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ABSTRACT 

Objective: Apoptotic destruction of insulin-producing pancreatic β-cells is involved in the aetiology 

of both type 1 and type 2 diabetes. AMP-activated protein kinase (AMPK) is a sensor of cellular 

energy charge whose sustained activation has recently been implicated in pancreatic -cell apoptosis 

and in islet cell death post-transplantation. Here, we examine the importance of -cell AMPK in 

cytokine-induced apoptosis and in the cytotoxic action of CD8
+
 T cells. Research Design and 

Methods: Clonal MIN6 -cells or CD1 mouse pancreatic islets were infected with recombinant 

adenoviruses encoding enhanced green fluorescent protein (Null), constitutively-active AMPK 

(AMPK CA), or dominant-negative AMPK (AMPK DN) and exposed or not to tumour necrosis 

factor-α (TNF-α), interferon-γ (INF-γ) and interleukin-1β (IL-1β). Apoptosis was detected by 

monitoring the cleavage of caspase-3 or DNA fragmentation. The cytotoxic effect of CD8
+
 purified T 

cells was examined against pancreatic islets from NOD mice infected with either Null or AMPK DN-

expressing adenoviruses. Results: Exposure to cytokines, or expression of AMPK CA, induced 

apoptosis in clonal MIN6 -cells and CD1 mouse pancreatic islets. By contrast, over-expression of 

AMPK DN protected against the proapoptotic effect of these agents, without affecting cytokine-

induced decreases in cellular ATP, and lowered the cytotoxic effect of CD8
+
 T cells towards NOD 

mouse islets. Conclusions: Inhibition of AMPK activity enhances islet survival in the face of assault 

by either cytokines or T-cells.  AMPK may therefore represent an interesting therapeutic target to 

suppress immune mediated β-cell destruction, and may increase the efficacy of islet allografts in type 

1 diabetes. 
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Abbreviations: ACC, acetyl-CoA carboxylase; AICAR, 5-amino-4-imidazolecarboxamide riboside; 

AMPK, AMP-activated protein kinase; AMPK CA, constitutively-active AMPK; AMPK DN, 

dominant-negative AMPK; CaMKK, calmodulin kinase kinase; DMEM, Dulbecco's modifed Eagle's 

medium; eGFP, enhanced green fluorescent protein; FasL, Fas ligand; FCS, fetal calf serum; HRP, 

Horseradish Peroxidase; IFN, interferon; IGRP, Islet specific glucose-6-phosphatase catalytic subunit 

related protein; IL, interleukin; KRB, Krebs Ringer bicarbonate medium; NO, nitric oxide; NOD, non-

obese diabetic; ON, overnight; TMR, tetramethylrhodamine; TNF, tumour necrosis factor; TRITC, 

Tetramethyl rhodamine isothiocyanate; TUNEL, Terminal deoxynucleotidyl Transferase Biotin-dUTP 

Nick End Labeling. 
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Diabetes mellitus currently affects ~ 6 % of the population in westernised societies, an incidence 

expected to double by 2020 (1). Destruction of β-cells is now believed to be involved in the aetiology 

of both type 1 and type 2 diabetes (2). Strategies which delay or reverse the loss of β-cell mass in 

either case are therefore likely to be of significant therapeutic value. Furthermore, such approaches 

may enhance the survival of islet allograft transplanted into type 1 diabetic patients. Indeed, current 

human transplantation protocols involve a substantial (60-80 %) loss of functional islet mass after 

transplantation (3). Thus, several donors are required for successful grafting, emphasising the need to 

enhance β-cell survival before and after transplantation.  

In type 1 diabetes, autoreactive CD4
+
 and CD8

+
 T cells recognize their target autoantigens (such as 

insulin) as peptide fragments presented by major histocompatibility complex molecules. The activated 

T-cells then travel to the pancreas, infiltrating (insulitis) and finally destroying the insulin producing 

β-cells (4). Both direct T cell-mediated cytotoxicity and indirect cytokine-, nitric oxide (NO)- or free 

radical-, and Fas ligand (FasL)-dependent mechanisms are responsible for β-cell apoptosis. These all 

lead to the cleavage and activation of caspases by the inactive zymogen counterpart. Caspase-3 is an 

effector caspase leading to the characteristic apoptotic morphological changes such as membrane 

blebbing, cytoplasmic and nuclear condensation, DNA fragmentation, and formation of apoptotic 

bodies (4;5).  

AMP-activated protein kinase is a multisubstrate, trimeric serine/threonine kinase composed of one 

63 kDa  catalytic α-subunit and two regulatory subunits, β and γ (6;7). AMPK activity is regulated 

allosterically by AMP (8) and through reversible phosphorylation at Thr-172 of the -subunit by 

upstream kinases such as LKB1 (9) or calmodulin kinase kinase (CaMKKβ) (10). AMPK is thus a 

sensor of cellular energy charge that is activated by the fall in ATP/AMP ratios or an elevation in free 

Ca
2+

 concentration (11). In most cell types, activation of AMPK is associated with the phosphorylation 

of enzymes involved in ATP-consuming processes, such as fatty acid synthesis (acetyl-CoA 

carboxylase, ACC) and cholesterol (hydroxymethylglutaryl-CoA reductase, HMG-CoA reductase) 

biosynthesis, and the consequent activation of mitochondrial fatty acid oxidation (6;12). In this way, 

regulation of AMPK ensures that cellular ATP is spared during times of nutrient deprivation. 
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However, in the pancreatic islet β-cell, the role of AMPK may be more specialised and may represent 

a key part of the glucose-sensing machinery of these cells (6;13). 

A good deal of data has emerged in the last 3-4 years showing that sustained AMPK can exert a 

proapoptotic effect on a variety of cell types (14;15). Thus, work in hepatocytes (16), gastric cancer 

(17), neuroblastoma (18), HT-29 colon cancer (19) and chronic lymphocytic leukaemia (20) cells, has 

implicated AMPK activation in cell death. Taken together, these data support the view that whereas 

activation of AMPK is likely, in the short term, to reduce ATP consumption and thus to protect cells 

from transient metabolic stresses (21), sustained activation of the enzyme entrains a sequence of 

events ultimately leading to programmed cell death. Importantly, we have recently shown that 

adenovirus-mediated expression of an activated form of AMPK (AMPK CA) reduces the ability of 

syngeneic islet to reverse streptozotocin-induced diabetes, whilst a dominant-negative form of AMPK 

(AMPK DN) tended to enhance graft efficiency (22).  

Various cellular and molecular mechanisms are involved in β-cell apoptosis. CD8
+
 T cells are 

increasingly recognized as key actors in the diabetes of the non-obese diabetic (NOD) mouse, which 

spontaneously develops diabetes remarkably similar to human type 1 diabetes (23) and constitute a 

good model to study this disorder. CD8
+
 T cells are also likely to play a role in humans. Thus, in 

identical twins who had received a transplant from their non-diabetic co-twin, recurrent disease 

occurred within six weeks with CD8
+
 T cells constituting a majority of the cells infiltrating the 

transplants (24). Biopsies performed in patients newly diagnosed with type 1 diabetes have also shown 

that CD8
+
 T cells make up a considerable proportion of the infiltrate (25). Finally, a number of recent 

studies have indicated that T cells recognising proinsulin and IGRP may be detected with high 

sensitivity at onset of diabetes (26).  

T cells induce damage to islet  cells by a number of mechanisms including lysis by 

perforin/granzymes and induction of apoptosis by Fas/FasL interactions (27). In addition, in the 

insulitis lesion in type 1 diabetes, invading immune cells produce pro-inflammatory cytokines, such as 

tumour necrosis factor-α (TNF-α), interferon-γ (INF-γ) and interleukin-1β (IL-1β) and therefore 

constitute a key step in the pathology of type 1 diabetes (28). 
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Here, we demonstrate that AMPK activation is involved both (a) in regulating β-cell apoptosis induced 

by cytokines, and (b) in the cytotoxicity of CD8
+
 T cells towards islets from NOD mice. 
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RESEARCH DESIGN AND METHODS 

Materials - Collagenase, Histopaque (1077) and Hoechst (type V) were from Sigma (St Louis, MO). 

Mouse recombinant TNF-α, INF-γ and IL-1β were from PreproTech EC (London, UK). BM
 

Chemiluminescence’s blotting substrate (ECL), anti-rabbit and anti-mouse Horseradish Peroxidase 

(HRP), as well as the [
32

P] γATP and the 
51

chromium sulphate, were from Amersham BioSciences 

(Buckinghamshire, UK). Firefly luciferase was from Promega (Madison, WI), the In Situ Cell Death 

Detection Kit, tetramethylrhodamine red (TMR Red) was from Roche (Basel, Switzerland). The 

CD8a
+
 T cell isolation kit was from MACS (Bergisch Gladbach, Germany). Dulbecco’s modified 

Eagle’s medium (DMEM) and RPMI 1640 media were from Cambrex (East Rutherford, NJ). All the 

other culture media and cell dissociation buffer were from Invitrogen (Paisley, UK). Scintillation fluid 

Ultima Gold LLT was from Perkin Elmer (Waltham, MA) and the scintillation 96 well plate 1450 

micro beta counter was from Wallac (Turku, Finland).  

Animals - Wild-type CD-I mice (20-25 g) and 8-12-week old male NOD mice were used for islet 

isolation and killed by cervical dislocation immediately before the islet isolation procedure (see Cell 

culture and islet isolation). Insulin-specific TCR transgenic mice were generated from G9C cloned T 

cells (29) which had previously been shown to have specific reactivity to amino acids 15-23 of the 

insulin- chain (30). TCR  and  founder lines were inter-crossed to produce  TCR transgenic 

mice (G9.NOD).  G9C
-/-

.NOD mice expressing T cells monoclonal for the transgenic TCR were 

generated by crossing the  TCR transgenic mice to NOD.C
-/-

 mice (>20 generations backcross to 

NOD mice). All animal procedures were in accordance with the British Home Office Animals 

(Scientific Procedures) Act, 1986. 

Antibodies - Rabbit anti-phospho-AMPK (Thr-172) and anti-cleaved-caspase-3 (Asp-175) antibodies 

were purchased from Cell Signaling (Beverly, MA). Rabbit anti-ERK2 was from Santa Cruz (Santa 

Cruz, CA). Tetra methyl rhodamine isothiocyanate-conjugated (TRITC-conjugated) secondary 

antibody
 
against rabbit IgG was purchased from Jackson (West Grove, PA). 

Adenoviruses - Adenoviruses encoding enhanced green fluorescent protein (eGFP) only, hereafter 

named pAd-GFP (Null), or constitutively-active AMPK (AMPK CA), or dominant-negative form of 
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AMPK 1 (D
157

A) (AMPK DN), have been described by Woods and Carling et al. (31;32). AMPK 

CA comprises the amino terminal domain (amino acids 1-312) common to both AMPK1 and 2, and 

is rendered constitutively active by a T
172

D point mutation. Islets and MIN6 cells were infected at a 

multiplicity of infection of 100 viral particles / cell respectively overnight or 4 h and cultured for a 

further 48 h before experiments. 

Cell culture and islet isolation - Clonal mouse pancreatic β-cells MIN6 were used between passages 

#18 and #30 and grown in DMEM containing 25 mmol/l glucose and supplemented with 2 mmol/l L-

glutamine, 15% heat-inactivated fetal calf serum (FCS), 50 µmol/l 2-mercaptoethanol, 100 U/ml 

penicillin and 100 g/ml streptomycin. Mouse mastocytoma P815 cells were grown in RPMI 1640 

medium, 5% FCS, 2 mmol/l L-glutamine, 50 µmol/l 2-mercaptoethanol, 100 U/ml penicillin and 100 

g/ml streptomycin. Both were maintained at 37°C in a humidified atmosphere containing 5% CO2. 

Mice were killed by cervical dislocation. Collagenase [1 mg/ml in Krebs Ringer bicarbonate (KRB) 

medium comprising (mmol/l): 120 NaCl, 4.8 KCl, 2.5 CaCl2, 1.2 MgCl2, 24 NaHCO3, and 1 mg/ml 

bovine serum albumin, gassed with O2/CO2 (95/5) to maintain a pH of 7.4] was then injected into the 

pancreatic duct (3 ml / mouse). The distended pancreas was then placed in a water bath at 37°C for 

11 min, and the islets were hand picked. Mouse islets were maintained in RPMI 1640 medium 

supplemented with 2 mmol/l L-glutamine, 10% FCS, 11 mmol/l glucose and antibiotics. 

For immunocytochemistry, islets were dissociated with cell dissociation buffer before plating the 

liberated cells onto glass coverslips. 

CD8a
+
 T cell purification and activation - G9Cα

-/-
.NOD mice express monoclonal insulin reactive 

CD8
+
 T cells. Cells were extracted from the spleen and activated overnight (ON) in presence of the 

Insulin B15-23 peptide, in RPMI 1640 medium containing 5% FCS, 2 mmol/l L-glutamine and 100 

U/ml penicillin and 100 g/ml streptomycin, at 37 °C in a humidified atmosphere containing 5% CO2. 

The day after, activated CD8
+
 T cells were purified from the splenocytes using an untouched CD8a

+
 T 

cell isolation kit (MACS) according to the manufacturer’s instructions. CD8
+
 T cells obtained by this 

method were 90-95% pure. 
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Immunocytochemistry and apoptosis detection - MIN6 cells or dispersed islets were washed 3 

times with PBS before fixation with 4% (v/v) paraformaldehyde in 0.1 M NaH2PO4, pH 7.4. Cells 

were then permeabilized with 0.3% (v/v) Triton X-100 for 20 min and incubated for 1 h with primary 

rabbit polyclonal
 
anti-cleaved caspase-3 antibody, at 1:200 dilution, at 4°C. Primary antibody

 
was 

revealed using TRITC-conjugated secondary antibody
 
against rabbit IgG (1:500 dilution). Nuclear 

staining was achieved by
 
incubating the cells in wash buffer containing Hoechst for 10 min at room 

temperature. Apoptotic cells were imaged either on Leica SP2 laser-scanning confocal microscope or 

Leica SP5 MP/FLIM inverted optic confocal microscope, using a x40 or a x63 oil immersion objective 

with excitation at 488 nm (Ar) and 543 nm (He-Ne) and emission detected at >515 (green, eGFP) and 

>560 nm (red, TRITC). A Terminal deoxynucleotidyl Transferase Biotin-dUTP Nick End Labeling 

(TUNEL) assay was also performed using the in Situ Cell Death Detection Kit, TMR red, to visualise 

the DNA strand breaks of apoptotic cells by fluorescence microscopy, according to the manufacturer’s 

recommendations. Briefly, the cells were treated as described above for fixation and permeabilization 

and the TUNEL reaction mixture was added for 1 h.  Imaging was performed with an excitation 

wavelength range of 520-560 nm, detecting in the range 570-620 nm. Results were quantifed by 

densitometry. 

Western (immuno-) blot Analysis - MIN6 cells or mouse islets were incubated as for measurements 

of caspase activity and lysed. Whole cellular extract (50 µg) was denatured for 5 min at 100°C in 2% 

(w/v) SDS, 5% mercaptoethanol, and resolved by 10% or 7.5% SDS-PAGE before transferring to 

PVDF membranes and immunoblotting. Secondary antibodies were revealed using BM
 

Chemiluminescence’s blotting substrate. Intensities were measured by digital scanning of gels and 

quantified using Scion Image (www.scioncorp.com/). 

ATP measurements - For total ATP assay, MIN6 cells were infected with adenoviruses and 

incubated with the indicated cytokines in culture medium and then at the given glucose concentrations 

in KRB medium for 30 min, before extraction into perchloric acid (10%, v/v). ATP was quantitated in 

extracts neutralized with Hepes-buffered KOH, using partially purifed firefly luciferase and photon 

counting, as described before (33). 
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Cytotoxicity assay - A chromium release assay was performed similar to that previously described 

(29).  Islets from 8-12 week old NOD male mice were infected with either the Null adenovirus or the 

AMPK DN for 48 h. They were then labelled with 
51

chromium sulphate for 1 h, as well as the P815 

control cells, and washed (see Fig. 8 (a)). The purified activated CD8
+
 T cells were added for 16 h to 

the islets with or without added insulin B15-23 peptide at an effector:target ratio of 20:1 (assuming 

1000 cells per islet). Cytotoxicity using P815 cells coated with insulin B15-23 peptide, at an 

effector:target ratio of 10:1 was used as a positive control.  Results were expressed as % specific lysis 

determined as (((cytotoxic release-Min) / (Max-Min)) x100) %, where the spontaneous lysis 

corresponds to the minimal release (Min), and the lysis provoked by addition of hydrochloric acid 

corresponds to the maximal lysis (Max).  

Statistical Analysis - Results are expressed as means ± S.E.M. of at least three independent 

experiments. Statistical significance was evaluated using the Student's t test for unpaired comparison 

with Bonferroni correction as appropriate. A value of p<0.05 was considered to be statistically 

significant. 
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RESULTS 

Effect of cytokines on β-cell apoptosis - It has previously been reported that incubation of MIN6 cells 

(34) or islets (35;36) with different cytokine combinations can lead to the induction of apoptosis. 

Apoptosis can be prompted by several different mechanisms but the one usually implicated in islet cell 

death in type 1 diabetes and allograft transplantation involves cytotoxic cytokines secreted by 

macrophages and possibly also β cells. Here, we observed that incubation of MIN6 cells for 12 h, 24 h 

and 48 h with a combination of the three cytokines IL-1β, TNF-α and IFN-γ (Fig. 1) induced the 

cleavage of caspase-3, indicating the establishment of apoptosis. 

AMPK activation induces β-cell apoptosis - Previous studies have shown that AMPK activators such 

as 5-amino-4-imidazolecarboxamide riboside (AICAR) (15), or chronic incubation of MIN6 cells or 

islets with low concentrations (0-3 mmol/l) of glucose (37) or metformin (38) can lead to β-cell 

apoptosis. Consistent with these earlier findings, when MIN6 cells were infected with the Null (Null) 

or the constitutively-active AMPK (AMPK CA) adenoviruses, and cultured for 24 h to 96 h, we 

observed a four-fold increase in the level of activated caspase-3 after 96 h in cells infected with 

adenovirus expressing AMPK CA compared to Null virus-expressing cells (Fig. 2). Thus, AMPK 

activation alone is sufficient to induce apoptosis in MIN6 cells. 

Cytokines induce an increase in β-cell AMPK activity - Measured either in MIN6 cells (Fig. 3 (a)) or 

islets (Fig. 3 (b)), AMPKα phosphorylation at Thr-172 was markedly higher after  incubation for 30 

min in KRB containing low (0-3 mmol/l) glucose concentrations, than at elevated (17 mmol/l) 

glucose, consistent with previous findings (13). Likewise, incubation for 48 h with a combination of 

IL-1β, TNF-α and IFN-γ increased by six-fold the level of phosphorylation on AMPK Thr-172 at 17 

mmol/l glucose in both MIN6 cells (Fig. 3 (a)) and islets (Fig. 3 (b)).  

Cytokine-induced apoptosis requires AMPK activation - To determine whether cytokine-mediated 

apoptosis required AMPK activation, we used an adenovirus to express a dominant-negative form of 

AMPK (13). MIN6 cells were treated with the AMPK DN adenovirus for 48 h and then with cytokines 

for a further 48 h. As expected, the increased phosphorylation of AMPK induced by 3 mmol/l glucose 

or by cytokines was reduced in cells and islets infected with AMPK DN (data not shown). Inhibition 
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of AMPK also reduced the pro-apoptotic effect of the cytokines. Thus, apoptosis was reduced about 4-

5-fold in MIN6 cells (Fig. 4 & 5) infected with the AMPK DN adenovirus and treated 48 h with the 

three cytokines, as shown by TUNEL assay (Fig. 4) or measuring anti-cleaved caspase-3 assay either 

in single cells (where infection with adenovirus could be confirmed on a cell by cell basis by the 

presence of eGFP; Fig. 5 (a)), or in cell populations (Fig. 5 (b)). 

To examine the role of AMPK in primary -cells, mouse islets were dispersed into single cells before 

infection with adenoviruses. This approach ensured high levels of infection such that >80 % of cells 

were positive as judged by eGFP fluorescence. After treatment of the cells for a further 24 h or 48 h 

with cytokines, apoptosis was then assessed by TUNEL assay (Fig. 6). A clear, albeit non-significant 

(p = 0.07) tendency towards a decrease in apoptosis was apparent in cells expressing AMPK DN 

versus those infected with Null adenovirus. By contrast, no effect of AMPK DN was observed after 48 

h of incubation with the cytokines. 

Cytokines induce a decrease in total cellular ATP content - AMPK is an AMP-sensitive enzyme 

whose activity is expected, at least in large part, to be regulated by changes in intracellular ATP/AMP 

ratio. Given that the adenylate kinase reaction is likely to be at near equilibrium in -cells, we 

measured the total cellular ATP content as a guide to ATP/AMP ratio (Fig. 7). As anticipated, cellular 

ATP content was decreased as glucose concentrations were elevated, consistent with a lowering of 

AMP levels and inhibition of AMPK (13). Interestingly, when cells were incubated for 12 h to 48 h 

with the cytokine combination, the cellular ATP content was decreased at both 3 and 17 mmol/l 

glucose. These results thus suggest that the action of the cytokines on AMPK is likely to be due to a 

fall in ATP/AMP ratio, and LKB1-mediated phosphorylation of AMPK (11). By contrast, AMPK 

DN had no significant impact on the action of the cytokine combination to lower cellular ATP content 

(Fig. 7). 

Inhibition of AMPK decreases the cytotoxic effect of CD8
+
 T cells on NOD pancreatic islets - CD8

+
 

T cell cytotoxicity towards islets probably occurs via a combination of effects including cytokine-

mediated killing, Fas/FasL-stimulated apoptosis and lysis by perforin/granzymes. To determine 

whether AMPK might be involved in the cytotoxicity of CD8
+
 T cells against islets during type 1 
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diabetes, we used a cytotoxic assay (Fig. 8 (a)) involving insulin B15-23-reactive CD8
+
 T cells as 

effectors, and islets isolated from NOD mice infected either with the Null or the AMPK DN 

adenoviruses. Inhibition of AMPK led to a 50 % decrease of CD8
+
 T cell cytotoxicity towards the 

islets (Fig. 8 (c)). Lysis of B15-23 coated P815 target cells was used as a positive control for CD8
+
 T 

cell cytotoxicity (Fig. 8 (b)). 
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DISCUSSION 

The main aim of the present study was to determine whether AMPK activation may be involved in β-

cell death induced by cytokines or cytotoxic T cells, and might therefore represent an interesting 

therapeutic target to enhance the efficacy of  transplantation protocols.  

The nature of the immunological effectors that induce apoptosis in -cells and can lead to -cell 

destruction and type 1 diabetes is still debated. However, involvement of autoreactive T cells and an 

inflammatory response in which perforin, Fas ligand (FasL), TNF-, IL-1, INF-, NO, or a 

combination of all of the above, has been implicated in the destruction of pancreatic -cells (2;5;39). 

These molecules are likely to act in synergy to induce apoptotic signalling cascades. Caspase-

dependant cell death can be mediated by two different pathways involving either a death receptor 

pathway or via a mitochondrial pathway (28;39). Although cytokine-induced apoptosis is known to 

mediate the death receptor pathway via specific receptors, caspase-3 cleavage and therefore activation 

lies downstream of both pathways. In our hands, 12 h - 48 h treatment of MIN6 -cells with the 

cytokines TNF-, IL-1 and IFN- led to increased apoptosis as demonstrated by enhanced caspase-3 

cleavage (Fig. 1). These findings are in accordance with previous results in rat pancreatic islets (40) 

and clonal insulin-secreting cells (41). Kefas et al. have previously shown that chronic treatment of 

MIN6 cells or rat islets with low glucose concentrations, or a sustained activation of AMPK with 

AICAR, also leads to programmed cell death (15). Conversely, knock-out of the 2 catalytic subunit 

of AMPK in mice leads -cells to become resistant to AICAR-induced apoptosis. Correspondingly, 

our results show an increase in apoptosis in MIN6 cells after an infection with a recombinant 

adenovirus expressing a constitutively-active form of AMPK (AMPK CA; Fig. 2).  

We now extend these earlier findings to demonstrate that AMPK activity is increased in response to 

cytokines (Fig. 3), as well as to low glucose concentrations (12;13). These changes were matched by 

significant decreases in ATP content and hence probable increases in AMP level, which are likely to 

underlie the activation of AMPK (Fig. 7). Nevertheless, it is also conceivable that increases in 

intracellular free Ca
2+

 concentration, and hence activation of CaMKK1 (10;41), may also contribute.  
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Recently, it has been shown that transforming growth factor-beta-activated kinase (TAK1), a member 

of the mitogen-activated protein kinase kinase kinase family, can be activated by cytokines (42), and 

might also phosphorylate and activate AMPK in β-cells (43).  

We demonstrate for the first time that cytokine-mediated -cell death is inhibited when the activation 

of AMPK is blocked by over-expression of a dominant-negative form of the enzyme (Fig. 4, 5, 6), 

likely to inhibit complexes containing either AMPK1 and 2 by binding to the common 1 or 2 

scaffolding subunits. Thus, inhibition of AMPK decreased both caspase-3 cleavage and DNA 

fragmentation (as measured by TUNEL assay) in MIN6 cells (Fig. 5), and tended to decrease DNA 

fragmentation in islet cells (Fig. 6). Although, we were unable to identify -cells selectively in this 

preparation due to the presence of three other dyes, it seems likely that the cytokine-induced changes 

reflect an action on -cells rather than other islet cell types. 

Interestingly, AMPK DN blunted to only a small extent the cytokine-induced changes in intracellular 

ATP content of MIN6 cells (Fig. 7), indicating that the pro-apoptotic pathways activated in response 

to AMPK may act downstream to the decline in ATP. Several mechanisms might explain the link 

between AMPK and apoptosis. First, activation of AMPK may cause cell cycle arrest, as observed in 

prostate cancer and smooth muscle cells (44). This observation is consistent with the fact that the 

upstream kinase LKB1 (45), is a tumour suppressor mutated in Peutz-Jeghers syndrome. Importantly, 

recent work demonstrates that AMPK activation induces phosphorylation of the tumour suppressor 

p53, an event required to initiate cell-cycle arrest in G1 phase (46). Whilst this arrest was reversible in 

the short term, persistent activation of AMPK led to cell death. Providing alternative mechanisms, 

Kefas et al. showed that AICAR treatment of β-cells lead to c-Jun N-terminal kinase (JNK) and 

caspase-3 dependant apoptosis whereas Jambal et al. and Inoki et al. showed an inhibition of protein 

kinase B and mTOR, respectively, by AMPK and thus an inhibition of the anti-apoptotic pathway and 

protein synthesis (14;47;48). AMPK activation is also associated with increased mitochondrial 

superoxide-derived radical (ROS) production and decreased mitochondrial activity (49;50).  

There has been much debate as to the mode of cytotoxity towards islet  cells mediated by CD8
+
 T 

cells and it is likely that cytokines, Fas/FasL system, and granzyme/perforin all play a role in the 
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attack (27). We demonstrate here that AMPK may be involved in cytokine-induced apoptosis and we 

also show that the inhibition of AMPK decreases the cytotoxic effect of CD8
+
 T cells (Fig. 8) though 

this finding alone is insufficient to pinpoint which aspect of T-cell action was affected.  This question 

will need further elucidation, for example by blocking each of these pathways using cells from mice 

expressing targeted mutations, or with blocking antibodies.  It has recently been shown by Suzuki et 

al. that ARK5, a novel AMPK catalytic subunit family member of AMPK, whose activation is directly 

regulated by Akt, leads to the resistance of colorectal cancer cells to Fas-induced apoptosis by 

negatively regulating procaspase-6 (51). Taken with our own findings, the latter result suggests that 

activation of different AMPK family members may exert quite distinct effects on cell survival. 

In summary, these studies highlight a new intracellular signalling pathway involved in cytokine 

induced β-cell apoptosis. We demonstrate for the first time that AMPK is involved in regulating β-cell 

apoptosis induced by cytokines and that AMPK is involved in CD8
+
 T cell cytotoxicity towards NOD 

mouse islets. These data suggest that inhibition of AMPK activity may enhance the survival of islets in 

diabetes or after islet transplantation. 
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FIGURE LEGENDS 

 

Fig. 1. Cytokines induce apoptosis in clonal MIN6 -cells. MIN6 cells were cultured with a 

cytokine mix containing IL-1β (1 ng/ml), TNF-α (100 ng/ml) and IFN-γ (100 ng/ml), for the times 

indicated, in their culture medium (see Research Design and Methods). Induction of apoptosis was 

measured by Western (immuno-) blotting for cleaved caspase-3 (Asp 175) (see Research Design and 

Methods). Total protein content was estimated using anti-ERK1/2 antibody. Results shown are from 

three independent experiments. 

Fig. 2. Effect of AMPK CA adenovirus on caspase-3 activity in MIN6 -cells. (a) Cells were 

infected with the indicated adenoviruses at 100 MOI (Null/GFP, AMPK CA) for the times indicated. 

Induction of apoptosis was measured by immunocytochemistry with an antibody to cleaved-caspase-3. 

Primary antibody
 
was revealed using TRITC-conjugated secondary antibody

 
against rabbit IgG and a 

Hoechst coloration of the nucleus was performed. (b) The data from (a) are given as means ± SEM of 

triplicate analyses from three independent experiments. Results were analysed by densitometry and 

statistical differences were assessed by unpaired Students t-test (*p<0.05 for effect of AMPK CA virus 

compared with Null virus). Scale bar, 20 µm. 

Fig. 3. Effect of cytokines on AMPK activity in clonal MIN6 -cells and mouse pancreatic islets. 

MIN6 cells (a) or mouse pancreatic islets (b) were treated with the cytokine mix for 48 h and 

incubated in KRB medium (see Research Design and Methods) at the indicated concentrations of 

glucose for 30 min. Phospho-Thr-172 AMPK phosphorylation was assessed using the appropriate 

phosphor-specific antibody. Total protein was estimated using anti-ERK1/2 antibody. Results shown 

are from representative of three independent experiments and statistical differences were assessed by 

unpaired Students t-test: *p<0.05 and **p<0.01 for the effect of cytokines compared without 

cytokines. 

Fig. 4. Dominant-negative AMPK blocks cytokine-mediated apoptosis in MIN6 -cells. (a) MIN6 

cells were infected with the indicated adenoviruses at 100 MOI (Null/GFP, AMPK DN) for 48 h, 

before treatment with cytokines as in Fig. 1, for a further 48 h. Apoptosis was measured by TUNEL 
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assay using the In Situ Cell Death Detection Kit, TMR Red, as described in Research Design and 

Methods, followed by nucleus coloration with Hoechst dye. Results were analysed by densitometry 

and statistical differences were assessed by unpaired Students t-test: **p<0.01 for the effects of 

AMPK DN virus in the presence of cytokines compared with Null virus. (b) The data from (a) are 

given as means ± SEM of triplicate analyses from three independent experiments involving 100 

individual cells per condition. Scale bar, 20 µm. 

Fig. 5. Dominant-negative AMPK blocks cytokine-activation of caspase-3 in MIN6 -cells. MIN6 

cells were treated as in Fig. 4, and active caspase-3 was measured either by (a) immunocytochemistry 

or (b) Western blotting with anti cleaved-caspase-3 antibody. Results were analysed as in Fig. 4: 

*p<0.05 and ***p<0.001 for the effect of AMPK DN virus in the presence of cytokines compared 

with Null virus. (a) Data are given as means ± S.E.M. of triplicate analyses from three independent 

experiments involving 50 individual cells per condition or (b) are from three independent experiments. 

Scale bar, 10 µm. 

Fig. 6. Dominant-negative AMPK blocks cytokine-mediated apoptosis in dispersed mouse 

pancreatic islets. (a) Dispersed islets were infected with the indicated adenoviruses at 100 MOI 

(Null/GFP, AMPK DN) for 48 h, before treatment with cytokines as in Fig. 1, for a further 24 or 48 h. 

Apoptosis was measured by TUNEL assay as described in Fig. 4, followed by nucleus coloration with 

Hoechst dye. †p = 0.07 for the effect of AMPK DN; (b) Data from (a) are given as means ± SEM of 

duplicate analyses from three independent experiments involving 50 individual cells per condition. 

Scale bar, 10 µm. 

Fig. 7. Effect of cytokines on total cellular ATP content in MIN6 cells. MIN6 cells were infected 

with the indicated adenoviruses at 100 MOI (Null/GFP, AMPK DN) for 48 h, before treatment with 

cytokines as in Fig. 1, for the indicated time. Prior to ATP assay, cells were incubated with the 

indicated concentrations of glucose for 30 min (see Fig. 3). Cells were then extracted in perchloric 

acid as described under “Research Design and Methods”, before assay of total ATP. *p<0.05, 

**p<0.01 and ***p<0.001 for effects of cytokines compared to control at the same glucose 
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concentration, unless otherwise indicated. Data are the means ± SEM of triplicates from observations 

on three separate cell cultures. Results shown are representative of three independent experiments. 

Fig. 8. Dominant-negative AMPK decreases the cytotoxicity of insulin-reactive CD8
+
 T cells 

towards NOD mouse pancreatic islets. (a) Scheme explaining the cytotoxic assay (see Research 

Design and Methods). (b) P185 control cells were labelled with 
51

chromium sulphate for 1 h, washed, 

and incubated for 16 h with insulin B15-23 reactive CD8
+
 T cells at a ratio of 1:10, in the presence of 

increasing concentrations of insulin B15-23 peptide. The percentage of lysis was determined 

measuring the gamma radioactivity released in the supernatant by the -lysed islets: % of lysis = 

((sample release-min) / (max-min))*100. (c) The same procedure was used with islets from NOD mice 

which were infected with the AMPK DN adenovirus at 100 MOI for 48 h. 20 islets per condition were 

used in presence of 400 000 CD8a
+
 T cells, assuming 1000 cells / islet, and insulin peptide was added 

or not at 1 μg/ml. Data are given as means ± S.E.M. of triplicate analyses from three independent 

experiments involving 20 individual islets per condition. 
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