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Abstract

The dynamics of the turbulent three-dimensional wake generated by an axisym-

metric bluff body with blunt trailing edge are experimentally and theoretically

investigated at a diameter based Reynolds number of 188, 000.

A detailed analysis of the base pressure measurements shows that the large

scale structures of the turbulent three-dimensional wake retain the structure

of the laminar instabilities observed in the transitional regimes, in a statisti-

cal sense. These persisting instabilities at the turbulent regime, are associated

with spatial and temporal symmetry breaking, giving rise to spatial reflectional

symmetry and quasi-periodic vortex shedding. The influence of turbulence re-

covers the lost temporal and spatial symmetries in the long-time average. It is

shown that the turbulent spatial dynamics are reproduced by a simple stochas-

tic model the deterministic part of which accounts for the spatial symmetry

breaking and gives rise to steady large scale structures through a supercritical

pitchfork bifurcation, and the stochastic part modelling in a phenomenological

sense the turbulent fluctuations acting on the large scale structures.

The axisymmetric body wake is further investigated when axisymmetric slot-

jet zero-net-mass-flux forcing is applied on the rear base. Landau-like mod-

els that capture the weakly nonlinear interaction between the global vortex

shedding mode and axisymmetric forcing are derived from the phase-averaged

Navier-Stokes equations. The Landau-like models describe accurately the forced

response by means of measured base pressure of the global vortex shedding

mode. With the present analysis it is demonstrated that the concept of weakly

nonlinear global modes can be extended to a fully turbulent flow, far from the

critical bifurcation Reynolds number, and a general framework for the descrip-

tion of systems with broken symmetries—giving rise to global dynamics—and

turbulent dynamics is provided. The novel results presented here advance the

understanding of the dynamics of three-dimensional turbulent wakes and pave

the way for turbulence prediction and control.
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Nomenclature

Acronyms

A/D Analog-to-digital

CoP Centre of pressure

CTA Constant-temperature anemometry

D/A Digital-to-analog

DNS Direct numerical simulation

GLSA Global linear stability analysis

LLSA Local linear stability analysis

MM Mixed mode

MSD Mean square displacement

PDF Probability density function

PID Proportional-integral-derivative

PSD Power spectral density

PSI Parametric subharmonic instability

POD Proper orthogonal decomposition

RMS Root-mean-square

SS Steady state

SW Standing wave

VLF Very low frequency
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VS Vortex shedding

ZNMF Zero-net-mass-flux

Greek symbols

∇ Laplace operator

ξ Random forcing term

ν Kinematic viscosity m2 s−1

νT Eddy turbulent viscosity m2 s−1

ω Angular frequency rad s−1

φ Angle in the polar co-ordinate system degrees

ρ Fluid density kg m−3

σ Standard deviation

θ Momentum thickness of boundary layer at separation m

Roman symbols

A Amplitude of global mode

Cp Area weighted pressure coefficient

D Diameter of the body m

D Diffusion coefficient

E Forcing amplitude

e Euler’s number

f Frequency s−1

iin Actuator driving current

L Length of the body m

p Pressure kg m−1 s−2
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pcav Actuator cavity pressure kg m−1 s−2

Pm Modal pressure amplitude

r Radius or radial position in the polar/cylindrical co-ordinate system

m

ReD Reynolds number based on body diameter

St Strouhal number

u Velocity components

U∞ Freestream velocity m s−1

ujet Actuator centreline jet velocity m s−1

vin Actuator driving voltage

x, y, z Cartesian co-ordinate system m

z Axial position in the cylindrical co-ordinate system m
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1. Introduction

Turbulent flows are ubiquitous in natural phenomena and engineering appli-

cations therefore a mathematically tractable description of them is desirable

for their prediction and control. At low Reynolds numbers, corresponding to

laminar regimes, hydrodynamic stability and bifurcation theory have aided un-

derstanding of the dynamic behaviour of fluid flows. However, departure from

the laminar regimes and the critical bifurcating points renders the flow chaotic

and finally turbulent, increasing the order of the system and complexity for a

mathematical description of it.

In this thesis we focus on flows behind bluff bodies. Bluff-body flows are of

fundamental importance to many industries, in particular the transport indus-

try, where the aerodynamic drag arising from such flows can be the dominant

source of vehicle fuel-burn and CO2 emissions (Hucho, 1998). However, flows

pertinent to the transport industry involve high Reynolds numbers and tur-

bulent wakes. Despite their turbulence, such wake flows exhibit organisation

which manifests as coherent flow structures: these are usually associated with

increased noise, structural fatigue and drag. Understanding the underlying

wake dynamics in the turbulent regime is of paramount importance for the

development of practical control strategies.

This investigation is part of a broader research effort to develop flow control

devices that can be deployed on automotive vehicles. Previous work at Imperial

College has addressed this challenge through open loop forcing of the wake of

an axisymmetric bluff body with a blunt trailing edge, achieving base pressure

increases of up to 33% using a pulsed jet (Qubain, 2009; Oxlade, 2013; Oxlade

et al., 2014). The question that still remains unanswered is ‘can we achieve more

efficient turbulence control using feedback control techniques?’. To answer this

question a deep understanding of the underlying turbulent dynamics is required.

This understanding can enable the development of mathematical models, based

upon which control algorithms can be designed and implemented in turbulent

fluid-flow systems with the end goal being the manipulation of these flows at
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CHAPTER 1. INTRODUCTION

will.

The aim of this thesis is the analysis and modelling of the dynamic be-

haviour of a turbulent wake behind a bluff three-dimensional axisymmetric

body with a blunt trailing edge. We will show, perhaps surprisingly given that

ReD ∼ 2× 105, that these dynamics can in fact be linked to the hydrodynamic

instabilities observed during the transitional regimes at low Reynolds numbers.

Here, ReD = U∞D/ν is the Reynolds number, U∞ is the free-stream velocity,

D is the diameter of the body and ν is the fluid kinematic viscosity. These

observations allow us to develop simple and tractable mathematical models

that capture most of the dynamic behaviour of turbulent wakes by extending

well-known theories of the laminar flow to the turbulent one.

An important feature of our study is the use of only body-mounted sensing. In

real transport flows, full flow-field measurements are impractical, with sensors

embedded in/attached to the body being the only feasible option. In the context

of drag reduction, only those structures which influence the pressure force on

the base of the bluff-body are of importance. We therefore conduct our analysis

entirely using pressure measurements on the base of the body.

1.1. Why low dimensional space?

An important theme of this work is that the dynamics of turbulent flows, which

span a high-dimensional space, may frequently be captured accurately and effi-

ciently by projection onto a low-dimensional space. To enhance understanding

of why this is the case, we begin with the governing equations, taken to be the

scaled incompressible Navier-Stokes equations:

∂tu + u · ∇u = −∇p+ Re−1∇2u and ∇ · u = 0. (1.1)

One can expand the solution of (1.1) as an infinite sum of basis functions that

satisfy the boundary conditions, say φn(x). Physically, these typically represent

the modes of the flow, each with amplitude An,

q(x, t) =
∞∑

n=0

An(t)φn(x). (1.2)
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1.1. WHY LOW DIMENSIONAL SPACE?

Upon substitution in (1.1), a set of ordinary differential equations for the am-

plitudes An is obtained:
dA

dt
= F (A). (1.3)

Note that this is an infinite-dimensional description, while experimental obser-

vations suggest that many flows, including the flows behind bluff bodies, are

dominated by small number of modes.

Quite generally, (1.3) can be written as

dA

dt
= LA +N(A), (1.4)

where L is a linear operator and N is the nonlinear part. For small devia-

tions from the steady state, the nonlinear part can be neglected. In a stable

stationary state all these states (or modes) are stable in the sense that pertur-

bations off the stationary state decay in time. Then stability implies that all the

eigenvalues λi of the linear operator L are lying in the left half complex plane

(negative real part), since any solution of a linear equation can be expanded

in eigenmodes whose time dependence is eλt. A mode becomes unstable if it is

associated with an eigenvalue that crosses the imaginary axis gaining a positive

real part. When a control parameter is changed (in bluff-body flows typical

control parameter is the Reynolds number, in the absence of forcing) at a crit-

ical value it often happens that at least one eigenvalue crosses the imaginary

axis. Whenever this situation occurs, the dynamics can be effectively reduced

to a set of differential equations, where the number of variables involved is de-

termined by the number of the unstable modes. Intuitively, the reason for this

reduction is a simple separation of timescale. Modes that have just crossed the

imaginary axis have a small real part and are evolving on long timescales. All

the other modes rapidly adapt themselves to the slow modes (Procaccia, 1988).

Historically the first dynamical systems description of turbulent flows intro-

ducing the concept of transition was given by Landau (Landau, 1944; Landau

& Lifshitz, 1959). In his conceptual model, turbulence may be produced via an

infinite number of oscillatory bifurcations as the Reynolds number of the flow is

increased giving rise to a continuous spectrum of temporal frequencies. Ruelle

& Takens (1971) revised Landau’s theory and showed that chaotic behaviour

can be reached only after a finite and small number of bifurcations.

Based on the above, before reaching fully developed turbulence many flows,
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CHAPTER 1. INTRODUCTION

i.e. bluff-body wakes, pass through an intermediate state in which the time

dependence of their state variables is already erratic but only a few modes

are appreciably excited. Such a system can be successfully described by mathe-

matical models involving a finite, and even small, number of dynamic variables.

In our study, we show that these modes persist even at high Reynolds num-

bers, manifesting as large-scale coherent structures, and containing most of the

dynamic behaviour observed in the near wake behind a bluff body.

1.1.1. Global modes

At low Reynolds numbers, many flows are able to sustain a stable stationary

state when perturbed. With increasing Reynolds number, such flows may un-

dergo a change in stability that affects the whole flow field, at a critical Reynolds

number, Rec. The flow is then globally unstable. This change in stability is

termed a bifurcation, with Reynolds number being the bifurcation parameter.

Linear stability analysis may be employed to predict accurately the onset of

instability in transitional flows. This is accomplished by studying the evolution

of perturbations on the fixed point of the governing Navier-Stokes equations

(steady equilibrium known as base-flow). Specifically, perturbations will grow

exponentially, if there exists one unstable eigenvalue associated with the lin-

earised governing equations around the base-flow. Then the flow under inves-

tigation is termed linearly and globally unstable.

Flows which exhibit a global instability are known as oscillator flows (Huerre

& Monkewitz, 1990; Chomaz, 2005), and bluff-body wake flows are an example.

The periodic vortex shedding into the wake of a circular cylinder is one of the

most well-known examples of a global fluid instability in an open flow. Such

flows initially exhibit a single unstable eigenmode and are linearly unstable.

The modal amplitude initially grows exponentially, but is then limited by non-

linear effects and settles into limit cycle. This type of bifurcation is known as

a supercritical Hopf bifurcation.

The evolution of the amplitude of the global mode with time, starting from

the exponential growth characterised by linear instability, and progressing to

the non-linear saturation characterised by a stable limit cycle, can be modelled

using the Stuart-Landau equation. The Stuart-Landau equation describing the

weakly nonlinear evolution of the amplitude A of the global eigenmode close to
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the threshold of bifurcation (ε = Re−1
c −Re−1 � 1) is given by

dA

dt
= σA+ λA|A2|. (1.5)

The Stuart Landau equation has been widely used to predict the oscillation

amplitude of a flow undergoing single supercritical Hopf bifurcation, such as a

cylinder flow (Sipp & Lebedev, 2007). It has to be pointed out that the SL

has been successfully used to describe also local flow quantities, i.e. velocity

component at a fixed spatial point, and in this case the two unknown complex

coefficients can be found experimentally (Provansal et al., 1987; Schumm et al.,

1994) or numerically (Dušek et al., 1994) from transient experiments close to

the threshold of bifurcation. More recently, coupled Stuart-Landau equations

have been shown to apply to more complicated flows in which multiple unstable

modes exist and interact. These include flows generatated by three-dimensional

axisymmetric bluff bodies such as the disk and the sphere (Fabre et al., 2008;

Meliga et al., 2009).

It should be emphasised that the weakly nonlinear analysis is not only rel-

evant to understand the transition process, but also describes the evolution of

the whole flow-field during the saturated nonlinear regime. Thus far, modelling

of three-dimensional bluff-body flows using the Stuart Landau equations has

been limited to laminar, low Reynolds number flows, in which the Reynolds

number is close to Rec. It has not been applied to fully turbulent flow.

1.2. Axisymmetric bluff body wakes

Axisymmetric bluff body wakes are of practical interest since they serve as a

generic representation of three-dimensional flows commonly found in engineer-

ing applications. These wakes have been widely studied though laboratory and

numerical experiments, with the majority of attention focussed on spheres and

disks. Another type of axisymmetric body, the bullet-shaped body (typically

a cylindrical body with an ellipsoid nose and its axis aligned with the flow)

has received considerable attention recently. This type of body has an addi-

tional control parameter, the length of the body L, with facilitates control of

the boundary layer characteristics—at the fixed separation that occurs at the

trailing edge—through its development length. Also, for a fixed L the proper-
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ties of the boundary layer can be controlled with appropriated conditioning of

it (i.e. laminar or turbulent separation). Recent advances in computing power

have enabled the study of bluff body flows with direct numerical simulations.

However, due to the high computational cost, DNS are limited to low Reynolds

numbers, corresponding to transitional and laminar regimes.

1.2.1. Laminar/transitional regime

It has been generally acknowledged that the flow behind axisymmetric bodies

is dominated an instability with azimuthal wavenumber |m| = 1 (Monkewitz,

1988), which plays an important role during the transition of the laminar wake.

Studies based on experimental measurements and direct numerical simulations

showed that the wake undergoes successive bifurcations at low Reynolds num-

bers from an axisymmetric steady state. The results of these studies are sum-

marised in the following sections and a clear understanding of the dynamics of

the laminar wake will provide additional insight in the turbulent ones.

Bullet shaped body

The flow past blunt-based axisymmetric bluff bodies has been considered in

various direct numerical simulations (Sanmiguel-Rojas et al., 2011; Bohorquez

et al., 2011; Bury & Jardin, 2012) and local/global linear stability analyses

(Sevilla & Mart́ınez-Bazán, 2004; Sanmiguel-Rojas et al., 2009, 2011; Bohorquez

et al., 2011) with or without control. The key characteristics and parameters of

these studies are shown in table 1.1. These numerical studies showed that, be-

fore the emergence of chaos in the near wake, the flow undergoes two successive

bifurcations by increasing the diameter based Reynolds number in the absence

of external forcing. These bifurcations are associated with loss of spatial and

temporal symmetries, respectively.

Linearly stable flow For axisymmetric bodies in a uniform external flow,

the steady separated flow field at low Re consists of an axisymmetric, steady,

toroidal recirculation eddy behind the body. In terms of stability the axisym-

metric base flow is linearly stable and any small perturbation on this will decay

in time. The base flow, which coincides with the mean flow, is rotationally

symmetric with respect to the axis of the body (axisymmetric).
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Re L/D Analysis Control
Sevilla & Mart́ınez-Bazán (2004) 3000 9.8 LLSA base bleed
Sanmiguel-Rojas et al. (2009) ≤ 2200 5 GLSA base bleed
Sanmiguel-Rojas et al. (2011) ≤ 700 2 DNS, GLSA base cavity
Bohorquez et al. (2011) ≤ 2000 2 DNS, GLSA base bleed
Bury & Jardin (2012) ≤ 900 7 DNS

Table 1.1.: Short survey of numerical investigations of flows behind axisym-
metric bodies with blunt trailing edge (bullet shaped bodies).

First bifurcation (steady) The first bifurcation observed in axisymmetric

bluff-body wakes is a supercritical steady∗ one with azimuthal wavenumber

m = 1 which leads to a double-threaded wake structure; although the flow is

still steady, it is no longer axisymmetric but preserves reflectional symmetry

about a fixed plane that passes along the axis of the body. Figure 1.1a illustrates

that the streamwise vortices behind the bullet shaped body are not aligned with

the streamwise direction but exhibit a large eccentricity which becomes more

pronounced further downstream of the solid base. The angle of the reflection

symmetry plane is determined by the initial conditions. The resulting flow has

reduced symmetry due to the loss of stability through the supercritical and

steady bifurcation: the rotational symmetry has been replaced by reflectional

symmetry.

Second bifurcation (unsteady) For larger Reynolds numbers, a Hopf bi-

furcation with m = ±1 leads to unsteady flow characterised by the shedding of

streamwise-oriented, alternating hairpin-like vortices. Vorticity contours shown

in figure 1.1b provide a clear picture for the structure of the wake where regu-

larly spaced vorticity lobes are shed periodically. The non-dimensional Strouhal

frequency is approximately 0.12. At this regime, the flow preserves the reflec-

tional symmetry and vortices are shed eccentrically of the body axis.

The thresholds of the two bifurcations described above depend on the length-

to-diameter ratio of the body, L/D. For a body with L/D = 7, these regimes

were observed at Reynolds numbers close to 450 and 590 (Bury & Jardin,

2012). For a body with a smaller length-to-diameter ratio, L/D = 2, the

critical Reynolds numbers are 319 and 413 (Bohorquez et al., 2011).

∗the frequency of the unstable eigenvalue is zero
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Chaotic regime Further departure from the second critical Reynolds number

renders the wake chaotic. During the chaotic regime the reflectional symme-

try is broken; however, phases of reflectional symmetry whose flow topology

resembles that of the reflectional symmetric state are randomly interrupted by

dramatic changes of the azimuthal position of the symmetry plane (Bury &

Jardin, 2012), as depicted in figure 1.1c. The reflectional symmetry plane ex-

ists in an instantaneous sense, but it is randomly and intermittently re-oriented

on a very long time scale.

Beyond the second critical Reynolds number, Bury & Jardin (2012) identified

a second mode with a frequency lower than the natural shedding frequency and

which dominates the drag fluctuations. Bohorquez et al. (2011) also reported

a second peak appearing in the spectra of the axial velocity component at a

frequency approximately one quarter of the shedding. However, no analysis of

this observation was given.

Disk and sphere

Similar regimes and bifurcations to the ones described above for the bullet

shaped body have been observed mainly through direct numerical simulations

in the wake behind a sphere (Tomboulides & Orszag, 2000; Ghidersa & Dušek,

2000; Pier, 2008; Fabre et al., 2008). A steady bifurcation of the m = 1 mode at

Re ≈ 210 is responsible for the loss of rotational symmetry (axisymmetry). The

resulting wake is characterised by a pair of opposite-sign streamwise vortices

which exhibit reflectional symmetry. A second oscillatory bifurcation with m =

±1 is observed at Re ≈ 270 and results in periodic vortex shedding. Ormières

& Provansal (1999) showed experimentally that the periodic regime, which

appears after the transition from steady to unsteady wake, follows a Landau-

Hopf scenario. The critical Reynolds number for the onset of periodic velocity

oscillations on the wake was found to be 280, which is in close agreement with

the above studies. After the second Hopf bifurcation the wake preserves the

reflectional symmetry. However, for further departure (Re ≈ 500) from the

second critical Re, the flow becomes chaotic and vortices are shed from the

sphere with random orientation. At Re ≈ 1000 small scale structures appear

in the flow because of the Kelvin-Helmholtz instability of the separating shear

layer from the sphere (Tomboulides & Orszag, 2000).

The flow behind a disk placed normal to the flow (Natarajan & Acrivos,
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(a)

(b)

(c)

Figure 1.1.: Streamwise vorticity contous behind a bullet shaped axisymmetric
bluff body at different regimes and low Reynolds numbers. (a) Left:
lower and side view of vorticity iso-surfaces immediately after the
first steady bifurcation, Re = 550. Right: isolines of vorticity
at a location of 14 diameters downstream of the solid base. This
regime is characterised by spatial reflectional symmetry due to loss
of rotational symmetry. (b) Lower and side view of vorticity iso-
surfaces immediately after the second unsteady bifurcation, Re =
700. This regime is characterised by loss of temporal symmetry and
the emergence of vortex shedding. (c) Side view of vorticity iso-
surfaces during the chaotic regime, Re = 900. Although this regime
is characterised by chaotic dynamics, structures that resemble the
ones at earlier stages are distinguishable. After Bury & Jardin
(2012).
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1993; Fabre et al., 2008; Meliga et al., 2009) shows a slightly different picture.

As for the sphere and the bullet shaped body, the first m = 1 bifurcation

observed at Re ≈ 115 leads to a steady mode with reflectional symmetry and

a subsequent oscillatory one at Re ≈ 121 to periodic shedding. However, the

latter breaks the reflectional symmetry and the vortices appear to be twisted

about the disk axis, with no symmetry plane due to the regular rotation of the

separated region. Finally, at Re ≈ 140 a third bifurcation recovers reflectional

symmetry and vortices are shed at a constant angle. Similarly to the sphere

and the bullet shaped body, for sufficiently high Re, the flow becomes chaotic

and no other bifurcation is observed.

1.2.2. Weakly nonlinear modelling

The observations presented above suggest that the transitional behaviour of

axisymmetric wakes follows a similar scenario during the initial stages at low

Reynolds numbers of O(100). Using hydrodynamic stability arguments, these

studies shed light on the transitional dynamics of axisymmetric wake flows and

paved the way to low-order dynamical modelling that captures accurately their

transitional dynamics close to the threshold of bifurcations.

Linear stability analysis has been proved to predict accurately the onset of

instability for each bifurcated regime for many of the above studies. However,

the instabilities grow over time and the underlying small amplitude assumption

of the linear stability analysis is no longer valid. Thus, as the flow evolves in

time, higher than first order terms (linear) become important and a nonlinear

analysis is necessary. Fabre et al. (2008), based on symmetry arguments (sym-

metry group O(2) of the problem), used the normal form of equations truncated

at third order which describes the interaction of the three global modes (steady

m = 1, unsteady m = ±1) in the wake of a sphere and a disk. Their model,

which was initially developed for the Taylor-Couette system, allowed them to

explain structural differences observed in the disk and sphere flows and to ac-

curately predict the evolution of lift force. Meliga et al. (2009) used a multiple

time scale expansion to compute analytically the leading-order equations that

describe the nonlinear interaction of the three leading eigenmodes in the wake

of a disk. The normal form, which was identical to the normal form proposed

by Fabre et al. (2008), accurately predicted the sequence of bifurcations, the

associated thresholds and symmetry properties observed in the DNS calcula-
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tions.

For the laminar case, the three leading eigenmodes that are linearly unstable

and responsible for the two consecutive bifurcations in axisymmetric body flows

are an m = 1 stationary mode and m = ±1 spinning modes. The weakly

nonlinear anlysis involves expansion of the three dimensional velocity field and

the pressure field q = (u, p)T of the scaled Navier-Stokes equations considering

the following asymptotic expansion of the flowfield:

q(x, t, t1) = q0(x)+
√
ε

1
q1(x, t, t1)+

√
ε

2
q2(x, t, t1)+

√
ε

3
q3(x, t, t1)+· · · (1.6)

Introducing (1.6) into (1.1) and considering departure of order ε from criticality

(Re−1 = Re−1
c − ε, ε � 1), a series of equations is obtained at various orders

equating coefficients of the nth power of
√
ε to zero. Specifically:

(i) At zero order, a nonlinear equation is obtained specifying that q0 is a

solution of the steady Navier-Stokes equations at the critical Reynolds

number, Rec.

(ii) At first order, an eigenvalue problem is obtained specifying that q1 may

be taken as a superposition of the unstable global modes of the steady

flow field q0:

q1 = A1e
imφ +

(
B+1e

imφ +B−1e
−imφ) eω0t + c.c. (1.7)

where A1 is the complex amplitude of the stationary mode and B±1 are

the amplitudes of the two counter-rotating oscillating modes.

(iii) At second order, inhomogeneous linear non-degenarate equations are ob-

tained which can be readily solved.

(iv) At third order, degenerate linear inhomogeneous equations arise. Hence,

compatibility equations are imposed to cancel secular terms which yield

coupled Landau-like equations, describing the amplitude evolution of the

unstable global modes. More details for the analysis can be found in

Meliga et al. (2009). The Landau equations that arise are:

Ȧ1 = A1 (λA + a0|A1|2 + bA|B+1|2 + cA|B−1|2) + dAB+1B
∗
−1A

∗
1 (1.8a)

Ḃ+1 = B+1 (λB + aB|A1|2 + bB|B+1|2 + cB|B−1|2) + dBA
2
1B−1 (1.8b)

Ḃ−1 = B−1 (λB + aB|A1|2 + bB|B−1|2 + cB|B+1|2) + dBA
∗2
1 B+1 (1.8c)
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Global mode interaction and pattern selection in the wake of a disk 175
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Figure 8. Theoretical bifurcation diagram associated to the normal form (4.14). Solid
(respectively dashed) lines denote stable (respectively unstable) branches.

Similarly, χ̃B results from a forcing term of amplitude B−AA, whose real part of the
axial velocity component is shown in figure 7(c). It arises from different contributions:

F̂3
B− AA = −C1, 0

(
û1

A, û2
B− A

)
− C−1, 2

(
û1

B−, û2
AA

)
, (4.18a)

χ̃B = −
〈

q̂1†
B+, F̂3

B− AA

〉
. (4.18b)

This means that the spiralling mode q̂1
B− can force the production of the counter-

rotating spiralling mode q̂1
B+ by its nonlinear interaction with the m =2 stationary

solution q̂2
AA shown in figure 6(b), or by interacting first with the stationary mode q̂1

A
to produce the second-order solution q̂2

B− A (m = 0, ω = ω0), which eventually interacts
with q̂1

A again. The real part of the associated coupling density field χ̃B(r, z) =
q̂1

B+(r, z) · F̂3
B− AA(r, z), shown in figure 7(d), is also localized in the recirculation region,

meaning that the spiralling mode q̂1
B+ is receptive to the forcing owing to the B−AA

interaction only close to the disk and in the recirculating bubble.
We obtain

λ̃A = 2.01 + 71.4δ λ̃B = −1.85 + 76.4i + (66.7 + 9.35i)δ
µ̃A = 3.11 µ̃B = 2.42 + 0.0321i
ν̃A =6.88 − 1.11i ν̃B =3.13 − 0.816i

η̃B = 0.955 − 3.47i
χ̃A = 4.57 χ̃B =1.62 − 1.36i.

4.5. Bifurcation diagram

We set now A= |A|eiφA , B+ = |B+|eiφ+
B and B- = |B−|eiφ−

B . An exhaustive description of
the solutions of system (4.14), up to ternary bifurcations, can be found in Golubitsky
et al. (1988). In this section, we comment only the solutions relevant to our problem.
The bifurcation diagram is shown in figure 8, where the quantity Θ = |A|+ |B+|+ |B−|
is plotted as a function of the Reynolds number. Note that Θ has no particular
physical meaning but yields a convenient visualization of the bifurcation sequence.
The solid thick lines (respectively thin dashed lines) correspond to stable (respectively
unstable) solutions that are of three different kinds, as will now be explained.

Figure 1.2.: Theoretical bifurcation diagram of the wake of a circular disk as-
sociated to the normal form (1.8). The sum of the amplitude of
the three global modes is plotted, Θ = |A1| + |B+1| + |B−1| as a
function of the Reynolds number. Solid (respectively dashed) lines
denote stable (respectively unstable) branches. After Meliga et al.
(2009).

The bifurcation diagram predicted by eq. (1.8) for the disk flow is shown

in figure 1.2, where the sum of the amplitude of the three complex modes

is plotted. Depending on the values of the coefficients of eq. (1.8), different

branches in the bifurcation diagram are selected. This appears to be the case

for the sphere explaining the different transition scenario; the mixed mode

branches (MM) are unstable and the standing wave (SW) solution is selected

after the steady state (SS) solution.

Although the weakly nonlinear analysis has been applied for the disk and

sphere wakes in the case of three-dimensional bluff body flows, one could ex-

pect the same equations to hold for the bullet shaped body. As the DNS and

linear global stabilty results suggest, the transition is similar in these flows, and

specifically with the sphere wake.

Recently, the weakly nonlinear analysis was extended by Sipp (2012) taking

into account external forcing. The modelling approach was demonstrated on

a two-dimensional laminar open-cavity flow which is characterised by a single

global oscillatory mode. The derived Landau-like equations included extra

terms that arise due to the forcing and predicted accurately the response of the
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global mode when forcing was applied. It was demonstrated that the global

mode could be effectively suppressed with high-frequency forcing or locked on

the forcing frequency opening new horizons for open loop control in flows with

global modes. It follows naturally that this approach should be applicable on

flows with more than one unstable modes, such as axisymmetric bluff body

flows, however resulting in more complex equations and more terms due to the

combinations of all the possible interactions.

1.2.3. Turbulent regime

A large number of studies has shown that at high Reynolds numbers, the bi-

furcating oscillatory state observed in the laminar wakes manifests as shedding

of large-scale structures. Due to the high computational requirements of DNS

of the governing Navier-Stokes equations at high Reynolds numbers, much re-

liance is still placed on experimentation. Early experiments in the turbulent

wake behind axisymmetric bodies, such as disks and spheres, (Achenbach, 1974;

Taneda, 1978; Fuchs et al., 1979) showed that the predominant flow structures

in the near wake are coherent antisymmetric modes with |m| = 1. Visuali-

sations and velocity measurements in the near wake of axisymmetric bodies

indicated that these structures are shed in the form of one helix or a pair of

counter-rotatating vortices at a constant Strouhal frequency, independent of

Reynolds number. Interestingly, the above studies of turbulent wakes showed

that the separation point rotates randomly around the body above Reynolds

number 1000, approximately. In recent experiments behind blunt-based ax-

isymmetric bodies, Sevilla & Mart́ınez-Bazán (2004) and Grandemange et al.

(2012b) measured a dominant oscillatory antisymmetric mode with |m| = 1 at

a Strouhal frequency of St ≈ 0.2.

Using hot-wire measurements, Kim & Durbin (1988) found in the near wake

of a sphere two dominant frequencies over a broad range of Re (500 ≤ Re ≤
60000). The low frequency corresponded to the vortex shedding and remained

approximately constant over theRe range they examined, when non-dimensionalised

with the diameter of the sphere and the freestream velocity. The high frequency

was associated with the separating shear layer instability and they were able to

measure it only in the immediate wake. As in the laminar case, the turbulent

shear layer acts as an amplifier of disturbances over a relatively broad range of

wavenumbers. In the immediate wake the most amplified frequency scales with
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the momentum thickness of the boundary layer and the most amplified fre-

quency is Stθ ≈ 0.016 if the shear layer is laminar, or Stθ ≈ 0.022−0.024 if the

shear layer is turbulent (Ho & Huerre, 1984), when non-diamensionalised with

the freestream velocity and the momentum thickness. Kim & Durbin (1988)

examined also the response of the wake to acoustic forcing. They found that

the base pressure decreased (thus increasing form drag) over a broad range of

forcing frequencies, 0 < St < 3. The same authors also noticed that the fre-

quency of the vortex shedding was locked to half the forcing frequency, when

forcing was applied near twice the shedding frequency.

A thorough investigation of the turbulent disk wake performed by Berger

et al. (1990) revealed three distinct instability mechanisms. The first was anti-

symmetric fluctuations (|m = 1|) due to helical vortex shedding at a Strouhal

number St ≈ 0.135. The second was axisymmetric (m = 0) pulsation of the re-

circulation bubble at a St ≈ 0.05. The third feature was a high frequency insta-

bility of the separated shear layer (Kelvin-Helmholtz instability) at St ≈ 1.62.

The structures in the near wake appeared to be coherent in space but random

in time. Forcing the disk by nutation at a frequency close to the shedding

frequency, it was observed that the shedding locks in and becomes coherent in

time and space.

Bigger et al. (2009) performed experiments on a disk using pulsed jets and

electromechanical tab actuators generating either symmetric or helical (travel-

ling wave) |m| = 1 disturbances. The actuators for each disk comprised 6 slots

on its circumference, oriented normal to the freestream and the time periodic

velocity perturbations were provided either by the pulsed jet, or the motion of

an electromechanical tab. Their primary result was the response of the base

pressure to both types of forcing over a range of frequencies. The authors found

that symmetric actuation for forcing frequencies close to twice the shedding fre-

quency resulted in maximum shortening of the recirculation region with a base

pressure decrease of up to 4%, in accordance to the results of Kim & Durbin

(1988). On the other hand, helical m = 1 forcing at the shedding frequency

was shown to be effective, when forcing was applied at the shedding frequency,

with a more pronounced shortening of the recirculation length and base pres-

sure decrease of up to 12%. For both types of forcing the mean flow remained

axisymmetric in both cases.

Vilaplana et al. (2013) examined the global mode modification of the turbu-
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Figure 1.3.: Visualisations of the wake behind an axisymmetric bullet shaped
body at various Reynolds numbers: (a) Re = 1075; (b) Re = 1900,
(a) Re = 2650. After Sevilla & Mart́ınez-Bazán (2004).

lent sphere wake (Re = 33000) and the sensitivity of it due to the presence of

a secondary sphere in the near wake. They found that the undisturbed wake

was dominated by the shedding of vortex loops (global mode) at St = 0.19

which exhibit planar symmetry. Although, the angle of the symmetry plane

was random in the reference case, the control sphere was fixing the angle of

the symmetry plane. The fixed angle was π radians rotated with respect to

the control sphere and the shedding occurred always oposite of the location of

disturbance. However the time-averaged flow was not axisymmetric due to the

presence of four supporting wires.

Finally, although it is not an axisymmetric body, it is worth mentioning

the work of (Grandemange et al., 2012a, 2013) on the three-dimensional wake
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of an Ahmed body. The Ahmed body (Ahmed et al., 1984), which is a box

shaped sharp edged body with a rectangular cross section and rounded fore

body, generates essential features of a real vehicle flow. Their results provide a

clear demonstration of persistence of steady and unsteady laminar instabilities

in the turbulent regime of three-dimensional body wakes. At low Re, the flow

behind the Ahmed body preserves the spanwise planar symmetry of the geom-

etry and the presence of the ground induces a top-bottom asymmetry of the

wake. This state remains stable up to Re = 340, at which the wake undergoes a

spatial steady bifurcation resulting in loss of reflectional symmetry; the wake is

asymmetric the wake selects randomly one orientation (left-right) and stabilizes

to an asymmetric position with respect to the spanwise direction. The steady

bifurcation is followed by an unsteady one at Re = 410 giving rise to unsteady

vortex shedding (Grandemange et al., 2012a). These regimes were observed at

Re = 9.2 × 104 (Grandemange et al., 2013). A detailed investigation though

experiments showed that the turbulent recirculation region has two states asso-

ciated with reflectional symmetry-breaking positions. Due to the equiprobable

exploration of these two states, a statistically symmetric wake was observed in

the long time-average. The sequence that these two states were explored was

random (stationary Markov chain) giving rise to bistable behaviour.

1.3. Dynamic analysis of turbulent flow

Although the recent years a great increase in the understanding of turbulent

flows has been gained, a complete predictive theory of them has not yet been

established. This encompasses also the turbulent fluid flows generated by bluff

obstacles and comes in contrast with the laminar and transitional regimes where

hydrodynamic stability theory has been used effectively to describe and model

most of the dynamic features of these flows. However, the properties of far

wakes have been extensively investigated (Pope, 2000), but there is little hope

of devising a complete wake theory until processes in the near wake, where most

of the turbulent energy is produced, are more fully understood.

A number of approaches has been suggested for examining the stability of

turbulent flow. Since turbulence appears to be characterised by random be-

haviour, a statistical approach sounds appropriate for their description. Using

the equations of fluid motion, one can derive equations for the mean velocity
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Figure 1.4.: Large scale coherent structures in mixing layers at high Reynolds
numbers visualised by Brown & Roshko (1974). After Van Dyke
(1982).

and pressure field and other statistical quantities. However, the equations for

the statistics of turbulent flow do not form a closed set of predictive equations.

For practical calculations of the statistical quantities, usually turbulent models

are used yielding questionable results due to the lack of exact closures for the

averaged equations.

The presence of coherent structures is a feature observed in many turbulent

flows. An important characteristic of the coherent large-scale structures ob-

served in open shear flows is that qualitatively resemble instability waves, see

figure 1.4. It seems likely that such persisting macroscopic structure provide

structural blocks for turbulent flows, and hence that analysis of the dynamics

of these structures provides a basis for improved understanding of some aspects

of turbulence. Hence, a significant part of turbulence modelling has been fo-

cused on turbulent flows with predominant coherent structures. In flows with

pronounced coherent structures, such as wake flows, proper orthogonal decom-

position† (POD) has been extensively used to to extract from experimental or

simulated data empirical eigenfunctions that carry the greatest kinetic energy

on average Holmes et al. (2012). POD provides basis functions onto which the

Navier Stokes equations can be projected by Galerkin’s method to yield a set

of ordinary differential equations (ODEs). Variations of the method have been

proposed by Noack et al. (2003) to include shift-modes.

Due to their significance of the coherent structures, their contribution has

to be incorporated in the analysis. Reynolds & Hussain (1972) decompose the

†also known as Karhunen-Loéve decomposition or principal component analysis
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flow quantities q = (u, p) as:

q(x, t) = q̄(x) + q̃(x, t) + q′(x, t), (1.9)

where q̄ is the mean value, q̃ the contribution of the coherent structures (waves)

and q′ the turbulence. The standard Reynolds decomposition can be obtained

when the coherent waves and random turbulence are both included in q′.

Substituting the expansion (1.9) into the Navier-Stokes equations and time

averaging, one finds that the mean flow q̄ is the steady solution of the equation

when forced on the r.h.s by the Reynolds stresses of the organised wave and of

the random turbulence. That is

ū · ∇ū +∇p̄−∆ū/Re = −∇ · ũũ−∇ · u′u′ (1.10)

The dynamical equation for the organised waves (ũ, p̃) around the turbu-

lent mean flow (ū, p̄) can be found in a similar manner (phase averaging and

substracting the mean equation (1.10)), and is given by

ũt+ ū ·∇ũ+ ũ ·∇ū+∇p−∆ũ/Re = −(∇· ũũ−∇· ũũ)− (∇·〈u′u′〉−∇·u′u′)
(1.11)

For the laminar case, the equation for the mean flow is forced only from the

source term ∇·ũũ, arising from the large scale structures (global modes). Then

the linear stability of the mean flow can be examined based on equation (1.10)

by taking the nonlinear forcing constant to a first approximation (Barkley,

2006). However, the mean flow is not a steady equilibrium of the Navier-Stokes

equations and, therefore, may not be an appropriate base flow in order to

determine its stability. Despite this, the above predicts well the frequency of the

vortex shedding in the cylinder flow (Barkley, 2006). Although this approach

seems promising it is not general; Sipp & Lebedev (2007) demonstrate that

precise conditions must be met, explained from the weakly nonlinear analysis,

for a linear stability analysis of a mean flow to be relevant and useful.

The above approach, that is addressing the stability of the mean flow has

been used also for turbulent flows. For the turbulent case, however, an ex-

tra nonlinear forcing term is present, the Reynolds stresses arising from the

turbulent motion u′u′. Probably the simplest model for these terms is the tur-

bulent viscosity model. This involves finding functional relationships between
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the Reynolds stresses and the mean velocity. Then one examines the evolution

of perturbations on the turbulent mean flow. In this framework, Meliga et al.

(2012) analysed the two-dimensional turbulent flow past a D-shaped cylinder

simulated by solving unsteady Reynolds-averaged Navier-Stokes equations with

a Spalart-Allmaras turbulence model. A global linear stability analysis of the

mean flow, predicted well the frequency of the most unstable mode in the sat-

uration regime.

1.4. Control of bluff body flows

Several methods have been proposed for controlling two- and three-dimensional

bluff body flows and their efficiency has been been demonstrated in laminar and

turbulent regimes. The control approach varies depending on the application

and usually the target can be either promotion of instability (i.e. better mixing,

delayed separation) or suppresion (i.e. drag, noise, structural load reduction).

They can be divided in three categories depending on the type of actuation:

passive, active open-loop and active closed-loop‡ for cases of actuators without

power unit, actuators with power input but no sensor, and sensors and actuators

with power input, respectively (Gad-el Hak, 2000). Furthermore, depending on

which part of the flow the control aims to modify, control can be classified into

boundary-layer control and direct-wake control. In the first, control changes

the boundary-layer flow characteristics and thus delays the main separation.

This control method is used in bluff bodies having a movable separation point

(i.e. sphere, cylinder). Conversely, the second method directly modifies the

wake characteristics, and thus can be applied to all kind of bluff bodies having

either a fixed or movable separation point. An extensive review of the methods

used to control flow around bluff bodies has been given Choi et al. (2008).

Passive techniques generally involve geometrical modifications or additions

to the main body. Mair (1965) and Weickgenannt & Monkewitz (2000) showed

that a control disk mounted concentrically on the rear of a bullet-shaped body

at high Reynolds numbers (3× 103 ≤ Re ≤ 5× 104) can alter significantly the

drag exerted on the body and the vortex shedding activity in the near wake.

A parametric analysis of the mounting separation distance of the disk from

the base of the body revealed that significant drag reduction of up to 5% and

‡also known as feedback control
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Actuator Fluid System

Controller

u y

Figure 1.5.: Typical feedback control block diagram: a controller senses the
state of the system y, computes corrective actions u and actuates
the system to achieve the desired change.

attenuation of the vortex shedding can be achieved when the disk is positioned

at a broad downstream distance 0.4D ≤ x ≤ 0.7D. Decrease in the drag was

observed also by Sanmiguel-Rojas et al. (2011) using a cylindrical base cavity

on a bullet-shaped body at transitional regimes (Re ≤ 700).

Application of feedback control methods on bluff bodies with fixed separa-

tion point is limited and there are only a few closed-loop control studies, using

mainly-two-dimensional geometries. One example is the experimental work of

Pastoor et al. (2008), who used feedback information to drive a zero-net-mass-

flux actuator in order to control the flow around two-dimensional D-shaped

body. The natural flow around these bodies is characterized by a short dead

water region and alternating eddies in the vicinity of the base. Both are respon-

sible for a low base pressure and thus for a high drag. The authors derived a

reduced order vortex model for the flow (physics-based model) that resolved the

coherent structures and the effects of the actuation. Based on this model, the

proposed controller synchronizes upper and lower shear layer evolution, thus

postponing vortex formation, as shown in figure fig:Pastoor. This resulted in

40% base pressure increase associated with 15% drag reduction.

Due to the present lack of theoretical models that capture effectively the

dynamics of three-dimensional turbulent bluff body flows, implementation of

successful feedback control strategies has not been demonstrated yet.

1.5. Outline

The objective of this work is twofold. Firstly, to contribute towards the un-

derstanding of the origin and the dynamics of coherent structures in turbulent

wakes behind three-dimensional bluff bodies. Secondly, to develop physics-
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1.5. OUTLINE

Figure 1.6.: Shear layer control behind a D-shaped body. Instantaneous flow
fields are shown from the natural flow obtained from experiment
(top) and vortex model (bottom): (a) Natural flow; (b) open loop
in-phase forcing of top and bottom shear layers with forcing fre-
quency being close to the shedding frequency ; (c) feedback control
using only top actuator to synchronise both shear layers sensing
the base pressure. After Pastoor et al. (2008).

based simple models that capture the observed turbulent dynamics. These

models could be potentially used in feedback control strategies in order to ma-

nipulate at will the flow dynamics (i.e. drag exerted on the bluff bodies). The

remainder of this thesis is presented as follows.

In chapter 2, the details of the experimental setup, sensors and actuators

are discussed. This includes also the derivation of simple linear model for

the actuator dynamics, and the assessment of the measurement equipment.

Chapter 3 provides a detailed characterisation of the turbulent dynamics of the

natural flow generated by a three dimensional bluff body. The dynamics of the

turbulent wake are addressed and linked to the ones observed in the laminar

and transitional regimes. In chapter 4 a simple stochastic model is proposed

that captures important dynamic features of the baseline flow. In chapter 5, a

detailed characterisation of the turbulent dynamics in the presence of external

forcing is presented. In chapter 6, a weakly nonlinear model that describes the

forced response of the turbulent wake is derived, extending the weakly nonlinear
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analysis of laminar flows in the turbulent regime. Conclusions and key findings,

followed by recommendations for future work, are presented in chapter 7.
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2. Experimental setup

2.1. Wind tunnel facility

Experiments were conducted in a closed circuit wind tunnel, the working section

of which measures 0.91 m × 0.91 m × 4.8 m. The contraction ratio is 9 : 1

and the free-stream turbulence intensity is less than 0.1%. The free-stream

velocity was computed from measurements of dynamic head, temperature of

the flow and atmospheric pressure, which are sampled at 2.5 Hz by a Furness

Controls micro-manometer model FCO510. A PID feedback controller with a

set-point variation of less than 0.2% is used to maintain the free-stream velocity,

U∞ = 15 ms−1.

2.2. The axisymmetric model

The wake is generated by an axisymmetric bluff-body with blunt trailing edge,

a schematic of which is shown in figure 2.1. The body diameter, D, is 196.5 mm

and the length-to-diameter ratio, L/D, is 6.48. The nose employs a modified

super ellipse profile (Lin et al., 1992) with an aspect ratio of 2.5. The boundary

layer is conditioned by a 2 mm wide strip of 120 grit emery paper located at

z/L = −0.884 (approximately the point of minimum pressure) followed by a

25 mm wide strip at z/L = −0.784. The axisymmetric body is supported in

the centre of the wind tunnel test section using a NACA 0015/0030 blended

aerofoil, such that a constant thickness of 11 mm was maintained throughout

(Qubain, 2009). More details for the model are given by Oxlade (2013). The

Reynolds number based on diameter and boundary layer momentum thickness

at separation is ReD = 1.88 × 105 and Reθ = 2050 respectively, correspond-

ing to turbulent wake and a turbulent boundary layer separation. The key

experimental parameters are summarised in table 2.1.
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Figure 2.1.: Schematic of experimental set-up.

Figure 2.2.: Schematic of axisymmetric bluff-body base (rear view).
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2.3. BODY-MOUNTED SENSORS

D [mm] U∞ [m/s] L/D ReD D/θ
196.5 15 6.48 1.88× 105 89.3

Table 2.1.: Experimental parameters.

2.3. Body-mounted sensors

The base of the body is instrumented with: (i) 64 static pressure taps and

(ii) 8 Endevco pressure sensors. All pressure measurements are differential

measurements referenced to free-stream Pitot-static located at z = 0.

The 64 static pressure taps are equi-spaced on a uniform polar grid with

δr = 0.056D and δφ = 45◦ in the radial and azimuthal directions, respectively

(figure 2.2). The pressure tappings have a diameter of 1.0 mm and depth-

to-diameter ratio of 2. Static pressure is measured using an ESP-64HD DTC

pressure scanner and a Chell CANdaq 14 bit D/A converter with a sampling

frequency of 225 Hz. The scanner is connected to the tappings via 1.5 m

lengths of 1 mm i.d. portex tubing. The flow through the portex tube results

in attenuation of the pressure signal at high frequencies and for that reason the

data obtained from the static taps were corrected using a method described in

§ 2.3.2.

The 8 Endevco 8507C-1 pressure transducers are azimuthally distributed

(δφ = 45◦) on the base of the body at a radial location r = 0.3D. This type of

sensor is a piezo-resistive differential pressure transducer with a flat frequency

response up to 40 kHz, range of 1 psi, and an active sensing element diameter of

2 mm. The transducers are driven by Endevco Model 136 DC amplifiers with

a gain of 1000 and a 10 kHz Butterworth filter.

The measured pressure is expressed in non-dimensional form as pressure coef-

ficient (ratio of differential static pressure to the kinetic energy per unit volume

of the approaching flow):

Cp =
p− p∞
1
2
ρU2
∞
. (2.1)

By removing the dependence of pressure on on ρ and U∞, it allows pressure

distributions to be compared across experiments and scaled models, provided

that the Reynolds number is kept constant.
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2.3.1. Azimuthal Fourier decomposition

An important feature of the dynamic pressure transducers on the rear face of

the model is that they allow the pressure distribution to be decomposed into

azimuthal modes. Due to the 2π periodicity in the azimuthal coordinate, the

signal obtained from the 8 dynamic pressure transducers can be expressed as a

Fourier series

p(φ, t) = a0(t) +
M∑

m=1

[am(t) cos (mφ) + bm(t) sin (mφ)] (2.2)

where

a0(t) =
1

2π

∫ 2π

0

p(φ, t)dφ ;

(
am(t)

bm(t)

)
=

1

π

∫ 2π

0

p(φ, t)

[
cos(mφ)

sin(mφ)

]
dφ

(2.3)

Equation (2.2) can be also written as

p(φ, t) =
M∑

m=0

cm(t)eimφ + c.c. (2.4)

Then, the Fourier coefficients are related via:

cm =





1
2
(am − ibm) for m > 0

1
2
a0 for m = 0

1
2
(a−m + ib−m) for m < 0

(2.5)

am = cm + c−m for m = 0, 1, 2, . . . ,

bm = i(cm − c−m) for m = 1, 2, . . .
(2.6)

If we also perform a temporal Fourier decomposition, we can write (2.4) as

an arbitrary superposition of counter-rotating waves:

p(φ, t) =
N∑

n=0

M∑

m=0

(
c+
mne

imφ + c−mne
−imφ) eωnt + c.c. (2.7)

where c+
mn and c−mn are the complex amplitudes of clockwise and counter-

clockwise propagating rotating waves. Depending on the amplitude values,

the wave can be a travelling/spinning wave, a standing/stationary wave or a
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Figure 2.3.: Azimuthal modes evolving in time with azimuthal wavenumber
m = 1 and frequency ω = 2π/T : (a) standing with c+

mn = 1 + 1i
and c+

mn = 1 + 1i; (b) travelling with c+
mn = 1− 1i and c+

mn = 0; (c)
mixed with c+

mn = 1 and c+
mn = −0.5i.

combination of the last two, which we call a mixed wave, see also figure 2.3.

Note that the experimental setup includes eight dynamic pressure transducers,

and so up to eight azimuthal mode amplitudes can be resolved experimentally;

this limits M in equation (2.2) to 4.

2.3.2. Pressure signal calibration

The signal obtained from the 64 static pressure taps is attenuated due to the

tubes connecting the static taps to the ESP sensor. Here, a methodology that

corrects the pressure data obtained from the ESP is presented. The error

between the true pressure signal at the measurement location pr and the pres-

sure signal measured with the ESP sensor ps is due to (i) the attenuation flow

through the pipe h(t), and (ii) the sensor noise, n(t).

Based on the above, we can write using time-domain notation:

ps(t) = h(t) ∗ pr(t) + n(t), (2.8)

where h(t) is the impulse response of a filter, n(t) the sensor noise, and ∗ denotes

convolution. Equivalently, in the frequency domain equation 2.8 becomes:

Ps(ω) = H(ω)Pr(ω) +N(ω). (2.9)

A schematic representation and the corresponding block diagram corresponding

to the above filtering process are given in figure 2.4.
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h(t) Σ
pr(t)

u

n(t)

ps(t)

y

Figure 2.4.: Attenuation of the pressure signal obtained from the ESP sensor
due to the connecting pipes. (a) Schematic and (b) block diagram.

System identification experiment

The calibration was performed against a reference signal obtained from Endevco

8507C-1 transducers. A pressure field is generated from a 6 in speaker (Beyma

6P200Nd), located at a distance l = 10 mm behind the base of the model. The

pressure field is recorded simultaneously from the reference transducer, pr(t),

and static pressure transducer, ps(t). The frequency-domain description of

the system, consisting of the frequency response function H(ω) and the output

noise spectrum Φn(ω) are estimated using spectral analysis. A Blackman-Tukey

approach (Ljung, 1998) is used to estimate

H(ω) =
Φyu(ω)

Φu(ω)
, (2.10)

from the Fourier transform of the covariance and cross-covariance of the input

u = pr and output y = ps.

The frequency response of H(ω) and the power spectral density of the noise

Φn are shown in figure 2.5. A discrete first order filter, Hfit, was fit to the

frequency response of H(eiω) for visualisation purposes. The spectral density

of is approximately constant (white) in most of the frequency domain. The

cut-off frequency (-3 dB) is 18 Hz (approximately the frequency of the vortex

shedding mode at U∞ = 15 m/sec , St = 0.2).

Correction of the pressure signal

Given the noisy and attenuated (filtered) signal obtained from the static taps

ps(t), an estimate of the true signal, p̂r(t) can be obtained. The process is

carried out in the frequency domain as follows. The amplitude of the noise is

subtracted from the static tap signal Ps, and multiplied with the inverse fre-

quency response, 1/H. Through this process the filtering effect of the pressure

signal obtained from the static taps can be eliminated.

In figure 2.7, the spectral density of the reference pressure signal obtained
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Figure 2.6.: Power spectral density of noise Φn.
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from the Endevco transducers and the raw pressure signal from the static taps

at r = 0.3D during a wind tunnel test are plotted. The filtering process becomes

pronounced above the cut-off frequency, approximately at 18 Hz, and results

in a deviation of the two curves. Applying the correction procedure described

above, the two curves collapse, as expected, validating the correction procedure.
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Figure 2.7.: Validation of the pressure calibration procedure. Spectra (left)
and pre-multiplied spectra (right) of the pressure signal on the
base: reference from Endevco transducers (black), raw (blue) and
corrected data from taps (green).

2.3.3. Limitations of the sensors

Mean pressure data are obtained and presented only from the static taps. The

Endevco 8507C-1 is not suitable for measurement of small changes in mean

pressure due to its inherent drift.

Fluctuating base pressure measurements are presented from both types of

sensors. However the frequency resolution of the static taps is limited to 112.5

Hz (Nyquist sampling frequency). Also, an offline correction of the signal is

required to compensate for the filtering effect due to the tubing.

Key advantage of the Endevco signal is its potential use for feedback control

since the signal can be accurately obtained without jitter in real time. Also, its

relatively high sensitivity (approximately 24 mv/kPa) and low noise level (typi-

cally 5 µV RMS) make it an excellent choice for measurement of the fluctuating

base pressure when frequencies up to 20 kHz are required.
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2.4. The ZNMF actuator

Appropriate forcing for interacting with the wake behind the axisymmetric

bluff-body was provided by a Zero-Net-Mass-Flux (ZNMF) actuator. The basic

components of a ZNMF device are an oscillatory diaphragm (here loudspeaker),

a cavity and an orifice. A high-fidelity loudspeaker (Beyma 6P200ND) mounted

inside the model is used to generate a pulsed jet of variable frequency and am-

plitude. A QSC RMX 850 high fidelity power amplifier drives the loudspeaker.

The jet issues in the free-stream direction from a 2.0 mm annular slit, located

1.0 mm below the trailing edge, as shown in figure 2.2. The jet velocity is uni-

form in the azimuthal direction, hence forcing is axisymmetric with azimuthal

wavenumber m = 0.

2.4.1. Cavity pressure and jet velocity measurements

One Endevco 8507C-2 (2 psi range) transducer is mounted on the interior face

of the base for measurement of the actuator cavity pressure.

Measurements of the the centreline jet velocity were performed with single-

wire thermal anemometry. A one-component sensor was operated in constant

temperature mode by a Dantec miniCTA 54T30 with in-built signal conditioner.

The miniCTA’s lowpass filter was set to a -3 dB cut-off frequency of 10 kHz,

and the analogue signal was sampled at 25 kHz to minimise aliasing. The

single-wire probe consisted of a 55P15 Dantec boundary layer probe with a

10% platinum-rhodium Wollaston wire soldered to the prongs. The wire was

etched to a sensor diameter and width of 5 and 1000 µm respectively.

The hot-wire was calibrated in the free stream of the wind tunnel, by varying

the free stream velocity and recording the raw output voltage obtained from

miniCTA. Measurements were performed with the hot-wire positioned at the

vertical and streamwise location of the Pitot-probe with a spanwise separation

of ≈ 200 mm. The hot-wire was calibrated in-situ using an interpolating cubic

spline. The calibration velocity range was adjusted to cover the specific range

of velocities in the actuator measurements. A typical hot-wire calibration curve

is shown in figure 2.8a.

The signal from the hot-wire measurements, when the actuator is driven

with a sinusoidal signal, appears similar to a rectified sinusoidal signal, due

to the directional ambiguity of the hot-wire. The direction of the velocity
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Figure 2.8.: Jet velocity measurements. (a) Typical hot-wire calibration curve;
experimental data (symbols) and interpolating spline (line). (b)
Derectification of the velocity signal; original (solid line) and derec-
tified signal (dashed line).

cannot be inferred from the hot-wire probe; only the local velocity magnitude

is determined. A procedure similar to that used by Chaudhari et al. (2009)

has been employed to reverse the hot-wire signals. A post-processing code was

developed to split the signal into expulsion and ingestion and reverse the latter.

It is assumed that expulsion of the fluid is represented by the large peak and

ingestion by the smaller one. The result of this procedure is presented in figure

2.8b.

2.4.2. A model for the actuator dynamics

A simple linear model is derived based on first principles to describe the ZNMF

actuator dynamics and relate the input (driving voltage) with the output (jet

velocity). The model derived here allows us to decouple the dynamics of the

flow and the actuator dynamics. Link this with feedback control diagram.

Figure 2.9 indicates the relevant nomenclature for the diaphragm (speaker)

and synthetic jet actuator. The relations among actuator deflection xd, cavity

pressure pcav and jet velocity ujet are described by the following linear differen-

tial equations (Persoons & O’Donovan, 2007; Persoons, 2012):

Conservation of mass in the cavity, combined with ideal gas law and assuming

adiavatic compression/expansion:

1

γp0

dpcav
dt

=
Ad
V

dxd
dt
− As
V
ujet. (2.11)
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Figure 2.9.: Schematic of ZNMF actuator.

Conservation of momentum in the orifice, assuming linear damping force:

m
dujet
dt

+ cujet = pcavAs (2.12)

The relations linking driving voltage vin and current iin with xd and pcav are

given by the governing equations of the electromechanical system. Speciffically,

a force balance of the mechanical system (diaphragm) gives

Md
d2xd
dt2

+ Cd
dxd
dt

+Kdxd = Bliin − pcavAd, (2.13)

where Fd = Bliin is the electromagnetic force produced by the current in the

coil. The differential equation describing the electrical system (voice coil) is:

vin = Riin + L
diin
dt

+Bl
dxd
dt
. (2.14)

We apply the Laplace transform on the differential equations (2.11)–(2.14)

to obtain polynomials in s = iω, the Laplace variable (time domain to the

complex frequency domain). Solving for Ujet/Vin, we find the following transfer

function between output jet velocity and driving voltage:

Ujet(s)

Vin(s)
=

K1 s

(s+ ω3)︸ ︷︷ ︸
Coil

(s2 + 2ζω2s+ ω2
2)︸ ︷︷ ︸

Helmholtz

(s2 + 2ζω1s+ ω1
2)︸ ︷︷ ︸

Diaphragm

(2.15)
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Combining (2.12) and (2.15), it can be easily shown that:

Pcav(s)

Vcav(s)
=
Pcav(s)

Ujet(s)

Ujet(s)

Vin(s)
=

K1 s(ms+ c)/As
(s+ ω3)(s2 + 2ζω2s+ ω2

2)(s2 + 2ζω1s+ ω1
2)
.

(2.16)

The parameters of the model were determined based on the geometric charac-

teristics of the cavity and orifice and the loudspeaker specifications (table 2.2).

The damping factor of the orifice, c, is the only parameter that was obtained

experimentally.

The “true” transfer function was obtained experimentally by exciting the

actuator with a broadband frequency signal (white noise) and recording the

cavity pressure. On the other hand, monochromatic harmonic signals where

used to excite the actuator for the jet velocity measurements, in order to apply

the derectification procedure. Estimates of the input and the cross spectrum

between input and output, Φu(ω), Φyu(ω) were formed to estimate the frequency

function from output to input as follows:

Ĝ(iω) =
Φyu(ω)

Φu(ω)
(2.17)

In figure 2.10, the frequency response function between cavity pressure and

driving voltage of the ZNMF actuator is plotted. The experimental results are

compared with the predictions of the numerical model (equation (2.16)) and a

good match is obtained. The same conclusions hold for the frequency response

function between jet velocity and cavity pressure plotted in figure 2.11. The

full transfer function of the actuator between driving voltage and jet velocity

can be obtained as the product of the two above transfer functions.

The above numerical models can be used for direct estimation of the jet

velocity directly form the cavity pressure or input voltage signal. The last

two can be accurately obtained during the experiment using simple acquisition

techniques. The advantage of using the cavity pressure is that some of the time

varying dynamics of the actuator related with the electromechanical system (i.e.

changes of parameters due to heat) and were not modelled here are decoupled

from the estimation process.
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Figure 2.10.: Frequency response function of the ZNMF actuator between cav-
ity pressure and driving voltage: Pcav/Vin.
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2.5. ACQUISITION AND CONTROL SYSTEM

2.5. Acquisition and control system

Acquisition of the sensor data and control of the actuator is performed by a

National Instruments PXIe-1078 chassis running a code written in Labview

v11.0.The PXI is fitted with a PXIe-8102 controller running Real Time Oper-

ating System and a PXIe-6358 module with 4 simultaneous 16-Bit D/A output

channels and 16 simultaneous 16-Bit A/D input channels. The components of

the acquisition system were chosen such that it can be used for open-loop and

closed-loop control.
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3. The axisymmetric bluff-body

wake

In this chapter, the dynamics of the flow generated behind the three dimen-

sional axisymmetric body are investigated. The analysis is performed based on

pressure measurements on the base of the body. Although the wake is highly

turbulent (ReD ∼ 2× 105), it is shown that the coherent structures are closely

related to the ones observed in the laminar regimes.

3.1. Flow characteristics

Pressure measurements are expressed as a pressure coefficient, non-dimensionalised

by the free-stream dynamic head 1/2ρU2
∞. Frequency spectra are calculated

using blocks of 214 data points and a Hanning window with 50% overlap. Fre-

quencies are expressed as Strouhal numbers, St = fD/U∞.

A total of 19,200 s of data was acquired over sixteen independent experi-

ments, providing approximately 2000 independent measurements with a 95%

uncertainty of approximately 0.45% and 1% in time average and rms pressure

respectively.

3.1.1. Base pressure distribution

The mean and root-mean-square pressure distribution obtained from the 64

pressure taps on the base of the body are shown in figure 3.1. A region of

constant low pressure extends from the body axis up to approximately r/D =

0.2, with pressure recovery increasing towards the edge of the body. Conversely,

the fluctuating pressure exhibits a maximum at approximately r/D = 0.15.

Both pressure distributions are axisymmetric to within ±1%.
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CHAPTER 3. THE AXISYMMETRIC BLUFF-BODY WAKE

−0.1239 −0.1093

(a)

0.0218 0.0314

(b)

Figure 3.1.: Pressure distribution on the base of the body: (a) mean and (b)
root-mean-square of the fluctuating component. The dashed circle
indicates the body diameter.

3.1.2. Azimuthal modes

A spatial Fourier decomposition of the pressure signal p(r, φ, t) in the azimuthal

direction gives azimuthal modes,

pm(r, t) =
1

2π

∫ 2π

0

p(r, φ, t)e−imφdφ. (3.1)

A subsequent temporal Fourier transform of the azimuthal modal amplitudes

gives

Pm(f, r) =

∫ T

0

pm(r, t)e−2πftdφdt

=
1

2π

∫ T

0

∫ 2π

0

p(r, φ, t)e−i(mφ+2πft)dφdt. (3.2)

Then, for a double Fourier transform Pm(f ; r) of the pressure signal p(r, φ, t)

in the azimuthal direction and in time, the spectral density per mode, m, for a

given radius, r, is given by

Φm(f, r) =
2

T
|Pm(f ; r)|2 . (3.3)
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3.1. FLOW CHARACTERISTICS

Coherent structures are identified in figure 3.2 calculating the azimuthal spec-

tral energy Φ̄m(St) distributed over St = fD/U∞, and averaged over the radius,

such that

p2
m =

8

D2

∫ D/2

0

∫ ∞

0

St Φm(r, St)d(log St)rdr. (3.4)

The dominant mode shapes and their associated frequencies are shown in table

3.1.

Spectral peaks at St ≈ 0.2 (d) are associated with the global oscillatory

mode of the wake: vortex shedding with azimuthal wavenumber m = ±1. The

frequency and shape are consistent with previous experimental observations

from bodies of similar geometry (Sevilla & Mart́ınez-Bazán, 2004; Grandemange

et al., 2012b). The m = ±1 spectra show also peaks at St ≈ 0.1 (c), which are

close to the subharmonic of the shedding mode. The same frequency is also

observed in the modes m = ±2.

We also observe that the m = ±1 mode oscillates with a very low frequency

(VLF) centred at St ≈ 0.002 (a), which is approximately two orders of magni-

tude less than the shedding frequency. A similar timescale, t ∼ 103D/U∞, has

been reported recently in the three dimensional wake of an Ahmed body for high

Reynolds numbers (Grandemange et al., 2013). For the Ahmed body, this long

timescale was linked to the random shifts of the recirculation region between

two preferred reflectional-symmetry-breaking positions leading to a statistically

symmetric wake. The dynamics of this structure for the axisymmetric wake are

investigated in §3.2.

An axisymmetric (m = 0) pulsation of the vortex cores, known as “bubble

pumping” (Berger et al., 1990), is identified at a low frequency of St = 0.06

(b). The intensity of the axisymmetric pulsation increases as the axis of the

body is approached. The frequency and shape of this mode is very close to the

low frequency oscillation of the wake observed by Bohorquez et al. (2011) and

Bury & Jardin (2012) for a body of similar geometry in the transitional regime

at low Reynolds numbers.

3.1.3. Proper orthogonal decomposition

Proper orthogonal decomposition has been shown to be an effective way to

systematically extract coherent structures of turbulent flows based on their

energy content (Lumley, 1970; Holmes et al., 2012). Figure 3.3 shows the
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Figure 3.2.: Premultiplied pressure spectra of the azimuthal modes on the base
of the axisymmetric body. Spectra are radially averaged and the ar-
eas underneath correspond to energies; spectral peaks show where
the energy is concentrated.

a b c d POD Modes

m = 0 0.06 3
m = ±1 0.002 0.1 0.2 1, 2
m = ±2 0.1 4, 5

Table 3.1.: Dominant modes and associated Strouhal numbers based on energy
content.

energy distribution of the 20 most energetic POD modes of the base pressure.

It can be seen that the first three modes carry ∼ 72% of the total energy.

Figure 3.4 shows the first five POD modes of the base pressure and the cor-

responding premultiplied spectral density Φ of the POD coefficients. The coef-

ficients are computed by projecting each mode onto the instantaneous pressure

field (Holmes et al., 2012). The first five POD modes capture all the coherent

structures, based on the presence of spectral peaks in figure 3.2; no peaks are
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3.2. SYMMETRIES OF THE FLOW
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Figure 3.3.: Energy of the first 20 POD modes.

detected in the spectra of the remaining POD amplitudes.

The first two most energetic POD modes (modes 1 and 2) correspond to the

modes with azimuthal wavenumber m = ±1 in table 3.1, the third POD mode

to the axisymmetric m = 0 pulsation, and the fourth and fifth to m = ±2

modes.

3.2. Symmetries of the flow

Insight to the symmetry of the wake and its link to the coherent structures of

the turbulent wake is given by the Centre-of-Pressure (CoP), calculated from

the space-averaged pressure, defined on the Cartesian coordinate system of the

base, x = (x, y), as

R(t) = [Rx(t), Ry(t)] =
1∫

p(t)dA

∫

A

p(t)xdA, (3.5)

where A is the area of the base of the body. The CoP provides a direct way

to quantify the magnitude of the asymmetry in the turbulent regime: a zero

value (CoP lies on the centre) will correspond to an Rπ-symmetric flow (φ →
−φ;P → P ), whereas departure from this value will correspond to an increased

asymmetry of the flow.

The temporal evolution and PDF of the radial and azimuthal location of

the CoP for the highly turbulent regime are shown in Fig. 3.5. Highly erratic
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Figure 3.5.: A time series and probability density of the Centre-of-Pressure.
Radial (lower) and azimuthal (upper) positions.

motion rapidly varying in time is observed in both components. Statistically,

the wake spends most of the time in a non-zero radial location. In the azimuthal

direction, it can explore any angle with equal probability and in the long time

average the probability distribution function converges to the uniform one.

The two-dimensional probability density function of the CoP is plotted in

figure 3.6. It shows that the most probable location of the CoP lies on a circle

with Rr = 0.03D centered on the base of the body, indicating a tendency to lock

to this value. The probability of the azimuthal position of the CoP is consistent

with a uniform distribution within the experimental error (small deviations

from the uniform distribution are mainly due to imperfect alignment of the

experimental setup, which is also evident in the energy imbalance of the VLF

mode in figures 3.2 and 3.3). Due to the uniform distribution, an axisymmetric

pressure field is obtained in the long time average. However, the non-zero mean

radial value of the CoP provides strong evidence that the wake is asymmetric,

for a fixed angle of the CoP, on average.
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Figure 3.6.: Joint Probability density of Center-of-Pressure position.

Further information on the dynamic behaviour of the coherent structures is

provided by examining the spectra of the CoP, plotted in figure 3.7. In the

spectrum of the angular component, a power-law with an exponent close to -2

is obtained at very low frequencies (VLF). This is analogous to the results of

Grandemange et al. (2013), and consistent with Brownian dynamics (Brown &

Ahlers, 2006). Hence the VLF oscillation is a random rotation of the CoP in

the azimuthal direction around the axis of the body. The spectrum of the radial

component exhibits a clear peak (d) at the vortex shedding mode, St ≈ 0.2.

Below that frequency, a power-law roll-off is observed, with the radial spectral

density saturating at low frequencies. This gradient change in the spectral

density plotted on logarithmic scale, manifests as peak (b) in the premultiplied

spectrum and coincides with the energy associated with the bubble pumping.

In order to identify the asymmetry of the flow, the mean pressure statistics

were calculated in the rotating reference frame of the CoP by rotating the data

based on the instantaneous angle of the CoP (Grandemange, 2013). In the

rotating frame, the axisymmetry of the mean and root-mean-square pressure

observed in the long-time average is lost, as shown in figure 3.8. Both distribu-

tions are characterised by reflectional symmetry and an azimuthal modulation
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of m = 1. TheRπ symmetry of the wake is broken: calculation of the radial dis-

tance of the CoP from the centre of the body confirms the value of Rr = 0.03D

found above for the mean pressure distribution.

The averaging procedure of the base pressure distribution on the rotating

reference frame reveals a flow topology that resembles that of the reflectionally

symmetric topology observed in the laminar wake, immediately after the sec-

ond symmetry-breaking bifurcation. In this laminar regime, vortices are shed

periodically off-centre of the axis creating a reflectionally symmetric distribu-

tion; the angle of the symmetry plane is constant and is determined from the

initial conditions. However, for the turbulent regime, the low frequency rota-

tion of the symmetry plane results in an axisymmetric pressure distribution on

the base, see figure 3.1, due to the uniform variation in the orientation of the

vortex shedding.

Therefore, the turbulent state explores a continuum of metastable symmetry-

breaking patterns (Rr 6= 0), the angle of which is arbitrary. However, the

mean value of the two-dimensional probability density lies on the centre of the

body (Rr = 0), and the flow recovers Rπ symmetry, provided the averaging is

performed over sufficiently long time.
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Figure 3.8.: Pressure distribution on the base of the body on the rotating ref-
erence frame of the Center-of-Pressure: (a): Mean and (b) root-
mean-square.
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3.3. Concluding remarks

In this chapter, the coherent structures that describe the large-scale dynamics

of a turbulent three-dimensional wake have been characterised in detail from

pressure measurements performed on the base of an axisymmetric bluff body.

The symmetry-breaking instabilities of the transitional wake observed at

ReD < 1000 (Bohorquez et al., 2011; Bury & Jardin, 2012) before the chaotic

regime, persist at high Reynolds numbers (here ReD ∼ 2× 105). Although the

wake is turbulent, the large-scale coherent structures associated with it retain

the structure of the laminar instabilities in a statistical sense. These are large-

scale anti-symmetric oscillations with m = ±1 at a frequency of StD ≈ 0.2,

known as vortex shedding, reminiscent of the unsteady bifurcated state ob-

served in laminar flows.

Furthermore, the shedding is asymmetric and it is linked with an asymmetric

mean pressure distribution on the base with m = 1, which both rotate randomly

around the axis of the body at a frequency of StD ≈ 0.002. These distributions

preserve the reflectional symmetry in the rotating reference frame, and are

reminiscent of the steady bifurcated state of the laminar wake. Due to this slow

rotation the turbulent wake recovers axisymmetry in the long time average.

The dynamics of these two processes impose two well-separated timescales

for the evolution of the flow: a short timescale, t ∼ 5D/U∞, associated with

the periodic shedding of vortices and a long one, t ∼ 5 × 102D/U∞, due to

the variation of the shedding angle. These two timescales are in agreement

with the ones found in the turbulent wake of a rectilinear three-dimensional

body (Grandemange et al., 2013) suggesting universal slow dynamics associ-

ated to symmetry-breaking modes of three dimensional turbulent wakes. In

contrast with the rectilinear-body wake, which has two possible symmetry-

breaking states (bistable wake), the axisymmetric-body wake possesses an infi-

nite number of states depending on the azimuthal angle of shedding (multistable

wake).

It is concluded that symmetry considerations are central not only to the study

of transitional phenomena but also to fully developed turbulence. Although

bifurcations break the symmetries on the way to turbulence, fully developed

turbulence restores the possible symmetries in a statistical sense, at very high

Reynolds numbers (Frisch, 1996).
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4. Diffusive dynamics and

stochastic models

A modelling methodology to reproduce the experimental measurements of a

turbulent flow under the presence of symmetry is presented. We apply the

modelling approach to a three dimensional wake-flow generated by an axisym-

metric body, the dynamics of which were investigated in chapter 3.

We show that the dynamics of the turbulent wake-flow can be modelled by a

nonlinear two-dimensional Langevin equation, the deterministic part of which

accounts for the broken symmetries which occur at the laminar and transitional

regimes at low Reynolds numbers and the stochastic part which accounts for

the turbulent fluctuations. Comparison between theoretical and experimental

results allows the extraction of the model parameters.

4.1. Introduction

The complete solution of a macroscopic system would consist in solving all the

microscopic equations of the system (Navier-Stokes equations and boundary

conditions). Because we cannot generally do this at very high Reynolds numbers

we might use instead a stochastic description, i.e., we describe the system by

macroscopic variables which fluctuate in a stochastic way. For a deterministic

treatment, the fluctuations of the macroscopic variables is neglected.

A rigorous derivation of stochastic equations would start with microscopic

description. The deterministic treatment should then follow from the stochastic

treatment by neglecting the fluctuations. Such a rigorous derivation may be

very complicated or even impossible. Hence, one may start with the determin-

istic equation and use heuristic arguments to obtain the stochastic description.

In the heuristic treatment one usually adds some Langevin forces to the deter-

ministic equations and thus obtains a stochastic differential equation (Risken,
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1984).

For axisymmetric wakes, deterministic solutions (in a weakly nonlinear sense)

are already known and tested at laminar regimes close to the threshold of

bifurcations (Fabre et al., 2008; Meliga et al., 2009). The premise of using

these solutions with the addition of random Langevin forces is the experimental

observation that the laminar transitional instabilities (global modes) persist at

high Reynods numbers and only those manifest as large scale structures, as

shown in chapter 3. We will demonstrate that the remaining observed dynamics

manifest due to the perturbation of these weakly nonlinear solutions by random

noise, which accounts for the unmodelled microscopic dynamics (turbulence).

Extension of this approach should be straightforward to a wide range of flows.

4.2. The model

The laminar and linearly stable axisymmetric wake loses spatial Rπ symmetry

in the azimuthal direction (rotation of angle π around any radial axis passing

through the centre of the body) due to a supercritical pitchfork bifurcation

(Fabre et al., 2008; Meliga et al., 2009; Bohorquez et al., 2011; Bury & Jardin,

2012; Bobinski et al., 2014), the normal form of which reads

ẋ = αx + λx|x|2 (4.1)

(α, λ ∈ R, λ < 0). Above the threshold of instability (α > 0), (4.1) is associated

with symmetry breaking since the states x = ±(−α/λ)1/2 are not invariant

under the x → −x symmetry. This model can be directly obtained from

the Navier-Stokes equations through a weakly nonlinear expansion around the

critical bifurcating point (Meliga et al., 2009) and has been used extensively for

the description of laminar flows undergoing supercritical bifurcations (Drazin

& Reid, 2004).

Here we extend the modelling approach to the fully turbulent regime, and we

show that the derived model captures the dynamic evolution of the turbulent

three-dimensional wake. This is achieved by modelling the effect of the tur-

bulent fluctuations acting on the dynamics of the system as stochastic forcing,

an approach that has been successfully applied to a wide range of turbulent

flows (Sreenivasan et al., 2002; de La Torre & Burguete, 2007; Brown & Ahlers,

2007). Under the stochastic modelling assumption for the turbulent background
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Figure 4.1.: Stationary probability density function (left) and potential (right)
of the nonlinear Langevin model.

fluctuations, the deterministic system given by (4.1) with independent additive

white noise in Cartesian coordinates, x = (x, y), becomes

ẋ = αx+ λx(x2 + y2) + σξx(t),

ẏ = αy + λy(x2 + y2) + σξy(t), (4.2)

where ξ accounts for the random forcing of turbulence and σ2 the variance

of it. Here, σ ≡ σx = σy and the stochastic process in (4.2) is rotationally

symmetric. We transform the system from (x, y)→ (r, φ), where r is the radial

distance from the centre (amplitude) and φ the angle (phase), using the Ito

interpretation (Gardiner, 1985). In polar variables, the Langevin system given

by (4.2) becomes

ṙ = ar + λr3 +
σ2

2r
+ σξr, φ̇ =

σ

r
ξφ, (4.3)

where r =
√
x2 + y2 and φ = tan−1(y/x). Notice that in polar variables

the radial component is independent of the angular position. Details for the

transformation from polar to Cartesian coordinates can be found in appendix A

(see § A.4.2).

The stationary probability density function (PDF) of the above system can

be found from the steady state Fokker-Planck equation and is given by

Ps(r, φ) = C exp

[
−U(r)

D

]
, (4.4)
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where C is a normalization constant, D = σ2/2 is the noise intensity and U

the potential. Details for the derivation of the steady state solution of the

Fokker-Planck can be found also in appendix A (see § A.4.2). The potential U

is

U(r) = −
[
αr2

2
+
λr4

4
+D ln r

]
. (4.5)

The stationary PDF for the angle is uniform,
∫∞

0
Ps(r, φ)dr = 1

2π
. In the case of

a rotationally symmetric experimental setup and inflow conditions, the drifts

and diffusivities are independent of φ. The stationary PDF, see figure 4.1,

peaks around the minimum of the Mexican-hat shaped potential.

4.3. Predictions of the model

Let x of equation (4.1) represent the Centre-of-Pressure (CoP) coordinates. The

CoP is used as macroscopic variable quantifying the symmetry of the turbulent

wake.

4.3.1. Time series and PDF

The temporal evolution and PDF of the radial and azimuthal location of the

CoP for the highly turbulent regime are shown in figure 4.2. Highly erratic mo-

tion with time is observed in both components. Statistically, the wake spends

most of the time in a non-zero radial location, indicating broken Rπ symme-

try. Due to the uniform PDF in the azimuthal location, rotational symmetry

is recovered in the long time average. For the laminar regime and after the

first bifurcation, which is described by equation (4.1), the stable fixed point

corresponds to an non-zero CoP, the angle of which is determined from the ini-

tial conditions and is unique. During the turbulent regime, the laminar stable

fixed point explores a continuum of states around its mean radial value and

uniformly distributed in the angular direction: hence, the wake explores an

infinite number of metastable states restoring the lost Rπ symmetry.

In figure 4.2, the experimentally measured probability density function is

compared to the one predicted by the model from equation (4.4). Good agree-

ment is obtained between experimental data and model predictions. Details for

the calculation of the unknown coefficients are given in section 4.3.2.
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Figure 4.2.: A time series and probability density of the Centre-of-Pressure from
the model: angular (upper) and radial (lower) position. Symbols
in the probability density (right) correspond to experimental data
and solid lines to theoretical model predictions. Dashed line: mean
radial value indicating the broken Rπ symmetry.
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4.3.2. Mean square displacement

Insight into the random dynamics of the turbulent wake is provided from the

calculation of the time-averaged mean-square displacement (MSD), defined as

〈[∆x(τ)]2〉 = 〈(x(t+ τ)− x(t))2〉. The experimental MSD of the angular and

radial components is plotted in figure 4.3 for different sampling times. In the

azimuthal direction, the MSD increases linearly with time, 〈[∆φ(τ)]2〉 ∝ τ ,

consistent with free diffusive motion (Einstein, 1905). In the radial direc-

tion, the linear relation holds only for short time scales below a threshold ts,

〈[∆r(τ)]2〉 ∝ τ, τ < ts, and reaches a saturation plateau at larger time scales,

limτ→∞ 〈[∆r(τ)]2〉 = H2.

The above results for the CoP are consistent with the predictions of the

model given by equation (4.3). The coefficients of the Langevin equation α, λ

and D, are obtained from the experimental MSD and PDF. The slope of the

radial MSD relation is directly correlated with the diffusion coefficient, which

is obtained through linear fitting, 〈∆R2
r〉 = 2Dτ, τ < ts. Knowing the diffusion

coefficient D, the model coefficients α, λ are uniquely defined from (4.4) and

are obtained through least-square fitting.

A physical explanation of the above results is provided by the potential well

shown in figure 4.1. The turbulent wake, the state of which is quantified by the

CoP, meanders in the Mexican-hat-shaped potential and explores an infinite

number of states through a random walk (diffusive motion). Specifically, in the
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Figure 4.4.: Spectral density of the CoP location. An exponent of -2, consistent
with free diffusive motion, is obtained for the azimuthal and radial
components. At low frequencies, the PSD of the radial components
is constant due to the spatial confinement imposed by the potential
well, in accordance with the MSD results.

azimuthal direction, which determines the orientation of the wake, it can explore

freely any azimuthal location resulting in unbounded reorientations. In the

radial direction, the motion is restricted due to spatial constraints (confinement

imposed by the potential well) resulting in a constant MSD at large timescales.

In figure 4.3 the MSD from the experimental results is plotted together with

the numerically calculated MSD from the Langevin model. Direct numerical

integration of equation (4.3) was performed using an Euler-Maruyama scheme.

The dynamics of the CoP can be described over all the time scales from the

Langevin model.

α λ D = σ2/2 (s−1) H2 ts(s)

3.81 -5604 0.0028 2.95e-4 0.0527

Table 4.1.: Coefficient values of the Langevin model obtained experimentally.
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4.3.3. Power spectral density

The diffusive dynamics of the turbulent wake are also depicted in the power

spectral density of the CoP, plotted in figure 4.4. The spectral density is

closely related to the MSD: in general, for a power law behaviour of the

MSD, 〈[∆x(τ)]2〉 ∝ τα, the asymptotic form of the power spectral density is

Φ(f) ∝ f−(1+α). An exponent of -2 is observed in the spectrum of the angular

component consistent with Brownian motion. A similar decay is observed for

the radial component when f > 1/ts. However, at low frequencies correspond-

ing to f → 0, or equivalently large timescales, it reaches a plateau and levels

off, in accordance with the MSD measurements for τ →∞.

4.3.4. Reorientations

An important feature of the axisymmetric turbulent wake is the reorientations

of the symmetry plane that were addressed in chapter 3. The derived stochastic

models, in combination with the experimental results provide deep insight to

the characteristics of this feature.

The dynamics associated with the radial and angular motion of the CoP have

been analysed independently so far. Here, the coupled dynamics predicted by

the model are analysed and are linked to the dynamics of reorientations. Specif-

ically the coupling arises as an inverse relationship between φ̇ = ∆φ/∆t and r

for the angular component, as described by equation (4.3). The model suggests

that the conditional PDF of φ̇ for a given r follows a Gaussian distribution with

variance inversely proportional to r2, that is

P (φ̇|r) = N
(

0,
σ2

r2

)
=

r

σ
√

2π
e
− 1

2

(
rφ̇
σ

)2

. (4.6)

Indications of the inverse relationship can be found in the time series of the

CoP in figure 4.2. One observes that for small values of the radial compo-

nent, abrupt changes of the azimuthal orientation occur. The inverse relation

is further validated from the joint PDF of the angular variation and radial

location, p(r,∆φ), shown in figure 4.5, where large reorientations are more

probable to occur at small radii. The conditional PDFs of the reorientations

∆φ, p(∆φ|r) = p(r,∆φ)/P (r) collapse to a zero-mean Gaussian distribution

with variance σ2, when scaled by 1/r and plotted against rφ̇. This can be seen
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by multiplying each side of equation (4.6) by r:

P (φ̇, r)

rP (r)
=

1

σ
√

2π
e
− 1

2

(
rφ̇
σ

)2

. (4.7)

The collapse of the curves based on equation (4.7)∗, confirms the inverse radial

dependence of the reorientations. Most importantly the collapse on the Gaus-

sian curve justifies also here the choice of zero mean Gaussian noise as forcing

parameter, a heuristic assumption made during the formulation of the model.
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Figure 4.5.: Joint PDF of angular variation and radial position of the CoP as
measured from the experiment. Inset shows the normalised prob-
ability. Data collapse on a Gaussian distribution, as described by
the model.

In the limit of small radii values, r → 0, angular rotations with an almost

uniform PDF are observed in the joint PDF. This situation of small r corre-

sponds to large variance and therefore a very broad Gaussian that, over the

finite measurable window of −π to π, will appear uniform. This is analogous

to the cessation events observed by Brown et al. (2005) for the large-scales of

∗Equation (4.7) can be obtained alternatively from equation (4.3) by multiplying each side
with r. Then, the probability function of the product rφ̇ is equal to

P (rφ̇) = N (0, σ2) =
1

σ
√

2π
e
− 1

2

(
rφ̇
σ

)2

(4.8)
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Rayleigh-Bénard convection but can be understood without specifying arbitrary

thresholds for a small r.

4.4. The physical picture

The physical picture that can be drawn for the turbulent axisymmetric wake

based on the above is as follows. The laminar large scale structures, associated

with spatially broken symmetries, persist at high Reynolds numbers. In the

turbulent regime, these structures undergoes diffusive motion (random walk)

in a two-dimensional Mexican-hat-shaped potential well, restoring statistically

the broken symmetries.

Two slow diffusion timescales emerge from this process and can be described

from the derived model: one associated with the free diffusion in the azimuthal

direction and one with the confined diffusion in the radial direction. Specifically

they are associated with the added stochastic terms σξ and σ
r
ξ for the radial

and angular components, respectively. These two timescales explain for the

first time important features of the turbulent wake, which were identified in

chapter 3.

The radial diffusive timescale is identified in the PSD of the CoP at a di-

mensional frequency fs, and at the MSD at ts = 1/fs Hz. In both graphs, this

time scale is identified as a change of slope of each quantity, when plotted on a

log-log plot, due to the spatial constraints in the radial direction. If expressed

as Strouhal number, it gives St ≈ 0.05 which is close to the frequency of the

“bubble pumping” mode. In the premultiplied CoP spectra, see figure 3.7, it is

associated with a broad region of energy around that frequency.

The same conclusions can be drawn for the angular component. However the

motion in the azimuthal direction is not restricted by spatial constraints and

all the time scales can be explored in this direction. The average time scale is

given given by the diffusion coefficient 1/D.
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4.5. Concluding remarks

In this chapter it was shown that turbulent dynamics can be described by de-

terministic equations derived from symmetry arguments with stochastic forcing

terms that give rise to turbulent behaviour. The spatial dynamics of a turbu-

lent axisymmetric-body wake have been addressed and modelled using a simple

nonlinear and stochastic model. The model consists of two coupled stochastic

differential equations, the deterministic part of which accounts for the spatial

broken symmetries observed in the laminar regime and gives rise to large scale

structures, and the stochastic part that models in a phenomenological sense the

turbulence fluctuations acting on the large scale structures.

The model shows good agreement with the experimental observations and is

able to capture important quantities (mean square displacement, probability

density function, power spectral density) of macroscopic variables and dynam-

ics. The dynamics are associated with VLF reorientations of the wake in the

azimuthal direction and oscillations in the radial direction. The latter explains

and predict the origin of a well-reported mode in three-dimensional wake flows

known as ’bubble pumping’.

The diffusive dynamics of the large scale structures presented here and in

chapter 3 show striking similarities with the diffusive dynamics of the large-scale

circulation observed in the turbulent Rayleigh-Bénard convection (Brown et al.,

2005) and the turbulent von Kármán swirling flow (de La Torre & Burguete,

2007). However, this is not surprising if somebody accounts for the symmetries

of the problem: rotational symmetry which is broken en route to turbulence.
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5. The forced axisymmetric

bluff-body wake

In this chapter, the effect of flow-forcing using axisymmetric ZNMF slot jet

actuation on the predominant modes present in the unforced flow is examined.

Measurements to characterise the forced flow were obtained in the form of

pressure on the base of the model, both mean and fluctuating.

5.1. Flow response to forcing

The turbulent wake was excited driving the ZNMF actuator with a harmonic

voltage signal, vin = |vin| sin(2πft). A wide range of forcing amplitudes and

frequencies was explored during the experiments and the results are presented

here.

The unforced wake has been characterised in chapter 3 using the pressure

obtained from the 64 static pressure taps. Here the analysis is performed also

based on the 8 Endevco pressure transducers measurements. See appendix B for

a discussion of the observable modal dynamics from the Endevco transducers.

These sensors, as discussed in § 2.3, are ideal for implementing in feedback con-

trol schemes in real-time. The results presented here are precursory results for

feedback control strategies and the characterisation of the forced wake response

based on these sensors is necessary.

5.1.1. Vortex shedding response

The forced spectra of the azimuthally decomposed base pressure were inspected

for changes and they were compared to the unforced ones. During all forcing

conditions, the flow responds at the forcing wavenumber, mf = 0, and fre-

quency ωf , as expected in a linear framework. In the base pressure spectra,

a sharp peak appears in the m = 0 mode. However, a pronounced change is
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Figure 5.1.: The response of the amplitude and frequency of the |m| = 1 global
vortex shedding mode to axisymmetric forcing (m = 0) at different
forcing frequencies.

also observed in the spectra of the m = ±1 mode, near St = 0.2, which co-

incides with the frequency of the global vortex shedding mode as identified in

figure 3.2. This behaviour is indicative of the inherent nonlinearity of the fluid

system. The steady-state amplitude and frequency response of the m = ±1

global mode to axisymmetric forcing over different forcing frequencies and am-

plitudes are shown in figure 5.1. The amplitude of the vortex shedding mode

was estimated by integrating the m = ±1 pressure spectra around the frequency

of the shedding mode (StV S, ∆St = 0.04), that is

A2
V S =

∫ fV S+∆f

fV S−∆f

Φm(f) df, m = ±1. (5.1)

Due to the fact that the frequency of the shedding mode varies depending on the

forcing amplitude and frequency, its frequency was estimated as the frequency

of the maximum amplitude close to St = 0.2.

The amplitude response is indistinguishable for the m = +1 and m = −1

modes at the VS frequency, meaning AV S ≡ AV S+ = AV S− for the entire

frequency and amplitude range of the forcing. Since the amplitudes of the
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two counte-rotating decomposed waves is the same, it is concluded that the

shedding mode is a standing wave.

5.1.2. Parametric subharmonic resonance

A strong resonance in the response occurs when the forcing is close to twice

the global mode frequency, St ≈ 2StV S = 0.4, as shown in figure 5.1. Near this

forcing frequency, the frequency of the global mode “locks-in” to one-half the

forcing frequency, as shown in the same graph. The lock-in region depends on

the forcing amplitude; increasing amplitude results in a wider lock-in region.

Similar frequency “lock-in” behaviour was found by Kim & Durbin (1988) in

the wake of a sphere under acoustic excitation for Reynolds number 3700. In

their experiments, the shedding frequency also locked-in to one-half the forcing

frequency, with no such effect when forcing near to the shedding frequency.

Also, Bigger et al. (2009) examined the forced wake of a disk under helical and

symmetric actuation, finding that the most effective frequency to reduce the

length of the recirculation zone corresponds to the natural shedding frequency

and twice that, for the two types of actuation, respectively.

“Lock-in” phenomena point to nonlinear oscillator behaviour forcing past a

suspected global-mode frequency or its rational multiples (Huerre & Monkewitz,

1990). Hence, a nonlinear coupling between the forcing (m = 0) and the global

(|m| = 1) modes must exist.

The results show that the dominant interaction is a parametric resonance

mechanism between the fundamental forcing and the subharmonic modes which

leads to a pronounced growth of the subharmonic. This parametric subhar-

monic instability (PSI), is a resonant wave-triad interaction characterised by

transfer of energy from a parent wave to two daughter waves of half frequency

and higher wavenumber (Craik, 1988). The resonant conditions are

mf = m+
V S +m−V S, (5.2a)

ωf = ω+
V S + ω−V S. (5.2b)

The above spatial and temporal resonace conditions are met here since mf =

+1 + (−1) = 0 and Stf = 0.2 + 0.2 = 0.4.

The resonant interaction between axisymmetric forcing and antisymmetric

vortex shedding is depicted in the spectra of the decomposed pressure in fig-
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Figure 5.2.: The effect of axisymmetric forcing at Stf = 2StV S = 0.4 on the
spectra of m = 0 (a) and m = ±1 (b) modes, showing parametric
subharmonic resonance in m = ±1.

ure 5.2, where the results of a specific forcing frequency and amplitude are

presented. Forcing at a frequency of 0.4, the spectra of the pressure are domi-

nated by the linear response of the axisymmetric mode at the forcing frequency

(St = 0.4) and the nonlinear subharmonic response of the global mode at half

the forcing frequency (St = 0.2). Interestingly, all the other spectral peaks

observed in the unforced case have been suppressed except the broadband ax-

isymmetric mode at St ≈ 0.06, “bubble pumping mode”, which is still present

at the base pressure measurements. The suppressed modes of the wake are the

VLF mode (St ≈ 0.002) and the subharmonic of the VS mode (St ≈ 0.1), both

appearing at m = ±1.

The amplitude and frequency response of the vortex shedding mode, as a

function of the forcing amplitude ujet, are shown in figure 5.3. The response

of the shedding amplitude for a fixed forcing frequency follows a non-linear

trend as the forcing amplitude increases. Also, at low forcing amplitudes the

shedding mode appears to be insensitive to forcing, meaning that a minimum

forcing amplitude is required to excite parametrically the VS. This threshold,

when forcing at Stf = 0.4, is Ujet ≈ 0.05U∞. The same forcing amplitude

threshold exists in order to lock in the frequency of the VS mode.

86



5.1. FLOW RESPONSE TO FORCING

0 0.2 0.4 0.6 0.8
0

0.01

0.02

0.03

0.04

Ujet/U∞

|A
V
S
|

0 0.2 0.4 0.6 0.8
0.205

0.21

0.215

0.22

0.225

Ujet/U∞

S
t V

S

Figure 5.3.: Steady-state response of the global vortex shedding mode to ZNMF
forcing with azimuthal wavenumber m = 0 and frequency close to
twice the global mode frequency; amplitude (left) and frequency
(right).

5.1.3. Mean base pressure

During the subharmonic resonant forcing of the vortex shedding mode, it was

shown that an increase in the forcing amplitude is associated with an increase

of the vortex shedding amplitude. This trend was found to be associated with

a decrease of the area-weighted mean base pressure. The mean base pressure

(area-weighted and time-averaged pressure coefficient) is defined as

P =
1

T

1

A

∫ ∫ ∫
p(r, φ, t)r drdφdt, (5.3)

where T is the duration of averaging and A the area of the base of the body.

The steady state mean base pressure response is shown is figure 5.4 obtained

from the 64 static taps. An almost linear decrease is observed as a function

of the control parameter (ujet) and thus the form drag exerted on the axisym-

metric body increases. It follows that the mean pressure increases due to the

amplification of the vortex shedding mode.

Also here the same forcing amplitude threshold has to be reached in order to

achieve a decrease in the mean base pressure coefficient.

5.1.4. Symmetries of the forced flow

Here the symmetry of the flow is examined during the PSI. A similar analysis

to the one applied for the unforced case is applied and the results are compared.
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Figure 5.4.: Mean base pressure coefficient as a function of the forcing ampli-
tude for the subharmonic resonance case (Stf = 2Stvs, mf = 0).

The mean and rms pressure distributions on the base of the body for the

forced case are shown in figure 5.5. Both distributions have an m = 1-like shape

and are reflectionally symmetric. For the forced case, the rotational symmetry

observed during the unforced case is broken. The shapes of the distributions

are similar to the ones found for the unforced flow on the rotating reference

frame of the CoP.

Further insight into the symmetry of the flow is obtained from the CoP.

Time series of the radial and angular components of the CoP over a short time

period are shown in figure 5.6. Also, in the same figure the corresponding

PDFs calculated from a long time sample are plotted. Similar to the unforced

case, the radial component is non-zero indicating broken rotational symmetry

for a fixed angle of the symmetry plane. However, in contrast to the unforced

case for which the angular component is uniformly distributed in the range

[−π, π], the forced wake shows a preference to a specific angular position. The

preferred angle for the present set of experimental measurements was found to

be approximately −130◦ and remained constant during the measurements.

The joint PDF is shown in figure 5.7. In accordance with the mean pressure

distribution, the rotational symmetry observed in the unforced case is lost.

The joint PDF has a circular shape centred off-axis of the body. The azimuthal

location of the symmetry plane is fixed on the base of the body, compared to

the uniform distribution of it for the unforced case. The suppression of the

random variation due to the forcing is confirmed from the pressure spectra of
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Figure 5.5.: Pressure distribution on the base of the body: (a) mean and (b)
root-mean-square for the forced case (Stf = 2Stvs, mf = 0).

the m = 1 mode, see figure 5.2.

It is concluded that axisymmetric resonant forcing locks the symmetry plane

in a fixed angle and the wake does not explore an infinite number of azimuthal

angles in order to restore the rotational symmetry.

Interestingly, similar symmetry properties were observed for all the other

forcing frequencies where ωf is not close to 2ωV S. This has been observed by

Oxlade (2013) examining the high-frequency forcing of the axisymmetric bluff

body wake.
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5.2. Concluding remarks

In this chapter, the forced response of the turbulent wake behind an axisym-

metric bluff-body was examined through experiments. Forcing was applied

using axisymmetric ZNMF actuation located on the base of the body. It was

shown that axisymmetric forcing couples non-linearly with the global shedding

mode, with azimuthal wavenumbers m = ±1 and frequency St ≈ 0.2, with this

coupling being the main factor that determines the nonlinear flowfield response.

The nonlinear nature of the mechanism arises from the coupling between

waves of different azimuthal wavenumbers and frequencies, which form wave

triads. The dominant interaction is a parametric resonance mechanism be-

tween the forcing and the global shedding mode, when forcing is applied close

to twice the shedding frequency, termed Parametric Subharmonic Instability.

At these forcing conditions, a pronounced growth of the shedding mode ampli-

tude was observed, simultaneously with a frequency lock in to half the forcing

frequency. That reveals a nonlinear mechanism that allows the frequency of

the global shedding mode to be controlled through forcing. The response of

the shedding amplitude at the PSI region was found to increase approximately

quadratically as a function of the forcing amplitude, whereas the mean base

pressure decreased almost linearly.

The symmetry of the wake changes when forcing is applied. When the PSI

conditions are met, the mean and rms pressure distributions on the base of

the body are characterised by reflectional symmetry due to the fixation of the

symmetry plane at a constant angular position.

The subharmonic of the global mode, and the very low frequency rotation

which were present in the unforced spectra are suppressed on applying forcing.

It is concluded that any mathematical attempt to predict the effect of forcing

on the flowfield must retain at least the global m = ±1 modes, along with their

coupling with the axisymmetric m = 0 forcing.
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6. Weakly nonlinear modelling

of the forced flow

In this chapter, amplitude equations governing the forced amplitude evolution

of the vortex shedding global mode of the turbulent flow for the turbulent ax-

isymmetric wake are derived. The analysis is based on the weakly nonlinear

analysis proposed by Sipp (2012), in which the forcing enters the amplitude

equations. The analysis is extended in the turbulent flow and the model coeffi-

cients are obtained from experimental results. We find that the derived model

can accurately describe the forced response of vortex shedding mode.

6.1. Dynamic modelling of vortex shedding

We consider the flow behind the axisymmetric bluff-body. The governing equa-

tions are the incompressible Navier-Stokes equations

ut + u · ∇u = −∇p+ Re−1∇2u and ∇ · u = 0, (6.1)

with Re = U∞D/ν, u = (u, v, w) the velocity vector of the radial, azimuthal

and streamwise components in the cylindrical coordinate system x = (r, φ, z)

and p the pressure.

6.1.1. Flow decomposition

For a large departure from criticality, where Re � 1, the separating boundary

layer and the near wake are turbulent resulting in the generation of small scale

incoherent motion in localised regions in space and time. Since the near-wake

turbulent flow contains structures of widely varying time and length scales,

which may interact despite their large scale separation, we consider a model

employing scale subdivision with the large scales accounting for the coherent
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structures and the small scales involving the incoherent background. Then, the

instantaneous flow quantities q = (u, p)T can be decomposed as:

q(x, t) = q0(x) + q̃(x, t) + q′(x, t), (6.2)

where q0 is a laminar base flow at Rec, q̃ the contribution of the quasi-periodic

modes (coherent part) and q′ the turbulence (incoherent part). The base flow

modifications due to departure from Rec and the nonlinear interactions of the

waves are given from the mean component of the coherent wave whereas the tur-

bulence is considered of random nature with zero mean. The time-independent

base flow is a steady solution of the Navier-Stokes equations at Re = Rec:

u0 · ∇u0 +∇p0 −
1

Rec
∆u0 = 0 and ∇ · u0 = 0. (6.3)

We define time averaged and the phase averaged quantities as

q̄(x) = lim
T→∞

1

T

∫ T

0

q(x, t) dt and 〈q(x, t) 〉 = lim
N→∞

1

N

N∑

n=0

q(x, t+ nτ) dτ

(6.4)

with τ being the period of the waves (here vortex shedding mode). Applying

(6.4), the time and phase averaged flow quantities are:

q̄(x, t) = q0(x) + ¯̃q(x, t), (6.5)

〈q(x, t)〉 = q0(x) + q̃(x, t). (6.6)

Both averaging operations remove the incoherent contribution of turbulence.

Then the mean flow is given as the superposition of a laminar base flow and

the mean flow modification of the coherent waves.

6.1.2. Governing equations for the turbulent flow

Substituting (6.2) into (6.1) and phase averaging, one finds the following equa-

tions:

ũt + (u0 + ũ) · ∇(u0 + ũ) +∇(p0 + p̃)− 1

Re
∆(u0 + ũ) = −∇ · 〈u′u′〉. (6.7)
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Or equivalently:

〈ut〉+ 〈u〉 · ∇〈u〉+∇〈p〉 − 1

Re
∆〈u〉 = −∇ · 〈u′u′〉. (6.8)

The right hand side term of equation (6.8) involves the contribution of the

Reynolds stress of the phase-averaged random turbulence. For laminar flows

which are close to the threshold of the instability, the amplitude evolution

of the unstable global modes (coherent waves in the turbulent case) can be

approximated using a weakly nonlinear expansion (Meliga et al., 2009); in this

case u′ ≡ 0 since the flow is laminar.

The phase-averaged form of the Navier-Stokes equations cannot by them-

selves determine the phase-averaged quantities; one must also provide a relation

between the random fluctuating and averaged quantities. The weakly nonlin-

ear analysis can be extended also in the turbulent flow introducing an eddy

viscosity closure for the incoherent Reynolds stresses:

〈u′u′〉 = −νt∇(u0 + ũ) (6.9)

Also, a time-averaging of equation (6.9) gives

u′u′ = −νt∇ū (6.10)

Under this assumption, equation (6.8) becomes:

〈ut〉+ 〈u〉 · ∇〈u〉+∇〈p〉 − 1

ReT
∆〈u〉 = 0. (6.11)

Here, ReT = (U∞D)/(ν + νt), where ν is the kinematic viscosity and νt a

turbulent eddy viscosity. We expect that the eddy viscosity will be much greater

than the kinematic viscosity since turbulence enhances diffusion.

6.1.3. Weakly nonlinear analysis

The turbulent wake exhibits global modes with azimuthal wavenumbers +1

and −1. It therefore has at least a pair of complex eigenvalues with azimuthal

wavenumbers +1 and −1, which manifest as organized waves in the turbu-

lent flow. In the present analysis, we are focused on deriving the response of

the global unsteady shedding mode to external forcing. The weakly nonlin-
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ear analysis can be applied to derive the amplitude equations of the unstable

modes. For this, we follow the analysis proposed by Sipp (2012) for the laminar

open-cavity flow but now for the three dimensional turbulent wake.

The departure from the critical Reynolds number, Rec, where the stability is

lost, can be expressed as:

1

ReT
=

1

Rec + ∆Re
=

1

Rec

(
1− ∆Re

Rec
+ . . .

)
. (6.12)

Assuming that the turbulent Reynolds number is close and slightly above the

critical one, we can write

Re−1
T = Re−1

c − ε. (6.13)

We introduce a fast time scale t and a slow time scale t1 = εt. Then, the

turbulent phase-averaged field 〈q〉 can be expanded around the laminar base

flow at criticality as

〈q〉(t, t1) = q0 +
√
ε

1
q̃1(t, t1) +

√
ε

2
q̃2(t, t1) +

√
ε

3
q̃3(t, t1) + · · · (6.14)

Introducing (6.13) and (6.14) into (6.11), and equating coefficients of the nth

power of
√
ε to zero, a series of equations is obtained at various orders (see

appendix C).

For non-resonant forcing at order
√
ε, the solution of the equations is sought

in the form

q̃1 = A+e
iθeiωctq̃A1 + A−e

−iθeiωctq̃A1 + Eeiωf tq̃E1 + c.c. (6.15)

and consists of the superposition of the global mode and the forcing response,

with amplitudes A± = A+ = A− and E and spatial structures qA1 = qA1 (r, z)

and qE1 = qE1 (r, z), respectively. At order
√
ε

3
, compatibility conditions have

to be imposed for the solvability of the equations, which yield the following

equation governing the complex amplitude A± of the global mode:

dA±
dt

= αA± + λ|A±|2A± + g(A±, E) (6.16)

where the function g contains all the secular terms that stem from the inter-

action of the global mode with the forcing at third order. In the absence of

external forcing, the function g is zero.
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When ωf is close to twice the global shedding mode frequency, we have

seen in figure 5.2 that the flow responds significantly in azimuthal wavenumber

|m| = 1 at half the forcing frequency, due to the parametric subharmonic

instability. Thus forcing at frequencies close to twice the shedding frequency

(i.e. St ≈ 0.4) will be termed “resonant forcing”. For resonant forcing, we have

the superimposition of two counter-rotating spiralling modes (standing wave)

of same amplitude A±, and (6.16) has the following form:

dA±
dt

= αA± + λ|A±|2A± + µEA∗±. (6.17)

The last term in eq. (6.17) results from the nonlinear coupling between the

conjugate of the global mode A∗± and the axisymmetric perturbation E, when

forcing is applied resonantly near twice the global mode frequency.

6.1.4. Mean flow

For an arbitrary Reynolds number of the flow, the mean turbulent flow is given

by a time-average of the phase-avergaed equation (6.8). That is

ū · ∇ū +∇p̄−∆ū/Re = −∇ · u′u′ (6.18)

The right-hand side of the mean equation contains the mean contribution of

the Reynolds stresses of the turbulence (random structures). Using the eddy

viscosity closure, see equation (6.10), the mean flow equation is

ū · ∇ū +∇p̄−∆ū/ReT = 0. (6.19)

In the conceptual model proposed here, the mean flow is viewed as the non-

linear modification of the laminar base flow due to the action of the nonlinear

Reynolds stresses for Re > Rec. The mean flow modification of the laminar

base flow due to the coherent waves arising due to the nonlinear interaction

of the coherent waves stemming from ∇ · ũũ, is taken explicitly into account

through the weakly nonlinear expansion up to second order. The nonlinear

modification due to the random turbulence due to ∇·u′u′ is modelled through

the eddy viscosity.

Based on the weakly nonlinear analysis, the mean flow is given by the steady
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part of equation (C.31). That is

q = q0 + ε
(
δq1

2 + |A±|2q|A±|2
2

)
. (6.20)

This description provides the global mean flow. It consists of the superpo-

sition of the laminar base flow q0 at Rec, the modification of it due to the

departure from criticality δq1
2, and the second order nonlinear modification due

to the unstable modes |A±|2q|A±|2
2 . Substitution of the amplitude of the global

mode given by (6.17), gives the response of the mean flow as a function of the

forcing amplitude |E| and the departure from criticality ε, that is

q = q0 + ε

(
δq1

2 −
αr + µr|E|

λr
q
|A|2
2

)
. (6.21)

For a fixed departure from criticality, the above equation can be used to describe

the response of the mean flow as a function of the forcing amplitude for the

PSI when forcing is applied exactly at twice the critical frequency. It has to be

noticed that for the PSI, based on the weakly nonlinear analysis, although the

steady state amplitude of the global mode varies quadratically as a function of

the forcing amplitude, the mean flow varies linearly.

6.2. Identification of model parameters

In order to identify the unknown complex parameters, α, α and µ, in equa-

tion (6.17), further forced experiments are performed. The system is subject

to harmonic excitation, modelled through the forcing term E, and the tran-

sient and steady-state response of the unsteady global mode A± is measured

to verify equation (6.17) and identify the unknown complex parameters. The

non-dimensional centreline velocity of the jet output is used to quantify the

forcing amplitude E, that is E = Ujet/U∞.

Substituting A± = |A±|eiωt and E = |E|eiωf t, for ωf = 2ωc, yields the

following equations for the modulus and phase of the unsteady global mode:

1

|A±|
d|A±|
dt

= αr + λr|A±|2 + µr|E| (6.22a)

ω =
dφ

dt
= αi + λi|A±|2 + µi|E| (6.22b)
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where φ = ωt = 2πft. Notice the above set of equations is valid when the

forcing frequency is exactly twice the critical frequency∗. Instantaneous growth

rates and frequencies of the response A± are obtained experimentally using the

following procedure:

• The measured pressure signals on the base of the body are decomposed

in the azimuthal direction using to obtain the first azimuthal Fourier

components.

• The signal is then filtered in the spectral domain with a window centered

on the frequency of the vortex shedding mode.

• The instantaneous complex amplitude (Ar + Ai)(t) of the filtered signal

is built from the Hilbert transform.

• Then, the instantaneous amplitude and phase are given by |A| =
√
A2
r + A2

i

and φ = tan−1 (Ar/Ai).

• The growth rate d|A±|/dt and frequency ω are calculated differentiating

in time the instantaneous amplitude and phase. Time derivatives are

evaluated by finite differences.

A similar procedure to the one described above for the identification of the

Landau coefficients has been applied close to the threshold of bifurcation for

the velocity signal in the wake of a cylinder (Schumm et al., 1994). When

transients are contaminated by noise, the instantaneous growth rates and fre-

quencies determined in this fashion are only reliable where the signal-to-noise

ratio is significantly above unity. This problem is tackled here by phase averag-

ing over a number of experiments using as a reference signal the forcing signal.

In effect, the phase-averaging procedure rejects the background turbulence and

extracts only the organized motions from the total signal (Reynolds & Hussain,

∗The same procedure can be followed for investigating forcing frequencies which are near the
critical frequency by introducing a small detuning frequency Ω. Then, for ωf = 2ωc + Ω,
the evolution of the global mode in amplitude and frequency is given by

1

|A±|
d|A±|
dt

= αr + λr|A±|2 + µr|E| cos Ωt− µi|E| sin Ωt (6.23a)

ω =
dφ

dt
= αi + λi|A±|2 + µi|E| cos Ωt+ µr|E| sin Ωt (6.23b)
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1972). Averaging here is performed over 50 transient data sets to obtain an

average of the amplitude |A(t)| and the instantaneous frequency ω(t).

After computing the above instantaneous quantities and their derivatives for

the exact forcing case, ωf = 2ωc, the identification of the unknown coefficients

can be done by data fitting. Specifically, inspection of (6.22a) and (6.22b)

reveals that the solutions of the equations lie on a plane, y = c0 + c1x1 + c2x2.

The fitted parameters are given in table 6.1.
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Parameter αr λr µr αi λi µi

Value 0.005 -219.861 0.38 1.29 70.141 0.158

Table 6.1.: Values of model parameters obtained from data fitting.
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Figure 6.1.: Fitting of model coefficients for ωf = 2ωc. Each fitted plane is
presented as y − c2x2 = c0 + c1x1 and y − c1x1 = c0 + c2x2. Left:
real part. Right: imaginary part.
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6.3. Model Predictions

The weakly nonlinear analysis yielded models describing the response of the

global shedding mode to axisymmetric forcing. The unknown parameters of

the model were determined from experimental measurements. As a last step,

the predictions of the model will now be compared to the experimental mea-

surements presented in chapter 5.

6.3.1. Global mode response to forcing

In order to validate the coupled Stuart-Landau equations that resulted from

the weakly nonlinear analysis, including the constant coefficient values obtained

from experiments, the version of the equation valid for near resonant forcing,

equation (6.17), is now used to predict dominant features of the forced response.

We begin by revisiting figure 5.1, in which the response of the global m = ±1

shedding mode to axisymmetric forcing was presented for a range of frequencies

and two forcing amplitudes, exhibiting the well-known “lock-in” phenomenon

when forcing was applied near twice the global mode frequency. The model

predictions, are shown in figure 6.2. The steady-state amplitude and frequency

response obtained from the model are shown as a function of forcing frequency

for two forcing amplitudes. It is clear that the model captures accurately the

frequency lock-in effect and the parametric subharmonic resonance, as observed

in the wind tunnel measurements.

The effect of forcing amplitude on the shedding mode response is now consid-

ered for the PSI. Forcing is applied at Stf = 2StV S + 0.03 = 0.43, with a small

detuning from twice the natural shedding frequency. The model predictions are

compared with the experimental results in figure 6.3. The response in |m| = 1

is non-linear; when a certain forcing amplitude is reached, frequency “lock-in”

occurs and the amplitude rises sharply. This effect is also well-predicted by the

model.

6.3.2. Mean Pressure

The effect of axisymmetric forcing on the fluctuating component of the base

pressure has been considered in the paper. The effect of forcing on the mean

base pressure is also of interest, particularly in pressure-drag reduction appli-

cations. It is insightful to consider the response of the mean base pressure here,

102



6.3. MODEL PREDICTIONS

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.02

0.04

A
V
S

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0.1

0.15

0.2

0.25

0.3

Stf

S
t V

S
E = 0.3
E = 0.6

Figure 6.2.: Model simulation: the response of the amplitude and frequency
of the m = ±1 global shedding mode to axisymmetric forcing
at different frequencies given by equation (6.17), for two forcing
amplitudes.

0 0.2 0.4 0.6 0.8
0

0.01

0.02

0.03

0.04

Ujet/U∞

|A
V
S
|

0 0.2 0.4 0.6 0.8
0.2

0.205

0.21

0.215

0.22

Ujet/U∞

S
t V

S

Figure 6.3.: Validation of the model predictions given by equation (6.17) (solid
lines) against experimental data (symbols) as a function of the forc-
ing amplitude. Steady-state response of the global vortex shedding
mode to ZNMF forcing with azimuthal wavenumber m = 0 and fre-
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103



CHAPTER 6. WEAKLY NONLINEAR MODELLING OF THE FORCED
FLOW

and to show that the weakly non-linear model can explain the main features of

the changes.

Based on the weakly nonlinear analysis, the mean flow over the entire flow

field (r, φ, z) is approximated by equation (6.21). This equation is also valid

at a fixed downstream location, i.e. on the (r, φ) plane that coincides with the

base of the body at z = 0. If the pressure component p of the flowfield q is

chosen, and integration is performed on the base of the body, this gives the

mean base pressure:

p =

∫ R

0

∫ 2π

0

(p0 + δp1
2 −

αr
λr

q
|A|2
2 )rdrdφ− |E|

∫ R

0

∫ 2π

0

µr
λr

q
|A|2
2 rdrdφ

=c1 − c2|E|

(6.24)

where c1 and c2 are constant and real coefficients determined by the values of

the above two double spatial integrals. Hence, for a fixed Reynolds number, a

linear change of the mean base pressure is predicted as a function of the forcing

amplitude. This linear relation can be seen and validated in figure 5.4, where

the experimentally obtained mean base pressure is plotted, as a function of

the forcing amplitude (jet velocity). The experimental data show that after a

region of low forcing amplitudes that the mean pressure remains constant, an

almost linear decrease is observed. The constant slope is well explained for low

forcing amplitudes from the response of the vortex shedding mode. In order

lock-in to be achieved when axisymmetric forcing is applied close to twice the

shedding frequency, a minimum threshold is required depending on the detuning

frequency; for both the mean base pressure response and the shedding mode

response this threshold appears to coincide.

Thus it is clear that the low-dimensional, weakly non-linear model is accu-

rately capturing the main features of the response of the global shedding mode.
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6.4. Concluding remarks

Landau-like models that capture the weakly nonlinear interaction between the

global shedding mode and axisymmetric forcing have been derived. The un-

known coefficients were determined from transient forced experiments and the

model predictions were validated performing experiments on the three dimen-

sional wake of an axisymmetric bluff body, incorporating an axisymmetric

ZNMF actuator on the base of the body.

With the present analysis it was demonstrated that the concept of weakly

nonlinear global modes can be extended to a fully turbulent flow, far from the

critical bifurcation Reynolds number. The Landau-like models derived here

capture accurately the forced response by means of measured base pressure of

the dominant coherent structures manifesting in a three dimensional turbulent

wake.

The models were derived and validated for specific forcing conditions (ωf ,mf ) =

(2ωV S + Ω, 0), that is the PSI region. Key factor for the specific choice was

the high sensitivity of the global mode close to this forcing frequency due to

the PSI, which could be beneficial if the models are used in a feedback control

design. The modelling framework presented here can be extended to describe

the response of the flow for different forcing frequency ranges (resonant and

not) and forcing azimuthal wavenumbers.
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7. Conclusions

In this thesis the dynamics of the turbulent three-dimensional wake generated

by an axisymmetric bluff body with blunt trailing edge are experimentally and

theoretically investigated in an attempt to advance the current understanding

and low-dimensional modelling of turbulent flows behind bluff bodies. The main

results of this investigation are summarised here together with suggestions for

future work.

A finding of great importance in this thesis is that the large scale structures

of the turbulent three-dimensional wake retain the structure of the laminar

instabilities observed in the transitional regimes, in a statistical sense. Despite

the relatively high Reynolds number of the flow under investigation, ReD =

188, 000, it is shown that the large scale coherent structures are reminiscent

of the two well-documented in the literature steady and unsteady bifurcations

observed recently in DNS of axisymmetric bodies at low Reynolds numbers

of O(100). The laminar instabilities are associated with spatial and temporal

symmetry breaking, giving rise to spatial reflectional symmetry and periodic

vortex shedding. The quasi-periodic vortex shedding is clearly identified at the

turbulent regime through spectral analysis and POD decomposition of the base

pressure. Interestingly, the reflectional symmetry in the turbulent regime is

also clearly revealed by performing averaging on the rotating reference frame of

the CoP. A statistical analysis of the CoP showed that the reflection symmetry

plane rotates randomly in the azimuthal direction and the turbulent wake is

characterised by rotational symmetry in the long time average.

The persistence of the laminar structures at the turbulent regime, allowed

us to propose a simple mode for the macroscopic description of the flow. We

focused only on the dynamics associated with the spatial symmetry break. The

model consists of two coupled stochastic differential equations, the deterministic

part of which accounts for the spatial broken symmetries observed in the lami-
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nar regime and gives rise to steady large scale structures through a supercritical

pitchfork bifurcation, and the stochastic part modelling in a phenomenologi-

cal sense the turbulent fluctuations acting on the large scale structures. The

stochastic model captures important dynamics of the flow. Specifically, pre-

dicts the random reorientations of the reflection symmetry plane (VLF mode)

and the ‘bubble pumping’ mode, as random displacements of the CoP in the

azimuthal and radial direction due to the presence of noise (turbulence). Simi-

lar behavior is observed in a wide range of dynamical systems having rotational

symmetry when pertrubed by random noise, usually associated with diffusive

processes. The analysis presented here suggests that stochastic dynamics in the

presence of symmetry are universal and therefore the method can be applied to

other turbulent systems (i.e. Rayleigh-Bénard convection, von Kármán flow),

provided that their specific symmetries are taken into account.

It has to be noted that the unsteady bifurcation, responsible for the vortex

shedding (limit cycle), has not been considered in the above stochastic analysis.

This could be done by adding an extra equation accounting for the temporal

broken symmetries due to a Hopf bifurcation. A rich behavior is observed in

limit cycling systems under the influence of noise (Newby & Schwemmer, 2014).

As a next step, the effect of flow-forcing using axisymmetric ZNMF slot jet

actuation on the predominant modes present in the unforced flow has been

examined. It is shown that axisymmetric forcing couples non-linearly with the

global shedding mode with this coupling being the main factor that determines

the nonlinear flowfield response. The dominant interaction is a parametric

resonance mechanism between the forcing and the global shedding mode, when

forcing is applied close to twice the shedding frequency (PSI). At these forcing

conditions, a pronounced growth of the shedding mode amplitude is observed,

simultaneously with a frequency lock in to half the forcing frequency. That

reveales a nonlinear mechanism that allows the frequency of the global shedding

mode to be controlled through forcing.

Finally, Landau-like models that capture the weakly nonlinear interaction

between the global shedding mode and axisymmetric forcing have been de-

rived. The unknown coefficients were determined from transient forced ex-

periments and the model predictions were validated against the experimental

measurements. The Landau-like models capture accurately the forced response
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by means of measured base pressure of the global vortex shedding mode. With

the present analysis it is demonstrated that the concept of weakly nonlinear

global modes can be extended to a fully turbulent flow, far from the critical

bifurcation Reynolds number. These ideas have previously been applied only

to laminar wakes.

The Landau models were derived and validated for specific forcing condi-

tions, that is the PSI region. Key factor for the specific choice was the high

sensitivity of the global mode close to this forcing frequency due to the PSI,

which could be beneficial if the models are used in a feedback control design.

Also, a model for the actuator has been derived based on first principles, which

in combination with the wake dynamics given by the Landau models, provide

the full transfer function between physical input to the actuator and measured

output of the system. These low-order models can be used for designing robust

closed-loop control strategies (Barbagallo et al., 2009; Sipp & Schmid, 2013)

for the suppression of the large scale shedding observed in the turbulent wake

of bluff bodies.

Despite the fact that the analysis performed in this thesis was performed

solely on pressure data obtained on the base of the axisymmetric body, it is

reasonable to expect that due to the global nature of the dynamics of the

large scale structures, the same analysis and dynamic modelling should hold

for the near-wake velocity field. Thus, it would be interesting to investigate in

future experiments the global/local nature of the dynamic characteristics and

quantify the observability of the velocity field in the near wake from pressure

measurements. This could be achieved by simultaneous measurements of the

velocity field using time-resolved particle image velocimetry techniques and of

the pressure field.

Finally, it is well-known that the symmetries of the experimental set-up play

an important role in the theoretical bifurcation scenario in the transitional

regimes of wakes produced by three-dimensional bodies. For axisymmetric

body wakes, the rotational symmetry, O(2), observed at low Reynolds num-

bers is broken through a steady bifurcation and the resulting flow has reduced

symmetry. The weakly nonlinear concepts should be applicable in other three-

dimensinal wakes. For instance, these ideas could be applicable in bodies with

D(2) symmetry, i.e. the Ahmed body, as suggested by experimental data at low

Reynolds numbers (Grandemange et al., 2012a), provided the specific symme-
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try is taken into account as well as the presence of the ground effect. A weakly

nonlinear analysis close to the threshold of bifurcations could potentially ex-

plain and model the transitional dynamics. Also, strong evidence exists that

supports the extension of the models presented here in turbulent regime. The

bistability observed in the Ahmed body turbulent wake results from the random

exploration of two symmetry broken laminar-like states in the lateral direction

(Grandemange et al., 2013). The two-dimensional stochastic model presented

in chapter 3, describing the restoration of broken symmetries in the axisym-

metric wake, if used only in one dimensional, is a typical bistable system that

explains and models the above behaviour.
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A. Stochastic Differential

Equations

A.1. Langevin equation

The simple Langevin equation that turns up most often can be written in the

form
dx

dt
= a(x, t) + b(x, t)ξ(t), (A.1)

where x is the variable of interest, a(x, t) and b(x, t) are certain known

functions and ξ(t) is the randomly fluctuating random term with

〈ξ(t)ξ′(t)〉 = δ(t− t′), (A.2)

Above, δ(t) is the Dirac delta function, t and t′ are distinct times. If the

b(x, t) is constant, i.e. b(x, t) = σ, the system is said to be subject to additive

noise, otherwise it is said to be subject to multiplicative noise.

An alternative formulation of A.3 is

dx = a(x, t)dt+ b(x, t)dW, (A.3)

where W denotes a Wiener process (standard Brownian motion).

A.2. Fokker-Planck equation

The probability density P (x, t) for the random variable x satisfies the

FokkerPlanck equation

∂P

∂t
=

1

2

∂2

∂x2
[b2(x)P ]− ∂

∂x
[a(x)P ], (A.4)
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or
∂P

∂t
=

1

2
∇2[b2(x)P ]−∇ · [a(x)P ]. (A.5)

A.3. Change of variables

Consider an arbitrary function x : f(x). We use Ito’s formula for change of

variables and expand df(x) to second order in dW :

df(x) = f(x+ dx)− f(x)

= f ′(x)dx+ 0.5f ′′(x)dx2 + . . .

= f ′(x) {[a(x, t)]dt+ b[x, t]dW}+ 0.5f ′′(x)b(x, t)2[dW ]2 + . . .

=
{

[a(x, t)]f ′(x) + 0.5f ′′(x)b(x, t)2
}
dt+ b[x, t]f ′(x)dW

(A.6)

A.4. Pitchfork bifurcation in the presence of

noise

In Cartesian coordinates, the system undergoing a pitchfork bifurcation in the

presence of additive noise reads:

ẋ = αx + λx|x|2 + σξ, (A.7)

where x = (x, y) and ξ = (ξx, ξy).

A.4.1. Fokker-Planck

The Fokker–Plank for the joint PDF P (x, y, t) in Cartesian rectangular

variables is:

∂P

∂t
= D

(
∂2P

∂x2
+
∂2P

∂y2

)
− ∂

∂x
{[αx+λx(x2 +y2)]P}− ∂

∂y
{[αy+λy(x2 +y2)]P}.

(A.8)

We look for a stationary solution Ps(x, y) for t→∞:

D

(
∂2P

∂x2
+
∂2P

∂y2

)
=

∂

∂x
{[αx+λx(x2+y2)]P}+ ∂

∂y
{[αy+λy(x2+y2)]P}. (A.9)
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Integrating:

∂Ps
∂x

+
∂Ps
∂y

= [α(x+ y) + λ(x+ y)(x2 + y2)]Ps/D + C1 (A.10)

and C1 = 0 because of the boundary conditions as (x, y)→ ±∞. So the

stationary joint probability density function is given by

Ps(x, y) = C exp

{
1

D

[
α

2
(x2 + y2) +

λ

4
(x2 + y2)2

]}
(A.11)

and the potential U(x, y)

U(x, y) = −
[
α

2
(x2 + y2) +

λ

4
(x2 + y2)2

]
(A.12)

such that

Ps(x, y) = C exp

[
− 1

D
U(x, y)

]
. (A.13)

The constant C is found by the normalization requirement∫ +∞
−∞

∫ +∞
−∞ Ps(x, y)dxdy = 1. Also, the one dimensional components of the 2D

PDF can be calculated by integration.

A.4.2. Coordinate transformation: Cartesian to polar

The system (A.7) is transformed from (x, y)→ (r, φ). We have x = r cosφ

and y = r sinφ. Also, we define µ(t) = log r, so that

µ+ iφ = log(x+ iy). (A.14)

We expand d(µ+ iφ) to second order in dW

d(µ+ iφ) = [log(x+ iy)]′d(x+ iy) + 0.5[log(x+ iy)]′′[d(x+ iy)]2

=
d(x+ iy)

x+ iy
− 0.5

d(x+ iy)2

(x+ iy)2

=
a(x+ iy) + λ(x+ iy)(x2 + y2)

x+ iy
dt+

σ(dWx(t) + idWy(t))

x+ iy

− 0.5
σ2(dWx(t) + idWy(t))

2

(x+ iy)2

(A.15)

121



APPENDIX A. STOCHASTIC DIFFERENTIAL EQUATIONS

and noting dWxdWy = 0 and dW 2
x = dW 2

y = dt, the last term vanishes, so we

find

d(µ+ iφ) = (a+ λr2)dt+ σ exp(−µ− iφ)(dWx(t) + idWy(t)). (A.16)

Setting r = expµ, and separating real and imaginary parts we have

dr = (ar + λr3 + 0.5σ2/r)dt+ σ(dWx cosφ+ dWy sinφ), (A.17)

dφ = σ/r(dWx sinφ+ dWy cosφ). (A.18)

We now define

dWr = (dWx cosφ+ dWy sinφ), (A.19a)

dWθ = (dWx sinφ+ dWy cosφ). (A.19b)

The above is an orthogonal transformation so that we may take dWr and dWθ

as increments of independent Wiener processes. Hence, we have

dr = ar + λr3 + 0.5σ2 1

r
+ σdWr, (A.20a)

dφ =
σ

r
dWθ. (A.20b)

Probability Density Function The Fokker–Plank for the joint PDF

P (r, φ, t) in polar variables is:

∂P

∂t
= D

(
1

r

∂

∂r

(
r
∂P

∂r

)
+

1

r2

∂2P

∂φ2

)
− 1

r

∂

∂r
[(ar + λr3 +

D

r
)rP ]. (A.21)

Note: for polar coordinates:

∇ · F =
1

r

∂

∂r
(rFr) +

1

r

∂Fφ
∂φ

∇2f =
1

r

∂

∂r

(
r
∂f

∂r

)
+

1

r2

∂2f

∂φ2
,=

1

r

∂f

∂r
+
∂2f

∂r2
+

1

r2

∂2f

∂φ2
.

We look for a stationary solution Ps(r, φ) for t→∞:

D

(
1

r

∂

∂r

(
r
∂Ps
∂r

)
+

1

r2

∂2Ps
∂φ2

)
=

1

r

∂

∂r
[(ar + λr3 +

D

r
)rPs] (A.22)
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and for φ-independent solution, since the drifts and diffusivities are

φ-independent, so we set
∂Ps
∂φ

= 0. (A.23)

This reduces the equation to one-variable problem (ODE):

D
1

r

∂

∂r

(
r
∂Ps
∂r

)
=

1

r

∂

∂r
[(ar + λr3 +

D

r
)rPs]. (A.24)

Integrating:
∂Ps
∂r

= [ar + λr3 +
D

r
]Ps/D + C1 (A.25)

and C1 = 0. So the stationary joint probability density function is given by

Ps(r) = C exp

{
1

D

[
αr2

2
+
λr4

4
+D ln r

]}
(A.26)

and the potential U(r)

U(r) = −
[
αr2

2
+
λr4

4
+D ln r

]
. (A.27)
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B. Unforced base pressure

modes from Endevco

The spectra of the base-pressure fluctuations obtained from the 8 pressure

transducers, decomposed into azimuthal modes, are shown in figure B.1. The

radially averaged spectra of the same quantity obtained from the 64 pressure

taps on the base of the body are potted in figure 3.2.

Qualitatively the same information is obtained here from both measurements

regarding the large scale structures. Among the peaks in the premultiply

spectra, we identify the global vortex shedding mode (|m| = 1, StV S = 0.2)

and the subharmonic of the shedding mode (|m| = 1, 2, StV S = 0.2). Also two

broader regions of energy are distinguishable and are associated with the VLF

mode (|m| = 1, StV LF = 0.002) and the bubble pumping mode (m = 0,

St = 0.06). Based on the spectral information obtained from the Endevco

transducers, we conclude the modal information is observable and can be

obtained from the 8 transducers EDV. The modes obtained from the radially

averaged base pressure fluctuations are equally observable from measurements

performed in one radial position. The radial position of the Endevco

transducers is near to the location of maximum rms pressure, r = 0.3D.

The use of only 8 transducers strategically located at the location of maximum

rms pressure offers the advantage of keeping low the instrumention cost as well

as the computational cost. The latter is of paramount importance in feedback

control schemes where processing of data has to be performed on real-time.
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Figure B.1.: Premultiplied spectra of the base pressure fluctuations obtained
from the 8 pressure transducers, decomposed in azimuthal modes.

125



C. Weakly nonlinear analysis

Here, the equations governing the forced amplitude evolution of the unstable

global modes of the turbulent flow for the turbulent axisymmetric wake are

derived. The analysis is based on the weakly nonlinear analysis proposed by

Sipp (2012), in which the forcing enters the amplitude equations.

The analysis distinguishes between two cases depending on the forcing

frequency; non-resonant case (ωf is not close to 2ω0) and resonant case (ωf is

close to 2ω0).

C.1. Non-resonant case

C.1.1. Order
√
ε

1

∂tu1 + u0 · ∇u1 + u1 · ∇u0 +∇p1 − Re−1
c ∇2u1 = 0 and ∇ · u1 = 0 (C.1)

The above set of equations can also be written in a more elegant way as

(
∂tPPT +M

)
q1 = 0 (C.2)

with M being the linearized Navier-Stokes operator, P a prolongation

operator which transforms u into (u, 0)T and PT a restriction operator which

transforms (u, p)T quantity into u:

M =

(
u0 · ∇() + () · ∇u0 − Re−1

c ∇2 ∇
∇T 0

)
, P =

(
I
0

)
(C.3)

The solution is sought in the form

q1 = A+e
iφeiωtqA1 + A−e

−iφeiωtqA1 + Eeiωf tqE1 + c.c.

= A±(eiφ + e−iφ)eiωtqA1 + Eeiωf tqE1 + c.c.
(C.4)

and consists of the superposition of the global mode and the forcing response.
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The eigenfunctions qA1 and qE1 can be found from:

(
iωcPPT +M

)
qA1 = 0 (C.5)

(
iωfPPT +M

)
qE1 = 0 (C.6)

with u = uC on some given forcing boundary ΓC for (C.6). Equation (C.6)

defines qE as the linear response of the flow to the forcing fE. Notice that, in

order to invert (C.6), the value iωf cannot belong to the eigenvalue spectrum

at Rec.

C.1.2. Order
√
ε

2

∂tu2 + u0 · ∇u2 + u2 · ∇u0 +∇p2 − Re−1
c ∇2u2 = −∇2u0 − u1 · ∇u1 (C.7)

Considering equation (C.4), the above system becomes:

(
∂tPPT +M

)
q2 =F1

2 + |A±|2F|A±|2
2 + [A2

±(e2iφ + e2iφ)e2iωctF
A2

±
2 + c.c.]

+ [A±E(eiφ + eiφ)ei(ω+ωf )tF
A±E
2 + A±E

∗(eiφ + eiφ)ei(ω−ωf )tF
A±E∗

2 ]

+ (E2e2iωf tFE2

2 + c.c.) + |E|2F|E|
2

2

(C.8)

where

F1
2 = P

(
−∇2u0

)
(C.9)

F
|A|2
2 = P

(
−u∗A1 · ∇uA1 − uA1 · ∇u∗A1

)
(C.10)

FA2

2 = P
(
−uA1 · ∇uA1

)
(C.11)

F
|E|2
2 = P

(
−u∗E2 · ∇uE2 − uE2 · ∇u∗E2

)
(C.12)

FAE
2 = P

(
−uE2 · ∇uA2 − uA2 · ∇uE2

)
(C.13)

FAE∗

2 = P
(
−u∗E2 · ∇uA2 − uA2 · ∇u∗E2

)
(C.14)

FE2

2 = P
(
−uE2 · ∇uE2

)
(C.15)

The terms on the right-hand side of (C.8) are forcing terms. The velocity

fields involved in these expressions have been determined at lower order. Since

(C.8) is linear, we may write the solution as the superposition of q1
2, q

|A|2
2 and

qA
2

2 corresponding to the response of the linear system to F1
2, F

|A|2
2 and FA2

2 ,

127



APPENDIX C. WEAKLY NONLINEAR ANALYSIS

respectively, i.e.

q2 =q1
2 + |A±|2q|A|

2

2 + [A2
±(e2iφ + e2iφ)e2iωctqA

2

2 + c.c.]

+ [A±E(eiφ + eiφ)ei(ω+ωf )tqAE2 + A±E
∗(eiφ + eiφ)ei(ω−ωf )tqAE

∗

2 ]

+ (E2e2iωf tqE
2

2 + c.c.) + |E|2q|E|
2

2

(C.16)

where

Mq1
2 = P

(
−∇2u0

)
(C.17)

Mq
|A|2
2 = P

(
−u∗A1 · ∇uA1 − uA1 · ∇u∗A1

)
(C.18)

(2iωcPPT +M)qA
2

2 = P
(
−uA1 · ∇uA1

)
(C.19)

Mq
|E|2
2 = P

(
−u∗E2 · ∇uE2 − uE2 · ∇u∗E2

)
(C.20)

(i(ωc + ωf )PPT +M)qAE2 = P
(
−uE2 · ∇uA2 − uA2 · ∇uE2

)
(C.21)

(i(ωc − ωf )PPT +M)qAE
∗

2 = P
(
−u∗E2 · ∇uA2 − uA2 · ∇u∗E2

)
(C.22)

(2iωfPPT +M)qE
2

2 = P
(
−uE2 · ∇uE2

)
(C.23)

These are non-degenerate systems that may be readily inverted when the

values 0, i(ωc + ωf ), i(ωc + ωf ) and 2iωf do not belong to the eigenvalue

spectrum. These conditions, together with the one obtained from (C.6), define

the resonant cases.

C.1.3. Order
√
ε

3

The third-order equation is:

∂tu3+u0 ·∇u3+u3 ·∇u0+∇p3−Re−1
c ∇2u3 = −∂t1u1−∇2u1−u1 ·∇u2−u2 ·∇u1

(C.24)

Using (C.4) and (C.16), the forcing terms of the right-hand side can be

written as

(
∂tPPT +M

)
q3 = (eiφ + e−iφ)eiωct(G∂t1 A± + AFA

3 + A±|A±|2FA|A|2
3 +

A±|E|2FA|E|2
3 + c.c.) + . . .

(C.25)
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C.2. RESONANT CASE ωF ≈ 2ωC

where

G = P
(
−uA1

)
(C.26)

FA
3 = P

(
−uA1 · ∇u1

2 − u1
2 · ∇uA1 −∇2uA1

)
(C.27)

F
A|A|2
3 = P

(
−uA1 · ∇u

|A|2
2 − u

|A|2
2 · ∇uA1 − u∗A1 · ∇uA

2

2 − uA
2

2 · ∇u∗A1

)
(C.28)

F
A|E|2
3 = P(−uA1 · ∇uEE

∗

2 − uEE
∗

2 · ∇uA1 − uAE2 · ∇u∗E1 − u∗E1 · ∇uAE2

−uE1 · ∇uAE
∗

2 − uAE
∗

2 · ∇uE1 ) (C.29)

Elimination of the secular terms yields the following equation governing the

amplitude A′± =
√
εA± of the global mode:

dA±
dt

= (α− µ(ωf )E
2)A− λA±|A±|2 (C.30)

C.2. Resonant case ωf ≈ 2ωc

The scaling is ωf = 2ωc + Ω′, E ′ =
√
ε

2
E, Ω′ = εΩ. At order

√
ε

2
the solution

is sought in the form

q = q0 +
√
ε[A±(eiφ + e−iφ)eiωtqA1 + c.c.]

+
√
ε

2
[δq1

2 + |A±|2q|A|
2

2 + (A2
±(e2iφ + e−2iφ)e2iωctqA

2

2 + c.c.)]

+
√
ε

2
[Ee2iωf tqE2 + c.c.]

(C.31)

where (
2iωcPPT +M

)
qE1 = P(fE) (C.32)

The amplitude equation reads

dA±
dt

= (α− iΩ/2)A± − λA±|A±|2 + µEA∗± (C.33)
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