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Abstract  

In a normal single screw plasticating extruder the feedstock is 

taken in as a loose solid, then melted and pumped out through a die. 

The output from such a machine varies somewhat according to the pressure 

which it has to generate and each section within the machine must have 

an individual characteristic in this respect which contributes to that 

observed overall. 

The section of the machine considered in this work is that in which 

the solid material is conveyed by Coulomb frictional forces before any 

melting has occurred. The main object of the study is to examine both 

theoretically and experimentally the effect upon conveying rate of any 

build-up in pressure or compressive stress level which the section has 

to sustain. 

In spite of some ostensive similarity, the flow properties of a 

loose solid are very different from those of a liquid. 	In fact, under 

most circumstances in a screw channel, the loose material acts much 

more like a continuous solid. However looking at the material solely 

in this way is not completely realistic. Unfortunately, therefore, 

the analysis of the problem does not fall within any well-established 

disciplines and so the theory presented is necessarily somewhat uncon-

ventional. 

The work is intended to add further to the understanding of single 

- screw extrusion and this contribution sets out what has been achieved. 
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1. 	Introduction  

1.1 The Extrusion Process 

The nature of thermoplastics is such that they have the property 

of softening when heated. This offers great scope for forming these 

materials into useful articles and a whole variety of processes are 

used. 

In some processes, such as thermoforming, the polymer is just 

softened and deformed by the application of pressure. 	In other pro- 

cesses a distinct melt is formed and then forced into shape. In most 

cases the melting point is not well defined, the material simply - 

becomes softer as temperature is increased and thermal degradation 

occurs before the material becomes liquid in the usual sense of the 

term. Because of this polymer melts are highly viscous and like a 

solid they possess the property of elasticity. 

There are two main processes in which molten polymer is formed 

into end products. For individual articles the melt may be forced 

into a mould (injection moulding) or if lengths of a particular cross-

section are required then continuous extrusion is used. The latter 

is essentially a steady flow process in which melt is forced through 

a die shaped to produce the required cross-section. On emerging from 

the die the high viscosity of the material prevents the section 

collapsing under gravity until it is either cooled directly or re-

formed in some way and then cooled. 

Large quantities of thermoplastics are processed by extrusion; 

pipe, rod, sheet, film and numerous special cross-sections are all 

produced in this way. Various types of machine have been used to 

melt polymer and force it through a die but the most important one, 

and that to be considered here, is the single screw extruder. 



Fig 1.1 shows the essential working parts of one of these machines. 

It is usually thought of as having three distinct zones or sections; 

the feed section which takes in the solid material, the transition 

section which melts it and the metering section which pumps the melt 

through the die and also serves to mix and homogenise the polymer. 

In reality the situation is far more complicated than this. 	The sec- 

tions have no definite transition points and it is not only the meter- *  

ing section which can build up pressure, as is often supposed. 

As the thermoplastics industry has grown so too have the demands 

made upon processing equipment. The design of extruders has been 

improved by experience but a more fundamental understanding of their 

working has always been sought as an aid to design. The ultimate aim 

has really been to predict all extruder operating characteristics from 

data on the polymer, machine and operating condition. 	If this were 

possible then trial and error development could be carried out using 

a computer rather than by making and testing actual machinery. 

Although a vast amount of effort has been devoted to this end it is 

still far from being satisfactorily achieved. 	Unfortunately in some 

instances it appears to be very much a case of the more work there is 

done on the subject the more difficulties there are uncovered. 

The first analytical work on a single screw extruder was done on 

the metering section and was of a fairly simple nature. 	If the assump- 

tions made in formulating a mathematical model for the problem are 

realistic then the solution becomes a matter of some difficulty. 

However solutions of the melt flow problem have now reached a good 

degree of sophistication [3, 13, 29, 30, 38, 54]. 	Although there is 

still room for improvement, the behaviour at this end of the machine 

can be predicted with much greater confidence than for the rest of the 

machine. 
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In spite of the sophistication reached in analysing the melt flow 

problem it is still of limited usefulness in predicting overall extruder 

behaviour. 	Looking firstly at the machine as a pump; by its nature 

it is not of a positive displacement type and so its output is affected 

by the pressure which it has to build up. Unless the machine is 

running in what is conventionally known as a feed controlled condition, 

pressure starts to build up well before the start of the metering sec-

tion, even back as far as the feed section. Therefore in order to 

find the overall pumping characteristic of an extruder the flow rate/ 

pressure build-up characteristics of each part of the machine must be 

known and then combined to give the information required. 

Although it is very useful to be able to compute an overall per-

formance characteristic of this type, pumping is not the only function 

of an extruder. As well as providing the required output rate and 

sufficient pressure to force the material through the die, the machine 

must give extrudate of acceptable quality. 	In particular it must be 

completely molten, sufficiently homogeneous and unspoilt by thermal 

degradation. Existing melt flow theory is able to predict tempera-

tures within the melt and extensions of the theory predict the degree 

of mixing. 	Therefore to some extent the possibility of degradation 

and the degree of melt homogeneity can be forecast. 

The processes which occur within the transition section must have 

a great deal of bearing upon extrudate quality. Because the screw 

channel is partly filled with solid, shear rates in the melt are high, 

resulting in good mixing and considerable shear heating. The tran-

sition section has received a good deal of attention [7, 26, 46, 47, 

48, 49]. 	This has been directed principally at predicting the length 

of screw required to complete the melting process. 	It is obviously 

very necessary that this should be complete well before the material 
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enters the die and a means of predicting whether or not this will be 

so is very valuable. 

Good correlation is claimed between theoretical and experimental 

work on melting but at present both the form of the model used for 

analysis and the analysis itself are sufficiently questionable for the 

theory to be applied with very much confidence. 	In its present state 

melting theory does nothing to predict how homogeneous the melt will 

be (assuming some heterogeneity in the feedstock) neither does it go 

very far in calculating the flow rate/pressure build-up characteristic 

of the transition section. An attempt has been made to predict this 

characteristic [49] but it considers only the molten part of the flow. 

A solution for the two-phase system would be far more complicated. 

As yet the solids conveying section of the screw has received 

relatively little attention. 	This is probably due to the difficulties 

involved in analysing the flow of a loose solid and also to the lack 

of appreciation of the importance of this part of the machine. Upon 

reflection it is obvious that no matter what the rest of the machine 

is capable of melting and pumping, the feed section needs to be able 

to supply the required amount of material, if necessary, under some 

degree of pressure. 	In short, it has to be compatible with the rest 

of the machine, a point which does not always appear to have been 

appreciated. 

As implied earlier it is reasonable to expect that any solids 

conveying section will have a definite flow rate/pressure build-up 

characteristic. 	Therefore one of the principal objects of feed sec- 

tion theory should be to predict the form of this. At the beginning 

of an extruder the feed pocket and barrel are normally cooled to 

ensure that the free flow of solid is not impeded by premature melting. 

Therefore in this region Coulomb friction forces act between the 
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polymer and the metal surfaces on which it slides. As the material 

moves further along the screw its surface begins to melt and viscous 

forces take over. Where melt is just beginning to form the behaviour 

will be a mixture of the two types. 	In fact it is probably only in the 

first few turns where the forces can be considered as purely frictional. 

The flow of solids under these conditions has been the subject of 

the work being presented and although in a conventional extruder it 

may only be directly applicable to the first few turns of the screw, 

it is still very important to understand what happens there. 	One of 

the main problems in extending the work to cover the region where melt-

ing begins to occur is the lack of information available on the drag 

forces which exist under these circumstances. Once a definite melt 

film has been formed the problem is one which should really be dealt 

with by a generalised treatment of the melting process and so there is 

no real point in further extending the solids flow theory to cover this 

situation. 

Apart from its use in looking at conventional equipment, the work 

on solids flow does give rise to ideas for improvements in processing 

equipment. 	In particular, it will be shown that if a sufficient 

length of cooled screw and barrel is used for the feed section very 

high pressures can be generated. 	This appears to be a possible line 

of approach in solving the problems involved in processing powder feed- 

stocks. 	If these materials could be compressed to exclude entrapped 

air before the melting process begins then the rest of the machine 

would receive material in much the same state as it would if granular 

feedstock were used. 

Although conventional melting theory takes no account of the effect 

of pressure on the process, it is reasonable to expect that it will have 

some influence. For instance, in the early stages of melting, if some 
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pressure exists to force material against the heated barrel surface then 

the improved contact will assist heat transfer to the solid material and 

help initiate the melting process. 	Following this argument, therefore, 

it is reasonable to conclude that the pressure distribution along a 

screw does affect the overall melting process and ultimately perhaps, 

the quality of the extrudate. 

Extruders run more or less successfully with a variety of pressure 

distributions along them. Little has been done either theoretically or 

experimentally to find what is the best type of pressure profile for 

processing any given material. Therefore even if it were possible to 

predict completely the pressure profile along a screw, when designing a 

machine, there is still the problem of knowing what profile to aim for 

as an optimum. 

So far the implication has been that extruders are used solely for 

forming polymer into finished products. 	In fact between the polymeri- 

sation process and emerging as a finished product polymer may pass 

through an extruder more than once. 

Crude polymer is usually unsuitable for direct final processing, 

its physical form may be difficult to deal with or various additives 

such as fillers and pigments may be needed. Polymers are often formed 

as powders or small beads and it is difficult to obtain sufficiently 

reliable operation of an extruder using these materials to ensure con-

sistent quality of the end product. To overcome this problem it is 

usual, in many cases, to convert the crude polymer into chips or pellets, 

at the same time incorporating any additive which may be required. 

After this "pre-processing", as it may be called, the material behaves 

much more reliably in final processing machines. 

Single screw extruders are very often used for pre-processing and 

because polymerisation units tend to be of large capacity it is necessary 
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to use large extruders to cope with their output. 	For economic reasons 

the capacity of polymer production plants has steadily increased and so 

too has the size of pre-processing extruders. 	These very large machines 

involve special problems and since design by trial and error is extremely 

costly the need for a more fundamental knowledge of extruder operation 

is apparent more than ever before. 

Although pre-processed material may still be regarded as the normal 

feedstock for final processing machines there are strong incentives to 

eliminate the pre-processing stage. Firstly there would be a saving in 

overall cost if crude polymer (with any necessary additive) could be 

used directly. 	Secondly, if a polymer is thermally sensitive the fewer 

times it undergoes melting the better. 

The design of both very large pre-processing machines and smaller 

direct processing machines is almost certainly the field of extruder 

technology which causes most difficulty at present. Very often the 

feed section is looked upon as the area where problems arise. Whether 

or not this is so the fact remains that a much better understanding is 

required of how this part of the extruder behaves. 

1.2 Outline of Problems Involved in Analysing Solids Flow  

The approach to any problem which is not completely new must in-

evitably be influenced by work which has already been carried out on the 

subject. Although the type of material used as feedstock in extruders 

is loose and usually free flowing, as a simplification it has always 

been assumed that when it is in the screw channel it behaves as a con-

tinuous solid. On the face of it this is a rather sweeping assumption 

and obviously requires investigation. 



It is possible to observe the flow of material in a solids conveying 

screw by using a transparent barrel. Without taking detailed measure-

ments it can be seen that within the mass of solid, particles do, in some 

cases, move relative to each other. 	This is especially so when the 

material is uncompacted. 

Details of the experiments will be given in 6.3.1 but the essential 

observation is that under certain circumstances slip or shearing does 

occur within the granular mass in a screw channel. This being the 

case, theoretical work on the feed section should really consider the 

general case of shearing within the solid material. 	If, as is observed 

under other circumstances, little or no shearing occurs, only slip at 

the polymer-metal interfaces, then a general treatment of the problem 

would predict this and the solution could proceed accordingly. 

The obvious course of action, therefore, is to examine the flow 

properties of a loose solid. 	In this connection the term loose is used 

to distinguish a medium made up of individual particles from a continuous 

solid, it does not necessarily mean that the material is uncompacted and 

free flowing. Although the flow of a loose solid does bear some simi-

larity to that of an ordinary liquid their behaviours are in no way 

analogous. The rate of deformation of most liquids is a continuous 

function of the imposed stress state but in a loose solid this is not the 

case. 

It is possible to formulate conditions for the stress states at 

which deformation can occur within a loose solid and these are known as 

critical states. An analogy can be drawn between shear in a loose solid 

and plastic deformation of a metal. Only small (elastic) deformation 

occurs up to a certain stress level, then, when a critical level is 

reached large scale deformation begins to occur. 	In an ideal material 

this large scale deformation can take place at a constant stress level 
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which in the case of a loose material is in fact a critical stress 

state. 

The nature of slip within a loose solid is therefore such that 

deformation rate is largely independent of stress state. 	This being 

so the combination of equilibrium and constitutive equations cannot be 

used as a basis for solving the problem. 	4.2 deals with the basic flow 

properties of polymer granules and powders, and chapter 7 is concerned 

with considering these properties in relation to the problem of flow 

in an extruder screw. However the essential conclusion is that a 

solution for shear flow within an extruder channel is far from being a 

practical possibility. 	The problem is again somewhat analogous to 

analysing the plastic flow of a metal and is at least as difficult. 

In view of the difficulties associated with the solution of even rela-

tively simple plasticity problems it is not surprising that this con-

clusion has been reached. 

Having decided that a very general analysis of solids flow is not 

practicable it remains to examine the validity of the "plug flow" 

assumption, as it is called, in which shearing of the material is not 

considered. 

Although the theory to be presented in chapter 7 does go some way 

towards analysing the situation which exists in solids being conveyed 

by a screw, it has not been possible to calculate slip velocities. 

Therefore the validity of the plug flow assumption cannot be examined 

theoretically in any quantitative manner. Plug flow theory treats 

the solid as though it were a nut on a screwed rotating shaft. By 

considering all of the forces acting on the material and how the velo-

city of movement affects them, this velocity can be found by solving 

the equilibrium equations. Knowing the flow velocity along the screw, 

the flow rate can be calculated. 
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If plug flow theory is looked at closely it is apparent that only 

the movement of the layer of material next to the barrel surface really 

affects the forces which act on the system. Therefore when the equili-

brium equations are solved it is really the velocity of the material 

next to the barrel surface which is being found and the velocity of the 

remaining material is related to it because of the plug flow assumption. 

Obviously if there is a velocity gradient over the depth of the channel 

then the material next to the screw root will move less quickly relative 

to the screw than that next to the barrel surface. 	It follows there- 

fore that in such a case the output predicted by plug flow theory would 

be optimistic. 

Experimental investigation of the effect of departure from plug 

flow is something which is rather difficult to undertake. 	Ideally two 

materials are required with identical physical properties except that 

one should readily shear internally and the other should not. When 

run in a screw the latter would flow as a plug and the former would be 

subject to shearing so that a fair comparison could be made between the 

two conveying mechanisms. 

Some tests (6.3.1) have been carried out with polystyrene beads 

and granules. These were of basically the same polymer and as such 

had very much the same physical properties except that the granules 

were cylindrical in form and therefore more difficult to shear than the 

spherical beads. The test was not an ideal one but it did show that 

the volumetric flow rate of beads was very similar to that of granules, 

in fact the bead flow rate was slightly higher. 

Assuming that the flow of granules would be more plug-like than 

that of beads, it would appear that the qualitative reasoning put for-

ward to predict the effect of slip or shearing is for some reason not 

valid. Either this is so, or even in a fairly extreme case like that 
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of polystyrene beads the flow is for practical purposes plug-like. 

Therefore, although the loose flow problem may be partially solved 

by further work, it is probable that in all but very exceptional cases 

the errors eliminated by considering shear would not be of very much 

practical importance. 

In most of the theoretical work which has been published on feed-

ing,the term pressure is used when referring to what is really the 

stress state in the material. 	At each point in a static fluid, no 

matter which directions are considered, the direct stresses will all be 

the same and equal to the hydrostatic stress. 	This quantity is nor- 

mally thought of as the pressure (after making allowance for the stress 

convention). 	However the same is not true in the case of a solid 

medium whether it is loose or continuous. 	If principal stresses are 

considered in a solid then there can be very considerable differences 

between them and the term pressure is not very meaningful in the same 

sense as when applied to a liquid. The differences which can exist 

between the principal stresses in a solid are however governed by the 

failure criterion of the material and in a loose medium this is such 

that the differences cannot be very large. 	In fact, as will be seen 

in 4.4 and 7.1, at a given point in most loose materials the principal 

stresses and therefore direct stresses are always compressive and do 

not vary by more than a factor of about 3.5. 	Because of this the 

term pressure when applied in a qualitative sense is quite meaningful 

and if pressure is defined as direct compressive stress then it has a 

precise meaning. 	In the latter context the quantity becomes a vector 

(not a tensor because the surface on which it acts is implied). 

In the work which follows the term pressure will be used in both 

senses because it is difficult to avoid this especially in describing 

previous work. However the context in which it is used will make its 

meaning obvious. 
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2. 	Background  

2.1 Historical Development of Solids Flow Theory  

Although a great deal of effort has been put into the analysis of 

extruder behaviour only a small part of this has been devoted to solids 

conveying. 

The first significant contributions appear to be those of Maillefer 

[28] and Simonds et al. [42] both in 1952. 	Independently they pub- 

lished ideas on the nature of the solids conveying process and how 

frictional forces enter into the problem. No worthwhile theory emerged 

from their work but a start towards this had been made. 

In 1956 a paper appeared by Darnell and Mol [10] which has now 

become a classic in this field. They assumed that no shearing takes 

place in the material so that it moves as a 'plug'. 	By making use of 

the fact that the velocity with which the plug moves affects the fric-

tional forces which act upon it, the velocity may be found from equili-

brium considerations, hence the conveying rate. 

The expressions which result from the Darnell and Mol analysis are 

fairly complicated and evaluation of results using hand calculation is 

therefore tedious. 	In 1958 Jackson et al. [23] sought to provide a 

simpler alternative to the theory of Darnell and Mol. This was done by 

neglecting channel curvature and the resulting expressions are indeed 

very easy to apply. However the simplified theory is totally unrealistic 

except for very shallow screws and in any case if a digital computer is 

available for evaluating results the simplification is of no real value. 

A completely different approach to the problem of calculating con-

veying rate was taken by Metcalf [33] in 1965-66. His main interest 

was in screw conveyors for coal but the working principles should be 

the same as in an extruder. Unfortunately his presentation is such that 

the theoretical work is very difficult to follow, furthermore an error is 
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introduced early in the analysis. 	Some of the later steps appear to 

be of dubious validity but perhaps this is because he has failed to give 

sufficient explanation of what has been done. 

As well as deriving expressions from which flow rates can be 

obtained, Metcalf has also produced an analysis to find the torque 

required to drive a screw conveying solid. Another point of interest 

in the paper is the section devoted to considering the effect of shear 

within material being conveyed. However as with the other work in 

the paper it is very difficult to understand precisely what has been 

done. Furthermore it will be shown in 2.3 that the basis for his reason-

ing is unsound. 

In 1967 a paper by Griffith appeared [17]. A few theoretical ex-

pressions were used in an attempt to explain feed section behaviour but 

the work is not very important from a theoretical point of view. 

Both the Darnell and Mol theory and that of Jackson et al. assume 

that pressure exists in a loose solid in the same way that it does in 

a static liquid. 	Strictly the term pressure should not be used at all, 

the quantity being referred to is really direct compressive stress. 

However the term pressure is a much easier one to se and considering a 

single point in the material, if the pressure is hought of as varying 

according to the orientation of the plane on whi h it is considered to 

act, then use of the term is quite valid. 

In one part of his theory Metcalf allows for different pressures 

acting on different sides of the basic element used in the analysis. 

However the work of Schneider [40] published in 1969 is the first which 

attempted to take proper account of "anisotropic" pressures. The 

theory presented by Schneider was basically the same as that of Darnell 

and Mol but allowance was made for different mean pressures acting 

along, across and into the depth of the screw channel. Although this 



22 

in itself was an improvement it did raise the problem of finding rela-

tionships between the different pressures so that use could be made of 

the theory. 	This Schneider has done but the approach taken leaves a 

great deal of scope for improvement. 

The other significant theoretical contribution made by Schneider 

was the derivation of expressions for power consumed in the feed section. 

This has been done by integration over the length of the screw to find 

the- total rate of energy dissipation by friction. 

Shortly after the publication of Schneider's work a report appeared 

by Martin, Pearson and Yates [30]. This covered the whole field of 

extruder theory but contained a section devoted to solids flow. This 

appears to be the first published work in which the importance of 

gravity forces in the solids conveying process is pointed out. However 

no attempt was made to include these forces in any solids flow theory. 

In the report, details are given of some unpublished work by Benbow and 

Ovenston [2]. This deals with the situation which exists when a film 

of molten polymer is present at the polymer/metal interfaces so that 

viscous rather than Coulomb friction forces are responsible for the con-

veying action. This mechanism is probably of importance just before 

the melting process begins but it is unlikely to exist right at the 

beginning of an extruder. 

Even more recently a paper by Mondvaiimre and Hal6szlasz16 has been 

published [35]. The theory presented is again on the same lines as 

that of Darnell and Mol but the resulting expressions are slightly 

different. The work is really of only minor significance. 



2.2 Details of Previous Theoretical Work  

It is a relatively simple matter to describe the previous work 

which has been of any real significance. 	In fact only the Darnell and 

Mol theory and Schneider's improvements upon it are really worthy of 

comment. 

As stated previously both pieces of analysis assume that the mass 

of granules or powder in the extruder screw behaves as a solid piece 

of material or "plug", rather like a nut on a screwed rotating shaft. 

It is assumed that a finite pressure exists within the material and 

that this gives rise to friction forces where the polymer slides on the 

metal surfaces. 

The magnitudes of these frictional forces are assumed independent 

of sliding velocity but the rate at which the material flows does 

affect the direction of frictional force between the polymer and barrel. 

Because of this, a coupling is established between the flow rate along 

the screw and the equations of equilibrium which must apply to an ele-

ment of material in the channel. By solving these equations the flow 

rate in the feed section can be evaluated. 	In this connection it 

should be mentioned that neither Darnell and Mol nor Schneider take 

into account the compressibility of the material, so that the volumetric 

flow rate remains constant all along the section of screw being con-

sidered (assuming that the screw geometry remains constant). 

Both Darnell and Mol and Schneider form what is essentially a one 

dimensional solution to the problem. An element of material is taken 

as shown in fig 2.1, this occupies the whole width and depth of the 

channel and extends a distance of Sz along it. Darnell and Mol assume 

that an isotropic pressure exists throughout the element whereas 

Schneider makes an allowance for pressure being anisotropic. He does 

this by taking the mean value over the channel depth of the pressure 
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acting along the channel as reference (p) and takes the other pressures 

as being proportional to it, such that: 

kip 	acts on the barrel surface 

k2p 	II 	tl " sides of the channel 

kip 
	tt 	II 	screw root. 

In general a pressure gradient is assumed to exist along the 

channel so that the element of material is subject to a net force because 

of this. Most of the frictional forces acting on the element may be 

written in terms of the pressure or pressures which exist within it, 

the coefficients of friction and what is best described as the convey-

ing angle of the material (which depends upon flow rate). 

Fig 2.2 shows a view of the basic element in a channel which has 

been simplified to an unwrapped or flattened-out form and fig 2.3 is a 

velocity diagram showing the relative velocities of the screw, barrel 

and plug of material. From this latter diagram it can be seen that 

for a given screw speed (N) the faster the plug moves relative to the 

screw the larger the conveying angle a. 	Obviously the faster the 

material moves relative to the screw the greater the flow rate along 

the machine. 	If the cross-sectional area of the channel is known 

(taken from a section perpendicular to the screw axis) then the flow 

rate is equal to the product of this and the axial velocity Vz  which is 

given by 

tan a tan 41 
7rDN 	  

tan a + tan 41 

It follows therefore that the flow rate is proportional to screw speed 

for a fixed value of the conveying angle a. 

Since the plug moves at this angle a relative to the barrel, the 
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frictional force between plug and barrel must be in that direction. 

Referring now to fig 2.2, it can be seen that this force may be looked 

upon as having components along and across the channel. That along 

the channel serves to transport the material whereas that across the 

channel merely serves to push it against the flight. 	Because it is 

assumed that the pressure does not vary over the width of the channel, 

the force component across is taken to be balanced by a reaction FR  

on the pushing flight edge. This reaction in turn gives rise to an 

additional frictional force at that point. 

Referring to fig 2.4 it is possible to summarise the important 

forces acting on the element as follows; (the directions in which all 

except no.3 act are determined by the helix angles of the screw). 

1. A frictional force on the surface of the element which slides 

against the root of the screw (this depends upon pressure, the coeffic-

ient of friction there and k3  in Schneider's work). 

2. Frictional forces on the sides of the element in contact with 

the flights, due to pressure in the material (dependent upon pressure, 

the coefficient of friction there and k2  in Schneider's work). 

3. A frictional force on the surface of the element next to the 

barrel (its magnitude depends upon pressure, the coefficient of fric-

tion there and k1 in Schneider's work, its direction is determined by 

the conveying angle a). 

4. A reaction on the pushing flight edge which in effect resists 

the component of 3. acting across the channel. 

5. The frictional force on the pushing flight edge created by 

the above, (it depends upon 4. and the coefficient of friction there). 

6. A net force due to the pressure gradient. 

Given the above forces, it is necessary to form the conditions for 

their being in equilibrium. 	In the case of the Darnell and Mol approach, 
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equilibrium in the radial direction is automatically satisfied. None 

of the forces listed above has any component in that direction and the 

only other forces acting on the element are reactions to what is assumed 

to be a uniform pressure within, these are obviously in equilibrium. 

In his work Schneider derives values of k1 and k3 such that the effective 

pressures acting on the sides of theelement are themselves in equilibrium 

therefore radial equilibrium is purposely satisfied. 

It follows that in both theories it is necessary to consider equi- 

librium in two directions only. 	In fact, the approach used is to write 

down two equations, one for equilibrium of forces in the screw's axial 

direction, the other for equilibrium of moments about the axis. To do 

this the forces which have been listed are resolved into components 

parallel and perpendicular to the axis. The former are summed and 

equated to zero, the latter are multiplied by the respective radii at 

which they act, summed and then equated to zero. 

As an aside it may be mentioned that in their simplification Jackson 

et al. treat the problem as a planar one and simply form equations of 

equilibrium along and across the channel. This approach is however 

far too unrealistic to be worthwhile. 

When equilibrium equations are formed along and about the screw 

axis they are quite complicated and reference should be made preferably 

to Schneider's work for details of the algebra involved. However 

given the screw geometry, the relevant coefficients of friction and for 

Schneider's analysis the constants kl, k2, k3, then the equations con-

tain only the conveying angle (a), the normal reaction FR, the existent 

pressure and the pressure gradient as unknowns. From the two equations 

the normal reaction can be eliminated and when the resulting single 

equation is suitably rearranged it contains only a and the ratio of 

pressure gradient to existent pressure. The latter quantity comes about 
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because all of the terms which enter into the equilibrium equations 

except the one containing pressure gradient are basically due to friction 

forces and are therefore dependent upon pressure. 	Because of this the 

resulting single equation may be divided through by 'pressure' leaving 

this quantity solely as part of a relative pressure gradient term in the 

form - / p. 
Dz 

It is usual to integrate the equation over an interval of screw 

length and the final form arrived at by Schneider is as follows: 

Ps cos a = K sin a + — 
Pb 

k2 2 h E (K tan 42 E) 
TIE (t-e) 

p k3 
—
s

— C cos (1)3 (K tan (1)3 + C) 
pb kl 

h E cos (1)2  sin (2 	P2 
	 (K tan (1)2 + E) In — p

b 
L ki 	 P1 

where" K = E 
1 - ps 

tan (1)2 

The symbols used are the same as those to be used later (chapter 5) 

and do not necessarily correspond with the ones used by Schneider. 

In the above, pl and P2 are mean along channel pressures at the beginning 

and end of the section of screw being considered, this is taken as 

having an axial length of L. 

The expression obtained by Darnell and Mol was essentially very 

similar but since they considered the pressure in the solid to be iso- 

tropic, k1, k2  and k3 are all unity in effect. 	In the main part of 

their analysis they also assume that pb  = us  and that the flight width 

(e) may be neglected. 	If these conditions are imposed upon eqn 2.2 
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then the resulting expression is exactly equivalent to that obtained by 

Darnell and Mol. 

To this extent the theories are in complete agreement but Darnell 

and Mol go on to state (without giving any proof) the modifications 

which are necessary in order to allow for us  pb 	
However it appears 

that the changes which they state to be necessary are in fact incorrect. 

Because the conveying angle a is a function of output rate then 

given the screw geometry, coefficients of friction and screw length, 

eqn 2.2 is essentially a relationship between flow rate and output/input 

pressure ratio. 	Output rate is usually looked upon as the dependent 

variable and so it is useful to be able to express a in a more explicit 

form. 	If equation 2.2 is condensed to: 

cos a = K sin a + M 	 2.3 

then Schneider obtained the expression 

11 + K2 - M2 -KM  
tan a - 

KA + K2 - m2 m 

which can be rationalised to give: 

. 	K.  - M 	+ K2  - M2  
tan a - 

K2 - 142 

If pressure is looked upon as the dependent variable then for 

given screw geometry, coefficients of friction and material flow rate: 
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2.5 

In p2/pi 
= const. = A 	 2.6 
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alternatively 

AL 
P2 = P1 e 

From this it can be seen that for a given situation the pressure 

profile along a solids conveying screw is of an exponential nature. 

Indeed this is the form to be expected since the frictional forces which 

give rise to the pressure build-up are themselves dependent upon pressure. 

The length L really refers to a fixed length along the screw axis. 

but equation 2.7 may be put in more general terms relating pressure to 

distance along the actual channel: 

Alz 
= p e 

0 
2.8 

when p is the initial pressure 
0 

(A' is a constant determined by screw geometry, coefficients of 

friction and conveying rate.) 

It may be noted that eqn 2.2 has no terms directly involving screw 

speed and so unless the coefficients of friction vary with sliding velo-

city it follows that a is not a function of screw speed and so from 

eqn 2.1 it can be seen that output should vary linearly with screw speed. 

In order to calculate the power absorbed by a screw conveying solid 

Schneider assumed that this is equal to the total rate of energy dissi- 

pation by friction forces. 	If the pressure distribution is known 

along the section of screw being considered (eqn 2.8) then the friction 

forces acting on the screw root, flight edges and barrel surface may 

all be found. From screw speed, screw geometry and the velocity diagram 

(fig 2.3) the sliding velocities corresponding to these frictional 

forces may also be found. 	By integrating all of the frictional dissi- 

pation rates over the appropriate length of screw the total dissipation 

rate is found. 
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Schneider's final expression for power consumption is, as would be 

expected, rather complicated, and when the matter is investigated 

further, not very accurate. 	If the screw is looked upon purely as a 

pump then part of the power which it absorbs appears as useful work in 

delivering material at a higher pressure than that at which it was 

taken in. The remainder is dissipated by friction. 	Schneider only 

considers the latter and although it could be argued that this con-

stitutes by far the greater part of the total energy involved, apart 

from the question of accuracy, it is easy to show that the power 

actually required to drive the screw is a much easier quantity to 

evaluate. 

The total power consumed in the feed section is the product of 

torque absorbed by the screw and the angular velocity with which it 

rotates. 	To consider the pressures and friction forces which act on 

the screw itself to resist the driving torque would be a complicated 

matter. However by the action-reaction principle the torque required 

to drive the screw must be equal to the torque required to restrain 

the barrel. 	In turn the torque which tends to rotate the barrel must 

be due to frictional forces acting on its inside surface. Therefore 

by considering the components of frictional forces at the inside 

barrel surface which act in the hoop direction and integrating these 

over the appropriate length of barrel, it is possible to evaluate the 

torque acting on the barrel. 	Because this is equal to the torque 

required to drive the screw the feed section power requirements can be 

found. 	In this way only frictional forces at the barrel surface have 

to be considered and this is a relatively simple matter. 

The aspect of Schneider's theoretical work not yet touched upon 

is that concerned with the evaluation of kl, k2 and k3. 	These constants 

relate the pressure on the barrel surface, that on the sides of the 
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channel and that acting on the screw root to the mean pressure acting 

along the channel. 

The method of calculating these constants appears to have been 

inspired by a fairly well known property which loose materials exhibit. 

If this type of material is contained in a cylinder and a pressure or 

compressive direct stress is applied in the axial direction via a piston 

then it is found that pressure of a somewhatsmaller magnitude is set up 

in the radial direction. 	Schneider carried out tests of this type and 

found that with the materials which he tested the ratio of radial 

pressure to axial pressure remained essentially constant over the range 

of pressures used, a typical value for the ratio being 0.4. 

In order to apply this empirical pressure ratio to the situation 

in an extruder screw, a zero helix angle has been assumed so that the 

channel is taken to run in the hoop direction. 	It is further assumed 

that the along channel direction is the one in which material is in 

effect being pushed so that it is equivalent to the axial direction in 

the simplified situation already described. Because the screw channel 

is curved complications arise but the important condition which must 

be fulfilled is that of equilibrium in the radial direction. 

Schneider starts with a simplified form in polar coordinates of 

the equation for equilibrium in the radial direction. 	Shear stress 

derivatives and body forces are neglected so that the equation is simply: 

aPr - pe  pr  
D r 

2.9 

If the empirical pressure ratio is taken as k then pr 
and p

0 
 are 

related such that 
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Pri 

(r2 - ri)k  

fr2  
N  ,r )K

ri  Pe 
r1 

dr 	2.14 

Therefore substituting into eqn 2.9: 

3Pr 	1 	Pr 
- 1)  T- 

2.10 

1 _ = K1 

and 
	

Pr 
= p

r 
	at r = r1 	(at screw root) 

then if eqn 2.10 is solved: 

,r 	 2.11 = P Pr 	r1 ri 

so that 
r2 K' 

1 r2 	Pr1 r (--) 	(at barrel surface) 	2.12 
i  

r )K 	 2.13 Po 
ri  

It is sought to relate p and p to the mean value of p over 
r2 

	pr 
	0 

the depth of the channel, the latter being obtained as follows: 
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and 

Obviously therefore p and p may be related to T so that kl and k3 
r2 	/A. 	0 

can be found. 	It is also evident that; 

k p0 
	 2.15 

at each point over the depth of the channel therefore: 

P
z 
	 2.16 

if 

and so 	k2 = k. 	 2.17  

Although incorporating the constants kl, k2 and kg appears to be 

a useful means of allowing for the effective pressure or direct stress 



varying according to the direction being considered the method of 

evaluating these quantities leaves a great deal to be desired. 

There is the obvious objection that the real geometry of the problem 

is not considered but this is a rather minor point. The real objection 

is that the stress situation which exists in a screw channel is a good 

deal different from that which exists in the type of apparatus which 

Schneider used to measure k and so this empirical ratio should not be 

applied in such a direct manner. The problem is discussed in chapter 7 

where it will become apparent that the approach taken by Schneider is 

far too simplified to be realistic. 

2.3 Previous Experimental Work  

In order to verify their theoretical work Darnell and Mol carried 

out a series of experiments using (it is implied) an ordinary extruder. 

Some special screws with constant depth channels were made for the pur-

pose and used in conjunction with a series of different barrels. The 

experiments were carried out at about room temperature. One barrel was 

transparent so that the flow of polymer could be observed, the others 

were of metal construction, one was pitted giving a rough inside surface, 

another was finished in the normal way and the remaining one had a 

polished bore. The different finishes of the metal barrels were intended 

to produce coefficients of friction on the inside surfaces respectively 

greater than,equal to and less than that on the screw surfaces. 

The variation in output rate due to these different coefficients of 

friction corresponded qualitatively with what the theory predicts, and 

indeed what is expected to happen from purely qualitative reasoning. 

Darnell and Mol have also calculated the output rates which are to be 

expected for each of the screws working in the barrel made to have the 

same coefficient of friction. 	These results appear to agree quite well 
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with those obtained experimentally but it is interesting to note the way 

in which the theoretical results were obtained. The full expression 

obtained in the theory (similar to eqn 2.2) has not been used. 	Since 

no pressure build-up was brought about in the experiments the pressure 

gradient term was justifiably neglected. However the term which takes 

account of frictional forces due to pressure acting on the screw flights 

has also been neglected with no convincing justification being given. 

Therefore in spite of the apparent agreement between theory and experi-

ment some suspicion must surround the work. 

Jackson et al. were not concerned with polymers in their experimental 

work, their interest was in compounding double base (nitrocellulose- 

nitroglycerin) propellants. 	It appears that this material tends to 

flow in a viscous manner when compacted and subjected to shear whereas 

at the temperatures which exist in the feed section of a polymer extruder 

the feedstock does not normally behave in this way. 

The experiments were carried out on screw presses of the type used 

for processing double base propellant but no real attempt was made to 

compare the results with any obtained from their theoretical work. 

The nearest approach to this was to estimate coefficients of friction 

such that the theoretical and experimental results were in agreement. 

These results were then used in an attempt to predict the performance 

of another machine. 

There are perhaps two significant points which emerge from the work, 

one is that large pressure build-ups were observed (a value of 6.9 MN/m2  

per turn was mentioned), the other concerns the nature of any shearing 

which may take place in the material being conveyed. 	It was found that 

when this occurred the shearing was almost entirely confined to a thin 

layer of material in contact with the surrounding metal surfaces. 

However there is some doubt as to whether this was due principally to 

the material being hotter and consequently easier to deform than the rest 



of the material or whether it was due to the stress state at these 

surfaces being more conducive to flow. 	Since the majority of granular 

or powdered polymers have considerably different flow characteristics 

from a double base propellant, Jackson et al.'s results must be treated 

with caution. 

In 1961 Schenkel [39] published the results of some experimental 

work done mainly to obtain some indication of the amount of pressure 

which can be built up in the feed section. The screw which he used 

was fairly short (5D) of constant pitch (1D) and constant channel depth 

(0.2D), the experiments being carried out without any heating or 

cooling of the barrel. 	In order to restrict the output from the screw 

and force it to build up pressure, Schenkel used a device the essence 

of which has become almost standard for this purpose. The barrel is 

extended beyond the end of the screw and inside this extension there is 

a cylinder with an inside diameter the same as the diameter of the screw 

root and an outside diameter which is such as to allow free sliding 

within the barrel. 	Fig 2.5 illustrates this arrangement. 	If the 

end of the cylinder is in contact with the end of the screw then no 

material can flow. As the clearance between the end of the screw and 

the cylinder is increased so too is the amount of material which can 

flow through the machine. The material which escapes from the screw 

channel falls into the centre of the cylinder and is then discharged 

from the machine. 

In Schenkel's arrangement the cylinder was constrained by three 

strong springs and the pressure on its end had to overcome the spring 

force before material could escape. 	In such an arrangement the dis- 

placement produced depends upon the pressure build-up by the screw 

so that by measuring displacement the pressure may also be found. 

This arrangement does not allow very much flexibility in applying or 
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creating back pressure and Schenkel's work cannot be looked upon as a 

serious experimental investigation of the output/pressure build-up 

characteristics of a solids conveying screw. 	The most significant 

finding of his work is that very considerable pressure may be built up 

in the solids conveying process (as much as 16'5 MN/m2  in one experiment), 

something which does not appear to have been widely appreciated before 

this work was done. 

In 1964 a paper by Miller was published [34], this dealt entirely 

. with practical aspects of extruder feeding. 	Unlike most other work it 

is concerned to some extent with the flow of material into the screw 

and not simply the conveying action once this has taken place. 	In 

this connection the flow in hoppers is discussed briefly together with 

some relevant properties of loose feedstocks. The author then goes on 

to comment upon the relative advantages of forced feeding and the use 

of vacuum hoppers in processing powder and re-cut materials. 

One of the most interesting parts of his work was concerned with 

changes in the length of the feed pocket. This was made the same width 

as the diameter of the screw but its length could be either 1, 2 or 3 

diameters. The tests show that the output from the screw, with no 

pressure being built up, was the same with each of these feed pocket 

lengths. Furthermore output was unaffected by the type of hopper used 

and varied linearly with speed over a range of 10 - 200 rpm. The con-

clusion which can be drawn from this is that hopper and feed pocket 

design is not critical. However the effect of reducing the feed pocket 

size below 1 diameter x 1 diameter is still open to speculation. 

Another interesting part of Miller's work is that concerned with 

pressure build up in solids flow. 	Some apparatus on the lines suggested 

by Schenkel was used but the output/pressure characteristics which he 

obtained were rather different in form from those obtained later by 

Griffith [17] and those described in chapter 6. 
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The experimental work done by Metcalf was again primarily to veri- 

fy theoretical work. The apparatus was of a rather crude nature con- 

sisting of mining drill rods acting as screws and cast concrete blocks 

forming the barrels. Since Metcalf was primarily interested in con- 

veyors for coal, various grades of this material were used for the tests. 

The barrel assembly was mounted such that the reaction to the torque 

used in driving the screw could be measured and the outlet from the 

screw was unrestricted so that no appreciable pressure was built up, 

this being the normal case in a straightforward conveyor. 

Both the results for flow rate and torque requirements agree very 

well with the theoretical calculations which Metcalf makes. In view 

of the errors involved in the theoretical work, the uncertainties in- 

volved in its application and the crudeness of the experimental apparatus, 

the correlation is-remarkable. The whole of Metcalf's work involves 

a degree of suspicion which is further heightened by the conclusions 

which he reaches on shear within material contained in a screw. He 

carried out a series of experiments to find the internal friction angles 

for the different types of coal used in his experiments. This was 

done by building a flat topped pile of the material next to a solid 

block. The block was pushed into the heap of coal and the position 

of the shear plane noted, from this the internal friction angle could 

be found (see fig 4.3). 	This is a satisfactory method of estimating 

the angle of friction but Metcalf does not seem to appreciate that gravity 

forces play a vital part in deciding where the slip plane is produced. 

In his consideration of shear within the screw channel Metcalf 

thinks of the rotating screw flight as being equivalent to the block 

which was pushed into the pile of coal. A shear surface around the 

screw channel is then postulated, the inclination of which, relative to 

the barrel surface, is taken as essentially equivalent to that observed 

between the slip surface and the horizontal plane in the basic experiment 
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already referred to. 	In this basic situation, due to the nature of the 

material (discussed more fully in 4.2) the ratio of shear stress to nor-

mal stress at each point on the slip surface is equal to the internal 

coefficient of friction of the material. A large part of the normal 

stress is brought about by gravity forces in the material above the 

shear plane whereas in the shear surface around the screw channel 

envisaged by Metcalf, the gravity forces are deployed in a completely 

different manner. 	Therefore the whole concept of slip surfaces in the 

form put forward by him is completely erroneous. 

The experimental work of Griffith was of fairly limited scope but 

contains some points of interest. His work was carried out using 

polymethyl methacrylate beads about 0.25 mm in diameter and cube pellets 

with sides approximately 3 mm square. 	One of his first observations 

using a glass barrel, was that even the beads moved as an unsheared 

plug. 	Since it is usually felt that beads are the least likely material 

to flaw as a plug the evidence provides useful support for the general 

applicability of plug flow theory. 

Griffith also carried out some experiments to find the effect of 

back pressure on solids conveying. Although details of the particular 

screw used for these tests are not given, the results show that output 

rate was very sensitive to back pressure. The other effects investi-

gated were that of particle size in the feedstock and that of different 

temperatures on the screw and barrel. 

In contrast to the rather doubtful experimental work of Metcalf 

and the somewhat limited work of Griffith, that carried out by Schneider 

is quite outstanding. The work which he did to find the frictional 

properties of the polymer used, and the relationship between applied and 

resultant pressure in a mass of granules will be discussed in chapter 

4, in this section attention will be concentrated on work carried out 



on the piece of apparatus made to represent an extruder feed section. 

The apparatus consisted of a fairly short section of barrel with 

a hopper and feed pocket of conventional extruder design. Provision 

was made to circulate liquid around the outside of the barrel so that 

its temperature could be controlled, the screws were cored for the same 

purpose. Three screws were used each with a constant pitch of 1D but 

having different channel depths, this being constant along each screw. 

Each was 50 mm in diameter and had a length of 8D, there was no pro-

vision in the apparatus for varying the effective screw length. A 

back pressure device on the same lines as that employed by Schenkel 

(fig 2.5) was used but Schneider had a hydraulic cylinder to apply a 

load to the restricting cylinder. 	The applied load was measured 

using a strain gauge load cell and from this the effective pressure at 

the end of the screw could be calculated. 

Only one type of material was used for the tests but its effective 

coefficients of friction on the screw and barrel could be altered by 

varying the temperatures of their respective surfaces. 

From the results of experiments carried out over quite a wide range 

of running conditions two initial observations may be made. Firstly, 

over the speed range used (6-70 rpm) the output was to a good approxi- 

mation linearly dependent upon screw speed. 	Secondly, the output was 

virtually independent of the applied back pressure. The former result 

is in complete agreement with the predictions of feed theory but the 

latter is at first somewhat surprising. 	It appears to show that there 

is no point in attempting to predict the output/pressure build-up 

characteristics for a solids conveying screw, however it should be 

remembered that the screw used by Schneider had a length of 8D. This 

is a considerably greater length than is normally devoted purely to 

solids conveying in a real extruder and it is to be expected that shorter 

lengths of screw are more sensitive to pressure build-up. 
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The theoretical predictions for output rate which Schneider makes 

appear to correlate quite well with the experimental results. 	The 

theoretical predictions for power consumption also compare quite well 

with values obtained experimentally. However Schneider appears to be 

less satisfied with this latter aspect of the work, perhaps the 

deficiency in the theoretical work pointed out in 2.2 would help to 

explain the discrepancy. 

The Institute for Processing Technology in Aachen has been quite 

active in research on polymer processing and since the publication of 

Schneider's work other developments have taken place concerning solids 

conveying in extruders. Probably the most noteworthy of these is the 

introduction (or perhaps reintroduction) of the arrangement in which 

axial grooves are cut along the inside of the barrel to improve feeding 

[32]. 	Feed section theory shows that a high coefficient of friction 

between polymer and barrel is conducive to a high solids flow rate. 

The use of axial grooves in the barrel effectively gives this high 

coefficient of friction. 

The highest output rate obtainable from a solids conveying screw 

occurs when the material remains as a plug and moves axially along the 

barrel without rotating. The use of axial grooves may have been in-

spired by the desire to achieve this objective but in practice it 

appears that only about 80% of the ideal flow rate is obtained. How-

ever this is still approximately double the typical flow rate obtained 

using a plain barrel. 

Because a feed section incorporating a grooved barrel has such 

excellent conveying ability and consequent ability to build up pressure, 

new possibilities are open for improvements in extruder design. 	It is 

possible to build up sufficient pressure in the solids conveying zone 

to more than meet the final output pressure requirements. This means 
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that the melting and mixing functions of the extruder are no longer 

required to build up pressure so that greater flexibility can be 

achieved in their design. 

The main limitation of using grooves in the barrel is that its 

effectiveness is apparently reduced if the channel depth is large com- 

pared with the particle size of the feedstock. 	It is probable there- 

fore that in some situations the use of a grooved barrel is hardly 

worthwhile. 
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Fig 2.2 PLAN VIEW OF ELEMENT IN FLATTENED CHANNEL 
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Fig 2.4 SIMPLIFIED DIAGRAM SHOWING THE FORCES ACTING ON THE 

ELEMENT OF MATERIAL 

Fig 2.5 SCHENKEL'S DEVICE FOR RESTRICTING OUTPUT FROM A SCREW 
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3. 	Shortcomings of Previous Theoretical Work and the Scope for  

Improvements  

Although Schneider's work [40] is almost certainly the most advanced 

theory so far produced there are still a number of rather serious cri-

ticisms which may be levelled at it, some of these have been touched 

upon in 2.2. 	The criticisms may be listed as follows. 

1. Only pressure and friction forces are considered, no account 

is taken of gravity and other pressure independent forces. 

2. The pressure or stress state is assumed to be constant all 

across the screw channel. 	In order to resist the component of friction 

force from the barrel which acts across the channel a separate reaction 

(in addition to thatresisting the pressure) is assumed to exist on the 

pushing flight edge. 	In reality this reaction must come about because 

of a build-up in pressure across the channel caused by the force com- 

ponent acting in that direction. 	This gives rise to a larger reaction 

on the pushing flight edge than there is on the other flight edge and 

this in a crude sense provides the additional reaction which otherwise 

has to be assumed. To take this effect into account and achieve a 

realistic type of solution a two dimensional approach, at least, is 

required as opposed to the one dimensional approach used by Schneider. 

3. The type of material used as feedstock in extruders undergoes 

a considerable reduction in volume under the degree of pressure which 

can be built up during solids conveying. This can be seen by taking 

typical pressures built up in Schneider's experiments (and those des-

cribed in chapter 6) then considering the compressibility characteristics 

presented in 4.3. Under steady state conditions the mass flow rate at any 

point along the screw channel must be constant so that if the material 



45 

undergoes compression the volumetric flow rate must change. 	Since it is 

really the volumetric flow rate which determines the rate of pressure 

build-up (eqns 2.1 and 2.2) then it is obviously important to consider 

compressibility. 

4. . Although Schneider does allow for pressure anisotropy, his 

approach is really only a first attempt to improve upon the isotropic 

pressure assumption of Darnell and Mol [10]. 	What is really required 

is a departure from this system and the use of a more conventional stress 

analysis approach to the problem. 

Whilst on this subject it is perhaps worthwhile pointing out that 

in both the Darnell and Mol, and the Schneider theory, no shear stresses 

as such are considered. 	Because of this,a force component term is 

missing from the analysis. 	If the element of fig 2.2 is considered 

once again, then it can be seen that because frictional forces act on the 

sides of the element in contact with the flights, shear stresses must 

exist in the material. 	Since these stresses exist in the along channel 

direction there must also be complementary shear stresses acting across 

the channel. 	It follows that because of these cross-channel shear 

stresses there will in general be a net shear force acting on each end 

of the element (perpendicular to the z direction and across the channel). 

Furthermore if there is a pressure build-up, hence change in stress 

state over the length of the element, then it is to be expected that 

there will be a change in the net shear force as well. 	This change 

means that the shear forces will not balance each other and so there is 

a resultant force which has not been included in the analyses. 

5. It is assumed that no shearing occurs within the material being 

conveyed and that it flows as a "plug". 	This is the most difficult 

assumption to comment upon from a purely theoretical point of view but 

it is intuitively unreasonable that loose material when confined within 



a screw channel should always flow without shearing. In all probability 

shearing is only significant under certain circumstances, the fact that 

normally granular or powdered polymer tends to slip on a smooth metal 

surface more readily than it shears within itself (4.1 and 4.2) lends 

qualitative support to the plug flow assumption. However the whole 

question is one which has not so far been explored very thoroughly. 

Although the assumption of plug flow has been one of the most cri-

ticised aspects of solids flow theory there is another very unsatisfactory 

aspect of the work which has aroused very little comment. This 

concerns the way in which pressure or more strictly stress build-up is 

treated in solids conveying thecIy. Using a fairly long screw and 

barrel Schneider showed experimentally that flow rate is virtually un-

affected by pressure build-up. However it will be shown in the experi-

mental work described in chapter 6 that this is not the case with 

shorter screws, the output being very definitely affected by the pressure 

which has to be built-up. 

When it is sought to predict the pressure/output characteristic of 

a screw using Schneider's theory it can be seen from equations 2.2 and 

2.8 that if flow rate is treated as the independent variable then the 

value of p2/pi can be formed in terms of this and the constants of the 

system. 	pl and P2  are respectively the inlet and outlet pressures of 

the conveying section and so it is obvious that the final pressure is 

directly dependent upon that which exists initially. 

The most convenient initial condition would be to assume zero 

pressure at the beginning of the screw but obviously if this were done 

the final pressure would be predicted as being zero as well. 	Since it 

can be demonstrated that pressure is developed in solids conveying then 

according to Schneider's theory some pressure must exist initially. 

46 



47 

It can be postulated that the initial pressure arises from the head of 

material in the hopper above the screw. However the flow of loose 

solid through a converging section and thereafter into the rotating 

screw channel means that a simple (specific weight) x (height of material) 

approximation to the initial pressure is likely to be greatly in error. 

Since the calculated value for final pressure is critically dependent 

upon this initial pressure the method is necessarily extremely unreliable. 

A further objection to the idea that initial pressure generation 

must occur by gravity forces in the hopper arises from observations which 

h-ave been made through a transparent barrel (chapter 6). Under certain 

conditions it is possible to have part of the screw at the beginning of 

the feed section running incompletely full but still building up pressure f  

at the outlet. Under these circumstances the only pressure which can 

exist in the material at the beginning of the screw is that due to gravity 

forces within the channel itself (centrifugal forces were not important 

at the screw speeds used for the experiment just referred to). 	It is 

believed that this points to one of the fundamental deficiencies in pre-

vious theoretical work and that by including gravity forces the build-up 

of pressure from a value which is essentially zero at the beginning of 

the screw can then be explained. Although the absolute magnitude of 

the forces, and hence pressure created by gravity within the screw 

channel must obviously be small, they are still significant if no pres-

sure is created by any other means. 

It can be concluded therefore that the first criticism listed is 

of major significance and although gravity forces are clearly insigni-

ficant in that part of a screw where high pressure exists they must be 

taken into account right at the beginning where pressure or stress level 

approaches zero. 	As screw speed is increased, centrifugal forces start 

to become significant and in a high speed extruder it is easy to demon- 



strate that they are more important than gravity forces (w2r > g). It 

is to be expected that these centrifugal forces have two opposing 

effects. 	In the feed pocket, material will tend to be thrown out of 

the screw as it rotates thus making it more difficult for the screw to 

pick up material. On the other hand once inside the screw channel and 

contained within the barrel, centrifugal forces must increase the con-

tact pressure between polymer and barrel thus assisting flow along the 

screw. 	It is likely that the effects will to some extent cancel each 

other but the degree to which this will occur is not easy to estimate. 

Turning now to criticism 2; in the Darnell and Mol, and Schneider 

theories equilibrium of the element is satisfied effectively in two 

directions but a pressure gradient is assumed to exist only along the 

channel. A logical development of this is to extend the solution to 

two dimensions and consider changes across the channel as well. A two 

dimensional solution would remove the problem encountered with the 

additional reaction which otherwise has to be assumed at the pushing 

flight edge. 	It would also overcome the objection raised in the second 

part of criticism 4 where a missing shear force term is pointed out. 

Some work has been done under the direction of Ingen-Housz [22] 

in which a two dimensional treatment has been used. The work does not 

appear to have been published formally but the expressions generated 

are similar to those arrived at in 5.4.1 where the more complete expres-

sion obtained in chapter 5 has been simplified. 

The subject of stresses which can exist within a loose solid pro-

bably presents the most difficult problem encountered in solids con- 

veying theory. 	It is easy to understand why the assumption of plug 

flow (criticism 5) and a simplification with regard to stresses 

(criticism 4) have been made in previous work. 
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In a very general sense the problem of pressure or stress build-up 

in a solids conveying screw is basically one of stress analysis but its 

physical form and the nature of the boundary conditions are such that it 

is a difficult one to deal with. 	Ideally the problem should be con- 

sidered in three dimensions and since it is not a statically determinate 

one, the stress-deformation characteristics of the material and com-

patibility or continuity relationships for the system must also be con-

sidered in addition to the conditions for equilibrium of stresses. 

If the material in a screw could always be treated as an elastic 

medium then the stress deformation and in this case compatibility rela-

tionships would be in a well understood and relatively simple form. 

However it is likely that in many cases part of the channel is occupied 

by material in a state of shearing. 	This is rather like an elastic- 

plastic problem in metalworking and therefore more difficult to deal 

with especially considering that the prOblem is really a three dimensional 

one. 

With the advances which are continually being made in numerical 

analysis it may at some time be possible to solve the problem completely, 

but at present a solution on these lines is not really practicable. 

Even if it were the computing time involved would almost certainly be 

prohibitive. 

The obvious approach is to look into simplifications which can be 

made, in particular with regard to analysing the general case in which 

shearing is assumed to occur. The theory of plasticity in metalworking 

makes use of the concept of slip line fields for the solution of plastic 

flow problems [19]. 	An equivalent system has been developed to a lesser 

degree of sophistication for analysing problems of shear flow in a loose 

material [24,37,44]. 	However the biggest obstacle to the application of 

this work to flow within an extruder screw is that the theory only applies 
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to a two dimensional system, the direction perpendicular to the plane 

in which a solution is found has to be one of principal stress. Even 

if the screw channel is simplified to a straight rectangular form, 

consideration of the shear stresses which exist show that it is impossible 

to choose a plane which fulfils these conditions. 

Because the slip line field type of approach is not possible, and 

no other methods appear to hold any promise, the plug flow assumption 

has to remain. However there is a great deal of scope for improvement 

upon current theory and this is carried out in chapters 5 and 7. 
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4. The Physical Properties of Solid Polymers  

There are three main properties of a granular or powdered polymer 

which are of importance in feed section behaviour. 

1. The frictional properties of the polymer against the metal 

surfaces of the extruder. 

2. The strength properties of the material in resisting deformation. 

3. The density or specific weight of the material and how this 

changes with the stress state imposed. 

The first two properties are to some extent connected since 2 is 

really concerned with what may be thought of as an internal coefficient 

of friction. 	Indeed this and the coefficient of friction against metal 

surfaces can be measured using essentially the same apparatus. However 

for reasons which will become apparent the three properties will be 

treated as distinct and dealt with under different sections, respectively 

4.1, 4.2, 4.3. 

There is another apparent property of loose solids which is worthy 

of comment. 	It is the ratio between radial and axial stress in a 

situation where loose materials are compressed in a cylinder by force 

applied to a piston which fits inside. 	This is discussed in 4.4. 

4.1 Frictional Properties of Loose Solid Polymers Against a Metal  

Surface 

The frictional properties of a polymer against the working surfaces 

of an extruder are critical in determining the frictional forces which 

act on the material. However the simple concept of there being a 

single valued coefficient of friction is completely unjustified for the 

working conditions within an extruder. For a given metal surface and 



polymer there are basically four parameters which affect the value of 

friction coefficient between the two: 

1. Temperature 

2. Contact pressure 

3. Sliding velocity 

4. The amount of sliding contact which has taken place between 

the surfaces. 

The first three are quite tangible parameters to take into account 

but the fourth is much more difficult. 	It comes about because when 

polymer slides over a clean metal surface, some is deposited on the 

metal and a type of coating gradually forms. At the same time sharp 

edges of the polymer particles are worn off so that 2 is changed 

locally. 	Because the nature of the rubbing surfaces change the coeff- 

icient of friction changes as well. 

A great deal of work has been published on frictional properties of 

polymers. 	Much of this [4,8,18,27,31,36,51,52) has been obtained under 

conditions which are rather different from those met in an extruder. 

In many cases the work has been concerned with seeking fundamental 

explanations of frictional behaviour but fundamental understanding of 

the problem is unfortunately not sufficiently advanced to be of much 

practical use. 	Some of the work published [5,6,21] has had a very 

practical bias but its scope has been rather limited. 	Because of this 

it has been necessary for those interested in the application of feed 

section theory, to set about measuring frictional properties of polymers 

under conditions appropriate to the problems being considered. 

Schneider [40] appears to have been the first to seriously attempt 

the task. The metal surface in his apparatus, against which the polymer 

rubbed, was made of the same material and with the same surface finish as 
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the screws and barrel used for his main experiments. Temperature con-

trol of the surface was provided and granules were contained in a 

carriage device which could be moved backwards and forwards across the 

surface. Provision was made for loading the granules to give a range 

of contact pressures and a load cell was used to measure the force 

required to move the granules. The apparatus was sufficiently flexible 

to allow a range of working temperatures, contact pressure and sliding 

speeds although the latter were rather low compared with those met in 

practice. 

The results published by Schneider very much highlight the effect 

of rubbing duration (parameter 4) on the frictional behaviour of poly- 

mers. 	It would appear that there are two limiting values for the 

coefficient of friction; a lower bound value obtained when the metal 

surface has just been cleaned and an upper bound value which is obtained 

when the surface has become fully "smeared". The number of times 

which the granules had to be passed over the metal surface before the 

fully smeared condition was reached, varied considerably. 	For soft 

polymers such as polyethylene and polypropylene only a few hundred 

passes were necessary but with hard polymers such as polystyrene and 

nylon a few thousand passes were required. The suggestion is also made 

that if fresh granules are run against a fully smeared metal surface 

then the relatively sharp edges of the new granules tend to scrape away 

some of the previously deposited polymer. 

The most disturbing feature of Schneider's results is that very 

large differences were found to exist between the coefficients of fric-

tion obtained under smeared and unsmeared conditions, (a factor of ten 

was mentioned for one case). 	This means that in a practical situation 

quite a large variation of frictional coefficient can take place until 

the fully smeared condition is reached. 	Until this state is attained, 
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and in some cases considerable rubbing contact must occur before it is, 

the frictional behaviour will be very uncertain. 

Although Schneider's work gave some very important information on 

the frictional behaviour of polymers, his apparatus, which had the 

granules moving backwards and forwards over a long metal plate, was 

rather unwieldy. A much more elegant form of apparatus is that based 

on the annular shear cell as illustrated in fig 4.1. Material is con-

tained in an annular trough which is normally keyed on the bottom to 

prevent slipping at that surface. 	For ordinary friction measurements, 

the "shoe" which slides on the top surface of the polymer is made with 

its lower surface of the metal, and with the surface finish for which 

frictional data is required. 	A vertical load is applied to the shoe 

and either this or the lower member is rotated to set up frictional 

forces at the sliding surface. 	By measuring the driving torque or the 

reaction to it on the stationary member the frictional force can be 

found. 

Friction measuring apparatus of the type just described has been 

set up by Gale [15] and Wriggles [53] both with the intention of obtain-

ing results for use in applying feed theory. The apparatus developed 

by Wriggles can cover a range of temperatures from ambient to 280°C, 

a contact pressure from zero to 1.7 MN/m2  and a sliding velocity range 

of 150-585 mm/sec. Although the maximum pressure is a good deal lower 

than that which can exist in solids conveying the apparatus is generally 

well suited to reproducing conditions which are likely to be met in an 

extruder feed section. 

The results obtained from the apparatus have been for a fully 

smeared condition of the metal surface. Before each test the surface 

was carefully cleaned and then run against the polymer until a steady 

state was reached (a typical time being lZ - 2 hours). 	When the surface 
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has become fully smeared it appears that very nearly the same frictional 

results are obtained with the material which has been run against the 

metal as are obtained by substituting fresh material. 

Wriggles states that to a first approximation, with the materials 

which he tested, the coefficients of friction were independent of 

sliding speed and load but significantly dependent upon temperature. 

When an extruder has reached a steady running state it is reasonable to 

expect that the metal surface in the feed zone will have attained a 

fully smeared condition, (although this may take several hours according 

to Schneider). 	Because of this the measurement of frictional coefficient 

under a fully smeared condition is the obvious approach and effectively 

eliminates parameter 4 listed at the beginning of this section. 

Nowadays a large range of polymers is in use and each is normally 

available in a variety of different grades. 	It is to be expected that 

the various grades will have different frictional properties because of 

their different molecular weights or additive contents. 	Therefore it 

is not sufficient to have friction data for one type of polyethylene, 

for instance, and expect all other grades of this material to behave in 

the same way. Because the number of individual types of polymeric 

material is so large it is unreasonable to expect that comprehensive 

frictional data will ever be obtained for all of them. Therefore the 

only course of action open is to obtain the data required for any 

material whose feeding characteristics are to be investigated. 	Given 

suitable apparatus this could be carried out over the range of condi-

tions involved thus ensuring maximum accuracy of any results obtained 

using the data. 



4.2 The Strength Properties of Granular or Powdered Polymers  

Very little work appears to have been done specifically on the 

strength and deformation properties of granular or powdered polymers. 

However the properties of soils have been studied extensively and much 

of this work can be applied to any loose material [11,12,16,20,24,37, 

41,43,44,45,50]. 

The basic concept of deformation which applies to such materials 

is simply that if there is cohesion, shearing can occur across a plane 

when the ratio of shear stress to direct compressive stress on that 

plane reaches a certain limiting value. This is directly analogous 

to solid friction between two bodies and the limiting ratio of shear 

stress to direct stress can be thought of as an internal coefficient 

of friction. 	If a material is cohesive, a property which is shown 

by some powdered polymers, then the limiting shear stress is increased 

by an additional factor known as the "cohesivity". 	It is in fact the 

shear stress required to deform the material when there is no direct 

stress applied. 	Although the magnitude of the cohesivity is small it 

is still important When the stress level in the material is low such 

as in flow through a hopper. 	In this connection it is largely respon- 

sible for bridging and other troubles which prevent free flow of the 

material. 

In the subject of soil mechanics it is conventional to take com-

pressive stress as positive since the stresses encountered in a loose 

solid are predominantly of this type. Although it is the reverse of 

the normal convention it leads to no real problems and so it will be 

followed in these discussions. A convention for shear stress is not 

really required at present, only its magnitude is of importance. 

Considering a single point in a mass of loose solid under stress, 

there will be one, or more, plane(s) on which the ratio of shear to 
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direct stress is a maximum. 	If these stresses are plotted on a shear 

stress/direct stress diagram then a locus of limiting stress states can 

be drawn (fig 4.2). 	If the stress in the material is such that the 

stress point lies on the locus then deformation by shearing can occur. 

However if the stress point is below the line only elastic deformation 

can take place. The medium is simply not capable of supporting a 

stress state represented by a point above the locus. 

The full line (a) on fig 4.2 represents the critical state locus 

for a non-cohesive material but for an otherwise similar material 

which exhibits cohesion the locus is displaced as shown by the broken 

line (b). 	The critical state loci in fig 4.2 are for a material 

with a constant internal coefficient of friction. 	If this varies with 

normal stress then the limiting state loci will not be straight lines. 

However it will be seen that over a limited normal stress range experi-

ments show the characteristic to be linear. 

A very simple means of estimating the internal friction properties 

of a loose solid is to measure its "angle of repose". 	This is done 

by pouring the material into a heap on a horizontal surface and measur-

ing the angle between the sides of the heap and the horizontal. 

The principle involved would appear to be that particles at the 

top of the heap will flow down the side if its angle with the horizontal 

is greater than the angle of internal friction but remain in position 

if it is not. 	Therefore as material is added to the pile an equili- 

brium shape is reached in which the angle between the horizontal and 

the sides is equal to the internal friction angle. 

In effect the internal friction properties are found for a normal 

stress which is virtually zero. Therefore although the results may be 

of use if the material has an absolutely linear shear/direct stress 

failure characteristic there is still the objection that if it is at all 
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cohesive the results will be very misleading. 

Another way of finding internal friction properties is that used 

by Metcalf [33]. This involved pushing a solid block into a mass of 

loose material and measuring the angle of the shear plane with the hori- 

zontal (fig 4.3). 	If this angle is f3 then according to Metcalf the 

internal friction angle p is given by: 

21  = 	— 2 - 	(3 
2 

4.1 

In this method the normal stress across the shear plane (or surface) 

is due to gravity acting on the material above and force from the block 

pushing at the side. This is somewhat greater than the normal stress 

encountered in the angle of repose test and so the method used by 

Metcalf is superior in this respect. However the method does have dis-

advantages mainly because it is by no means certain that the surface 

on which shearing occurs is a plane. Another disadvantage is that even 

this method allows only very small normal stresses on the shear plane. 

The simplest type of apparatus for measuring the strength properties 

of a loose solid which overcomes most of the objections raised so far, 

is the soil mechanics shear cell or shear box shown diagrammatically in 

fig 4.4. 	The material under test is contained within the two parts of 

the cell and a vertical direct stress is created by applying a force to 

the loading platen. 	To shear the material the bottom part of the cell 

is moved slowly sideways while the top part is constrained by some load 

measuring device. 	If it is assumed that shearing occurs on the plane 

in which the boxes are split then from the vertical load and the 

measured shear force the internal coefficient of friction can be found. 

Although the arrangement is very simple it does have two main 

disadvantages. 	Firstly, the stress state in the region of shearing is 

not as simple as might at first be supposed and therefore uncertainties 
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arise because of this. 	Secondly, the amount of movement and therefore 

shearing which can take place is strictly limited, otherwise significant 

errors would be introduced because part of the friction force would be 

due to material sliding on the overlapping parts of the boxes. 

In spite of these disadvantages some experiments have been carried 

out using shear cells and some results are given in figs 4.5 and 4.6 

and table 4.1. 	Fig 4.5 shows the force response obtained from the top 

part of the cell as displacement of the bottom box took place. 	The 

first part of the graph would appear to show elastic deformation within 

the solid, then, after the initial yield a certain amount of shearing 

takes place before a final steady state is reached. Volume changes 

also take place during the settling down stage and the initial force/ 

displacement characteristic is apparently sensitive to the degree of 

initial compaction which the material has received [20]. 	However it 

is fairly well recognized that the final shear stress is not affected 

by the initial condition of the material. 

In the next section of this chapter it will be seen that when an 

essentially static pressure is applied to a loose material and then 

released the reduction in volume is only partially recoverable, there-

fore there is no unique volume/pressure relationship. However if shear 

of the material occurs it would seem that the relationship does become 

unique. 

If the steady state shear properties are taken as those of real 

interest then the limitations of the simple shear cell become very 

apparent. Although experiments on the shear cell show that the final 

shear force is independent of deformation rate the values of this which 

could be applied were very low. Another problem occurred when some 

powdered polymers were tested, it was found that the amount of deform-

tion which could be applied was insufficient to bring about a steady 



stress state. These two problems point to the need for some type of 

apparatus which is capable of a more continuous shearing action than 

the simple shear cell. This requirement is met by the annular shear 

cell a derivation of which has already been described in 4.1 and illus-

trated in fig 4.1. When this type of apparatus is used for measuring 

shear properties, a different type of top member is used. 	Instead of 

having the lower surface finished to represent the metal surface against 

which the polymer would normally slide, it has the surface keyed to grip 

the material. 

The apparatus developed by Gale has been made so as to measure 

both friction properties against a metal surface and internal shear 

properties. As such the apparatus is extremely useful and some of his 

results are shown in table 4.2. Values obtained by Gale for the co-

efficient of friction of PVC and H.D. polyethylene powder against a 

steel surface have also been included in the table. 	These values (and 

the corresponding values of internal coefficient) have been used in the 

calculations described in chapter 8. 

4.3 The Density of a Loose Solid and How it is Affected by Pressure  

In the advanced solids flow theory of chapter 5, the density or 

specific weight of the solid is required as a function of pressure or 

more strictly hydrostatic stress. 	This is principally so that for a 

given mass flow rate the volumetric flow rate can be found at any point 

along the extruder screw. 

Some fairly simple experiments have been carried out to measure the 

compressibility of a range of polymer powders and granules. The 

apparatus consisted of a piston and cylinder arrangement (fig 4.7), a 

hydraulic press was used to apply a load to the piston and the displace-

ment of this was used to find the degree of compaction. The method has 
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two main disadvantages. Firstly the pressure calculated from load 

divided by piston area is not the hydrostatic one. However according 

to Schneider's work [40] the radial and hoop direct stresses should be 

proportional to axial direct stress so that if the proportionality is 

known the hydrostatic stress can be calculated. 	Secondly, due to 

friction between the material and the cylinder, pressure must decrease 

away from the piston. However as the length/diameter ratio of the 

space occupied by the material was small the effect should not have been 

very serious. 

Fig. 4.8 shows a volume/axial pressure curve obtained for powdered 

PVC. 	The load has been applied in stages and released after each 

application. 	It shows that when the load is released very little 

relaxation of the material occurs and,therefore, that there is no unique 

■ 
volume/pressure characteristic for the material. 	If load is applied 

monotonically then the characteristic is continuous and is in fact the 

smooth part of the graph in fig 4.8. 

In using results of this type it is useful to have some mathematical 

relationship to desCribe the characteristic even if it is of an empirical 

type. 	Obviously it is not possible to have such a relationship to take 

into account recovery after removal of the loading but so long as the 

pressure is monotonically increasing the curve is quite amenable to this 

treatment. 

Kawakita et al. [25] have reviewed some empirical formulae, in-

cluding their own, and compared them using experimental data for various 

materials compacting under pressure. They conclude that their own 

formula and another by Athy [1] are the most useful. 	Their own is 

claimed to be better generally but that of Athy is said to be more 

applicable to media which consist of hard spherical particles. 
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Kawakita's formula is as follows: 

V
o 
- V 

V
o 	

1 + by 
a b p 	

4.2 

Vo is the volume when p = 0 

V is the volume at pressure p 

p 	is the pressure (taken as hydrostatic) 

a and b are constants 

Athy's formula is given in rather different terms: 

V - V 	V - V 
o co  

V 	V 	
exp (-kp) 	4.3 

0 

Vco is the volume as p 	CO 

k is a constant. 

To bring Athy's formula into line with Kawakita's it is necessary 
V - V 

to specify a constant d - ° 	V 	
, this being a property of the 

o 

co 
 

material. 

Therefore: 	C = 	 - d {l - exp(-kp)}  
V
o 	

1 - d exp(-kp) 

In order to test the usefulness of the empirical formulae a least 

squares curve fitting technique has been applied. 	This is described 

in appendix 4.1. 	Instead of taking p as the compressive hydrostatic 

stress it has been taken as the axial compressive stress applied by 

the piston. 	The least squares curve fitting technique enables optimum 

values of a, b, (Kawakita) d and k (Athy) to be found. 	Since hydro- 

static stress should be proportional to axial stress then the values of 

b and k in the respective formulae can be adjusted so as to apply when 

p is taken as the former type of stress (see 4.4). 
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Fig 4.9 shows a plot of experimental points, (compaction C against 

axial pressure p), and the empirical characteristics obtained by curve 

fitting. Although visual inspection shows that Kawakita's formula 

provides the best fit it is useful to have some means of quantifying 

the degree of fit. This can be done by finding the mean squared devia- 

tions of the empirical lines from the experimental points. 	In this 

case Kawakita's formula has a mean squared deviation for C of 1•96 x 10
-4 

and Athy's formula a value of 5•70 x 10-4, thus confirming the superiority 

of the former. Table 4.3 shows the results which have been obtained 

for various granular and powdered polymers. Values of b and k are 

given for p as axial pressure (as measured) and also as estimated for 

p taken as hydrostatic pressure. 

As an aside it may be noticed that by inverting each side of 

Kawakita's formula (eqn 4.2) the following is obtained: 

1 +  1 
a b p 

Therefore by plotting-
1 

against la straight line should be obtained for 

data which follows Kawakita's empirical curve. This method could be 

used to find values of a and b from experimental results for compaction 

under pressure. 

Although hydrostatic pressure clearly influences the effective den-

sity or specific weight of material in a screw channel there is another 

effect which occurs when the channel depth is not large compared with 

the particle size. 	Because of the restriction imposed by the channel 

depth, particles cannot pack as closely together as they would in a 

large container and so the effective density is reduced. Darnell and 

Mol [10] were aware of this type of effect and measured feedstock density 

in channels having depths corresponding to those of the screws which were 
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used in their experimental work. Fig 4.10 shows the variation of 

apparent specific gravity with depth of channel as measured by Darnell 

and Mol. 	It also shows some results obtained independently for cube 

cut rigid PVC, the particle size being approximately 3 mm. 	In all 

cases it is assumed that the channel is sufficiently wide to have no 

significant influence on effective density. 

4.4 The Relationship between Radial and Axial PreSSUreS'in'thesPiston  

and Cylinder Assembly used for Compression Testing  

In a situation like that described in the last section where loose 

material is compressed inside a cylinder, the problem arises of finding 

the radial stress which is set up by a given applied axial stress so 

that hydrostatic stress can be calculated. 	The obvious course of 

action would have been to take measurements. However the apparatus 

used for compression testing had been designed for other purposes in-

volving higher pressures so that the cylinder walls were too thick to 

allow measurement of radial pressure by placing strain gauges on the 

outside as was done in a similar experiment by Schneider. 

The relationship between radial and axial stresses is determined 

by the changes which occur in the material as it is compressed. 	It is 

necessary to look at the compression process in a piston and cylinder 

arrangement as having two components, in effect. 	One of these is pure 

compaction, the other involves a certain amount of shearing. 

If a collection of uncompressed particles is placed inside a 

membrane and subjected to hydrostatic pressure from a surrounding fluid 

then in general some compaction will occur. However since no shear 

stresses are present there is no tendency for the particles to slide on 

each other and so they will simply move more closely together and the 

way in which their centres are arranged will remain geometrically similar. 
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An idealised process of this type is illustrated in fig 4.11. 	Obviously 

the process which occurs in the compressibility apparatus described in 

4.3 must be rather different from this because if strain in cylinder 

walls is neglected then compaction occurs in the axial direction only. 

The other situation to consider is that which would exist inside a 

piston and cylinder arrangement if the cylinder could expand readily 

under pressure. 	If the walls of the cylinder and end of the piston are 

assumed frictionless then the axial hoop and radial directions must be 

ones of principal stress. 	If the walls of the cylinder expand to a 

sufficient degree then shearing of the material must occur to allow the 

deformation to take place. 	Because of this the material must be in a 

critical state and if the principal stress directions are as already 

discussed then: 

1 - sin p\  
Pr 	0 - (1 + sin pl Pz 

This relationship is dealt with in 7.1 and in textbooks concerned with 

loose solids [37,45]. 

The view just taken of the shearing or deformation process is on a 

macroscopic scale but it is also necessary to consider what happens to 

individual particles. 	During the process of expanding radially and 

contracting axially (under a fairly low stress level) the behaviour must 

be similar to that idealised in fig 4.12. 

The type of process which actually occurs in purely axial compression 

may be looked upon as a combination of the two individual processes and 

is illustrated in an idealised form in fig 4.13. 

It is reasonable to expect that the deformation of the material 

which occurs involves shearing or what may be thought of as plastic flow. 



The amount of strain involved and the fact that it is nearly all un- 

recoverable (fig 4.8) supports this argument. 	Therefore it follows that 

the material must be in a critical state during compression and the 

stresses are related as in eqn 4.4. 	If this is so then the hydrostatic 

pressure is given by: 

1 
(Pr PO Pz)  

(1 --
I sin p) 
3  

Pz 
( 1 + sin p) 

4.5 

By using this relationship the constants in the empirical formulae (b in 

Kawakita's, k in Athy's) can be adjusted so that they apply to hydro-

static rather than axial stress. 

The arguments so far advanced are really only applicable to the 

first stage of the compression process. 	During this stage it is to be 

expected that particles will be forced between each other to constitute 

in effect a shearing process. 	However beyond a certain point is is 

likely that no further action of this type will take place. When most 

of the air has been excluded it is to be expected that the material will 

behave as a continuous solid and follow the normal laws of elastic 

behaviour. 

If the results of the compressibility tests were to be applied at 

very high pressures then it would obviously be necessary to consider 

elastic compression behaviour. However it can be seen from the com-

pressibility curve of fig 4.9 and the typical values of pressure attained 

in solids conveying (2.3, 6.3.4) that for practical purposes it is only 

the low pressure end of the compressibility curve which is of interest. 

Therefore elastic compression need not be considered. 
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Table 4.4 shows the relationship between radial, hydrostatic and 

axial pressures based on internal friction values given in 4.2 and 

assuming that the material is in a critical state. 
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• Table 4.1 	RESULTS OF SHEAR CELL TESTS 

Material Pi 

polyethylene granules ( ICI 	XDG 33 ) 0.67 

crystal polystyrene reactor beads 0.45 

impact modified polystyrene reactor beads 0.26 

The tests were carried out at ambient temperature and over a 
normal stress range of 0.06 - 0.55 MN/m2  

Table 4.2 GALE'S RESULTS FOR FRICTIONAL PROPERTIES OF 

PVC AND POLYETHYLENE POWDERS 

  

     

Material 
Temperature °C 

20 60 100 140 

PVC powder P,  0.30 0.33 0.35 - 

Pi 0.70 0.52 - - 

polyethylene p 0.20 - - - 

powder Pi  0.57 0.54 • 0.45 0.55 

The results were obtained at a shearing or rubbing velocity of 
38 mm/sec and with a normal stress of 0.037 MN/m2  



Material 

Constants for best empirical curve fits 

Kawakita Athy 	' 

a bA bB 2 6 d kA kb 
-2 6 

PVC powder 0.384 0.680 1.323 
- 1.96x104  0.364 0.351 0.682 

-4 
5.70x10 

polyethylene granules 0.436 0.234 0.448 
-4 

0.20x10 0.392 0.143 0.274 
-4 

0.41x10 

polyethylene powder 0.454 0.084 0.150 
-4 

0.30x10 0.419 0.042 0.752 
-4 

1.10x10 

cube cut plasticised PVC 0.416 0.476 - 
-4 

1.29x10 0.396 0.195 - 
-4 

4.76x10 

cube cut rigid PVC 0.515 0.029 - 
-4 

0.49x10 0.462 0.015 - 
-4 

1.85x10 

crystal polystyrene granules 0.492 0.011 - 
-4 

0.81x10 0.417 0.007 - 
-4 

1.40x10 

crystal polystyrene reactor beads 0.424 0.008 0.130 
-4 

0.48x10 0.349 0.006 0.010 
-4 

0.96x10 

m2/MN m
2
/MN 

bA and kA 
are based on axial stress in the test cylinder. 

bB and kB 
are based on the estimated hydrostatic stress. 

62  is the mean squared deviation for the best curve fit. 
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rotating lower 
member 

CRITICAL STATE STRESS RATIOS IN A CYLINDER Table 4.4 

(1 - sin p) 
Pr/PZ - (1 + sin p) 

(1 - 
1  sin p) 

13/13Z - (1 + sin p) 

Material Pa  p sin .p pr/pZ pZ/pr F/pz 

PVC. powder 0.70 35.0 0.5736 0.271 3.69 0.514 

polyethylene granules 0.67 34.0 0.5592 0.283 3.54 0.522 

polyethylene powder 0.57 29.7 0.4955 0.337 2.96 0.558 

crystal polystyrene 
reactor beads 

0.45 24.0 0.4067 0.422 2.37 0.614 

location bearing 
(allows axial motion 
as well as rotation) 

"shoe"; bottom 
surface smooth for 
friction measurements, 
.keyed for shear tests 

bottom of channel 
keyed to. prevent 
slipping 
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Fig 4.1 ANNULAR SHEAR CELL 
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Fig 4.2 YIELD LOCI FOR LOOSE MATERIALS 
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Fig 4.3 METCALF'S METHOD OF FINDING INTERNAL FRICTION PROPERTIES 
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Fig 4.4 SHEAR CELL 
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Fig 4.5 SHEAR STRESS / DISPLACE= CHARACTERISTIC FOR SHEAR CELL TEST 

0.10 

0.05 
U) 
U) 

U) 

U) 
•C 

0.00 

Displacement ( mm ) 

Fig 4.6 SHEAR STRESS / DIRECT STRESS CHARACTERISTIC FOR SHEAR CELL TEST 
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Fig 4.7 COMPRESSIBILITY MEASURING APPARATUS 
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Fig.4.8 VOLUME / PRESSURE CHARACTERISTIC OF A LOOSE SOLID 
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Fig 4.9 EMPIRICAL CURVES FITTED TO COMPRESSIBILITY DATA 
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Fig 4.11 PURE COMPACTION OF A LOOSE SOLID 
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Fig 4.12 DEFORMATION BY SHEARING 

P S  
Fig 4.13 COMBINATION OF COMPACTION AND SHEARING 



5. Advanced Solids Flow Theory  

5.1 Scope of the Theory  

The existing theory on solids flow in an extruder is discussed in 

chapter 2 and its shortcomings pointed out in chapter 3. 	The theory 

to be presented in this chapter is based to some extent on that of 

Darnell and Mol [10] and Schneider [40] but it goes further than either 

of these in predicting feed section behaviour. 	Some of the assumptions 

have been retained either because it has not been found practicable to 

improve upon them or because they were quite good in the first place. 

One of the main deficiencies of existing solids flow theory is the 

way in which it deals with pressure build-up along the screw. If only 

Coulomb friction forces are considered the result is that pressure 

build-up at a point is proportional to the existent pressure at that 

point. 	This leads to an exponential type of pressure build-up, the 

whole distribution along the screw being proportional to the pressure 

at the beginning. 

Attempts have been made to use this type of theory by calculating 

the feed pocket pressure from the head of material in the hopper and 

then taking this as the initial pressure [48]. 	The procedure is far 

from satisfactory because the complexity of flow through the converging 

section of the hopper and into the screw would mean that any simple 

calculation based upon head pressure must be totally inaccurate. Even 

if the effect of this flow could be taken into account, the initial 

pressure calculated would still be a function of the height of material 

above the screw. 	This suggests that if there is very little material 

in the hopper no initial pressure and therefore no pressure build-up 

along the screw can occur. 	However it is found experimentally (6.3.3) 

that the performance of a solids conveying screw is virtually independent 
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of the height of the material in the hopper, even when it is almost 

empty. The conclusion is, therefore, that material in the hopper does 

not significantly affect the build-up of pressure in the screw and that 

this must come about from forces acting within the channel itself. 

If no melting occurs in the part of the screw channel being con- 

sidered then it is reasonable to assume that the Coulomb model of 

frictional behaviour is obeyed and therefore some pressure independent 

forces must be present in order to create initial pressure from which 

further build-up can occur. Gravity forces in the channel are not 

considered in previous theory because their absolute magnitude is small 

and when some pressure has been built up it can be readily shown that 

the forces are negligible. However when the pressure is nearly zero 

they cannot be neglected as was pointed out in a report by Martin 

Pearson and Yates [30]. 	On the other hand it does not seem to be gen- 

erally realized that at high screw speeds centrifugal forces become 

important and should also be taken into account. 

The theoretical work in this chart.er takes into account gravity and 

centrifugal forces acting on the material in the channel and solutions 

of the problem based upon this show that these forces are sufficient 

to start off the pressure initiation process. 

Another aspect of solids flow theory in which improvement has been 

made is in considering changes in pressure across the channel. All 

previous theory with the exception of Metcalf's [33] and that spoken of 

by Ingen-Housz [22] have neglected this and considered only pressure 

build-up along the channel. 	In fact, although the term pressure has 

been used in a fairly loose sense it is really the stress state in the 

material which is being sought. 

Because the physical problem is a three-dimensional one, stresses 

should also be considered in these terms and changes considered along, 
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across and into the depth of the channel. 	Consideration of the full 

three-dimensional problem shows that it is really far too complicated 

for a solution to be practicable and so a compromise has been reached 

and a two-dimensional approach taken. The exact procedure used will 

become apparent in 5.3.5 but for the most part it involves taking mean 

values of stresses over the depth of the channel and working in terms 

of these. 

The third major aspect in which improvement has been made over 

existing theory is that solids compressibility has been taken into account. 

This is of particular relevance to powder feed calculations because 

these materials undergo a considerable reduction in volume when sub- 

jected to pressure. 	The main effect of material compaction due to 

pressure is to decrease the volumetric flow rate along a particular sec-

tion of screw. This in turn affects the rate of pressure build-up and 

so a coupling between the two effects is established. 

5.2 Assumptions  

These are the principal assumptions to be made, other minor ones are 

made during the analysis but are better described as they occur. 

1. The material flows as a plug with no internal shearing. When 

compaction occurs it is assumed that an elemental slice taken across 

the channel contracts uniformly in thickness all over its cross-section. 

This condition is necessary to preserve plug flow as material would 

tend to be compacted more on one side of the channel than on the other 

due to the pressure difference which exists. 

2. The frictional behaviour between the polymer and metal surfaces 

obeys the Coulomb law. 	In view of the lack of precision in available 

friction data the coefficients of friction have been taken as constant 

along the screw. However it is possible to modify the numerical solution 
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of the problem to cope with a variation of frictional properties. 

3. The channel is of constant cross-section over the length of 

screw being considered. 

4. The screw runs full of material. 

5. The axis of the screw is horizontal. 

6. The clearance between flights and barrel is sufficiently small 

to prevent significant leakage. 

7. The flights are such that their sides are generated by lines 

perpendicular to and radial from the screw axis. 	It is also assumed 

that there is no radius between the flights and the screw root. 

8. The screw is single start and right handed. 

5.3 Analysis  

The approach taken is rather more on the lines of conventional 

stress analysis than that taken by Darnell and Mol and Schneider. It 

starts with the general equations of equilibrium in polar coordinates 

applied to the material in the screw channel. To convert the three-

dimensional problem into an essentially two-dimensional one, the equa-

tions for equilibrium in the hoop and axial directions are integrated 

over the depth of the channel. 

By doing so, stresses acting in the hoop and axial directions need 

no longer be considered as varying into the depth of the channel, they 

can be replaced by mean values over that interval. The result is that 

equilibrium equations are obtained for these mean stresses, the equa-

tions being much more readily soluble than those for the complete three-

dimensional problem. 
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Although performing this integration does simplify matters, varia-

tions in the channel depth direction cannot be neglected entirely. In 

particular the mean stress equilibrium equations involve shear stresses 

at the screw root and barrel surfaces and these depend upon the fric-

tional forces set up at these places by the direct radial stresses. 

Essentially therefore the integrated equilibrium equations involve mean 

values over the depth of the channel of stresses in the axial and hoop 

directions and direct radial stresses at the screw root and barrel surfaces. 

In solving the equations, two boundary conditions are available 

because the frictional forces and hence shear stresses on the material 

sliding against the sides of the flights must be related to the normal 

stresses acting at these places. 	If stresses are considered in the 

hoop and axial directions then the boundary conditions are difficult to 

apply because the flight does not run in either of these directions. 

To simplify the problem a transformation of coordinates is carried out 

so that the new coordinate directions are taken along and across the 

channel, the radial direction remaining as before. This brings the 

theory into line with that of Darnell and Mol and also allows the channel 

to be looked upon as unwrapped, the usual simplification used in melt 

flow theory. 

Thus transformed, the equations are in terms of mean (over the 

depth of the channel) stresses in the along and across channel directions 

and radial stresses as before. Even in this form however they cannot 

be solved directly, there are simply too many unknown stresses.• The 

Darnell and Mol simplification to this problem (although it did not 

arise in the same form in their work) was to assume that direct stresses 

acting along, across and into the depth of the channel are all equal. 

Schneider improves upon this by taking these stresses as being propor-

tional to each other, he then chooses the direct stress acting along the 
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channel as reference and relates the others to it by constants of pro- 

portionality (see 2.2). 	The constants are then found by a separate 

analysis. 

In the essentially frictional type of conveying mechanism which 

exists in an extruder feed section, it is reasonable to expect that 

there will be a similarity in stress states all along the screw channel. 

Shear stresses in the material are set up through frictional forces 

at the metal surfaces, in turn shear forces bring about pressure build- 

up along the screw. 	If it is assumed that the frictional properties 

of the polymer follow the Coulomb law then it can be seen that there 

will be a proportionality between shear stresses, direct stresses and 

rate of pressure or stress build-up at points all along the screw, so 

long as flow kinetics remain the same. 	Therefore in an idealised 

situation it is reasonable to suppose that although the stress level 

may increase along the screw the proportionality between stresses does 

not change. This provides some justification for what Schneider has 

done in assuming proportionality between stresses at different points 

all along the channel. However in practice the situation is a little 

more complicated, gravity and centrifugal forces enter into the problem 

and when compaction of the material occurs, the volumetric flow rate 

and therefore kinetics of the system change. This means that the 

simple proportionalities used by Schneider are not sufficient in them-

selves to relate the stresses of interest. 

In order to convert the integrated and transformed equilibrium 

equations into a form which can be solved, a modified form of the rela- 

tionship between stresses used by Schneider has been developed. 	The 

effect of gravity and centrifugal forces has been included and it is 

also possible to allow for changes due to material compaction. However 

the main difference is that in Schneider's work, stress changes across 
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the channel are not considered, therefore only three constants of pro-

portionality are required to relate pressure at the barrel surface, mean 

pressure across the channel and pressure on the screw root to the mean 

pressure acting along the channel (see 2.2). 	Since changes in stress 

across the channel are now to be considered, relationships between the 

above pressuresor stresses must be known at each point over the width 

of the channel. 

By deriving such a set of relationships between stresses (which can 

be applied at any position along the screw channel) the modified equi-

librium equations can be solved. This effectively splits the problem 

into two parts and the one pursued in this chapter is that of solving 

the modified equilibrium equation containing the relationships between 

stresses. 	The other part of the problem, that of finding these rela- 

tionships is covered in chapter 7. 

This chapter (5) only makes use of equilibrium equations in the 

hoop and axial directions, therefore in order to solve the problem, 

since it is really a three-dimensional one, equilibrium in the radial 

direction has to be satisfied as well. The other condition which has 

to be fulfilled is that the deformations produced by the stresses either 
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material behaves as an 

if larger scale deforma-

embodies all of these 

follow the conditions of compatibility, if the 

elastic solid, or the conditions of continuity 

tion occurs. 	The work presented in chapter 7 

considerations in arriving at the relationships which exist between the 

stresses. 	In effect therefore a complete solution to the problem is 

obtained, subject only to the assumptions listed in 5.2 and others 

which have to be made as the various derivations proceed. 

In connection with the mention of large scale deformation, it is 

apparent that if this occurs assumption 1 regarding plug flow is no 

longer strictly valid. However the plug flow assumption is made so 

that the movement of the material can be described in terms of a single 
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quantity (for instance its axial velocity along the screw) and there is 

no need to consider any velocity distributions over the channel cross- 

section. 	If the physical situation approximates to plug flow then the 

assumption is a good one, the closer the approximation the better it 

is. 	It should be emphasised therefore that the assumption does not 

preclude some relative movement within the material as would occur if 

limited shearing took place. 	Such deformations although large compared 

with elastic deformations, (which are necessarily small) need not be 

sufficiently large to invalidate the plug flow assumption for practical 

purposes. 

In brief therefore the plug flow assumption is made so that the 

flow can be looked at in an idealised form, not to prescribe that the 

material should behave in a completely elastic manner. 

5.3.1 Definition of Angles and Coordinates  

Fig 5.1 shows part of a helical screw. 	Three helix angles will 

be defined, all measured from the hoop direction. 

(1)1 helix angle at barrel surface 

(1)3 helix angle at screw root 

42 helix angle where the flights intersect the cylindrical reference 

surface at radius r (to be defined later). 

r coordinate taken radial from the screw axis 

Z coordinate along the screw axis 

0 	angular coordinate taken about the screw axis. 	It is taken 

as positive in a clockwise direction looking along the screw axis (Z 

positive) and zero vertically above the screw axis. 

Considering the cylinder at radius r opened out (fig 5.2) then the 

z direction is taken at 42 to the hoop direction and positive in the 
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direction of material flow. 	The x direction is taken at right angles 

to this, across the channel and positive in the direction shown. 

A slight inconsistency of notation arises because following 

Schneider's system of kl and k3 being appropriate to the barrel surface 

and screw root respectively (see 2.2) these subscripts have been used 

in connection with the helix angles defined at these places. However 

the subcripts used for r and the various stresses are taken as 1 for 

the inner radius and 2 for the outer radius, the normal convention used 

for this purpose. 

5.3.2 	Stress Convention  

The soil mechanics stress convention will be used which takes com- 

pressive stress as positive. 	To be consistent, therefore, the conven- 

tion used for shear stress must also be the reverse of that normally 

used. 	That is, considering an element in the x - z plane, if there is 

a shear force in the -z direction on the side perpendicular to the x 

direction with the greater value of x then the stress is positive (see 

fig 5.3). 

If the shear stress convention is defined in this way then exactly 

the same equilibrium equations hold as are derived for the more usual 

tensile positive system, the only difference being that the signs of the 

body force terms are changed. 

5.3 3 Relative Velocities  

To find the direction of frictional force on material next to the 

barrel surface it is necessary to know how this moves relative to the 

barrel surface itself. 	Fig 5.4 is a diagram of the velocities involved. 



In this analysis the flow rate of material will be considered as 

specified and the resulting stress state found from this. 	Given the 

mass flow rate, and density of the material (which varies according to 

the hydrostatic stress) the axial velocity of the plug (VZ) can be found. 

From a velocity diagram of the relative movements, the angle a at which 

the plug moves relative to the barrel can also be found. The frictional 

force between the plug and barrel is in that direction and it can he 

split into components, one in the axial direction, one in the hoop 

direction. 

Cross-sectional area of channel viewed in Z direction: 

A= 7(D - h) h s = 7 D2E R s 	 5.1 

therefore the axial velocity of the plug: 

5.2 
wD2  E R s 

and from velocity diagram (fig 5.4) 

V 
tan a + tan 41 

by equating the two expressions for V and putting 

F 	 5.4 
72  D3 NERs 

F tan 4i 
then 	tan a = 	 5.5 

tan (1) 1  - F 
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5.3 

hence a the conveying angle. 



5.3.4 Dimensionless Quantities  

From 5.3.3 (and eqn 5.4 in particular) it can be seen that volu-

metric flow rate could be conveniently expressed in dimensionless form as 

Q / N D3  

However since this will vary along the screw if compression of the 

material occurs it is better defined in terms of mass (strictly weight) 

flow rate and mean specific weight across the channel i.e. 

11"
Q 

= 	w N D3  

The particular value of this which is chosen to describe the flow 

is that for the uncompacted state, i.e. 

= W / wo  N D3  

Since initial pressure, and therefore pressures subsequently gen-

erated are taken to depend upon gravity, and in some cases centrifugal 

forces, these pressures or stresses will be proportional to the specific 

weight of the material and some screw dimension. Therefore the dimen-

sionless form used is such that: 
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Dimensionless specific weight is expressed as: 



All lengths are put in dimensionless form by dividing them by the 

outside diameter of the screw, for instance: 

= z/ D 

5.3.5 Formulation of the Equilibrium Equations  

Consider the equations in polar coordinates for equilibrium in the 

o and Z directions: 

p
r0 + 

	ae 
1 

Dp

0 + 3Z 

Dp
OZ 	

2p
re  

-r - - -r 	 0 	 5.6 
Dr  

Dp Dp
rZ 	1 

Dp
OZ 	PrZ 

3r 4.  770— 	FZ = 0 	
5.7 

Since the screw axis is horizontal F = 0. The equations can be 

rearranged and multiplied by integrating factors of r2  and r res-

pectively, then integrated w.r.t. r from the screw root to barrel 

(r1 to r2): 

r2 4  r2 3- 
ez 	

r2 

pro  r2
2 
 - 	ri2  + 	— rdr + 	r2dr - 	r2dr = 0 

ru2 	Pre' 	ae

0 	F 

r1 	r1 	ri 

5.8 

r2 	r2 
4ez  dr + p r2  - p m 	+ 	
DO 	

rdr = 0 
rL2 	rLI 	 DZ 

r1 	r1 

r2 40  

Consider now the integral f De 
rdr. 
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5.9 

r1 



r2  jr.r2 pe  

rdr = 60
lm 

 0 60 	f (P0+60 
- p

0
) rdr 

1 

ri 	 ri 

Because 

0 _ 	lim 	0+60 - Pe, 
BO 	66 .4. 0 	(se )  

therefore 

5.10 

f 

r2 

The integral 

	

	p
0 
 r dr may be looked upon as the moment of the 130  

,ri 

pressure distribution from r1 to r2 about the screw axis. 	This 

can be represented by the product of mean pressure (pe), the interval 

(r2 - r1) and the radius of the centre of pressure rA, 

r2 

i.e. 	p
0 
 r dr = (r2 - ri) p

0 
r
A 
	 5.11 

rl 

Assuming that the radius rA  does not change in the interval 60 

and putting r2 - r1 = h 	then 

.12 

 ao

ape  
— 

r dr = 60110 SA (Fo+se PA) 
r
A  

rl 

35 
= h 30 	A 
	 5.12 

f  2 4 DZez 

The integral 	r2  dr 	may be thought of as equivalent to 

r1 

an integral used for finding the moment of inertia of a body about a 

point. 	In this case a distance rB equivalent to the radius of gyra- 

tion can be specified so that: 
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r2  i; 	7 2 
Ji

DZ  
DP OZ r2 dr = h 

 Ti (2,1Z 

-- B 
rl 

The body force Fe'is simply that due to gravity = w sin 0 

therefore 

f r2 
Fe r2 dr = 

ri 

r23  - r13  
3 
	) w sin 0 

= 
h
3 

(r22  + rir2 + r12) w sin 0 	 5.14 

Turning to the second equation (5.9); 

f r2  aPez  dr DO 
r1 

D, 
is simply the mean value of °' multiplied by 

DO 

the channel depth, so that by making use of the principles in eqn 5.10: 

f r 	- 2  aPez 	OZ 
ao 	

h D
-P 

DO 

irr2  ap 

DZz 
The other integral 	- r dr 

Jr1 

the first to be dealt with, therefore: 

is of exactly the same form as 

jir2 apz  913-'z —  
aZ 	

r dr  DZ 	rC 

With all of the integral terms written in their new form the equilibrium 

equations can be written down involving only mean values of p0'  pZ 
 and 

pOZ acting in the hoop and axial directions: 
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rl 
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rl 
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2 	1_ 	- — + h — 
r + h OZ - 2 

p ro2 r2
2 _ p ruiri 

ae A 3Z rB 

h 	2 	2. 	n — — kr2 + r2r1 + r12) w sin 	= 0 
3 

ar36Z 	3-52 
p 	2 -, i 	+h az  
rL2r 
	p 

rLI
r 	 r

C  

These then are equations of equilibrium in the 6 and Z directions 

for mean stresses over the depth of the channel. 

Material in contact with the screw root moves relative to it at an 

angle of 4)3  to the hoop direction, this is a necessary condition if 

there is to be no flow across the channel. Therefore considering the 

friction forces acting there: 

= - p 
ri  ps 	

, 	
rZ1 

cos 4)3 	= - p 
1  ps 

 sin 403 	5.19, 5.20 
PrO1  

Similarly at the barrel surface the material moves relative to this 

surface at an angle a to the hoop direction, therefore 

Pr62 	Pr2 Pb 
— 	cos a 	prZ2  = p r2 

D 
14 sin a 5.21, 5.22 

(see fig 5.3) 

hence: 

- 

	

ilF 	
p 	p, cos a .r22 	p ps  cos 4 3.r12 

0  -2 eZ 

	

- Dp 
	r2 u 

	pr 

r — + _ 	 

	

A 36 	rB 3Z 	h 	h 

+ r2r1  + r12) 

3 
	 w sin 0 

= Al 	 5.23 

5.17 

5.18 
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p
b 

sin a.r2 	pr p sin ch.r1  
l)* 	ap 	 1 s 
OZ — Z + r 	- - 	 

30 	C az 	h 	h 

5.24 

These equations are completely general for plug flow in a screw 

channel, subject only to the assumptions listed in 5.2. 	In order to 

make a transformation of coordinates into the x - zsystem it is necessary 

to make the approximation that rA  = rB  = rc  = r (this being a 

formal definition of the r used in 5.3.1). 	An implicit assumption 

of this kind is made by Darnell and Mol and Schneider, they simplify 

the matter even further by assuming that pressures and friction forces 

which act over the depth of the channel have their resultants at the 

mean height, i.e. 	r = (r1  + r2) / 2. 

If a cylinder of radius r is opened out to form a plane (fig 5.5) 

and if the coordinate on that plane in the 0 direction is taken as X, 

then eqns 5.23 and 5.24 in a slightly modified form may be looked upon 

as those for equilibrium in that plane, the right hand sides being 

looked upon as body forces, so that; 

31-; 1 	 Al ez  _ 
T 30 3Z 	3X DZ -12  

1 
a5 	aT 	A2  

OZ  

Y DO 	3Z 	3X 	DZ 

The projection of the channel on to the plane will consist of two 

parallel lines at 42  to the X direction (fig 5.5). 	The new axes 

z and x are taken respectively along and across this projection of 

the channel as shown in the figure. 

5.25 

5.26 



(p r2  D 
* p, cos a - p * C2pscos (1)3) Al 

w  7,k2 
0 

(C2  + C + 1)  w* sin 
4 R r*2 	12r*2  

If the mean stresses in the X-2 plane are in equilibrium with the 

effective body forces (A152  and A2/r), then the mean stress system 

in the x - z plane must be in equilibrium with the components of the 

effective body forces resolved into the x and z directions, therefore: 

DP:x 	apxz 	
Al 	A2  

az 	
= 	sin (1)2  - — cos c1)2 	5.27 

r2 	r 

alL 	ap 	Al 	A2  

+ az 	ax z 
x m 	cos 4)2  + — sin (1)2 	5.28 

T2 	r 

(All stresses are still mean values taken over the depth of the channel.) 

The expressions for Al  and A2  are given in 5.23 and 5.24. 	If 

Al5 2  and A2/r are expressed in dimensionless form then 
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5.29 

A2  -(p 
r
* 	L 	p 

r1  
sin a + 	C v

s 
sin 4)3) 

	

2 ILo 	
* 

 
5.30 

vo
r* 	2R 7* 

In chapter 7 it will be shown that by considering the general stress 

state which exists in a loose solid contained in a screw channel p * and 
r2  

p * can be expressed in a form similar to that used by Schneider but ri  

with modification to include the effect of gravity and centrifugal forces: 

2 
P r2 	klt 	f12  cos e w* 

Dco2  

	

p r1 = k3p* + {f31(—) + f32  cos a}w* 	• *  

5.31 

5.32 



D w2  
g 

forces and k1, k3,  fll,  f12,  f31,  f32 are terms which vary across 

the screw channel but are assumed (at least to a first approximation) 

to remain constant along the screw. 	If no gravity or centrifugal 	force 

were present then the direct stress along the channel may be looked 

upon as giving rise to direct stresses or pressures at the screw root 

and barrel surfaces. 	This is similar to the system considered by 

Schneider. However centrifugal force and a component of the gravity 

force act in the radial direction and so influence the values of p
r
*; 

fll, f12, f31, f32 account for this influence. 

7.7 is concerned with finding r and if this is done then sin (P2 

and cos (1)2 may be evaluated (5.3.1). 	If the expressions for p * 
r2 

and p
r
* 	(eqns 5.31 and 5.32) are substituted into equations 5.29 	and 

5.30 then it can be seen that the right hand sides of 5.27 and 5.28 will 

consist essentially of terms in p* and w*. 	When the terms com- 
z 

prising the coefficients of these quantities are condensed into single 

values and when all of the terms are expressed in dimensionless form, 

the equations 5.27 and 5.28 may be written down in the following 

manner: 

a5* 	aF* xz 
ax* 	az* - G I ' 13* 	H1 w*  5.33 

ap* 

	

z 	xz 

	

az* 	ax * 
- G2 tc + H2 w* 	 5.34 

where G1,G2 are functions of the screw geometry, coefficients of friction, 

conveying angle and the terms k1 and k3. Hi and H2 are functions 

of screw geometry, coefficients of friction, the conveying angle, the 

angular position of the element and the terms f11, f12, f31 and f32. 

In general G1, G2, Hi and H2 vary across and along the channel. 

• •-■ 
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is the dimensionless term relating centrifugal to gravity 
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Turning now to 	in chapter 7 this will be related to pz in 

a similar manner to p * and p * i.e: r1 	r2 

= 1c2.5* + {f 21 (Dw2) + - f - 22 cos el w* 5.35 

However as is shown in the sample calculation in 8.1 the terms f21  and 

f22 are small and their inclusion is unlikely to be of significance 

whereas omitting them greatly simplifies the solution of the equations. 

It is not unreasonable that these terms should be negligible. 	The 

centrifugal force and W cos 0 act in the radial direction therefore in 

relating p *, p * and p* to p* it is to be expected that the 
rl r2 

major influence of the body forces will be on the radial stress and 

that they will be less important in influencing the relationship between 

p* and p*. 

If therefore p* and p* can be related at each point across the 

channel by: 

= k2 	 5.36 P*  

aPx*  then 
ax* 

k2 3x*  + 
ak2 

P*  z ax* 5.37 

and so 5.33 and 5.34 may be written: 

ap* 
XZ  k2 	az*  - (G1' 

ak2 _ 
aX* Z ---) p* + H1 w* 

= 	+ Hi w* 	 5.38 

3p* 
xz 	

T = G2k + H2 w* 
0z* 	ax* 

5.39 



5.4 Methods of Solution  

The first method to be described considers the basic equations in a 

very much simplified form. 	This simplification is carried out in order 

to make an analytical solution possible and although the method is of 

very little practical use it does serve as a partial check on the full 

numerical solution. 

The second part of this section deals with the numerical solution 

of the equations. The solution has to be of this type in order to be 

realistic and it will therefore be described in some detail. 

In equations 5.38 and 5.39 the only stresses involved are 5: and 

T1* , in order to simplify notation in the following work these quanti-
xz • 

ties will be written respectively as p and T, that is: 

F*  F- 

5*  21Z 

Using this notation and also dropping the * which signifies that 

x, Z and w are dimensionless, 5.38 and 5.39 become: 

= Gi  p + Hlw 	 5.40 
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a_p_ 4.  at 
az 	ax = G2 p + H2w 5.41 

5.4.1 	Simple Analytical Solution  

If centrifugal and gravity forces are neglected then the equations 

may be written: 

k2 ax 
 + 

az 
3T 	= Cl p 5.42 
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ap 	n -T 
az 	ax = G2 p 5.43 

If it is further assumed that k2, G1 and G2  are constants then by 

differentiating the first equation w.r.t. x and the second w.r.t. z 

a second order differential equation independent of T can be obtained 

by subtraction: 

32p 	a2p 	ap 	aP k2 	G
1 ax 	G2  az 	

0 	5.44 
ax2 	az2  

k2  represents the ratio between the mean direct stress acting 

across the channel and the mean direct stress acting along it. As will 

be discussed in 7.1 a solid mass made up of individual particles cannot 

withstand any significant tensile stress. 	Therefore the ratio between 

any pair of direct stresses in such a medium can always be taken as 

positive. 	Because of this, eqn 5.44 must always be of the hyperbolic 

kind. 

If equation 5.44 is written in the form: 

alp  
k2  

ax2  

ap 
Gi ax  alp G ap 

2 az  5.45 
az2  

and a product type of solution of the form p = f(x) g(z) is 

assumed then the equation becomes separable. 	It is physically reason- 

able that the solution should be of this type and its precise form will 

be derived in appendix 5.1. 	The solution is not difficult to obtain 

but the algebra involved is tedious. 

5.4.2 Numerical Solution 

It has already been shown in 5.4.1 that when the simplified basic 

equations governing stress or pressure build-up along a screw are combined. 



into a single second order partial differential equation, this is hyper- 

bolic in form. 	If the full equations are treated similarly then it can 

be demonstrated that the resulting second order equation is once again 

hyperbolic. The standard method of solving such equations is by the 

use of "characteristics"; however this method may also be applied with-

out the necessity of first combining the equations [9]. 

If pressure is assumed to increase monotonically as material passes 

along the screw then specific weight is known in terms of hydrostatic 

pressure (4.3). 	Since the hydrostatic pressure can be related to p 

by the quantities k1, k2  and k3  (see appendix 5.2) then w may be 

thought of as a function of p and the basic equations 5.40 and 5.41 

written: 

 aT L` DP - 
m  2 	 az = m (p) 5.46 

az ax =M2(P) 
	

5.47 

where M1  and M2 are also functions of conveying angle, coefficients of 

friction, k1, k2, k3, angular position around the screw and screw 

geometry. 

that along lines which are at yi = tan-1± — 

From the general method of solution given in [9] it may be shown 

2 
	k2  

,- to the x axis the 

equations reduce to the form: 

dT 	dp 
dsi 	VE2 ds1 = M1  sin yi  + M2  cos 12  = Y1 	5.48 

dT _ 	dp  
ds2 	ds2 	

Mi  sin 12  + M2  cos 12 = Y2 = 
	

5.49 
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Si and s2 are lengths along the lines which are respectively at 

yi and y2 to the x axis and along which the equations above res-

pectively apply. 

Because k2 is taken as being a function of x only (5.4), a 

network of lines having the specified gradients may be drawn over the 

x-- z area in which a solution is required before the actual solution 

is started. 	A set of these lines, known as characteristics, over part 

of the x 	z plane occupied by the channel is shown in fig 5.6. For 

reasons which will later become apparent it is arranged that all inter-

sections of characteristics with each other and with the channel boundaries 

lie on lines of constant z . 

By taking one, small part of the system as illustrated in fig 5.7 and 

integrating equations 5.48 and 5.49 along their respective characteristics 

the following expressions are obtained: 

A 
dT 	 dp 

	

I A 	dS 	2  dS 	ds1  = 	Y1  ds1  

	

A 	 A 
dT 	dp 
ds2 	2  ds2 	

ds2 	= 	Y2 ds2 

Since k2  in general varies with sl  and s2  the terms containing this 

have to be integrated by parts so that 

TA - TB 	(141)A - (k1P)B' 

A 	dk2 

dsi  p  

f (1 + 	ds1 = II 

B 	 2/172 

5.52 

5.50 

5.51 

• 



A 
dk2 

ds2 P  
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TC `It2PIA „ "'"2P1C = 	Y2  
ds2 12 

 

   

C 	
2v2 

5.53 

To start off a solution it is necessary to know values of T and p 

all across the channel at some point. The elemental system in fig 5.7 

may be looked upon as placed in the position shown in heavy lines on 

fig 5.6 so that if values of T and p are known at each point where 

the characteristics meet the z = o line then values of stresses are 

known at.B and C. 

Values of k2 across the channel are already available (chapter 7) 

so that its derivatives w.r.t. sl and s2 may be found numerically. 

- Y1 and Y2 are essentially functions of p so that if an estimate is 

made of the value of pA  then I1 and 12 may be evaluated by numerical 

integration between B and A, and C and A respectively. 	If this 

is done then eqns 5.52 and 5.53 contain only new values of PA 
 and T

A  

as unknowns and so these quantities may be evaluated. 

The elemental system may be applied at each position across the 

channel and so values of 
	

and T are obtained for each point where 

the characteristics cross. However the values found depend upon the 

values of p which were estimated initially. Therefore to obtain final 

values for stresses across the new row of points the procedure has to be 

repeated until the solution converges. Fortunately this occurs very 

rapidly in practice, 2-3 repetitions normally being sufficient. 

Turning now to the next row of intersection points (row 3), it is 

immediately apparent that the procedure used for calculating values of 

p and T for points in the second row may be applied for calculating 

values of these quantities at all but the end points of the third row. 



At the end point only one characteristic is involved and therefore 

only one equation containing the stresses is available from this source. 

However a further condition is available in that since the material 

is sliding on the metal surfaces at the sides of the channel the shear 

stresses there are related to contact pressures, i.e: 

when x = 0 
	

To  = - pf(k2p).0 	5.54 

when x = 	T =
f
(k2p) 
	

5.55 

(on the other side of the channel) 

Therefore at x = 0 equations 5.54 and 5.53 are available to derive the 

stresses and at x = R, eqns 5.55 and 5.52 are available. 

Having defined procedures for evaluating the stresses which occur 

at the second and third rows of intersection points (given values along 

the first row), it is obvious that these procedures may be successively 

repeated along the channel until the required length is covered. 	This 

then is the basis of the method used for obtaining the stress distri-

bution in solid material being conveyed by an extruder screw. 

The purpose of arranging that the intersections of the characteristics 

occur on lines of constant z also becomes apparent. 	By doing this 

the solution proceeds along the channel in definite increments of z 

and since values of p are known all across the channel at these places, 

the mean specific weight, volumetric flow rate and therefore conveying 

angle may be evaluated at each stage of the solution. Although Yi  

and Y2 (eqns 5.48 and 5.49) are essentially functions of p (and con- 

veying angle which is essentially a function of the values of 
	

across 
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the channel) they are also functions of the angular displacement from 

the vertical of the point to which the quantities refer. This angular 



position determines the direction in which gravity forces act at a 

particular point and so it is obviously of importance when such forces 

are significant. However for a given angular position of the beginning 

of the channel, the angular positions of individual points in the 

channel can be evaluated from their x and z coordinates, and screw 

geometry. 	The facility for doing this is easy to build in to a 

numerical solution. 

In this section mention has been made of numerical procedures for 

integration and differentiation, these are described in appendix 5.2. 

5.4.3 	Initial Conditions for the Numerical Solution  

The frictional boundary conditions which exist at the sides of the 

channel are fairly obvious ones, however the conditions which exist at 

the beginning of the channel are more difficult to deal with. Two 

principal difficulties exist: 

1. The geometry of the first part of the channel changes as the 

screw rotates in the barrel because of the presence of the feed pocket. 

2. The solution which has just been described applies only to 

the screw in one angular position. As the screw rotates the value of 

0 at the beginning of the channel changes and so therefore will the 

overall solution. 

Considering the second point first it might be concluded that a 

time dependent solution is really required, indeed this would be the 

obvious method of approach. However as will be appreciated, the steady 

state solution for stress build-up is in itself complicated so that the 

inclusion of time dependency would involve even greater complexity. 

The question which arises therefore is whether or not some approach can 

be taken treating the situation as a quasi steady one. 

102 
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If a simple Darnell and Mol type of solution is considered in 

which gravity forces are neglected, then the pressure distribution (using 

the term pressure in a loose sense) all along the channel is dependent 

upon the initial value at the beginning of the screw. 	If an ideal 

incompressible solid is considered then when the initial pressure is 

varied in some way the pressure distribution along the screw will instan-. 

taneously adjust to the new initial pressure. 

Taking a very simple view of a similar situation in which gravity 

forces give rise to initial pressure, it can be seen that a series of 

quasi steady conditions could be applied as the screw rotates to take 

into account the varying initial conditions which affect gravity forces. 

The difficulty in a practical situation is that material compres-

sibility does not allow this instantaneous response all along the channel. 

A change in pressure at some point means a change in volume and there-

fore a movement in the material, this movement takes a finite time. 

Taking into account the full implications of this would be an enormously 

complicated problem especially in view of the fact that in the material 

being considered reduction due to the application of pressure is only 

partially recoverable. 

In order to look more closely into the changes in stress state which 

occur as the screw rotates it is necessary to consider further the first 

point to be raised concerning the presence of the feed pocket. 	The 

solution for build-up in stress along the screw channel takes place along 

a series of characteristics and when looking at the situation right at 

the beginning of the feed section it is necessary to consider the way in 

which the solution propagates along these characteristics from whatever 

initial boundary conditions are assumed. 

It is possible to consider a simplified situation at the beginning 

of the screw by assuming that the barrel starts at a certain axial position 

• • n 
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and that the supply of feed material comes from all around the screw, 

as in fig 5.8. 	If it is further assumed that the stress level in feed 

material is zero (or at some low but defined value) then significant 

build-up in pressure will only occur within the barrel. Therefore on 

the opened out diagram, fig 5.9,it might be argued that the build-up 

would occur from the line representing the beginning of the barrel. 

However when the characteristics are drawn (fig 5.10) and the procedures 

for starting off the solution are Carried through, it is found that a 

build-up in stress cannot in fact occur from this line. 

Under normal circumstances k2 has a value in the region of 1.0, the 

gradient of the characteristics is therefore in the region of 1.0 and 

so the lines will be at approximately 45°  to the x and z directions. 

Since the helix angle is in the region of 20°  the way in which the 

characteristics cross the proposed initiation front is as shown in fig 

5.10. 	By following through the system which would be used for solving 

along the characteristics it can be seen that starting from the left hand 

side, when the position marked * is reached an inconsistency arises. 

By integration along the characteristic leading to this point a relation-

ship is obtained between D
A 
 and T

A 
whereas the stresses at that point 

. 

will already have been specified as initial conditions. 	Because of this 

it is reasonable to conclude that no stress build-up can occur along the 

characteristics leading to the point in question. 

It can be seen therefore, that the intersection points on the 

characteristics joined by a heavy line are the first ones from which 

pressure or stress initiation can occur without leading to the type of 

inconsistency just described. 	This line has therefore been taken as the 

true initiation front. 

When the normal situation at the beginning of the feed section is 

considered, in which material is supplied through a feed pocket, then the 

region containing material in a low or zero stress state appears in a 

• 



105 

somewhat different form relative to the first part of the channel, com-

pared with the way in which it appears in the simplified situation just 

considered. 	The easiest way in which to visualise the real situation 

is to consider the barrel unwrapped and the screw moving relative to it. 

The diagrams in fig 5.11 show the barrel opened out with a feed pocket 

occupying the top 180°  and having a length of one diameter (as in the 

feed test apparatus). 	The screw has a pitch of one diameter. 

With the screw in the position shown in fig 5.11 (a), the arguments 

applied in deciding that the initiation line should be as shown in 

fig 5.10 can be applied in the present case and the initiation front 

will therefore be in a similar form. 	The same argument can still be 

applied until the screw reaches a position as shown in fig 5.11 (b). 

After this the screw will be as shown in fig 5.11 (c) and somewhat 

different considerations apply. 	Part of the initiation front is the 

same as before but in the region marked C there appears to be no 

reason why initiation should not take place from the edge of the feed 

pocket. 	However further rotation of the screw causes the area C to 

decrease in size until the position as in (a) is reached once more. 

It is evident therefore that to be completely realistic it would 

be necessary to consider the relatively complicated (and varying) ini-

tial conditions as shown in fig 5.11 (c) as well as the simple one 

shown in figs 5.11 (a) and 5.11 (b). 

Unfortunately another complication arises because in order that 

pressure initiation should occur, gravity forces have to be favourably 

disposed. 	This normally means that initiation occurs in the region 

0 < 0 < 7 where gravity forces act in a positive direction along the 

channel. 	In fact by carrying out trial solutions based on the simple 

initiation front (as in fig 5.10) it can be shown that the permissible 

range of initiation fronts is normally such that point A lies approxi- 
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mately within the range 	< e < 7 (see 8.1). 

Although it is relatively easy to set up a numerical solution to 

deal with the simple initiation conditions, in order to consider the 

more complicated situation in fig 5.11 (c) (bearing in mind that the 

size of area C is not fixed) a very much more complicated numerical 

procedure is necessary. 	In fact it has been necessary to make a sim- 

plification at this point in order to avoid too great a degree of com-

plexity, by assuming that the barrel starts at a certain axial position, 

as in fig 5.8,corresponding to the front of the feed pocket. 	However 

because initiation can take place from positions a little further back 

along the screw than this assumption dictates, the pressures which are 

predicted will tend to be somewhat low. 

Having assumed a simplified situation at the beginning of the 

screw it is now possible to examine the implications of the fact that 

pressure or stress initiation fronts can only exist over a limited 

angular range. 	To do this it is necessary to look at the series of 

opened out screw sections shown in fig 5.12 (a), (b), (c) and (d). The 

angular range of point A (as in fig 5.10) for possible pressure ini-

tiation fronts is shown and various stages of screw rotation are illus-

trated. 

In fig 5.12 (a) the position of point A is not such that pressure 

can be built up from the initiation front. When the screw reaches 

position (b) pressure build-up may then occur and in an idealized situa-

tion a pressure distribution would be set up along the screw immediately. 

After the screw passes position (c) the pressure can no longer be 

built up from the beginning of the channel. What must happen there-

fore is that the pressure initiation front stays in the same angular 

position but moves axially along the screw, as in (d). 	If pressure 

response were instantaneous then the whole pressure profile would in 

effect move axially along the screw. 	This continues until the screw 
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reaches position (b) again, when a new pressure profile will be set up 

starting from the beginning of the screw. 

Therefore if response were instantaneous and the mass flow rate of 

material remained absolutely constant, at different times there would be 

two extreme pressure situations at any given position some way along 

the screw. There would be a high pressure situation produced by initia-

tion from the beginning of the screw and a low pressure situation initia-

ted from slightly less than one tun along the screw (just before the 

new pressure profile is set up). 

According to the experimental work described in 4.3, loose solids 

are fairly readily compressed and there is what amounts to a hysteresis 

effect when they are compressed and decompressed. 	Because of this it 

is reasonable to expect that fluctuations in stress level set up at the 

beginning of the channel will not be transmitted entirely to the rest 

of the screw. 	However some fluctuation in the state of pressure or 

stress at a particular position along the screw is to be expected. 

An added complication is that in the experiments carried out on 

solids conveying (Chapter 6) a fairly constant back pressure (as opposed 

to a constant mass flow rate) has been applied. 	Therefore if at each 

stage of the pressure initiation cycle just discussed there exists a 

definite output/ pressure build-up characteristic for the effective 

part of the screw, then in an idealised situation the flow rate at each 

stage would adjust to give a pressure build-up which is just sufficient 

to overcome the applied back pressure. 	This would imply a fluctuating 

output rate and provide a basis for explaining the pulsing action of the 

experimental feed section. 

In practice it is unlikely that either a constant pressure build-up 

or constant mass flow rate would be forced upon the feed section of an 

extruder. Therefore the way in which it would behave must depend upon 

the characteristics of the rest of the machine. 
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Having examined the cycling expected with the simplified initial 

geometry which has been assumed, it would be possible, in principle, to 

repeat the arguments in order to consider the real geometry. However 

as already explained this would involve some special computational facil-

ities to consider certain initiation positions and so it has not been 

pursued. 

• •>, 



Fig 5.1 VIEW OF A HELICAL SCREW SHOWING CO-ORDINATES  AND  

HELIX ANGLES WHICH HAVE BEEN USED 

r 

Fig 5.2 CYLINDER AT RADIUS 7 OPENED OUT TO SHOW x AND z DIRECTIONS 
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Fig 5.3 CONVENTION FOR SHEAR STRESSES POSITIVE 

Fig 5.4 VELOCITY AND FORCE DIAGRAMS FOR MATERIAL IN CONTACT 

WITH THE INSIDE SURFACE OF THE BARREL 

velocity of screw periphery relative to barrel ( = nDN ) 

component in hoop direction 

110 

component 
in axial 
( - Z.) 
direction 

frictional force 
between material 
and barrel 
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Fig  5.5 TRANSFORMATION OF COORDINATES 
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Fig 5.6 NETWORK OF CHARACTERISTICS 

   



Fig 5.7 SMALL PART OF CHARACTERISTICS NETWORK 

C 
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Fig 5.8 SIMPLIFIED GEOMETRY ASSUMED AT THE BEGINNING OF THE SCREW 



Fig 5.9 OPENED OUT SCREW WITH SIMPLIFIED INITIAL GEOMETRY 
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Fig 5.10 CHARACTERISTICS NETWORK SUPERIMPOSED UPON Fig 5.9 
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Fig 5.11 POSITIONS OF STRESS INITIATION FRONT RELATIVE TO 

THE FEED POCKET 

(a) 

(b) 

feed 
pocket 

initiation 
front 

(c) 



Fig 5.12. VARIATION IN INITIAL CONDITIONS DUE TO THE LIMITED 

ANGULAR RANGE FOR STRESS INITIATION 
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6. Experimental Work  

6.1 Design of Apparatus  

Although the overall object of this work is to predict the behaviour 

of an extruder feed section, a real extruder would not be suitable for 

testing the theory which' has been developed. 	It is necessary to have 

a piece of. apparatus like the feed section of an extruder so that the 

feeding process can be looked at in isolation and not confused by the 

other processes. 

Since the amount of data which has become available on polymer 

friction properties is very limited it is best to test the theory under 

the simplest conditions possible. 	In particular it was decided to 

carry out all experiments at room temperature because when the decision 

was made friction data even at ambient temperature was scarce so that 

there was very little point in trying to carry out theoretical-

experimental comparisons at elevated temperatures. By keeping the 

barrel at very nearly the same temperature all along it was also sought 

to keep the coefficient of friction constant over the length of the 

barrel. The philosophy has been that if the theory works for a simple 

case then it can be extended if necessary to cover more complicated ones. 

Since the output/pressure build-up characteristic of the feed 

section is one of the main interests of the work, facilities for apply-

ing back pressure and measuring the pressure produced were necessary. 

The application of back pressure may be looked upon as simulating what 

the feed section might experience from the rest of an extruder in a 

real situation. Another quantity of interest is the torque absorbed 

in driving the screw. 

The final design of apparatus was arrived at after considerable 

development work. At first a fairly large (76 mm diameter) screw and 
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barrel were used, the idea being that the channel depth would be several 

times the typical size of polymer granules and therefore representative 

of a large machine. 	Some useful experimental work was done using 	this 

apparatus including flow visualization using a transparent barrel. 

However the limitations very soon become obvious. 

A 3 H.P. variable speed drive system had been built for previous 

experimental work and so this was used to drive the screw. However it 

became apparent that even when fairly moderate pressures were built up 

along the apparatus, insufficient power was available in the drive 

system. 	Another problem encountered was that large quantities of 

polymer were required. 	Experience showed that if consistent results 

were to be obtained the material could be passed through the machine 

only once, therefore fresh material had to be used for every test. 

To have built a sufficiently powerful drive system and obtained 

the necessary quantities of material for serious experimental work 

would have been far too expensive. Only one screw was made (11 mm 

channel depth) whereas more would have been required, further adding 

to the cost of the work. Plate 6.1 shows the 76 mm screw and barrel 

being used for flow visualisation, this will be described in 6.3.1. 

Using the experience gained with the large apparatus a 38 mm dia- 

meter machine was designed. 	It was reasoned that scaling down to 

this size would reduce the material and power requirements by almost 

an order of magnitude. However because the channel depths are no 

longer large compared with normal granule sizes,,it has been necessary 

to use powder feedstock for the experimental work. 

Fig 6.1 is a scale assembly drawing of the apparatus and Plate 6.2 

shows a general view of the apparatus. The various parts of the equip-

ment will be described separately. 
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6.1.1 	Hopper  

For simplicity this was made pyramid shaped in sheet metal. There 

were no special features except that a stirrer was found necessary 

especially when using PVC powder. 	This device is illustrated in 

fig 6.2 but the essential part is a wire which is rotated and effectively 

cuts through the material which causes bridging. 

6.1.2 	Feed Pocket  

This was made separate from the barrel to allow for possible modi-

fications. Experiments with the 76 mm machine had shown that a feed 

pocket occupying the whole width of the screw and having a length of 

1 diameter gave acceptable filling. 	Therefore a feed pocket of this 

type was used. 

To allow observation of flow in the feed pocket, transparent 

acrylic material was used in its construction, this material being 

adequately strong for the purpose. 	Being able to observe the flow was 

a useful check on whether or not the material was flowing freely through 

the hopper. The feed pocket is shown in plate 6.3 which also shows the 

barrel sections. 

6.1.3 Barrel  

One of the experimental parameters which had to be varied was the 

barrel length. However to have made a series of barrels and corres-

ponding screws would have been very expensive. The problem was over-

come by having the barrel made in sections so that by suitable arrange-

ment of the barrel sections and feed pocket a number of effective barrel 

lengths could be obtained. 	Fig 6.3 (a) and (b) shows the two arrange- 

ments which were actually used in the experiments. The sections of 

screw and barrel before the feed pocket (b) are simply not used. 



To keep down costs the barrel parts were made of mild steel with 

the end flanges welded on. Cold drawn tube was used for the barrel 

itself so that only final honing of the bore was required. To ensure 

accuracy in alignment of the sections, after honing, the ends were 

finished square to the bore and holes drilled for locating dowels. 

Side tubes had to be fixed to the barrel to accommodate pressure 

measuring devices. The ends of the tubes were machined so as to 

screw into the barrel and were radlused so as to conform to the inside 

surface of the barrel. They were secured with high temperature cement, 

this being done before final honing of the bore. 

Four bolt holes have been provided for fixing the sections 

together. 	The feed pocket and drive end mounting flange have also 

been drilled with bolt and dowel holes corresponding to those on the 

barrel. 

Although a harder material would have been desirable, the mild 

steel construction proved to be adequate. However care had to be taken 

in ensuring that the inside barrel surface was not damaged. 

6.1.4 Screws  

Three screws were used in the experimental work. Each had a 

constant channel depth and a constant pitch equal to the outside dia- 

meter. 	The material used was again mild steel, the screws being made 

by an extruder manufacturer and finished to the same standard as normal 

extruder screws. 

The screws were designated "shallow", "medium" and "deep" and had 

channel depths of 2.46, 5.79 and 9.22 mm respectively. 	These corres- 

pond to depth/diameter ratios (R) of 0.065, 0.152, 0.242. 	The length/ 

diameter ratio (L) of each screw (starting at the front end of the feed 

pocket) was 8.4 and the radial clearance of the screws in the barrel was 
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nominally 0.16 mm. 	The screws are shown in plate 6.4. 

6.1.5 Back Pressure Device  

To restrict output and cause pressure build-up,an arrangement similar 

to that devised by Schenkel [39] has been used. A diagram of the 

arrangement is shown in fig 6.4 and plates 6.5 and 6.6 show the general 

arrangement. 	The loading ring effectively occupies the same cross- 

section as the screw channel so that when it is in contact with the end 

of the screw, flow is cut off. A load is applied to the ring via a 

loading cage using a lever arm and weight system. 	The loading ring 

and cage were free to rotate so that wear between the ring and the end 

of the screw was reduced to a minimum. 

The load which is applied to the loading ring has to be overcome 

before material can escape from the screw channel. 	Therefore ideally, 

the mean effective axial pressure at the end of the screw is equal to 

load divided by the cross-sectional area of the ring. 	Schneider [40] 

calculated the pressure built up in his apparatus by this means. 

However even as a method of finding mean axial pressure it is not com-

pletely accurate. There must be some friction between the ring and 

the barrel due mainly to polymer being forced into the clearance gap. 

The error caused by this would be quite significant judging by the 

difficulty sometimes experienced in removing the ring after an experi-

ment. 

It is perhaps worthy of mention that the inside of the loading ring 

was eventually threaded in order to facilitate its removal from the 

barrel. 

In operation the loading device was trouble free and if necessary 

the load could be found directly from the lever arm geometry and the 

weights used. The main virtue of using this type of arrangement for 
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inducing pressure build-up compared with some form of plain constriction 

is that it does not become jammed with solid. 	The effective pressure, 

although it cannot be accurately determined directly, is held virtually 

constant and unlike that built up by a constriction does not depend 

upon any flow rate/pressure drop characteristic. 

6.1.6 Pressure Measurement  

The measurement of pressures in the apparatus was undoubtedly the 

most difficult and eventually most expensive problem encountered in the 

experimental work. From the beginning it was realized that only radial 

pressure (or direct stress p ) at the barrel surface could be measured, 
r2  

to have measured pressures along the channel, across it or on the screw 

surfaces would have been virtually impossible. 

Pressure measuring points at intervals along the barrel were the 

obvious choice so that the pressure profile along the screw could be 

obtained. 	It was also anticipated that if instruments with a suffic- 

iently fast response were used some indication of pressures across the 

screw channel could be obtained as well. 

Some grease filled pressure gauges were available in the laboratory 

and although their response characteristics were by no means ideal they 

should at least have been capable of measuring the maximum pressure 

encountered as the screw rotated. The main problem was to transfer the 

effective radial pressure at the barrel wall to the grease inside the 

gauge. 	This had ideally to be done without disturbing the flow of 

solid polymer and certainly without letting any grease gain access to 

the barrel. Had this happened the frictional behaviour there would 

have been completely changed. 

Even with a grease filling the volume displacement into a gauge at 

the pressures encountered was too great for a diaphragm to be used at the 
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barrel surface. 	Because of this some piston type of arrangement had 

to be used to transfer pressure from the solid to the grease. A great 

deal of time was spent trying various close fitting pistons, with and 

without seals. However, these worked for short periods but eventually 

jammed through polymer particles being forced between the piston and 

cylinder in which it fitted. 

Some experiments were carried out using this system of pressure 

measurement but frequent dismantling of the apparatus was necessary 

to keep it working. The system was a relatively cheap means of pressure 

measurement but it was tedious and of doubtful reliability. Furthermore 

only maximum and possibly minimum pressures in the channel section 

sweeping over the measuring point could be recorded. 

The problem of pressure measurement was to a large extent solved 

when electronic pressure transducers became available in the laboratory. 

These were of the type designed for operation in extruders and therefore 

well suited to this particular application. 	The transducers have a 

small diaphragm on which pressure acts. The resulting displacement of 

the diaphragm is transmitted via a push-rod to strain gauges from which 

an electrical signal is obtained. 	This is fed into a bridge-amplifier 

and finally, in this case, to an ultra violet recorder. 

The whole system although very expensive provided extremely good 

monitoring of the pressures in the screw channel at the barrel surface. 

However as the gauges are really intended for measuring melt pressures 

there has always been some doubt as to whether the pressures recorded 

using solidsare completely reliable. 	Furthermore the degree of relia- 

bility would be difficult to determine. 

Although initially it was thought that the electronic pressure 

transducers had solved all pressure measuring problems it was later 

discovered that they were very susceptible to damage. The diaphragms 
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are necessarily gate delicate and precautions were taken to avoid 

damage through abrasion by attaching discs of PTFE using impact 

adhesive. The discs were very thin and soft so as not to interfere 

.with pressure measurement but at the same time they did prevent any 

abrasion taking place. However instead of damage occurring in this 

way it was found after considerable running that although the rated 

pressure for the instruments had not been exceeded two diaphragms had 

been ruptured. 	This occurrence has never been satisfactorily explained 

but it may be due to the high shear stresses which must accompany high 

pressures if Coulomb friction exists between the polymer and the metal 

surface against which rubbing takes place. 

Originally provision was made for six pressure tapping points as 

can be seen in fig 6.1 and plate 6.3. 	However only three pressure 

transducers were originally available so that when the full barrel 

length was used they were placed towards the delivery end of the machine 

where significant pressures were produced. The transducers had a 

0 - 10.3 MN/m2  pressure range and it was found that when pressures 

towards the upper end of this range were being recorded at the delivery 

end, the transducer farthest away (near to the middle of the barrel) 

was only just detecting significant pressure. 	Therefore it was con- 

cluded that placing instrumentation farther back towards the feed 

pocket was not justified as the transducers in use were already the 

most sensitive of that type available. 

Some experimental work was done using the three transducers towards 

the delivery end of the machine, but after two had been damaged, because 

of the prohibitive cost of replacement, it was decided to use just one 

to record final pressure. 	It may be noticed on plate 6.3 that the 

side tubes in which the transducers were eventually fitted have rectan-

gular pieces of metal attached to them. These were used during the 

experiments with grease filled pressure gauges but were not used afterwards. 
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6.1.7 	Drive System  

Some time after the smaller sized apparatus had been made, a new, 

more powerful drive system became available. This was primarily for 

other experimental work but provision was made for driving the solids 

feed apparatus. With a 10 HP motor and speed variator a large excess of 

power was available. This had the useful feature that for any particular• 

variator setting, speed was independent of load for all practical pur-

poses. 

The speed range available was from 14 - 127 rpm. Because of the 

large reserve of power available a torque limiter was incorporated in the 

drive system to avoid breaking the screws if a sudden overload occurred. 

6.1.8 	Bearing Housing  
• 

The bearing housing originally made for the 76 mm screw was retained 

for the smaller machine. A drawing of the arrangement used is shown in 

fig 6.5. A large ball bearing and a smaller roller bearing are employed. 

Together they provide alignment of the screw and the former is capable 

of absorbing any end thrust which is placed on the screw. 

6.1.9 	Other Instrumentation and Facilities  

As well as the new drive system a torque measuring device also 

became available. 	This consisted of a transducer which was incorporated 

in the drive shaft and an electronic system for converting the transducer 

signal into a torque reading. 	This gave trouble free operation. 

Thermocouples were originally fitted opposite each of the pressure 

transducer points. 	The experiments were carried out at essentially 

ambient temperature and in fact with the low speed condition chosen for 

most of the tests, individual temperaturesdid not rise very much above 
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this. Air cooling using jets from the compressed air supply was used 

to keep temperatures for the most part within 10°C above ambient. The 

thermocouple at the delivery end of the apparatus recorded the highest 

temperatures because frictional dissipation was highest at that point. 

The only purpose of measuring temperature all along the apparatus was so 

that if large deviations from ambient occurred then changes in coefficient.  

of friction because of these could possibly be taken into account. Since 

the deviations observed were fairly small, all except the thermocouple 

at the delivery end were dispensed with, the single thermocouple was 

retained to keep a check on the maximum deviation from ambient. 

For simplicity plain holes were drilled in the barrel and the thermo- 

couple leads were cemented in place. 	Care was taken to ensure that the 

junctions were placed as close as possible to the inner surface of the 

barrel. 

Because the drive system gave a constant speed once it had been set 

no continuous monitoring of this was required. 	It was only necessary 

to set the required speed using a hand tachometer and that sufficed for 

the experiment. Measurement of output rate posed no problems either, 

the output was simply collected over a set time and then weighed. 

6.2 The Accuracy of Measurements Made During Experiments 

Although it is possible to quote manufacturers' figures for the 

inherent accuracy of some of the instrumentation, in other cases the 

accuracy of measurement simply has to be estimated. 	The quantities of 

importance which had to be measured are listed and commented upon below: 

(a) Output rate - Measurements were taken by collecting material 

emerging from the machine over a period of 4 or 5 minutes. Therefore even 

if an error were introduced equivalent to 2 seconds either in the accuracy 
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of the stop watch or in the placing and removal of the container the 

overall accuracy would be within 1%. 

(b) Pressure - Each electronic transducer was supplied with a 

calibrating resistor (0.3% accuracy) which when suitably connected in the 

circuitry gave a response equivalent to 80% of the instrument's maximum 

pressure measuring capacity. The manufacturers state that this calibra-

tion is accurate within ±0.5% and when used in the way which they were 

the overall accuracy of the instruments should have been within 2%. No 

attempt was made to check the calibration because it was felt that un-

certainties of the type already mentioned in 6.1.6 due to measuring 

pressure in a solid rather than a liquid would be more significant than 

any inherent inaccuracy in the instrumentation. 

(c) Screw Speed  - The hand tachometer used for measuring speed 

was of a chronometric type which is inherently very accurate. The 

probable accuracy of speed measurement was within 1%. 

(d) Torque - The torque measuring system was calibrated electron-

ically according to the maker's instructions, using fixed value response 

simulators supplied by them. When calibrated in this way the accuracy 

is stated to be within 3 - 5%. 

(e) Temperatures - Thermocouples are inherently quite accurate 

and since temperatures were not required with any great degree of pre-

cision no problems arose in the accuracy of measurement. 

6.3 Experimental Programme and Techniques  

Although the main part of the experimental work was concerned with 

finding output/pressure build-up characteristics in solids conveying 

there are other aspects of the process which require preliminary experi-

mental investigation. These may be listed as follows: 

1.26 
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1. The validity of the plug flow assumption. 

2. The relationship between output rate and screw speed. 

3. The effect on screw performance of the head of material in the 

hopper. 

All significant theory so far has assumed that loose solid flows as 

a plug when in an extruder. 	This is obviously an important point to in- 

vestigate since the validity of solids flow theory is dependent upon it. 

Unless centrifugal effects become important or coefficients of fric-

tion change with rubbing speed, theory predicts that output is propor- 

tional to screw speed. 	It is a simple matter to investigate the effect 

experimentally and if the proportionality holds over a useful speed 

range, then the main body of testing need only be carried out at a single 

speed. 

In the theory it has been assumed that the head of material in the 

hopper does not affect the conveying process in the screw. 	If this can 

be verified then it not only justifies the assumption but it also means 

that the level of material in the hopper need not be carefully controlled 

during experiments. 

6.3.1 	Investigation of the Plug Flow Assumption  

As already mentioned this was carried out on the large feed section 

apparatus described briefly in 6.1. 	For most of the tests the apparatus 

was equipped with a transparent acrylic barrel so that flow could be 

observed. 

It will be seen in 6.3.2 that the output/speed characteristic of a 

solids conveying screw is linear over a considerable speed range. Extra-

polation of the graph (fig 6.8) shows that the lines pass through the 

origin indicating that no change occurs in the conveying mechanism even 
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at very low speeds. The experimental technique evolved made use of 

this observation and involved very slow rotation of the screw by hand. 

In order to enable the flow to be visualized a small quantity of 

different coloured marker particles was mixed with the basic polymer. 

As far as possible these particles were of the same basic polymer but 

the relatively small amount used should not have interfered with the 

flow even when particles of a different type of mateial had to be used. 

Because it is not possible to see properly through layers of polymer 

granules, reliable observations could only be made of marker particles 

next to the barrel surface. The technique used was to rotate the screw 

until a suitable array of such particles appeared across the width of 

the channel at some point and then mark their positions on the outside 

of the barrel. 	The screw was then rotated another 1/4 turn approxi- 

mately, and the positions of the particles once again marked on the 

barrel. By measuring the amount by which each particle had moved and 

also measuring the corresponding amount of movement undergone by a point 

on the screw's periphery it was possible to plot a velocity profile of 

particles in the layer next to the barrel surface. 	(This will normally 

be referred to as the top layer.) 

The experiments were carried out initially with no restriction on 

the outlet from the screw. Under these conditions the screw ran only 

an estimated 85-95% full and some loose tumbling over the top of the 

screw occurred. As well as this, considerable shearing took place in 

the part of the screw where no tumbling took place. 	Figs 6.6 and 6.7 

show the velocity profile obtained in this part of the flow when nearly 

spherical polyethylene granules and cube cut PVC were used. 	It can 

be seen that there was more shearing in the case of polyethylene particles 

presumably because they are able to flow more freely. 
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As far as could be seen although particles did move relative to each 

other the motion was always parallel to the sides of the channel except 

when loose tumbling occurred. 	This is obviously very different from 

the situation which exists in the metering section where transverse flow 

occurs. 

- As restriction was applied to the exit from the screw the channel 

began to run full and under these conditions the deviation from plug 

flow was very small with all of the materials tested (L.D. polyethylene 

granules, PVC chips, polystyrene granules, H.D. polyethylene powder, 

PVC powder and polystyrene reactor beads). 	This was at first attri- 

buted to the compaction of material due to pressure being built up. 

However some tests were later carried out after mounting the screw and 

barrel vertically and deliberately filling the screw channel with material 

(the barrel being returned to the horizontal position before testing). 

In this case even with no restriction on the outlet from the screw, the 

flow pattern became almost completely plug like, this indicated that it 

is a full channel rather than compacting pressure which leads to plug 

flow. 

As mentioned previously, it was not possible to accurately trace 

the path of particles below the top layer. 	However particles over most 

of the channel depth could be seen occasionally especially when running 

on granular feedstock. Observations showed that when no velocity 

changes occurred over the width of the channel, none appeared to exist 

over its depth either. 

The essential conclusion from this work is that the plug flow 

assumption is reasonable so long as there is good filling of the channel 

from the feed pocket and sufficient pressure build-up to keep the channel 

running full. However the experiments which were carried out did not 

cover a very wide range of polymers or running conditions, neither was 
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it possible to measure accurately any variation in flow velocities over 

the depth of the channel. Therefore the work cannot be taken as uni-

versal evidence of plug flow but it does show that pursuing theory based 

on this assumption is still very worthwhile. 

Although the evidence of plug flow is probably the most significant 

finding of the transparent barrel experiments, the observations which 

can be made with this type of apparatus are valuable in other respects 

as well. For instance useful information can be obtained regarding the 

influence of material in the hopper. 

As stated earlier in this section, when back pressure is applied to 

a screw formerly running without any restriction, the channel begins 

to run full and the flow becomes more plug-like. 	However it is still 

possible to build up some pressure with the screw running incompletely 

full right at the beginning. 	Obviously if the channel is not completely 

full at the beginning of the screw there cannot be any pressure existing 

there due to pressure created by material in the hopper. This demon-

strates that some pressure, at least, can be built-up without any initial 

pressure from the hopper. 

Apart from these observations concerning flow in the screw,the action 

of the channel being filled with material in the feed pocket can also be 

seen. 	To describe what actually takes place would be very difficult 

but the complexity of flow involved makes it extremely difficult to 

believe that there is any significant transfer of pressure from the bottom 

of the hopper to material which is actually in the screw channel. 

Although flow visualisation experiments have formed the main part 

of the plug flow investigations, other tests have been carried out with-

out using the transparent barrel. These have been simply to compare 

the outputs obtained running two materials one of which was likely to 

shear the other which was not. 	In order that the frictional properties 
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of the materials should be very similar it was thought desirable to use 

the same basic polymer, in fact polystyrene reactor beads and poly-

styrene granules were chosen as the test materials. 

It would be expected that if there were a difference in conveying 

mechanism (shear flow as opposed to plug flow) the output rates would 

be considerably different. However at 30 rpm with low back pressure 

(nominally 0.54 MN/m2  mean axial pressure) the flow rate of beads was 

28.8 gm/sec and that of granules was 22.9 gm/sec. 	The respective 

specific gravities were 0.667 and 0.634 and so the corresponding 

volumetric flow rates were 37.2 ml/sec and 36.0 ml/sec. 	There is 

obviously little difference between these values, this has been commented 

upon in 1.2. 

6.3.2 The Relationship between Output Rate and Screw Speed  

Previous investigators [34,40] have found that the relationship is 

linear over the normal extruder speed range. However some tests were 

carried out independently to investigate this and some results are shown 

in fig 6.8. 

From these results it can be seen that the characteristics are for 

the most part linear but under conditions of high speed and high pressure 

build-up the characteristic does change somewhat. 	This is probably due 

to a change in frictional properties resulting from the heating which 

occurs. 

6.3.3 The Effect on Screw Performance of the Head of Material in the  

Hopper  

The height of the hopper used was approximately 300 mm. In order 

to see if the height of material had any effect on feed section performance 

tests were carried out; 



(a) - with feedstock just covering the screw. 

(b) - with the hopper half full. 

(c) - with the hopper full. 

The tests were performed at low speed (14 rpm) so that the level of 

material.  could be accurately maintained and the medium depth screw 

(6.1.4) was used. 	The output rates for three nominal pressure build- 

ups are shown in table 6.1. 

Clearly the results show that the height of material in the hopper 

has only a very small effect on screw performance. 

6.3.4 Main Part of Experimental Work - Output/pressure Build-up  

Characteristics  

In this respect pressure is used in its loose sense but the quantity 

which is measured specifically is the radial direct stress at the barrel 

surface (p ). 
r2 

For reasons explained in 6.1.5, in most of the tests 

this quantity could only be measured at the tapping point nearest to the 

delivery end. 

The channels of the screws used in the main part of the experimental 

work were quite shallow (6.1.4) and so powder feedstock had to be used 

in order that particle sizes should be small compared with the channel 

depths. 	Two materials were selected, powder blend rigid PVC (ICI 

Welvic grade PGDO/232) and high density polyethylene powder (Shell 

"Carlona" EB185). 	There is no special significance in the use of these 

particular grades of material, it was simply a case of their being 

readily available. 

All tests were run at low screw speed in order to minimise heating 

and hence change in frictional properties, air cooling was applied in 

order to keep barrel temperatures close to ambient. 	The range of back 

pressure applied varied from zero (no restriction) to what was in most 
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cases the highest value which could be applied without risk of breaking 

the screw (through excessive torque requirements) or of ruining the 

pressure transducers. 

The experimental technique adopted was to thoroughly clean both 

screw and barrel with a solvent in order to remove any oil, grease or 

contaminating polymer, then run the apparatus with the polymer to be 

tested using a high back pressure. A note was kept of the torque 

required to drive the screw and when this had settled down to a steady 

value experimental work could begin. 	The settling down was attributed 

primarily to the metal surfaces becoming "smeared" with polymer (see 4.1). 

This took between 1 and 1 hour to occur, a much shorter period of time 

than that mentioned by Schneider (8 hrs at 65 rpm). However this is 

probably because the polymers used were what Schneider would have termed 

"soft". The nylon which he used himself was a hard polymer and such 

materials are found to take longer to smear a metal surface (again see 

4.1). 

Having started at the highest back pressure to be used, the load was 

reduced in steps until the material was allowed to flow from the screw 

without any restriction. At each stage the apparatus was allowed to 

settle down, this was taken to have occurred when the temperature at the 

delivery end of the barrel had reached a steady value and when the 

torque reading was steady as well. 

The results obtained for PVC powder are shown in figs 6.9 and 6.10 

and those for polyethylene powder in figs 6.11, 6:12 and 6.13. 	Each 

figure shows the output/pressure build-up and torque/pressure build-up 

characteristics for one screw with two different barrel lengths. 	The 

"pressure" actually measured was the maximum recorded as the screw 

channel swept over the pressure transducer. 	This value was the easiest 

one to obtain from the trace produced by the ultra violet recorder. 

133 



134 

It will be seen that no results are presented for PVC powder in the 

shallow screw. 	This is because it was not found possible to obtain 

stable running of the screw with this material. Even with no back 

pressure it was found that the screw would jam for no apparent reason 

and cause the torque limiter to disengage. 	The explanation of this 

phenomenon probably lies in the very flat output/pressure characteristics . 

of the screw as demonstrated in the polyethylene powder tests. 	It is 

reasonable to expect that if for some reason the end of the screw 

nearest the feed pocket is capable of a slightly greater conveying rate 

than the delivery end then pressure will be built up towards the middle 

of the screw. 	Since the flow rate is very insensitive to pressure 

gradient then neither end of the screw will readily change its conveying 

rate to prevent the pressure build-up increasing. 	Therefore this build- 

up will continue until the torque requirements of the screw become 

excessive. 

As mentioned earlier in this section a UV recorder was used in con-

nection with pressure measurement. Pressure traces have therefore been 

obtained showing how variations occur as the screw rotated. 	Some of 

these traces have been reproduced in fig 6.14. 

For the most part pressure was only measured at the tapping point 

nearest to the delivery end of the screw. However before two of the 

transducers were ruined, pressures were measured at the next two tapping 

points as well. 	Some pressure profiles for this limited length of 

barrel are shown in fig 6.15. Each pressure is the maximum value shown 

on the trace obtained from the UV recorder. 

Although the results presented so far represent quantitative observa-

tions obtained from the apparatus, there is one qualitative observation 

of importance which concerns the fluctuations in flow rate from the 

apparatus. Because back pressure was applied to the apparatus using 



1.35 

a lever arm system (6.1.5) a small mcvement of the loading ring resulted 

in a considerable movement at the end of the lever. At the same time 

variation in the position of the leading ring indicated a change in the 

flow rate of solid out of the screw. It became apparent, especially 

during tests involving high back pressures and short screws, that there 

was a noticeable variation in output rate during the period occupied 

by one revolution of the screw. This was apparent from the movement 

of the lever as well as from observation of the actual flow. 

In addition to there being a fluctuation in output rate, some varia-

tion was also observed in the torque absorbed in driving the screw. The 

frequency of this variation again corresponded to the rotational speed of 

the screw. Although there was this variation in torque, the value 

recorded was the average of the maximum and minimum indicated values. 

In figs 6.9 - 6.13 results are given in dimensionless form as defined 

in 5.3.4 and are denoted as follows: 

P* - dimensionless peak pressure 

W* - dimensionless output rate 

T* - dimensionless torque (= torque/wo  134) 

points • and e refer to the long screw and barrel, points O and e to 

the short assembly. 

Screw dimensions have been given in 6.1 and the only parameters not 

given so far are the specific gravities of the feedstocks; they are: 

polyethylene powder - 0.530 

PVC powder 	- 0.722. 



Plate 6.1 LARGE DIAMETER SCREW WITH TRANSPARENT BARREL 

Plate 6.2 VIEW OF FEED SECTION APPARATUS IN ITS FINAL FORM 
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Plate 6.3 BARREL SECTIONS AND TRANSPARENT FEED POCKET 

Plate 6.4 THE THREE SCREWS USED IN THE EXPERIMENTAL WORK 

137 

• 



Plate 6.5 LOADING CAGE, LOADING RING AND END BARREL SECTION 
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Plate 6.6 THE SYSTEM USED FOR APPLYING BACK PRESSURE 
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Table 6.1 EFFECT OF LEVEL OF MATERIAL IN THE HOPPER ON FEED SECTION 

PERFORMANCE 

mean axial back pressure from loading ring 

0.00 0.84 3.20 MN/m2  

hopper full 38.20 38.25 37.80 output 
1 full 38.20 38.20 37.75 gm/min 

almost empty 38.00 38.00 37.00 at 14rpm  
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Fig 6.3 METHOD OF VARYING EFFECTIVE BARREL LENGTH 
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Fig 6.7 PVC ( CUBE CUT ,) 

1.0 

VELOCITY PROFILES FOR GRANULES IN TOP LAYER DURING LOOSE FLOW 
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Fig 6.6 POLYETHYLENE GRANULES 

1.0 

V 
Vb 

0.0 
distance across channel distance across channel 

/7
14 is the velocity of particles along the channel as a fraction 

of the relative barrel velocity in that direction (looking upon the 

screw as stationary and the barrel rotating.) Because there is a 

degree of randomness in the motion of the particles, several sets of 

results have been plotted for each material, hence the different types 

of points. The lines which have been drawn are simply upper and lower 

bounds to the scatter bands. 
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Fig 6.9 PVC POWDER - MEDIUM DEPTH SCREW 
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Fig 6.10 PVC POWDER - DEEP SCREW 
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Fig 6.11 POLYETHYLENE POWDER - SHALLOW SCREW 
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Fig 6.12 POLYETHYLENE POWDER - MEDIUM DEPTH SCREW 



5000 	10000 0 15000 

Fig 6.13 POLYETHYLENE POWDER - DEEP SCREW 

Fig 6.14 PRESSURES RECORDED BY TRANSDUCERS MOUNTED IN THE BARREL 

C\I 0—, 
S4 C\J 	 9 

fa. 	E 	‘-i 

E 

e
st
i
m
at
ed
 

d
i
st
an
c
e
  
a
r
o
u
nd
 
s
cr
ew
  
p
e
ri
ph
e
r
y
  

9 
0 

146 

1.000 

0 

T 
 

(REPRODUCED FROM UV RECORDINGS ) 



147 

Fig 6.15 PRESSURE PROFILE ALONG SCREW (PEAK PRESSURES RECORDED BY TRANSDUCERS) 

distance along screw ( as a multiple of screw diameter ) 
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7. 	The General Stress State of Loose Material in an Extruder Screw  

The purpose of chapter 5 was to find the stress state which exists 

in solids being conveyed by an extruder screw and to find what may be 

thought of as an output/pressure build-up characteristic for the process. 

This is done primarily by considering equilibrium of stresses in the 

material. 	However, as in most problems of stress analysis, equilibrium 

considerations are not in themselves sufficient to yield a solution. 

In order to solve the problem certain relationships are assumed between 

mean direct stresses in the channel coordinate directions. 	The main 

purpose of this chapter is to justify the assumptions and to derive the 

constant terms in these relationships. 

The other purpose of this chapter is to examine the possibility of 

dispensing with the plug flow assumption. This would make the theory 

much more general and remove one of the uncertainties in the analysis. 

The subject is dealt with specifically at the end of this chapter but 

the first step towards examining the stress state in a channel containing 

a loose solid is to investigate the range of stress states which can 

exist in this type of material. 

7.1 Limiting Stress States in  a Loose Material  

In this context the term loose is used to distinguish a solid made 

up of individual particles from one which is continuous. 	It does not 

necessarily mean that the material is always in a state such that it can 

flow freely. 

In order to simplify the formulation of a limiting stress state 

criterion a model will be built upon an ideal material. 	It will be 
• 

assumed that this behaves as acontinuum and has no cohesive forces. 

This being so the material can support no tensile stress so that all 

direct stresses must be compressive and will therefore be given a positive 
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sign. The continuum concept has to be applied with some care when deal-

ing with loose materials. However, in connection with flow in a screw 

channel, it is reasonable to expect that the smaller the particle size 

compared with the size of the channel, the more valid the continuum 

assumption will be. This is why powder feedstock has been used in the 

experimental work where comparison with theory is being sought. 

The basic criterion for shearing or slip has already been discussed 

in 4.2. 	It is that slip can occur if the ratio of shear stress to 

direct stress on any plane reaches a certain value. 	This is a fric- 

tional type of behaviour and the limiting ratio can be thought of as an 

internal coefficient of friction. 	It will be assumed that this remains 

constant over the range of stresses considered. 

This type of behaviour is very similar to that exhibited by soils 

and is discussed in soil mechanics textbooks [20,37,44,50]. 	The failure 

criterion is generally known as Mohr-Coulomb. 

It is usual in literature on soil mechanics to take a two dimensional 

approach to the problem. 	However because of its complexity the stress 

state in material being conveyed by a screw cannot be considered in 

these relatively simple terms and so a full three dimensional approach 

will be taken. 

If the stress state at a particular point in the material is con-

sidered, then on any plane taken through that point there will be certain 

values of shear and direct stress. 	The values of these stresses can 

then be plotted on a graph of shear stress against direct stress, as in 

fig 7.1. 	As the orientation of the plane is changed a variation occurs 

in the values of the stresses acting upon it and hence the position of 

the point representing these stresses also changes. 	It can be shown 

[14] that for a particular stress state, no matter what orientation is 

taken for the plane, the point representing the stresses on it must lie 
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in an area bounded by three circles (fig 7.2). 	This is the Mohr's 

circle representation of stress in three dimensions. 

One fact which immediately emerges is that where the circles 

cross the direct stress axis the shear stress is zero and the planes 

represented by these points are those on which principal stresses act. 

To find which plane in space corresponds to a particular point on the 

Mohr's circle representation is a fairly complicated matter but it is 

dealt with in [14]. For present purposes however the stress circles 

yield sufficient information about shear stresses in the material if 

values of the principal stresses are given. 

Returning to the basic criterion for the occurrence of slip, if the 

Mohr's circle representation is used for stress at a point then the 

maximum ratio of shear stress to direct stress occurs where a tangent 

from the origin touches the outer circle. 	In fact there are two such 

points and therefore in stress space two planes on which the stress 

ratio is greatest (fig 7.3). 

If a stress state is almost entirely hydrostatic then the stress 

circles will be small relative to their distances from the origin 

(fig 7.4). 	As deviatoric components increase the stress circle can 

grow until the tangent from the origin to the largest of them makes an 

angle with the direct stress axis equal to the internal friction angle 

of the material being considered. The maximum ratio of shear to direct 

stress is now at the limiting value and slip can occur (fig 7.5). 

The tangents can be extended outwards to form limiting stress or 

critical state loci so that if the Mohr's circle representation of any 

particular stress state has its outer circle touching these loci the 

material is in a critical state. 	If forces are imposed which tend to 

produce a stress state which has a maximum ratio of shear stress/direct 

stress greater than the limiting value then shearing will occur to 

relieve this stress state to one where there is no further tendency to shear. 



It follows therefore that the stress states possible in a loose 

material have Mohr's circle representations which either touch or lie 

within the limiting loci. 	Within the loci, stresses cause only elastic 

deformation. Reaching the critical state is analogous to metal reach-

ing a yield point and the deformation which follows is analogous to 

plastic flow. 	In fact this term conveniently describes non-elastic 

deformation in a loose solid and will be used in this connection. 

However it has to be appreciated that this does not necessarily mean 

that individual particles deform plastically in the more usual sense of 

the term. 

So far it has been assumed that all three principal stresses are 
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different, that is P1 > P2 > P3. There are two special cases which 

are of importance when stresses are in a critical state, these are 

when P2 = p3 and when p2 = Pl. In both cases there is'a symmetry 

of stress about one principal axis and the other two become indistinct. 

The other feature is that the three circles representing the stress 

states degenerate into one. 

Therefore summarising the stress states which can exist in a loose 

solid: 

1) the stresses are in a sub-critical state and the material 

behaves as an elastic solid. 

2) P1 > P2 > p3 where p1 and p3 give rise to a critical state. 

3) P2 = p3 and these with P1 form a critical state. 

4) P2 = P1 	
II 	11 	

P3 	
It 	11 	n 	tt 

These four states are illustrated respectively by figs 7.4, 7.5, 

7.6, 7.7. 

The mathematical relationship between principal stresses in a non-

cohesive material under a critical stress state can be written down from 

the geometry of the Mohr's circle diagram. 
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P1 - P3 	Pi 4* P3 

2 
	

( 	2 	
) sin P 
	

7.1 

hence 
(1 - sin p)  - 

P3 	= P1(1 + sin p) 
7.2 

where p is the angle of internal friction. 

The yield function may be specified in terms of principal stresses as 

follows 

f = (P1 + p3) sin P 	(P1 	P3) 	= 
	
0 	7.3 

It is important to note that since for a given critical stress state 

pl  and' p3  represent the maximum and minimum direct stresses, there-

fore the difference between any other pair of mutually perpendicular 

direct stresses must always be less than that expressed in eqn 7.2. 

In work by Drucker and Prager [11] a generalised yield function is 

stated in terms of the first and second stress invariants J1  and J2, 

it is: 

= a J1 J22 
	

k 7.4 

where a and k are positive constants in the tensile positive convention 

which they used. 	In this work the opposite convention is used so that 

J1 will change sign and so a must be negative,: 

Although this yield function is supposed to be completely general 

for a material which obeys the Mohr-Coulomb type of shear criterion just 

discussed, it appears to hold only for cases 3 and 4. 	It probably holds 

generally for the modified von Mises yield criterion discussed in other 

work by Drucker [12] but it appears from work done by Green and Bishop 



[16] that the Mohr-Coulomb criterion is more valid for loose solids. 

Evaluation of a and k for cases 3 and 4 give: 

for case 3 	(P1 > (P2 = P3)) 

2 sin P  
a = 	, 	k = 0 	7.5 

I3-(3 - sin p) 

for case 4 	((P1 = P2) > P3) 

2 sin p  
a = 

	

	 k = 0 	7.6 
iY(3 + sin p) 

Consideration of the situation shows that it is unreasonable to 

. . 
expect that the yield function should apply to case 2*(pi  > p2 >'133). • 

Whereas .J1 and ..J2 are functions of pl, p2  and p3 the yield 

criterion is described only in terms of pl and p3. 	In any critical 

state so described P2 can vary over the range pi.> P2 > p3 and since 

J1 and J2 contain P2; f will vary even if pl and p3 remain 

constant. Therefore f = constant cannot represent the general yield 

condition. 

7.2 Approach to Finding the Stress States in a Screw Channel  

The last section defines limits for the stress states which can 

exist in a loose solid. 	Furthermore for an ideal material the dis- 

tinction is drawn between a stress state which causes only elastic 

deformation and a critical state which can cause shearing or plastic 

deformation. 

If it is assumed that material moves as a plug then to be consistent, 

the obvious step would be to assume that it remains entirely elastic 
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with no large scale deformation. 	However it is not completely logical 

to do this. 

Firstly although it can be shown that the plug flow assumption is 

quite good, in some cases at least, there is still evidence to show 

that shearing does occur. 	While this may not seriously affect the 

validity of the plug flow assumption it does show that at least some of 

the material is in a critical state. 

Secondly even if there is no apparent shearing it does not 

ncessarily rule out the material being partly in a critical state. 

Some small plastic deformation may have occurred for the material to 

have reached the state that it is in and the material could well be left 

in the state of stress which existed just after the deformation was com-

pleted. 

Having put forward the possibility that some material in a screw 

channel could be in a critical state, it is now proposed to consider the 

problem from a different point of view. The assumption will be made 

initially that the material is in a totally elastic state, then argu-

ments will be advanced which strongly suggest that under the type of 

stress state which exists in a screw channel the assumption is not self 

consistent so that part of the material must be in a critical state. 

In order to simplify the screw geometry it will be assumed that 

the channel is straight and of rectangular cross-section, the z direc-

tion being taken along the channel, the x direction across and the 

y direction into its depth (fig 7.8). 	Because of the way in which 

friction forces from the barrel act on the material there must be a 

build-up in stress level across the channel. 	Since there is a build- 

up in stress level it is reasonable to assume that there will be an 

increase in hydrostatic stress as well. 

If the plug of material is considered totally elastic and extending 

an infinite distance in the z direction then a restriction is placed 
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upon direct strain in the z direction (ez). 	From a plane sections 

remain plane argument it follows that to a first approximation at least 

ez must be constant over the channel cross-section. 	If this is so then 

the value of ez must be determined by the mean volumetric strain 

over the cross-section, since it is reasonable to assume that the channel 

boundaries are rigid. Leaving aside changes in the y direction, as 

already stated, it is reasonable to expect that there will be greater 

hydrostatic stress and therefore greater material compaction on one 

side of the channel than on the other and so there must be a variation 

in ex across the channel (since ez and e are assumed constant). 

Because the boundaries may be assumed rigid: 

across channel 

.1.  ex  dx = 0 	 7.7 

Following the convention of compressive stress and strain being positive 

then clearly if there is a variation of ex  across the channel, to allow 

for a difference in the degree of compaction, on the high pressure side 

ex  must be positive and on the low pressure side negative. 	If ex  

goes negative then pz  will tend towards becoming tensile and the stress 

state must move towards being critical. 

To look at the situation a little more quantitatively a very appro-

ximate example can be constructed, again neglecting changes in the 

channel depth direction. 	The hydrostatic pressure on the low pressure 

side of the channel will be taken as pA  and on.ihe high pressure side 

as p
B
. 	For simplicity it will be assumed that the hydrostatic pressure 

varies linearly between these two limits. 

The mean volumetric strain for that particular channel cross-

section, and hence ez  will be: 

• 



3(1 - 2v) -- 
ev = 

,where p = 
PA  PB 

2 	
,E is the Young's modulus of the material 

and v is the Poisson's ratio. 

In order to examine the possibility of a critical state being pro-

duced on the low pressure side of the channel the value of px/pz  will 

be derived at this point. 

, 	-  
Volumetric strain e

v 
- 

3(1 2v) 
 PA A 

and since e = 0 
y 

e 	= e - e 	= -3 (1 - 2v)  (PA —P) zA  
vA 

2 E (PA PB)  

from the simple elasticity equations: 

Ee
xA 

= p
x 
(1 + v) - 3v p

A 
A 

Ee 	= p
z 
(1 + v) - 3v pt,  

21A 	A 

by substituting for ex  and ez, rearranging and forming the ratio required: 

(1 - 2v)(PA pB) + 2vPA 
f  11K 

klm
J 
 A 	(1 - 2v) (PA PB) 	2vPA  

p
A 
- (1 - 2v) p

B 
p
A 

+ (1 - 2v)PB 

156 

7.8 

3 (1 - 2v)  

7.9 

7.10 

7.11 

7.12 

7.13 



If the material is to remain in an elastic state then there is a 

limiting ratio which can exist between direct stresses and in particular 

between px  and pz, let the ratio be y 

Px  
therefore — (assuming p

x 
< p
z
) 

Pz 

It is now possible to find the limiting ratio between pA  and pB 

such that px/ps  satisfies the above inequality, it is that: 

PA 	1 + y  
PA 	

(1 	) (1 - 2v) 

As discussed in 7.1 the critical ratio between direct stresses 

which are perpendicular to each other is such that: 

,1  - sin p, 
Y = 	1 + sin pl 

so that if 

(1 - 2v)  
' sin p 

then the whole width of the channel remains in an elastic state. 

However if: 

P
A<  (1 - 2v)   
PB 	

sin p 

then a critical state must be reached on the low pressure side of the 

channel and the elasticity assumption breaks down. 
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A typical internal friction angle for a granular or powdered 

polymer would be around 25°  (4.4) so that sin p 	= 0.423. 	There does 

not appear to be any information available for the Poisson's ratio of 

granular media. However the immediate object of these calculations 

is to find the maximum difference that there would have to be between 

pA 
and pB 

in order that the elastic assumption should break down. 

Therefore if an estimate of the largest probable value of Poisson's ratio 

can be made the maximum difference necessary between the hydrostatic 

stresses can be estimated. 

Values of Poisson's ratio vary between 0 and 0.5 but the latter is 

applicable to a material which is completely incompressible. 	Since as 

shown in 4.3, granular and powdered polymers are far from incompressible 

it is unlikely that a Poisson's ratio of more than 0.4 is appropriate, 

on the other hand it is probable that the value would be more nearly 

the same as that for solid polymers and therefore somewhat less than 0.4. 

Using the value of sin p already quoted, limiting ratios of pA/pB  

appropriate to Poisson's ratios of 0.40, 0.35 and 0.30 are respectively 

0.47, 0.71 and 0.95. 	From this it follows that a fairly modest 

difference between hydrostatic pressures on the high and low pressure 

sides of the channel would result in the elastic assumption breaking down. 

The complexity of the overall problem is such that care has to be 

taken in drawing firm conclusions from approximate analyses. Perhaps 

the main achievement of the analysis is to demonstrate the mechanism 

by which a break down in elastic behaviour can occur, however even allow-

ing for the approximations which have been made it seems highly probable 

that the material on the low pressure side of the channel does not 

remain in an elastic state. 

Because of this it is necessary to look upon the problem as a two- 

phase one and give further attention to critical state behaviour. 	The 
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approach taken will be to concentrate upon this aspect and to examine 

first of all the way in which deformation occurs in material subjected 

to the critical stress states described in 7.1. 	Then by taking into 

account the way in which flow is seen to occur in a screw channel the 

strain systems which can exist in a channel will be formulated. Having 

done this the final step will be to see if a system of critical stress 

states can be found which gives rise to a permissible system of strains, 

and which also satisfies the generl stress conditions which must exist 

in the channel. 	Assuming that critical stress states can be found to 

satisfy these requirements over part of the channel then it is reason-

able to conclude that this part can be treated as a plastic zone and 

stresses calculated accordingly. The remaining part may be treated as 

an elastic zone and dealt with accordingly. 

7.3 Plastic Deformation in a Loose Solid  

This subject has always been approached on the same lines as used 

to analyse the plastic flow of metals. However the basic failure 

mechanism in a loose material is different from that in a continuous 

solid and certain inconsistencies arise if the same principles are applied. 

The most basic concept of plastic flow is that of plastic potential, 

first put forward by von Mises (see [14]). 	In its most general form 

which assumes an isotropic material it may be written as: 

.p 
e.. = A  af  
13 	Dp.. 13 

7.18 

.p 
where p.. is the general stress tensor, e.. is the corresponding plas-

tic strain rate, f is the yield function and A is a scalar factor 

often called the plastic parameter which is the same for all i,j at a 

point at a particular instant of time but may vary throughout the volume 

of material which is deforming. 



When this is applied to the yield function (eqn 7.3) 

f = (pi 	P2) sin p - (Pi  - P3) = 

the principal strain rates are as follows: 

.P 
el = X(sin p - 1) 	 7.19 

.P 
e3 = A(sin p + 1) 	 7.20 

.P 
e2 = 0 	 7.21 

From this it can be seen that the volumetric strain rate; 

.P 	.P 	.P 	.P 
e
v 

= el + e2 + e3 = 2A sin p 

Using his generalised yield function 

aJi + J2I  = k 

Drucker obtains an expression for volumetric plastic strain rate of: 

P 
e = 3Xa 
v 

 7.23 

The implication of this is that when a loose medium undergoes shear 

or plastic deformation a change in volume must take place. According 

to most existing theory on this subject an increase in volume should 

occur during plastic flow and this is used to explain the phenomenon 

known as dilatency which is observed when a loose solid is deformed. 
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Conversely the fact that dilatency does occur in practice has been 

used to substantiate the validity of the plastic potential concept applied 

to this problem. However dilatency only occurs during initialshearing. 

In apparatus such as the annular shear cell which is used to measure 

properties of a loose material, shearing takes place continuously. 

According to the implications of the plastic potential concept the volume . 

should also increase continuously but it is physically unreasonable that 

this should happen. 

When a loose solid is not in the process of shearing the particles 

will tend to pack together under any pressure which exists. 	If shear 

takes place across a certain plane there must be some movement in the 

material normal to that plane to allow particles to pass over one 

another. This would result in an increase in volume which could explain 

the dilatency phenomenon. 

The basic concepts of plasticity theory have been thoroughly tested 

in their application to metal working [14] however work has not been 

nearly so thorough in examining these concepts as applied to loose 

materials. Most investigation of loose material behaviour has been 

carried out in order to calculate the load bearing capacity of soils. 

Those interested in this seek only to predict, for instance, the load 

under which an embankment would fail, they are not interested in the rate 

at which this happens should the disaster occur. 	Therefore there has 

been little incentive to study the plastic flow of loose materials. 

Having cast serious doubt upon the validity of the plastic potential 

concept because of its implications concerning volume changes it is 

necessary to examine possible deformation mechanisms in a loose material 

starting from first principles. 

Looking firstly at case 2 in 7.1, here pl < P2 < p3 and pi, P3 

form a critical state which can give rise to slip. 	The critical state 

• 
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comes about because on two planes in stress space the value of shear 

stress/direct stress reaches the limiting value at which slip can occur. 

Analysis of the situation shows that the normals to these planes 

and the directions of the shear stresses acting on the planes all lie 

in the 1-3 plane. 	It is reasonable to expect that the basic mechanism 

of deformation will be slip on the planes of maximum shear/direct stress 

and that the relative motion will be in the direction of the shear 

stresses. 	The overall strain observed will then be a combination of 

these two slip systems and will only occur in the 1-3 plane, all plastic 

strain components in the 2 direction being zero. 	This is in broad 

agreement with the results obtained by applying the plastic potential 

concept (eqns 7.19, 7.20 and 7.21). 

The conclusion that there are no plastic strain components in the 2 

direction is the only one which can be drawn with any degree of certainty. 

However this is quite significant in itself and is sufficient for present 

purposes. 

Turning to the other critical state conditions, cases 3 and 4 of 7.1, 

very different situations exist. 	In case 3 where pl > (P2 = p3) there 

is a symmetry of stress about the pl axis and examination of stresses 

shows that the surfaces of maximum shear stress/direct stress form cones 

about this axis. 	The shear stress direction on the surface of the cones 

is always towards (or away from) the apexes. 

A similar situation exists in case 4 where (pl = P2) > p3 but here 

the stress symmetry is about the 3 axis. 	In the absence of experimental 

evidence it is difficult to postulate what type of deformation would 

result from slip on these conical surfaces. 	However in general there 

will be strain components in all three principal directions and probably 

a strain symmetry about the pi or p3 axis according to whether case 

3 or case 4 is being considered. 
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7.4 Possible Strain Rates in a Screw Channel  

The qualitative experimental observations carried out using a 

transparent barrel indicated that when shearing occurs there is negligible 

flow of material across and into the depth of the channel (6.3.1). 

To examine the possible strain systems which can exist, the screw 

geometry will be simplified and the channel again assumed straight with 

a rectangular cross-section. 	Its coordinates will be the same as those 

taken in 7.2 with z along the channel, x across and y into the 

depth (fig 7.8). 

The displacement rates appropriate to the x , y and z directions 

will be taken as u
x
, u and u

lz 
respectively. 	Therefore assuming 

y

that compressibility can be neglected, so far as plastic strains are 

concerned, and that there is a similarity in flow pattern along the 

section of channel being considered, observations indicate the following: 

	

au 	au 	au 	au 	au 	3u 	au x  x—  --X = z  - --X - 	y- x 

	

.3x 	ay 	az 	DX 	aZ 	ayaZ = 0 	7:24 

the only non-zero derivatives are: 

au
k 	

au  
ay ' ax 

If the system is one of steady state flow then the geometry is un-

affected as straining proceeds and relationships derived for small 

strains can be applied to strain rates. 	Neglecting elastic components 

of strain the non-zero plastic strain rates are: 

auz  
.P 	1 

= 
yz 	2 ay 

.P 1 
Duz 

zx 	ax 

(using the mathematician's convention 

for plastic strain rates) 

7.25 
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It is shown [14] that certain relationships hold between principal 

strains and strains described in a general coordinate system. As stated 

in this reference they are in a slightly different form but they have 

been converted such that strain rates are used in place of ordinary 

strains together with the mathematician's convention for shear strain. 

Direction cosines are expressed in the following form; 

9,. , Z. , 	
l 
Z.  z these are the cosines of angles between the i-th 

ly  

principal strain direction and the x , y, z directions respectively; 

(E 	Z., m., n. in the normal notation). 
1 1 1 

The three expressions are: 

Z. ly  

e e - e e 	+ e.e 	e e. + e e 	- e e 
xy yz 	zx yy 	1 xz 	yz 1 	xy xz 	yz xx 

Z. 
lz  

7.27 
( 	 2- xx 1  YY 1)  xy 

i=1,2,3;e.is a principal strain rate. 

. .P 
If elastic strain components are neglected then since e xx 	YY 

.P 
= e 	= 0 	the expressions can be written: 

xy 

Z. ly Z. 
lIE 

.P 2 
e. 1 

.P.P 	.P.P 
e.e 	e.e zx 	1  YY 

hence 

1 

Z 	Z. z .P 	.P 	z 	.P 	l 
e. = e 	

i 	
e 

Q. zx  
Q. 	yz k 
ix 	ly 
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The most useful fact to emerge from this and one which will be made 

use of in the next section is that if the critical stress state which 

gives rise to the plastic deformation is that of case 2, (7.1) then a 

special condition arises. 	It was argued in the last section that if such 

a stress state exists, plastic strain components in the 2 direction and 

in particular el3 must be zero. 	If this is so then since it has been 

assumed that ; 	, e;'z 	0 it follows from eqn 7.29 with i = 2 that 

2, must be zero. 	This means that the second principal stress direction 
2 

must lie in the plane of the channel cross-section, that is, the x-y 

plane. 

7.5 The critical stress states which can exist in a screw channel  

Since the object of this chapter is to investigate the relationships 

between stresses at any point in a screw channel only limited information 

is available about these stresses. 	Attention will therefore be given 

firstly to what is known. 

Since the solid polymer slides on the metal boundaries of the channel 

it is possible to write the shear stresses at these places in terms of 

direct stresses and coefficients of friction. 

Along the barrel surface (r = r2) 	(see 5.3.5); 

Pre 	Pr Pb cos a  
7.30 

r 
p
rZ 	

=
r 	

sin a 

and on the screw root (r = r1) 

7.31 

Pre 	
= 	-pr us  cos 43  7.32 

Prz 	
= 	-pr 

Ps 
 sin (1)3 7.33 

• 



The frictional forces at the sides of the channel are not touched 

upon in 5.3.5 but by taking an elemental triangle at each side of the 

channel (fig 7.9) and considering equilibrium of stresses in the 0-7. 

plane it can be shown that 

P P z ) 	n24) + pz  cos24)) 
2 	

sin 24) - Pf(Pe  si 

7.34 
cos 24) - pf  sin 24) 

0 = 01 (low pressure side) 

and 

P 	- 0Z 

P P 0 	Z  
( 	2 	) sin 24) + pf(pe  sin24) + 132  cos24)) 

cos 24) + 
of 

sin 24) 
7.35 

at 0 = 62 (high pressure side) 

4) is the helix angle at the particular radius being considered. 	All 

other symbols are as used in chapter 5. 

In each case it can be seen that the shear stress at a particular 

boundary is linearly dependent upon the direct stress or stresses which 

act on that boundary. At the same time shear stresses set up all over 

the channel cross-section must in some way depend upon the shear stress 

at the boundaries. 	Therefore because the shear stresses are linearly 

related to the direct stresses at the boundaries it is reasonable to 

assume that this type of relationship will exist all across the channel. 

For example pro  andpr  can be looked upon as being related in the follow- 
. 

• 
ing way: 

pre = F pr 	
7.36 

r 	r 

where F varies between -pb  cos a at r = r2 and -Us  cos (1)3 at r = rl, 

but is as yet undefined at any other point over the depth of the channel. 
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Similarly the other shear stresses can be assumed to vary such that: 

PrZ 
= G prir 	 7.37 

r 

poz 
= H po  + I pz 	 7.38 

where G, H, I vary over the cross-section of the channel but have 

as yet only been defined at appropriate boundaries. 

The way in which these quantities vary could be found by a complete 

stress analysis of the problem but it is sought to avoid this complexity. 

As an approximation it will therefore be assumed that there is a linear 

variation of F, G, H and I between their values at the boundaries. On 

this basis for instance, the value of F at radius r is given by: 

-{(r2 - r) us  coscp3  + (r - r1) pb  cos a} 	
7.39 

r 

Similarly: 

G
r 

 

(r2 - r1) 

  

- {(r 	r) ps  sin 4) 3- (r - r1) pb  sin a ) 
7.40 

 

(r2 - r1) 

 

In the same way H and I can be written as functions of 0 but the algebraic 

complexity involved is obviously greater. 

The assumption that F, G, H and I vary linearly over the depth and 

width of the channel may be at first sight rather sweeping, however 

examination of the situation shows that in reality it is unlikely to be 

greatly in error. 	Firstly, because of the nature of loose solids, the 

values of these coefficients must be within a certain range (-pi  .4- +pi  in 

the case of F and G) otherwise shear stress/direct stress ratios greater 

than the material can withstand would be implied. 	This places an absolute 

• 



limit on the variation of the coefficients across the channel. Secondly 

it is reasonable to expect that both shear stresses and direct stresses 

will vary smoothly across the width and depth of the channel and there-

fore F, G, H and I must also vary in a similar manner. A linear 

variation between the values of the coefficients at the boundaries ful-

fils the two requirements and has been adopted, however some improvement 

could be made upon this assumption as applied to H and I. 

It was reasoned earlier that the shear stresses at the channel 

boundaries must be responsible for the shear stresses which are set up 

over the rest of the channel cross-section. 	Because the width of a 

screw channel is normally considerably greater than its depth it is to 

be expected that the influence of shear stresses at the flight edges 

will not be very strong towards the centre of the channel. 	If this is 

so then the assumption regarding the variation of H and I across 

the channel is possibly somewhat in error. 

In the solution of the mean stress equilibrium equations described 

in chapter 5 values of mean stress components in the x - z directions 

are obtained, and with suitable transformation, components in the 0 - Z 

directions could be found. 	As a first approximation, for the purpose 

of finding the relationships between important stresses (the purpose of 

this chapter), H and I could be assumed to vary linearly across the 

168 

channel width. From the solution of chapter 5 the variation of p 
eZ 

Assuming that with p
0 
 and 	could then be found across the channel. 

the form of relationship between mean stresses can be applied to stresses 

at each point over the depth of the channel then a new form for the 

variation of H and I across the channel could be found. 

By using an iterative process to finalise the form of the above 

variation an improved overall solution could be obtained. However such 

a procedure would increase the computing time necessary to form a solution. 

• 
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Having established in 7.2 that there is likely to be a critical 

stress state over part of the channel cross-section it is now proposed 

to see if any of the critical stress states described in 7.1 give rise 

to shear and direct stresses related in the manner which has been 

discussed. 

The critical stress state criteria are defined in terms of princi-

pal stresses so that if an arbitrary set of direction cosines is chosen 

which relates the channel coordinate directions to the principal stress 

directions then critical stress states can be re-defined in terms of 

stresses in the r, 0, Z directions. 	If, for a given point on the 

channel cross-section, a set of direction cosines can be chosen which 

gives a critical stress state in those terms having shear and direct 

stresses related in the manner which has been discussed then a possible 

critical stress state has been found for that point. 

In practice the procedure will be to choose one of the critical 

stress states described in 7.1 then write down components of stress in 

the r, 0, Z directions in terms of the principal stresses which con-

stitute the critical state and an arbitrary set of direction cosines, 

substitute the stress components into eqns 7.36, 7.37 and 7.38, then 

see if a solution can be obtained for the system of direction cosines. 

If it can, then a possible critical stress situation has been found. 

The set of direction cosines will be defined as follows; 

t
lr

R.
10 	

k
1Z 

Qtr 	
k
20 	2Z 

k
3r 	

k
30 	

k
3Z 

where, for example, klr is the cosine of the angle between the 1st 



principal stress direction and the r axis. 

The nine direction cosines are not all independent, there are 

relationships between them such that only three (independent ones) are 

necessary to determine the orientation of one set of axes with respect 

to the other set. 	Hence three degrees of freedom are available. 

Stresses in the r, 0, Z directions are given by: 

Pr = EZ? P. 

i = 1, 2, 3, 

Pr0 = 	 i EZ k.1  P. r 0 

PO' 'Z' P
OZ' PZr being given similarly. 

When these,expressions:are substituted.intotte .equations reiating 

shear and direct stresses (eqns 7.36, 7.37 and 7.38) the 3 equations 

contain 3 principal stresses and 3 independent direction cosines, 6 

variables in effect. 

Looking firstly at case 3 of 7.1 to see if this will satisfy the 

conditions prescribed, the critical stresses are such that p2  = p3  = Kpl, 

1 - sin p  
where 	K =1 + sin p 	

Because this is so all three principal 

stresses can be written down in terms of K and pl. 	All stress compo- 

nents in the r, 0, z directions will be proportional to pl,and when 

they are substituted into eqns 7.36, 7.37 and 7.38, this quantity can 

be eliminated. 	Therefore since K is a material property the only vari- 

ables left in the equations are the direction cosines. 

At first sight, as there are three variables and three equations to 

satisfy, a solution would appear to be feasible. 	However the stress 

state is special in that P2 and p3 are indistinct and their axes 

likewise. 	This being the case only two direction cosines are required 

to relate the axes of this system to the r, 0, Z directions. 	Therefore 

there are in effect only two variables to satisfy three equations and so 
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in general no solution can be formed. 

An exactly similar situation occurs in case 4 where (p2 = pl) and 

p3 = Kpl, and so this need not be considered. further. 

Turning now to case 2, this has p3  = Kip'  and pl  > p2  > P3' 

but P2 may be expressed such that: 

P2 = KIP' 
	where 1 > KI 

> K 

By writing P2 in this way the stress components in the r, 0, Z direc- 

tions can be written down in terms of pl, K1  and K. 	Because K
I 

is a variable, when the stress components are substituted into eqns 

7.36, 7.37 and 7.38 after pl is cancelled there are four variables 

in the three equations (K and three direction cosines). 	In this 

case therefore there are apparently too many variables. 

Recourse is now made to the conclusion arrived at in 7.4, that if 

a critical stress state of this type (case 2) exists then if any plastic 

deformation occurs, the second principal stress direction must lie in 

the plane of the channel cross-section. Although this conclusion was 

reached by considering a simplified channel geometry it is reasonable 

to assume that it can be applied in this case where the proper geometry 

is being used. 	By imposing this constraint a relationship is placed 

upon the direction cosines such that only two remain independent. This 

leaves three variables to satisfy three equations and so a solution is 

feasible. 

Writing eqns 7.36, 7.37 and 7.38 in terms of principal stresses: 

P1 (Q r 1 + KI2rR.20 + K2,3r2,
30
) 

= F  P1(21r2 	KI2.2r2 4- K13r2) 

	
7.43 

1.71 

• 



K
I
2,
2r

2,
2Z 

+ KR.
3r

.4.
32
) 

Pl(k1r121.Z 

= G Pl(L1r2 	KIk2r2 Ki3r2)  

Pl(i102'1Z 
+ K

I
2-
20

2,
2Z 

+ 102,302,3Z) 

= H 131
(k

102 	
K I 

k 
 20 2 
	Kt 302) 
.  

- I P1*(Z1Z2 	KIk2Z2 	KL3Z2)  

If F, G, H, I are estimated for a given point in the channel 

cross-section then pl cancels and KI 
can be eliminated by suitable 

manipulation leaving two equations in terms of direction cosines as 

variables. 

Referring to fig 7.10, at each point over the channel cross-

section the p2  direction must lie on a surface passing through the 

r direction and oriented at cp to the Z direction. 	The relationship 

between direction cosines which describes this is: 

2
2Z 

= 	- k
2r
2 	cos 4 	7.46 

Given this relationship, the complete set of direction cosines can 

be determined given any two which are independent. 

By using a digital computer it is possible to cover the whole 

range of permissible direction cosine values since this only involves 

varying two of them over their complete ranges and calculating the 

others from them. Values can then be picked out which simultaneously 

satisfy the two equations derived by the elimination of KI 
from eqns 

7.43, 7.44 and 7.45. 
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To elaborate upon this procedure, by looking at the above equations 

it can be seen that for each of them, terms containing ICI  may be 

collected on one side of the equation and remaining terms put on the 

other side. 	The equations then become of the form: 

K
I 
 B
1 

= C
l 
	 7.47 

= C
2 
	 7.48 

K
I 
B
3 

= C3 
	 7.49 

It is desirable to eliminate KI 
since nothing is known about its 

value except that it must lie between certain limits. 	It can be eli- 

minated by dividing the above equations by each other; hence: 

fl 	- B
1  C2 

 = 0 
	

7.50 

f
2 

= B
3 
C
2 
- B

2 
C
3 

= 0 
	

7.51 

B1, B2,  B3, C
1, 
 C2, C

3 
are functions of K, F, G, H, I, which are either 

known or estimated, and nine direction cosines which as already explained 

can all be derived given two which are independent. 	To find which set 

or sets of direction cosines satisfy the above equations two independent 

ones are chosen, for instance
lr 

and k
2r 

and the equations looked 

upon as being in the form: 

fl(9"lr'2"2r) 
	

7.52 

f2(21.r ,2'2r )  = 
	

7.53 

Each of the direction cosines can vary over the range -1 + +1 and 

so the permissible range of direction cosine sets may be represented in 

two dimensions on a 2.
lr 

-
2r 

plane. 
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In general on the 2,
lr 

-
2r 

plane there will be lines along which 

one or other of the functions f1 
or f

2 
is zero. 	Along each line 

one of the equations is satisfied and where such a line crosses another 

on which the other is satisfied a simultaneous solution is obtained to 

both equations and therefore to this particular problem. 	Fig 7.11 gives 

an example of this situation. 	There are in fact four solutions, each 

of which has to be examined to see if the value of KI 
which would 

result lies within its permitted range. 	In fact only two solutions 

(labelled 1 and 2) satisfy this condition. 

The procedure has of course to be applied at each point over the 

cross-section of the channel. 	The forms of the functions f1 
and f

2 

change over this region and so therefore do the lines on fig 7.11 which 

correspond to their values being zero. 	If solutions of the form 1 and 

2 are pursued over the channel cross-section it is found that each 

exists, in general, over only part of the region. 	For instance the 

region in which a type 1 solution exists is shown in fig 7.12 and the 

region in which a type 2 solution exists in fig 7.13. 

It is difficult to comment upon possible reasons for there being 

two types of solution but from the arguments presented in 7.2 it would 

appear that the type illustrated in fig 7.12 is more applicable. 	In 

7.2 the argument was based on a trial assumption that the material in 

a screw channel exists in an elastic state. 	From this it was postulated 

that the elastic assumption must break down on the low pressure side of 

the channel and that a plastic state must exist there. 

On the other hand the arguments which have been presented in this 

section of the chapter start in effect by assuming totally plastic 

behaviour. 	By doing this it is found that in the case illustrated by 

fig 7.12 the plastic assumption breaks down on the high yressure side 

of the channel. 
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The fact that two arguments based on different approaches lead to 

essentially the same conclusion means that some confidence may be placed 

in the outcome of the plastic analysis approach which gives rise to the 

type of solution illustrated in fig 7.12. 

At each point in the region of the channel cross-section where the 

plastic solution exists it is possible to find the relative magnitudes 

of all stress components in the r,8, Z directions. 	It is therefore 

possible, for instance, to write down at each point the ratio between 

pe  and p
r 

or the ratio between pe  and pz. 	On this basis it should 

also be possible to derive some relationship between pe  and pz  the 

mean values of p8  and p taken over the depth of the channel. 	It 

is one of the purposes of this chapter to find relationships between 

mean stresses and this will be dealt with in 7.7. 

One of the useful features of the way in which the form of stress 

state has been evolved is that it involves only stress ratios at each 

point. 	Absolute magnitudes do not enter into the problem, therefore 

the plastic part of the solution can be applied no matter what level of 

stress exists over the channel cross-section. 	Essentially the solution 

depends upon screw geometry, the coefficients of friction between 

material, screw and barrel, the internal coefficient of friction of the 

material and the conveying angle a. 

In its present form the theory of chapter 5 considers a variation 

of a along the channel but the coefficients of friction are assumed to 

remain constant. 	It can be seen (8.3) that the.inclusion of compressi- 

bility effects (and hence changes in a) does change the output/pressure 

build-up characteristics of a screw as predicted from the theory of 

chapter 5. 	Therefore it is reasonable that a variation in a along 

the channel should be considered in that part of the work. However it 

can be seen from fig 7.14 that the extent of the plastic zone and the 

values of 2,
lr 

and 2,
2r 

which determine the form of the stresses within 
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this zone are not greatly affected by a change in a. 	Therefore for a 

particular solution it is possible to apply the results obtained from 

the consideration of this section of the chapter all along the screw 

channel without introducing serious errors. 

1.6 The Elastic Region  

The area on fig 7.12 where no plastic solution can be found may be 

safely assumed to behave in an elastic manner. 	Somewhat different con- 

siderations are necessary in the solution for stresses in an elastic 

zone compared with those necessary for finding stresses in a plastic 

zone. 	The equilibrium conditions still apply but in an elastic situa- 

tion the other relationships which have to be fulfilled are those for 

compatibility of strains. 	The equations for strain compatibility may 

be written down in terms of stresses if a linear stress-strain law is 

assumed, thus transformed, in cartesian coordinates they become: 

D2,X - 2 a2Pxy 
	_ 	3v 	

(D
2 	D2-13--)  r 

ay2 	DxDy ay2 Dx2 	
(1 + v) 	ax2 

7.54 

ap 	a2p 	D2p 
- 2 	Yz 	-z 

az2 	
3y9z

D 
 ) 
y2  

3v  
(1 + v) 

D2=7 	D2,7" 

ay2 	az2  
7.55 

	

2p 	a2p  
( z 2  zx 

 D2p
x)=  3v  e925 DT;

--- 

	

azax 	(1 + 
v)  ax2 	Z2 	az2 	ax2  

7.56 

where v is the Poisson's ratio and 

1 
—3 (Px + Py + Pz) 

These relationships may be looked upon as being equivalent in an 

elastic problem to the conditions necessary for plastic flow in a 
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plasticity problem. 	The relationships between stresses arrived at by 

considering conditions for plastic behaviour are very convenient for the 

approach which has been taken to solving the overall problem. However 

the form of equations 7.54, 7.55 and 7.56 above is such that relation-

ships between stresses in the elastic case cannot be found in such a 

convenient form. 	In fact a proper solution for stresses in the elastic 

zone would be quite a difficult problem and one which has not been 

successfully carried out. 	A simplified approach has therefore been 

taken. 

Since there is no reason to expect any sharp discontinuity of 

stress state across the elastic-plastic boundary it has been assumed that 

the stress states just inside the elastic region are similar to those on 

the plastic side of the boundary. 	By doing this and neglecting the 

change in stress ratios over the depth of the elastic region it has 

been possible to extend the stress ratios found for the plastic region 

to cover the elastic zone. 	For example, referring once again to fig 

1.12, at point A just inside the plastic zone ratios can be found 

between Pe' Pr' PZ' Pre' PrZ and p
ze. 	It will be assumed that the 

same ratios hold over the region of the elastic zone traced by the 

vertical broken line. 	By taking similar points to A all along the 

elastic-plastic boundary the whole elastic zone can be covered. 

By doing this, although some error is introduced it is possible in 

the next section to treat the whole of the channel cross-section in the 

same way. This avoids what would be an extremely difficult problem in 

carrying out a formal analysis of the elastic zone and treating the 

overall problem as a two phase one. 

7.7 Final Stage in Finding Relationships Between Stresses  

The previous sections of this chapter have led up to finding the 

ratios between stress components at each point over the channel cross- 
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section. 	The final form of the equations derived in 5.3 requires rela- 

tionships between p ,p , 5 and pz  at each point across the channel. 
r1 r2 

It is necessary therefore at each such point and for each such relation-

ship to use the basic ratios between stress components to derive the 

relationships required between the above stresses. 

So far as the plastic region of the channel cross-section is con-

cerned the stress ratios which may be derived are those which give rise 

to a critical state within the material. 	With the assumption made 

about the elastic zone the stress ratios there may be crudely thought 

of as those necessary to satisfy the compatibility conditions. 

The remaining conditions which must be fulfilled are therefore 

those of equilibrium. 	In chapter 5 the final equations for pressure or 

stress build-up are arrived at by considering equilibrium in the 0 - Z 

directions later transformed to x-z directions. 	This leaves the 

condition for equilibrium in the radial direction to be fulfilled. When 

this is considered in conjunction with the basic relationships between 

stress components it will be shown that the stress relationships required 

for chapter 5 may be evaluated. 

Consider first of all the equation of equilibrium in the r direction: 

ap 	
1 aPrO 	aPrZ 	Pr - Pe 	Fr = 0 	7.57 

ar
r 	

ao 	r 

From previous sections of the chapter relationships between 130  and 

p
r 

can be found at all points in the channel cross-section, so that 

a relationship of the following form may be written down: 

= Pr • kte 

therefore 

pe  
Pr k

re 

7.58 

7.59 



and 
3Pr1 ape  1 

ak
r0 

Dr 	kra  Dr 	k2  3r P
0 

 
r0 

The body force F has two components, the gravity force -w cos 8 

	

Fr 	 ak 
2 ww r 	3rre 

and a centrifugal force 	. The value of 	may be found by 

numerical differentiation using values of kre 
over the depth of the 

channel. 

Therefore substituting into the equilibrium equation: 

Dp 	A 	(k - 1) 	k 	Dp 	3p 
, 	re 	re re  a 	 rz  

ar 	= 	
1 	re 

PO k
r0 
 ar 	' 	r 	DO 	

k
re az 

+ kr0 
w (w r  

	

2 	
cos e) 
	 7.61 

When this equation is to be solved the quantities which have yet to 

3PrO 	
DZ

Di)rZ 
be found before integration can take place are DO 	

and - . If 

at a particular position along and across the channel these quantities 

can be found over its depth then numerical integration of the above equa-

tion can be carried out to find p0 
 as a function of r. 

In 7.4 relationships were written down for pre 
and p

rZ 
in terms 

of pr: 

= F pr 	(7.36) 

PrZ 
= G pr 	(7.37) 

where F varies linearly between -us  cos 43,at the screw root and 

-1113  cos a at the barrel surface and G varies similarly between 

-U
s 
sin (1)3 and pb 

sin a at the respective boundaries. 	If the varia- 

tion of a with 0 and Z is considered small compared with the stress 

variations then the derivative terms may be written; 

3Pre F 
3Pr 

ae 
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7.60 

7.62 
30 
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3PrZ 	aPr 
az 	— 

G
3Z 

7.63 

Therefore if the partial derivatives of pr  w.r.t. 0 and Z were 

known, sufficient information would be available to carry out the inte-

gration of eqn(7.61). However a problem arises in that it is sought to 

find the relationships betweenPrl' Pr2' Px
- and pz- 

at any parti-

cular point along and across the channel without having to consider how 

the magnitudes of the stresses vary in the 8 and Z directions. 
aprZ 

For the purposes of finding approximate values of 
2fr 
	and 

De 	az 

centrifugal and gravity forces will be neglected (although they will be 

included in the final solution of eqn 7.61 ). It will be seen that 

when this equation is solved at any position along or across the screw 

channel, neglecting body forces, it is possible to find values of pr  

over the depth of the channel in terms of pc 	Let the relationships 

be as follows. 

Pr 
= k P 

re 0 

therefore: 

DPrO 
3k_
" 
77A  

DO 	
PO 

	 - 	k —) 
DO 	0 + ae 	r0 

aPrZ 	
(a- 

	

re — 	
ap

e 
and 

DZ 	3Z PO DZ 
k
re 

From eqns (7.58) and (7.64): 

0  
k k 
re re 8 

- 1 	 7.67 

therefore multiplying the right hand sides of eqns 7.65 and 7.66 by 

the term on the left hand side of eqn 7.67 : 

7.64 

7.65 

7.66 



ak
.LTT 1 

DT
0 

ae 	k
r0 

 
3PrO 	1 +  

a e PO ( kr.(4  30 
Pe  

ak
rIT 1 

ap 

DZ 	k -07 
3Z 

PrZ = F 	1 
3Z 

r0 Pe kr  PO  

In this form the expressions are particularly convenient since F 

and G can be found approximately over the depth of the channel and p0  

is the stress involved in the equilibrium equation (eqn 7.61 ). 	There- 

fore substituting  into this equation: 

A
re 	

(Ikre  -  1;) F 	1 	alcr—e-  4.  1 	.130 = 	1 
PO k

re 
Dr 	k 	30 	— a0 ;) 
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7.68 

7.69 

Dpe  

ar 

- G ( 1 akrb- + 	
aFe  ;) 

az 
Pe  

( 
+ k

re  w 
	

d2r 	
cos 8) 

g  k 	az 

7.70 

The terms a pe pe  and 
Dp0 
	p0  represent relative pressure 

build-up in the 0 and Z directions. The quantities cannot be found 

from the considerations of this chapter but since they are in terms of 

mean stresses over the depth of the channel they can be found by feedback 

(if necessary involving  iteration) from the overall solution of the pro-

blem involving  the procedures described in chapter 5 and chapter 8. 

Furthermore because of the frictional conveying  mechanism which exists 

in solids flow, pressure or stress gradients are proportional to existent 

pressure at points along  the screw channel, (if body forces and changes in 

a are neglected). Therefore the variation of — p and 
ape/  

ap 
De 	0 

across the channel is probably much larger. 

aZ,/ PO 
6 

along  the channel is likely to be small but the variation 
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Dk--; 	3k — 

D8 Turning now to the terms afire/ kre 
— 	and 

nre  / kre' it will 

become apparent that when eqn 7.70 is solved values of pr  are available 

over the depth of the channel in terms of pe 
and so values of krETI 

can be fOund. However the solution is dependent upon the terms being 

discussed, which are not known initially. Assuming that the solution 

is only weakly dependent upon the terms in question it is possible to use 

crude starting values for these and form better estimates from the values 

of kr-e- which are subsequently produced. 	This involves finding solu- 

tions at a number of different positions so that numerical differentia-

tion can be used to evaluate the derivatives in the above terms using 

normal methods. Obviously an iterative procedure can then be used to 
3k — 	3k — 

30
re 
 I 
	

3Z
re 
 / finalise values of 	k

re 	
and 	k

re
--. 

— 	— 

Therefore to summarise; if .w 
40  / 

- 	pe  and — 1 p0 	can be az  3k — 
re/ k  

found as the solution to the complete problem proceeds, if 38 	re 
3  
kre  / 

and aZ 
	

k
i:ET 

can be found approximately by an iterative solution 

of eqn 7.70 in a simplified form (neglecting body forces), if w is con-

sidered as being constant over the depth of the channel, if angular 

velocity (w) is known and the position around the screw is given (hence 

0) then if values of kre 
are known, eqn 7.70 may be looked upon as 

being in the following form: 

+ Fl(r) p0  = G1(r) w 	 7.71 

(where F1, G1 and similar terms which follow are essentially functions 

of r and known terms). 

In reality a numerical technique has to be used for solving the 

above equation but if the normal analytical procedure for solving an equa-

tion of this type is carried through in principle then it is found that 

the solution will be of the form: 

3p0  

Dr 



7.72 pe = F2p + G2w ri 

(using the boundary condition that p0 
 = k

re 
p
r 

at r = ri). 
1 	1 

'Since p
r 

is related to p
0 
 over the channel cross-section, p  r2 

(at the barrel surface) is available in the form: 

P_
2 
 = F3p

r1 
G3w 

4-  
7.73 

It is also possible to find relationships between pz, pez  and pe  

over the depth of the channel (7.5 and 7.6) so that pez  and pz  may 

be written down in the same terms as pe  and pr.. 	By integrating 
r2  

eqn (7.72) over the channel depth interval we obtain an expression of 
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the form 

Similarly 

Pe  

p 

= F4p
r1 

 + G4w 

and 	p
OZ 	

may be written: 

7.74 

Pz = F5p
r1 

 + G5w 7.75 

13ez ' For, 	G6w  7.76 

For the solution of the equations derived in chapter 5 it is necessary 

to relate the mean pressure or direct stress acting across the channel 

and the pressures on the screw root and barrel surface to the mean 

pressure acting along the channel. 	That is p
x 
, p 	and p 	must 

r1 	r2 

be related to pz  (all mean stresses being taken over the depth of the 

channel). 

By considering the equilibrium of stresses at a point (which will be 

taken at the effective radius of action of these stresses) it is possible 

to derive mean stresses in the x - z directions in terms of those in the 

0 - Z directions: 
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Px  = pe  sin202 + 
	cos242 - 2Tez  cos 02 sin 02 	7.77 

p
z 

= p
0 
 cos202 + pZ  sin202 + ilaTOZ  cos 02 sin 02 

	7.78 

From eqns .7.74 , 7.75 , - 7.76 , 7.77 and 7.78 it can be seen 

that px and 	mayy be expressed in the form; 

= F7p
ri 

+ G7w 
	 7.79 

PL  = Fori  + G8w 
	 7.80 

and eqn 7.73 expresses p 	in the same form. Therefore by suitable 
r2 

rearrangement 
— 

p 	, 	p 	and 
r2 	x 

— 
p 	can be expressed in terms of 	pz 	and 
r1 

Pr2 = 
-re 
"Pz Ggw 7.81 

Px = F10& G10w 7.82 

Pr1  = Flipz G11w 7.83 

It emerges therefore that p , px and p 	are linearly dependent 
r2 	r1 

upon 15 and w. 	In fact G9,10,11 will contain two terms, one to 

account for gravity forces, the other to account for centrifugal forces. 

Following the system introduced in 5.3.5 for writing quantities in 

dimensionless form, the relationships may be expressed: 

Dw2  p * = k1 7p7: 	{f11(—) + fi2 (cos 0) w* 
r2 

Dw2  
Px 	

f22 (cos 0) 	w* f21(---) 	w  

7.84 

7.85 



2  
p* 	= k3 .5* + 	

,DWN 
f 31 	J- 32 (cos 0) 	w* 

r1 

When the k's and f's have been evaluated for each position across the 

channel then as fz  . and w change along the channel the relevant values 

of p 	p and p 	can be calculated without recourse to the full 
r , 2 	x 	r1 

procedure described in this section. 

In fact the constants cannot be found analytically but can be readily 

evaluated numerically for a particular situation. This is done by cal- 

- 2  
culating p 	px and p 	in terms of p 	— , cos 0 and w 

r , 2 	r1 	z 	
Dw 

, 	
g . 

then changing the values of the independent variables, finding the changes 

in the dependent variables and deducing the constants. 

The other quantity which is required in chapter 5 is the effective 

radius of the mean stresses over the depth of the channel Cr). 	From 

5.3.5 it can be seen that this is arrived at by considering the radii 

r
A
, r

B 
and r

C 
 which are respectively the effective radii of action of 

p0' p 0 	
OZ and p

Z  . 
	During the calculations to find kl, k2, k3 etc. 

distributions of p0, 
 pOZ and p

Z 
 are found over the depth of the 

channel. From these, values of rA, rB- 
and r - can be found and 

their mean taken to give r. 

7.8 The Possibility of Taking into Account Slip Within the Material  

In the previous sections of this chapter the existence of slip or 

plastic flow in the material has been postulated. 	It was assumed in the 

analysis of chapter 5 that the amount of slip which takes place is small, 

partly because experimental evidence points to this and partly because 

of the difficulty involved in doing anything else. 	However, as pointed 

out in the introduction to the chapter it would be better if the plug flow 

assumption did not have to be made. 
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7.86 
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No attempt has been made to apply the considerations which follow 

mainly because of the very considerable difficulties involved. 	It is 

also probable that the increase in computing time required if such improve-

ments were incorporated would not be justified by the increase obtained 

in the accuracy of the results. 

The basic difficulty in analysing velocities within an ideal loose 

solid which is deforming plastically arises because in such a material 

the shear or deformation rate is not stress dependent. 	It is only the 

onset of shear which depends upon the stress state. 	Because of this 

there is no direct coupling between a constitutive equation and equili-

brium equations and so the approach used for analysing fluid flow cannot 

be applied to a loose solid. 

Based on certain assumptions, including that of plug flow, informa-

tion has been obtained about the stresses and possible modes of deforma-

tion within material in the plastic region of the channel cross-section. 

Although the information given on deformation is insufficient to deduce 

slip velocities, it is sufficient to determine the directions of velocity 

gradients (through shear stress directions). 	In effect therefore it 

should be possible to find out which parts of the solid move more quickly 

than others. 

The nature of the solids conveying process is such that the direction 

of frictional force between the solid material and the barrel depends 

upon the velocity with which the material moves along the screw. 

In the normal plug flow situation, the material slides against fric-

tion forces from the screw root and sides of the channel, and against 

pressure gradient forces. 	The velocity of the plug is such that the 

friction force from the barrel is in equilibrium with these other forces. 

If the material is deforming plastically then each element in the 

layer of material at the top of the channel (next to the barrel surface) 

may be thought of as moving relative to the material at each side and 



187 

underneath it. 	Since in an ideal loose material stresses are independent 

of deformation rate, within limits, the stresses acting on the bottom and 

sides of each such element will be independent of the velocity with which 

it moves. 	In which case the velocity of each element will be that which 

leads to an equilibrium between the frictional force from the barrel, 

and forces from stresses in the material surrounding the element. 	In 

this way the same principles can be applied to finding the velocity of 

an element of material next to the barrel surface as are applied to find-

ing the velocity with which a plug of material moves along the screw 

channel. 	Therefore a coupling is established between velocities (hence 

deformation rates) and equilibrium considerations. 

Although such a system does hold promise for solving the feeding 

.problem 	into account., it only applies.directlyto material . .  . - 

in contact with the barrel surface. 	There remains the problem of taking 

into account changes in material velocity over the depth of the channel 

and with no definite velocity boundary conditions on the sides and bottom 

of the channel the difficulties involved are very considerable. 

All of the remarks made so far in this chapter apply to the normal 

situation which exists in solids flow where the effective internal coeff-

icient of friction of the feedstock is greater than the external one 

against the metal surfaces. 	This is normally so because in simple terms, 

the effective slip surface between two layers of particles is much rougher 

than the surfaces presented by the screw and barrel. 	If this is the case 

then the material will tend to slip on the metal surfaces rather than 

shear within itself. 	The result is something approaching plug flow. 

Although the normal situation may be that a loose solid slides more 

readily against a metal surface then it shears within itself, under certain 

conditions this may not be the case. 	If the metal parts of the feed 

section are rough and the feedstock is a material such as polystyrene 

beads which tends to shear very readily (and probably deforms by a rolling 



mechanism rather than a slipping one [43]), the situation is somewhat 

different. 	If shearing occurs more readily between polymer and polymer 

than between polymer and metal it is reasonable to expect that a layer 

of material will effectively adhere to the metal surfaces. 	It follows 

that in such a case the velocity boundary conditions are defined and 

this would facilitate the solution of the problem. 	Indeed as a simpli- 

fication something equivalent to ordinary drag flow could be assumed. 

Although a simplification on these lines could be made, any more 

rigorous solution even assuming the velocity boundary conditions postu-

lated, would involve most of the problems associated with analysing the 

region where plastic deformation occurs in the more normal situation. 

The conclusion which has been reached after lengthy consideration 

of the problem is that to take proper account of slip within the solid 

material in an extruder screw would be far too difficult to be practi-
. 

cable under either of the circumstances just discussed. 	The difficulties 

associated with the basic deformation criterion and the independence of 

stress state and deformation rate together with velocity boundary con-

ditions which are only well defined in a few cases all contribute to 

making the overall problem an extremely difficult one and so the plug 

flow assumption has had to remain. 

188 



direct stress 

Fig 7.1 
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Fig  

Fig 7.6 

190 



Fig 7.8 CO-ORDINATE DIRECTIONS IN SIMPLIFIED 'CHANNEL 
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Fig 7.9 STRESS SITUATION AT SIDES OF CHANNEL 

low pressure 
side 

Pe 
high pressure 
side 



Fig 7.10 PLANE ON WHICH 2nd PRINCIPAL STRESS DIRECTION LIES 
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Fig 7.11 SOLUTIONS FOR Eqns 7.52 and 7.53 

1.0 

,e2r 

411111111111hK 
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Fig 7.12 PLASTIC ZONE FOUND BY FOLLOWING A SOLUTION OF TYPE 1 

low pressure side 
	high pressure side 

Fig 7.13 PLASTIC ZONE FOUND BY FOLLOWING A SOLUTION OF TYPE 2 

193 

1.0 



Fig 7.14 CHANGES IN CRITICAL STATE SOLUTION BROUGHT ABOUT BY CHANGES IN 
VOLUMETRIC FLOW RATE 

Q/N1P = 0.08  
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P PPEEE 
P PPEEE 
P PPEEE 
P PPEEE 
P PPPEE 
P PPPPP 

.,over the channel cross-section; 

P is a point where a plastic situation is found 

E ll/g 	" 
	an elastic 
	ft 	11 

-.74 -.58 -.25 
-.73 -.59 -.32 	values of 	/lr at points where a -.73 -.60 -.36 
-.72 -.61 -.40 	plastic situation is found 
-.72 -.61 -.43 -.10 
-.71 -.62 -.45 -.16 -.01 .00 

-.48 -.41 -.37 
-.49 -.43 -.38- 	values of 	22r at points where a -.50 -.44 -.39 
-.51 -.46 -.41 	plastic situation is found 

-.53 -.48 -.42 -.39 
-.54 -.49 -.44 -.40 -.40 -.40 

0/ND13  ..0.12 

P PEEEE 
P PPEEE 
P PPEEE 
P PPEEE 
P PPPEE 
P PPPPP 

( as above ) 

-.75 -.59 
-.74 -.60 -.31 

	

-.73 	-.61 	-.36 	 ( as above ) 
-.73 -.61 -.40 
-.72 -.62 -.43 -.10 
-.71 -.62 -.45 -.16 -.01 .00 

-.47 -.40 
-.48 -.42 -.37 

	

-.50 	-.43 	-.38 	 ( as above ) 
-.51 -.45 -.40 
-.53 -.47 -.42 -.39 
-.54 -.49 -.44 -.40 -.40 -.40 
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8. 	Calculations Based on the Theoretical Work  

It will have become apparent from chapters 5 and 7 that the theory 

which has been developed concerning solids flow in an extruder involves 

considerable complexity. 	The purpose of this chapter is firstly to 

explain how the theory can be applied, secondly to demonstrate how a par-

tial check can be made on the theory and thirdly to present a series of 

results which have been computed. 

The first section, 8.1, gives an account of the procedure which is 

used to derive the output/pressure build-up characteristics for a par- 

ticular screw, feed material and operating conditions. 	Some of the 

steps required in setting up a computer program to carry out the necessary 

calculations are also discussed. 

Section 8.2 uses the analytical solution derived in appendix 5.1 as 

a means of checking the basic theory and programming of the numerical 

solution to the solids flow problem. 	The scope of the analytical solu- 

tion is very limited but it is of value. 

Finally section 8.3 presents a series of computed results. 	These 

are partly to give a comparison between theory and experiment and partly 

to predict how parameters which could not be varied in the experimental 

work affect the solids conveying process. 

8.1 Sample Calculation  

In 7.5 a particular situation was chosen and an example given for 

finding principal stress directions, hence the ratios between stress com-

ponents over the critical state region of the channel cross-section. By 

using this information together with the assumptions of 7.6 regarding the 
D 	D 

elastic zone, some initial values of D

p
0 / 0 

	
and 	nu

pn  
/ 	, and 

O  

the theory of 7.7, a set of relationships between direct stresses as 

• 
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required for the theory of chapter 5 (5.3.5) can be found for any parti-

cular mass flow rate along the screw. 

The same example as taken in 7.5 will be continued (medium depth 

screw, PVC powder). 	As a first approximation, the derivative terms just 

mentioned can be put equal to zero all across the screw channel, although 

after the overall solution has been carried through, more realistic values 

can be calculated from the stress distribution set up, and the solution 

repeated. 	Values of k1, k2, k3, T11,  f12,  f21, f22,  f31  and f32  obtained 

with the derivative terms equated to zero are shown in table 8.1, the 

results having been obtained at intervals across the channel and assumed 

to apply all along the screw. 	It can be seen that f21  and f22  are 

much smaller than the other similar quantities and so as stated in 5.3.5, 

they wi.11 be neglected. 

Having obtained these preliminary relationships between stresses it 

is now possible to start a solution based on the chapter 5 theory. 

As discussed in 5.4.2, the slope of the characteristics along which 

the numerical solution proceeds is determined, at a particular point, by 

the value of k2  at that point. Therefore as k2 varies across the 

channel so too does the slope of the characteristics. 	Although this im- 

plies that the characteristics should be continuous curves (since k2  is 

taken as a continuous function of x) the simplification is made that the 

characteristics are straight lines between the points of intersection as 

shown in fig 8.1. 	Because it is convenient to project the solution along 

the channel in regular increments of z the characteristics are arranged 

to intersect at such intervals. 	Therefore since their slope varies 

across the channel the x intervals cannot be regular (again see fig 

8.1). 	In fact it is arranged that for the row of intersection points 

which include intersections with the boundaries, (row 11) the slopes of 

the simplified straight line characteristics are determined by the values 

• 
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of k2  at those intersection points. However, in setting up the 

characteristics, since values of k2  are only generated at regular inter- 

vals across the channel, (as in table 8.1) some problems arise. 	The 

positions of the intersection points are determined by the z increment 

and the slopes of the characteristics but the latter are not known unless 

the positions of the intersection points have been fixed. 	In practice 

therefore the computation requires an interpolation facility to give k2 

as a continuous function of x and a trial and error method of fixing 

the positions of the intersection points. Having fixed the basis of 

the characteristics layout across the channel, since k2  is not con-

sidered to vary with z , the whole characteristics network along the screw 

channel is determined. 

When a preliminary set of stress relationships has been found and the 

array of characteristics determined then the main part of the solution can 

proceed for a given mass flow rate of material. 	In 5.4.3 it was argued 

that stress initiation can be considered to occur from a front as indi-

cated in fig 5.10 which follows the path of a characteristic of the first 

type. 	It will be assumed that a zero stress state exists along this 

front although if some other initial stress state were specified this could 

be used. 

The main part of the solution advances in regular increments of 

z going from one row of intersection points to the next (on fig 8.1 from 

row 11 to row 12 and so on) and the routines used in the computation are 

set up to proceed in this way. This means that the roughly triangular 

shaped section at the beginning of the characteristics network (see fig 

8.2) has to be treated separately. 	A special routine is therefore used 

to calculate stresses in this first region. 

In 5.4.3 it was proposed that because gravity forces have to be 

favourably disposed to bring about pressure initiation in the screw channel, 

• 
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initiation fronts can only exist over a limited angular range about the 

screw axis. 	By using the routine for finding stresses in the first 

region, this aspect of the problem can be investigated. 	The procedure 

used is to choose a number of angular positions about the screw axis and 

then apply the special routine, with the initiation front at each of these 

positions to see what type of stresses are produced. 

If the direct stresses are positive (compressive) then the position 

is one from which initiation can occur, if they are negative then it is 

not. 	The mathematics of the problem allow negative direct stresses to 

be generated whereas in reality such stresses if of significant magnitude 

cannot exist in a loose solid. 	The procedure allows the range of angu- 

lar positions for stress initiation fronts to be determined. 

. As also discussed in.5.4.3, when the screw rotates, the position .of 

the initiation front must move around and also along the bairel of the 
. 	• . 	. 

machine. 	Because the position of the initiation front varies the stress 

state set up along the screw channel must also change and this will happen 

cyclically over each revolution of the screw. 

The solution evolved in chapter 5 is for a quasi steady state and 

does not take into account time dependent initial conditions. 	Therefore 

the only course open is to carry out a number of solutions taking initia-

tion fronts at a series of points around the cycle and observing the varia- 

tion in stress states which are predicted. 	Of particular interest are 

the solutions which produce the highest and lowest levels of stress for 

a given flow rate, because as explained in 5.4.3, although the predicted 

extremes are unlikely to be reached in practice the actual stress state 

will almost certainly oscillate somewhere between them. 

To proceed with the results of the sample calculation; having obtained 

preliminary data on the basic relationships between stresses (table 8.1) 

the angular range of possible stress initiation fronts can be found using 

• 
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the procedure set up for analysing the first part of the screw channel. 

It is found that with the set of preliminary stress relationships found 

for this particular example, the initiation front can be such that point 

A on fig 8.2 lies in the range 0.70ff < 8 < 1.04ff (8 being measured from 

the vertical position). 	By following the reasoning in 5.4.3 as applied 

to fig 5.12 and referring now to fig 8.3, it is possible to see that as 

the screw rotates, the point A (as in fig 8.2) if considered to start 

at position (i), firstly moves around the barrel to point (ii) then along 

to point (iii) after which the beginning of the channel is once more in 

a favourable position and stress initiation takes place with point A at 

position (1). 	In order to observe the changes which occur during the 

above cycle, five positions for the initiation front are chosen; (i), 

(ii), (iii) and points intermediate between them. 
. 	. 	• 	. 

Initially point (ii) is chosen and a solution is formed based on 

an initiation front at that position, (it will later become apparent 

that this gives rise to the highest stress levels along the channel). 

Table 8.2 shows values of the reference stress (p: ) which are 
generated at intersection points of the characteristics as the solution 

proceeds, the network used being similar to that illustrated by a combina- 

tion of figs 8.1 and 8.2. 	Because of the discontinuity in boundary con- 

ditions at the beginning of the stress build-up region and the almost 

overriding importance of gravity forces, the initial pressure development 

has some interesting features. 	For instance there is a propagation of the 

discontinuity at point A (fig 8.2) along the characteristic emanating 

from that point. 	The discontinuity is also reflected from the point 

where this characteristic touches the opposite flight edge. 	There is 

also a pattern in the stresses which results from the changing direction 

of gravity forces around the screw. 
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Once the initial transients have settled down and the gravity forces 

become of minor importance, the cross channel stress distributions begin 

to show some similarity from one row to the next. 	Because of this, 

values of stresses have not been given for intersection points at every 

position, along the section of screw being considered. 	Instead they have 

been given at intervals of 10 times the normal step length, just to give 

some indication of how the stress or pressure build-up proceeds. 

Inspection shows that the cross-channel stress distributions are not 

exactly similar even when gravity forces are negligible. 	This is simply 

because the material compresses and changes the volumetric flow rate. 

In order to obtain improved values of the quantities relating the 

direct stresses (k's and f's) it is necessary to use realistic values of 

Dp 	al) 8 / — 
30

8  p0 
	DZ 

and -- p
0. 	

It was postulated in 7.7 and shown more quan- 

titatively in appendix 5.1, that when gravity forces, centrifugal forces 

and material compressibility are not taken into account the build-up in 

stress level along the screw channel is proportional to the existent 

stress level. 	Furthermore for different values of z the same form of 

stress distribution occurs across the channel but with changing magnitude. 

Under these conditions it is to be expected that for a given position 

 Dip
0  

across the channel, — 
ae 

and 
 az 	

will be proportional to 13-0  all 

along the channel. 	Therefore the derivative ratios being sought will 

be constant along the channel (but not across it). 	In the practical 

situation where compressibility, gravity and perhaps centrifugal forces 

are of importance the terms vary somewhat along the channel. However 

so long as the variation is not very great it is sufficient to use a set 

of mean values in the calculations. 	In fact the procedure used is to 
Dp 	Dp 

collect values of —IL/ T.-0  and ---/ p0  across the channel at several DO 	DZ /  

positions along it, then find average values for the two quantities at 

a 
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each point across the channel. 	Some values of the derivative terms 

Which have been collected at various points along the screw channel are 

shown in table 8.3. 

Having obtained more realistic values of. T6--- pc)  and -z— / po  
0 

across the channel the whole procedure described so far can be repeated 

to obtain even better values of these terms and therefore a more accurate 

description of stresses in the material. 	Between 5 and 6 iterations 

are normally necessary to obtain reasonable convergence of the overall 

procedure. 

When a solution is being sought for a single output rate, it is 

necessary to assume initial values for the derivative terms, and zero is 

perhaps the obvious choice. 	However when a number of solutions are being 

. carried out, to obtain a complete output/pressure build-up characteristic, 
• 

valueg obtained for the first solution can be used as starting values for 

the next, and so on. 	By doing this there is a considerable 'saving in • 

computing time. 

The solution which has been obtained is for an initiation front at 

position (ii) on fig 8.3, but as the procedure used to find the angular 

range of the initiation fronts itself depends upon the values of the k's 

and f's,which change as the iteration proceeds, the initiation position 

in general varies slightly during the iterative procedure. 	However 

having arrived at an angular range of initiation fronts using a solution 

started at point (ii) it will be assumed that if solutions were initiated 

from any other point around the cycle the same values of k's and f's 

would be obtained and hence the same finalised angular range for initia- 

tion fronts. 	In other words it is assumed that the k's and f's depend 

upon the properties of the system and not the exact position from which 

stress initiation occurs. 

3pe  Dp 

/ 	

— 

• 



In table 8.4, values of peak radial stresses at the barrel surface 

(p* ) are shown for a position 3.66 diameters along the screw at each 
r2 

stage of iteration. 	This shows the effect which iterative feedback of 

ape 
	

— — 
ao / pe 	and 	

az 	
has on the overall solution. 	Table 8.4 

also shows mean values of these derivative terms at intervals across the 

channel as the iterative process takes place. 	These results show the 

way in which convergence of the solution occurs. 

In fact it can be seen that the solution is fairly sensitive to the 

a50  - 
values of TF-3 - / p 

aTF 

DZ0 
and — / p which are used. It can also be 

seen from table 8.3 that the variation of these quantities along the 

channel is significant compared with the variation between successive iter- 

.ations (table 8.4). 	In view of this it is .evident that there is scope 
• 

for improvement by re-evaluating the relationships between stresses 

(giving new values of the kis and f's) at a number of points along the 

channel. 

The results just given apply only to position (ii) on the initiation 

cycle, however, having assumed that the values of the k's and f's 

thus formed apply for solutions based on the other points around the initia-

tion cycle, these solutions can be formed without repeating the whole 

iterative procedure. 	Values of p* at the axial position chosen for 
r2  

the previous results and for each of the five initiation points already 

described, are shown in table 8.5. 	This shows that positions (ii) and 

(iii) give rise respectively to the highest and lowest stress levels along 

the screw channel. 	Therefore for the purpose of setting limits upon the 

range of stress states which would be set up in practice, calculations 

based upon these two initiation points are sufficient. 

The calculation of torque requirements for a solids conveying screw 

has not so far been discussed in detail. 	In 2.2 it was argued that 
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torque could be obtained simply by taking the component of frictional 

force at the barrel surface which acts in the hoop direction, multiplying 

it by the barrel radius and integrating over the whole inside surface of 

the barrel which is in contact with solid polymer. 	It may be expressed 

in its simplest form as: 

contact area 

Torque = pr 
p, r2  cos a da 

2 u 

In practice the integration is performed numerically. As the solu-

tion proceeds along the screw channel, the integral across the channel of 

p 	r2 cos a is found. 	The resulting values are then stored and 
r2 u 

finally integrated along the screw channel after the main part of the 

solution has been completed. 

8.2 The Use of the Analytical Solution as a Check on the Numerical  

Solution 

As stated in 5.4 this check can only be carried out on a simplified 

form of the numerical procedure. 	The simplifying assumptions which have 

to be made in order to obtain an analytical solution are described in 

5.4.1 and appendix 5.1, but essentially, the basic equations governing 

stress build-up along the screw channel, eqns(5.40) and (5.41), are 

reduced to the following form where '01, G2 and k2 are constants: 

k2  aI  
ax 	

= Gip 
2  ax 	az 

aT _ 
az  4' 	— G2p 

Normally k2, G1 and G2 all vary across the channel and the last 

two vary along it as well. 	In order to introduce some realism into the 

analytical solution a mean value of k2 across the channel and mean values 

• 



of G1 and G2 across and along the channel have been drawn from the 

example which was followed,  in 8.1. They are as follows. 

G1 = 2.9238, 	= 2.4401, 	k2 = 1.6784 

Other relevant quantities are: 

• /lb 	Vsf 
= 0.30 

R = 0.152 

pitch = screw diameter. 

These values may then be used in the solution of appendix 5.1, to find 

terms in the expression which has been obtained for p (= p* ). 

The quantities which have to be found are A in the part of the 

- product solution describing changes in the z direction (e) and the 

coefficients of the power series ins , used to describe changes in that 

direction. Values of A and bs
, s = 0 to 11, in the power series 

co 
summation 

	

	E b
s
s s  are shown in table 8.6. Clearly the coefficients 

s=0 
diminish in magnitude quite rapidly and so relatively few terms in the 

series are required. 

Since k2  is assumed constant all across the channel the character-

istics used in a numerical solution of the problem must be true straight 

lines and intersect at regular intervals across the channel. 	For the 

purpose of comparing the two types of solution the interval across the 

channel between intersection points will be taken initially as one sixth 

of the channel width. Having fixed this interval, since the slopes of 

the characteristics are determined by k2, the z interval betwten rows 

of intersection points is also fixed. 	By substituting appropriate s and 

z values into the analytical solution, values of p (and T) can be 

obtained at intersection points over the area of screw channel where the 

204 
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numerical/analytic comparison is to take place. 

The numerical solution is started by using values of p and T 

generated from the analytical solution for the first two rows across the 

channel. 	Since stress initiation from zero is not being considered, 

the solution will be started from an arbitrary position along the screw 

across a line taken as z = 0. 	The initial stress, POO  at x = Z = 0 

will be taken as unity. Although it is possible to start the numerical 

solution from just a single row of . p and T values the integration 

procedures involved are such that it is better to use two sets of values. 

With the numerical solution program suitably modified to solve the 

simplified basic equations, values of p have been generated for 25 

rows of characteristics intersection points along the channel. 	This 

corresponds approximately to half a turn of the screw. The values obtained 

together with those calculated from the analytical solution are shown in 

table 8.7. 	By comparing the results it can be seen that even with this 

fairly coarse characteristics network the numerical solution is remarkably 

accurate, the mean percentage deviation of the numerically derived values 

of p along the last row is only 0.07. 

Increased accuracy can be obtained by using a finer characteristics 

network but computing time is increased. Up to 20 across channel incre-

ments have been tried and the resulting accuracies and relative computing 

times are shown in table 8.8. However in view of the small amount of 

error introduced by using only 6 intervals, this number has been used for 

computing the results presented in the rest of this chapter. 	It is felt 

that errors introduced by the various assumptions which it has been 

necessary to make in the theoretical work are likely to be much larger 

than those introduced by the numerical procedures which are used in the 

solution. 

It is perhaps worthy of note that the manner in which the solution 

of the problem has to be carried out is such that it is rather prone to 

• 
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a build-up in errors. 	Stresses are only specified at the beginning of 

the channel and as the solution proceeds any errors which are introduced 

will be carried forward and built upon as the solution advances stepwise 

along the channel. 	Since the boundary conditions at the sides of the 

channel only involve ratios between stresses, no correcting influence 

upon the magnitudes of the stresses can occur from these sources. 	This 

is in contrast to a closed boundary problem in which values of the vari-

ables are often specified around the area over which a solution is taking 

place. 

However in spite of these inherent difficulties in solving the solids 

flow problem, the method of characteristics and the programming to put 

this into operation appear to be perfectly satisfactory. 

8.3 Results  

For the purpose of comparing theoretical and experimental results the 

program which carries through the theoretical computations has the facility 

of taking a trace across the channel, geometrically equivalent to that 

which would pass over a barrel mounted transducer. 	The value of stress 

most readily measured experimentally is the peak value of p 	recorded 
r2 

as the channel sweeps over the pressure transducer. 	Therefore the program 

has been set up to find the equivalent theoretical result so that for a 

given screw, feed material, flow rate and axial position, a direct compari-

son can be made. Unfortunately however the situation is somewhat more 

complicated than this. 

From the reasoning put forward in 5.4.3 and taken further in 8.1; 

it is evident that for a constant mass flow rate of material, solids flow 

theory will predict two extremes of stress distribution along the screw 

channel during the period of one revolution. 	Alternatively it can be 

argued that in the feed section apparatus and to some extent in a real 

extruder, the pressure at the delivery end of the screw is held constant 
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so that a fluctuation in output rate must occur instead. 

If the idealised case is considered in which the stress state all 

along the screw responds instantaneously to changing initiation conditions 

then at a particular axial position and for a given mass flow rate there 

will be two extremes of stress state which can be observed around the 

screw's periphery. 	By taking the peak value of p* as reference, 
r2  

that is p* , and considering the-extremes of stress state set up for a 
r2  

series of flow rates a graph of the form shown in fig 8.4 can be obtained. 

The output/pr  characteristics are therefore extremes for the situation 
2  

being considered. 

In order to examine the behaviour at a given axial position when 

stress level at the end of the screw barrel is held virtually constant, 

as in the experimental work,.it is necessary tp have pairs of extreme . 

characteristics of the above type at the axial position in question and 

at the end of the screw. 	Fig 8.5 shows how these might appear. Assuming 

that the material is incompressible, then if the stress at the delivery 

end is held essentially constant a fluctuation of the flow rate must 

occur and this is shown on the figure. 	If the material is considered 

incompressible then the instantaneous flow rate must be constant all along 

the screw. 	Therefore at the axial position being investigated the value 

of p 	must vary between A and B as shown. 	In practice compressi- 
r2 

bility will tend to damp down fluctuations of this type but judging from 

the behaviour of the experimental apparatus the effect is still very 

evident. 

Because these cyclic fluctuations take place, at a given axial posi-

tion the stress profile around the screw periphery is continuously changing 

so that the value of p* picked up at any instant by a barrel mounted 
r2 

transducer depends upon the stress profile which exists at that instant 

in time and the position of the screw relative to the transducer. 	There- 

fore.referring to fig 8.6, if the three curves represent stress profiles 
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around the screw periphery at three equally spaced instants in time and 

the positions marked on the abscisse represent the positions of the 

transducer relative to the sides of the channel at the corresponding in-

stants in time, then the pressure profile recorded will be of the form 

shown by the broken line. 

In the ideal situation where pressure response along the screw is 

considered instantaneous then the screw periphery stress profiles as 

shown in fig 8.6 would all be between curves corresponding to the highest 

and lowest stress-states which are set up. 	In fact by producing a large 

number of solutions based on different positions around the stress initia-

tion cycle a set of stress profiles could be evolved. Then, by consider-

ing the position of the transducer relative to the beginning of the 

channel and carrying out an operation similar to that illustrated in fig 

8.6, it would be possible to make a prediction of the pressure profile to 

which a transducer would be subjected. 

However because of the damping effect on stress level fluctuations 

which will be caused by compressibility, already referred to, the pre- 

dicted pressure profile would not be accurate. 	Because of this and the 

complexity involved in setting up the necessary computational facility, 

no attempt has been made to predict the exact form of the pressure trace 

obtained from a transducer. 	Nevertheless, one point does emerge, it is 

that since fluctuations in actual stress level should be inside the limits 

to which A and B (fig 8.5) are appropriate, the peak value of stress 

detected by a barrel mounted transducer should be within the two extreme 

peak stresses. Therefore all calculations have been carried out to find 

the extreme characteristics as on fig 8.4 and this is the form in which 

the results are presented. 

Presentation of the theoretical results for torque requirement is 

something of a problem. For each calculation based on a particular flow 
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rate two extreme values of p* are formed at any particular point along 

the screw. 	Because of this there are two extreme values of torque (for 

the whole screw) predicted as well. 

The method chosen for displaying the results is to simply plot dimen- 

sionless torque against p* and indicate which two points correspond 
r2  

to the extremes for a particular flow rate by joining them with a line. 

Figs 8.7 - 8.11 show extreme output/q, results which have been 

obtained for conditions appropriate to those existing in the experimental 

work (6.3.4). 	The experimental points have been included so that a direct 

comparison can be made. 	Figs 8.12 - 8.16 show computed results which 

have been obtained for torque absorbed in the solids conveying process. 

Again corresponding experimental points have been included. 

As has been.exi3lained already, the theoretical results.ara,for.ex- .  

treme conditions within the channel and the experimental results should 

lie between the predicted extremes. 	It is obvious from the results 

that the ideal correlation has not been achieved in all cases. However 

the predictions are not greatly in error. 

In 6.3.4 a pressure trace taken from one of the barrel mounted 

transducers has been reproduced. 	In order to see how this compares 

with the predicted extreme pressure profiles around the screw peri-

phery, these profiles have been calculated for the appropriate conditions 

and presented in fig 8.17. 

As well as attempting to produce results which correlate with those 

obtained experimentally, predictions have been made of how parameters, 

other than those which could be varied in the experimental work, affect 

the solids conveying process. 	The additional parameters chosen were 

helix angle, screw length, material compressibility and centrifugal force. 

The basic situation taken has been the same as in 8.1, that is PVC 

powder and medium depth screw. An effective screw length of 3.66 D has 

been assumed, corresponding to the length before the pressure transducer 

• 
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when using the short barrel assembly for experimental work. Only the 

effect of the various parameters on output/pressure build-up character-

istics have been considered. 

To examine the effect of different screw pitches, one of 0.7D and 

another of 1.3D were considered. 	The results obtained, together with 

those for the normal square (1.0D) pitch screw are shown in fig 8.18. 

It is intuitively reasonable thatas pitch is increased the ability 

to build up pressure should be decreased. 	This is because the effective 

channel length is decreased and the angle of the flight becomes less 

effective in conveying material. 	An explanation is therefore readily 

available for the behaviour of the coarse pitch screw. 	However on this 

basis it might be expected that the fine pitched screw would be very 

effective in building up pressure. 	This does not appear to be so and 

there is obviously some other factor which becomes important. 

The explanation probably lies in the fact that as pitch is decreased, 

channel width decreases as well. 	The material in the channel is subject 

to frictional forces from the screw and barrel, those from the barrel 

assist in its movement and in building up pressure but those from the 

screw retard this action. 	The forces are dependent upon the areas of 

the surfaces on which the material slides and for a given depth of channel, 

the narrower it is the greater the contact area of the screw relative to 

that of the barrel. 	This could form the basis of an explanation as to 

why too fine a pitch is not good for solids conveying. 	It would appear 

therefore, that for a single start screw, a pitch equal to one diameter 

is close to the optimum. 

The effect of different screw lengths in solids conveying has been 

investigated to some extent already since the theoretical predictions to 

compare with the experimental work have been carried out for two separate 

lengths. 	In fig 8.19 results are shown for a much greater range of 

lengths. 	It can be seen that output is very sensitive to pressure build 
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up when the number of turns is small but if there are more than about 

6 turns then the output is virtually unaffected by back pressure. 

The latter result explains why Schneider, using a screw with 8 turns, 

concluded that back pressure does not change the flow rate in solids con- 

veying. 	It also shows that if it is considered necessary to build up 

a high pressure in the feed section of an extruder (before any melting 

occurs) then there is no point in having more than about 6 turns devoted 

to this operation. However this "maximum useful" number of turns may 

vary somewhat for different materials and screws. 

In order to consider the effect of a change in material compressibility 

is possible to change the values of the constants a and b in Kawakita's 

compression formula (4.3) which has been used in the calculations. These 

constants represent respectively the•degree to which a material can.he . 

compressed and the ease with which the compression can take place. For 

PVC powder the constants are: • 

a = 0.384 	b = 1.323 m2/MN 

To simulate a more compressible medium the value of 'a' has been 

increased to 0.5 and 'b' increased by an order of magnitude. 	An incom- 

pressible material has been simulated by putting b = 0. 	Results of the 

calculations based on these simulated compressibilities together with 

those for the real compressibility are shown in fig 8.20. 

In fact it appears that taking compressibility into account has 

little effect on the pressure build-up characteristics. 	This is some- 

what surprising since in the example being considered, a dimensionless 

pressure of 10,000 represents an actual pressure or stress of about 

2.5 MN/m2. 	Referring this to fig 4.8 (which is for PVC powder) it can 

be seen that a significant reduction in volume is to be expected at such 

pressures. 	However the pressure just mentioned would be a peak value 

around the circumference of the screw and the mean value would be much 

• 
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lower than this. 	Furthermore the pressure is really radial direct stress 

at the barrel surface and this does not have quite the same compressive 

effect in the channel as the axial direct stress, upon which fig 4.8 is 

based, has on material in a cylinder. 

Another important consideration is that at the beginning of the screw 

where initial pressure build-up takes place, compressibility is com-

pletely insignificant and so the process of pressure build-up always 

starts off in the same way. 	Because the build-up is approximately of 

an exponential nature and compressibility only becomes important at the 

upper end of the pressure or stress level range considered in these cal-

culations, significant volume reductions will only occur near to the 

delivery end of the screw where the effect will not be very great. 

.-The reasons.which have just been put forward help to explain why 

compressibility has little effect on the output/pressure build-up 

characteristics when dealing with pressures similar to those achieved 

in the experimental work. From this it might be concluded that 

because the effect of material compressibility is small there is no 

point in taking it into account. 	Indeed this would simplify the solu- 

tion somewhat. However the maximum pressures being considered in these 

calculations are such that compressibility is only starting to become 

important and if higher values were dealt with the effects would be much 

greater. 

The question also arises as to whether or not the arguments pre-

sented in connection with fluctuations in stress level are completely 

valid if compressibility effects are small. 	In this connection the main 

point is one concerning the propagation of stresses from the fluctuating 

initial conditions. However the argument really depends upon compres-

sibility of a smaller magnitude than would significantly change the 

volumetric flow rate and so influence the calculations which have been 

made: 

• 
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As a change in initial conditions occurs the "signal" of this taking 

place can be considered to propagate through each incremental cross- 

section of the channel all along the screw. 	To pass on an increase in 

stress level each cross-section must deform, albeit infinitesimally, to 

bring about a greater normal reaction from the channel walls. This 

causes increased frictional forces at these surfaces and so propagate 

the increased stress level. 	Becuse of hysteresis in compressibility 

and therefore general deformation behaviour, the process will be somewhat 

different for increasing stress level than for decreasing stress level. 

Furthermore it is unlikely that the stress propagation will occur instan-

taneously all along the screw and so together the effects will cause a 

damping in stress fluctuation. 

Turning now to the effects.of centrifugal force; fig 8.21 shows 

predicted output/pressure build-up characteristics for the experimental 

feed screw running at speeds where such forces become important. 

Unfortunately the theory only considers part of the changes brought 

about under these conditions and so the results have to be treated cautiously. 

When the material is actually inside the barrel, centrifugal forces assist 

in the conveying process. 	However it is reasonable to expect that these 

forces will tend to prevent material being entrained by the screw in the 

feed pocket and so restrict the conveying capacity. 	The theory does not 

account for this debit side. 

One interesting outcome of the theory, when centrifugal forces become 

of considerable importance, is that gravity forces have relatively less 

influence and no longer dictate that pressure or stress initiation can 

only occur over a limited angular range around the screw. 	This obviously 

gives some scope for simplifying the arguments in 5.4.3 and 8.1 concerning 

initiation, if centrifugal forces are of overriding importance. 

• 



k1  1.697 1.816 1.943 2.077 2.231 2.283 2.269 2.172 2.176 2.166 2.160 
k2  1.677 1.791 1.899 1.984 1.993 1.824 1.545 1.266 1.379 1.481 1.623 
k3 1.666 1.830 2.004 2.184 2•355 2.473 2.550 2.423 2.430 2.433 2.433 

f 11 •034 .034 •034 .034 .035 .034 .034 •033 . •033 .033 •033 
f12 -.076 -.076 -.076 -.076 -.077 -.076 -.075 -.074 -.074 -.074 -•073  
f21  -.004 -.004 -.004 -.004 -.005 -•006 -.005 -.005 -.005 -.005 -.006 

f22 •009 .009 • •009 • 010 .011 .014 .013 •012 .012 .013 .014 

f31  -.031 -.031 -•031 -.031 -.030 -.031 -•031 -.032 -.032 -.032 -.032 
f32 • 077 • 077 • 077 • 077 • 077 •077 • 078 .079 .079 .079 •080 

(x = 0 , low pressure Side) 
	

(x = 1) 
distribution of values at equal intervals across channel 

for a dimensionless flow rate of 0.10 
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Table 8.2  BUILD UP IN STRESS FROM THE INITIATION FRONT 
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_1 - 0.000 

	

2 	 -0.000 

	

3 	 0.000 0.000 

	

4 	 0.000 	.009 

	

5 	 -0.000 	.023 	.011 

	

6 	 0.000 	.044 	.031 

	

7 	 0.000.071 
	

.057 	.033 

	

8 	0.000 	.105.068 	.064 

	

9 	0.000 	.153 	.123 	.101 	.067 

	

10 	0.000 	.223 	.161 	.138 	.108 
11 - 	0.000 	.321 	.212 	.174 	.150 	.111 

	

12 	.0.000 	.451 	.285 	.209 	.186 	.156 

	

13 	0.000 	.515 	.435 	.255 	.214 	.194 	.156 

	

14 	.581 	.601 	.361 	.238 	.221 	.196 

	

15 	.901 	.677 	.544 	.306 	.234 	.222 	.190 

	

16 	1.039 	.744 	.429 	.273 	.231 	.216 

	

17. 	1.157 1.129 .644 .348 .257 .222 -  .200 
18 

19 
20 

21 
22 

	

1.288 	1.190 	.488 

	

1.404 	1.365 	1.025 

	

1.528 	1.4:',3 	.777 

	

1.641 	1.611 	1.202 

	

1.779 	1.649 	.881 

.297 
.379 

.306 
.606 	' 

.496 

.242' 
.265 

.234 
.256 

.210 

.203 

	

.219 	.176 
0189 

	

.198 	.167 
.172 

23 1.901 	1.632 	1.343 .661 .427 .178 	.150 
24. 2.014 	1.823 	.949 .521 .390 .150 

25 2.126 	2.019 	1.437 	' .688 .454 .363 	.129 
26 2.195 	1.948 	.984 .547 .414 .347 

27 2.285 	2.134 	1.494 .718 .475 .390 	.431 
28 2.288 	2.004 	1.030 .568 .437 8472 

29 2.344 	2.164 	1.542 .749 .497 .515 	.468 30 2.280 	2.036 	1.056 .598 567 .505  
31 2 2.300 	.157 	1.553 .772 .641 .547 	.503 
32 2.235 	2.008 	1.064 .745 .603 .538 

33 2.249 	2.088 	1.527 .926 .665 .584 	.538 
34 2.157 	1.932 	1.227 • 745 .628 .578 

35 2•154 	2.003 	1.698 • 897 • 669 • 612 	• 585 
36 2.052 	2.144 	1.150 .723 .634 .611 

37 2.040 	2.213 	1.609 .836 .646 .623 	.614 
38 2.270 	2.023 	1.086 .671 .617 .618 

39 2.426 	2.081 	1.510 .789 .602 .601 	.614 
40 2.302 	1.890 	1.018 .639 '.569 .588 

41 2.290 	2.121 	1.409.  .746 .569 .544 	.573 
42 2.167 	1.951 	.958 .598 .528 .520 

43 2.151 	2.201 	1.502 .695 .524 .494 	.495 
44 2.040 	1.877 	1.042 .549 .475 .463 45 2.031 	1.923 	1.438 .768 .469 .435 	.453 
46 • 1.968 	1.796 	.986 .613 .417 .420 

47 1.984 	1.-849 	1.362 .713 .532 .396 	.412 
48 1.920 	1.712 	.918 .560 .505 .384.  

49 1.939 	1.792 	1.280 .655 .505 .494 	.375 
50 1.865 	1.640 	.855 .538 .485 .494 



Table 8.2 continued 

51 	1.883 1.721 	1.223 	.640 	•492 	• 482 	• 555 
52' 	1.791 	1.572 	• 860 	• 536 	.482 	• 544 

53 . 	1.802 1.650 	1.230 	• 660 • .502 	.545 	.537 

	

54 	1.712 1.382 	• 886 	• 567 	• 562 	• 538 
55 	1.727 1.655 1.264 	• 697 	.610 	• 554 	• 535 

	

56 	1.724 1.620 	.932 	• 686 	• 594 	.552  
57 	1.787 1.703 1.322 	• 835 	.640 	. 591 	• 552  

	

58 	1.824 	1.703 	1.101 	• 713 	• 630 	• 594 	• 
59 . 	1.915 1• 843 	1.553 	4,858 	.672 	• 632.642• 601 

5 

	

60 	1.999 2.04 	1.133 	• 740 	.667 
61 	2.122 2.245 1.667 	.892 	• 703 	• 675 	• 642 

	

62 	2.454 - 2_.235 1.233 	• 773 	• 702 	• 677 
63 	2.713 2.46n 1.837 	.979 	.739 	.701 	• 668 

	

64 	2.821 2.487 1.371 	.857 	.728 	• 692 
65 	2.986 2.874 2.062 1.099 	.808 	.• 715 	• 673 

	

66 	3.137 2.922 1.551 . 	.948 	.784 
.694  67 	3• 331 	3.220 2.451 	1 •227 	• 881 	. 759.669 

	

68 	3.525 3.304 	1 • 832 1.044 	• 843 	• 734 

	

69 . - 	3• 750 3• 647 2• 738 1 •439 	• 956 	.813 	.726 

	

70 	3.999 3.699 2.019 	1• 215 	• 911 	• 805  
71 	4.263 4.091 	3.029 1.561 	1.113 	• 898 	• 798 

	

72 	4.495 4.101 2.202 	1.307 1.085 	• 89C 73 	14.76:3 4•546 3.319 	1 •6 92 	1.216 	1.074 	• 886 
74 	4.966 4.508 2.399 1.437 1.183 1.072 

75 	5.230 4.968 3.631 . 1.866 1.334 1.172 1.108 

	

76 	5.394 4.901 2.654 1.582 1.298 1.205 
77 	5.647 5.367 3.982_ 2.061 1.468 1.321 1.191 

	

78 	5.791 5.335 2 • 901 	1• 746 1.465 1• 302 
79 	6.041 5.804 4.317 2.248 1.659 1.432 1.294 

80 	6.238 5.745 3.136 1.945 1.593 1.417 
81 	6.522 6.225 4.631 2.474 1.779 1.562 1.414 

82 	6.707 6.136 -3•415 2.062_ 1.711 	1.551 
83 	6.993 6.666 5.C)11 2 • 598 1.888 1.682 1.554 

84 	7.163 6.655 3.572 2• 166 1 • 819 1 • 676 
85 	7.452 7.209 5.277 2.718 1.984 1.791 1.670 

56 	7.727 6.995 3.766 2.265 1.913 1.774 
87 	8.080 7.561 5.550 2.868 2.076 1.873 1.760 

88 	8• 152 - 7,340 3.963 2.395 1.989 1.845 
89 	8.415 7.984 5.825 3.02_3 2.183 1.937 1.825 

90 	8.492 7.757 4.164 2• 510 2.083 1.901 
91 	8.764 8.318 6.171 	3.159 2.279 2 • 023 1.880 

92 	-8 • 846 8.092 4 • .396 2.613 2 • 169 1.988 
93, 	9.130 8.675 6.401 3.330 2.367 2.109 1.924 

94 	9.228  8.395 4.540 2 • 753 2.256 2•092 
95 	9.530 9.003 6.617 3.427 2.501 2 • 214 2.089 

96 	. 9 .585 8.6E33 4 . 630 2 • 835 2 • 409 2 • 193 
97 	9.878 9.321 6.828 3.536 2 • 598 2.370 2.195 

98 	9.902 8.972 4.836 2.952 2.505 2 • 357.  
99 	10.192 9.611  7.067 3.688 2.710 2.466 2.379 
100 	10.197 9.265 5.050 3.085 24,616 2.475 
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Table 8.2 continued 

110 	12.71 11.5E3 6•32 3.92 3.31 3.11 
1.11 	13.23 12.50 9.26 4.86 3.58 3.26 3.09 

120 	17•26 15.713 	8.58 	5.23 	4.42 	4• 05 
121 

130 
131 

	

16.01 	17.14 	12.68 	6.62 

24.16 	22.12 	12.05 	7.35 

	

25.21 	24 • 02 	17.82 	9.30 

4.85  

6.17 
6.79 

4•37 	4.03  

5.66 
6.08 	5.65 

140 33.28 301'44 	16• 55 	10.03 8.39 7.69 
141 34.61 	32 • 94 	24.36 12 • 69 9.22 8.24 	7.68  

150 44.03 43.27 	1 • 02 	13.37 11.24 10 • 37 
151 

• 
160 

45.69 	43.46 	32.18 	16.82 	12.31 

57.85 	28.81 	17.58 	14 • 

11.06 	10.34 

80 	13.68 
161 60 • 05 	57 • 12 	42 • 30 	22 • 13 	16.19 14 13.64 

170 76.84 70.30 30.31 23.37 18.20 
171 	79.87 76.00 56.34 29.49 21.58 19.41 18.15 

180 
	

103.28 94.81 51.45 31 • 37 26.38 24.34 
181 
	

107.36 102.21 75.71 39.56 28.92 25.97 24.26 

190 	138.63 126.85 69.11 42.15 35.45 32.71 
191 	144.08 137.16 151.65 53.16 38.89 34.94 32.63 

200 186• 23 170.53 	92.97 	56 • 74 	47.75 	44.07 
251 193.57 184 • 39 	136.73 	71.94 52.34 	47.06 	43.97 

	

210 	250.76 229. 73 125027 76.44 b4.31 59. 04 
211 	260.59 248.36 184.26 96.41 70.55 63.40 59.22 

	

.220 	338.04 309.93 169.17 103.34 87.00. 80.33 
221 	351.25 335.03248.78 130.31 95.43 85.81 80.20 

	

230 	457.22 419.51 .  229.11 140.00 117.89 108.87 
231 	475.03 453.49 :=.36.94 176.58 19.35 116.32 108.73 

	

240 	620.05 569.53 311 •37 190.45 160.50 148:29 
241 	644.06 615•49 457•86 240.21 176•12 158• 50 146• 21 

	

250 	844.32 776.b1 425.04 260.22 219.45 202.87 
251 	876.84 839.04 624.94 328.22 240.84 216.87 202.90 
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Table 8.3 VALUES OF DERIVATIVE TERMS AT THREE POSITIONS ALONG THE CHANNEL 

(a) values of 	across channel. 	(b) values of -6159/17 e across channel. 

ROW 155 

(a)  .915 .923 1.000 1.146 1.546 1.667 1.446 1.091 .837 .640 .499 

(b)  -2.735 -2.821 -3.347 -4.313 -6.831 -7.592 -6.194 -3.971 -2.382 -1.135 -.231 

ROW 255 

(a)  .976 .981 1.058 1.204 1.598 1.716 1.493 1.140 .886 .687 .541 

(b)  -2.750 -2.796 -3..282 -4.208 -6.691 -7.437 -6.044 -3.832 -2.246 -.999 -.092 

RO 355 . . 

(a)  1.033 1.040 1.118 1.264 1.654 1.771 1.551 1.202 .949 .748 .599 

(b)  -2.500 -2.553 -3.042 -3.966 -6.420 -7.157 -5.782 -3.589 -2.004 -.747 .182 

• 



Table 8.4 STAGES IN THE ITERATIVE PROCEDURE 

• 

(a) values of NZ/Te  across channel. 
. . 

(b) values of uPe/Te  across channel. aZ 

1 	st. 
* 

iteration 	6 	. 598.4 • 
r2 

(a)  0.981 0.988 	1.064 	1.211 	1.605 1.723 1.501 1.148 0.894 0.694 0.548 

(b)  -2.701 -2.749 -3.238 -4.166 -6.647 -7.3.93 -6.004 -3.796 -2.210 -0.962 -0.051 

2 nd. iteration 	6 	=4907.6 • r2 
•t 

(a)  1.306 1.258 	1.266 	1.330 	1.542 1.598 1.463 1.'228 1.044 0.899 0.793 

(b)  -3.863 -3.580 -3.638 -4.037 -5.370 -5.726 -4.077 -3.408 -2.253 -1.347 -0.689 

3 rd. iteration 	6. 	=5259.2 r2 

(a)  1.309 1.263 	1.271 	1.334 	1.547 1.603 1.467 1.233 1.049 0.904 0.798 

(b)  -3.848 7-3.572 -3.635 -4.035 -5.369.-5.724 -4.873 -3.403 -2.246 -1.339 -0.682 
* 

4 th. iteration 	IS..r.2 =9305.6 

(a)  1.309 1.264 	1.272 	1.335 	1.547 1.604 1.468 1.234 1.050 0.905 0.799 

(b)  -3,847 -3.571 	-3.634 -4.035 -5.368.75.723 -4.872 -3.402 -2.245 -1.338 -0.680 

^ 5 th. iteration 	pr2 =5316.7 

(a)  1.310 1.264 	1.272 	1.335 	1.547, 1.604 1.468 1.234 1.049 0.905 0.799 

(b)  -3.847 -3.571 	-3.634 -4.034 	-5.36E1, '7-5.723 -4.872 -3.401 -2.245 -1.338 -0.680 



Table 8.5 VARIATION OF STRESS LEVEL WITH INITIATION POSITION 

position 	pr2  at 3.66D along screw 

(i)  1292.9 

intermediate between (i) and (ii) 3211.0 

(ii)  5316.7 

intermediate between (ii) and (iii) 2443.4 

(iii)  1148.7 
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1.7520 2.2820 2.9138 3.6625 4.5475 5.5883 
1.7514 2.2812, 2.9128 3.6621 4.5469 5.5875 

N 
P 

t  

221. 

Table 8.6 CO-EFFICIENTS IN POWER SERIES AND VALUE OF 

Values of bs , s = 0 to 11 

1.00000000 2.07435675 1.36710019 0 .48961824 

0.11313642 0.01788070 0.00187515 0.00009228 

-0.00000935 -0.00000294 -0.00000042 -0. 00000004 

All subsequent terms are zero when expressed to the 
same number of decimal places. 

= 1.1078018 

Table 8.7 RESULTS OF NUMERICAL / ANALYTICAL COMPARISON 

N - values from numerical solution. 
A - values from analytical solution. 

analytical values of p for first two rows, to start numerical solution 

	

1.00-00 	1.318c: 	 ?_• 
1.2231 1.5930 2.0341 2.5574 3.1753 3.9020 

N 	1.1271 	1.4862 1.9153 2.4257 3.0297 3.7415 4 . 57 70 
A 1.1271 1.4801 1.9153 2.4256 3.0297 3.7414 4.5769 

T  ( N -.5675 A -.5675 -.3249 -.0089 .3945 .9016 1.5311 2.3046 
-.3249 -.0089 .3944 .9015 1.5310 2.3045 

• N 
A 

T 
A 

1.3790 1.7957 2.2928 2.8026 3.5791 4.3983 
1.37L,6 	1.79t) 	2.08?5 .:3.5790 	4 ..3.:401 

	

-.4020 -.1877 	. 1921 	.6731 	1.2738 2.0155 
-.4826 -.1878 .1920 .6730 1.273/ 2.0154 

P f N 	1.2704 	1.677 2.1569 2.7342 3.4150 4.2174 5.1591 
A 1.2704 1.6751 2.1568 2.7340 3.4148 4.2171 5.1587 

r N -.6397 ,-.36.‘35 -.0099 .4448 1.0164 1.725G 2.5977 
A -.6397 -.3602 -.0101 •4446 1.0161 1.7257 2.5975 

• t" 

N 
 A 

1.5544 2.0246 2.5845 3.2493 4.0344 4.9577 
. b'_i3E3 2.0239 2.5843 3.2490 4.0340 4.9572 

P  
1.4323 
1.4320 

1.8887 2.6.341 3.0819 3.0494 4.7536 5.8153 
1,8u80 2,4333 3.0816 3.8490 4./533 5.0146 
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Table 8.7 continued 
• ■•■■•■■■•■ 

1.6140 2.1,69 2.7436 3.4747 f.:.3390 5.3584 6.5550 
1.6140 - 2.1281 2.7626 3.4734 4.334 5.3576 6.5539 

	

1.974 	2.5721 	3.2843 	4.1293 	5.1260 	6.2.991 

	

1.9741 	2•571? 	3.2831 	4.1277 	5.1250 	6.2979 

	

1.819% 	2.39-- 7 	3.0925 	3.9166 	4.8919 	6.0400 	7..7aa5 

	

1.81:12 	2.39ci6 	3.0913 	6.0387 	7.3871 

2 • 2258 2.8992 3.7020 4 • 65,44 5 • 7791 7.1004 
2.2250 2•8081 .3. 7005 4.625 5.7766 7 • 0986 

	

2.0505 	2.7046 	3.4657 	4.4146 	5.5141 	6.6097 	8.3287 

	

2.0505 	2.7036 	3.4843 	4.4128 	5.5116 	6.8065 	6.3263  

2.5080 	3.2679 	4.1728 	5.2463 	6.5141 	8.0050 
2.79 3.26(.) 4.1710 	9.20 u.hl 10 	5.C911 

2.3113 .3.J405 4.c.)761 ti.21L1‹i 7.6757 
2.3112 /17i 3.9213 ,973t. 7.579:-.1; 

2.828C) 4.703-J 
.1.7013 

2.6053 3.4363 4.4237 5.6089 7.0058 8.6527 10.5849 
2.6050 3.4347 4.4266 5.5062 7.0022 8.6472 10.5780 

3.1877 4.1520 5.3017 6.6656 8.2772 10.1716 
3.1862 4.1(:500 5.2990 6.6621 6.2718 10.1649 

2.9367 3.9734 4.9920 6.3223 7.5976 9.7532 11.0311 
2.9362 3.8714 4.9894 6.3189 7.8024 9.7466 11.9229 

3.5931 4.6801 9..-)760 7.2142 9.3000 11.4653 
3.5912 4.6716 5.727 7.0.91 9..3225 11.72 

3.3102 4.3661 5.6270 7.1273 8.9022 10.9037 13.4487 
3.3095 4.3636 5.6239 7.1223 8.808 10.(:4858 13.4397 

4.0502 5.2754 6.7370 8.4701 10.5167 12.9236 
4.0478 5.2723 6.7321 8.4638 10.5069 12.9138 

3.7213 1.621 5 6.3436 3.0329 12,.3343 12.3920 15.1:1707 
3.7303 !;.4Li1 6.0359 ,.3279 13.0268 12.382 15.1473 

4.5654 5.()473 7.E:940 0.5479 11.844 14.5674 
4.5624 5.9,126 7.8960 9.5399 11.6449 14.5557 

4.2059 5.5483 7.1506 0.0559 11.3110 13.9683 17.0274 
4.2046 5.5437 7.1447 9.0484 11.3016 13.9567 17.0731 



Table 8.8 EFFECT OF DIFFERENT INTERVAL SIZES ON THE NUMERICAL 
SOLUTION 

number of divisions 
across the channel 

mean percentage in- 
accuracy of stresses 
in last row generated 

computing time 
( seconds on 

CDC 6400 ) 

6 0.0759 0.167 

• 7 . 0.0487 
. 

0.202 

8 0.0331 0.243 

9 0.0236 0.310 

10 0.0174 0.359 

11 0.0132 0.430 

12 0.0103 0.508 

13 0.0082 0.595 

14 0.0065 0.688 

15 0.0053 0.783 

16 0.0044 0.911 

17 0.0036 0.960 

18 0.0031 1.043 

19 0.0025 1.123 

20 0.0021 1•223 
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Fig 8.1 NETWORK OF CHARACTERISTICS 

    

  

Fig 8.2 SITUATION AT THE BEGINNING OF THE CHANNEL 



Fig 8.3 STRESS INITIATION CYCLE 
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Fig 8.4 EXTREME OUTPUT/ p CURVES 
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Fig 8.5 SITUATION IF p IS HELD CONSTANT AT OUTLET END 
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Fig 8.7 PREDICTED OUTPUT CHARACTERISTICS - PVC POWDER MEDIUM DEPTH SCREW 
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Fig 8.8 PREDICTED OUTPUT CHARACTERISTICS PVC POWDER DEEP SCREW 

• ** experimental points denoted similarly in figs 8.8 - 8.11 



Fig 8.9 PREDICTED OUTPUT CHARACTERISTICS- PE POWDER SHALLOW SCREW 
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Fig 8.10 PREDICTED OUTPUT CHARACTERISTICS - PE POWDER MEDIUM DEPTH SCREW 
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figs 8.13 -8.16 ) 	
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Fig 8.11 PREDICTED OUTPUT CHARACTERISTICS - PE POWDER DEEP SCREW 
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Fig 8.12 PREDICTED TORQUE CHARACTERISTICS - PVC POWDER MEDIUM DEPTH SCREW 
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Fig 8.13 PREDICTED TORQUE CHARACTERISTICS - PVC POWDER DEEP SCREW 
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Fig 8.14 PREDICTED TORQUE CHARACTERISTICS - PE POWDER SHALLOW SCREW 
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Fig 8.16 PREDICTED TORQUE CHARACTERISTICS - PE POWDER DEEP SCREW 
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Fig 8.15 PREDICTED TORQUE CHARACTERISTICS - PE POWDER MEDIUM DEPTH SCREW 
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Fig 8.17 COMPARISON BETWEEN THE MEASURED PRESSURE PROFILE AROUND THE 

SCREW PERIPHERY AND THE PREDICTED EXTREME PROFILES 
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Fig 8.18 EFFECT OF CHANGE IN PITCH / DIAMETER RATIO 
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Fig 8.10 EFFECT OF CHANGES IN SCREW LENGTH 
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Fig 8.20 EFFECT OF CHANGES IN MATERIAL COMPRESSIBILITY 
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. Fig 8.21 EFFECT OF CHANGES IN SCREW SPEED ( CENTRIFUGAL FORCES ) 

a - low speed characteristics" 
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9. 	Conclusions  

Perhaps the first point to emerge from this work is that solids 

conveying in a single screw extruder is a far more complicated process 

than appears to have been realised in the past. 	The simplifications 

made in previous work have not brought to light some of the problems 

which arise when the subject is examined more deeply. 

At first sight the overall problem appears to be one of predicting 

an output/pressure build-up characteristic for the feed section. 

• 

However it becomes apparent that pressure in its normal sense is not a 

very useful concept when applied to a loose solid and it is more meaning- 

ful to consider the state of stress which exists in the material. When 

it is sought to obtain a better description of this stress state than 

achieved by Darnell and Mol and Schneider, considerable complexities 

arise. 

Ideally a formal stress analysis of the material in the screw channel 

is required. 	If the feedstock is treated as a continuum then the normal 

type of continuum mechanics considerations could be invoked and the pro-

blem approached on conventional lines. However it is in applying a 

constitutive or stress-strain law for loose materials that this line of 

attack is brought to a halt. 	The basic problem is simply that not 

enough is known about the behaviour of these materials to enable a con-

ventional approach to the overall problem to be taken. Apart from this, 

it is even doubtful whether an obviously discontinuous medium like a 

loose solid can be treated as a continuum. 

Some well established properties of loose solids have been discussed 

in chapter 7 and tentative theoretical extensions have been made to enable 

the solids conveying theory to progress somewhat. However much more 

experimental and theoretical work on what amounts to the rheology of 

• 
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loose solids is necessary before a great deal more progress can be made. 

One consequence of the inability to treat the problem in a com-

pletely general manner is that it has been necessary to retain the now 

traditional plug flow assumption. 	The retention of this, and the argu- 

ments of 7.2 concerning plastic or shear flow in the material, mean that 

the assumption is not strictly self consistent. 	However as explained 

in 5.1 this is not likely to be a serious matter either from the philo-

sophical or practical point of view. 

In the approach which has been taken to solving the problem of 

pressure or stress build-up in solids conveying the basic principle has 

been to treat the situation as realistically as possible, subject to the 

limitations already discussed, without involving such complexities as 

would make a solution unacceptably difficult from the computational view- 

point. 	Because of this, approximations and assumptions have been made 

which must inevitably give rise to some error in the solutions obtained. 

The assumption of plug flow has already been mentioned but other 

principal sources of error are listed below: 

(1). Slight errors are introduced in the formation of the two 

dimensional mean stress equilibrium equations because the radii at which 

the mean stresses act are assumed equal and constant all along the 

screw. 

(2). It is assumed that the set of relationships between stresses 

over the width of the channel remains the same all along the screw. 

(3). Errors are introduced by the assumption that shear stresses 

vary linearly with direct stresses over the channel cross-section (7.5). 

(4). Errors are introduced by the assumptions made about the elas- 

tic region of the channel cross-section (7.6). 
410  

(5). It has been assumed that 30 	p
0 
 and =IFe  remain az  

constant all along the channel. 	This has to be considered in connection 

with point (2). 
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(6). A simplified situation has been assumed at the beginning of 

the channel so that only one type of stress initiation front has to be 

used. 

(7). The variation in initial conditions gives rise to a fluctua- 

tion in stress state along the screw. 	This implies a compression and 

decompression of the feedstock which cannot be taken into account fully 

with the present knowledge of compressibility properties. 

(8). In the computational procedure used, changes in frictional 

properties of the feedstock have not been taken into account. 

(9). The analysis only applies to a full channel. 

The error introduced in (1) is unlikely to be large but it has to 

remain if a transformation into x - z co-ordinates is to be made. 	One 

possibility would be to carry out a solution in the original 0 - Z 

co-ordinates, but this would involve some difficulty in applying the 

frictional boundary condition at the sides of the channel. 

Point (6) is the only other source of error which could be eliminated 

relatively easily. 	It would mean a modification of the computer program 

to allow for different geometries of the initiation front, taking proper 

account of the feed pocket presence. 

The objection raised in point (2) could be overcome by re-calculating 

the set of relationships between stresses at each step as the main solu- 

tion proceeds along the channel. 	If this were done then the variation 

in derivative terms (point (5)) and the variation of frictional properties 

(point (8)) could also be taken into account. 

The objection to adopting such a procedure is that computing time 

would be increased enormously. This is not only because of the re-

evaluation of relationships at each stage, but because k2 would in 

general vary, and the layout of characteristics change as the solution 

proceeded. To make use of a varying characteristics layout does not in 

itself pose any major problems, it merely adds further complexity to the 
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solution. 

As a compromise, it would be possible to re-evaluate the relation-

ships at a number of points along the channel but not at every step in 

the main part of the solution. This would improve accuracy without 

increasing computing time to an unacceptable extent. 	However it is 

debatable whether or not such improvement would be worthwhile without 

attention to points (3) and (4). 

The objections raised in (3) and (4) come about because of the diffi-

culties already discussed in not being able to carry out a formal analysis 

of the problem. 

With the principles set out in 7.1, 7.3 and 7.4, and further considera- 

tion of the elastic behaviour of loose solids, it should be possible to 

improve upon the theory of 7.5, 7.6 and 7.7. 	However it is likely that 

a good deal of work would be necessary in order to obtain a very much 

better description of the relationships between stresses over the channel 

cross-section. 

• As a first attempt at an analysis of the elastic/plastic problem, a 

fully developed situation could be considered. 	In practice this would 

exist if all material properties and screw geometry remain the same, if 

body forces can be neglected and if compressibility is unimportant. In 

this situation, because of the frictional conveying mechanism, there 

would be a similarity between stress states at points along the channel 

with an exponential increase in magnitudes. 	From this, it follows that 

derivatives of stresses with respect to the along channel direction 

would be proportional to the stresses concerned at each point over the 

channel cross-section. 	Therefore the problem would be essentially a 

two dimensional one. 	If it were solved giving the form of stress dis- 

tribution over the cross-section and the coefficient in the exponent 

which determines build-up in magnitudes (this being the same as the con-

stant, of proportionality relating stress derivatives to actual stresses) 
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then a complete description of stress in the section of the channel being 

considered, would be obtained. 

Such a solution, if it could be carried out, would be in effect a 

very advanced equivalent of the analytical solution described in appendix 

5.1 and it would be almost directly applicable to the very high pressure 

region of the screw. However in most situations where either body 

forces or compressibility are important, exact similarity between stress 

states from one cross-section to the next cannot be assumed. 	Therefore 

one major simplification, concerning stress derivatives along the channel, 

could not be made with any degree of accuracy. 

A full three dimensional solution is obviously the ideal approach 

and something approximating to this could be achieved by the procedure 

already touched upon involving .re-evaluation of stress relationships over 

the channel cross-section at each step in the main solution. 	However 

computing time requirements would probably limit this type of approach. 

Turning now to point (7), the root of the problem concerning fluctua-

tion in stress levels is that it is necessary to carry out the stress 

analysis on a particular section of material contained in the screw 

channel. 	However, because the screw is rotated, the gravity forces are 

effectively time dependent quantities. 	The basic solution evolved in 

chapter 5 applies only at a certain instant in time or more particularly 

when the beginning of the channel is in a certain angular position rela-

tive to the vertical. 

If the situation which exists is looked upon as being quasi steady 

then in principle, stress distributions can be obtained along the screw 

at different stages during the period of one screw revolution. Because 

the gravity forces in effect vary cyclically, the stress state must also 

vary and so at a particular position along the screw channel there will 

be a fluctuation in stress level. 
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When compressibility is significant, during this cycle there will 

be compression and decompression of the material. The degree of com-

paction affects the volumetric flow rate of material and this in turn 

affects the stress solution which is obtained. 	Unfortunately however 

compaction is not a unique function of stress state unless the hydro- 

static stress is monotonically increasing (see 4.3). 	If it were possible 

to obtain some general relationship between compaction and stress state 

to allow for increasing and decreasing stress levels then by carrying 

out a large number of calculations and following the stress cycle through, 

it might be possible to predict exactly what happens. 	This would be 

relatively straightforward if constant output rate could be assumed but 

if the more realistic assumption constant pressure build-up were made 

the problem involved would be far more•difficult. 

To improve significantly upon the upper and lower bound predictions 

which have been presented in 8.3 would obviously require a good deal of 

extra work. However as a first approach to obtaining some improvement, 

the assumption of an incompressible material would simplify matters very 

considerably. 

The final point (9) could be of considerable significance. 	It has 

been assumed in this work that the feed pocket is capable of filling the 

screw channel completely or that the back pressure is such as to maintain 

this full channel condition. 	However when a screw is operating without 

back pressure it is possible to have the channel running incompletely 

full. 	This can be observed using a transparent barrel (chapter 6). 

Under such conditions gravity forces obviously play an important 

part in the conveying process since the pressure which exists is nominally 

zero. Although the theory which has been evolved in this work does take 

gravity forces into account, it does not allow for an incompletely full 

channel or the tumbling action which is observed under these conditions. 
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Therefore the theory is likely to break down under zero pressure build-

up conditions. 

When a screw is running incompletely full, gravity forces tend to 

keep the material in the bottom part of the barrel and so the action is 

in some way similar to that of an Archimedean Screw. Under these cir-

cumstances none of the normal solids feed theories is at all applicable. 

When a screw is not forced to build-up pressure two possible con- 

veying mechanisms exist. 	If the channel is only partially filled, then 

taking an end view of the machine, as the screw rotates the material will 

tend to move round with the screw and rise on one side but fall on the 

other. 	Obviously gravity forces will oppose this out of balance which 

is created and tend to prevent further rotation of the material with the 

screw. 	If the mechanism worked in the same way with loose solids as it 

does with mobile liquids then the material trapped in each turn of the 

screw would be transported one pitch length per revolution. 	However 

when solids are conveyed in a screw running incompletely full, observa-

tion shows that tumbling over the top of the screw occurs and so convey-

ing is not purely axial, but merely approximate to this. 

The other situation to consider, is that in which the screw runs 

completely full. 	In this case it is obvious that no out of balance is 

created by material tending to rotate with the screw. 	Therefore gravity 

cannot act directly to resist rotation and assist axial motion. 	Instead, 

the conveying rate is determined solely by considerations involving equi-

librium of frictional forces acting on the material, from the screw and 

barrel. 

A good deal of analysis would be required to determine which mechan- 

ism exists under a particular set of circumstances. 	However the point 

to be made is that the assistance given to forward motion by the out of 

balance in a partially filled channel could well outweigh the extra con-

veying potential of a full channel. 
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The calculations of chapter 8 do not enable a definite value of 

output rate to be obtained for zero pressure build-up. 	This is because 

the procedure involves treating output rate as the independent variable 

and over the relevant range, pressure decreases as output values are 

increased. However as the calculated values of pressure build-up 

approach zero pecularities arise and the mathematics of the problem pre-

dict that negative pressures are formed at certain points around the 

screw. When this happens the solution breaks down. 

In fact it is reasonable to conject that when negative pressures or 

stresses are indicated, in reality a gap would open up in the material. 

However since the theory can no longer be applied when this starts to 

happen it is of no help in attempting to investigate the situation further. 

Because it is possible that a different type of conveying mechanism 

exists when no pressure is being generated, no attempt has been made in 

chapter 8 to predict output rates under this condition by extrapolation 

or other means. 

All of the points which have been raised in this concluding chapter 

offer considerable scope for improvement. 	However it is also apparent, 

when the overall problem of solids conveying is considered, that really 

sophisticated theory is of limited value when the situation to which it 

is applied is often ill defined and when accurate data on the physical 

properties of the feedstock is not available. 

The theoretical solution which has been presented, although it con-

tains a number of assumptions and approximations, does give quite a good 

description of the solids flow process. 	With the complexities which 

have been uncovered in the pursuit of this solution it is evident that 

even if it were possible to evolve theoretical work which overcomes the 

objections raised it would almost certainly involve more computing time 

than the increase in accuracy would warrant. 

s 



As a final remark, it is hoped that in addition to putting forward 

viable theory on solids conveying, backed by experiment, this work 

will also open up the relatively unexplored field of extruder feeding so 

that further progress can be made with this aspect of screw extrusion. 

243 

• 



Appendix 4.1  

Least Squares Curve Fitting. 

Experimental data is available relating compaction (C) and the 

applied pressure (p) (axial or hydrostatic) in the form: 

(Pip C1) 
	

(Pr' 
Cr) 

• • . ( 'Pn' 
Cn) 

Empirical formulae are available which seek to relate the variables, 

these are in the form: 

C 	= f(p) 

a b p  
1 + by 

Kawakita's formula) 

d {1 -exp( -kp)}  
1-d exp(-kp) 

Athy's formula) 

Essentially, each of the functional relationships depends upon two quan- 

tities, a and b in the first case, d and k in the second case. 	It is 

necessary to find values of these which make the respective formulae fit 

the experimental data as closely as possible. 

Considering firstly Kawakita's equation, if certain values of a and 

b are chosen then for the r-th experimental point, the discrepancy 

between the experimental value of C and that given by the formula is: 

= Cr  - f(pr) 

The criterion chosen for the best curve fit is that the sum of the squared 
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deviations for all points is a minimum, that is: 

n 

 

(C
r 
- f(p

r
))2  = minimum 

r=1 

 

The standard technique for finding the values of a and b in the function 

f which give a minimum value to the expression above is to assume that 

its derivatives with respect to a and b are both zero, that is: 

DE 	DE 
= — = 0. 

as 	8b' 

This yields two equations which may be solved to give a and b. 	By appli- 

cation of the same principles equations can be found which would yield d 

and k for Athy's formula. 

The mean squared deviation which gives an indication of how well the 

optimum curve fits the experimental data is given by 

n 
62 = 	(Cr  - f(Pr))2  

r=1 
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Appendix 5.1 	Analytical Solution  

As discussed in 5.4.1, if gravity and centrifugal forces are 

neglected then eqns (5.40) and (5.41) can be written: 

= k2 ax 	3z 	G 1P 

ap 4.  3T 
3z 3x = G

2p 
 

(5.42) 

(5.43) 

If, furthermore, k2, G1  and G2 are considered to be constants 

then the equations may be differentiated partially by x and z res-

pectively and subtracted giving: 

;2p  
0 3P k2 

;x2 

;2p  
G 2 ;z  (5.44) 

;z 2 

Inspection shows that a product type of solution in the form 

p = X(x) Z(z) could be used to satisfy the single second order partial 

differential equation. 	At the same time consideration of the physical 

situation shows that it is reasonable to expect a solution of this form. 

It implies a form of p distribution across the channel which is re-

peated all along the channel but with magnitudes varying according to the 

Z function. 

When the form of the solution is substituted into the second order 

equation, after dividing through by XZ we obtain: 

k2X" GIX' Z" G2Z1 

X 	x 	Z 	Z 
5.1A 

(where X' = dX — etc.). 
dx 

Applying the usual argument that since X is a function of x only 

and Z is a function of z only, then each side of the equation must be 
• 



equal to a constant (c): 

k2X" 	G1X' — cX = 0 	 5.2k. 

Zu  — G2Z' — cZ = 0 	 5.3A. 

These equations have roots in the form: 

Aix 	A2x 
X= A e 	+ B e 	 5.4A 

X3z 	X4Z 
Z= C e 	+ D e 	 5.5A 

where X1 

2 

G1  ± ✓G12 + 4k2c 
5.6A 

 

2k2 

  

 

A3 = 

4 

G2 ± ✓G22 + 4c 

  

5.7A 

  

2 

  

The boundary conditions which will be applied are: 

1. when x = 0 	and z 	0 	P = Poo 

2. when x = 0 	T = —k2pfp 	for all z 

3. when x = 2 	T = k2pfp 	for all z 

(2., = channel width). 

The first is simply an initial stress condition, the second two arise 

because of frictional forces between material and flights. 

Although the general solutions of(5.2A) and (5.3A) involve two 

exponential terms, depending upon the value of c relative to GI , G2 

and k2, different forms of solution are possible. 	If values of A in 

either case are real and unequal then the forms shown apply directly, 

whereas if the values are complex, sine and cosine terms are involved. 
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Yet another form of solution applies if Al = X2 or A3 = X4. Although 

k2, G1 and G2 must be prescribed if the problem is to be solved, c 

is in effect a constant of integration which is as yet undetermined, 

therefore the exact form of solution cannot be pre-determined. 

Some guidance can be obtained from the theories of Darnell and Mol 

and Schneider (2.2). 	In these one dimensional solutions, where 

centrifugal and gravity forces are neglected, it is found that the build-

up in stress in the z direction is of a simple exponential type. This 

suggests that in the situation now being considered, G22  + 4c  ;. 0 

and either C or D is zero. The matter can be investigated further 

by substituting the product form of p into eqn (5.43), giving: 

aT 
aX = 	(G2Z - Z')X 	 5.8A 

If this equation is integrated between the limits x = 0 and x = 

we have 

(Tt  - To) = (G2Z - ZI) Jr X dx 
	

5.9A 

applying the second and third boundary conditions: 

therefore 

J

(2,  

k2uf(Xt  + Xo)Z = (G2Z - Z') 	X dx 

o 

5.10A 

k2uf (Xt  + x0) Z' 
= G2  - :5.11A 

 

X dx 

  

Since this equation has to apply all along the screw channel it follows 

Z ' 
that — must be a constant (= A) so that Z = e

Az 
 . 
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Referring back to eqn 5.5A it can be seen that either C or D 

is zero and A = A3 or 

The Z expression need no longer be considered to contain a con-

stant coefficient since this can be incorporated in the X term. 

Although the form of the X function cannot be predetermined, con-

sideration of the various possibilities shows that all of them can be 

represented by a power series of the form: 

X = a0  + aix + a2x 2  + a3x 3 	etc. 

CO 

= 
	a

r
x 
	

5.12A 

r=0 

This can be differentiated to give X' and X" and so it is possible 

to substitute for X, X' and X" in eqn 5.2A . 	When the substitu- 

tion is carried out the following expression is formed after some mani-

pulation: 

CO 

Elk2(r + 2)(r + 1) ar+2  - G1(r + 1)ar+1  - c ar} x
r 

0 	5.13A 

r=0 

The method involved is essentially that of Frobenius and having obtained 

the above equation, if it is successively differentiated w.r.t. x and 

x equated to zero at each stage (as in Maclaurin's method for finding 

the coefficients of a series) it can be shown that for r = 0 -4- co the 

coefficients of 

Therefore for 

2.1 k2a2  - 

xr 	in the above expression are all equal to zero. 

r = 0, 	1, 2 

Glal  - 	c ao = 	0 	 5.14A 

3.2 k2a3 - 2G1a2  - c al = 0 5.15A 
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4.3 k2a4  - 3G1a3 - c a2 	= 	0 	 (5.16A) 

From this it can be seen that given c, a0 and al as many coefficients 

as necessary can be found for the power series describing X. When the 

initial stress condition is applied it is found that a0 ' POO so that 

the power series coefficients are available in terms al  and c only as 

unknowns. 

If the power series for X i.s substituted into eqn 5.10A (which 

is itself derived from the basic eqn (5.43)), together with the relation-

ship arrived at for 
V then: 

f k 

a k
r 

k2pf  [ao + 	(G2 	E ar xr dx 

r=0 	o r=0 

r=i  

which' gives: • 

(G 

 p 

	

2 	a
r-1 kr 

2a0 	
14E: ar 	k 2 	

0 5.18A 
f 

 

r=1 

This provides one equation which the coefficients of the power series 

must satisfy. 	However as yet the coefficients can only be defined in 

terms of two quantities, al  and c, so that oneeqaution is insufficient 

to obtain these quantities and hence final values of the coefficients. 

Another expression can be obtained from eqn (5.42). 	By integrating 

eqn 5.8A from 0 to x instead of from 0 to k it is possible to 

obtain a general expression for T: 

(G2 - A) [ 

x
r 

a
r -1  

r. 
r=1 

Z - kolf  ac, Z 	5.19A 

■•■ 

a 	k
r 

r -1 
 

  

 

5.17A 
r 

 

   

(G2 -X) 

• 



al 	a
o
Gi 

fX 
	

k21-IfX 

co El aprx  

r=2 

ao + 
Glar-1 	(G2  - X)ar-2 

 

k
r-1 

0 
k2plAr 	k2pfr(t-1) 
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The expression can be differentiated w.r.t. 	
aT 

to give 	and this 

together with the product expression for p can be substituted into 

eqn (5.42) to give: 

cc. 
a x

r 

k2 -Ai = GI 	a
r
x 	

r 
Z -(G2 - X) 	ZT 	k2pfa0ZI  

r=0 	r=1 

5.20A 

If this equation is integrated w.r.t. x over the width of the channel 

(x = 0 to 0 an expression is obtained as follows: 

5.21A 

Considering now the summation term, by changing the lower limit and carry-

ing out other modifications it can be written as: 

{ k2(r + 2)(r + 1)ar+2  - Gi(r + 1)ar.4.1  + (G2 - A)Aar 	r+1 

However, the auxiliary equation which determines X is derived from eqn 

5.3A and is: 

x2 — Gel — 	= 0 	 5.22A 

so that: 

( G2 — A)a 	= -c 	 5.23A 

If this is substituted into the summation expression it can be seen that 

the numerator is equal to the general coefficient of x 	in eqn 5.13A . 

As already explained these coefficients are equated to zero and therefore 

co 

r=0 
(r + 2) (r + 1)k2pfX 
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because the denominator in the above summation expression is non zero, 

each term in the summation must vanish. Therefore the whole summation 

term in eqn 5.21A must be zero, so that: 

al 	aoGI 

PIA 	k2pf X a0  = 0 	 5.24A 

therefore 
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al 
G1 
(7 + p

f
X) a

o 
12  - 5.25A 

Since a0  = Poo, then referring back to eqns 5.14A , 5.15A , 5.16A 

and the paragraph which follows, it can be seen that as many coefficients 

as necessary in the power series expression for X can be found, now in 

terms of c only as an unknown. 	It also follows that all of the coeffic- 

ients in the series are proportional to P00 so that in order to make 

X independent of P00 it is better to write p such that 

P = P00 e
x E brac t 	 5.26A 

r=0 

where 	for all r, 
P00 

and 	130 ' 1. 

The situation is therefore that the coefficients of the power series 
co 

( E b
r
xr) can be found in terms of c and there is one expression 

r=0 
(eqn 5.18A ) which has to be satisfied. 	The expression can be rewritten 

in terms of br 
and is essentially a function of c such that: • 

a
r 

f(c) = 2b0  + r - 

r=1 

G2 - A  

k2pf  
br-1 
r 

t
r 0 	5.27A 

In order to make use of the series solution a numerical method has 

to be used to evaluate the coefficients. 	Therefore the overall solution 
• 
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is not completely analytic but the numerical part can be carried out such 

that the errors involved are totally insignificant. 

The procedure used is to choose a value of c which is such that 
G22  

c 	— --4— . This is necessary in order to give a real value of A and 

a true exponential form for Z. A = A3 or X4  and one or other can be 

chosen and evaluated from eqn 5.7A . The next step is to evaluate as 

many coefficients as necessary in the power series for X. 	It is found 

that the magnitude of these quantities diminishes quite rapidly and about 

15 terms are normally sufficient. 	The value of f(c) in eqn 5.27A 

can then be evaluated. 

If the correct alternative for A has been chosen then by varying 

c, a value can be obtained which makes f(c) = 0 and hence satisfies eqn 

5.27A . 



Appendix 5.2  

A5.2.1 Hydrostatic Stress in Terms of  

In the theoretical work the variation of specific weight over the 

depth of the channel is neglected. Because the specific weight varies 

according to the hydrostatic stress acting on the material, in order to 

obtain a representative value at a given point along and across the 

channel, some mean value of hydrostatic stress over the depth of the 

channel at that point has to be obtained. 

Hydrostatic stress at a point is simply the mean of the direct 

stresses acting in three mutually perpendicular directions. 	In this 

case over the depth of the channel: 

Mean direct stress in x direction = Tx  = k2Tz  

= Pz 
. Pri 	Pr2 	

(k3 + kl) 

2 

Therefore the mean hydrostatic stress is taken as: 

1 	
k3  + ki  

= 	 (k + 1 + 	 3 2 	2 ) Pz  
5.28A 

Of course although the theory is solved in terms of dimensionless 

stresses, the degree to which material is compacted depends upon the 

actual hydrostatic stress. 	When Kawakita's formula (4.3) is used to 

determine the relationship between specific weight and hydrostatic 

stress, the problem can be overcome by specifying a dimensionless 'b' 

such that: 

b* = b w
o 
D 
	 5.29A 

and so by re-arranging Kawakita's formula 
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.11 	 r 	II 

2 	Pz 
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1 + b* pltz  w* 	— 
wo 

5.30A 
1 + (1 - a)b* 

'A5.2.2 Formulae for Numerical Differentiation and Integration 

For both differentiation and integration three point formulae have 

been used in the numerical solution. However in most instances the 

quantity subjected to these operations is not specified at regular 

intervals. 

If y = y(x) and values 	( yi, y2  and y3) are specified at xl , x2 

and x3, where; 

- x2 x1 

and x3  x2 

6 x1  

= 6 x2 

then if a quadratic form is assumed for y, that is; 

Y = Ax2  +Bx+ C 

and xi  is taken as zero for convenience, the coefficients can be 

obtained and are as follows: 

(Y3 - Y2)  (Y2 - Y1) 
A = 	X2  

	i( 
6x1 

B = 

 

(Y2 Y 1) 

	

6xi 	 (26X1  + 62(2) 

(6 x1 - 6x2) 

(Y3 Y2) 
6 x2 
	6 xi. 	(6 x1 	6x2) 

C = 	yi  

Having obtained these coefficients, derivatives of y w.r.t. x 

can be obtained since; 
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111  = 2Ax + B dx 

or the integral of y w.r.t. x can be evaluated: 
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xb  

y dx = 

fx 
a 

[ Ax3  
3 

Bx2  
2 

xb  

xa 

In addition interpolation can take place to give y over the range xi 

to x3 or extrapolation can be performed to give y outside this range 

of x. 
dk2 	dk2 	dk2  

In the analysis — dx 	ds (eqn 5.78), 	and 
47G 	

(eqns 5.52 and 
i 

5.53 ) are involved. Values of these quantities have to be found in 

the numerical solution given k2 at positions across the channel, that 

_is k2 as a function of x. 	Since the variation of k2  in the z 

direction is neglected, it is possible to write the last two derivatives 
dk2  

in terms of 
dx 	

such that: 

dk2 	dk2  
c 

dsi 	dx 
cos Ii  

dk2 	dk2  
—  ds2 	dx cos 12.  

dk2  
can be evaluated at the points where it is required using the formulae 

dx 

just described. 

In the numerical solution, integration has to be performed along the 

characteristics. 	Referring to fig 5.1A, certain variables, defined in 

eqns 5.52 and 5.53 , have to be integrated between points 2 and 1, and 

between points 3 and 1. To apply the three point system for integration, 

values of the appropriate variables at points 4 and 5 are also used 

and these in effect allow coefficients for the quadratic curve fits to be 

obtained along each characteristic. 	In fact, going back to the system 

• 
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with y = y ( x , for the characteristics solution an integral equi- 
x3 

vulent to f
x2
ydx is required. When the necessary substitution is 

carried out this quantity is given- in the form: 

y 

x3 
dx = fl(6x1,6x2)Y1 f2(6x105x2)Y2 f3(6x1/6x2)Y3 

]c2 

This is equivalent to Simpson's rule for integration except that the 

coefficients of yi,y2 and y3 are more complicated and the integral 

only applies to the second part of the interval spanned by the points. 

The unequal spacing between characteristics intersection points 

comes about because the slopes of the characteristics change across the 

channel. However their pattern is repeated along the channel so that 

as the solution progresses in this direction integration has to be per- 

formed with the same pairs of intervals between points. 	In the computer 

program therefore, the coefficients equivalent to fl, f2, f3  are 

stored to avoid generating them at each stage. 

Fig 5.1A NUMERICAL INTEGRATION ALONG CHARACTERISTICS 

/ \ 
/ 	 / \ 

/ 	\ 
■ 	 / 

/ 	\ 	 / 
/ 	 \ 	 / 	 \ 

/ 	 \ 	/ 	 St  / 	 \ / 	 \ 
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Notation 

In order to avoid the necessity of frequent reference to this 

section, most of the symbols used have been defined as they have arisen. 

In the discussion of previous work and where the work being presented is 

in some way connected with this, the original notation has been retained 

to a large extent. However, although this has certain advantages in 

preserving some convention in the appropriate fields it does mean that 

a few symbols have more than one meaning. 

Because of the large number of quantities which it has been necessary 

to define, it is inevitable that some symbols must have more than one 

meaning unless notation is to be rather unwieldy. Therefore, as far 

as possible, to avoid confusion unique symbols have been used for quan-

tities referred to in a number of chapters whereas less important quan-

tities tend to have symbols which are not unique. 

There are a number of symbols representing quantities defined in 

the text which it would be pointless to redefine at this stage. These 

are indicated by an * and are usually what amount to dummy or working 

variables. When a symbol applies only in certain parts of the work 

then this has been indicated, otherwise it applies throughout. 

A (and in subscripted form) * (2, 5, A5) 

B - 	(and in subscripted form) * (7, A5) 

C - 	(and in subscripted form) * (7, A5) 

also defined as (D-2h)/D (2, 5) 

and degree of compaction (4, A4.1) 

A, B, C - 	used in reference to diagrams (5, 7, 8) 

and as subscripts for mean radii (5) 

a 	compressibility constant (4), area (8), 

general coefficient in power series (A5.1) and * (A5.2) 
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b 

D 

d 

E 

e 

F 

f 

fl, f2 

compressibility constant (4), general coefficient 

in power series (8, A5.1) and * (A5.2) 

constant of integration (A5.1) 

outside diameter of screw, taken equal to inside 

diameter of barrel, also * (A5.1) 

compressibility constant (4) 

defined as (D-h)/D 

axial flight width (2), also used to denote strain, 

and e-strain rate (7) 

force term (2) and in subscripted form * (5, 7) 

used in a general way for functions of variables 

(5, 7, A4.1) 

used for functions of direction cosines (7) 
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fll, f12,  f21,  f22,  f31,  f32 	terms accounting for body forces 

G 
	

(and in subscripted form) * (5, 7, 8, A5.1) 

gravitational constant (5, 7) 

also used for describing functions of variables 

(and in subscripted form) * (5, 7) 

h 	- 	channel depth 

I 	- 	(and in subscripted form) * (5, 7) 

used in reference to principal stress directions 

JI, J2 	first and second stress invariants 

K, KT 	* (2) 

KI 	ratios between principal stresses for a loose 

material in a critical state (7) 

k 	- 	(and in subscripted form) used for ratios betweeen 

stress components (2, 7), compressibility constant (4) 

k1, k2, k3- 	used in a specific connection to relate respectively 

direct compressive stresses at barrel surface, across 

channel and on screw root to the mean stress along 

the channel 
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axial length along screw (2) 

1 	 channel width (5, 7, A5.1) 

in subscripted form as direction cosine (7) 

in subscripted form * (5) 

screw speed 

P 
	used in subscripted form as the basic symbol for 

stress. 	It is also used in unsubscripted form 

for pressure (2) and used to represent 5: 

(5.4 onwards) 

p 	- 	(subscripted) normally indicates that it is a mean 

value over the depth of the channel, however 

unsubscripted it has been used to represent hydro-

static stress (7) 

Pi P2 	pressures at beginning and end of screw section 

considered (2, 3) 

P1' P2' P3- 	principal stresses (7) 

Q 	- 	volumetric flow rate 

R 	- 	channel depth ratio h/D 

✓ - 	radial coordinate, also used for general term in 

power series (A5.1) 

✓ - 	effective radius of mean stresses 

s 	- 	flight width factor (t - e)/t (5) 

sl, s2 	lengths along characteristics 

t - 	screw pitch 

u - 	strain displacement (7) 

✓ axial velocity of material (2, 5) 

✓ volume of material (4), volume subscript (7) 

W - 	flow rate on a weight basis 

specific weight 



X 	coordinate in 6 direction at a radius of r (5) 

also used for a function of x (A5.1) 

coordinate across channel (5, 7, 8, A5.1) 

also used as an arbitrary variable (A5.2) 

Yls Y2 	* (5) 

coordinate into the depth of the channel when 

considering simplified channel geometry (7) 

also used as an arbitrary variable (A5.2) 

Z 	- 	coordinate along screw or cylinder axis (2, 4, 5, 7, 8) 

also used for a function of z 

coordinate along channel 

x, z 	used as general coordinate directions (7, A5.2) 

a 	conveying angle - angle relative to the hoop direction 

in which material moves along the barrel (2, 5, 7, 8) 

also used as a material constant in Drucker's generalised 

yield function (7.1) 

0 	angle of shear plane relative to the horizontal (4) 

Yip Y2 	angles which characteristics, respectively of the 

first and second kind, make with the direction (5) 

used as a limiting ratio between stresses (7) 

6 	used to denote a difference between two quantities (A4.1) 

6 	hoop direction coordinate 

A 	plastic parameter (7) 

also coeffiCient of z in the argument of the 

exponential function desCribing changes in that 

direction (8, A5.1) 

p 	- 	used as the symbol for coefficient of friction, 

subscripted forms are used as follows: 

b 
	coefficient of friction of polymer against barrel 

Ps 
	 screw (root) 
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coefficient of friction of polymer against flight edges 

internal coefficient of friction 

Poisson's ratio- 

11Q 	— 	dimensionless volumetric flow rate 

internal friction angle 

used to denote a summation term (A4.1) 

7 	used to represent T:zz 	(5.4 onwards) 

general helix angle of the screw relative to the 

hoop direction, subscripted it refers to the angles 

at the following positions: 

01 	at the outside of the screw 

either at mid way between the screw root and barrel 

surface (2) or at radius T (5 onwards) 

03 	at the screw root 

angular velocity of material in the channel 

Other notation 	an * has been used in the text to denote a 

dimensionless quantity. However from 5.4 onwards 

the symbol has been largely discontinued to 

simplify the writing of the equations 
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