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ABSTRACT  

In this thesis the problem of ferromagnetic resonance line-

widths in metals is treated by methods which assume that the 

energy absorption from the electromagnetic field is carried in 

the material by spin waves. The linewidth is then explained in 

terms of the spin wave damping rates. In the first part of the 

thesis a discussion is given of this connection between spin wave 

damping rates and ferromagnetic resonance widths. Simple 

criteria are given for the calculation of the one from the other. 

The remainder of the thesis is concerned with the calculation of 

spin wave spectra and linewidths in metals and alloys using 

different models of magnetism and different damping mechanisms. 
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CHAPTER 1 

MACROSCOPIC DESCRIPTION OF FERROMAGNETIC RESONANCE  

In this chapter a discussion of the macroscopic approach to ferro-

magnetic resonance is given. Although the calculations of this thesis 

are microscopic calculations, the conceptual interpretation is still 

the same as in the macroscopic theory. The correlation function 

approach can in fact still be used, where 8(t)40(t), 11(0)› is 

evaluated by using the equation of motion for M(t). In the microscopic 

approach A(t) is expressed in terms of other operators. However, the 

conventional approach is used here, where the ferromagnet is considered 

as a continuous medium characterized by a magnetic moment M(r,t) which 

depends on position and time. In equilibrium M is independent of 

position. The fundamental concepts are that of the resonance frequency 

and the linewidth, the first of these including the effect of the 

demagnetizing fields. The macroscopic theory gives good results for 

the resonance frequency, but leads to an incorrect analytic form for the 

correlation functions. The microscopic theory places the calculation of 

damping on a more secure theoretical basis. 

The E uation of Motion for the Ma: etization of a S stem of 

Non-Interacting Spins (1) 

A homogeneously magnetized sample is characterized by a magnetiza-

tion vector M, which depends on the temperature and the external field. 

(This assumes there is no domain structure.) M is equal to the sum of 

the magnetic moments of the electrons in a unit volume, and is parallel 

to the magnetic field H. The magnetic moment of the electron E is 

giel,
•associated with the spin s, where u = 

Ys' 	= 2m c • 	M is 
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similar to the total angular momentum of a rigid body, and in analogy 

one can write the equation of motion for M as 

dU(t) _ 
dt - y 	ul 

where H is the external field, and M Li is the external torque. 

Consider an ellipsoidal isotopic ferromagnetic specimenl on which a 

weak homogeneous field h{h(t) « 

time with a frequency w, and acts 

Ho  },(which changes harmonically in 
is 

in the xy plane)Asuperimposed on a 

constant magnetic field go  directed along the z axis, which is sufficient 

to destroy any domain structure. If there is no skin effect, h(t) will 

be the same over the whole sample, and the equation of motion will be 

the same at each point of the medium. 

Let 

M(t) = uo  + m(t) 
	

1m(t)1 « Mo  k 

where 

H = H k 	 (1.21 -o 	o 

m is small and varies harmonically. 

Then, discarding terms of order m ^ h, from equation (1.1) axe has 

Then 

dM(t) 
dt = -yMo  ^11-y {m . Ho} (1.3) 

131,  = X . h 
	 (1.0 

where x is the susceptibility tensor, remembering that the equations are 

now linear, one finds 
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43  2 	Mo 
Xxx 	XYY = X0  Ito  2 _ w21 	

X0 = Ho  
0 

(1.5 ) 

from (1.3) and (1.4) 

X 	= 	Xyx = (-i) X0 2
Y 	

2 
wo = y Ho  

w -  
0 

(1.6) 

where 

mx =Xh+xh xx x 	 y 

my  = xyyhy  + xyxhx 	 (1.7) 

mz = 0 . 

If the electromagnetic wave is polarized, i.e. h± = hx  ihy  = ho e
±iwt 

and mt =m x imy 

w o  m+ = X+ h+ = X o wo - w 
h+ 

(1.8 ) 

= X_ 
wo h  

= X o w 	w 
O 

This analysis is only good for w well away from wo, but does indicate a 

resonance near wo
. To make sense of the analysis one must include the 

energy loss processes. 

Effective Internal Field and the Resonance Frequency 

The various interactions in a ferromagnetic metal can be taken into 

account by assuming that the spins responsible for ferromagnetism precess 

not only in the external field Do, but in an effective field Deff  com-

posed of an external and internal contribution(1) 
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dm(t) 
dt - y {m(t) ^ Heff} 	(1.9) 

Heff - Ho causes the resonance frequency to shift relative to wo. In 

a state of thermodynamic equilibrium the direction of M coincides with 

Heff' whose magnitude is determined by the free energy per unit volume F 

aF 
H
M = - 3M 

H
0 
 = H = 0 	(1.10) 

In this case the components H and H
() 
 of the effective field are absent. 

The equilibrium orientation of the vector M defined by 60  and 00  can be 

found from the equations 

aF _ 
36 - 0 

-2> 6
o exists 
	

00  exists 

By examining oscillations about this position one can then find an 

expression for the resonance frequency(2). 

The Effect of Demagnetizing Fields on the Resonance Frequency 

These arise because of surface magnetization. The field inside the 

sample is not Ho, but Ho  minus the field due to surface magnetic charges. 

For a general surface of second degree with principal axis parallel to 

the x,y,z axes the demagnetizing factors are N x  ,N ,N Z. The Heff is 

given by 

(HE) 	= - N mx(t) 
 x 

(HE) = - NY 
 m 
Y y 

(HE) 	= 	Hz  -Nz  M (t) . z 
Z(t) 

 

(1.12) 
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Then as before let m(t) and h(t) = (hx,hy,0) be the oscillating parts 

of Mand Ii  

dm _ 
dt Y " (1.9) 

From (1.9) and (1.12) one obtains, and assuming m(t) = m(0)eiwt  

ionx = 1-yllm (11 - N M ) - M (h - N m )1 Y o 	z o 	o y y y 

iwm = 1-y1TM 
o
(hx  - Nx  m x  ) m x(Ho  - Nz  M o)1 .  

iwmx = (-I) -I INo(hx Nx mx) mx(Ho Nz 110)1  

x (iw)-11N -N M +N Ml+yMh 
o z o 	y o 	o y 

. . 2m
x 

= y2 M 
o 
 11_
x 
 (Ho  -Nz  MG  +Ny  Mo)-mxy21NxMo -H

o 
 +N

z
M
o
I 

1H -N M +N MI +iwyM h 
o zo yo 	o y 

-w2m
x 

= -
o 
+ (N

y 
 - N 

z
)1401{(Nx  - Nz)M0  - Ho}  y2  mx 

+ [Ho  + (Ny  - Nz)Mol mo  hx  + iwy Mo  by  

.*. x
XX
(w) 

X
o (1.13) 

11 ; (L4—)21 
tures 

1 

tyres = y 	+ ( Ny  - Nz  ) Mo) o 
 + (N

x 
 - N

z 
 ) 

(1.14) 

M  
am' Xo H

o 
+ (N - N )M 

x z o 
(1.15) 

This is still only valid for w well away from we  However, when damping 



- 6 - 

is included w
o is seen to be the resonance frequency. (t00 4:tor.as) 

For a cylinder 

Nx 	N = 271. : 	N
z 

= 0 y 

• . was  = y (Ho + 2w Mo) 

Sphere 

N
x 	

N = N
z 

= 0 y 

tyres = y H
o 

Plane (xz plane) 

Nz = Nx 
= 0 	Ny  = 41 

1 
was  = y {Ho  0:1 

o 
+ 4ff M0312  = y {Bo  Ho}2 

(1.16) 

Phenomenological Approach to Dampin& in the Equation of Motion for  

the Magnetization  

One wants to find an equation of motion for the magnetization which 

leads to the correct shape for the resonance absorption line. It is in 

the calculation of the linewidth of the resonance that the importance of 

ferromagnetic resonance lies. The idea is to calculate the width of 

the resonance resulting from relaxation mechanisms which one postulates. 

Then one may learn about the interactions present in the ferromagnetic 

substance. A macroscopic theory can often be an important guide to 

microscopic calculations. 



The relaxation may be caused by interactions within the spin system)  

(magnetic dipole interaction)l by interaction between the spin system and 

the lattice, etc. The presence of the different interactions can be 

taken into account formally by adding to the R.H.S. of the equation of 

motion a relaxation term which describes the damping. 

dt1 
dt 

- y En  A 0 	. 	(1.17) 

The vector R can be looked on as a total moment of friction forces. 

.dtThen M 	0, and IMI is not constant as before. The selection of R 
dt 

is a matter of educated guesswork. 

The suggestion of Landau is(2) 

dM = - 	A  Hi 	A 	
M A 11! A H1 

112  
dt (1.18) 

A characterizes the relaxation frequency. 

The length of M remains constant when in motion, reflecting the 

independence of the magnetization of a single domain sample from the 

external field at temperatures below the Curietemperature. The relax-

ation term characterizes the torque striving to return the magnetiza- 

tion to its equilibrium position. When H = H , i.e. no r.f. field, one —o 

obtains the solution 

Mx = Mp e
-t/4

cos wot 

M = M e-t/c 
y 	p 

	sin wot 

( 
M = M 1  - 14 P) e-21 z 	

( 

(1.19) 

where 
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= 	 
AHo 

is the relaxation time 

wo 
= y Ho  

is the precession frequency. 

The magnetization vector moves along a spiral and gradually 

approaches the equilibrium value. Widening of the ferromagnetic 

absorption line is due to the finiteness of the relaxation time of the 

transverse component of the magnetic moment. 

Solution of the Damping Equation (3) 

The equation of motion is 

= _ y  im 	_m 	{M H} 
dt 	1111 

Then 

(1.20) 

M = M 
ok + m(t) 
	

m(t) = Imleiwt 	(1.21) 

(1.20) and (1.21) give 

iwmx 
= -y1my

H
o 
 -M

o
h
y
1+ ya IHomx  -HxMo1 

iwm = o 	
-Hoy} 

x 	x o 	y o 	o y 

x 

Hoya 
iwm

y
(1 + 	= -y(Mh -mx

Ho
l+ yahM 

3.0) 	o 	y o 

-ylMh 	ya h 
o x 	x o 	yM o 

= - H ya 	H ya 
(i(041 +-4-] 	(1 + 0 lw 	103 (iw) 



Mh o x 
( 	Hoya 
1 + lw 

y2 H 2m  
o x  

iw( HoYa  1 + 117] 

H ya 

( 
... iwm 1 + 4-- 

y2H  = 
1W 

- 9 

y2H2 a mh 
o y  + yahM +yMh Hoy 	x o 	o y 

iw(1 + lw JJJ 

H ya 2  H2 	(y2 H m 
_012(1+  ? im 	H 

o 	o o  + iwya Moj hx lw x ( 	oy/ Mx  = Hoya 
1 + iw 	1 + -37] 

y2  Ho 	o 2  a M 

(1 

 Hoya 	+ iwy Mol by  

+ 

{- (02 H o2v2a2 	2Ho2  + 2iw Hoyalmx  

= {y2H02 	H0212a2x0 + iwya Hoxol hx  

+ fiwyH x 1 h o o y 

xxy(w) = 
iwyHo xo  

wr2  - w2  + 2iwaoya 

(1.22) 

(1.23) 

(1.24) 

. 	If was  = (1 + a2) y Ho == Wr 

W 2  + iwyaH o X (w) = r 	o  
xx iwr2  - w2  + 2iwHo

yal 

There is no longer a singularity at w = wr, only a peak. This expres-

sion is then true for all w providing (1.20) is true. 
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CHAPTER 2 

THE SKIN EFFECT AND FERROMAGNETIC  

RESONANCE IN METALS  

Simple Spin Wave Theory (4) 

As we have seen above a ferromagnet can be described by a magneti-

zation vector M(r). At absolute zero the thermodynamically stable 

state is such that M(r) = Mo, a vector constant over the whole sample.  

This state minimizes the exchange energy. 

The higher energy states of the system are therefore states of 

non uniform magnetization. Let us consider those states where m(r) 

is close to M o  , i.e. M(r) = Mo 
 AM(r) and such that only the direction 

- 	- - 

of the magnetization changes from point to point. 

Let us consider an isiretopic ferromagnet in an external field Ho. o 

The equilibrium magnetization Mo  is then parallel to Mo. A deviation 

of M from M
o 
 causes a rise in energy/unit volume equal to 

- l(M - Mo) . 1101 	 (2.1) 

and at the same time there is an increase in the exchange energy which 

is determined by the magnetization gradients, and is equal to 

A {ow )2  + (VM )2  + (VMz)21 
1M 1 2  

(2 .2 ) 

where A is the exchange energy interaction constant. 

The total energy of the non uniform magnetized state is from (2.2) 

and (2.1) 



ff A 	l(vm  x)2 	(VM )2  + (OM Z)2} 
V 1 %12  

If 

((ti(r) - Ito ) . H })d3r —o 

H
o 
 = IH 

o 
 lk 	Mx, , M << M

o — 	y 

M2 + M2 

M
z 

= 1404 

2M2  0 

(2.3) 

To quadratic terms in Mx  (harmonic approximation) 

(m2 + m21 

1 A {(OM 

1l
o 2M 

)2  + (VM )2} + x 	d3r  

1 %12  

Put MI  = M
x 
± iM 

y 

f
1 A  1VM+VM- 	

2M
1 + =:)—M+M-1 d3r (2.5) 

Imol2 	o 

Defining new coordinates bk, bk  by 

1 

- 	
2pM )2  

M(r) = kr  ik.r 
e - K (2.6) 

M
+ 

One finds that 

(

i 
2/1Mo 	* -ik.r 
---7— r  bk  e - - 

IS 

H =(21M
Y1 k2 uHo bk  bk 	(2.7) 4  

K o 
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If then one wrote out the equation of motion in terms of the bk/s, the 

b
k
's would vary harmonically in time. Further, any motion can be 

expressed as a linear combination of these coordinates. This classical 

calculation concerns us only in the sense that it is a guide to a quantum 

mechanical calculation. The classical field M(r) must be replaced by 

operators g3(r) and instead of complex conjugate fourier amplitudes bk  

Al. 

and bk
* 
we introduce hermitean conjugate operators bk 	bk  3k  and bk. The 

commutation relations which define the statistics of the ferromagnons 

can be derived from those of the total angular momentum i. 

i 	= iei  - I j 	jk k 

Define 

 

i, j, k = 1, 2, 3 (2.8) 

A = f M(r) d3r = I 

 

.*.RAx 	xA y  -A 	ip A0  y  

 

(2 .9) 

f IA
y 
 (r)A (rt) - Ax(r')Ay(r)} d3rd3r/ = 	f 6(r-r') d3r er,  

The integrands must 

At(E)A(r') 

and using the fourier 

I")t:1 	- 1+0 

The Hamiltonian of 

r H 	= 	L 
k 

(2.10) 

be equal since this is true for any volume. 	Therefore 

- g-(V)At(r) 	= 	2111 1401 	S(12-1°) 	(2.11) 

expansions we get 

(2.12) 
k 	= kk' 

the system is then 

(2.13) k2  + p Ho] bkbk  
o 

64144 is *ion equivalent to a set of oscillators. 
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A 	 t*  Therefore nk  = bkbk  can take on any integer value nk  = 0, 1, 2 ... . 

The mean number of magnons with an energy ek  is defined by the 

Bose-Einstein distribution 

nk 
1  

ek/kT 
(e 	- 1) 

_ 	,2 (2.14) ek 	Mo 	
p Ho 

The possible energy levels are then 

E(nk) = 	ek nk 	nk = 0, 1, 2 ... 	(2a5) 

and all expectation values can be worked out from the fundamental 

matrix elements 

-is t/h 
(nk  ILk  (t)Ink  + 1) = (nk + 1)1  

e  

(2.16) 
I  le)  t/h 

(nk  11;+k(t)Ink  - 1) = (nk
)2  e 

At low temperatures (low energy of excitation) when only a few 

magnons are excited, this is an accurate picture of the ferromagnet. 

The individual magnons of given wave vectors k are termed spin waves. 

In this temperature range ferromagnetic resonance can be regarded as 

excitation of spin waves by the external r.f. field. The resonance 

frequency is then determined from the frequency of the most excited 

magnan(in number). The line width can then be determined from the 

decay time of the magnons. 

To see this explicitly)  let us examine the behaviour of a system of 

magnons with energy given by the formula above in a high frequency 

alternating magnetic field. 
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The energy of interaction with U(c) is 

= ihMer 
x x (2.17) 

This can be regarded as a perturbation causing quantum transitions 

between the energy levels. If ho  does not depend on r, then 

m 
+ = 	f (-i- hx 	(bk b k) 6 k,° (2.18) 

First order perturbation theory gives the transition rate as 

l <  1 I 14  1 2  >1 2  = l< lsk 	4 i 2k' '12 
	

(2.19) 

Then because of the form of W, k = k', and since t = 0 in the ground 

state at T = 0, only k = 0 magnons are excited. (At finite temp-

eratures this result would have to be multiplied by nk, as the pro-

bability that the kth mode is occupied.) Therefore only k = 0 magnons 

can be excited. The selection rule is thus Ank=0 = ± 1. These 

selection rules define the resonance frequency, because of the conser-

vation of energy, as 

tw = pH = eK=0 

Non-uniform spin waves can be excited as a consequence of two effects. 

Firstly there may be a non-uniform magnetic field. Secondly as the 

specimen has boundaries, those modes for which fMd3r is non-zero 

may be excited as standing mode spin waves. 

The first case is always realized in a metal ferromagnet in which 

the skin effect implies that the radio frequency field can only pene-

trate the metal for a finite distance. In this case the radio fre-

quency field is not uniform in the sample. 
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ho2 (2.23) 
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Then 

h(r) = 	h(p) 

h(p) = f d3r h(r) 

1 

W 	
12 

= 	
um
2 

(-22 	h(p) {bp 
	P 
+ b+1 6 

(2.20) 

(2.21) 

Therefore as W acts on the ground state, one can see that there is a 

finite probability for the excitation of spin waves with non-zero wave 

vector, in fact this probability is proportional to Ih(p)12. 

Let us suppose then that the magnetic field varies in accordance 

with the classical skin effect law, the penetration depth in the direc-

tion of the y axis being 6 (the ferromagnetic metal occupying the space 

to the right of the plane y = 0). 

(i+i) _r_____ 
6 

h(r) = ho e 
	

(2.22) 

• h(k) = h 6 	6 o 	ki.-0 (12 
75-  - i(k - f/Z 	
1 	

y 	6) 

1 

Then the most probable spin wave mode to be excited will be that of 

wave vector Iki = 6 . The resonance frequency is then shifted from 

wo = yHo to 

(.0
0 	

+ 	(11 2  
T  0 	M

o 
TS- 	• 

(2.24) 
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A Self Consistent Treatment of the Skin Effect 

In an analysis of ferromagnetic resonance one can take account of 

the skin effect by this simple method of assuming that the width is 

given by that of the spin wave of wave vector 6. As a better approx-

imation one can use the simple theory discussed below for improving 

the estimate of the resonance linewidth as compared to the spin wave 

line width. For completeness sake we shall also point out the poss-

ibility of "spin wave resonance", which is a direct effect of the 

exchange mechanism acting in the region of the boundary, and also to 

point out under what conditions it is realized. 

Let a ferromagnetic specimen in the form of a lamina be placed in 

a magnetic field H parallel to its surface. 

H = H + h eiwt 
-o 

(2.25) 

where Ho 
 is a constant uniform field and h is the amplitude of an 

alternating field of frequency w perpendicular to Ho. Assuming that 

the electromagnetic field is attenuated as ei("S'r), one can find the 

propagation constant k from the Maxwell equations for a medium with 

complex magnetic permeability u(w) = p1  - iu2  as 

k2 
= igirowp(w) 	 (2.26) 

c2  

where a is the electrical conductivity, and c is the velocity of 

light. The reciprocal of the real part of k is the penetration 

depth 6 where u(w) = 1 + 4ir x(w), and for a given specimen near 

the resonance frequency is given by (from equation (1.24)) 



iw  2 _ 0321 
u(w) = 	

a 
 

{wog  - w2  + 2iwAwl 

4)0 = .1"071o) 

B
o 

= H
o 

+ 4n M
o 

= H
o(1 + 4n x) 
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(2.27) 

(2.28) 

w
a 

= yBo  

and Aw is the total line width which includes both the intrinsic 

linewidth Awr and the exchange linewidth Awe. 

At resonance (w = wo
) we have 

1 	
/know u (w ) 

= k = ✓  	o 2 0 	(a) 	(2.29) 

p 2 
VI2(w) 	 w Aw (6

) 	
no 	IrMo Bo (4) 	(2.30) 

0 

If one ignores exchange effects, i.e. Awe  = 0, then Awr  is usually 

given by a function of k' and w, where k' is a wave vector, i.e. 

Awr  E Awr(si,w). Near resonance this equals Awr(k,w0), where k is 

1 
of the order 1- . Then from (a), (b) and this expression one can 

determine a self consistent expression for Awr. 

A Full Treatment of the Skin Effect: Justification of Approximations 

A more detailed analysis
(5)  leads to what has been termed "spin 

wave resonance". We will consider this briefly here, at least so that 

we can make clear under what conditions one may expect either kind of 

resonance to occur. In the above discussion the three equations 
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considered were the magnetization equation of motion and two of 

Maxwell's equations. The two Maxwell equations were treated first, 

using the connection between the magnetization and the field derived 

separately from the first equation. Under certain conditions, 

however, one should solve all three equations together. 

Put 

B = U + 4w M 

and the two Maxwell equations become 

Curl E 	- 	
fa 

l—) PT) “1 47r 
(2.31) 

Curl H = 47ra E c - 

where one has used J = aE, where J is the current density and the 

displacement term has been neglected, essentially because of the high 

value of a in a ferromagnetic metal. 

The equation of motion of the magnetization vector M is equation 

(1.9) 

dj(t)  _ 
dt - y {Mt) H 1 -eff (2.32) 

If the magnetization varies with distance as it does if the skin 

depth is small then one must include the effects of the exchange 

energy. The exchange energy density(6)  is equation (2.2) 

A r 
l(VM,c)2 	(VM )2  + (VMz)2  d3r = 	(M . Heff  ) d3r Mo2   

Then 
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DH(r) 	r 3 

aLieff = 3M
7  
. 	3r06 	am. 

-  
ara 

(2.33) 

One finds 

H 	= 2A v2 m 
ex 	m 2 

0 

(2.34) 

Including the normal kind of damping equation (2.32) becomes 

1 dM = 
y dt M {Hot  2A  V2 u 	A 

M ^ H} 
M 2 	AM2 - - 
0 

(2.35) 

where 

Y 	2mc 

One solves these three equations for a plane sample parallel to the 

xz plane, the air metal boundary being at y = O. The static magnetic 

field Hz is taken as parallel to the boundary. The applied microwaves 

are assumed to be plane waves normally incident upon the xy plane. 

The fields are decomposed into a static component and a microwave 

component so that 

M = Mo  iz  + m(t) - 

H = H i + h(t) o-z - 

E = e(t) . 

(2.36) 

The microwave components are assumed to be proportional to exp(iwt - ky) 

	

in the metal and --T , T 	Ihl 	<< T are assumed to be <<1. Ms 	Ho 
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The three equations can then be reduced to a system of three linear 

homogeneous equations for the unknowns y, mx, h . x x 

If one defines the following dimensionless quantities 

Ho _ 
• 41 L  1-M 	

• 

41M 	M
o
y 

oy  

e2  = A  

21N 262  

c2(2.37) 

K = ke6 	6 = 	 
(2ww0) 

these three equations can be written as 

(K2  - 1 - n)my  (ip + Ln)mz  - (6)kx  = 0 

(2.38) 

(i0 + Ln + L)my  + (K2  - n)mx  + (Whx  = 0 

8wie2mx + (K2  - 2i.e2)hx = 0 . 

In order that these three equations pcssess a non vanishing solution 

the determinant of the coefficients must vanish. This requirement 

leads to the secular equation 

K6  - c1  K4  ..: c2K2  - 3 = 	(2.3q) 

There are three solutions for K2, and therefore three solutions whose 

real part is positive. These represent waves whose energy flow is 

into the metal. (The other solutions would be needed only in the 

case where there are reflected waves.) If n is a label for the 

three solutions, then one finds 

mnx = uhnx 

m = vh ny 	n nx 

(2.40) 
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where u
n, vn are functions of Kn2  and c1" c2 and c3

. Then one finds 

that 

[ c K h  
enz 4naed nx 

hny = 	- 4w vn hnx • 

(2.41) 

The values mx'  etc., inside the metal are 
mx =mlx +m2X + M3x. These 

can all be expressed in terms of h 
lx 

 , h 
2x 

 , h 
3x
. Therefore for a given 

h 
ox 

 (in the air) one needs four equations at the boundary to determine 

h , h and h . The equations lead to an expression for Z = 
2x 	

3X 
	 hx y=0 

which determines the energy flow into the ferromagnet. The 
c1 2 

actual experiments are analyzed using uequiv 	
- Utz  - 21( 8co  . 

 

It is shown in (6) that an approximate solution of the equations yields 

_ n - Q2  + iPL + 2e(l+i) 
Yes*, - 
eviv 	- n2  + 101, + c(1+1)2]

2 

If there is no exchange effect, A = e = 0, and 

1  
4141/57

v  = 	- 	- ism.) ev.i 

(2.42) 

(2.43) 

a result we have (Ho « 4n Mo
), i.e. n << 1, obtained before by 

simply disregarding Maxwell's equations. If one disregards the 

phenomenological damping, i.e. L = 0 

n - n2  + 2e(l+i)  - 
Pequilf 

{n 	a2  + e(1+i)}2  

(2.44) 

Here the linewidth and shape are essentially determined by a and A, 

i.e. by the combined effect of eddy current dissipation and exchange. 
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The resonance field determined by the maximum in p (p = p - u2) 2 egalv 1 2 

no 
	n2 -?13 e 

i.e. there is a shift by 

8u cw 
0 

AH = 3 	c 

(2.45) 

(2.46) 

For the line width AH determined by the equation p2(no 	An) = 1112(no) 

one obtains 

AH = 	e . 	 (2.47) 

One may also note the important point that the line shape is as=ymmetric. 

The form for the phenomenological damping is symmetric. We show below 

that under certain conditions "ordinary spin wave resonance' can yield 

an assymmetric curve. 

The results above are valid for n, S2, L, e2  << 1. This means 

that this type of resonance occurs at rather small frequencies 
, 

(w
o 

= (M
s  H oy'), since Ho is <<Mo. 	It occurs in samples for which 

the saturation magnetization is reached at rather low fields. 

If the frequencies are much larger then one obtains ordinary spin 

wave resonance:7). In this case the equations decouple into a 

magnetic solution and two non-magnetic waves. 

If one rewrites the secular determinant for K2  in terms of 

K'2  = K2  n, one obtains the following form if L = 0 (damping is 

neglected) and 

K'6 	104(n - 1) - 02 K'2 	n2n 	21e2 n2 = 0 (2.48) 
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The approximate solutions of this equation are 

K12 =2ie2 - n 	 (2.49) 

which is the solution obtained from Maxwell's equations with 

permeability I. This solution has m
x  = my  = 0, and is non magnetic, 

and 

K'2 	= ± SE 	 (2.50) 
2,3 

Ho  . • 	= k2 	A 	+ 
4m14

s
y 2irM2 	41.14s 

= y k2  A 2  
+y Ho Ms 

(2.51) 

which is the dispersion relation for a spin wave. 

Absorption from  the Microwave Field in Terms  

of the Correlation Function  

In Appendix (3) which demonstrates the connection of xn(k,w) or 

Xu(r,r0,w) with the absorption of energy, it is shown that the mean 

rate of energy flow at frequency w into the sample is, equation (E-6) 

dfoi„ 
aAwl = 2 f dr f dr' h(r) 4m(r,121: w) h(r)w 

(2.52) 

-y(l+i)d 
If one considers a semi-infinite sample with h(y) = e 	where 

d is the skin depth, one can calculate this expression by fourier 

transforming the x and z variables and Laplace transforming the y 

variables using the convolution theorem. Then 



Then 

+00 	r(k , w) 
277 I 	dk 1h(k )12 

y  y 	(w Dk2) + r2(k , 
= dt 

—Co 
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+co 
dt 	= 4 — I dky  lh(ky  )12  X"(1ky  1, 2

7r  
(2.53) 

where one has assumed that x(r,r',w) is a function of r-r'. 	If, 

for instance 

x"(1k1, w) = r(10, w) (2.54) 
(w - Dk2)2 	r2(1k1 w) 

(2.55) 

= 27r 

 

11101 2 	 roc , 

y 
dk 	 • 	 

y - — 
1)2 	(12 	(co - Dk2) + r2(k 

Y' 6 + 6 

 

-Co 

 

(2.56) 

A> I This expression shows that if r(kY'  0 • — then 

a 1h 
o 	6 

1 2  r(1'  w) —(w) = dt 
(w - D(1)2) + r2(1, 

(2.57) 

1 which yields a symmetric resonance curve. 	If r is <<  - t-s- however 

1h01 2  

(A- 412  + [1]

2  
(2.58) 

and the resonance curve is astymetric with width determined by the 

skin depth. This corresponds to the two cases treated above. 
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CHAPTER 3 

SPIN WAVES IN THE ITINERANT MODEL (7)  

The Paramagnetic State  

Spin waves and ferromagnetic resonance occur only in ferromagnetic 

systems, but in order to understand the structure of the ferromagnetic 

state one has to consider the properties in the paramagnetic state. 

The approach considered here can be taken towards both ferromagnetism 

and superconductivity. It consists of searching  for those correla-

tions which become singular in the paramagnetic state. For the ferro-

magnetic state these correlations are then considered to be non zero in 

a re-evaluation of the Hartree-Fock theory of the system where one uses 

the same Hamiltonian. This involves modifying  the decoupling  pro-

cedure in the usual Hartree-Focht procedure. From this one obtains a 

Green's function of modified form which describes the thermodynamic 

properties of the system, and a second order Green's function which des-

cribes the transport properties of the ferromagnetic state. 

The ferromagnetic state is one in which there are strong  electron-

electron correlations, and these are caused by the electron-electron 

interaction. One can approach this through fermi liquid theory which 

is philosophically more satisfying, but here we shall use the independent 

particle theory, with Bloch or plane wave functions for the electrons. 

We approximate the electron correlations by a zero range on site repul-

sive interaction. Then the Hamiltonian of the system is 

eP P  
a+ a

P 
 + I aI+1+ 
	(3.1) 

The ground state isl in the paramagnetic stateia state where all free 
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electron states are filled up to pr  = p, where 11 is the chemical 

potential and pr  is the fermi momentum 

3 _ N 
V 37x2 h3 PF - (3.2) 

N is the total number of particles 

V is the volume of the system 

and at finite temperatures (as must be in the paramagnetic state when 

there can be ferromagnetism) the electrons are distributed according to 

1  n 
P 	ft t egep  - 

(3.3) 

We shall treat systems where Tc  « TD. Tc  is the Curie Temperature 

and T
D 

is the degeneracy temperature, andAshall not consider weak 

ferromagnetism. 

Under the effect of the electron interactions the second order 

Green's function G(x,x') = <TIT
t 	4- 
(x)$+  (x)11) (x1 )17)(xl)j> develops a 

2  

singularity in its space and time fourier transform. This indicates 

that this correlation function is finite over large distances, and that 

there is an instability in the ground state of the system. This 

correlation function is related to the correlation function 

<TIM(r,t)M(10,t')1> and hence by the fluctuation dissipation theorem 

to the generalized response function. So let us consider this function 

as it proves more convenient as it has a physical meaning. 

If one considers the response of the system to an external magnetic 

field which varies both in time and space, h(x,t)i  then the induced 

magnetization in the linear approximation is given by, 

<Ma(r,t)) = f d3  x°1  j dt' 	xa13(x,x',t-t') 11/3(x',t') 
6 

(3.4) 
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where, 

x(*,t) = i e(t) <0(x,t), le(o,o)7> 	(3.5) 

where the operators and states are calculated in the unperturbed system. 

As expected, the linear response is determined by the unperturbed 

properties (correlations) of the system and vice versa. Further, if 

one introduces a complete set of states in between the A operators as 

is needed for its evaluation, one can see that this function samples 

all the excited states of the system. If there is a state amongst 

these that is a stationary state of the system, then this state will 

give the main contribution to this function at that energy. This is 

indicated by a pole in the fourier transform of this response function. 

Looked at from this point of view, the form of the response function 

can tell us something about the excited states of the system. Elsewhere 

we shall discuss it as describing the absorption of energyl but in absorb-

ing energy the system has to transfer to states of higher energy. 

Now in the non-interacting limit where 

€ at  
0 	 p p 

a p  (3.6) 

the excited states are all single particle excitations. The response 

function is in this case given by 

f 	- f 
p+p 

4(4))  = 	
q 

TE --  - e - w -39) 
P 	p 

(3.7) 

and is as expected a sum of contributions from all the single particle 

excitations with due allowance for the pauli exclusion principle. 

On considering the correlations one finds that the most important 

contributions come from coherent electron-hole scattering. 



Then 

0 xs 
- I 

= Iv(c
F
) (3.10) Lim 	X (w) = X 

q -* 0 

w 

-28- 

Then 

X0(w) 
t(w)  - 	 • 

{1 - Ie(w)} 
(3.8) 

In the limit q -+ 0, w 0, one has (taking the limits from right to 

left as the order is important) 

Lim 

q 4  0 

W 4  0 

Im x044(w) = 0 	 (3.9) 

o, 
RA X

q  (w) = v(eF) The density of states at the •  
Fermi level. 

 

One can see from the above that x (w) is singular when 1 = Ix (w), 

and since R
e Xq(w) is a decreasing function of q and w, a pole occurs 

first at q = O. Therefore, one would expect the new ground state to 

be a uniform one in space (i.e. all spins aligned). One considers 

w = 0 because one is looking for a stationary state. So when I = 1, the 

system becomes unstable, and a new state is formed. If X(q) is 

large for q = 0, X(r) has a long range part. Now at large separations 

<M(r) M(r')> = <M(r)><M(r')> 	<M(r)> is not zero and one has a 

finite magnetization vector which characterizes the ferromagnetic statef. 
-<till,(x) (Y)> 

Therefore one can no longer consider <0t(x)*(x)>A to be zero in the 

ground state. Since I depends on temperature through ;?(0,0), the 

condition I = 1 yields the Curie temperature of the system (AppendixC). 

With this assumption in mind one can do a new Hartree-Fock 

calculation on the above Hamiltonianiand we shall do a rather crude 

form 
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H = 	c at as 

P 
Ps  Ps  P s 	X S 

(3.11) 

If n'  is replaced by its average value 

H = 	e at  a +11<i
I+

>ri
I+ 

+
I+

<T1
I+

>  
P P P p

s
SSSZ 

E 	= ep  + I <4> 

(3.13) 

E 	= ep  + I 
<Trt.> 

 

and where u = Epf.t. = Epf+ . Therefore the two bands are split. 

There is now a direction in the problem, i.e. the direction of quanti-

zation. Therefore the response function is a non-diagonal tensor. 

p+ 
 f
+t  1 	f 

(3.14) X0
+ 
 (c190 = iT/ e 	-e +A

q
-w- in} q p+q p 

I A is the exchange splitting energy = I 
1011 -(4 

+- xo  (q,w) now has a gap in its singularities, i.e. there are no excited 

states of the system in this region. At q = 0, the gap is A. 

For the interacting system 

f
(q,w) - 	

x11:7-02.,03) 

I - I 41--(q,w) 
(3.15) 

There is now the possibility that a pole may appear in the gap, and 

this pole corresponds to the propagation of a spin wave. 

(3.12) 
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CHAPTER 4 

SPIN WAVES AND FERROMAGNETIC RESONANCE 

IN A COUPLED LOCAL MOMENT-ELECTRON SYSTEM  

As an introduction to a two band calculation and in its own 

right as a treatment of ferromagnetic resonance in an alloy we will 

briefly describe a calculation on the spin waves of a local moment-

electron coupled system(8). The system as a whole is assumed to 

be ferromagnetic. Take as a specific example iron in palladium, 

where the spins on the iron atoms are treated as localized spins, 

coupled to the iitinerant d holes of the palladium. 

Let 

K(x
I  - xJ' t-t') = - 8(t-t')<Ca-(xI" 

t) a+(x
J' 
 t'8> 

(4.l) 

be the susceptibility function for the combined system, where 

aI(x,t) = e-iftt  81(X 0) eiftt  

e(x) = i(6x(x) ± i'(x)) 

(4.2) 

and ax  and 	are the components of the Pauli spin density for the d 

band holes 

, . a(x  ) = 1 r  c+ 	6. 	e iq.x  u 3  
0 J 	ii

is  L 
	k+q $ k,f3 	-a  .,a.  a 11 

where N is the number of atoms, and 

= pd AINT 

(4.3) 
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the hamiltonian in the absence of the perturbing magnetic field. 

The interaction is that of a short range exchange interaction 

between the spins on the iron sites and the local spin density of 

the d holes around each site 

j  i(Xie) Si 
	 (4.4) 

where J is an energy parameter measuring the effective exchange 

coupling. For i
pd 

one takes a short range interaction, single 

band model 

Al. 	A 	r A 	A 

pd
k s

K 
C
K a 

C
K a 

+ I L n. n. 1+ 1+ 
- 

A 	 iq.Xo.A  
1 N. ----sic+ A 1+ = 
	

4 e  k,q 

(4.5) 

(4.6) 

K(x,t) in fact only represents the itinerant electron part of the 

response of the coupled system to the external forces. The complete 

response4n each calculatio4isinot calculated, but one uses the fact 

that the spin wave eigenfrequencies are given by the poles of 

+co 	-iq.(X.-X.) 
K(q,w) = 	dt 	 1] 

e 	1 3  K(X.-X.,t) 
ij 

The partial response function has the same poles as the complete res-

ponse function. In the calculation the random phase approximation 

is used to decouple the equations of motion, and only the spatially 

uniform contributions to the averages is used 

_co 

i.e. <C+  
k+q+ 

C
lc+
> = 6

qo nkt 
(4.7) 
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A 	•sa 
Further S.

z 
 is replaced by <S

I 
 ? and sums over the impurity sites 

arereplacedbyanaverageovertheensembleofimpuritysitesX.re 

Then it is found that(8) 

K(q,w) 
X o(g.w) 

2
ci
J2R' N o. w. 

1 - {I + ro jx (9, ) 

(4.8) 

n - nK+.  1 	0  
x
o
(5)w)  = / N lw - (c -c6+q) - IR - 2JR'I 

(4.9) 

R 
= N nk+ nkt 

N
Fe R' 	<Sz> (4.10) 

IR + 2JR' is then the effective splitting of the d band due to 

the molecular field of both types of spins. 

If an effective frequency dependent interaction constant 

Ieff(w) 
 = I + 2J2R' 
	

(4.11) 

is introduced, then K(q,w) is seen to be analogous to that of a pure 

ferromagnetic metal. We may rewrite it in an alternative form. 

Introducing the exchange enhanced susceptibility function 

Then 

x(q,w) = 	X0(44w)  

If - IX°63401 
(4.12) 

K(q,w) 	(JR - (0) x(q,,w)  

JR - 2J2R' x(1,(0) - w 
(4.13) 



K(q,w) 	(JR - w) x(low) 
2J2101x(0,0) - x(1001- w 
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Also 

Then 

Lim 	f R 
w+0,q40 X`514*  = 2JR' = 0(0,0 ) 	(4.14) 

(4.15) 

The poles of K(q,w) then occur at 

= 2J2Rix(0,0 ) - x(q0)1 
	

(4.16) 

There are now two poles for each g, which is typical of a system of 

two coupled oscillating systems. 

In the limit q = 0 we get 

w{JR + 2JR' - wl = 0 	 (4.17) 

(Jac 
= 0 acoustic mode 	(4.18) • •  

wop = JR + 2JR' optical mode 
	(4.19) 

The frequency should be contrasted with the exchange splitting A 

of the magnetized d band which is 

A = IR + 2JR' . 	 (4.20) 

..1,401.46,"" 
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Spin Wave Frequencies at finite q 

One has 

(WO) 
K(4190 - 	X 

 

f 	2J2RI 	o 	, 1- tI + 775701 x (q,w) 

Therefore the poles occur when 

1 = Ieff(w) x0(5,w) 

(4.21) 

(4.22) 

1 n - nK+q+  
1 2 ieff"  K w "" (9(41  eml.) IR - 2JR'j 

(4.23) 

where 

A = IR + 2JRI . 

One expands the right hand side in powers of q, to obtain an expres-

sion near q = 0 

(cK cK+q) -1  eff(w) 1 (fly, 	ni(.1.0.)t1 	- A 1 = 371=ATo 	N K  1•1 

I 	(w) 1 eff 	y N K  (nv, - ni(+0-)  

	

I (0 	(n + n )(1.Vk)2  e(k) 
eff 	K+ k+  

3;777' 	 (w - A) 

	

ff(w) 	(nit  - nk+q+)(i;ve(k))2  
	+ 0(e) 

(to  _ 4)2 

(4424) 
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1 Multiplying through by (w - A), and using TT (nm.  - ni(414,) = R, 

one can combine the L.H.S. with the first term on the R.H.S. to 

give 

(n 	+ n )(q.V )2e(k) 
w(wop  - w) = Ieff(W) (JR Oft / 	-  

k 	(w - A) 

(nKt 
- n

K+q+
) 
(q.W19)2  + 0(q4)1 

K 	(w - A)2  

(4.25) 

and using e(k) = e(-k), and assuming cubic symmetry, one obtains 

1 2 	1 f 	 (nkt nk )  
w(wop - w) = 	q (JR - w) IT 	ek  (_1)(w - A) 

 

(nKt nK+) 
 (v e )21 

(w - A)2 	K  
(4.26) 

For the acoustic mode w e 0 

w
ac = Dac 

q2 

 

(4.27) 

(n 	- n )4 
1  J.  2.111 	eK(nio  + 	- (VK 	A  D

aC = 	
, 12 	K.4. 	Kt  

3 w N 
op K 

(4.28) 

Damping due to Impurities (when the d band is Ferromagnetic or Paramagnetic)  

In the form for K(q,w), x°(q,w) can be the susceptibility for 

exchange enhanced electrons with or without impurities. Further, 

when there is a magnetic field on there can be spin waves present 

above T
c
. 
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If I is large enough, then the itinerant electrons are in the 

ferromagnetic state, and if there is impurity and spin orbit scattering(9), 
aut. 
and from equation (A.44) 

ed(cl,w) - R 

wo - IR - pH - 2J12' + 	 + B w 	i 
L 3 382, 	1q2 

1 
(4.29) 

If q = y where y is the skin depth, then this has the form 

ed(ci,w0) - R (4.30) 

 

iw' - IR - 2JR' + 
T
2  

1 	4 i + ImB1
,y2  

J 361/ T2 	1 
(4.31) 

where 

w = wo pH - ReB1y2  

is the resonance frequency of the electron system. The poles of 

K(q,w(I)) are given by 

2J2R'  = (I + (JR - w t)] f 
0 	14) ■ IR - -JK 	} 

T
2  

(4.32) 

0 = w(w' 	2JR' - JR 
o 

JR + 	+ 	— 
T
2 	

T
2 

{(2JR' + JR + L)2 
T 

4.J2R2(  1..421i 

wo = (2JR' ) t JR + 2 T 2 

' 2 2 

(4.33) 



2J2R' 	(-1)14 iYl} 1 = 	+ 
IJA - 	wl] {w 	- w

L 
- IA + iy'l 
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One should remember that 1 --- is a wt.  = uH + 2JR'. 

01QM 
In the case where N(0)I :5 1, and the itinerant electrons are 

strongly paramagnetic. 

(A + 
o 
X (q 	- 	 d 	- A + iy ') 

From equation (A.34), where 

 

(4.34) 

-= 	D  
3T 1 	

,..2 
 1+ir 

r = ITA 

 

yl = N(0)1' 	and q  = y 

and in the paramagnetic region 

w
L  A = 	 w 	= 1.1B H 1 - I 

• • A = tot,  + IA . (4.35) 

The spin wave poles are again found from the expression 

(4.36) 

- w - IA + iy° 	2J2R' - IA + iy/I + 	(-A + iy1) 
(JA -a0 

col = w - uH 	wL  = uH + 2JR' 

2  w -0)1, 	jyr(1 _ 1) _ 2J11 1  
(JA 	(-A  + iy i1)  

&(i'- 2JR' - JA)- iy /(1 - I)) + iy' JA(1 - I) 

= 2J2R' iyi 



iy(w' - WL) 
Im x(q,w) = 

(w' - 	)2 	iy2 
(4.41) 
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w12  w'(2JR' - JA - 	- I)) 	iy‘{JA(1 - I)} = 12J2111.y1 

(4.37) 

It may at first sight seem surprising that spin waves should exist 

above T.  But when there is a magnetic field on, which splits the 

fermi surfaces for up and down spins, as long as I is finite there 

is an additional splitting due to the exchange interaction. The 

single particle excitations then start at wL  + IA , whereas the 

resonance mode starts at wL. 

One can see this in detail by looking at the one band susceptibility 

(1) With a magnetic field: 

-A iy  
w' -wL -IA+ iy  

(4.38) 
I(-A + iy)  1 - 

w
, 
- 	- IA + iy 

-A + iy  
w' - w + (1 - I)iy 

(4.39) 

The resonance then exists and starts at w' = w
L 
. 

(2) No magnetic field: 

Then w
L 
and A are zero. I 0 0, and 

X(c190 : 	
iy 

" ice - (41,  - (1 - I)i)(1 
	

(4.40) 

which is not a resonance at all, and is zero for 

y =0. 
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In case (1) the resonance peak height is given by A(H) the magnet-

ization, so the height of the resonance is much reduced from the 

ferromagnetic case, and is much broader because of the diffusion 

damping, which is however reduced by the (1 - I) factor as one 

approaches T0  from above. 

Discussion of the Results of Damping Calculations  

From equation (4.33) one can find the width of the resonance 

for the acoustic mode. In this case the mode has a frequency 

wo = pH 	at q = 0 • 

. 
If i

2 
	
IT  

— is small, i.e. I-
2
1 < 1 , then 

1  

wi2 << w t 
0 	0 

and 

w' - 0 

JR 1
2 (4.42) 

  

 

(2JR I  + JR - 
1
2 

 

and 

JR — (2JR' + JR) 
T 

r - 	2 
 

{(2JR,  + JR)2  + (1-12} 
2 

(4.43) 

is the width of the acoustic mode. It may be noted that the 

condition R << R' can not be used to simplify the calculation as 

R'. If 2JR' >> 
1-- then 

1
2 	

T2 
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r 

Liu% 
n, 1 

— 

2 (4.44) 
(2JR' -I- JR) 

which, if H« V gives 
R « RI 

r = 
JR  . 	w  1 +1 JRuH 4 1 	(4.45) 

2JR' . a dk  

where t
I 
is the spin orbit scattering length. In a pure ferro-

magnet without magnetic impurities JR is replaced by uH, and the 

last term is missing. 

The case when the d band is nearly ferromagnetic can be worked 

out similarly. 
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CHAPTER 5 

SPIN WAVES AND FERROMAGNETIC RESONANCE IN A  

TWO BAND MODEL OF A METAL  

Two Band Calculation  

If one considers a pure metal with two bands an s, and a d band 

say, one can carry out a calculation of the response along similar 

lines. One considers each band to have its own spin density, and 

each to have its own response function. Let us consider the spin 

waves to propagate in the d band. The s band can then be either 

paramagnetic or ferromagnetic. 

One looks at the response of the d electrons, as the spin waves 

of the whole system appear as poles of this function. 

One calculates the function 

K(x - x', t - t') = - 0(t-t')<P;(x,t), 51)-(xy,t')1> 

(5.1) 

where 

° 	
1 

4  
v  6+ 	i9.1E a 	

(5.2) D(x)  = N
D kq 

d k+q a
es
dkO e 	-a$ 

a 

is the d band spin density operator. 

Then, using the heisenberg equation of motion for the time 

dependence of an operator, one has 
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3Kqt) = e(t) <W6+ 	(t) 	(t), g 1, at 	d k+q+ 	d 

x 6 	(0) 6 	(0).] d 	ti+ (5.3 ) 

- 6(0 	c <
k+q,k' Cd k'+q'+ k+ 	x'+ql,k6  k+q+ c .1> 

(5 .4) 

where 

K'(t) E 10(k,10,qq') = e(t)ge 
d k+q+(t)(t), 

Cd 	(0) Cd k,+(0)j> 

is an auxiliary function from which Ki(q,w) can be calculated, this 

being  the fourier transform of K(x,t) (where the label S indicates 

that the fourier transform is a different function.) The Hamiltonian 

for the d band is taken as 

H
D 	+ I 1 nd nd + J 	d3x as(x).ad(x) eka ed ka Cd ko 	D 	I+ I+ 	DS k a 

The contribution from the commutator is calculated in the random 

phase approximation, again picking  out only spatially uniform commu-

tators, and further replacing  the operator as by its thermal average. 

Then 

ed 	di 	D 

li at 	1 	ekl 	L (rilet nkfl+) 	2j5D<az1V(t't''qq't)  D lc" 

= 	
x k+ 	n.+q+ 	

ID  
) {d(t) + 	I K(k",k',q,q't)} 

D K' 

JSD y <re e(t) 	
Lsk+q+ 	

c 
s k "D K1 .1 	1 

(5.5) 

	

1 	
Cd c

d JO+to) 
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In order to express the time dependence of the correlation function 

involving the C: Cs  operators, one has to calculate its equation 

of motion within the r.p.a. 

For the s band one uses the Hamiltonian 

Hs 	
k
V 
a 

Cka 
I's  C

ka  
s e

ks  
s  + J

SD  d
3x as(x) . ad(x) 

(5.6) 

 where one adds on the term I
s 

L n
It 

n
I+ 

if one wants to consider 

the s band as magnetized. One obtains 

11 a  - {csk 	- es  } - 2JSD d  <az>) Y(k
1 
 ,q,t) 

	

at 	k 1 	1 

jSD ins 	ns 	L r N
s 	

k
1
+  q+ 	k f

t 	K( k
2 	

k/ q q' t) 	(5.7) 
1 K - 

2 

where 

Y(k1* k' q, 4'9 t) = 6(t)< CCs s k +q+(t)  

	

s k 	* 
1 	1 

X 
 Cd kl+qlfd 10+(0,> (5.8) 

In order to solve these coupled equations of motion, the fourier 

transform of Y and K' are introduced, Y
1 
 and K1. 

The above equation then becomes 

{w 	( 	f - sk s  ) - 2JSD
<a

d
>1 Y

1
(k

1, k', 	q', q, q 	w) elsci q 	i  

J
SD r s 
N 

in
k +q+ - nk 	 K 	k" q q" 'C) 

	

 1 	1 k2 

010 	•IY 	Air 
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Y (k k, q, q',  w) = JSD 0 xs(q,6 )1  K(k2'  k', q, 
k2 	(5.9) 

Further, the equation for Kl(k k' q, q', w) is 

(w - 1401  - 	- IDRD  + 2JsDRs) Ki(k, k', q, q', w) 

/ d 	
n:11 	j + I ind  - 0_1.00.1 	KI(k” ky q, 	w) Inkt 	K+01+ 	d kt 	K 

S, 	r 
Xokcl$OL K1-Oc2' k', q, q', w) JSD (5.10) 

k
2 

where 

R = I ( d_d )  _ 	 > 
d 	k  nkt sk+ - ad 

(5.11) 

1 	s t 
	k R 2  N L (11k  - ns+  ) = 

<o2> 
s k  

Now 

1 r K(i' 	= 	L 	K (k k', q, q' N 	$ $ $ 
D k k' 

(5.12) 

K1  (q,w) = 
o(.3$1.0) (5.13) 

I - 4(q,w)II 2,11d  X:(03,0/ 

where 

nd 	d - n 1 	kt k+q+  
X (i,w)  yrE A d

+q
i 

d k tw tc-k  - ck-  f - IRd - 2JSDRS} 

(5.14) 
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and 

ss nkf  - nk41.4.  
X0(9,m) =  

s / k iw - les  - es  1 - 2J R_} k+q 	SD I, 

(5.15) 

Spin Waves at q = 0  

If an effective frequency dependent interaction 

I;ff(w) = I + J1D  x:(q,w) 	(5.16) 

is introduced, then K 
1
(9,w) is seen to be analogous to that of a pure 

ferromagnetic metal. 

For q = 0 

x:(q=0, to) — 
Rs (5.17) 

(w 2JsdRD)  

and 

4(q=0, 
Rd (5.18) 

 

(w - IR
d - 2Jsd

R
s
) 

The spin wave frequencies are then given by the solutions to the 

equation 

—Rd 	 Rs 

— a  

I # J 

	

w - IR
D 

J
SDRs 	SD w - jSDRI 	

(5.19)
] 

	

w(to - JR - JRd) = 0 	 (5.20) 
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. at q = 0 	wac = 0 

(5.21) 

wop = J(Rs + Rd
) 

At finite q the situation is more complicated than before because 

Ieff depends on q and w. 

For the calculation of the spin wave spectrum at finite q, 

one has to consider the eigenvalue equation 

1: = (I t J2  x:(q2w) x(q,w) 
	

(5.22) 

nd 	d - n • y  4t  
(w - IRd - JRs 

(e - c 	) 	-I 
K 	K+.41 n • - ns 

(w 	R IRD  - J s) X 1 + 12 	Kt 	K+0  

K (w - sdRD
) 

x 1 - (5.23) 

  

R
d 	

J2R 
oio 	I 	= (w - IRD - JsdRs

) (I + (w 
 JR d)

• 

	+ Terns 0(q2) 

(5.24) 

w(w - JR - JRd) 	
(ns  + n. ) 

J2 r ri 2 s 	K+ 	fr, 12 V e 	
n - n 

K 	K K (w - JSDRD)  "K 	
" " 
(w jSDRD)2  

tieff(44 ())(w  - '7SDRd) 	( 	IRd  VK 	( (11-1 	) d sdR s)  

(Vk  e
d)(nd - nd ) k 	 +  

(w - IRd JsdRs) 
(5.25) 
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Therefore the acoustic mode has 

w = D' q ac (5.26) 

D' 	= 	J2 	(n5  + ns  ) 
ac 	j(R 	R 	(1 	es 	 + 	

n - n  

S 	D K 	K 6 (w JSDRD) OK  eisd2  K+ 	
K+  

1'4)  jSD D)  

	

d 	d 
(I JRd  + J2R

s
) Ti v2 cd  (nX+ + nK+) 

JCRs  + RD) 	K K CW - IR,a  -  JSDRS) 

op 

v ed(nd 	d ) 
K K‘ K+ _ n K+'  (5.27) (w - IRd Jsd

R
s
) 

The optical mode does not contribute to the microwave absorption, so 

will not concern us here. 

Damping Effects in the Two Band Model  

Here the d band is ferromagnetic and the s band is either 

paramagnetic or ferromagnetic, depending on whether there is 

exchange enhancement present in the s band. 

(i) s band paramagnetic: 

Spin wave poles derived from 

(- Rs + iyI) 	Rd  1 = (I + J2  (w - pH - JRd 
+ iy)) (w - pH - JRs IRD) 

(5.28) 
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W2  - W(J(Rs  Rd) - iy) - J2Riyi +J2iyiRd  = 0 (5.29) s   

w = J(Rs  + Rd  - iy) 	i(J(Rs  + Rd) - iY)2  - Li(J2((Rs  + Rd ' )iy 1)2) 

(5.30) 

(ii) s band ferromagnetic: 

The spin wave poles are derived from 

= 
J2R 

(I + 
Rd 

fw - pH - JR, - I R 	+ u 	ss Ts 
fw - pH - 'M s  - IR 	+ 1-4 d 	T

d 

(5.31) 

• . . w; = {J(Rs  + Rd) + IsRs} ± I(J(Rs  + Rd) + IsRs} + J2R 	(i-}211  Ts r 

(5.32) 

where w' = w - pH, and where one has assumed that there is no damping 

due to impurity scattering in the d band.(e J/3-J = o) 

The interesting case is case (i), because one can consider the 

so-called bottleneck effect. This is roughly an idea which is 

claimed to explain the small resonance width in metals. The reson-

ating spins are taken to be in the d band. No dissipating mechanism 

is said to exist for these spins, but as they are coupled to the s 

spins, damping of the s spins causes damping of the d spins. 

1 
Further, if — is the damping rate for s spins, the damping rate Ts  

for the d spins is said to be ------and since in the case where the s Rs 
1  

d  Ts  

band is paramagnetic and the d band is ferromagnetic Rd  >> Rs, this 

damping is small, and hence the ferromagnetic resonance width is small. 
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In the above calculation 1 	y . In such a theory, however, 
1 	

T
S 

 is postulated and no expression is given for it. This analysis T 
i 

s 
stands or falls on the form of xs(w). The form we use is 

(- Rs iy N(0)) 
xs(w) 	(w - pH - JRd iy) 

which as can be seen leads to a width 

J3  y(Rs  + Rd)2  N(0) 

02(Rs  + Rd)2  + y2} 

i.e. m Jy N(0) 

The form usually taken is 

R 
xs 	- 	 tw - pH - JRd  iyf 

cc 

(5.32) 

(5.33) 

(5.34) 

The width is 

cc 
J2  Rs  y J(Rd) 

J2 R2 
R
d 

Rs 

J Rs cc R
d Y • 

(5.35) 

Therefore, the important question that has to be answered is what is 

the correct form of xs(w) that has to be taken. In Appendix A, 

equation 33, and preceeding equations, it is shown that the first form 

should be taken as the correct form. For the case q = 0, y = 4 1 g 

S.0 
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where rs.o  is the spin orbit scattering time. For q $ 0, xs(i,w) 

has the same form providing that one takes q as equal to the skin 

depth. 
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CHAPTER 6 

FERROMAGNETIC RESONANCE IN ALLOYS, USING THE  

HEISENBERG HAMILTONIAN FOR A FERROMAGNETIC ALLOY  

The Heisenberg Hamiltonian can be adapted for use in alloys where 

some sites have magnetic moments and some do not. For instance, in 

FeCu, the iron atoms have moments and the copper atoms are assumed to 

carry no moment. The alloy is assumed to be a random one in the 

sense that one can replace the alloy by an ensemble of alloys all 

with the same concentration but with all possible distributions (in 

position) of the moment bearing sites. This is reasonable because 

the alloy itself can be considered to be made up of a large number 

of regions each still exhibiting macroscopic properties, but with 

different distributions of the moment bearing sites. One then 

carries out the dynamical calculation for one system and averages 

over all possible distributions following the methods of statistical 

mechanics. 

The Hamiltonian for the alloy is then taken as 

H = - uH 	 1 gzI  c. - 2 	- iV(I-J) c1.g..cg. I J 
(6.1) 

gI is the spin operator on site I and is a vector operator; 

i is the index label of the site, and for a three dimensional 

alloy I represents an ordered triplet (il, i2, i3) 

i2, i3 eN, where N is the set of integers; 

H is the magnetic field applied to the system; 

V(I-J) is the exchange interaction between sites I and J. 

Equation (6.1) can be rewritten in the form 
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A 

- pHEg
I
c. -1 11 V(I-J) (c.g 	3 	§ <c.i.>)*(g.c. - <c..>) 

J 	1-I 	11.1 - 3 	 -3 
(I$J) 

(6.2) 

-1IV(I-J) c.g:<c.S.> 
1-1 	j'n 	 1 1 j"-J 

	

i j 	i j 

Then one can write 

	

A = At A
i 
	 (6.3) 

where 

H
o 	- uH 	 Sic. - 2 2 V(I-J) c.!<c.S.> 

	

I 	IJ 	3 3 

V(I-J)<c.S.><c.S.> . 	(6.4) 
I J 	1 1 3 3 

"(c-1g.1> is independent of i  and is equal to c<S1>. 

This is the molecular field approximation to the Heisenberg 

Hamiltonian, H1  is treated by perturbation theory which one hopes 

converges. Usually such a perturbation expansion is an asymptotic 

series, but is divergent when all terms are considered. However, 

divergent series are sometimes amenable to certain summation tech-

niques. These can be rigorous, e.g. Pads approximant techniques, 

but in solid state physics more intuitive methods are used, and 

hence these steps represent additional assumptions. 

For the molecular field approximation one can derive the trans-

ition temperature of the alloy as follows. The free energy is 

iE I 
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F(0) = 	In Tr e 

- In Tr EXPf- 90 c.g - 	V(i-j) c.g.<c..> 1 1  	1 1 	3 

+111V(I-j) <S.><S.> c2  . 1 j (6.5) 

Averaging over the ci's 

Therefore 

where 

Therefore 

where 

‹F
o
>al 

<F°> 

y 	= 

<F°> 

y 	= 

loy g 	- In Tr EXP{- 

c2 0  

(y - 00)2 

Optic I Si - 
I 

V(0) <s>21 

v(0) c2 <S> Si   

(6.6) 

(6.7) 

(6.8) 

(6.9) 

(6.10) 

2 

sinh(S+DY c In 29V sinh 2 

8(c V(0) <8> 4. pH) 

t 	((( Y,- 04H)2] 	In  sinh(S+i)y 
20cVo 

O{c Vo<S> + pH} 

sinh X 2 

The equilibrium state is given by 

D<F°> 
8y = 0 . 

Therefore 



0 

(y 	- SpH)  <S> - 	= b(y) $cV (6.11) 
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§ eXiD §zy 
b(y) = Tr 	- S B (S ) I exp szy 	s y 

(6.12) 

= (Sfi) Coth(S+1)y - Coth 	. 	(6.13) 

This is similar to the case where all sites are occupied except that 

V0 is replaced by cV0. Therefore 

S(S+1) T = cV 
c 	o 3 • (6.14) 

This model does not yield a critical concentration. This is to be 

expected as a critical concentration is due to the fall off of V(r) 

with distance, and yet in this simple molecular model the interaction 

is taken as a constant, which is reasonable only for small separations. 

To proceed further to calculate the simplest changes in the spin 

wave spectrum one has to use either an equation of motion method or a 

diagram method. Both methods are complicated by the need to average 

over the sites, but a diagram method is to be preferred, as there is 

some hope of proving convergence and estimating the range of its 

validity, and furthermore it does possess a systematic way of cal-

culating damping effects. 

The decoupling procedure yields at best doubtful results and is 

probably useless for the calculation of damping as there are too 

many ways of decoupling the equations. 

We use a form of the diagram technique due to Larkin et al
(1314) 

modified to take in the simplest corrections due to impurities. 
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Associating a factor cr  with each site spin gr, the analysis proceeds 

as in their paper. 

The spin hamiltonian of the Heisenberg model is transformed to 

the usual fermion form. The operators a
rX and arX represent the 

creation and annihilation of a particle in a state with co-ordinate r 

and a spin projection A, and taking into account the fact that one, 

and only one, such particle is always on each site r, i.e. each spin 

is in a definite state with a definite z component. Then the 

hamiltonian becomes 

= - 	uH cr  arx SAX'  arx, - 	V(r-10) Cr  c r1  

AX' 	XX' 
vv' 

(a+ 	Svvl arov' 	ri )(a+X SAX' arX1 ) +glcr(1 arX arX - 1)2  r'v 
r X 

(6.15) 

where g co in the answer, and therefore since the hamiltonian is 

infinite unless the last term is zero, the states for which the number 

of particles in one site differs from unity make no contribution to the 

statistical properties of the system as the energy of such states would 

be infinite. 

Then one can apply the usual perturbation theory to the above 

Hamiltonian. There are in effect two interaction terms and so each 

diagram is proportional to certain powers of g and V. Since g is to 

tend to infinite, one collects for each power of V all orders in g. 

It is important that the last term in the equation (6.15) is of the 

form of the interaction of particles located in a single unit cell. 

Therefore each connected diagram can be represented in the form of 

single cell diagrams connected by lines of interaction V(r-r'). 

Further, it follows that each block has one factor cr associated with 
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it since c
r
n  = cr where (c

r
= 0,1). Each line of interaction 

connects verticPc; of different blocks either 	with tz, or 

t+  with t. Since g-). , in calculating a single cell block 

the problem reduces to the calculation of the statistical average 

of the T product of a certain number of single particle spin 

operators of the form ta(t) = e4°t Sa e-H°t, and where one uses 

the interaction representation in the usual way. In the simplest 

approach y = 8(cVo<Sz> 4. 0), where c is the concentration. The 

unperturbed hamiltonian is the molecular field hamiltonian. 

One uses the temperature form of the perturbation theory where 

one considers the time as a complex variable and calculates the 

correlation functions along the imaginary time axis from 0 to i$. 

All correlation functions are periodic with this period along this 

line. When one calculates the T products, the denominator 

Tr e-0 A0  cancels out the disconnected diagrams, and therefore these 

diagrams have to be subtracted from the full T product of a string 

of spin operators. 

The fourier component of a single cell block with n outgoing 

lines of interaction V is given by the expression 

n  raj. 	a kn 	n 

	

n(w1 	wn) = 	dtj eiwtj  <T 	ta(t)> 

 Sn 0 j=1 	j=1  

a1... 	a 
[r m 	r

m2 
... rmicl , (6.16) 

	

mitm2+ 	mic=n 	1 

A 

where T is the time ordering symbol, and iwm  = 2wimT are the fourier 

frequencies used to expand the periodic calculation functions. 



- 57 - 

The graphical rules for calculating the blocks given below are based 

on the use of transposition relations among the spin operators (see 

Appendix G where some examples are given with their diagramatic 

representation). 

The block rn  is represented by the aggregate of all diagrams 

with m vertices 	and m vertices g and n-2m vertices gz. 

(This circumstance is due to the fact that S.S = i(g+g-  + g-g+) + gzgz). 

Each S+ vertex has one outgoing line, each g-  vertex either one 

incoming line or two incoming and one outgoing line. Each Sz  

vertex has either one incoming or one outgoing line or no line at 

all. To each line there corresponds a Green's function 

G(wn) - 	 
il3wn • 

The law of conservation of energy is fulfilled at each vertex. 

The sum of the incoming frequencies is equal to the sum of the out-

going frequencies. If the diagram splits into N singly connected 

A 
diagrams, the total number of triple S vertices and S vertices 

on the continuous lines being R., then the common factor of this 

a

y
N-1 diagram is (-1) bN-1 where bN-1(y) 	b(y) . 

a 
 

The temperature correlation functions of the spins are defined 

as 

f+ 
(k, iw ) = 1S 

iwnt 	 a a r ik.(r -r ) A dt L e - 	1 2 <1(c S
r 
 (t) - <S K>) ay 	n 	20 r1 1 

-0 	1 

(c uY  (0) - <SY>)> 	(6.17) 
r2 r2 

This function is represented by the aggregate of all singly connected 

diagrams with two vertices. (For an alloy this is an approximation.) 



K (k iw ) zz 	n 	1 - OVK  1(k, iwn) 
zz 	n (k, iw ) 

(6.18) 
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Denote by / (k, iw ) the aggregate of all irreducible diagrams. 
ay -' n 

Then the correla4 °_on functions can be written in the form 

(k, iw ) +- 	n  
K+ 	iwn)  = 1 - 8V(k) 1(k, iwn) • 

(6.19) 

For the case of a large radius of interaction and for low or high 

temperatures it is sufficient to restrict oneself to the simplest 

diagrams, i.e. F2Z  and F.1.2-  . In the alloy case, each vertex in 

the strong generating Kzz  or K+..  has a c attached to it. 

The random average is taken over all c's but we keep only the 

term which is the product of the averages at each site. Therefore 

b'  
Kzz(t, iwn

) = no 1 - (31/(t)b' (6.20) 

K (k iwn)  = 	
cb G(wn) 	(cb)  

+- 	n 1 - $VR cb G(wn
) 	(y - c$Vb - i$w ) 

(6.21) 

This is the simplest approximation one can make. We will discuss 

improved approximations later. 

Note that 

b = c<S2> - c2  <S >2  $ a  b(y) ay  

and 

y = sfc v <s > + 110 . o z 

(6.22) 

The excitation spectrum (collective modes) is determined by the poles 
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of the analytic continuation of Ki._(k, iwn) from the points iwn  

to the whole co."Iplex plane. The function K4._(k, z) has a cut 

along the real axis, and the fourier transform of the retarded 

commutator (response function) is given by the boundary value 

K+-(k, w+ie). A pole on the real axis represents an undamped 

spin wave, and if there is a pole in the analytic continuation of 

K+-(k, w+ie) onto the second sheet and if this pole is not too 

far from the real axis then for intermediate times there is a 

damped spin wave. 

In the above approximation, the pole occurs at 

w = c 	= c b(y) (V0  - Vk) + pH . 	(6.23) 

Then if V(k) has a Taylor series expanstion at k = 0 

w = eK 
= c b(y) Ik21 V"(0) + pH . 	(6.24) 

If b(y) = <5
z>, then wk 

 has an exponential temperature depen-

dence at low temperatures where experiment indicates a power law. 

Further, we are interested in spin wave damping and one therefore 

has to take into account more diagrams which contribute to Et-  • 

The diagram which contributes to spin wave damping is of the 

form 

A 	B 

where A and B are vertex blocks <S
+  S SZ> and the line - 

represents a renormalized interaction 

6 no V(k) -  vzz(k,  iwn) - 
	- ov(k)  b') (6.25) 
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and the solid line represents a spin wave propagator 

V(10  V÷-(k, iwn) = 1 - OV(k) cb Gn(y) 

This diagram represents the expression 

	 q-k - q)2 b(y) G121( y) 0 bt  / (
eq  - iwn  )(1 - 0 Vk..(1  10) q   

(6.26) 

(6.27) 

and gives a damping contribution 

c-k - VGI
)2 

q 
b' $ 	

(1 - $V 
q-k 

d(e w) • (6.28) 

This damping represents scattering by fluctuations in <Sz> of the 

spin waves. At low temperatures b' is very small, and decreases 

to zero at T = 0 exponentially. In an alloy fluctuations in Sz  

occur as both temperature fluctuations and concentration fluctuations. 

The concentration fluctuations do not disappear at T = 0 and hence 

this form of damping can still be important in an alloy at low temp-

eratures. Of course, near Tc this damping is very large, and one 

would similarly expect it to be very large near the critical con-

centration. Unfortunately, molecular field theory does not give a 

critical concentration and one can not therefore calculate the 

damping near to the critical concentration. The above expression 

would yield the damping only for concentrations where molecular field 

theory gives an adequate description of the magnetization. 

However, assuming that this theory combined with a theory of a 

molecular field variety which yield a critical concentration would 

be correct, from experiment one can estimate the form of Kzz(t, iwn). 
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The function K
zz  (r) varJ4.s exponentially with distance near to the 

critical concentration. If K zz(r)  goes as e
-ar then V(k) would 

seem to vary as k2  and b' for the alloy would numerically be 

equal to I  , i.e. as b' becomes large A would become small and the 

long range order would disappear. Assuming long wavelength spin 

waves still propagated with b(y) = <St> for the alloy, one would 

expect the damping to still be given by equation (6.28). This 

allows an estimation of the expected ferromagnetic resonance width 

from the neutron scattering experiments. 

i ll The damping integral involves replacing q by ;;)̀. -u- 	which 
o 

is small in the case where one is interested in spin wave damping. 

Therefore V - - Vq  can be expanded out as a Taylor's series k-q 

keeping only terms up to q2. Then 

r(t'w)  = 
3f b' Vo  	-pH k. u i 1 

 b(1 - OV
o 
b') (bV0 	4 2wr 2  

0 -1 

(1 - 21-iy + 4ty2) 
	 dy 
1 + x(1 + t + 2Vy) 

(6.29) 

where 

y = cos° 
13V b ' 	k2 0 

= 1 - OV0b 2 
t = 2(w-0)  

k2bV  

Then 

= 	o 	 
b' V  

34 	w-012  k4  
2.11r 3 b(1 - b ') bV

o 	4 
0 

o  

X f 
BV b 
o k2  2(w-ml (6,30) 

1 .. s1/o' 2 	' 	k2bV 
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f(x,t) - 	In (1 + xt)2 	(1 + x(i + 4)2] 	1 + x(t + 1)  

4 + 3 f 	1 + x(1 -) 	x2 

(6.31) 

and 

Lim f(x,t) = 1 + 4  t 3 x40 
(6.32) 

The spin wave width is given by r(k, w(k)) where 

w(k) = uH + db Vo  k2  

is the spin wave frequency for wave vector k. 

This means that t = 1, and 

b = c<Sz> 	and 	b' 

Then for small k and temperatures which are not low, the spin wave 

damping is given by 

Ic<s >2 - c2<s >21 

rtk) = 	 z 	0 7 

2nr 3  c<S >({c<S >2  - c(s >2114_1) 	3 
0 	z 	z 

(6.33) 

For low temperatures <Se> = S and one takes Vee(k) = V(k) 

[ 
r(k) = -21---76 - 4 ti - c) S x k5  . „ 3 14 zwro  

(6.34) 

This is for a simple model of an alloy where c is near to one, and 

not near to the critical concentration. The expression for a general 

temperature is given in the simplest molecular field approximation by 

equation (6.33) where <Se> is evaluated for the alloy. 

= c<S2> 	c2<S >2 . 
z 	z 
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In the molecular field model, however detailed a calculation one 

carries out, a critical concentration does not appear at zero temper-

ature. However, as T0  is reduced by decreasing the concentration 

from c = 1, one can see that if the temperature is kept fixed then as 

the concentration is decreased the model predicts a change from the 

magnetic to the non-magnetic state at a certain concentration, at 

least for a certain range of temperatures. The absence of a critical 

concentration at T = 0 does not seem to be a consequence of the 

molecular field approximation but seems inevitable in the Heisenberg 

model unless V(r) has a finite range. The fact is that the e-13/1  

factor means that at T = 0, as long as the spins feel the effect of 

V(r) from each other, the energy can be lowered by the spins aligning 

parallel to each other. While experimentally there is a critical 

concentration at fixed temperature, one could not confirm experi-

mentally whether there was a critical concentration at zero temper-

ature anyway. It may be noted at this point that the itinerant 

model seems more satisfactory in this respect. In this theory even 

at zero temperature I has to be greater than a certain value if the 

magnetic state is to occur. This is because there is both kinetic 

energy and potential energy in the problem. In the Heisenberg model 

there is no equivalent rise in kinetic energy at T = 0 if the spins 

are aligned parallel. 

This work was embarked upon in order to consider ferromagnetic 

resonance in alloys. Neutron scattering experiments in FeCu alloys
(19) 

indicate that the <S(r) S(0)> correlation function has the form 
z 	z 

e-Ar where A E A(0, c). Now in such systems one would expect 

the scattering of spin waves from the gz fluctuations to be large 

and to contribute the main part of the ferromagnetic resonance line-

width. We will try to estimate this linewidth by using the pre-

vious theory as a phenomenological guide. 
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The correlation function K
zz  (k,w) has the general form 

b' 6(u)  
11 - b' 6V(k)f (6.35) 

The neutron experiments indicate a space form K zz(r) = e-X  r const. 

We consider the temperature as fixed. 

For low k one takes K 0, ) as zz 

6(w) b' (6.36) 
1 - b'60  fV(0) + k2  V"(0)1 

6(w) b' 

  

IV 	b'80  V(0)} + k2  V"(0) 

6(w)  

1 	80  V(0) 

+ k2} (b'V"(0) V1777 

• (6.37) 

From this one can identify A2  as 

K z  (k*  0 then has the form z  

K (k,w) 	6(w) - 	- • zz 	(A2 k2) 
(6.39) 

From this one can calculate S 
zz(k,w) which is the function that 

occurs in the scattering cross-section for neutrons, by using the 

fluctuation dissipation theorem. 
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The neutron scattering experiments determine A, and using these 

values of A one can calculate the ferromagnetic resonance linewidth 

in such alloys. A contains the concentration and temperature 

dependence. 

The resonance width is given in terms of A by 

r(k) = 

 

1 
1 IlT7Y 	k5  . 7  

. - . 1 4 3 <Sz> 	_ sVo  2ffro3  

3/.6". 	1 k5  7 
27rr  3 

• 

<S z> (A(8,c) - OV(0)) * 4 * 
0 

(6.40) 
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SUMMARY AND CONCLUSION  

In this conclusion the main results of this thesis are discussed and possible 

applications and extensions of the work are pointed out. 

In chapter one a brief discussion of the macroscopic theory is presented, so 

as to give a framework for the physical interpretation of the microscopic theory. It 

is pointed out that the macroscopic theory is sufficient to the task of calculating the 

resonance frequency, which is strongly modified by demagnetizing fields. This effect 

is due to the dipole-dipole interaction. The macroscopic theory however can not 

treat the linewidth problem, because damping processes are microscopic effects. 

In chapter two a discussion of the skin effect in metals is given, and three 

approximate methods for the solution of this problem are presented. Each method 

allows a calculation of the ferromagnetic resonance linewidth to be made, starting 

from the spin wave width. The third method is in the context of the correlation 

function approach to the measurement of absorption. A detailed discussion of the 

difference between "spin wave resonance", where damping is due to eddy currents in 

the metal surface layers, and "ordinary spin wave resonance" where the spin waves 

excited are not coupled to the electromag.etic field, and damping is then due to the 

scattering of these spin waves. A simple criterion is stated which predicts when one 

should expect each kind to occur in metals. 

In chapters four and five spin wave damping rates are derived for two models 

of magnetic systems. The damping mechanism treated is scattering of the spin waves 

of the electrons which make up the coherent electron hole pair which is a spin 

wave) by impurities, via both a spin orbit interaction and an ordinary potential 

interaction. Both models are composed of two spin systems. Model (a) (chapter four) 

is a model of a dilute alloy in which magnetic impurities are present in a metal 

represented by a narrow d band of electrons. Model (b) (chapter five) is a two band 
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model (s and d bands) of a pure metal. The scattering off impurities is then taken 

to occur in the s band in (b), and in the d band in (a). , The spin waves propagate 

in the d band in both cases but are coupled to the other spin system in each case 

by the exchange interaction, and expressions are derived for the spin wave lifetimes 

in both models. Within the framework of model (b) one can discuss the bottleneck 

effect for this system. This is said to occur in the case where the s band is 

paramagnetic, magnetization M s, and the d band is ferromagnetic, magnetization 

Md. Then if one introduces a damping mechanism in the s band with a lifetime 

Ts, then the damping rate in the d band is claimed to be '..d = ( i Mdl 41 M59-1 Ts  

and since Md  >> Ms, the decay of the d band magnetization can be much slower 

than that of the s band. In this theory a phenomenological form of the s band 

susceptibility is used. Within the framework of the theory in this thesis, if one 

takes the calculated form of the s band susceptibility function then the spin wave 

lifetime is not proportional to Md  x (ms)-1. This rest.,:t is claimed to be valid only 

for damping due to impurity scattering, and the question is left open for other 

mechanisms. There is probably a need for a further investigation of this whole 

problem in the case of a two band system. In this thesis, chapters three and five 

together with appendix A represent a comprehensive survey of spin waves in interacting 

electron systems. As well as the bottleneck effect being investigated, one could 

develop a full diagrammatic treatment 	of the s-d interaction in the presence 

of impurity scattering and the short range repulsive interaction responsible for 

magnetism, in both the ferromagnetic and paramagnetic state. In appendix A an 

attempt has been made to improve the method of evaluation of the discontinuity across 

the cut in the complex susceptibility. However the analytic properties of this 

function in the case where impurities are present need further investigation, since 

this function is not a geometric sum of terms where the frequency integral has been 
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carried out first, but a frequency integral over the sum of the diagrammatic terms. L. 

In chapter six the problem of the dilute heisenberg model is treated. This 

is an interesting problem from a methodical point of view and has important 

physical applications to certain physical systems. It is made clear by the analysis 

that the existence of ferromagnetism does not require a rigorous periodicity in the 

distribution of the magnetic moments. This implies that this theory can twit both 

substitutional alloys, (where one component is magnetic) and amorphous 

ferromagnets. It could be extended to treat anti ferromagnetic alloys, and alloys 

where both constituents are magnetic (Ey use of three or more exchange interactions) 

It is shown in the analysis that the perturbation theory developed for the 

case of a pure ferromagnet can be developed purely in terms of operators fixed to a 

definite site in the lattice. The development does not make use of a fourier sum 

which would necessitate periodicity of the lattice. This means that the theory 

can be generalised to the case where some of the sites do have moments simply by 

restricting the sums over the lattice sites to those sites which are occupied. This 

means that the correlation functions lose their translational invariance and the 

average moment on a site depends on where the site is in the lattice. 

An averaging procedure is introduced, which averages over all possible 

distributions of moments, which have a fixed number of occupied sites, because in a 

real physical system, different regions of the sample will have different distributions 

of moments, but with a fixed average concentration. 

This method is then applied to discuss the NiCu system, in order to make a 

connection between neutron scattering experiments which measure the z-z spin 

correlation function, and spin wave damping which is postulated to be caused by 

scattering off the z-z spin fluctuations. At the same time of course one has put 

forward an interpretation of the neutron scattering results in such systems, and it is 
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shown how the neutron scattering cross section should vary near to the transition 

point. An expression is then derived for the spin wave damping which also 

depends on the concentration. 

The method does yield a critical concentration at fixed finite temperature.' 

From this method one can derive the way the magnetization depends on the 

conceniiation, as well as its dependence on the magnetic field and temperature. 

As mentioned above this theory could be extended to treat antiferromagnetic 

alloys, and alloys  with two constituents where both constituents are magnetic, by 

the use of three different exchange integrals. 

As a final point, we note that in Appendix F a derivation is given of 

Van Hove's formula for the neutron cross section for the scattering of neutrons from 

magnetic systeris. The approximations made are noted, and one can conclude t'iat 

the use of the impulse approximation needs further investigation in a strongly' 

interacting system. There seems a basic paradox between the use of the impulse 

approximation and a hamiltonian for the spin system in which the spins interact 

strongly with each other. 
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APPENDIX A 

Discussion of the calculations of the magnetic susceptibility 

function for a system of electrons scattering from impurities. 

The results in this Appendix are used in Chapters 5 and 6, and 

were derived in references 9 and 10. 

The susceptibility for a system of electrons scattering from 

random impurities, without any electron-electron interactions, can 

be written in the form 

m  
I+  

y ik 

i

d-f c(p,w)G(241,w+wo) 1;  

ximp
(q wo) = i 

	dwf 	

:2:3  

	

1-'2716G(E,w)G(01,w+wo) 	 

 d:;(23  

(A.1) 

Then, when there is a short range exchange interaction between the 

electrons, if one ignores the self energy effects of such an inter-

action, one can write the total susceptibility in the form 

x(q,w0) = 	
Ximp(,wo) 

N(0) - 	 (A.2) N(0) vc  iimp(a,410)  

This really describes the multiple scattering of an electron and 

hole with opposite spins via the exchange interaction as they 

propagate and scatter off the impurities. One can see that when 

J + 03, and one has free electrons, x(q,w0) reduces to the usual 

exchange enhanced form. Further, when Vo  = 0, and wo  = 0, it 

reduces to the static susceptibility as calculated by De Gennes. 

De Gennes calculated the static susceptibility by performing the 

momentum integration first and then carrying out the frequency 
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integration w:lich is the opposite order to that used in the free 

electron case. This method can be extended to the finite 

frequency case. This then shows that the above integral for 

Ximp (3,wo  ) converges, and allows certain approximations to be 

made. 

Evaluation of ximp(i,wo) 

First one evaluates the momentum integration. The Green's 

function for the system is(11)  

G(w, r:r') = 	 ilqw)(r-r') 
271.(r-r') e  

(A.3) 

K(w) = 2t + sgn w (p2  + 2mw - 

 

(A.4) 
4i2  

Then 

( 	
G(p,w) G(P+q,w+w ) 

(2103  - 	o 

 

 

d3r G(r,w) G(r, w+wo) 
(A.5) 

where G(r) is the Fourier transform of G(p) and is, of course, a 

different function although written the same in accordance with normal use 

in Physics. 

f d3r G(r, w) G(r, w+wo) ...  

f d3r 	
m2 
	 eifK(w) + lOw+430)/Irl =  
(402(r)2  

(A.6) 
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Performing the Irl integration first one obtains 

rid 
2 	lc  j 	d(cose) m 1  

_ (i)m2  r_ (K(w) + K(w+wQ) + 	
(A.7) 

Tin K(w) + K(w+wo) - q 

Then 

+co 

	K(w)+K(w+w0)1 

K(w)+K(w+w )- 

imp X (q o) = 	im2  
4n2N(0) -co 	1 	

im2   t 1 Ln(K(w)+K(w+wo)+1 

4n2N(0) q T 	K(w)+K(w+w
o)-q 

(A.8) 

Now K(w) changes sign at w = 0. Therefore, there are three ranges 

of integration in which K(w) + K(w+wo) are different functions. 

If one makes the substitution y(w) * K(w) + K(w+wo), one finds that 

the integrands reduce to the same form, whereas the path of 

integration is modified. 

The non convergence at infinity is due to the fact that one 

has not cut off the momentum integration. This contribution is 

ignored. In fact, one notes that this contribution occurs in the 

first diagram, and this integral may be performed using a method 

which does the double integration in the other order and which de 

facto cuts off higher momentum values (Abrikosov). One can further 

show that doing the integral de Gennes way and throwing away the 

contribution at infinity leads to the same answer for the first 

diagram. 

-1 411-2 q {K(w) + K(w+wo 	qcosel 
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In the static case wo  = 0, y(w) = 2K(w), and when wo  is 

finite, the integration ranges -w to ..wo  and 0 to +w combine to 

give a very similar integration path. 

First of all let us look at the static case. Fran the 

relation 

K2(u) - 1: K(w) - 2mw = 0 

one finds that 

du = (K(w) - 2z) 
d4K(u)  
 2m 

K(w) = ---+ sgn w(pf + 2mw  _ 
i 	

p2 1 
2k 4k2 	4k2 

(A.11)  

When w is 0+  

Ku) = + p 2z F (A.12)  

as w increases to +co, the square root remains +ve and K(w) increases 

to co along the line i  

When w is 0 

K(w) = 2R PF 
	 (A.13) 

n2 
As w decreases, the square root remains real until w = 

and the K(w) is imaginary as w + m  . Therefore the path of 

integration is as in the diagram. 

(A.9)  

(A.10)  
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w=ff.
a  

E " 
One can replace the path of 

6 	 integration by AE, because 
(F"'"°) 

there is no pole inside the 

KI  closed path. Then, adding 

AE to ED one obtains 

tp

F  . p  ,0) = (i) f Xim (c1 

-Pr 

y • 

im2 	1 	[Yy 	q Ln 
4n2N(0) 	- q + 

1 
im2 	1 a. Y 	q 	3i Ln 

4v214(o) q T  y - q + Q. 

(A.14) 

When wo A 0, the change of variable is more complicated, but the path 

of integration only undergoes a slight modification. Putting 

y(w) = K(w+wo) + K(w) - 	(A.15) 

one finds that irrespective of the value of w where dw is taken 

dw = 2  1 	
- 2(2mw0)2  dy  

m 2   
Y3 

(A.16 ) 

The path of integration is shown in the diagram. As seen there is only a 

slight modification of the path, but there is an extra portion of the 

integral which corresponds to the region -wo  to O. 



'1.'11411*-40,,..--.•." • 

Then 

mw 
o +p 

PF 

Xq0 	
2(2mw)2 

i 	

1 

mp(.0 o) 	(i) 	2m 2 
E [ Y

3o  

43 <<  sF 

im2  1 Y q  
Ln 

Y - q R. X 
+ q + 

1 - — Ln ---r 
Y - q + 

1  

° 	
im2 	

r(w)+K(w+w0)+1 

1 Ln  K(w)+K(w+w
o
) -q 

+ f dw' 
41. 	

K(w)+K(w+w
o)4.1  2N(0) 	i -w

o 	qit Ln[K(w)+K(w+wo)-q 

(A.17) 

w2  
The first term contributes terms of order — and can be neglected, 

e2 

except that it equals x(q,0). The second 
F
term gives terms of 

wo 
order — . 

-pr.tint-LC3  
Pr 

dy 
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For wo 0 EF 

m(w+wo) K(w+wo) = 	+ sgn(w+wo)(pF + 2t 	PF 
(A.18) 

Therefore in the region -wiz)  < w < 0 

K(w) 	K(WfWo) 	- pF - 11.1-4  + 	+ p + mu" + nit%  
2t 	pF 22. F pi" pF  

MW 1 = 
t pr  

Therefore the last integral becomes 

im2 	1. + q + ew w 
0 	1 	 f  Ln 

	

4n2N(0) q 	
i - q 4" 

wo 
7  7 F, 

w + q + T  
i 	

T. 	
F 

q9
1 - ---.-Lrr wo 

(. 

I - q + c] 
1  

(A.19)  

(A.20)  

i 

m2 
4trN 0) - VF 

w  
wo 	

7  + q+  7 
F  

qvF  Ln iwc 
- q + T 

x. p .. (q,woimp 	wo 
) = X 	(q,p 0) + 	F  

im 	
+ q + 7  

1 -1-- Ln 	F  
- qt i 	wo 

E - q + V--  F 
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w 	+ q + Va 
o  

= 1 + qVF wo 
q 

1 - 	Ln 	 wo 
q 

(A.21)  

Then, with u = 
w
° ,v  , and u = 
F 	

o qx 

iwo 	u + iuo - 1 x(q,w0) = 21B2  N(0) a(q,w0) (1 - 	Ln 2 	u + iu - 1 o  

]1 
- N(0) V. a(q,wo) 

u + iuo 	lu + iuo  +1 

ci(chwo)  = 1 	Ln 2 	u + iu - 1 0  (A.22)  

When gZ << 1 

2pB2N(0) Dq2 	wo  
X(qswo) = 1 - N(0)Vc Dq2  - iw 	

qVF « I 
o 

 

j 2 vr  
D - 	 

3(1 - NV) 
(A.23)  

With a spin orbit interaction, the Green's function is of the same form 

except that the relaxation time is composed of two parts, one due to 

normal impurity scattering and one due to the spin orbit scattering 

= 
	Tl T
0  

and 
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x. (q,w ) = i 
J(& 	

3T1 
)(1 - 	J(wt)) (tom 

dw' 	  imp 0 	 1 1 - 1— J(w)(1 	)) 
-op 	 T

o 	
3T1  

(A.24)  

The integral can be treated by the same contour method as before, and 

iwo J(0,q,wo)(1 - ----J(0,q,wo)) 
X. (q,w ) = 1 t 	

3T1  
imp _ 0 1 	 1 

	

1  - i7:1(0,g,w o 	3T )(1 	J(0,q,wo)) 

	

- 	 1 
(A.25)  

w 	v  q J(0,q,u)0  = 	I Ln o 	F  

Fq Iwo  T - VF  gl 
(A.26)  

In the case where there is a magnetic field, the Greens function depends 

on the spin 

1 eiKa(u)Irl Go(r,w) - 
In 

where 

Ka(w) = 2k t sgnw{pa2  t 2mwg 
F 

(A.27)  

Pt't -   pF-
2m = 00  . 	 (A.28) 

The one defines 

1 	d3 	.. n (p,w) G(p+q, w+coo ) (q'w 'w 	= 27771 07 t- 	o 	 (203 

1 

K(w) t K(wri-wo) + q 
Ln 	  (A.29) 2VFq 	Kt(w) + K-o) q 
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N(0)(- A + 4 i,,- _) 
X.
+  (0,w o) = 2p

2 	3  imp   
A 	4 i w 	+  o 	3 1.1  

(A.33) 
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Then the corresponding transverse susceptibility x+-(q,w o) is given by 

+- 
1 + iwo J(0,q,w o 	311  

-A)(1 - 	J(0,q,w o  -A)  T  X. (q,w ) - imp  o 	1 	
3T1 

1 1 - ---- J(0,q,wo-A)(1 - 	J(0,q,w 0  -A ) T
o  

(A.30) 

2 n 2  where A = Pr+  - 1T- 

K+(w) + K-(w+wo) 
r • - 1pf+  14,_) + 	+ 2m(012  

(A.31) 

1 
+ {pf_ + 2m(w+wo)}2  

wo - A A - + 	_ - . . PF- 	pF  for small 2. 	PF- 	splitting 

(A.32) 

This and x. (q,w 
o) is obtained by expanding J(0,q,wo) for qk << 1 as 

i 	t  J(0,q,w0) • 2VF  wo-A i  3 wo-A i 3 

77 + 

• • • 

which gives 

+- 	 N(0)(-A + ill)  Xi  (q,w ) = 2 	r mp 	o 	B two  - A + iyij (A.34) 
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4 i 	2 (1-ir 
= — — 	cl ----l+iri Y1 	3 T

1 
 + D 
 

F = N(0) VC  J A 

and 

V2  
D = J r  . 

Ferromagnetic Spin Susceptibility  

The calculation is the same as for that when a magnetic field is 

present. Again in the ferromagnetic ground state pp+  $ pp_ and in 

fact they are related by the relation (see Appendix B) 

12 
1S1 (PFt 4-)  = 

V 
w + 	(p3  - p3  ) 6n3  F+ F- (A.35)  

Thus pp+  and pp_ depend on ge  and the strength of the magnetic field. 

Carrying through the contour integration as before, one obtains the 

result 

y + q + 
Ln F.M. 	

y(0+)  
X,w ) = i 	A, +- „ 

mp t .q o 	

f 	
i [t 2,62 	y  - q + i 1 dy  2m 2 	3 i  + i 

y(-wo-) 	
Y 

I - 	Ln 	 
i 	ly  q + 2  

St 
 

y - q + 7  i 

Y + q - 7 
Ln 	i 

+ i fY(°-)  1 (y.  _ 2A21 2m 2 	3 	

y - q + IT  

y(-  o+) 	y 1 -i Ln 
[y. + q + 1 

i
1  

y - q+  1- i 

(A.36)  

for the case of simple impurities 
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YO 
J. 	

rF+ 	F- _ 	
_ p  

,2 ,2 
rF+ rF- 

3y0  (A.41) 
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y(w) = Sgn w+wo (pFt   + 2m w+wo)2  + Sgn w (pF- + 2mw) 

(A.37) 

This integral can be carried out by expanding the integrand. Then 

3,2 	62 	(5y2 _ 621 
1 	 

X
+-
(q,0) = 

	

	o 

3 	+ ...I 2p
F 
3y 30   

5y
o  (A.38) 

Yo 2  PF+ PF 

= pr+  - 

and 

_2 
w 1i+!_1  I 60)o 	0 	3 2,  

X. (q,w ) = x
+-(q,0) + 	+ 

imp o 31.Try(2)  VF6 	12.42._ _ 6-2] • • 

382, 

(A.39)  

This gives the spin wave poles, since these are determined by the 

solutions to the equation 

= N(0) V(q,w ) c imp 	o 
(A.40)  

and using (1) 

N(0) V
c x

+ 
 (0,0) = 

- 	 - w  

where 
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The pole is at the frequency coo  where 

iwL 	y k (1 - wo = w + aA - 	idk  
L 	A e  24n2  1+ 6t2  

(A.42)  

From these facts one can assume a form for X.+  (q,wo) similar to 

the free electron form 

X. (q,w ) o 
Xi (q,o) mp (A.43)  

wo  - Vc +-(q,0) - w - Bq2  

When spin orbit scattering is included this is modified to 

x+- (q..0) 
X 
+- 	s  .o.  

(q,w ) s.o. o 4 i 
wo Vc x+-(c1,0) 	wL wL 3 362, 	Biq2  1   

(A.44)  

4i B = B - aA 
1 	36Z

1  

and 

iw V y2  
B = aA 	

2, L  c 	(1 - 1St I (A.45)  
A 24n2 	1 + 62Z2 
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APPENDIX B  

Linear Response Theory  

(Application of a weak external disturbance to 

a system in a steady state) 

Suppose that before time (to) a system is described by a density 

matrix p which commutes with a time independent Hamiltonian no. 

After time t
o, an external disturbance is applied which couples to 

the observable properties Aj(r,t) of the system, described by an 

addition to the Hamiltonian of the form 

A(t) = - f d3r 	'Aj(r,t) ai(E,t) 
	(B.1) 

where the aj(E,t) represent generalized external forces, e.g. 

Magnetic systems in a magnetic field 

11(t) = - 1 d3r H(r,t) . A(r,t) 	(B.la) 

V 

where H(r,t) is an external spatially and time dependent magnetic 

field. 

One calculates the expectation value at time t of the observable 

A., from the formula 

Tr(ii(t) AI  (r,t)) = <A.(r,t)>N .E . 	(B.2) 

(N. G MectilS non eciu.d.ittriumn 

If one assumes Ai(r,t) does not depend on time explicitly, Then 

<YE,t)>N.E. = Tr(a(t,to) 40-1(t,t0) Ai(r,t0))(B.3) 

where 0(t,to) is a unitary operator which describes the way the 

system changes in time and satisfies 
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ii1 dt Nt ,t0) = (Ho fiext(t))  6(t,t ) 0 

Ott t ) = 1 0.0 

as the initial condition. One further assumes 

U(t,t0) = 00(t,t0) Ol(t,t0) 

where U satisfies 
0 

Then 

iii 1- 	II 0 
dt o 	o o 

in t 
i.e. Co 

= e 0 formally. 

111 1-0,(t'  t o  ) = 10o'(t'  t o  ) flext  (t) o  (t,t o)1 U'(t,t0) dt  

• iii  51
t 1(t,t ) = HI  (t) 5'(t,t ) . d 	ext 

To first order this has the solution 

t  fl' t,to) = I  M.1  f Hiext(te ) dt' + 
to 

(13.4) 

Denote by A
I  (r,t), the Heisenberg operators for the Hamiltonian Ho 

A. AI 	
o(r,t) = 0-1 '  (t t o  ) A.(r t o 	' ) 0 (t t o) o  (B.5) 

Therefore 

Trip U-I  Ai(r,t0)U}  = Tr fpU'-1  e(r,t) 

= Tr(p{AI  + i  Kdd Q  o (t  dt' (AI(r,t), A.( t t')] 
3 - 

f  

x+ 
J 
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svfarscArt- 

Dropping subserirt I 

r 
<L(r,t)>N.E. = <A.(r,t)> irL I 	f dt' j 

to 

x
- 	

Af(ro,t').1a.
7
(r',t 1 )11)+ 

(B.6) 

Defining the absorptive response as the commutator 

f rA , 
' 

X..(r,r'; t-t') E 	<0.tr t), A.(rt ,t 1 ))> 	(B.7) 13  

dw  = 	
2w e

-iw(t-t') e.(r,r',w) (B.8) 
 3.3 

9 

Taking to as -cc, and introducing the step function 8(t-t9 one may 

write 

+0* 
d<A.(r,t)> = / f dr' f 2 dt' i" 	a.(r1,t9 . 

_03 	ij 

x i 8(t-t9 	(B.9) 

Then define 

3.3 	= 2i eft-t9 TO.(r,r1,t-t9 •- 
(B.10) 

+00 
S<A.( ' 	 13 r t)>  = 	f dr' f 	dt' i..(r,r',t-t') a.(r',t9 • -  

-Co 

The step function gt-t9 is here a symbolic expression of the 

causality condition. 

_fl 
x Under certain conditions on ..(r,r',t-t') one can show that 

the fourier transform of Xi~(r,r',t-t')is the boundary value as 



i•e• 

x..(r,r1 ,w+ie) = x!.(r,r',w ) + 
13 - 	 13 ••• 	 3 

(B.12) 

x 3.(r,r1 ;w) 
1 	... 

f dw, Xli(E,E W ) 
= p 

(w' 	w) (B.13) 
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z approaches the e"t on the real axis from above of the sectionally 

holomorphic function 

dw' Xij(r4°'w)  x..(r,r',z) =
Jt 	(w' - 

(B.11) 

where 

x!.(r,r',w) dw' 
it 

e 
3 	

0jr,r1, 
1 • 01. 

(WI  

In the case of magnetic systems which are dealt with in this thesis, 

the perturbing hamiltonian has the form (1a) and the response function 

is then 

X (r rt,t-t9 = 2i 8(t-t') 4M(r,t), A(10,t9:1> 
MM 

(B.14) 

ma ructiza.tfun, 
For each model, of course, the 	• operator has its own 

form. This function is calculated because the imaginary part gives 

the absorption of energy by the system from the external field. 

Further, if this function has a pole or sharp resonance in its 

fourier transform, then the absorption is associated with the exis-

tence of a collective mode of the system. As one can show, this 

function is associated both with the absorption of energy (dissipation) 

and with the dynamic behaviour of the system (fluctuation). This 

simple situation holds only in the linear approximation. 
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APPENDIX C  

The Magnetization Relation in Hartree-Fork Theory  

The interaction energy part of the hamiltonian is 

1 I nI+ nI+ 

Therefore, at T = 0, the Hartree-Fock energy is 

	

k2 	k2   E 	(N  + = — — — 

	

5 + 2m +N  - m 	V +N - I 21 + 1 N  

(c.i) 

(c.2) 

whore I = 4na and a is the s-wave scattering length of the short 
m 

range repulsive interaction. 

If there is a magnetic field as well, i.e. No  w 

k2 	k2  3 	 + 	1 E = — 5 ( N+ 2m  —+N- 2m —1+wL(N -N-)+— V N+N- I 

(C .3) 
where 

N+ + N = N 

N 	4 — k3  + = 
3 + 

k+ and k are fermi momenta for up and down spin bands respectively. 

One then minimizes the energy with respect to lc+  and k_, subject to 

the constraint above 

i.e. 	A(k3+  + k3 	14) = 0 	(C.4) 

One minimizes 

E + A(k + k3  - k3) = 0 + 	F 	 (C.5) 
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to obtain two equations 

3 2 k 	2a k-9 1 
 - 3A. k2  = 2 ± 	n ± 0 	(C.6) 

or 

2  
3 1 (k„..

+ 	
k2) = 2a (k3 	k3)  

' 	+  (C.7) 

The critical strength occurs when this has a solution and 	k_. 

When k
+ 

k
- one can divide by (k+ 

- k
-
) to obtain 

2 (k+  k - ) = 	(k+  k-  + k k -) 
	(C.8) 

At the critical strength 	= k_ = kF. Therefore 

3 
2 2kF 

= 2a 3., => k a = F 	2 C . ) 

Complete alignment (k_ = 0) is obtained when 

k+ 
3n 
4a 

(C .10) 

i.e. kFa = 	;1 

At finite temperatures this has to be modified by the addition of 

Fermi factors in the energy, each spin band being distributed in a 

Fermi Dirac distribution. A simpler model for finite temperatures 

envisages the interaction strength increasing with decreasing temp-

erature to reach its critical value at T = Tc. 

With a magnetic field on, the corresponding relation to equation (C.7) 

is 

2 
3 

+ — (k2  - k2) = mw D$ + 	00 - k3) +  • (C .11) 



• • • 	= I (-1 	{1 n2 	 
311 Tz° 	12 02 p  

T= 

(C.14) 
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This theory is at T = 0, and shows that a substance is ferromagnetic 

at T = 0 if I has a certain minimum value in that substance. If I 

is above this value, then the substance becomes ferromagnetic at a 

finite temperature. 

To see this one looks at the paramagnetic susceptibility 

x(q,z) = 	e (sa,z ) 	• 
1 - I x°(q,z) 

(C.12) 

The substance becomes ferromagnetic when the static susceptibility 

becomes very large or unbounded. 

This happens when f = I x(0,0) 

X(0,0) = 1221 	n is the density 
	

(C.13) 
T 

where p is the chemical potential. 

is the temperature at which this occurs. Therefore 

k T E 21/3 h2 	2kF a  _ 

B o 	2m 	2kF 
 a (C.15) 

Therefore Tc is > 0 when •kF a > — 2 

i

The calculations in this thesis are carried out at T = 0, for a 

system which is paramagnetic or ferromagnetic at T = 0. Variations 

in temperature can be taken into account in a simple way by con-

sidering I to be temperature dependent, e.g. one considers 

t11 = f(T) (IS) 	, and redefines I as If(T). This can give one ap 	, am Tm0 

some idea of what happens as a paramagnetic system approaches the 

transition point without doing a full calculation. 



-86- 

In the strongly paramagnetic region, from (C.11) one has for 

k =k k 	=x + + - 

-2-  3  2k 	2a x 3kF2  x = auw + --- F 	L 	n (C.11) 

mw 
x 	 2a 	

(C.16) 
(kF  - : kF2) 

• 
• • A 

k2  - k2 	p
B 
H 

(C.17) 2m  (I - 2a
n  kF  ) 

The critical value for magnetism, occurs when 1 = 2a 	. Hence thiskF  

expression only holds for a less than its critical value. 
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APPENDIX D 

The Fluctuation - Dissipation Theorem  

For most cases the stationary ensemble which characterizes the 

system is canonical. 

The density matrix is 

= _-On/Trfe-°1 . 
P 	e 

(D.1) 

The time translation property of the operators and cyclical permu-

tation of operators under atrace sign imply 

Trfe-4  A (r t) Aj 	' (r' t9} = Tr6.(r' 
 t+i$h) e-4  AJ  (r t9} I   

= Trie 	AJ(E/ ,t1) RI(E,t+i0h)} 
	

(D.2) 

Further 

AI(E,t)} 

is independent of time. If the fourier transform of 

<(A,(1,,t) - <A,(E,t)>)(Aj(r/,t9 - c3JW,t9>)>(D.3) 

denoted by Sij(r,r/:w) exists 

SIJ (r r/'  w) = e
$hw 5

JI 	' (r r/  w) 
	(D.4) 

and since 

xIJ 	' 	2 (r r' 	1h = — (SIJ(r,r',w) -  SJI 	' (r 10  0) (D.5) 
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(  
X7j(r9V,w) = 	1 e

-Ohl S IJ(rr' ,w)  
(D.6) 

This is a form of the fluctuation dissipation theorem as xyj  is a 

measure of the dissipation and SIj  a measure of the fluctuations 

in the system. 
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APPENDIX E 

Identification of x"(w) with the Dissipation of 

Energy in a System  

The work done on a system is given by the explicit rate of 

change of the Hamiltonian with time. The rate at which work is 

done on the system is given by the explicit rate of change of the 

expectation value of the hamiltonian. 

<11, 	- 	E f <A (r. 0› 	(r t) d3r - at 	at 	N.E. I - 

(E.1) 

= if <AI ' (r t)>Eq  2I  (r'  t) d3r 

+m 
+ 	d3r 	f 	dt' R (r,t)x**  (r r' t-tl) 
IJ 

aJ 	' (ro t') + 0(a3) 

This follows from (B.6). 

Consider an external monochromatic field 

aI(E,t) = Re{a1(r) e-ic'st} 

= ifai(r) eiwt  + aI *(r) eiwt} 

(E.2)  

(E.3)  

Then the time averaged rate of change of energy is given by 

clR . I  (j442 f dE  I de xij(E,E',6) yr') at(r) J 

iw x --1 dr f dr' a
I  (r) XIJ  (r r':-w) a*(r1) 4 -   

(E.4)  
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From symmetry consideration 

X7.13(r,re,w) = - x" (r' r - JI 	0 ) 
 

Xij(E,E'sw) = XJI(E'es-w) 

(E.5)  

Therefore 

dR 
dt = 11 wfdrfdeI 	IJ 	' a*(r) x (r r' w)aJ(r') 

IJ  
(E.6)  
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APPENDIX F  

Scattering from a Bound System of Particles  

Neutron Scattering  

Consideranincidentparticlemassm.andspinS.1.It is des -  

cribed by a plane wave and a spin function 

Xi p,V 
1 	ip.x e 	U s.,v(S.) 

(2,r)32 
(F.1)  

p is the incident momentum. 

Then 

A 

X1  K. - 	= e X- 1 	p,v 	p 1 p,v 
(F.2)  

si L. 6p 	2m. 

is the incident kinetic energy and Ki  = 	42 .
2m. 1 

The target particle is assumed to be composite, consisting of 

N bound particles of masses MI  ... Mn  and spins S1  ... Su  . The 

initial wave function of the scatterer is written go(zi,si 	zNSN) . 

A general state of the scatterer is written gy(zi,s, 	zNSN) . 

Spin orientations are written as 0(vt) and r(vt) • 

Then the initial state eigenfunction is 

Xt:0(v 	
1 	iP.0 - - go(zs1  ... ZN,SN) 

	

t),P 	(20
3
2 
e 

 
(F.3)  

C is the scattering centre of mass. 

An arbitrary final state is 
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1 	iQ.0 Xt yop 	= 
(2032 

e - g
y
(z

1
,s 	ZNSN) (F.4) 

The Hamiltonian of the scattering is of the form 

N 
h = IKtU 

a=1 a  

U is the interaction energy. 

Then 

xt:o(vt) E 
= Wo  xt:o(vt) E 

ri y1 	
t 

	W v 
t -t:y(vt ) Q 	y 4t:y(v1) Q -   

(F.5)  

(F.6)  

(F.7)  

Q2  Wo = w + 	W = w + 
o p2 

2Mt 	y 2Mt  

The initial state of the entire system before scattering is 

Xa 
	

Xipy Xt:0(vt) P 
	 (F.8) 

Possible final states are then 

xb = xikv  xt y(vp Q 
	 (F.9) 

Then, if 

K = K. + H 

Xa = Ea Xa 	(cp Wo)  Xa 

K xb  = Eb  xb  = (el(  Wy) Xb 
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The Hamiltonian for the whole scattering system is 

H = K + V 	 (F.12) 

N 
V = 	V 
	

(F.13) 
a=1 

V
a represents the interaction between the incident particle and target 

particle a. 

One now assumes that the incident particle is only scattered 

once, i.e. from one target particle. 

The scattered wave from such a scattering is given by 

1  
* 	 • sc.a 	E

a 
+ in - K 311 Xa 	a = 1 "' N  

(F.14) 

Where da is the 'T' matrix. 

One then assumes that 31,'" may be replaced by the scattering 

matrix with a free particle, i.e. one may neglect U. 

Then 

* 	
a/ 1 
* 	

5 	r?"-d 
sc 	sc.a 	(E

a 
+ in - K) '5N Xa 

rN = G ra • a=1 

(F.15)  

(F.16)  

For a final state b and incident state a 

<b141a> = 6(k 1- g - p - P)<k,v',Q y(4)ITNIpv P 0(vO> 
(F.17)  

TN is the submatrix of :r on the momentum shell. 
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Then the differential cross-section is 

da 
• (2,-)4 
	d3k ge

K  + W 	e 	W o )1<b17-Ia>12 
 rel y' 	y p  

(F.18) 

a is the initial state Ip  v P 0 (vt)> 

14 
- 

1 f d3k 6(eK  - ep  + WY  - W o)I<k v' P-p yITN  1p v P 0> 2  
vre1 y' 	 - - I 

(F.19) 

e = K-p 

and 

dii 
da _ 

• 

(2w)4  I  k- dk <p v p OITNI6(eK  - ep  + h - W0Ak v' P-p y> Vre1 y* 

x <k v' P-p yITNIp v t 0> 	(F.20) 

Using 

-ip.z a  
1 0> = e 	TaIQ> 	

(F.21) 

T
a 

= <1c v', P-pITa(sa)Ip v pa> 	(F.22) 

N 
acting only on za, sa, and using TN  = 13-1  a 

o=1 
(F.23)  

-ip.z 
- 

da 	(204 	! f k2 	ad (e <p v P 01T+  e 	el(  ep  + h - W0) 
dSV rel y' a0=1 

-ip.z 

x  lh v' E-P Y›<I! v'  12-p Y1 e 	a  T a1p v P 0> 

(F.24)  

For a statistical ensemble 
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da 	1271'4   
an 	/ 	

-ip.z 

v 	Pn / 	E f k2  dk <p v P n op  
IT* e 

rel n
o  o y=n a p=1 

x 6(cK - cp + h - Wo 
 )Ik vt P-p n> 

+ip.z 
x <k v1 P-p n1 e 	a  T a  Ip v P n o> 	(F.25) 

where one has not averaged over final spin states of the neutron nor 

considered an unpolarized neutron beam. 

For neutrons one can take in the Born approximation 

Ta = Va 	and Va 

for both nuclear and spin scattering is given by 

1 
12r 

Va = na 
V + F 2ge2  tp.S

N 
 llp.S 

a  1 
	(SN  .S a) 	(F.26) -  m c2 

A . 

where na  is a projection operator onto the total spin states of nucleus 

and neutron, gN  is the spin of the neutron, ga  is the spin of the 

atomic electrons, and F is a form factor. 

If one considers unpolarized neutrons then the cross terms are zero 

and one can separate nuclear and magnetic scattering. Then, if 

<kIFlp> = F(p) , 

and averaging over final spin states one has to evaluate expressions 

of the form (Ref. 07)) 

<0l{(e.SN)(p•S$) - (§N  •a)}t{(e.•N)(eSa) - sN.sallo>av  

(F.27) 

0111. 



- 96 - 

av 77." averaging  over neutron spins. 

Using  

<01(2.§N) (el. gN)10>av = 1 e'e,  

one obtains equation (F.27) as 

P.P. 
<01 1 (6ii  - -1.34 gl glio> 

--, 	1 13 12 	a 	av 

(F.28)  

(F.29)  

For inelastic neutron scattering  for an energy transfer of 

k2-p2 
2mN  

one introduces a 

6(w  1h1722.1) 
2mN  

and find 

da 
da dw 

= 2ggi2 1 10 
IT 	IF(P)12 I Pn  i 	/ (6. - PiPi)  

magn 	m c2 no 	o n a p=1 ij 	1i 	1p12  

lgi  e-3"z8  6(w + h - Wo)1n>.(nle +ip. 
a  z 

x <n 
o 0 	 a o 

(F.30)  

Putting  

6(w + h - Wo) = I dt 
e-i(w + h - Wo)t 
	

(F.31) 

one can express the cross-section in terms of a time-dependent 
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correlation function. In fact, as it is the cross-section, it is 

expressed in terms of the spectral density of the spin-spin corre- 

lation function 

s..(p,w) = Im K..(p,w) x 13 	 lj 
I  

(1 - e-8w) 

(using theffluctuation dissipation theorem). 	(If Sid = Sji) 

N

N . -ip.z 	 +ip.z  

S..(p,w) = N 

	a 

TH

</, $ S e 	
0  S(w + h 	W

o

)In><nle 	

a 

S

3

a 3.3  

+0t, 	 - z 	
A 

= 	 dt e-iwt  2 <2 Si e  
ip. 

0 	

-$ 

e

+iw

°

t 

e
-iht

in> 

n at3 

ip.z  

x <nle 	S
a

>
TH 

	
(F.32) 

= 	
dt e-iwt 

N 	
_ip.z 

 

Si 	 0 
e 

L  P 
<11  a 	

e 

n

o 

0 

-Co 

 

n 
	

a$ P  

ip.z

a j ihti 
x e 	S e in

o

> 

a 

= I dt e-iwt S..(p,t) 
13 

N 	ip(z -z (t)) . 

S..(p' t) = <1 Si  e 	a  173 	

OaW>TH • 

	(F.33) 

3.3  
a$ 

If there is no thermal motion or it is neglected 

zs(t) = R 

	

za(0) = -a 

-0) 

the lattice vector of the nuclei. 
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It can a2so be written as 

S..(p,t) 	I eiP.E 	iwt r..(r,t) 13 

A 
ro

1.3
(r,t) = / 	de si(0) 6(r + za  - r') q(t) 6(r' - z(t))>TH  a$ 

314 ) 

Then finally 

da 2E2 1 Ikl , 	‘12 

'
1 

F'P 'f- d42 dw  magn Ti moc2  

N 	Pip. 
x 	p 	1 	1 (6., - ---14 S..(p,w) 

13 12 13 no 
no a 8=1 ij 	IN 

(F.34) 

This is the prob/unit time of a neutron of wave vector k being scattered 

in a unit solid angle around the direction k-p, with an energy change 

of tw. 
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APPENDIX G 

Calculation of Vertex Blocks 

Let us first calculate the average of some operators gcg(t). 

First consider the case when one has on the left the operator St  

i.e. <gi-gz 	g-> = Tr Ipo  g+gz 	 -} 	(G.1) 

One has 

4.1.(gz 	g-)> <OZ 	$-) +> 

<Cs , s j •doS 	 4 

AZ 	A■ 	

*60 	• e [g+  gl> 

(G.2)  

since each intermediate term cancels. 

The second term on the left can be rearranged by a cyclic trans- 

formation using 

+130 = eY 130 1"  g  (G.3)  

Therefore 

A+AZ 	
A■ 

(1 eY)<S S 	S > = 	g-> 	- <e 	sz> 
(G.4)  

where one has used 

Af 	

rg+ 	 gZ  . 	(G95) 

The result is 

A■ 
S *se 	= n f<g+ 	S > 	+ 	<gz 	gz>1 

(G.6) 
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and the average of the product of a certain number of spin operators 

has been reduced to a sum of averages of products of a smaller number 

+ of operators. Further, the operator A has disappeared in each pro- 

duct, and one of the operators g and g has been replaced by gz  or 

stel. 
— h respectively. Note that there are always the same number of g-

operators as there are g+  operators in any product (due to nature of 

g.g interaction). This means that one does not have to consider 

strings of operators such as <g—g— gZ ggz>  If there is no g+  

operator in the product, then it is of the trivial form of a string 

of Sz's. 

Then in order to complete the reduction of all operator products 

that one has to deal with, it remains only to consider the case when 

the operator g+  is not on the extreme left of the average in question. 

In this case one first transposes 	to the left, commutations with 

gz  and g+  resulting in terms of the same form as in the right-hand-

side of equation (G.4), but with a factor +1 or -1 for g+  and g-, 

e.g. <Sz 	g+  4100 g > = (ny  + 1)<g 	g> 0 ,111 	n <gz 	gz> 

(G.7)  

in the case of an g operator to the left one obtains a factor -(n + 1). 

Therefore terms obtained by contraction of g+  with operators on 

its left enter with a factor ±1(n + 1) and those to the right with a 

factor ±n y. Taking into account that the time dependence of the 

operators is given by 

S+ (t) = efi°t S(0) e
-Hot 

= e-ytT S+(0) (0) (G.8)  

g(t) = eYtT  g-(0) 	gz(t) = Sz(0) . (G.9) 
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Then one can see (by writing  out the product for each time ordering) 

that 

<W(t1) gz(t2) 	g-(tz)}> 

= G(t1-t2) <Tfe(t2) 	g-(tn)1> 

+ 	- G(t1-tn) <1[gz(t2) 	?(tn
)1> 

where 

G(t) = eYtT n- 

( 	

t>0 

Y 

 

• 

nyt1 t<0 
(G.10) 

One gets a t sign for a contraction with 	and a -ve sign for a con- 

traction with g-. If the process is continued one finally finds that 

one is always left with a string of one or several gz operators. 

Examples  

1. 	r2
z (t1°t2) 

rA  <TiSz  (t1  ) Sz (t2
)1> = <Tis (0) Sz(0)1> 

= <g2, 
z 

Then one must subtract the disconnected parts (equation (6-16), 

i.e. <S z>2. 	Therefore 

r2z = <g2, - <s >2  = b'(y) • 

Note that this is true only in the simple molecular field 

approximation. Therefore 

z r2
z (w1,w2) = b' 5(w1) 6(w2) . 
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2. 	r2
+- (t11t2) 

<T{S+(t1 	= e(ti-t2)<e(t1) g-(t2)> 

+ 0(t2-t1
)a-(t2) e(t1 

 )> 

= eY(t2-ti)T  e(t1-t2)4+i-> + e(t2-t1) 

ey(t2-t )T 	II) 

<S
+
S
-
> = n Y <S z> 	<S S+> = (ny  + 1)<Sz> , 

and 

<S
+
> = <C> = 0 . 

Therefore from equation (GAO 

<TIS (t
I) S (t2)}> 

= <b Z> G(t
1
-t2) . 

Because of equation (4-12.) there are no disconnected diagrams to sub-

tract. In general, the disconnected diagrams may be taken into 

account as stated in text. 

- <fle(t l ) s(t2 )1><gz> 

= + G(t1-t2
)<gzgz> + G(t1-t2)<Sz>2  - G(tI-t) G(t-t2) b 

= + b' G(t1-t2) - b G(t1-t3) G(t-t2) . 
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-z 
4. 	Z(t

1'
t
2'
t
3'
t
4
)  

We shall just calculate 

<Tle(ti) S-(t2) SZ(t3) Sz(t4)1> 

and rely on the general theorem to take account of the dis-

connected diagrams 

= - G(ti-t2)<Ifiz(t2) sz(t3) sz(t4)1> + G(ti-t3) 

<T0+(t3) S (t2) Sz(t4)1> + G(t1-t4) 

<TW(t4) s(t2) Sz(t3)}> 

- b" G(t1-t2) + G(t1-t3){- G(t3-t2)<Sz(t2) S(t4)1> 

+ G(t3-t4) G(t4-t2)0 + G(ti-t4) 

{- G(t
4
-t
2
) b' + G(t4-t3) G(t3-t2) 

= b" G(ti-t4) - b' G(t1-t3) G(t 3-t2) + b G(ti-t3) G(t3-t4) G(t4-t2) 

b' G(ti-t4) G(t4-t2) + b G(ti-t4) G(t4-t3) G(t3-t2) . 

+-zz To obtain r 	(w
1 
...

4
) one has to fourier transform this expres- 

sion (strictly speaking find the fourier coefficients). 
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