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Temporal and spatiotemporal correlation functions for trapped Bose gases
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Density correlations unambiguously reveal the quantum nature of matter. Here, we study correlations
between measurements of density in cold-atom clouds at different times at one position, and also at two
separated positions. We take into account the effects of finite-size and -duration measurements made by light
beams passing through the atom cloud. We specialize to the case of Bose gases in harmonic traps above
critical temperature, for weakly perturbative measurements. For overlapping measurement regions, shot-noise
correlations revive after a trap oscillation period. For nonoverlapping regions, bosonic correlations dominate at
long times, and propagate at finite speeds. Finally, we give a realistic measurement protocol for performing such
experiments.
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I. INTRODUCTION

Correlations between density measurements in quantum
gases are related to the underlying correlation functions of
the quantum field. In cold-atom experiments which detect
individual atoms extracted from a cloud or a beam, the
correlations appear in the arrival times and positions of
the detected atoms [1–8]. Atoms are more (bosons) or less
(fermions) likely to be coincident than classical statistics
would suggest.

By imaging a cloud after expansion and inspecting the
fluctuations in the detected light, it is possible to infer
correlations in momentum space [9]. This technique has been
used to probe quantum many-body states such as the bosonic
Mott insulator in a lattice [10] and fermion pairing [11].
Destructive in situ imaging has revealed spatial correlation
information about one-dimensional quasicondensates (through
both pair [12] and triple [13] correlations) and Fermi gases
[14,15]. More sophisticated optical detection schemes are used
to measure correlations in spin polarization [16,17] rather than
number density.

Spatial density correlations can be inferred from fluc-
tuations about the mean density [12]. Fluctuations are re-
lated to temperature and to thermodynamic susceptibili-
ties like compressibility via fluctuation-dissipation theorems
[18]. As susceptibilities tend to diverge close to phase
transitions (e.g., Bose-Einstein condensation), so the mea-
surable fluctuations become larger. However, fluctuation-
dissipation theorems give information about the magnitude
of fluctuations but not their length or time scales [19].
Naraschewski and Glauber [20] showed how the underlying
first-order correlation function relates straightforwardly to
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observable density-density [21] (second-order) correlations
under the strong assumption that the system being measured
is in the grand canonical ensemble at thermal equilibrium.
In this paper we adapt their theory to include temporal
correlations.

Many of the measurements of correlation functions in
atomic gases were done by detecting atoms which had already
been extracted from an expanding cloud or beam. Other ex-
periments measured correlations between spatially separated
regions of a cloud at one given instant or fluctuations from
one experimental run to another. In the recent experiments of
Guarrera et al. [5,7] atoms were extracted one by one from
a single cloud and the temporal correlations of their arrival
times measured. There, the extraction of the first atom and its
detection had no direct effect on the subsequent behavior of
the cloud: The correlations were present independently of the
measurement, and the measurement itself was in some sense
weakly perturbative [22].

In contrast to previous experiments, we consider here
density-density (not atom-atom) correlation measurements
using light beams which pass through a single atom cloud at
different times. The most general version of the measurement
includes sampling the density at differing positions and times.
These retarded correlations have not yet been observed in cold
atoms.

Correlations persist over thermal time scales like �/kBT

at temperature T . A typical length scale is the thermal de
Broglie wavelength: λT =

√
2π�2/MkBT for atoms of mass

M . Taking a cloud of 87Rb at 200 nK the typical correlation
times and lengths (without time-of-flight expansion) are 40 μs
and 0.4 μm. Measurements can happen faster than 10 μs [23],
with spatial resolution down to about 1 μm, limited by photon
collection and diffraction, respectively. We therefore expect to
be able to resolve correlations more easily in the time domain
than in space.

In this article we first state our method for calculating
correlation functions for thermal bosons and then show
how optical measurements of atomic density relate to the
correlation functions. We then specialize our discussion to
the example of noncondensed Bose gases in harmonic traps.
Finally, we discuss plausible experimental implementations
using weakly destructive measurements.
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II. SECOND-ORDER CORRELATION MEASURES IN
THE GRAND CANONICAL ENSEMBLE

Following the formalism of Ref. [20], but retaining time
dependence wherever possible, we start by defining the atomic-
field annihilation operator for an atom at position r and time t

as �̂(r,t). Its Hermitian conjugate is the creation operator, and
they follow the commutation relations for bosonic operators,

[�̂(r,t),�̂(r′,t ′)] = 0, (1)

[�̂(r,t),�̂†(r′,t ′)] = D(r,r′,t − t ′). (2)

The function D depends on the Hamiltonian governing the
system (see Appendix).

Density is an observable which is the expectation of the
number density operator, n(r,t) = 〈n̂(r,t)〉 where n̂(r,t) =
�̂†(r,t)�̂(r,t). The quantum expectation value is denoted with
angle brackets, and for readability we will use both notations
n(r,t) and nr,t for expectation of the density at a specified
position and time.

We define normally ordered, time-ordered (t ′ � t), first-
and second-order atom-atom correlation functions [20,21]:

G
(1)
r,r′,t,t ′ = 〈�̂†(r,t)�̂(r′,t ′)〉, (3)

G
(2)
r,r′,t,t ′ = 〈�̂†(r,t)�̂†(r′,t ′)�̂(r′,t ′)�̂(r,t)〉. (4)

The first-order correlation function (with equal time argu-
ments) G(1) is the spatial representation of the one-particle
density operator. In addition, the density and correlation func-
tion are simply related: n(r,t) = G(1)(r,r,t,t). The correlation
between pairs of atoms is found in G(2).

An obvious local, second-order, density correlation mea-
sure, as distinct to an atom-atom correlation function, would
be 〈n̂r,t n̂r′,t ′ 〉 − 〈n̂r,t 〉〈n̂r′,t ′ 〉. However, the operator in the first
term is not Hermitian, and so this measure is not a good
observable. We conjecture that the appropriate observable is
simply the real part.

We suppose that the measurements to be made are in some
sense very weak, so that it does not matter in what order
the measurements are made. The observable should then be
symmetric under exchange of coordinates, { r,t} and {r′,t ′}. We
note that when the variables are exchanged, the commutator in
Eq. (2) is complex conjugated, and thus the real part is a correct,
symmetric operator. Therefore, the correlation measure that we
will use is

Cr,r′,t,t ′ = 1
2 〈n̂r,t n̂r′,t ′ + n̂r′,t ′ n̂r,t 〉 − 〈n̂r,t 〉〈n̂r′,t ′ 〉. (5)

The purpose of defining this density correlation measure is to
account for measurements over finite volumes and times, as
will be shown in Sec. II B.

Applying the definitions of G(1) and G(2), and the com-
mutation relations, we note that ensemble average product of
non-Hermitian operators can then be expressed in terms of the
correlation functions:

〈n̂r,t n̂r′,t ′ 〉 = G
(1)
r,r′,t,t ′D(r,r′,t − t ′) + G

(2)
r,r′,t,t ′ . (6)

Since G(2) is real,
1
2 〈n̂r,t n̂r′,t ′ + n̂r′,t ′ n̂r,t 〉 = Re

[
G

(1)
r,r′,t,t ′D(r,r′,t−t ′)

] + G
(2)
r,r′,t,t ′ .

(7)

For a noninteracting gas in a confining potential (with local-
ized eigenfunctions) at thermal equilibrium, above the critical
temperature for bosons, in the grand canonical ensemble, it
can be shown that [20]

G
(2)
r,r′,t,t ′ = G

(1)
r,r,t,tG

(1)
r′,r′,t ′,t ′ + ∣∣G(1)

r,r′,t,t ′
∣∣2

, (8)

where the second term is due to bosonic exchange symmetry.
The correlation measure can be expressed in terms of the first-
order correlation function G(1) only:

Cr,r′,t,t ′ = Re
[
G

(1)
r,r′,t,t ′D(r,r′,t − t ′)

] + ∣∣G(1)
r,r′,t,t ′

∣∣2
. (9)

The first term corresponds to counting (shot noise) number
fluctuations. The second term comes from quantum exchange
correlations.

A. The first-order correlation function G(1) for noninteracting,
trapped, thermal bosons

G(1) is conveniently expressed in a basis of the eigenstates
of the trapping potential. First we write the field creation and
annihilation operators in this basis set:

�̂(r,t) =
∑
all i

ui(r)e−iεi t/� âi , (10)

where the state labeled i has energy εi , spatial variation ui(r),
and annihilation operator âi . The sum runs over all states.
The expectation 〈â†

i âj 〉 = δijNi , with Ni being the thermal
occupation number of the state, is given by the Bose-Einstein
distribution, Ni = ζe−βεi /(1 − ζe−βεi ). β = 1/kBT is the
inverse temperature, and ζ = eβμ the fugacity with μ being
the chemical potential. It follows that the first-order correlation
function is

G
(1)
r,r′,t,t ′ =

∑
all i

u∗
i (r)ui(r′)eiεi (t−t ′)/�

ζe−βεi

1 − ζe−βεi
. (11)

For bosons, it turns out to be helpful to expand the thermal
occupation factor in Eq. (11) as a power series of the fugacity,
of the form x/(1 − x) = ∑

k=1 xk . Combining exponentiated
terms, we find

G
(1)
r,r′,t,t ′=

∞∑
k=1

ζ k
∑
all i

u∗
i (r)ui(r′)ei[(t−t ′)+ik�β]εi/�. (12)

The inner sum is in the same form as the representation of the
propagator, or Green’s function [24], for the single-particle
Hamiltonian Ĥ :

K(r,r′,t,t ′) =
∑
all i

u∗
i (r)ui(r′)eiεi (t−t ′)/�

= 〈r′|e−iĤ (t ′−t)/�|r〉. (13)

Using this propagator with a complex time argument, the
correlation function can be evaluated:

G
(1)
r,r′,t,t ′ =

∞∑
k=1

ζ kK(r,r′,t,[t ′ − ik�β]). (14)

At this point, we note that the expansion is effectively over
increasing thermal occupation numbers, and that correlations
with larger particle numbers will decay rapidly for noncon-
densed systems.
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FIG. 1. (Color online) A correlation measurement requires at
least two atom number measurements at different times and places.
Light beams pass through the atom cloud, and the number of atoms in
the interaction volume shows up in the amplitude or phase properties
of the light.

The fugacity can be found by integrating the density over
all space to give the total atom number:

Ntotal = ∫
d3r G

(1)
r,r,t,t . (15)

If the atom number is to be fixed in simulation, then the fugacity
must be found so that this equation is satisfied.

B. Correlation measurements over finite volumes

Imaging experiments measure the change of amplitude,
phase or polarization of a probe light beam due to the
atom-light interaction [21]. In the limit of small optical density,
the change to the light beam is proportional to the average
atomic density seen by the beam as it passes through the
cloud, necessarily integrating along line of sight. There will
also be a finite resolution transverse to the beam due to the
optical geometry, ultimately limited by diffraction. Therefore,
any optical measurement of density covers a finite volume.
Real measurements also take finite times to count sufficient
photons. This finite detection volume and time will tend to
smear out and reduce measured correlations.

The expectation of the time-averaged number of atoms in
the probe beam during a measurement is [25]

E(NR,τ ) =
∫

dt

∫
d3r 〈n̂r,t 〉IRτ (r,t), (16)

with R a label for the central position of the probe beam for
measurements around time τ . The probe beam has a spatial and
temporal intensity profile IR,τ (r,t) which is normalized such
that

∫
dt IR,τ (R,t) = 1 (dimensionless) at its spatial maximum

[26]. Photons arriving at detectors will be used to infer this
atom number.

A general second-order correlation measurement includes
a series of paired number measurements at two times, τ and τ ′
and with probe beams in modes centered at different positions

R and R′, as shown schematically in Fig. 1. This measurement
corresponds to measuring the product of densities, which is
the only kind of correlation that can be measured using near-
resonant light [21]. A good estimator for the correlations, the
covariance, noted with the tilde to remind us that it’s spatially
integrated and averaged over a series of realizations, is

C̃R,R′,τ,τ ′ =
∫∫

dt dt ′
∫∫

d3r d3r ′IR,τ (r,t)IR′,τ ′(r′,t ′),

×
[

1

2
〈n̂r,t n̂r′,t ′ + n̂r′,t ′ n̂r,t 〉 − 〈n̂r,t 〉〈n̂r′,t ′ 〉

]
.

(17)

This finite-volume correlation estimator is the double integral
of the local correlation measure, Eq. (5), weighted by the probe
beam intensities.

This can in turn be expressed in terms of G(1), as in Eq. (9).
We find

C̃R,R′,τ,τ ′ =
∫∫

dt dt ′
∫∫

d3r d3r ′ IR,τ (r,t)IR′,τ ′(r′,t ′)

× {
Re

[
G

(1)
r,r′,t,t ′D(r,r′,t − t ′)

] + ∣∣G(1)
r,r′,t,t ′

∣∣2}
.

(18)

It is common to work with correlation estimators which are
normalized by the standard deviations of each of the compo-
nent measurements. In this case, we choose to approximate
the standard deviations of measured numbers with Poissonian
statistics in the limit of large number: Var (N ) = E(N ), where
Var (X) is the sample variance. The normalized correlation
estimator is then

c̃R,R′,τ,τ ′ = C̃R,R′,τ,τ ′√
E(NR,τ )E(NR′,τ ′)

. (19)

III. LOCALIZED CORRELATIONS IN BOSE
GASES IN HARMONIC TRAPS

We now turn to the specific case of thermal bosons in a
harmonic trap. Our task is to evaluate the local correlation
estimator, Cr,r′,t,t ′ . The Hamiltonian for an atom of mass M in
a trap of frequencies 
x,
y , and 
z is Ĥ = −(�2/2M)∇2 +
M(
2

xx
2 + 
2

yy
2 + 
2

zz
2)/2. The eigenstates ulmn(r) are the

Hermite polynomials with energies εlmn = �(l
x + m
y +
n
z), with zero-point energy subtracted for ease of notation.
Since the Hamiltonian is a sum of three terms, one for
each dimension, both the eigenstates and the propagator are
separable: Kr,r′,t,t ′ = Kx(x,x ′,t,t ′)Ky(y,y ′,t,t ′)Kz(z,z′,t,t ′).

The propagator along the x direction, for the kth term in
the expansion of the correlation function, is given by [24]

K (k)
x (x,x ′,t,[t ′ − i�kβ]) =

√
M
x

2πi� sin [
x(t ′−t−ik�β)]
exp

[
iM
x{(x ′2 + x2) cos[
x(t ′−t−ik�β)] − 2x ′x}

2� sin[
x(t ′−t−ik�β)]

]
. (20)

With a real argument this propagator oscillates, so there will be damped oscillations in the correlation function from the complex
argument. The correlation function is then a sum over products of partial propagators:

G
(1)
r,r′,t,t ′ =

∞∑
k=1

ζ k
∏

s=x,y,z

K (k)
s (s,s ′,t,[t ′ − i�kβ]). (21)
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FIG. 2. (Color online) Un-normalized spatial correlation func-
tion G(1), for a cloud of 20 000 atoms of 87Rb at 500 nK in a trap
of 1000 × 1000 × 20 Hz, along the center line of the trap at the time
zero. Since the phase-space density is 0.35, large particle number
occupancies (k) are not expected, and the series Eq. (21) from k = 1
to k = kmax converges rapidly. The fugacity which gives the correct
particle number is ζ = 0.34. The typical correlation length is the de
Broglie wavelength, which is around 265 nm in this case.

Note that this does not mean that the correlation function is
separable.

By numerical evaluation of the fugacity constraint Eq. (15),

Ntotal =
∞∑

k=1

ζ k
∏

s=x,y,z

∫
all space
ds K (k)

s (s,s,t,[t − ik�β]), (22)

it is possible to choose the atom number, and then to iteratively
estimate the fugacity ζ to make this equation consistent.

A. Two-position correlations at one time

We now inspect the behavior of the first-order correlation
function G(1) for a cloud of 20 000 atoms of 87Rb at 500 nK in a
cigar-shaped trap of 1 kHz × 1 kHz × 20 Hz, along the center
of the trap at time zero. In Fig. 2, we see that the series Eq. (12)
converges rapidly for temperatures significantly above critical.
Each term in ζ k corresponds to a thermal occupation number
of the ground state by k particles. Since the temperature is
above critical for this example, the probability of thermal
occupation of large numbers of particles in the ground state is
very small. The correlation function is significant over length
scales around the de Broglie wavelength.

For further discussion, we define the normalized correlation
functions:

g
(1)
r,r′,t,t ′ = G

(1)
r,r′,t,t ′√

G
(1)
r,r,t,tG

(1)
r′,r′,t ′,t ′

, (23)

g
(2)
r,r′,t,t ′ = G

(2)
r,r′,t,t ′

G
(1)
r,r,t,tG

(1)
r′,r′,t ′,t ′

, (24)

which are independent of the number of particles in the trap
and start at g(1) = 1 and g(2) = 2 for t = t ′ = 0 and r = r′.

FIG. 3. (Color online) Normalized two-time correlation func-
tions g(1) (real and imaginary parts) and g(2) − 1 for the same atom
cloud as Fig. 2, at the center of the trap. (Inset) Same figure but at
shorter times. The correlation function decays on the thermal time
scale τc = �β = 15 μs. Correlations revive after one half oscillation
of atoms along the tighter axis, 500 μs = 32.7 × τc here.

B. Two-time correlations at one position

Turning our attention to the normalized, two-time
correlation function, Fig. 3 shows a decay of the two-particle
correlations on the time scale τc = �β (inset). The correlations
revive and decay as particles oscillate in the confining
potential, returning partially after the half the shortest
oscillation period, i.e., 500 μs. The correlations return
completely on the longest time scale in the system, half the
axial oscillation period (25 ms in this case). Any two particles
will separate and then return to their original position after
half an oscillation in the trap, so the two-particle correlation
function revives. The real part of g(1) is negative for most
of the time between the beginning and the first revival. This
phase shift could in principle be observable in a two-path
interferometer based on extracting atoms from the cloud, and
then relatively delaying one of the paths. Beats between the
different trap frequencies appear in the correlation function.

FIG. 4. (Color online) Normalized two-time correlation function
g(2) for the same atom cloud as Fig. 2, but offset from the trap center
along the short direction by a distance x0. We see that the revival goes
from twice per oscillation period to just once as position is moved
away from the trap center.
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FIG. 5. (Color online) Normalized two-time correlation function
g(2) for the same atom cloud as Fig. 2, as a function of both time t ′

and position, with first point at the center of the trap and time t = 0,
the second off center at x ′. We see how correlations take a finite time
to reach the second position.

Inspecting g(2) at a fixed position but off center of the trap,
Fig. 4 shows that the revival changes from occurring twice
per oscillation period to just once. A narrow wave packet
launched from the trap center revives every half-oscillation
period and every whole period. An off-center wave packet
revives once per period; after half a period the wave packet
revives on the opposite side of the trap, not contributing to
the correlation function. The distance off axis required for
this effect is approximately the de Broglie wavelength, and at
intermediate distances, partial wave-packet revivals are seen
in the correlation function after half-oscillation periods.

C. Two-time, two-position correlations

Figure 5 shows the temporal evolution of g(2) when the
measurement at the second time τ ′ is done away from the
trap center. The correlation function peaks at later times at
points further away from the center. We can therefore define

a speed at which the peak of the correlation function travels.
It can be calculated by combining the typical correlation time
scale τc = �β with the de Broglie wavelength λT to make the
correlation velocity vc = √

2πkBT /M . We see from figure
Fig. 5 that correlations travel at about 2.5 × vc.

IV. MEASUREMENTS OVER FINITE VOLUMES
IN OBLATE HARMONIC TRAPS

We now apply the general form of Sec. II B to the specific
case of harmonically trapped Bose gases probed by Gaussian-
shaped beams. The coordinate system is defined in Fig. 1. We
make the approximation that the Rayleigh range of the probe
beam is much longer than the thickness of the cloud in the
direction of propagation. This approximation makes it possible
to separate the detection response function, into components
IR,τ (r,t) = IX(x)IY (y)IZ(z)Iτ (t).

Measurements can be performed quickly compared to the
typical correlation time scales �β, so we will approximate
the temporal response function of the detection with an
infinitesimal response time: IR,τ (r,t) = IR(r)δ(t − τ ). The
separated factors of the spatial detector response functions
are IX(x) = 1, IY (y) = e−2(y−Y )2/w2

0 , and IZ(z) = e−2(z−Z)2/w2
0 ,

where R = (X,Y,Z) and w0 is the waist of the probe beam.
We consider a pancake-shaped atomic cloud, which is

thin along the line of sight in order to minimize the loss of
coherence through integration along the probe axis; the other
axes are kept loose. The trap contains 105 atoms at 100 nK and
has trap frequencies of 413 × 20 × 9 Hz, much as in Ref. [5].

The full expression for the correlation estimator with a finite
detection volume, Eq. (18), requires a numerically intractable
eight-dimensional integral. Since the detector response con-
tains a δ function we can execute the time integrals. The
separability of both propagators and detector response can
be used to express the six-dimensional spatial integral as a
product of two-dimensional integrals, reducing the numerical
complexity.

Making use of the result of Eq. (A4), we can now
numerically evaluate Eq. (18) as

C̃R,R′,τ,τ ′ =
{ ∞∑

k=1

ζ kRe

[ ∏
s=x,y,z

∫∫
ds ds′ IS(s)IS′(s′)K(k)

s (s,s′,τ,[τ ′ − i�kβ])K(0)(s′,s,τ ′,τ )

]}

+
{ ∞∑

k=1

∞∑
l=1

∏
s=x,y,z

ζ k+l

∫∫
ds ds ′ IS(s)IS ′(s ′)K (k)

s

∗
(s,s ′,τ,[τ ′ − i�kβ])K (l)

s (s,s ′,τ,[τ ′ − i�lβ])

}
. (25)

The first term is due to quantization of the matter field into
atoms (shot noise). This term is dominant around the peaks of
D(r,r′,τ ′ − τ ) (see Appendix). It is maximized at τ ′ = τ = 0,
where it reduces to

C̃sn
R,R′ =

∞∑
k=1

ζ k
∏

s=x,y,z

∫
ds,

IS(s)IS ′ (s)K (k)
s (s,s,0,[−i�kβ]). (26)

This equation gives an upper bound for the shot-noise
contributions. The second term in Eq. (25) is due to bosonic

fluctuations and will be labeled C̃bs . It decays more slowly
than the first term when increasing τ ′ − τ .

A. Two-position correlations at one time

The correlation measure taken for two short (compared to
�β) measurements of the number of atoms in the probe beam,
at nearly equal times but two positions, is shown in Fig. 6. The
number of atoms in the beam estimated from Eq. (16) is 37
atoms. The measures are taken 10 μs apart since the numerical
integrals do not converge for exactly equal times. The bosonic
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FIG. 6. (Color online) Un-normalized fluctuations C̃, for a cloud
of 105 atoms at 100 nK in a pancake-shape trap of 413 × 20 × 9 Hz
as in Ref. [5], for two measurements at nearly equal times (just
10 μs apart). The phase-space density is 0.82. The scale over
which correlations decay is the size of the probe beam used for
detection, which is 1.5 μm in this case. For comparison, the de
Broglie wavelength is 0.59 μm. The maximum shot-noise fluctuation
calculated with Eq. (26) is 24 atoms. The mean atom number in
the probe beam is 37, indicating that the fluctuations are effectively
suppressed by the presence of atoms in the Gaussian wings of the
detection volume.

enhancement of fluctuations is up to 5 atoms. The bosonic
correlations decay on the length scale of the measurement
probe beam size, in this case 1.5 μm. The bosonic-correlation
length scale intrinsic to the atom cloud is λT = 0.59 μm here,
much smaller than beam size. The shot-noise fluctuation at the
origin is 24 atoms and therefore less than would be expected
from Poissonian statistics, where variance equals the mean.
The total mean atom number in the probe region is made of
many atoms in the wings of the Gaussian probe beams, which
are only partially detected, and hence fluctuations are reduced.

B. Correlations at two times

We now turn to normalized correlation estimators at two
times as defined in Eq. (19). Figure 7 shows how the one-
particle autocorrelation [first part of Eq. (25)] decays faster
than the bosonic correlations. Furthermore, the shot noise
demonstrates anticorrelations as particles which start in the
middle move away. When they come back to the center, a
revival can be seen in the correlation function, roughly one
full oscillation period along the tightest trap axis.

We also note that fluctuations become weaker as the
temperature becomes much higher than the critical temperature
for Bose-Einstein condensation. Furthermore, the time scale
on which the correlations decrease is dictated by the time it
takes atoms with the mean thermal speed to cross the detection
region (again 1.5 μm here). Since this speed increases with
temperature, so the correlations die away faster at higher
temperatures, with a typical time scale proportional to 1/

√
T

and not the thermal coherence time scale, ∝ 1/T .
When the two measurements at different times are also

done at different positions, we see again that correlations take
a finite time to move from the first point of measurement to the

FIG. 7. (Color online) Normalized correlation estimator for the
same cloud as Fig. 6, for two measurements at one position. The time
scale over which correlations decay is the time a typical excitation
takes to cross the probe beam used for detection, ∝ 1/

√
T , and not

the typical thermal time scale �β = 76 μs. At short times, shot noise
(single-particle autocorrelation) is the dominant contribution to the
correlation measure. Shot noise also exhibits a revival at about one
oscillation period of the tightest axis of the trap.

second. As shown in Fig. 8, when the probe beams are well
separated (Z′ > w0), the maximum of correlation is found at
finite (not zero) time. This is an observable manifestation of the
propagation of correlations at finite speed. For well-separated
beams, the revival in correlations is not detectable.

V. REALISTIC MEASUREMENT PROTOCOLS
AND UNCERTAINTIES

The determination of atom number will come with some
unavoidable, fundamental uncertainties. We will now estimate

FIG. 8. (Color online) Normalized correlation estimator for the
same cloud as Fig. 6 for two measurements at different positions as
a function of the delay between measurements τ ′. For the furthest
separated measurement positions, the bosonic correlations propagate
at finite speed. Negative autocorrelations cause the initial dip, and
revivals are not observed. For comparison, �β = 76 μs and 1/
x =
2420 μs.

033612-6



TEMPORAL AND SPATIOTEMPORAL CORRELATION . . . PHYSICAL REVIEW A 91, 033612 (2015)

how many measurements it will take to distinguish the bosonic
part of the correlations from the shot noise.

The uncertainty in the correlation measure, Var(C̃), assum-
ing approximately Gaussian statistics, is [27]

Var(C̃) 
 1

Nruns − 1
Var(NR,τ ) Var(NR′,τ ′), (27)

where Var(NR,τ ) is the uncertainty in the measured number of
atoms in the probe beam at position R and time τ , and Nruns is
the number of experimental runs.

Optical detection of atoms always comes with incoherent
photon scattering [28], no matter what property of the
light beam is measured. The more photons spontaneously
emitted, the more precise the measurement can be. However,
spontaneous emission destroys the second-order coherence
that we want to measure. We therefore have to limit the
precision of each measurement, in favor of more, independent,
experimental runs to reduce the statistical uncertainties. The
measurement uncertainty per spontaneously emitted photon
can be decreased by using small probe beams, so it pays to
use high numerical aperture optics. In a shot-noise limited
measurement with a Gaussian beam of size w0 the uncertainty
in the inferred atom number is [26]

Var(NR,τ ) = πw2
0

2σ0nsc

, (28)

where nsc is the number of spontaneous emission events
per atom and σ0 is the resonant atom-light scattering cross
section, which can be up to 3λ2/2π for λ the resonant
optical wavelength. Note that this formula is only valid if
the transverse size of the probe beam is significantly smaller
than the atom cloud.

To detect the bosonic enhancement of the correlations, the
variance on the correlations measure has to be less than the
bosonic part of the correlation measure, the second term in
Eq. (25):

Var
(
C̃

)
� C̃bs . (29)

Using Eqs. (27) and (28) we get an expression for the number
of measurements required to measure the bosonic part of the
correlation measure with a signal-to-noise ratio of one:

Nruns[SNR = 1] ≈
(

πw2
0

2σ0nsc

)2
1

C̃bs
. (30)

Taking the example of Ref. [5] for experimental parameters,
using a 1.5-μm Gaussian-shape probe laser beam and limiting
the number of photons scattered to 0.2 per atom, we find
that a signal-to-noise ratio of 1 is achieved for about 750
experimental runs, for measurements at nearly equal positions
and times. The cloud extends over a few times the size of the
detection region, so it is possible to measure correlations for
several pairs of probe beams in parallel, pairs being separated
by much more than intrapair spacing. Several measurements
can be made on one cloud, although atom number will reduce
and temperature will rise.

Only certain kinds of optical measurements are suitable.
The optical densities (exponents in the Beer-Lambert law)
of the Bose gas clouds discussed are typically larger than 1,
so the detector response is not linear in atom number and

Eq. (16) is not valid. Phase shift measurements (far off
resonance) have a linear response, but will induce a net,
localized, mean phase shift on the atoms due to the ac Stark
effect. Such a phase shift will lead to mechanical effects on
the atom cloud, such as heating or sound waves, which might
disguise the atom-atom correlation signals. We have already
developed a suitable two-frequency measurement technique
which cancels this mean phase shift [23].

VI. CONCLUSIONS

We have shown that the results of temporal and spatiotem-
poral correlation measurements in noninteracting thermal
Bose gases reflect the underlying atom-atom correlation
functions. We have explained how to measure these quanti-
ties optically, for Bose gases in harmonic traps in thermal
equilibrium. Correlations unsurprisingly take time to travel
finite distances. The revivals in the correlation functions
are in practice probably too weak to be visible in finite-
volume correlation measurements, especially in the presence
of nonzero atom-atom scattering [29].

The two-time correlation functions can, in principle, be
calculated in other quantum gas systems such as Bose-Einstein
condensates, interacting Bose gases, Fermi gases, and for other
kinds of potentials, e.g., box potentials or optical lattices. For
noninteracting Bose gases, as the temperature drops from the
critical temperature to zero [30], we expect to see the second-
order correlation function g(2) at short distances and times
reduced below 2, towards 1. Repulsive interactions can reduce
the short-range correlation to zero. Correlation measures for
these systems would provide unambiguous evidence of exotic
phase transitions.

One can expect that strong, projective measurements will
take the ensemble out of thermal equilibrium. Extending
the theory beyond thermal equilibrium is possible using,
for example, stochastic time-evolution techniques [31]. We
would be very interested to read about the results of any such
calculations.
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APPENDIX: PROPERTIES OF THE COMMUTATION
RELATION AT UNEQUAL TIMES

In Eq. (10) we decompose the field operators into a basis set
of the eigenstates of the Hamiltonian that governs the system.
The commutation relations for creation and annihilation of
particles within specific states are

[âi ,â
†
j ] = δij , (A1)

[âi ,âj ] = 0, (A2)

where the δij is the well-defined Kronecker delta. Explicitly
writing out the creation-annihilation operator for the fields
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we find

[�̂(r,t),�̂†(r′,t ′)] =
∑
all i,j

ui(r)u∗
j (r′) e+i(εj t

′−εi t)/�[âi ,â
†
j ]

=
∑
all i

ui(r)u∗
i (r′)e+iεi (t ′−t)/�

= D(r,r′,t − t ′). (A3)

With this formula we can calculate the unequal-time
commutation relations for any bound (discrete) system, and the
formula can be generalized to unbound (continuum) cases. By
inspection, the commutator is directly related to the propagator
of Eq. (13).

D(r,r′,t − t ′) = K(r′,r,t ′,t). (A4)

At equal times Eq. (A3) reduces to the completeness relation
for eigenfunctions, which is guaranteed by the fact that the
Hamiltonian operator is Hermitian.

At unequal times, the result depends on the Hamiltonian.
For our case of a three-dimensional harmonic oscillator, which
is trivially separable, there exists an analytic formula for
the propagator, Eq. (20). This shows that the commutator
is nonzero even for unequal positions. A physical picture,
for bound states, is that an initial delta-function wave packet

spreads out over time. Starting with two such wave packets,
with different positions at different times, there will be some
overlap between them due to this spreading. Hence, their field
operators do not commute, except for special cases like revivals
in a harmonic oscillator. In those cases, the commutator tends
to a Dirac delta function of position in the limit where either
the time arguments are equal or separated by a multiple of the
characteristic oscillation period.

In general, a measurement done at time t will modify
the state of the system and therefore change D(r,r′,t − t ′).
For the purpose of this article, however, we made the strong
assumption that the measurement is only weakly perturbative
and can therefore be neglected.

We also note that the numerical implementation of Eq. (25)
has two particular difficulties. First, the integration of complex
numbers is not well handled by some low-level integration
routines. Secondly, and more severely, the propagators tend to
Dirac delta functions of position in the limit where the time
arguments are equal (or separated by an integer number of
harmonic oscillator periods). That poses no problem for the
second term due to the thermal, imaginary-time component,
but means that numerical integrals of the first part can be
nonconvergent, or even worse, biased. In Fig. 8, we have not
presented numerical results close to the divergences of the
commutator for that reason. We note that evaluation of Fig. 8
took about 80 hours of processor time.
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[10] S. Fölling, F. Gerbier, A. Widera, O. Mandel, T. Gericke, and
I. Bloch, Nature (London) 434, 481 (2005).

[11] M. Greiner, C. A. Regal, J. T. Stewart, and D. S. Jin, Phys. Rev.
Lett. 94, 110401 (2005).

[12] J. Esteve, J.-B. Trebbia, T. Schumm, A. Aspect, C. I. Westbrook,
and I. Bouchoule, Phys. Rev. Lett. 96, 130403 (2006).

[13] J. Armijo, T. Jacqmin, K. V. Kheruntsyan, and I. Bouchoule,
Phys. Rev. Lett. 105, 230402 (2010).

[14] T. Müller, B. Zimmermann, J. Meineke, J.-P. Brantut, T.
Esslinger, and H. Moritz, Phys. Rev. Lett. 105, 040401
(2010).

[15] C. Sanner, E. J. Su, A. Keshet, R. Gommers, Y.-I. Shin, W.
Huang, and W. Ketterle, Phys. Rev. Lett. 105, 040402 (2010).

[16] C. Sanner, E. J. Su, A. Keshet, W. Huang, J. Gillen, R. Gommers,
and W. Ketterle, Phys. Rev. Lett. 106, 010402 (2011).

[17] J. Meineke, J.-P. Brantut, D. Stadler, T. Müller, H. Moritz, and
T. Esslinger, Nature Physics 8, 455 (2012).

[18] Q. Zhou and T.-L. Ho, Phys. Rev. Lett. 106, 225301 (2011).
[19] R. Pathria, Statistical Mechanics, International Series in Natural

Philosophy (Butterworth-Heinemann, Oxford, 1996).
[20] M. Naraschewski and R. J. Glauber, Phys. Rev. A 59, 4595

(1999).
[21] E. V. Goldstein, O. Zobay, and P. Meystre, Phys. Rev. A 58,

2373 (1998).
[22] Y. Aharonov and L. Vaidman, Phys. Rev. A 41, 11 (1990).
[23] M. Kohnen, P. Petrov, R. Nyman, and E. Hinds, New J. Phys.

13, 085006 (2011).
[24] J. Sakurai, Modern Quantum Mechanics (Addison-Wesley,

Reading, 1985).
[25] The notation E(X) for the expectation value of a random

variable is fairly standard when distinguishing between stochas-
tic processes (e.g., experimental realizations) and quantum
expectation values [32,33]. The interpretation of the two kinds
of expectation, statistical and quantum, is of course rather tricky,
but here we are just making use of the clarity of notation.

[26] R. A. Nyman, S. Scheel, and E. A. Hinds, Quant. Info. Proc. 10,
941 (2011).

[27] R. Barlow, Statistics: A Guide to the Use of Statistical Methods in
the Physical Sciences, Vol. 29 (John Wiley & Sons, Chichester,
1989).

[28] J. E. Lye, J. J. Hope, and J. D. Close, Phys. Rev. A 67, 043609
(2003).

[29] A. Bezett, H. J. van Driel, M. P. Mink, H. T. C. Stoof, and R. A.
Duine, Phys. Rev. A 89, 023632 (2014).

033612-8

http://dx.doi.org/10.1103/PhysRevLett.77.3090
http://dx.doi.org/10.1103/PhysRevLett.77.3090
http://dx.doi.org/10.1103/PhysRevLett.77.3090
http://dx.doi.org/10.1103/PhysRevLett.77.3090
http://dx.doi.org/10.1126/science.1118024
http://dx.doi.org/10.1126/science.1118024
http://dx.doi.org/10.1126/science.1118024
http://dx.doi.org/10.1126/science.1118024
http://dx.doi.org/10.1103/PhysRevLett.95.090404
http://dx.doi.org/10.1103/PhysRevLett.95.090404
http://dx.doi.org/10.1103/PhysRevLett.95.090404
http://dx.doi.org/10.1103/PhysRevLett.95.090404
http://dx.doi.org/10.1038/nature05513
http://dx.doi.org/10.1038/nature05513
http://dx.doi.org/10.1038/nature05513
http://dx.doi.org/10.1038/nature05513
http://dx.doi.org/10.1103/PhysRevLett.107.160403
http://dx.doi.org/10.1103/PhysRevLett.107.160403
http://dx.doi.org/10.1103/PhysRevLett.107.160403
http://dx.doi.org/10.1103/PhysRevLett.107.160403
http://dx.doi.org/10.1126/science.1198481
http://dx.doi.org/10.1126/science.1198481
http://dx.doi.org/10.1126/science.1198481
http://dx.doi.org/10.1126/science.1198481
http://dx.doi.org/10.1103/PhysRevA.86.021601
http://dx.doi.org/10.1103/PhysRevA.86.021601
http://dx.doi.org/10.1103/PhysRevA.86.021601
http://dx.doi.org/10.1103/PhysRevA.86.021601
http://dx.doi.org/10.1038/nphys2632
http://dx.doi.org/10.1038/nphys2632
http://dx.doi.org/10.1038/nphys2632
http://dx.doi.org/10.1038/nphys2632
http://dx.doi.org/10.1103/PhysRevA.70.013603
http://dx.doi.org/10.1103/PhysRevA.70.013603
http://dx.doi.org/10.1103/PhysRevA.70.013603
http://dx.doi.org/10.1103/PhysRevA.70.013603
http://dx.doi.org/10.1038/nature03500
http://dx.doi.org/10.1038/nature03500
http://dx.doi.org/10.1038/nature03500
http://dx.doi.org/10.1038/nature03500
http://dx.doi.org/10.1103/PhysRevLett.94.110401
http://dx.doi.org/10.1103/PhysRevLett.94.110401
http://dx.doi.org/10.1103/PhysRevLett.94.110401
http://dx.doi.org/10.1103/PhysRevLett.94.110401
http://dx.doi.org/10.1103/PhysRevLett.96.130403
http://dx.doi.org/10.1103/PhysRevLett.96.130403
http://dx.doi.org/10.1103/PhysRevLett.96.130403
http://dx.doi.org/10.1103/PhysRevLett.96.130403
http://dx.doi.org/10.1103/PhysRevLett.105.230402
http://dx.doi.org/10.1103/PhysRevLett.105.230402
http://dx.doi.org/10.1103/PhysRevLett.105.230402
http://dx.doi.org/10.1103/PhysRevLett.105.230402
http://dx.doi.org/10.1103/PhysRevLett.105.040401
http://dx.doi.org/10.1103/PhysRevLett.105.040401
http://dx.doi.org/10.1103/PhysRevLett.105.040401
http://dx.doi.org/10.1103/PhysRevLett.105.040401
http://dx.doi.org/10.1103/PhysRevLett.105.040402
http://dx.doi.org/10.1103/PhysRevLett.105.040402
http://dx.doi.org/10.1103/PhysRevLett.105.040402
http://dx.doi.org/10.1103/PhysRevLett.105.040402
http://dx.doi.org/10.1103/PhysRevLett.106.010402
http://dx.doi.org/10.1103/PhysRevLett.106.010402
http://dx.doi.org/10.1103/PhysRevLett.106.010402
http://dx.doi.org/10.1103/PhysRevLett.106.010402
http://dx.doi.org/10.1038/nphys2280
http://dx.doi.org/10.1038/nphys2280
http://dx.doi.org/10.1038/nphys2280
http://dx.doi.org/10.1038/nphys2280
http://dx.doi.org/10.1103/PhysRevLett.106.225301
http://dx.doi.org/10.1103/PhysRevLett.106.225301
http://dx.doi.org/10.1103/PhysRevLett.106.225301
http://dx.doi.org/10.1103/PhysRevLett.106.225301
http://dx.doi.org/10.1103/PhysRevA.59.4595
http://dx.doi.org/10.1103/PhysRevA.59.4595
http://dx.doi.org/10.1103/PhysRevA.59.4595
http://dx.doi.org/10.1103/PhysRevA.59.4595
http://dx.doi.org/10.1103/PhysRevA.58.2373
http://dx.doi.org/10.1103/PhysRevA.58.2373
http://dx.doi.org/10.1103/PhysRevA.58.2373
http://dx.doi.org/10.1103/PhysRevA.58.2373
http://dx.doi.org/10.1103/PhysRevA.41.11
http://dx.doi.org/10.1103/PhysRevA.41.11
http://dx.doi.org/10.1103/PhysRevA.41.11
http://dx.doi.org/10.1103/PhysRevA.41.11
http://dx.doi.org/10.1088/1367-2630/13/8/085006
http://dx.doi.org/10.1088/1367-2630/13/8/085006
http://dx.doi.org/10.1088/1367-2630/13/8/085006
http://dx.doi.org/10.1088/1367-2630/13/8/085006
http://dx.doi.org/10.1007/s11128-011-0298-y
http://dx.doi.org/10.1007/s11128-011-0298-y
http://dx.doi.org/10.1007/s11128-011-0298-y
http://dx.doi.org/10.1007/s11128-011-0298-y
http://dx.doi.org/10.1103/PhysRevA.67.043609
http://dx.doi.org/10.1103/PhysRevA.67.043609
http://dx.doi.org/10.1103/PhysRevA.67.043609
http://dx.doi.org/10.1103/PhysRevA.67.043609
http://dx.doi.org/10.1103/PhysRevA.89.023632
http://dx.doi.org/10.1103/PhysRevA.89.023632
http://dx.doi.org/10.1103/PhysRevA.89.023632
http://dx.doi.org/10.1103/PhysRevA.89.023632


TEMPORAL AND SPATIOTEMPORAL CORRELATION . . . PHYSICAL REVIEW A 91, 033612 (2015)

[30] K. V. Kheruntsyan, D. M. Gangardt, P. D. Drummond, and
G. V. Shlyapnikov, Phys. Rev. Lett. 91, 040403 (2003).

[31] S. D. Wilson, A. R. R. Carvalho, J. J. Hope, and M. R. James,
Phys. Rev. A 76, 013610 (2007).

[32] H. Breuer and F. Petruccione, The Theory of Open Quantum
Systems (Oxford University Press, Oxford, 2007).
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