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We present the first implementation of the ab initio many-body Green’s function method, algebraic
diagrammatic construction (ADC), in the B-spline single-electron basis. B-spline versions of the first
order [ADC(1)] and second order [ADC(2)] schemes for the polarization propagator are developed
and applied to the ab initio calculation of static (photoionization cross-sections) and dynamic (high-
order harmonic generation spectra) quantities. We show that the cross-section features that pose a
challenge for the Gaussian basis calculations, such as Cooper minima and high-energy tails, are
found to be reproduced by the B-spline ADC in a very good agreement with the experiment. We also
present the first dynamic B-spline ADC results, showing that the effect of the Cooper minimum on
the high-order harmonic generation spectrum of Ar is correctly predicted by the time-dependent ADC
calculation in the B-spline basis. The present development paves the way for the application of the
B-spline ADC to both energy- and time-resolved theoretical studies of many-electron phenomena in
atoms, molecules, and clusters. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4900444]

I. INTRODUCTION

The ab initio many-body Green’s function ADC methods
have been first introduced for calculation of excitation and
ionization energies of closed shell species1, 2 and since then
generalized for the description of double3 and triple4 ion-
ization energies. The ADC(n) schemes of various orders (n)
are size consistent and compact relative to the corresponding
truncated CI expansions.5 While initially developed within
the many-body Green’s function approach, the ADC can be
reformulated as wave-function method using the intermediate
state representation (ISR).6, 7 This has led to applications of
the ADC-ISR technique to calculation of properties of and
transition moments between excited,7 singly ionized,8 and
doubly ionized9 bound states. Recently, it has been shown that
the ADC schemes in conjunction with iterative block-Lanczos
(BL) diagonalization10–12 and the Stieltjes-Chebyshev
moment theory13 can be used also for accurate and efficient
characterization of bound-continuum transitions, i.e., for
calculations of the decay widths of resonance states14 and
photoionization cross-sections.15–17 In the bulk of the ADC
work cited above, Gaussian type orbitals (GTOs) have been
used as a single-electron basis as is indeed customary in
the ab initio quantum chemistry. However, a very recent
benchmark study16 indicates that it is the use of the GTOs in
the excitation ADC schemes that lead to the onset of major
inaccuracies in molecular photoionization cross-section
calculations at about 70 eV above threshold. This trend has
been shown to be general for a series of molecular species
and independent of the order of the employed ADC scheme.16

Moreover, GTO-based ADC-Lanczos-Stieltjes method fails
to reproduce not only the narrow features of the cross-section
due to excitation resonances (as is fully expected of a moment
theory technique), but even the much broader features, such as
Cooper minima, e.g., in argon photoionization. Very similar

behaviour has been observed in a recent implementation of
the GTO/Stieltjes approach within linear response coupled
cluster models for electronic excitations.18 Even very careful
GTO selection cannot afford converged high order moments,
i.e., high energy features and high resolution, without run-
ning into linear dependence problems.18 The inadequacy
of the GTO bases for the characterization of the molecular
photoionization calls for an introduction of new basis sets,
better suited for the description of the oscillatory continuum
wave functions across the interaction region. Several such
basis sets have been already introduced in the 1990s within
the framework of the many-body methods that do not fully
include double electronic excitations and were successfully
used for the solution of the time-independent many-electron
problems, e.g., for photoionisation cross-section calculations,
see, e.g., Ref. 19. The present work addresses the single-
electron basis set issue by construction of ADC schemes
explicitly treating not only single [ADC(1)], but also double
[ADC(2)] excitations and applying them to the solution of
both time-independent and time-dependent many-electron
problems. The employed single-electron basis is composed
of the spherical harmonics for the angular part and a B-spline
expansion for the radial coordinate.

B-splines20 are one-variable piecewise polynomial func-
tions designed to generalize polynomials for the pur-
pose of approximating arbitrary functions on some interval
[0, Rmax]. They have the property of approaching complete-
ness as much as desired by refining the corresponding knot
sequence, i.e., the set of points that divide the full interval
into sub-intervals.20 B-spline basis is known to lead to neg-
ligible linear dependences even for large bases (i.e., dense
knot sequences), and are computationally competitive with
the “local” finite-difference methods.21 Moreover, the use
of such a pre-determined quasi-complete set of one-particle

0021-9606/2014/141(16)/164126/12/$30.00 © 2014 AIP Publishing LLC141, 164126-1

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

155.198.206.7 On: Thu, 12 Mar 2015 16:37:12

http://dx.doi.org/10.1063/1.4900444
http://dx.doi.org/10.1063/1.4900444
http://dx.doi.org/10.1063/1.4900444
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4900444&domain=pdf&date_stamp=2014-10-31


164126-2 Ruberti, Averbukh, and Decleva J. Chem. Phys. 141, 164126 (2014)

orbitals eliminates the need of any a priori procedure in se-
lecting the parameters for the Gaussian-type or Slater-type
functions required in the standard L2 quantum chemistry
calculations which often depend upon non-trivial treatment
to minimize the linear dependence embedded in the choice
of basis functions. This accounts for the extensive use of
B-splines in atomic and molecular calculations.20, 22, 23

This article is organized as follows. The relevant as-
pects of the ADC approach to excited states are presented in
Sec. II. A generic description of the B-spline basis set prop-
erties is given in Sec. III. Computational details regarding
the effective implementation within the ADC schemes are
discussed in Sec. IV. Section V is devoted to the testing
of the proposed technique through calculation of a series of
atomic total photoionization cross sections, while in Sec. VI
we present the first application to time-dependent problems
through calculation of the high-order harmonic generation
(HHG) spectra of Ar atom in strong IR field. Conclusions and
prospectives are given in Sec. VII.

II. ADC AB INITIO SCHEMES WITHIN THE
INTERMEDIATE STATE REPRESENTATION

The ADC schemes for excited states of closed-shell sys-
tems were originally derived as approximations to the po-
larization propagator, based on an algebraic reformulation
of its diagrammatic perturbation theory. The ADC(n) po-
larization propagator is complete up to order n of pertur-
bation theory in the electron interaction and includes also
higher-order diagrams in the form of infinite partial (incom-
plete) summations.2 ADC was later recognized6 as being in-
terpretable as a wave-function method as well. In fact, it es-
tablishes a connection between propagator and wave-function
methods. The latter interpretation comes from the explicit
construction of the intermediate states representation (ISR)
that gives rise to the ADC form of the propagator, provid-
ing an alternative approach to the hierarchy of the ADC
schemes.6, 7 The starting point is the construction of the so
called correlated excited states (CES), defined as

∣∣�0
I

〉 = Ĉ
†
I |�0〉, (1)

where the operators Ĉ
†
I denote the physical excitation

operators corresponding respectively to 1p1h, 2p2h, etc.,
excitations,

Ĉ
†
I = {

â
†
aâi ; â

†
aâ

†
bâj âk (a < b, j < k) . . . . . .

}
, (2)

and |�0〉 is the exact correlated ground state of the system.
This non-orthogonal CES basis set is complete in the

space of the excited states of the N-electron system24 and has
the advantage that ground state correlation is already built into
every basis vector. It can be orthonormalized in a two-step
procedure. First, one performs Gram-Schmidt orthogonaliza-
tion of each excitation class with respect to all the lower ex-
citation classes. The states |�m#

y 〉 formed in this first step are
referred to as precursor states. The second step is symmet-
ric orthonormalization of the resulting precursor states within
each excitation class. As an example the procedure for the first

(1h1p) excitation class gives the following precursor states:∣∣�1#
ai

〉 = â
†
aâi |�0〉 − |�0〉〈�0|â†

aâi |�0〉. (3)

The second step gives∣∣�̃1
ai

〉 =
∑
bj

∣∣�1#
bj

〉
(S− 1

2 )bj,ai , (4)

where S is the overlap matrix of the first excitation class pre-
cursor states, i.e.,

Sbj,ai = 〈
�1#

bj

∣∣�1#
ai

〉
. (5)

In a compact notation, the excitation class orthogonalized
(ECO) states can be written as

∣∣�̃m
x

〉 = Q̂m−1
∑

y

∣∣�m
y

〉(
Sm

yx

)− 1
2 , (6)

where Sm
yx is defined as

Sm
yx = 〈

�m
y

∣∣Q̂m−1
∣∣�m

x

〉
(7)

and

Q̂m = 1̂ −
m∑

l=0

P̂ l (8)

is the projector operator onto the space orthogonal to the first
m excitation classes. Finally, every intermediate state can be
expressed as

|�̃I 〉 = C̃
†
I |�0〉, (9)

where all the effects of the consecutive orthonormalizations
are encoded in the new creation operators C̃

†
I .

The ADC secular matrix is the representation of the
shifted electronic Hamiltonian operator Ĥ − E0 in the ECO-
CES space,

HIJ = 〈�̃I |Ĥ − E0|�̃J 〉 = 〈�0|C̃I

[
Ĥ , C̃

†
J

]|�0〉. (10)

At this point Møller-Plesset (MP) perturbation theory is in-
troduced to describe the ground state correlation, i.e., |�0〉
and E0,

|� ′
0〉 = ∣∣�HF

0

〉 + ∣∣�[1]′
0

〉 + ∣∣�[2]′
0

〉 + ∣∣�[3]′
0

〉 + . . . , (11)

where the first order correction |�[1]′
0 〉 contains only double

excitations (2h2p) with respect to |�HF
0 〉, while |�[2]′

0 〉 con-
tains single, double, triple, and quadruple excitations.

The vertical excitation energies are obtained by solving
the eigenvalue problem HV = ωV, and the excited eigen-
states of the system are therefore given in the basis of the
intermediate states

|�n〉 =
∑

I

VI,n|�̃I 〉. (12)

Using this explicit expression for the excited states of the sys-
tem, one contains the corresponding transition moments as

〈�m|D̂|�0〉 = V†
m · F =

∑
rs

drsV
†
m · frs , (13)

where drs are the matrix elements of the dipole operator on the
one particle orbitals chosen as basis set functions. The matrix
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of effective transition amplitudes f and the associated vector
F are defined by

fI,rs = 〈�̃I |â†
r âs |�0〉 , FI = 〈�̃I |D̂|�0〉. (14)

The hierarchy of ADC(n) approximations is obtained for
each order n by truncating the intermediate state manifold at
some limiting excitation class and, also, by truncating the re-
sulting perturbation expansions for the included classes in the
way consistent with the polarization propagator approach. For
example, at the ADC(2) level, the Hamiltonian matrix of the
system can be represented as

H ADC[2] = H [0] + H 1,1[1] + H 1,1[2] + H 1,2[1] + H 2,1[1],

(15)
where H i,j [N] denotes the ipih-jpjh excitations block of the
Hamiltonian computed at the order N of perturbation theory.

Thus, in ADC(2) the perturbation expansion of the secu-
lar matrix elements extends through second, first, and zeroth
order in the 1h1p block, the 1h1p-2h2p coupling block and the
diagonal 2h2p block, respectively. In a similar way, the 1h1p
and 1h2p parts of the effective transition amplitudes are given
by perturbation expansions through second and first order, re-
spectively. The ADC(n) schemes are size consistent and com-
pact relative to the corresponding truncated CI expansions.5

In the ADC(1) scheme, the Hamiltonian reduces to the con-
figuration interaction singles (CIS) one, while the transition
moment with respect to the ground state are improved and are
expressed as

〈
�̃a

i

∣∣D̂|�0〉 = dai +
∑

v

∑
o

〈va||oi〉
εo + εi − εv − εa

dov, (16)

where 〈va||oi〉 is the antisymmetrized two-particle Coulomb
integral in physicists’ notation and the two indices v and o run
over the virtual and the occupied canonical (Hartree-Fock) or-
bitals, respectively. Therefore, ADC(1) can be already consid-
ered as an improved version of CIS.

III. B-SPLINE BASIS SET

Monocentric B-spline basis is composed of a spherical
harmonics for the angular part and B-splines for the radial
coordinate. Single particle orbitals are therefore expressed as

ψilm = 1

r
Bi(r)Ylm(θ, φ). (17)

The use of B-splines in the atomic problem has been pio-
neered by Shore25 and employed in the atomic and molecu-
lar context by several authors.22 In particular, B-splines are
able to provide a very accurate representation of continuum
states, which makes them superior to more conventional L 2

basis sets. Although the first applications were to static prop-
erties, it has turned out that B-splines perhaps are even more
important for the calculation of dynamic properties such as
multiphoton excitation, above-threshold ionization (ATI), and
HHG in atoms.26

Splines are functions designed to generalize polynomi-
als for the purpose of approximating arbitrary functions. B-
splines are piecewise polynomial functions, of order k com-
pletely defined given the order and a set of points (knot se-

quence) which may be in part coincident, and divide the radial
interval [0, Rmax] into adjacent subintervals

0 = t1 ≤ ... ≤ tn = Rmax. (18)

Each different point belonging to the knot sequence is usually
called a breakpoint and denoted by ξ i.

The first step in our calculations is the solution of the
discretized closed-shell Hartree-Fock equations,

ĥHF ψn = εnψn, (19)

where ĥHF is the spin-free ground-state Fock operator of the
neutral system,

ĥHF = ĥ0 +
∑
occ

(+2Ĵocc − K̂occ). (20)

In the molecular case, Eq. (19) is solved for every irreducible
representation of the molecular point symmetry group, and
the expansion of the wavefunction ψn contains all the angular
functions belonging to the particular irreducible representa-
tion. In the atomic case, the HF equations can be projected
upon the l-m spherical harmonic subspace and they simplify
in the following way:

ĥHF
l ψlm,n(r) = εl,nψlm,n(r). (21)

The evaluation of the B-spline radial two-electron integrals is
carried out by direct two-dimensional numerical integration
as reported in Ref. 27.

Solving Eq. (19) self-consistently, we obtain a quasi-
complete set of discretized one-particle functions ψ lm, n cor-
responding to electronic orbitals with an orbital angular
momentum l and variable energy (both negative and positive)
defined by the Hartree-Fock effective one-particle Hamilto-
nian. We therefore obtain the set of occupied HF orbitals and
the full orthogonal complement of virtual orbitals, expressed
in terms of B-spline basis functions. These canonical orbitals
are then used to construct the ADC many-body Hamiltonian.
We therefore do not work directly with primitive B-splines
and as a consequence we perform the one- and two-electron
integral transformation from the original B-spline basis to the
HF basis set. The computational details are given in Sec. IV.
Since ADC is formulated as a perturbative theory with respect
to the HF mean-field Hamiltonian, the canonical ADC(n) for-
mulas are valid only in terms of HF orbitals. Apart from the
case of the first order ADC(1) level of theory, they become
much more complicated if a different orbital set is used.

The B-spline knot sequence we use is the parabolic-linear
sequence, which is a mix of these two types of sequences: a
short-range dense one which concentrates points near the nu-
cleus with quadratically increasing knot spacing and a linear
knot spacing sequence for larger values of r necessary for con-
tinuum states description. The range of kinetic energies accu-
rately described by the B-spline basis set can also be tuned
changing the knot spacing in the linear region. The connection
between the two regions is made at an intermediate radial dis-
tance r0, imposing continuity of the breaking point function
ξ i and of its first derivative. The explicit parabolic-linear knot
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TABLE I. B-splines basis sets employed in the calculations; for every basis set the dimension of the discretiza-
tion box, the number of B-spline functions, and the step in the linear grid region are given.

Basis set index Rmax (a.u.) Nsplines Linear region step h (a.u.) Quadratic coeff. α (a.u.) R0 (a.u.)

Set 1 21.0 45 0.6 0.0295 2.392
Set 2 47.0 87 0.61 0.032 2.595
Set 3 33.0 97 0.367 . . . 0.0
Set 4 60.0 157 0.4 . . . 0.0
Set 5 120.0 200 0.6 . . . 0.0

sequence formula is

ξi = α(i − i0)2 f or 1 ≤ i < i0
(22)

ξi = h(i − i0) f or i0 ≤ i ≤ n.

The intermediate radius is defined by the index i0 in the fol-

lowing way r0 = ξi0
= r

max
(i0−1)

2n−i0−1 and the quadratic and linear

coefficients by α = r0
(i0−1)2 and h = r

max

(n−i0) , respectively.

The explicit basis sets used in this work are listed in
Table I. The B-spline Set 3 is represented graphically in
Fig. 1.

IV. COMPUTATIONAL DETAILS

The number of basis functions used in B-spline ADC is
well above the standards of a typical ab initio calculation and
as a result, the numerical algorithm has to be highly opti-
mized. Consequently, it becomes necessary to take advantage
of the parallel computing environment28, 29 which has become
increasingly easy to manage.

While our choice of the single-particle basis functions
leads to higher computational effort than in the GTO case,
it at the same time simplifies tremendously the numerical al-
gorithm mainly because of the absence of linear dependencies
to take care of; moreover, the minimal localized support of the
individual primitive B-spline basis functions allows to reduce

0 3 6 9 12 15 18 21 24 27 30 33
r (a.u.)

0

0.2

0.4

0.6

0.8

1

B
-s

pl
in

es

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

32 33
0

0.2

0.4

0.6

0.8

1

(a)

(b) (c)

FIG. 1. (a) graphical representation of B-spline basis Set 3, with Rmax= 33 a.u.; the knot sequence is linear and the total number of B-spline func-
tions is 97. (b) magnification of the B-spline functions in the radial region
close to the origin. (c) magnification of the B-spline functions in the radial
region close to the box boundary.

the number of B-spline one-electron and two-electron inte-
grals to be calculated and stored at the beginning of the calcu-
lation. However, we want to mention that in general, although
the MPI technology allows to substantially reduce the mem-
ory requirement per single-node, substantial global amount of
RAM (spread across a high number of nodes) is still needed
for B-spline ADC calculations requiring a big dimension of
the one-electron basis set expansion.

The numerical procedure required in a B-spline-ADC
calculation consist of four key steps, namely,

1. Solution of the B-spline HF equations.
2. One- and two-electron integral transformations with si-

multaneous calculation of the first order Hamiltonian
and dipole matrix-elements on the fly.

3. Calculation of the second-order matrix elements in the
ADC(2) method.

4. Full/iterative diagonalization of the ADC Hamiltonian
and calculation of the static physical quantity of inter-
est (e.g., a cross-section) via the SI technique or time-
propagation of an initial state in order to obtain the dy-
namic quantity of interest (e.g., HHG spectrum).

The first step consists of solving a set of one-particle
integro-differential equations with non-local terms, i.e., the
Hartree-Fock equations. These equations are solved itera-
tively, in each irreducible representation of the electronic
Hamiltonian, in the standard way.30

The second step makes the integrals transformation from
the primitive B-spline basis set to the basis of the Hartree-
Fock orbitals. The transformation is performed with the com-
mon four-step algorithm, giving a scaling of N5 with respect
to the number of orbitals to be transformed. Because of the
number of basis functions involved, both the memory require-
ments and the time of the transformation can quickly become
unaffordable with the increase of the number of spherical har-
monics and/or of the radial B-spline functions used in the
monocentric expansion (Eq. (17)). We approach this problem
by calculating only the two-electron integral types required
by the ADC Hamiltonian and dipole matrix elements: in the
ADC(1) case only the integrals involving two virtual canon-
ical orbitals indices are needed, namely, integrals of the type
(vv|oo) and (vo|vo). In the ADC(2) calculations two other
types of integrals are required, namely, the (vv|vv), (vv|vo),
and the less demanding (vo|oo) types.2

We furthermore make use of the Hamiltonian symmetry
group to divide every type of integral calculation with re-
spect to the quadruplet of orbital irreducible representations
involved. In the general molecular case, we use the biggest
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FIG. 2. Schematic representation of the way, the two-electron integral trans-
formation is parallelized. The indices I,J,K,L refer to the primitive basis func-
tions of Eq. (III); the indices P,Q,R,S refer to the Hartree-Fock canonical
orbitals.

Abelian molecular symmetry subgroup, while in atomic cal-
culations we exploit the full rotational symmetry. Following
this strategy we end up with an increased number of less de-
manding single calculations to be performed. Each of these
reduced single calculations has been massively parallelized,
both inter-nodes, with the standard MPI (message passing in-
terface) technology in parallel computing environment, and
intra-node with the OpenMP (shared memory) technology.

A schematic representation of the way every specific
quadruple of two-electron integrals undergoes the 4-indices
transformation in parallel is given in Fig. 2. In details, since
the first transformation step, the two-electron integral vector
memory allocation is divided between the computational MPI
nodes available. This division is performed onto the first index
of the four-indices two-electron integral tensor VIJKL. Each
of these pieces of the two-electron integral vector undergoes
the four indices transformations from VIJKL to VPQRS locally
on every node in parallel, and only after the last index trans-
formation is performed the resulting fully transformed partial
vectors from every node are sent to a specific node where they
are summed together. The advantage of this algorithm is that
it turns out to never be necessary, at any intermediate stage
of the transformation, to have the full integral vector dynam-
ically allocated on a single node. Moreover, even if the full
final transformed integrals vector can be bigger than the full

partially transformed intermediate ones, its complete alloca-
tion onto a single node is not required because it can be com-
puted pieces by pieces sequentially. The contributions to the
first order matrix elements of the ADC Hamiltonian and of the
ADC transition moments are calculated on the fly at the last
step of the integral transformation. The integrals involved in
the second-order ADC matrix elements are instead stored on
disk. The OpenMP technology is used to parallelize every in-
termediate transformation performed on every node, reducing
therefore considerably the time of the computation.

The third step, in the case of the ADC(2) level of theory,
evaluates the remaining terms of the ADC Hamiltonian matrix
and transition moments using the relevant two-electron inte-
grals stored on disk. The matrix we deal with in ADC(2) are of
a size often up to 1 000 000 or greater. In ADC(1), the linear
scaling with respect to the number of basis functions is how-
ever much more favourable. The value of the individual ma-
trix element, which at the first order ADC(1) level represents
a two-variable integral over a two-body Coulomb interaction
is in general small but non-zero and, as a result, the matrix
is non-sparse. At the second order level, the 1h1p-2h2p cou-
pling block is quite sparse, around 10%/15%, while the 2h2p
block is diagonal; this simplifies enormously the computation
and actually makes such types of calculation possible.

The calculation is performed by dividing the matrix into
a large number of sub-matrices of a size storable on a single
node. Every sub-matrix is calculated in parallel, with every
node computing a partial contribution to it. The same process
is repeated for every sub-matrices, the number of times this is
done depending on the memory storage capabilities available
and on the matrix dimension. Therefore for memory reasons,
the different sub-matrices are calculated sequentially one after
the other, even if they are independent one of each other. Nev-
ertheless the extension to the parallel computing environment
speeds up substantially this step as well, because every node
just calculates its own specific contribution to the given sub-
matrix and moreover this calculation is OpenMP parallelized
as well.

The fourth step involves the extraction of the relevant
physical information from the ADC Hamiltonian. In the par-
ticular case of a total cross-section calculation, performed us-
ing the SI technique, we are interested in the pseudospec-
trum of the Hamiltonian and in the transition moments of the
pseudo-eigenstates. A newly implemented, parallelized, BL
diagonalization routine allows us to obtain a limited number
of energy eigenvalues and their corresponding eigenvectors
by diagonalizing the ADC(2) sparse matrices generated in
the third step. A direct diagonalization is instead performed
in the ADC(1) calculations presented here. This is possible
because with the B-spline basis sets used the ADC(1) matri-
ces have typically small enough dimension, being for exam-
ple 1978 in our calculation of krypton atom. The range of
the B-spline and spherical harmonics expansions over which
such a full diagonalization procedure is still applicable, is
quite large for the ADC(1) Hamiltonian, because of the lin-
ear scaling of its dimension with respect to the number of
one-electron basis functions. Finally, given the pseudospec-
trum, it is possible to calculate the transition amplitudes and
ultimately the cross section. This latter calculation can be
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performed on any single-node CPU. In the case of the dy-
namical calculation, the time-dependent Schrödinger equa-
tion (TDSE) in the basis of the ADC intermediate states is
solved via the Arnoldi-Lanczos algorithm. More detail on
the time-dependent method will be reported in a subsequent
work.

V. ATOMIC PHOTOIONIZATION CROSS-SECTIONS
BY COMBINATION OF B-SPLINE-ADC AND
STIELTJES METHODS

Our goal here is to test the accuracy of the newly
designed and implemented B-spline ADC method at the
ADC(1) and ADC(2) levels of ab initio theory for bound-
free transitions by calculating a series of total photoioniza-
tion cross-sections. We use a test set of noble gas atom cross-
sections for which both very accurate experimental results and
a series of GTO-based calculations are available. Especially
the Ar and Kr atoms provide very good test case, because their
cross-sections contain structured features, such as the Cooper
minimum in argon and the 3d-channel opening in krypton,
which so far has been found to be challenging for the GTO
calculations.

As in the case of the GTO calculations,15–17 we use the
Stieltjes imaging (SI) technique13, 15–17 which allows one to
extract the correctly normalized oscillator-strength density in
the electronic continuum. This also enables us to verify the
stability of the B-spline results with respect to the Stieltjes
order, providing yet another test of the accuracy of the ba-
sis set used and of its ability to reproduce the higher spec-
tral moments. Naturally, the accurate representation of these
spectral moments is the key factor responsible for the abil-
ity to describe such features as Cooper minima. We quantify
the deviation of the ADC(1) and ADC(2) cross-sections from
the experimental ones by computing their energy-dependent
and energy-averaged relative discrepancies over the covered
photon energy region.

The radial B-spline basis set used in our calculations are
described in detail in Table I. Figs. 3 and 4 show the experi-
mental total photoionization cross section Refs. 31 and 32 as
well as a series of Stieltjes imaging results obtained via full
diagonalization of the ADC(1) Hamiltonian matrix and Lanc-
zos diagonalization of the ADC(2) Hamiltonian matrix, of He
and Ne atoms.

Checking the convergence with the maximal angular mo-
mentum of the spherical harmonics basis, we have found it
generally sufficient, as expected for the one-photon absorp-
tion processes described in this paper, to truncate the angu-
lar expansion at values of Lmax corresponding to Locc

max + 1,
where Locc

max is the maximum angular momentum of the occu-
pied orbitals. In the case of He, the results presented are the
one for the Lmax = 2 spherical harmonics expansion, while for
Ne atom the spherical harmonics expansion used extends up
to Lmax = 3. In the ADC(2) Ne calculations, 1s orbital was
frozen in both the singly and the doubly excited intermediate
states. We have chosen the starting vectors for the BL scheme
to be the unit vectors corresponding to selected 1h1p interme-
diate states with the transition moment from the ground state
bigger than a fixed threshold value. Throughout this work, we
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FIG. 3. Total photoionization cross-section of He atom. Circles – experimen-
tal result of Ref. 32, stars – B-spline-ADC(1) result, from Stieltjes order 5
to 34; squares – B-spline-ADC(2)-Lanczos-Stieltjes cross-section, using the
Stieltjes orders 5–34. Basis set 2 was employed (see Table I). With this basis
set, the ADC(1) and ADC(2) matrices for He have the dimensions of 88 × 88
and 96 500 × 96 500, respectively. The ADC(2) results was obtained using
BL pseudospectrum of 3960 eigenvalues and eigenvectors.

report the B-spline ADC(2) cross-sections converged with re-
spect to the number of Lanczos iterations.

One can see that the agreement between the experimental
and the theoretical cross sections improves with the order of
the ADC scheme. The highest-order ADC(2) result for He es-
sentially coincides with the experimental one apart from the
2snp 1P auto-ionization resonance region around 60 eV. In
the Ne calculation, the ADC(1) result shows a displacement
of the main peak of about 5 eV, consistently with the GTO
ADC calculation of Ref. 15. The ADC(2) result shows a good
agreement with the experiment. As expected, in the Ne case as
well, the use of SI leads to disagreement between the ADC(2)
cross-section and the experimental one in the autoionization
resonance region around 45.5 eV due to the 2s-np autoion-
izing states. This inability of the Stieltjes-Chebyshev moment
theory to reproduce very sharp spectral features is well known
and apparently persists also in the B-spline implementation.
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FIG. 4. Total photoionization cross-section of Ne atom. Full red line – ex-
perimental result of Ref. 32, full blue line – experimental result of Ref. 31,
circles – B-spline-ADC(1) result, Stieltjes orders 5–34; squares – B-spline-
ADC(2)-Lanczos-Stieltjes cross-section, Stieltjes orders 5–20, obtained us-
ing BL pseudospectrum of 26 000 eigenvalues and eigenvectors. Basis set 2
was employed (see Table I). With this basis set, the dimensions of the ADC(1)
and ADC(2) matrices are, respectively, 472 × 472 and 379 970 × 379 970.
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FIG. 5. Relative deviations of the calculated ADC-Stieltjes photoionization
cross-sections, averaged over Ne and He atoms, from the experimental result,
as a function of the energy in the high energy range, i.e., between 100 eV
and 250 eV. Black full line – B-spline-ADC(1)-Stieltjes result, red full line –
GTO-ADC(1)-Lanczos-Stieltjes result.

At a first glance, the B-spline results have comparable
accuracy to the one obtained in Ref. 15 with the GTO-based
ADC; however, if one looks carefully at the high energy
tail of the cross-section, a much better agreement with the
experiment is obtained with the B-spline basis set. Details
of this analysis are given in Fig. 5. The discrepancy in the
Gaussian based calculation arose from the inability of the
Gaussian basis to provide a correct description for strongly
oscillating continuum states as well as for high Fourier com-
ponents of the ground state wave function.16 B-splines com-
pletely fix this error and give accurate cross-sections up to
arbitrary values of the energy, depending on the spatial den-
sity on knots used, see discussion in Sec. III. Average relative
deviations of the computed He and Ne cross-sections from the
experimental ones are given in Table II.

Argon photoionization cross-section is of particular inter-
est for testing the accuracy of our method due to the presence
of the Cooper minimum that is known to present a challenge
for the GTO calculations. In Fig. 6, the B-spline ADC(1)
and ADC(2) theoretical photoionization cross sections of Ar
up to 40 eV of photon energy are presented, together with
the experimental results of Chang et al.33 and the most re-
cent one of Samson et al.32 The B-spline basis set parameters
used for these calculations are given in Table I. The spherical-
harmonics expansion extends up to Lmax = 3. In the ADC(2)
Ar calculations, we have frozen the core 1s, 2s, and 2p or-
bitals in both the singly and doubly excited intermediate con-
figurations. We therefore allow only the valence holes in the
1h1p and 2h2p state manifold. One can see that the agreement

TABLE II. Relative deviations of the B-spline ADC-Stieltjes photoioniza-
tion cross-sections from the experimental results of Ref. 32 across the energy
range of ionization threshold to 170 eV.

Ab initio level He (%) Ne (%) Ar (%) Kr (%) Average (%)

ADC(1) 6.2 12.0 11.6 7.9 9.4
ADC(2) 2.5 7.5 8.1 6.0 6.0
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FIG. 6. Total photoionization cross-section of Ar atom. Stars – experimental
result of Ref. 32, crosses – experimental result of Ref. 33, circles – B-spline-
ADC(1) result, Stieltjes orders 5–18; squares – B-spline-ADC(2)-Lanczos-
Stieltjes cross-section, Stieltjes orders 5–18, obtained using BL pseudospec-
trum of 10 000 eigenvalues and eigenvectors. Basis set 1 was employed (see
Table I). With this basis and excitation restrictions, the ADC(1) and ADC(2)
matrices have dimension of 602 × 602 and 396 541 × 396 541, while the
size of the BL pseudospectrum for which the cross-sections convergence is
obtained is 10 000.

between the experimental and the theoretical cross sections
improves with the order of the ADC scheme. The overall be-
haviour of the cross-section is very well reproduced with B-
splines and the peak position is well reproduced even at the
ADC(1) level. The ADC(2) curve, on the other hand, matches
better with the experimental data in the energy region from
the 3s ionization limit at 28 eV up to 40 eV. The 3s ionization
limit, which is characterized by the accumulation of autoion-
ization structures starting from 25 eV up to 28 eV is, however,
not resolved by our calculations, as in the case of Ne, due
to insufficient energy resolution intrinsic to the SI procedure.
Average relative deviations of the computed Ar cross-sections
from the experimental ones are given in Table II.

Fig. 7 shows the total photoionization cross section of
Ar in the region of the Cooper minimum.34 The Lanczos
convergence of the Cooper minimum shape has been more
difficult in this energy region, and it has been reached only
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FIG. 7. Total photoionization cross-section of Ar atom. Crosses – experi-
mental result of Ref. 32, pluses – experimental result of Ref. 33, circles –
B-spline-ADC(1) result, Stieltjes orders 25–34; squares – B-spline-ADC(2)-
Lanczos-Stieltjes cross-section, Stieltjes orders 25–34. The BL pseudospec-
trum for which the cross-sections convergence is obtained is 30 000.
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FIG. 8. Total photoionization cross-section of Ar atom. Full red line –
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Ref. 33, circles – B-spline-ADC(1) result, from Stieltjes orders 18 to 34;
squares – B-spline-ADC(2)-Lanczos-Stieltjes cross-section, from Stieltjes
orders 18 to 34, obtained using BL pseudospectrum of 30 000 eigenvalues
and eigenvectors, stars – GTO ADC(2)-Stieltjes cross-section, from Stieltjes
orders 10 to 30.

after almost 30 000 iterations. Both ADC(1) and ADC(2)
models reproduce the shape of the minimum, with the
ADC(2) providing a better quantitative agreement with the
experiment in terms of the Cooper minimum position. In fact,
ADC(2) gives an almost perfect prediction of the position of
the Cooper minimum at 49 eV, while the ADC(1) predicted
value is at about 53 eV. The position of the following max-
imum at 79 eV is overestimated by almost 4 eV from the
ADC(1) calculation, while it is underestimated by the nearly
the same amount from the ADC(2) one. As it is possible to
notice the ADC(1) result is overall closer to the experimental
result by Samson et al.,32 while the ADC(2) curve is closer
to the experimental result by Chang et al.33 Both results are
also in good agreement with the B-spline TDLDA theoretical
calculations in Ref. 35, in which the correct normalization of
the final continuum states was performed.

It is worth noting that the Cooper minimum is due to a
change of sign of the radial dipole matrix elements, which
pass through zero at a certain energy,34 and therefore it is al-
ready tractable within one-electron models such as the simple
SAE (single active electron approach), as has been verified
within LDA in Ref. 35, although its precise energy position
may be sensibly influenced by correlation effects. Moreover
the possibility of describing properly the Cooper minimum
feature is strongly related to the ability of the basis set to
properly represent the continuum oscillating single-electron
orbitals or, in other words, on the accuracy of the basis set in
giving good representation of high order spectral moments in
the Stieltjes imaging framework. In Fig. 8, a series of Stielt-
jes approximations of various orders based on the B-spline
ADC(1) and ADC(2) calculation as well as the GTO-based
ones are shown for direct comparison. The GTO basis used is
the fully uncontracted cc-pCVQZ augmented with 5s7p7d4f
KBJ continuum exponents.36 Importantly, the GTO basis cal-
culation fails completely in this case, in contrast to the present
B-spline based one. Clearly, the B-spline calculation shows a
very good stability of the Stieltjes orders, in contrast to the
GTO calculation in which no convergence of the SI proce-
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FIG. 9. Total photoionization cross-section of Ar atom in the Cooper min-
imum energy region. Convergence with respect to the Stieltjes order n is
shown for a B-spline ADC(1) calculation done with B-spline set 3. Differ-
ent symbols represent different orders as indicated in the legend. Full red
line – experimental result of Ref. 32, full black line – experimental result of
Ref. 33.

dure can be detected. This, of course, comes at the expense of
the much larger size of the B-spline basis that is free of the
linear dependency problem.

The accuracy of the B-spline basis set to represent the
continuum functions within the interaction volume makes it
possible to correctly reproduce many high order spectral mo-
ments. The immediate consequence of this is that a consid-
erable number of Stieltjes orders becomes reliable and as a
result, the energy resolution is incredibly improved. In Fig. 9,
we show how the Stieltjes orders converge towards the Cooper
minimum in argon; as it is possible to see, low orders smooth
out the minimum because of the insufficient resolution, while
high orders correctly reproduce it.

Fig. 10 shows the ADC(1) and ADC(2) theoretical pho-
toionization cross section of Kr in the energy range from
14 eV to 50 eV, together with the experimental results of
Chang et al.33 and the most recent ones of Samson et al.32
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FIG. 10. Total photoionization cross-section of Kr atom in the outer valence
energy region. Circles – experimental result of Ref. 32, stars – experimental
result of Ref. 33; squares – B-spline-ADC(1) result using B-spline Set 4 (see
Table I), from Stieltjes order 5 to 18. With this basis, the ADC(1) and ADC(2)
matrices have dimension of 1728 × 1728 and 1 921 110 × 1 921 110, respec-
tively, while the size of the BL pseudospectrum for which the cross-sections
convergence was obtained used is 32 000.
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FIG. 11. Total photoionization cross-section of Kr atom. Circles – exper-
imental result of Ref. 32, full green line – experimental result of Ref. 33;
stars – B-spline-ADC(1) result using B-spline Set 1, from Stieltjes orders 5
to 34; circles – B-spline-ADC(1) result using B-spline Set 4, from Stieltjes
orders 5 to 34; squares – B-spline-ADC(2)-Lanczos-Stieltjes cross-section,
from Stieltjes orders 18 to 34, obtained using BL pseudospectrum of 30 000
eigenvalues and eigenvectors.

The B-spline basis set parameters used for these calculations
are given in Table I. The spherical-harmonics expansion ex-
tends up to Lmax = 3 both in the ADC(1) and in the ADC(2)
cases. In this ADC(2) Kr calculation, we have frozen, in both
the singly and the doubly excited intermediate configuration
states, the 1s, 2s, 3s and 2p, 3p and 3d orbitals. We there-
fore allow single excitations and double excitations just from
the 4s and 4p valence orbitals. This is enough to describe the
outer valence energy region (from the ionization threshold to
80 eV) completely at the ADC(2) level. As in the case of ar-
gon, the overall behaviour of the cross-section is very well
reproduced with B-spline ADC(1), even if the position of the
peak is shifted to higher energy with respect to the experi-
mental one, by about 2 eV. As we have already shown using
the GTO calculations16 this is a general feature of the ADC(1)
level of theory that overestimates the final state energies. The
decreasing behaviour is correctly displayed by both theoret-
ical curves, but better agreement with the experiment is ob-
tained by the ADC(2) method. Average relative deviations of
the computed Kr cross-sections from the experimental one are
given in Table II.

Fig. 11 shows the ADC(1) and ADC(2) cross-sections
of Kr in a higher energy region which includes three inner
ionization limits: 3d, 3p, and 3s. In this ADC(2) Kr calcula-
tion, we have frozen, in the doubly excited intermediate con-
figuration states, the 1s, 2s, 3s and 2p and 3p orbitals. The
interval from 3d up to 3p ionization is about 100 eV wide
and is characterized by an experimental sigmoid shape with
a broad maximum just below the 3p limit. The theoretical
curves in this range have the correct shape, but they are at
greater values than the experimental one. Moreover the SI pre-
vents, in this case, the possibility of reproducing the 3p and 3s
channel-opening step. At energies above the 3p and 3s limits
the calculations give an almost linear decreasing curve, with
a negative slope that correctly reproduces the experimental
one.

25 75 125 175 225

Photon energy (eV)

0

10

20

A
ve

ra
ge

 r
el

at
iv

e 
de

vi
at

io
n 

(%
)

Bspline ADC(1)

Bspline ADC(2)

FIG. 12. Relative deviations of the B-spline-ADC-Stieltjes photoionization
cross-sections from the experimental results averaged on the four closed shell
atoms calculated, namely, He, Ne, Ar, and Kr, as a function of the energy in
the energy range of He ionization threshold to 260 eV. Green line – ADC(1)-
Stieltjes result, red line – ADC(2)-Lanczos-Stieltjes result.

Finally, let us analyze the relative deviations of the two ab
initio methods as a function of the photon energy in the same
way we have done in Ref. 16 for the GTO-ADC calculations.
This is done in Fig. 12 where one observes that below 100 eV
both ADC(1) and ADC(2) methods lead to impressive agree-
ment with experiment with the relative deviations around 10%
and 3%, respectively. Moreover, the precision deterioration
at higher energies typical of the GTO calculations16 is not
present any more, the average error stabilizing around 5% for
both methods.

VI. HIGH-ORDER HARMONIC GENERATION
IN ARGON

In this section, we present a first application of the newly
implemented B-spline time-dependent (TD) ADC. Here we
again concentrate on the effect of the Cooper minimum, since
besides its basic importance for photoionization, it also has
recently drawn much attention in connection to the HHG by
rare gases.37 Calculation of the HHG spectrum of Ar atom
interacting with an intense and short infrared (IR) laser pulse
allows us to illustrate the effect of the Cooper minimum on the
HHG spectrum by a fully ab initio single-atom simulation.

The time-dependent problem is solved within TD-ADC
making the following ansatz for the time-dependent electronic
wavefunction:

|�(t)〉 = C0(t)|�0(t)〉 +
∑

n

Cn(t)|�n(t)〉, (23)

where the coefficients C0(t) and Cn(t) refer to the ground-
state and to the ECO-CES ADC configuration basis states,
respectively. The TDSE for the unknown coefficients C0, Cn
is solved via the Arnoldi-Lanczos algorithm. More detail on
the method will be reported in a subsequent publication.38

In the following calculation, we have used the first-order
method of the ADC-hierarchy, namely ADC(1). The HHG
spectrum, which is calculated via the expectation value of the
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FIG. 13. Time dependent IR electric field and ground state depopulation of
Ar atom. The IR peak intensity is 3.2 × 1014 W/cm2.

electric dipole moment z(t),39 reads

Shhg(ω) = 1

20

1

3πc3

∣∣∣∣
∫ ∞

−∞

[
d2

dt2
〈z〉(t)

]
e−iωt dt

∣∣∣∣
2

. (24)

The presented results have been calculated making ex-
plicit use of the atomic spherical symmetry. We have used
two laser pulses with a carrier frequency ω = 0.057 a.u.
(800 nm), a full width at half maximum (FWHM) pulse dura-
tion of τ = 413 a.u. (10 fs) and with a peak field strength
of Emax = 0.075 a.u. and Emax = 0.095 a.u, respectively.
These two values correspond to peak intensities of I = 1.5
× 1014 W/cm2 and I = 3.2 × 1014 W/cm2, respectively. The
intensity profile of the stronger intensity infrared (IR) pulse is
shown in Fig. 13. The time-dependence of the ground-state
depopulation which occurs during the interaction of the Ar
atom with the strong IR field is given by 1 − ρ0(t) = 1
− |C0(t)|2 and it is plotted in Fig. 13 as well.

In the Ar HHG spectrum calculation, the size of the com-
putational box, Rmax, is dictated by the semiclassical picture
of the process,40 i.e., it must be large enough to contain the
longest recolliding electronic trajectories. The classical quiver
amplitude of the electron for the higher intensity pulse we
are using is rHHG = E

max

ω2 = 30 a.u. The calculation has been
done with a radial grid radius Rmax = 120 and 200 radial grid
points (B-spline basis set 5, see Table I). A complex absorb-
ing potential (CAP) has been used in order to eliminate wave-
packet reflection effects from the grid boundaries. The form
of the CAP used was the following:

Ŵ = η(r − rCAP )2 (25)

and with the addiction of the CAP term the form of the total
time-dependent Hamiltonian of the system reads

Ĥ = Ĥ0 + ẑE(t) − iŴ , (26)

where Ĥ0 is the field-free Hamiltonian and ẑE(t) is the laser-
atom interaction in length form and within the dipole approx-
imation. The CAP starts at a radius rCAP = 100 a.u. and has a
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FIG. 14. ADC(1) high harmonics generation emission spectrum of Ar atom
interacting with an IR field. The red and black curves refer to the 1.5
× 1014 W/cm2 and 3.2 × 1014 W/cm2 values for the IR peak intensity, re-
spectively. The time duration of the IR laser pulse used is about 21 fs and the
frequency is 800 nm.

strength η = 0.0005. The maximum angular momentum em-
ployed was lmax = 70.

The HHG spectral intensity profile is shown in Fig. 14,
for both the two different IR intensities used. The smaller in-
tensity used gives a cutoff energy for the HHG emission at
about 50 eV. The photon energy range of 30–50 eV corre-
sponds to a recollision electron energy range of 15–35 eV and
therefore no Cooper minimum is observed in the correspond-
ing HHG spectrum. On the contrary, the higher intensity al-
lows higher kinetic energies for the returning electrons, and
therefore makes it possible to see the Cooper minimum shape
in the HHG spectrum.

Our simulation shows that the Cooper minimum in the
HHG spectra can be reproduced by the B-spline TDADC
method and its position indeed lies slightly above 50 eV
as found in the recent experiments.37 The results are also
in good agreement with those of Ref. 41, obtained using
the time-dependent CIS technique. The position of the HHG
Cooper minimum is very much consistent with the photoion-
ization cross-section one. This has to do with the final step
of the HHG process,40 where the laser-driven continuum
electron recombines into the ground state emitting a single
photon in a process that is directly reversed relative to the
photoionization.

VII. CONCLUSIONS

In the present paper, we have presented the B-spline im-
plementation of the first- and second-order ADC schemes for
electronic excitations. By performing a series of atomic pho-
toionization cross-section calculations, we have demonstrated
the advantages of the B-spline ADC and by calculating the
HHG spectrum of Ar atom we have presented the first strong-
field time-dependent application of the new ab initio tech-
nique. In particular, we have been able to correctly predict
the argon Cooper minimum shape and position both in the
total cross-section, within the moment theory technique, and
in the HHG spectrum. The superior accuracy of the newly
implemented basis set is manifested also by the ability to
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correctly reproduce the high-energy tails of the cross-sections
that we have shown to present a notorious difficulty for the
GTO-based schemes.16 They are indeed reproduced by the B-
spline ADC in excellent agreement with the experiment.

Apart from the strongly improved accuracy, the B-spline
implementation leads to a remarkable stability of the cross-
sections with respect to the order of the Stieltjes-Chebyshev
moment theory. While the moment theory method leads to
the straightforward comparison between the performance of
the GTO and B-spline bases, it is no longer a necessity within
the B-spline ADC. Indeed, one can obtain directly the cor-
rectly normalized continuum eigenstates at arbitrary values
of the energy in the electronic continuum by employing meth-
ods of Refs. 27 and 42. This should be one of the directions
for future work. Another plausible direction of future work is
generalization of the B-spline implementation to calculation
of the decay widths within the Fano-Feshbach formalism, see
Refs. 43 on the GTO-based Fano-ADC methods.

In view of the large (compared to GTO) size of the
B-spline bases, optimized implementation of the B-spline
method within the MPI and OpenMP protocols has been real-
ized, making the future calculations of molecular systems en-
tirely possible. The CPU time required for the cross-section
calculations presented in this paper is of the order of a few
minutes for the ADC(1) method and of a few hours for the
ADC(2) level of theory, when using 20 computational cores.

While photoionization cross-sections are natural com-
putational targets for the newly implemented technique, our
main goal for future works is the application of the time-
dependent many-electron theory for atomic and molecular
interaction with strong IR and attosecond XUV laser pulses
with applications to strong field multiphoton ionization, cre-
ation of ionic state wavepackets by “sudden” single-photon
ionization, high-order harmonic generation, above-threshold
ionization, electron correlation-driven hole migration, etc.
The present development paves the way to ab initio study
of these phenomena beyond single excitation theory (e.g.,
TDCIS41, 44), as is indeed essential, e.g., in order to describe
the dynamical phenomena involving photoabsorption from
excited states of the system.17
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