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Abstract

Shared space is an innovative approach to improve environments where both pedestrians and vehicles are present, with integrated

layouts to balance priority. The Social Force Model (SFM) was used to visualise pedestrian and car trajectories so that peaks of

density and pressure at critical locations are avoided. This paper extends the SFM to consider a long-range collision detection and

collision resolution strategy. The determination of potential conflicts is enhanced using principle component analysis for a set of

agent’s prior speeds and directions. This long-range collision avoidance strategy results in more realistic SFM-based trajectories

for pedestrians and cars in shared spaces.

c© 2014 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of PED2014.

Keywords: social force model; long-range collision detection; collision resolution; shadow; principle component analysis; shared space

1. Introduction

Since the appearance of motorised transport, there has been debates on the extent to which standardised and vehicle-

dominated streetscape cause negative effect on the public neighbourhoods. Hamilton-Baillie (2008) explains that

individuals tend to spend less time in public areas if they perceive streets to be less attractive for their social interaction

activities or mobility. As a result, the quality of these spaces declines and human activities transfer from public to

private spaces. Hence, urban design is moving towards shared space as an alternative to traditional designs (Jones and

Boujenko (2011); Schonauer et al. (2012)). The shared space concept focuses on changing the way streets function

by reducing the dominance of vehicles. This is often obtained through the use of a single surface, with the goal of

integrated space use (Department for Transport (2011)). Shared space allocates more degrees of freedom to its traffic

participants. As a result of this increased freedom, traffic engineers have become concerned about the consequences of

the new designs for pedestrians, as well as the delay for vehicular traffic. Computer modelling allows an examination

of the trade-offs between travel times and vehicular and pedestrian traffic (Ishaque and Noland (2007)). Modelling

and simulation, in combination with visualisation of future shared space designs, allow designers to test different
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mixed traffic situations. These should help to improve the basic concept and achieve solutions for issues such as

optimal traffic capacities or delays. A combination of two traffic systems requires a way of finding paths to respective

destinations for different road users. A mixed-traffic system should also be able to reproduce the most common

behaviour patterns and handle interactions within heterogeneous traffic. Many theoretical models have been proposed

in the literature (Zhang and Kim (2005); Franca et al. (2009); Chraibi and Seyfried (2010)) to uncover the laws which

govern vehicle and pedestrian traffic dynamics separately. However, there is limited research on interactions within

heterogeneous traffic. Hence, there is a need to investigate the interaction between different transportation modes in

shared areas.

Anvari et al. (2012) discusses behavioural patterns of pedestrians and cars in shared space areas using the Social

Force Model (SFM) and argues that short range repulsive forces in the SFM leads to excessively frequent urgent

detours to avoid collisions. Hence, this paper explores a long-range collision avoidance method to handle the potential

car-pedestrian road conflicts that might occur by following the SFM exclusively.

The collision avoidance issues are explored in different transportation systems such as crowd dynamics (Llorca

et al. (2011); Ahn et al. (2011); Park et al. (2012); Golas et al. (2013)), air traffic management (Pallottino and Feron

(2002); Sislak et al. (2011); Luongo et al. (2011)) and mobile ground robot applications (Mejias et al. (2010); Albaker

and Rahim (2010); Knepper and Rus (2012)). The common idea is to detect a potential collision by a specific threat

prediction model (e.g. straight or probabilistic or precise prediction method). Then, a collision resolution strategy

(e.g. predefined or protocol based or optimised or reactive path planning) is applied based on estimations about

how other users behave during a certain prediction horizon (e.g. constant acceleration or constant turn radius). The

time and distance to a potential collision is then evaluated based on their relative distance, velocity and acceleration.

For instance, Coelingh et al. (2010) describe an Automatic Emergency Braking system with a pedestrian detection

and collision avoidance model. This system is capable of avoiding accidents for vehicle speeds up to 35 km
h

. Their

prediction model is dependant on the time to the collision and the time required to avoid the collision considering a safe

collision avoidance distance and vehicle dynamics. The time to avoid a collision using factors such as the perception-

reaction time and braking time is studied in vehicle-to-vehicle interactions (Tang and Yip (2010)). Furthermore, Ahn

et al. (2011) extracted general principles of human behaviours in an outdoor pedestrian area from multiple video

recordings and used real trajectories of pedestrians to estimate long term collisions. A collision avoidance algorithm

was formulated based on a colliding area and a shift influencing area around pedestrians. Golas et al. (2013) proposed

a probabilistic long-range collision avoidance strategy for crowd simulations by smoothening the effect of distance.

In this approach, the velocity of pedestrians is updated based on their desired velocity and the estimation of future

behaviour patterns of other pedestrians. In their prediction model, agents’ current position and velocity is linearly

extrapolated and considered as future behaviour of pedestrians. The prognosis of this model increases as agents get

closer to each other.

In this paper, the SFM is extended to consider a long-range Collision Detection and Collision Resolution (CDCR)

strategy. In Section 2, the SFM for shared space users is briefly recalled. The Principle Component Analysis (PCA)

is introduced in Section 3 for a set of agent’s prior speeds and directions in order to enhance the determination of an

agent’s shadow. The proposed solution returns the minimum speed change for each agent while deviating as little as

possible from their desired direction of movement.

2. Social Force Model for shared space users

2.1. Geometrical agent modelling for pedestrians and cars

In the SFM by Helbing et al. (2000), each simulated pedestrian has a certain body size which can be expressed by

circles (symmetrical configuration) of a radius rα. Since the definition of shared space is the integration of pedestrians

and vehicles, a car has been introduced by an ellipse with the radius rγ(ϕγU) (Anvari (2012); Anvari et al. (2012)).

As shown in Fig. 1, the radius rγ(ϕγU) depends on the angle between the desired direction of a car γ and the centre

of a close-by pedestrian U = α or car U = δ. The radius of the ellipse rγ(ϕγU) in polar coordinates is described by

Equation 1.

rγ(ϕγU) =
w√

1 − ε2cos2(ϕγU)
, where ε =

√
l2 − w2

l
(1)
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Fig. 1. Vehicle modelling using a geometrical approximation of an ellipse.

where 2l and 2w are the average length and width of a modelled car.

2.2. Force-based modelling

Since vehicles and pedestrians move within shared space environments, the original SFM for pedestrians has been

considered and applied to a model for cars (Anvari (2012); Anvari et al. (2012)). The sum of the force terms exerted

on a car γ from pedestrian α, boundary b and car δ can be seen in Equation 2. Each summand is explained briefly in

the following paragraphs.

d�vγ(t)
dt
= �f 0
γ +
∑
δ(δ�γ)

�f soc
γδ +

∑
α

�f soc
γα +

∑
b

�fγb + �ξ (2)

2.2.1. Driving force for cars
The driving force of a car is similar to the one applied for pedestrians in the original SFM. This force term describes

the motivation of a driver to move towards a certain (intermediate) destination. Driver γ is assumed to move in a

desired direction �eγ with a desired speed v0
γ adapted to the actual velocity �vγ(t) within a constant relaxation time τγ.

�f 0
γ =

v0
γ · �eγ(t) − �vγ(t)

τγ
, where�eγ(t) =

�rk
γ − �rγ
|�rk
γ − �rγ|

(3)

The shortest path to the final destination for car γ is defined as a sequence of intermediate destinations (Anvari

et al. (2012)). Therefore, the desired direction �eγ points in the direction of the next intermediate destination �rk
γ on the

shortest path to the final destination.

2.2.2. Interaction between cars and shared space users
Shared space layouts aim to achieve a constant traffic flow by reducing stop-and-go behaviours (Shearer (2011)).

Drivers try to adapt to the behaviour of other shared space users. Any deviation from their path to their destination is

mainly due to local social interactions. The interaction force f soc
γU between a car γ with either another car (U = δ) or a

pedestrian (U = α) is presented by Equation 4. This socio-psychological force �f soc
γU is to keep a certain distance from

nearby agents. An exponential function is applied to reflect the role of distance. The repulsive force increases when

agents get closer and almost vanishes when they move far away from each other.

�f soc
γU = AγUe

rγU−dγU
BγU �nγU FγU (4)

�nγU is the normalized vector pointing from another user (car or pedestrian) to car γ. AγU and BγU are constant

parameters that represent the interaction strength and interaction range of the repulsive force �f soc
γU which require cal-

ibration. dγU is the distance between the centre of agents and rγU is the sum of their radii. The sum of the radii
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is therefore, rγU = rγ + rU . The radius rγ depends on the angle ϕγU between the desired direction of a car and the

direction of a neighbouring pedestrian or car.

Similar to Helbing et al. (2002), the anisotropic character of interactions is included to provide a more realistic form

of forces. Considering that car movements are restricted to change of direction and lateral movement is not possible,

an effective field of view is included in the form factor FγU (see Equation 5). In addition, the cases for a pedestrian

predicting the presence of a car or a car following another car are distinguished because in contrast to pedestrians a

car driver does not only react to cars in front but also to those behind it.

FγU =
(
λγ + (1 − λγ)1 + cos(ϕγU)

2

)
· q (5)

q is the effective factor that distinguishes between car-pedestrian or car-car interactions. The effective field of view

for car drivers is considered 60o based on the area that is overlooked by drivers with easy head movements (Morgan

and Blanco (2010)). Regarding car-pedestrian interaction, q is:

q = 1, if − 30o ≤ ϕγα ≤ 30o

q = 0, otherwise
(6)

Considering car-car interaction, the following can be summarised for the effective factor q:

q = 1, if

{−30o ≤ ϕγα ≤ 30o &

(180o − 30o) ≤ ϕγα ≤ (180o + 30o)

q = 0, otherwise

(7)

By varying λγ, the influence of the exerted forces of the cars behind the leading car changes.

2.2.3. Social Force Model extension to pedestrians
Since the original SFM (Helbing (1991)) only considers forces exerted by pedestrians and obstacles onto other

pedestrians, forces exerted by vehicles onto pedestrians need to be included. The existence of cars in a shared space

environment is expressed by a new socio-repulsive force �f soc
αγ from cars to pedestrians (Equation 8). This new force

explains the most important interaction behaviour of a pedestrian keeping a certain distance to the nearby car since no

physical interaction should occur.

d�vα(t)
dt

= �f 0
α +
∑
β(β�α)

�fαβ +
∑

b

�fαb +
∑
γ

�f soc
αγ +

�ξ (8)

Similar to the interaction force between pedestrians in the SFM, an exponential function is applied to pedestrian α
to represent the influence of distance between pedestrians and the close-by car γ as

�f soc
αγ = Aαγe

rαγ−dαγ
Bαγ �nαγFαγ (9)

where rαγ = rα + rγ; dαγ is the distance between the centre of pedestrian α and car γ, �nαγ is the normalized vector

from car γ to pedestrian α. The form factor Fαγ is also set similar to Equation 5 to explain the anisotropic behaviour

of pedestrian α when facing car γ.

3. Direction and speed prediction using Principle Component Analysis

The model in Section 2 can be defined as a continuous model in time as the sum of forces are determined for a

time interval which is considered to be small (e.g. 0.1 s). Hence, the current velocities (the speed and direction of

movements) are updated and continuously change over time. When predicting future locations of agents and potential

collisions between agents, uncertainties are introduced if one solely relies on the current movements of an agent. In
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this section, we propose a velocity predictor considering a priori knowledge from a set of past velocities based on the

PCA and, therefore, reduce uncertainties.

The PCA was initially introduced by Hotelling (1933). However, a mathematical ansatz (Abdi and Williams

(2010)) can be found earlier by Pearson (1901), Cauchy (1829) and Jorden (1874). The PCA is formalised as a

multivariant statistical technique that analyses a list of data arrays and describes them as a set of orthogonal principal

components. APCA is applied to both find the direction of variation and reduce data. The latter idea is of interest

within this paper.

Moeslund (2001) and Jackson (2001)report that the PCA technique is now applied using a priori knowledge about

agents’ speed and direction. The result of the PCA is then provided to the conflict avoidance strategy in order to detect

and resolve potential collisions (see Section 4). In this paper, N = 50 previous velocities �vU of agents are considered

and summarised in the following matrix:

�VU =

(
vU,x1

· · · vU,xN

vU,y1
· · · vU,yN

)
(10)

Using the PCA, the data will be re-structured. The purpose is to reduce the amount of components, which is equiv-

alent to a linear transformation and a dimensional reduction respectively. Principal components are extracted which

are perpendicular to each other. These are then linear combinations of the original data. Thus, the covariance matrix

and its eigenvectors need to be determined.

The arithmetic mean for the x- and y-components of the matrix �VU are calculated as:

�vU =

(
vx

vy

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1
N

N∑
i=1
�vU,xi

1
N

N∑
i=1
�vU,yi

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (11)

Equation 11 is used to identify the covariance matrix:

Σ =
1

N

N∑
i=1

(�vU − �vU,i)(�vU,i − �vU)T (12)

As mentioned, Equation 12 is a symmetric matrix, so �Σ = �ΣT. The Schur decomposition separates Equation 12

into an orthogonal matrix �M and a diagonal matrix �Λ, so that

�MT�Σ �M = �Λ = diag
(
λ

Eigenvalue

1
, ..., λ

Eigenvalue
r

)
(13)

Here, λ
Eigenvalue

j for j = 1, ..., r are the eigenvalues of the covariance matrix �Σ and �M contains the equivalent

eigenvectors �vU,q j . It is assumed that the eigenvectors �vU,q j are ordered by the size of the corresponding eigenvalues,

so that �vU,q1
relates to largest eigenvalue which is used to predict potential conflicts in Section 4.

4. Long-range collision detection and collision resolution (CDCR) strategy for the SFM

The strategy for potential conflict avoidance is implemented for car-pedestrian and car-car interactions. A predic-

tion of an interaction between two agents which results in a potential conflict is determined within a certain distance

to each other. The conflict occurs if physical contact is estimated to be at a future time interval between these two

agents. The term ’shadow’ is introduced to detect potential conflicts.

Reaction strategies can be classified into speed change, steering change or a combination of both. Here, agents

prevent potential conflicts using a combination of speed and direction change based on their relative position. The

aim is then to find the minimum velocity change Δ�vmin for each agent while deviating as little as possible from their

desired direction of movement.
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(b) Car γ intersects the shadow generated by pedestrian α

Fig. 2. Geometric construction for conflict detection.

4.1. Prediction of potential conflicts

If two agents are within a distance larger than their interaction range BU , the possibility of a potential conflict is

analysed. The conflict avoidance constraints are explained based on the geometrical considerations of two agents. Fig.

2 illustrates the predicted intersecting trajectories of a pedestrian (U1 = α) and a car (U2 = γ). The position, direction

of movement and initial velocity of pedestrian α and car γ determined by the PCA are shown in Fig. 2 (a). ϕαγ is

the angle between the direction of movement of pedestrian α and the force �fαγ exerted from car γ to pedestrian α.

Two lines are indicated parallel to the velocity difference from the PCA that are tangential to pedestrian α in order to

assign a section on the desired direction of car γ given by the PCA. This section is defined as the shadow of pedestrian

α along the direction of car γ similar to air traffic management systems (Pallottino and Feron (2002)). A potential

conflict is detected as soon as car γ intersects the shadow as shown in Fig. 2 (b). This is explained mathematically in

Equation 14.

(vyα,q1
− vyγ,q1

)

(vxα,q1
− vxγ,q1

)
< tan(ϕ

′
αγ) (14)

Here, ϕ
′
αγ is the angle between the largest eigenvalue and the location of the conflicting agent. The time tCPA

indicating the period to reach the location of minimum distance dCPA between the agents at their Closest Point of

Approach (CPA) needs to be determined. The minimum distance at the CPA is dCPA =
∣∣∣rα(tCPA) − rγ(tCPA)

∣∣∣ and should

not be less than the sum of their radii (rα + rγ(ϕγα)) as shown in Fig. 3. The position of agent α and γ is given

by (xα(t), yα(t)) and (xγ(t), yγ(t)). Their time-dependent velocity vectors are (vxα,q1
(t), vyα,q1

(t)) and (vxγ,q1
(t), vyγ,q1

(t)).
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Fig. 3. Closest Point Approach (CPA) illustration between car γ and pedestrian α.

At any time instance t, the distance between the two agents is given by d(t) =
√
Δx(t)2 + Δy(t)2. The time to the

minimum distance is now calculated as tCPA = −ΔxΔvx,q1
+ΔyΔvy,q1

Δv2
x,q1
+Δv2

y,q1

. The time tCPA to reach the CPA should be positive (in

other words, in future) and less than a defined higher bound of tCPA,max (in other words, in close future). If the time

0 < tCPA
γα < tCPA,max

γα and distance to reach the CPA is less than a certain value (in other words, in close future), the

conflict avoidance strategy is activated. In the following section, an optimisation is applied in order to avoid conflict

between agents.

4.2. Optimisation of minimum speed and direction change

The agent with a higher speed starts to accelerate and deviate whereas the other agent decelerates and deviates

accordingly. An optimisation is applied to calculate a minimum velocity change Δ�vmin = �vopt(t)−�v(t) in order to avoid

conflicts. The cost function c(vopt
x (t), vopt

y (t)) in Equation 15 is optimised.

c (vopt
x (t), vopt

y (t)) = (vopt
x (t) − vx,q1

(t))2 + (vopt
y (t) − vy,q1

(t))2 (15)

Equation 15 is to be minimised subject to constraints which are linear inequalities of variables used in the cost

function. Firstly, the optimal speed should be within a defined speed interval vmin
U < vopt

U < vmax
U . Secondly, the

minimum distance between the agents at the CPA should be more than the sum of their radii. Thirdly, the distance to

Pedestrian Starting Point

Car Starting Point

Pedestrian Destination

Trajectory

Car Destination

Fig. 4. Simulation of the interaction between a car and pedestrian without conflict avoidance force.
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Car

Pedestrian

Fig. 5. Simulation of the interaction between a car and pedestrian with conflict avoidance force.

reach the CPA should be less than a certain value in order to be considered as a potential conflict. The optimisation

problem incorporating all these constraints can be formulated as follows:

Minimize c (vopt
x (t), vopt

y (t))

Subject to vmin
U < vopt

U < vmax
U

dCPA
γα > rα + rγ(ϕγα)

Distance to reach the CPA > Minimum acceptable distance

A conflict avoidance force �f conflict
U = Δ�v

min

τU
is calculated and added to the sum of forces. A simulation of intersecting

trajectories of a pedestrian and a car is presented before and after including the conflict avoidance force in Fig. 4 and

5. According to social forces, pedestrian α starts decelerating and deviating from the desired direction of movement

when within the interaction range Bα to a car (see Fig. 4), without prior evaluation of the potential conflict. This

is while pedestrian α and car γ start deviating from their desired direction of movement much earlier, as a result of

conflict avoidance constraints in Fig. 5.

5. Conclusions and future work

This paper extends the work conducted by Anvari et al. (2012) describing the key characteristics of shared space

users based on the Social Force Model (SFM). Potential road conflicts that might occur by following the SFM ex-

clusively have been investigated and an approach presented to predict and handle these potential conflicts between

pedestrians and cars based on their current positions and estimated direction and speed of movements. A potential

conflict is detected as soon as agents enter each other’s shadow. Using the Principle Component Analysis, the es-

timation of an agents shadow is enhanced for a set of agents prior velocities. A resolution strategy is chosen by a

combination of speed and heading direction change. Conflict avoidance constraints are assigned to each agent to

provide realistic conflict free interactions between pedestrians and cars while deviating as little as possible from the

desired direction of movement. An optimisation process has been proposed to calculate the minimum velocity change

for both agents in order to avoid conflicts.
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