	(1z1<1) 

k=A n 

for all An, p
n, and for all n, so-that 

CO 

I E2 I
n=n

E
+1 

 — 

CO 

= 4K E e 
n=n+1 n  

e
n 
 4K 

Now 

E
1 

= 	z
o 

e
n 	

E fl  k+1 le 

	

n=1 	k=A 

n 	
1 Pn 	

iv
k+1

(0+t) gk

(e 
 i(e+t)

) 
 

n 

e
iv
k+1 

g (ei(0+t)) + e
iv
k+1 

gk(e
i(0+t)

) 

v
k+1

0  
g (e

i0
)}1 

so that 

E — 1 < 
	E 
n=1 	k=A 

n 
0 e1 	

E 
nl 
	

n n
k+1 

eivk+1(0-Ft) - eivk+1°1
gke  
( i(0+0) 

n 

E 
no e

n 
1 , En nk+1 	

iv
k+1 

610(e
i(0+t))_gk(eiew 

n=1 	k=X
n 

no 	P
En 

k+1 
M  'qv

k+1 
n=1 n  k=An  

no 
	En 
	

e
, tei(0+t))  _ 

6D
40 )1  

E e
n 
	nk+1 I lc\ 	k`

t_i 
 

n=1 	k=X
n 

since for all real t le
it
-1 	_It'. 
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Since gk(z) is a polynomial of degree (v1  + v2  + 	vk) 3 

bounded by M in (1z1<l), by Bernstein's Theorem we have 

I gkt(z)1 	< 	?4(v1 + v2+.. vk) 
	

(1z1<1). 

Again gk(z) being analytic in 1z1<1, we have 

ei(e+t) 
igk(ei(e+t))  _ sk(ei0))1 = 	I ski (el d4)1 

e
i0 

so that 

i gk(ei(e+t) )  _ gk(ei0 )1  

.M Iti 	(v1 + v2 + . . vk) 

	

.M ItI vk+1 
	 (from (4.4)). 

Therefore 

	

no 	Pn 
E1  < 2M It! 	E 	en E k+1 vk+1 

	

n=1 	k=An 

and so we obtain for small ' 

E1 
+ E

2 

	

no 	Pn 

	

2M ItI
n1 	k=X 

e
n 	flk+1 

vk+1 +LIKE 	e
n 

n =  n=no+1 

CO 



n=1 	 2 nol 

-a 20 2n(1-a-y) (2n+1)2n+1 	
4K1 1 2MT 2  
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Now we substitute the values of 	vic+1' An' 

pn and en from (1), (ii), (iii) and (iv) and deduce that 

Ih(ei(e+t ) ) - h(ei° )I 

no n+1-1 

	

< 2M Iti 	E 
n=1 	2nY 	

(1:"+1)a(k+1)
k+1 + 4K E 	-- 1 

2
n 	no+1 2ny 

so that for T>O, 

	

W(T) = su 	I h(ei(e+t)) - h(eiN 0< t i <T 

n+1 o 	T  
1  

no  1 
4K' noy  

2 
< 2M T n4 

2ny 	
-En  2-6c-4.1)(k+1),a 4 

 

no 1 2n(2n+1)(211+1-a) 	1  < 2MT 	E 	 + 4K' 
n=1 2ny 	2ny 

no 1 2n(2n+1)2n+12(n+1)(-a) 	1  2MT 	E 	 + 4K'  
n=1 2ny 2n°y  

CO 

n+1 29;1-1  2MT 2-a  no 2110(1-a-Y) 	
1  2 o ) 	+ 4K' ( 	) 

2n°Y  

2M 2 a(Tn 2n(1-a-y)n+1)
n0+1 + K" nIy). 2 0y  

Given T, we want to choose no  so that 

no(1-a-y) no+1 2n +1 1  + K"  Tno 	(2 	) 2n0Y 
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is sufficiently 'small'. In order to show that no  can be so 

chosen and so complete the proof of the theorem, we require 

the next lemma. 

Lemma 4.3 
	

In  the above notation, let  co>o be the smallest  

4>o such that  

T 2C(1-a-1) (20-1)2 	1 	. 

2C1(  

Then if 	no o ]and 0 <yi < y, we have  

T no  2 
no 	(2 

n o +1)2 no
+1 

0 {(log 	)Yt} 
	

(T÷0+) 

Proof: 	By hypothesis of the lemma 

c co01:-a-y) 	c +1 	o 
T X02 	(2..0 )2

+1  1  

2.°Y  

which gives 

C +1 Jel  
T 	(2  ° )a  

Taking logarithm of both sides we get 

log T + log 	0  + 2 o 
 +1 

log 2 o+1 = - (1-a) co  log 2;  

so that 

log 1 = logco  + (1-a) 

1 +1 
° log2+ ( o+1)

2  log 2 

and therefore, since 	co 	as T 	0+, 
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log 1  % 2
,o+1 
	

K
0+1) log 2 	(T-40+) 

so that 

log log — 	r‘i Co  log 2 
	

(T.+0+). 

Therefore for this value of c 

(4.31) 
Tc 2c(1—a_y) c+12C+1 

'(2 	) 
K" 

2 .1(  

-Coy < K2 IC 	1  1 yt (log T) 

where K is a constant. 

Suppose that 

n
o 

= Ko 1 . 

If co  is an integer, no  satisfies (4.31), and if co  is 

not an integer, we have 

no < o <no+1 

so that 

= Co  - 6 v 

and we have 

n+1 
n (1-a-y) 	n +1 2 ° 

-Eno  2 
o 

(2 ° ) 



2 ° 	2 

1 
+1)2 c (1-a-y) 	(Co+1)2 

o 
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(c-6)(1-a-y) 
C -6+1 

(C-6+1)2 o 
° 

 (c0-6)2 o 2 

+1-6 +6+1 o C,(1-a-y) 	(c +1) o 2 	-6(1-a-0-62 
7.--T {402 	2 2 

-6+1 
(c,-6)(1-a-Y) (c ° -6+1)2 ' 	1 

0(r-a-1) 	(C +1)2 

= T  {Co 2 	2 ° 

+X-6) 	
co-6+1 

2 -6(1-a-y+2 
2 

6 2 	2 ° 
(,-6)(1-a-Y) 	(C -6+1) 2C0-64-1  

} 

(since co>6>o) . 

Also 

1  
n
° 

 y 
2  

1  

20-6)Y 
1 	1 	2 

2C  2-6Y 

so that 

1  
n y 
2 ° 

2  
"o•Y 

(176y>6) 

Hence if n 0 = 	[Co]  

no(l_a-y) no +1) 2 
no+1 K" '1  0. f  7ff.y Tno2 	(2 	2 u 	K log 

and the lemma is proved. 

- 	6 2 `' 	2 
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From Lemma 4.3 it follows that if f3. is any positive 

number such that o<f3<y<1 

then 

no 	° 
(1-a-y) 	n +1 	1 

(2 	K" T n
o  2 
	 +  

2 n° 
 v 
' 

= 0 ( 1 1)f log T  

Therefore in order to obtain the result of the theorem, 

for a given f3<2 we choose yo so that 13<yo
<1 and then choose 

ao so that 1<ao
<1 and ao  + yo 

 <1. Then the function h(z) 

given by (4.30) with a= o and y =yo 
would satisfy the conditions 

of Theorem 4.3, where we now take y' =13. 

Theorem 4.4:  Let us consider a function 11)(z) analytic in 1z1<1  

and continuous in 	Let  

CO 

Ip(z) = 	E 	A
n
zn  

n=o 

Suppose that  

1 l+c 
w(T) = 0( 	 ) 

log 

where w(T) is the modulus of continuity of t(e
10

). Then 

EA
n
e
in° is summable IA1 for all 0 (o‘0‘2ff). 

Proof: 	Given 0 (o<0<27) define for real t, 
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Icei( 	+ 2t) .1.1p (ei(0-2t) )--21P(ei0)} 

2 

Then 
(0-2t))...1)(eie)  

1()0(t)I 	< 
2 • 

mei(0-2t)
)
_*(ei0)1 

2 

1  -(1+) < K (log It] )  

where K is a constant. 

Therefore, if (S>o, 

(by hypothesis) 

6  
I 

(4-) 
I=0"Idt < K (log 

o 	t 

K (log T) £.< 1 e 	
OD 

which shows that Ige
i0) satisfies Dini's condition, and 

therefore' 	from Whittaker's Theoreml.1 quoted in 

Chapter 1 the result of the theroem follows. 

On account of the significance of the above result we give 

below the outline of the Whittaker's proof of Theroem 1.1, 

which states that if 

00 
1 ao + E (an cos ne + bn 

sin nO) 
n=1 

is the Fourier series of a function f(0)6 L
1(-ff,ff), then the 

above series is summable IAI with absolute Abel sum 2 if 

1 3t- 1 )-(1+6)  dt 
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0 
<t ) 

t 

dt 

 

   

exists for some 6>o, where 

4(t) 
	f(0+2t) + f(0-2t) - 2k  

2 

Proof of Theorem 1.1 	Let for o<x<1, 

Co 

P(x) = z ao + 	
E x

n 
(a
n 

cos n 0 + b
n 
sin nO) 

n=1 

IT = I f(a) 1 x2 1  

2ff -II 	1-2x cos(0-a)+x2 
da , 

so that P(x) is convergent for o<x<1. 

Writing a = 0 + 2t 

Q(x) = P(x)-k = 2 " 	1-x2  • I"2(t) 4
2 
)(t) 

o 	1-2x cos 2t + x
2 

at. 

The total variation of Q(x) in (0,x1) is 

x1 	xl ff/2 

IIQ'(x)Idx = 	f I I (~)(t) d {1-32;:s 	 2t + x 
dtldx 

0 
• o 0 	dx 

< 4 7/214(t)If t• (1+x2) cos 2t - 2x  
2 )2 

(Inverting 

it 0 	 (1-2x cos 2t + x ) 

(Inverting the order of integration). 

We Write 

V(xi,t) = 
2.1.1 1  (14-x2) cos 2t - 2x 	1 , 

a . 	x 
( o 	(1.42x cos 2t + x2)

2 

1 	
2xl 

= 1 arc cos  	= arc cot x, - 	( 	J_ 0t,<Tr) _L 	• 
1+x1 

Then if 
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1-x2 

1-2xcos2t+x2 o<t <t i  and p(x) = 

xl 
V(x t) = 2 I (1+x 2 ) cos 2t - 2x 

o (1-2x cos 2t +. x2 )2  

xl  
= I pt(x) dx, 

= p(x1) -1 < p(xl ) 

sin 2ti _ = cot t < 

	

1-cos 2t1 	
1 2t1 	2t  

while if t <t <7r/ 1— 	4' 

cot (t+) 	x1  
= fp'(x) dx 	I p'(x) dx 

cot (ti) o • 

2  -1 -p(x ) < 	2  
• sin2t 	1 	sin2t 

Finally, if Tr <t<Tri 
- 2 

xl  

	

V(x,t) = - I p'(x) dx 	< 	1. 
0 

Thus 

dx 

xl  

I N'(x)Idx < 
0 

t i  ff/4 ff/2 
g 	(f + I  + I ) Igt)IV(xl,t) dt 
71- 0 

t1  w/4 

/4 	 ff /2 
< 	1 4)(t) Idt + 	f14)(t)idt 

T./
4 

By hypothesis of Theorem 1.1, 



w /4 
f I cP (t) Idt < 
0  t 

CO 

and therefore Q(x) is of bounded variation in [0,1). 

Thus 

Co 

1  a0 + 	
E 	(an cos nO + bn sin n 0) 2 

n=1 

is summable IAI with absolute Abel sum Q. 

This completes the proof of 	Theorem 1.1. 
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CHAPTER 5 

Absolute Abel summability in a general setting 

Let 

f(z) = Eanzn 	(1z(<1) 

be of bounded characteristic in Izi<1, so that Lim f(re10) 
r+1- 

exists finitely for almost all values of 0, which implies that 

Eaneine  is summable A for almost all values of 0. But in this 

case Ea e
ine may not be summable (AI  for any 0. To prove 

this we consider 

( 5 . 1) 
00 on 

f(z) = 	E z` 
n=1 n 

((z(<1). 

Since E l < co therefore f(z) E H2  ((z (<l) and so 
2 

Lim f(re10) 	n  exists finitely a.e. i.e. E 1(e e)
2n 

is 
n=1n  r4-1- 	 CO 	,n 

summable A - 	a.e.. Also the series 	E 
n=1 n 

has Hadamard gaps and therefore by the 'high indices' theorem 
0 2n  

of Hardy and Littlewood quoted in Chapter 1, El (e-  ) 	is 

convergent for all values of 0, for which it is summable A. 
co 	i 0 2n  

Therefore 	E 1 (e 	) 	is convergent for almost all values 
n=1 n 

of 0. 
CO 

Again, since 	E 1 = co, it follows by Zygmund's 
n=1 n 

00 	,n 
Theorem 1.5, quoted in chapter 1, that 	E 1 (e 0) 	

being 

n=1 11-  

lacunary, 	is not summable (AI for any 0. 
i 0 2n  

Thus the series 	E (e 	) 	converges a.e. but is 
n=1 

82 
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not summable IAI for any 0. 

Prasad in Theorem 1.4 quoted in Chapter 1 considered 

the function f(0)eL1(o,21r) such that 

00 

f(0) (1.,  Lao + 	E (an cos n 0+ bn sin nO) n=1 

where 

1 an = 
27r 
I 	cos n f(e) dO 
0 

1 bn 2w 

2ff 
I 	sin nO f(0) dO 
0 

and proved that the series 

00 

E 
n=3 

ancos n 0+ bn sin n 0 (y>1) 
log n (loglog n)Y 

(which is a Fourier series which converges almost everywhere) 

is summable IAI for almost all values of 0. 

We shall consider similar results for functions f(z) which 

are analytic in izl<1 and of bounded characteristic. The next 

theorem is weaker than what we shall eventually prove, and the 

method of proof is to a considerable extent due to Prasad 

f(12) p. 416) I. 

Theorem 5.1; 	Let 

CO 

f(z) 	= E a zn 	 ( I z I <1) 
n=3 n 
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be analytic in 1z1<1 and of bounded characteristic. If we  

define  

co 	a zn 

(5.2) 	F (z) = 	E 
	

(y>1), 
n=3 log n (log log n)Y 

then  

E 
a e n 

  

n=3 	log n (log log n)Y 

is summable IAA a.e.  

In order to prove the above theorem, we need the 

following lemma. 

Lemma 5.1. Let f(z) be analytic in IzI <1, and of bounded 

characteristic. Then for almost all values of 0, 

flft(pei0)1 dp 	< 	K(0) log (llr) 	(o<r<l). 
0 

Proof: 	Since f(z) is analytic in IzI<l, and of bounded 

characteristic, therefore for almost all values of 0, 

(5.3) 	Lim f(re10) = f(e10) 
r4-1- 

Further, for any e>o, f(z) tends uniformly to f(e
i0) as 

z÷eie  inside an angular domain of opening ff-e having vertex at 

eland bisected by the radius drawn to e10. Let this angular 

domain be denoted by A. Then given a positive number (S, there 

exists a Ke  such that if ccAll{k-e
i01 < 	1 
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If( c)1 < Ki  . 

Let p be a positive number such that 1- .- 6 -<p<1, and c 

be a circle of radius 12p  with centre at pe
ie, so that if  0<6<-2- 

C AA{ k -e
10

1 < 6}. 

By Cauchy's integral formula we have 

f'(pei0) =
1 	f(c)  dc 

2ffi c (-Pe
i0
)
2 

so that for a '0' satisfying (5.3), we have 

f 	%1 	 6 
-ff.<p<l) Ifi*Os10  )1 < 2K1/ 	(1- 

'1-p 

which gives 

Ift(peie)1 = 0(y
1

r ) 

and therefore 

i0 	1  )Idp 	0(log 1-r) 
0 

Hence 

(p+1-) 

(r4-1-) . 

liff(peie)1 dp 
	

< K(0) log 1-
1 
 r 

Thus for a value of 0 for which (5.3) holds, we have 

I If 1(pe
10
)1 dp < 	K(0) log 

0 
	 1-

1 
 r 	5 

and so we have 



in0 n Eaep 
n=3 n  

r(a) 

na 
(by using (5.5)). 

00 
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r 
I If1(pe10)1 dp < 	K(0) log 1-1 r 	a.e. 
0 

This proves the Lemma. 

Proof of Theorem 5.1  

We know that for a>o 

I e-nt to-1 	r(a)  

o 
(5.4) 	dt = 	 • 

na 

If we put e-t = u, we shall have 

(5.5) I un-1 (log 1)a-1  du = Lisa 
0 	u 	na 

Again from (5.2) for o<p<1 

co 
F 10 = E n ;aein0  (pe) (5.6) 	 pn 

n-3 (log n (log log n)1  

Consider for o<p<1 

1 
(5.7) 	I f(pue

i0)(log 1)a-1 du 
ir 

1 	co 
I ( E anein0  pnun) (log 1)a-1  du 
o n=3 

00 

Again, for P-1, 

00 

0 

daal3  
r(a) 

1 1 a-1 I un-1 (log Ti) 	du 



Co 
da  ar3 	r(a) 

o r(a) n 

Co 

e-alog n as 
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da 

r +1) 	1  
(log n)6+1 
	

(by using (5.4)). 

Similarly, for y> o, 

dR RY -1  C°  da ar3 	f  n-1 	1 a-1 
(5.8) 	1 -- - 	I 	 (log ) 	du 

0 r(f3+1) 	o r(a) 	o 	u 

CO 
1  

o (log n)13+1  

CO 

I e-(0+1) log log ny-1 ' 0 	d0 

r (y ) 
log n (log log n)1  

Therefore from (5.6), (5.7) and (5.8) we get 

ie 	
• 

	

dB BY-1 	c°  du as 	1 	10 	u-1 F (pe) - 	1  I 	- 	I 	If (pue ) (log 
r(Y) o r(0‹ 	o r(a) 	o 

and therefore 

(5.9) (peie )Idip 

4 	

co A 	0 	1 r 
1   f  da aY--  f 	a I I Ift(puele )klog 	dudp < ,i \ 

f)  o r (a+1) 	
0 r (a) 	0 0 
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00 1 
1 	dO 0-1c°  da 	1  du(log ) a-1 

F(y) 	r(131.1) 	r(a) 	
171 
	 I if t(puei°)IudpoI  

Now from the hypothesis of the theorem 

If'kceie)I = 0(62) 	(c+ol.) 

which gives that 

flf'(pei°)I dp = 0 (63) 	(c÷o+) 

so that by Lemma 5.1, since f(z) is of bounded characteristic, 

we have 

r 1  < f Ift(pei0)IdP 	K(0) (log 1-1, 
0 

2 
- r - 	) a. e . 

so that 

   

r  
I Ife(puei0 	1  < )ludp 	K(0) (log 	- ru - r2u2) _ 
0 	 1-ru 	2 

a . e . 

00 

   

K(0) 	E 	rn un  

 

a . e . • 
n=3 

   

Hence for almost all values of 0, 

r 
I IF' (pe)Idp 
0 

a  1 	00 
K(0)  7 A.0 (31(-1 	daa' f  du(log rnun  < 
r(y) o r(B+1) o r(a) o 	u 	n=3 

co 	,y-1 °° 	a  1 
du 

00 
rn  1 	I dB P 	I da a'  I u 	(log il)̀1-1  = K(0) 	L 	n 	( ) 	o+1) 0 r(') 	° 

r y o r n=3 



00 
= K(0) E E 1  

n=3 n  log n 

1 
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(log log n)Y  

 

Consequently, for y>l, 

1 I IF' (pe10)Idp < co 	a.e., 
O I  

since for y>1 

CO 1 

 

CO 

 

n=3 n  log n (log log n)1  

Therefore 

00 
a ein0 

	

n=3 	log n (log log n)Y 

is summable IAI for almott all values of 0. 

This completes the proof of the theorem. 

Clearly the result of the above theorem depends on the 
r 

estimate of Ilf'(puei°)Iudp on the right hand side of (5.9) 
0 

given by Lemma 5.1. In the following theorem we shall obtain a 

result stronger than that of Theroem 5.1 by using Zygmund's 

Theorem 1.6 quoted in chapter 1, instead of Lemma 5.1 to get 

the estimate of fIft(pue
i0)ludp. 

o 	co 

	

Theorem 5.2. 	Let f(z) = E a zn(1z1<l) be analytic in Izi<1  
n=3 n  

and of bounded characteristic (so that  Lim f(re
i0) = f(ei0) a.e.) 

r}1- 
then 

co 
ane

in0  

n=3 /log n  (log log n)Y  

is summable 1A1 for almost all values of 0 (0105-27  
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Proof: 	Let for y>1, 

co 	
a zn F (z) = 	E 

n=3 	,/dog  n)(log log n)1  ( z < 	. 

By using arguments similar to those used in Theorem 5.1 

to obtain (5.9) we shall have 

r 
f IF,  OEi0)1(ap 
0 

1 	w 	
a 

y-1 co 	131 1 	1 a-1 	10 
77 	

f  de 

r0+.1) 

f do(' 
r(a) 	

f. (log a) 	du f[ft(pue )1 dp .  
T o  

From Theorem 1.6 we have for almost all 0, 

r 
I Ift(Pe

10)Idp = o((log 11r)2 )  
0 

(r4-1-) . 

In what follows we shall consider only those 

above is true. 

Now 

0 for which the 

f(peie) = 0(p3) ( 	) 

so that 

fl(peio) = 0(p2) (p.4-o.;) 

and therefore 

Ift(Pe
io
)1 dp = 

	0(r3 ) 	 0 

0 
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Hence for o<r<1, 

r 2 3 4 5 1  1  
f If'(pe

Jo)Idp < K(0) (log 	r-r - r - r - r )2. 1-r 2 3 -4—  5 

Thus 

r 

(5.10) f IF' (pei())1dp 
o 

00 	1 1 	di3 y-1 co da  a13-  2 
I (log 1)

a-1 
 du x 

r (y ) 	o 1'(3+1) 0  r(a) 	0 

K {log 1 ( 4 ur -u2r2  -u3r3  -ur 4 -u5r5} 1  2  1-ur)-  2 	3 	4 5 

To complete the proof of the theorem we need the next 

, lemma. 

Lemma 5.2. Let  

 

6 	z7 
(1)(z) = z —y 	. . (Izi<1) 

and 

  

 

00 
ip(z) = E 	

1 	 zn 
n=3 nilog n 

 

Then for o<r<1  

 

 

4)(0‹ A2  { ►(r)} 2, 

 

where A is a constant. 



= 1 	1 
3 'ilog 3 	(n-3),/log (n-3) j /log j (n-j)ilog(n-j 

+ . . 1 

Proof: 	Let 

{ip (r)}2 	= E A rn  
n=6 n  

o<r<l), 

so that for 

1 	1  An = 	j+k=n 	j( log j )21 • k (log k) 21 
j ,k; 3 

92 

Considering the sum of terms for which j1 , we get 

A 	 + . . • • 
n 	7 Jylog 3 	(n-3)110g (n-3) 

1 	 1 .  

"--1 6 	n 	26  log 5n 
• —6-  

+ 

 

1 

 

1  
3/log 	3 	4/log 4 

+ • . . . 
riviogq, ) 

   

nilog n 

  

1 	1  (1 1 
nilog n 	Vlog n k3 . 	. 	. 	• 	• 

6 

1 	log n 	 (n-÷c°) 
n log n 

which shows that for r36, 

< K1 An' 
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where K1 is a constant. 

Therefore for or<1 we have 

Co 
 

6 

n rn K
1(E A n

rn)  • 

Writing K1=A2  we get the result of the lemma. 

Proof of Theorem 5.2.. 

By using the above lemma,(5.10) gives 

IIF' (pe10)1dp < 
K, 	(21S y-1 da  
r(Y) 	or(a) o PO+ l) 

I E 	1  ' un-1  (log ill) 	du o n=3 n(log 

(where K' is a constant). 

rn 	 1:113 e-1  ccIda 01.131   K' 	 I un-1  (log 1)a-idu, 
r(y) n=3 n(log n)2 	Mil) 0  r(a) 	o 

So that from (5.4) and (5.5) we get 

n  I IF' (pe10)Idp < Kr E 	r  

n=3 n logn(log log n)1  

which gives 

1 
I IF,  (pei  )IdP 
O 

CO 

CO 

since 1  < co 
n=3 n log n(log log n)Y 

1 CO 



914 	• 

This completes the proof of the theorem. 

Remark 1. 	From the proofs of Theorem 5.1 and Theorem 5.2 

it is clear that the theorems would still hold true if 

(log log n) occuring in the series of FY(z) is replaced by 

log 2  n log3  n . . . (log n)Y  where p is a positive integer, 

logp  (n) = log logp_1(n), login = log n 

where N is a positive integer chosen so large that 

log (N) is well defined, and y>1 . 

Remark 2. 	The index 1 of (log n) in Theorem 5.2 is best 

possible. To prove this we consider 

00 

f(z) 	= 	z 
	

(1 z1 <1) 
n= 1 	n2  - 

where o<n<i. Since 	1+
1   71 < „ 	therefore f(z) 6H2 and 

n 2 

consequently f(z) satisfies all the conditions of Theorem 5.2 

Also from (5.1) we know that if 

F(z) = 	
2  

n=1 	n 

( I z I <1) 

then V(F, Q.) = Co a.e. 

This shows that the index (1) of (log n) cannot be replaced 

by 1-n for any il(o<n<i). 
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