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SUMMARY 

__________ 

 

DNA markers are increasingly used for studying environmental samples that 

contain DNA from multiple species. After sequencing a subsample of the extracted DNA, 

sequences are identified by matching them to so-called “DNA barcodes”, i.e. short 

reference sequences from well-identified specimens. In my thesis, I address a range of 

methodological challenges that are associated with such matching of unidentified and 

identified sequences. I first demonstrate that some of the currently used identification 

techniques based on K2P distances are flawed and argue that simpler metrics such as 

uncorrected distances should be used (Chapter 2). Next, I reveal that DNA barcode 

species coverage for Metazoa in open-access databases remains poor (Chapter 3). I also 

generate large barcode databases for animals and plants needed for my studies on 

colobine monkeys and their diet (Chapter 4). The last two chapters (5 and 6) use these 

databases for studying fecal DNA from two species of colobine monkeys (Pygathrix 

nemaeus and Presbytis femoralis). Based on a set of plant barcode sequences, I identify 

the diet and obtain information on the genetics and parasite infestation of the host. While 

this was primarily based on direct shotgun sequencing (“metagenomics”), I also test an 

alternative PCR-based “metabarcoding” approach using deep sequencing of amplicons. I 

develop and optimize new methods for read-based identification and compare the results 

of either approach. I conclude that metagenomics is preferable because it simultaneously 
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provides information on diet, host genetics, and parasite infestation. In addition, 

metagenomic data provide more taxonomic precision for identifying plant species than 

the short barcodes used in metabarcoding. However, I find a correlation between read 

counts as obtained by either method so that the simpler metabarcoding may still be useful 

for diet quantification. When applied to fecal samples of endangered banded leaf 

monkeys (Presbytis femoralis), shot-gun sequencing reveals a diverse dietary profile, 

which recovers most of the diet identified by direct field observation. Upon characterizing 

the monkeys’ mitochondrial genomes also present in the feces, I find very low genetic 

variability but I was able to detect heteroplasmy in the mitochondrial DNA. Lastly I find 

parasites such as Strongyloides, Oesophagostomum, Entamoeba and Blastocystis in the 

gut of these primates. Overall, these studies expose the enormous power of recent 

sequencing technologies in ecological research, to study species interactions and 

ecosystem function based on well constructed barcode reference data. 
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CHAPTER 1 

__________ 

General Introduction 

Reconstructing history: why it is still relevant and what are the new opportunities 

 

Over two thousand years ago, Archimedes of Syracuse wrote several treatises. 

Unfortunately, many were lost and considered irretrievable. When a copy of his Method was 

rediscovered as recently as 1906, it led to a great deal of excitement among, for example, 

mathematicians because there had been gaping hole in our understanding of how the Greeks 

came to discover their great theorems. Indeed, humans have a fascination with history and 

have developed many techniques for reconstructing events that took place in the past. 

Historians reconstruct history by deciphering records and reading and translating documents, 

but scientists have similar interest in history. Sometimes it is an interest in the history of 

science, but other times scientists use a variety of different tools for reconstructing biological 

change that happened in the past. Today’s biologists often use DNA sequences to infer events 

that humans were not able to observe directly. For several decades, it has been routine to use 

these signatures for reconstructing the tree of life that reflects the relationships between 

organisms and species. Based on the trees, scientists have also been able to reconstruct 

evolutionary change of, for example, morphological and behavioural traits. These 

reconstructions have yielded much information about the origin of our planet’s diversity. On 

the other hand, DNA sequences can also be used to reconstruct more recent, specific events. 

This is a familiar territory in forensics, where genetic information is regularly used to 
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reconstruct crime scenes using trace DNA left by victims, perpetrators, and innocent 

bystanders.  

 

An ecosystem is not all that different from a crime scene. In principle, biologists can 

use DNA remnants to identify the DNA signatures left by the protagonists. However, until 

recently, getting a reasonable subset of all DNA contained in an environmental sample was 

far from trivial. Fortunately, recent advances in genomic technologies allow for generating 

large amounts of sequence data from biological samples, which has opened the door for 

sequencing complex environmental samples. DNA from such samples include signatures 

from numerous organisms belonging to many species. For instance, Venter et al. (2004) used 

samples from Sargasso sea and discovered nearly 1800 genomic species, with at least 148 of 

them being previously unknown. Over the years, sequencing DNA from such samples has 

become an exciting venture for scientists; especially for those who study the largely unknown 

diversity of microbial communities. For example, this approach has been applied to the 

microbiota of soil in order to understand and discover the diversity of microbes (East 2013). 

Similar studies have been carried out for samples of air and feces, in part because the 

microbial faunas can affect human health (Qin et al. 2010; Tringe et al. 2008).  

 

These studies generally utilize two different approaches. Most still use PCR-based 

pre-amplification of a particular genetic marker. A good example is the use of 16S in 

microbial biology. After amplification, the thousands of sequences for different organisms 

that have been generated are sequenced using Next Generation Sequencing (NGS) 

technologies (e.g. Arboleya et al. 2012; Yu et al. 2012). The alternative approach uses 

shotgun sequencing where a subset of the extracted DNA is directly sequenced thus 

generating a very large number of random reads representing the entire genomes of the 
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community of organisms present in the samples (Wang et al. 2013; Xu et al. 2013). The 

second method is untargeted and thus allows for the identification of all genes instead of only 

genes and taxa that were targeted during pre-amplification (Eisen 2007). The downside is the 

higher cost and potentially more challenging bioinformatics given that the selection of genes 

is based on computation instead of relying on biochemical pre-selection techniques as in pre-

amplification. 

 

The term “metagenomics” has been applied to both approaches (Junemann et al. 

2012; Rasheed et al. 2013). The definition of the term is further obscured because several 

authors have used it for the study of microbial communities only. For example, in the very 

first usage by Handelsman et al. (1998) they consider metagenomics to be the “analyses of 

collected genomes of (soil) microflora”. Yet intuitively, “metagenome” carries a more 

inclusive meaning given that an environmental sample need not contain only a set of 

genomes that are microbial in origin. A broader definition of metagenomics would thus be 

similar to the one described by Thomas et al. (2012): “the direct genetic analyses of genomes 

contained with an environmental sample”. A direct genetic analysis would be one where there 

is no enrichment for any taxon or gene. Essentially, this implies an untargeted approach 

where genomic data generated is categorised into various taxonomic and functional 

categories after data generation. In my thesis I adhere to this definition and distinguish the 

“metagenomic approach” from a “metabarcoding approach” that utilizes deep sequencing of 

PCR-based amplicons to generate taxonomic profiles of complex environmental samples. 

 

Metagenomics has largely been made possible by the development and reduced cost 

of NGS technologies. In their earlier days, NGS technologies posed numerous limitations. 

Technologies that yielded long sequences (454 pyrosequencers) produced fewer reads so that 
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mostly the dominant taxa in a metagenomic community could be characterized (Liu et al. 

2012). In contrast, newer, short read technologies (Solexa, SoLiD) produced reads of <50bp, 

generated a large number of reads, but struggled to provide enough information for 

deciphering the taxonomic composition of a sample (Liu et al. 2012). The situation has 

changed in recent years, with read lengths of the short-read technologies increasing (Liu et al. 

2012). Today we are able to obtain large datasets where sequences are long enough for 

taxonomic assignments to family, genus, or even species (Thomas et al. 2012). Note, 

however, that metagenomics is often used to study DNA from samples such as feces, soil, 

fossils etc. which contain much degraded, short-length DNA. In such cases, read length is 

partially determined by sample origin and sequencing technology.  

 

In its initial days, metagenomics was largely popular among microbiologists, because 

it filled a knowledge gap given that most microbial species and clades are unknown (Eisen 

2007). Application of metagenomics to eukaryotes, particularly Metazoa, has been a recent 

phenomenon. For example, Zhou et al. (2013) characterized bulk arthropod samples using 

metagenomics in an attempt to reveal their diversity. Bon et al. (2012) studied the 

mitochondrial DNA from cave hyena coprolites and found a potential diet species for this 

extinct mammal. Presumably, the lack of studies using metagenomics is due to cost of 

sequencing (Andrew et al. 2013) because in many instances the proportion of DNA of 

desired taxa is very low. This means that the depth of sequencing has to be very high in order 

to capture sufficient DNA for the target taxa. However, with decreasing cost of NGS, I will 

argue that it is now becoming feasible to generate sufficient coverage to characterize rare 

DNA in metagenomes. I will demonstrate that the plant diet of phytophagous monkeys with 

long digestion times can be reconstructed although much fewer than <1% of all shotgun 

sequencing reads pertain to diet species. 
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Unfortunately, the nature of metagenomic data poses numerous challenges to 

taxonomic categorization (Eisen 2007). This is exacerbated when the data are generated using 

short-read technologies as short sequences may not have enough diagnostic information for 

classifying the sequences to an informative taxonomic level. In addition, the existing methods 

are largely designed and developed for microbial metagenomics (Thomas et al. 2012) and 

cannot be directly used for the purpose of identifying eukaryotes such as Metazoa and plants. 

This is due to several factors. Firstly, the genetic markers used for taxonomic identifications 

in these organisms are different and hence different reference databases have to be used 

(Hebert et al. 2003; Kress & Erickson 2007). Secondly, there is some consensus among 

microbiologists that sequences clustered at 3% can be used as species-equivalents. For 

Eukaryotes, fixed distance thresholds have also been used; for example in its first version 

Barcode of Life Datasystems used a 1% threshold (Ratnasingham and Hebert, 2007); and 

several studies have used a 2 or 3% threshold (Hebert et al., 2003; Strutzenberger et al., 

2011; Ng’endo et al., 2013; Song et al., 2008). However, a universal threshold fails to delimit 

many groups of organisms (Meier et al., 2006; 2008; Renaud et al., 2012; Meyer and Paulay, 

2005) and hence has met criticism (Collins et al., 2012; Puillandre et al., 2011). Thirdly, for 

many ecological questions involving animals and plants high-precision taxonomic 

information, i.e., identifications to species or genus are desired (Aylagas et al. 2014; Campos-

Arceiz 2013). Lastly, the DNA for many eukaryotes is present in extremely low frequency in 

metagenomes which requires the development of identification methods that allow for the 

identification of low frequency reads with high reliability. 

 

For identifying sequences from metagenomic data, one has to match sequences from 

the metagenome to reference databases containing identified sequences of known taxonomic 
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origin. For Metazoa and plants, this can be achieved using databases of DNA ‘barcodes’. 

While the use of DNA for species identification has a long history (Will et al. 2005), the term 

“DNA barcoding” was proposed in 2003 when a 658 bp fragment of Cytochrome Oxidase 

Subunit I (COI) was first used for identifying sequences to species (Hebert et al. 2003). DNA 

barcoding has since evolved into a large scale initiative that intends to provide DNA barcodes 

for all described species on our planet. Since the initial proposal of COI as a barcode for 

Metazoa, different genes have been proposed as barcodes for other groups such as plants 

(Kress et al. 2005) and fungi (Schoch et al. 2012).  For plants, it has been difficult to reach a 

consensus on which gene(s) should be used. Currently, two barcodes are recommended by 

CBOL (Consortium for the Barcode of Life). They are rbcL and matK. However, these 

barcodes overall lack taxonomic resolution and many closely related species pairs have 

identical sequences. Thus, a number of combinations of other genes have been proposed as 

alternatives (Hollingsworth 2011). Two proposals that have been widely adopted are the 

addition of trnH-psbA (Kress & Erickson 2007) and nrITS (Li et al. 2011) to the core 

barcodes. However, even with these additions, several lineages of plants require additional 

barcodes (Li et al. 2014). Nonetheless these efforts have led to the accumulation of barcode 

sequences for both plants and animals in public databases such as GenBank which now 

contain information on thousands of species/genera, many of which can now be identified 

based on DNA markers. 

 

In this thesis, I propose to use a metagenomic approach to characterizing diet and 

other aspects of biology of endangered species. More specifically, I propose to do this for 

DNA generated from fecal samples which contain the DNA of endangered species (from 

shed cells from the gut lining), diet items (plants whose DNA was incompletely digested), 

microbes, and parasites residing in the intestine. Fecal samples have been used extensively to 



7 

study genetics (Munshi-South & Bernard 2011), diet composition (Mohammad et al. 1995), 

and microbial ecology (Ley et al. 2008). However, these studies analyzed only one particular 

aspect of an animal’s biology. Even NGS based studies were using a targeted approach 

(Deagle et al. 2010; Deagle et al. 2009; Nossa et al. 2010; Taberlet et al. 2009). For example, 

if a researcher was interested in diet, he would pre-amplify genes for putative diet items; if a 

researcher was interested in the microbiome, he would use primers for a microbial marker. 

However, an untargeted metagenomic approach can address these questions simultaneously 

and this is what I pursue in two chapters of the thesis. Such an approach has the potential to 

reveal unexpected and genuinely novel information on biology. For example, if 

metagenomics is used to address diet, it could reveal carnivory in species that have been 

considered herbivorous. However, a metagenomic approach to studying diet is not without its 

problems. For example, before it can be used one has to develop very sensitive methods for 

finding rare reads in metagenomic data. This is necessary because many relevant DNA 

sequences will be present in only very small concentrations. In studies using amplification-

based approaches, finding rare seqeunces is based on the high affinity primers to specific 

sequences; i.e., there is a biochemical filtering mechanism. In metagenomics, it is necessary 

to find an efficient bioinformatic filter. 

 

The methodological problems are two-fold. Firstly, there has been considerable 

debate on methods of identifications of unknown sequences even when full-length barcode 

sequences are available (Little 2011; Little & Stevenson 2007; Meier et al. 2008). This has 

led to detailed discussions and refinements in the methods of identification of sequences. 

(Fan et al. 2014; Little 2011; Little & Stevenson 2007; Meier et al. 2006). Due to the 

complexity of metagenomes and thereby, the computational requirements, several of these 

methods cannot be directly utilized (e.g., those methods based on multiple sequence 
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alignments). Instead, it appears most promising to first optimize distance-based approaches 

for species identification. These approaches require the alignment of a query sequence to the 

reference sequence, and the subsequent calculation of distances between these two sequences. 

The simplest measure is uncorrected pairwise distances which measure the number of 

nucleotide differences between two sequences. On the other hand in the barcoding literature, 

K2P distance, i.e., distances measured after correction using the Kimura-2-parameter model, 

is used widely (Hubert et al. 2008; Zhang & Zhang 2014). In my thesis I demonstrate that 

this is an inappropriate use of K2P distances and discuss the problems with using the model. 

Throughout the rest of my thesis, I then use uncorrected distances for species identifications. 

 

The second problem with identifying species in metagenomes is ensuring accuracy 

given that the reads of metagenomes tend to be very short. For microbes, short reads can 

generally be assembled prior to identifications because most microbe DNA sequences are 

present in large numbers (Mande et al. 2012; Qin et al. 2010). However, assembly-based 

approaches will generally not be suitable for detecting low frequency sequences because they 

will fail to assemble due to lack of overlap (Sharpton et al. 2011). In order to effectively 

scrutinize metagenomes for rare reads, low frequency sequences have to be identified 

directly. In this thesis, I develop strategies for the identification of such low abundance reads 

and demonstrate how they can be used to identify the diet items of two species of colobine 

monkeys that are phytophagous. I furthermore test whether different methods of alignment 

improve the accuracy of identification. 

 

Of course, any new method has to justify its existence by first demonstrating that it is 

an improvement over an existing method. With regard to metagenomic approaches I can 

argue that they have the obvious advantage that they simultaneously characterize diet, host 
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genetics, parasites, and microbiome (Qin et al. 2010). Yet, in order to convince biologists that 

metagenomics should be used for diet characterization, it is important to show that this 

approach is preferable over the existing methods. Currently, the most widely used method for 

plant diet identification from fecal material is based on ‘metabarcoding’. Plant sequences are 

first amplified for a particular barcoding gene by PCR. Afterwards, NGS is used to sequence 

the amplicons that may represent multiple species. For identifying plant diets, the choice of 

barcoding gene is the P6 loop of trnL (Taberlet et al. 2007; Valentini et al. 2009). Therefore, 

I test in my thesis whether metagenomics outperforms metabarcoding when applied to the 

same samples.  
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1.1 Aims and outline of the thesis 

 

The main aim of this thesis is to optimize methods for a metagenomic approach to 

analysing the eukaryote DNA contained in fecal samples of an endangered population of leaf 

monkeys. The species of interest is the banded leaf monkey Presbytis femoralis, whose 

Singaporean population is critically endangered. Although I focus on diet and fecal samples, 

the methods used in my thesis are generally applicable to sequences in any environmental 

sample.  

 

In chapter 2, I criticize the use of the Kimura-2-parameter model which is widely used in 

the DNA barcoding literature. I demonstrate that K2P is not an appropriate model for 

measuring distance in DNA barcodes and argue that uncorrected p-distance ought to be used. 

This article, published in Cladistics, is widely cited (Google Scholar: 63 citations as of 

28.7.2014). Throughout the rest of the thesis, I identify sequences by the simple metric of 

“identity”, i.e., % of identical nucleotides in an alignment.  

 

In chapter 3, I discuss the issue of paucity of Metazoa barcodes in GenBank. I further 

discuss an important challenge for biologists trying to identify species based on barcode 

sequences: the lack of species coverage and the problem of ‘dark’ taxa, i.e., sequences 

without species names. I am a co-author of this publication in Cladistics, and I wrote the 

scripts required to extract the information from GenBank flatfiles, that led to the statistics 

described in the study. This study was conducted in early 2012, and thus reflects the status of 

the database two and half years ago.  
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In chapter 4, I describe the barcode databases used in this study. These databases are 

constructed using data from GenBank and new DNA barcodes that were generated at the 

National University of Singapore for the habitat of the Singaporean population of the banded 

leaf monkey. These sequences are part of an ongoing effort to barcode Nee Soon Swamp 

forest.  

 

In chapter 5, I test whether a metagenomic approach can be used to address the diet of a 

species. The test involves feeding experiments with two individuals of douc langurs 

(Pygathrix nemaeus). Given that the diet was known, I was then able to test whether the diet 

items can be identified and how the identification techniques can be optimized to yield 

accurate genus-level identifications of diet taxa using sequences of 76 bp length. Furthermore 

I compare the identification success rates of the metagenomic approach with the success rates 

of metabarcoding. For the latter, the P6 loop of trnL was pre-amplified and then sequenced 

with NGS. I discuss the advantages and disadvantages of both methods. Among others, I 

demonstrate the multidimensionality of the metagenomic approach in that it characterizes 

parasites, the host mt-genome, as well as revealing an unexpected diet item. This manuscript 

was recently published in Molecular Ecology Resources and forms the methodological 

baseline for diet analyses of Presbytis femoralis in the next chapter.  

 

In chapter 6, I present a case study based on six fecal samples of banded leaf monkey 

(Presbytis femoralis femoralis) from the critically endangered population of the species in 

Singapore. Based on previous research by Ang (2010), I had a preliminary list of diet species. 

I validate and compare the result of metagenomic analysis of the fecal samples with the 

observational data. I furthermore refine the metagenomic approach discussed in the previous 

chapter and characterize the diet, host mitochondrial genomes, and parasites present in the 



12 

gut of these primates.  I discuss how these data will be important for the conservation of the 

small surviving population of banded leaf monkeys, which is estimated to consist of ~40 

individuals (Ang 2010). The population seems to be recovering slowly from a low of <15 

animals but the population viability remains unclear due to several constraints; availability of 

food resources (Ang 2010), carrying capacity (Yu et al. 2009), fertility, and genetic 

constraints (Ang et al. 2010; Ang et al. 2012).  
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CHAPTER 2
1
 

_________ 

On the inappropriate use of Kimura-2-parameter (K2P) 

divergences in the DNA barcoding literature 

 

2.1 Abstract 

 

In this chapter, I present evidence based on ten data sets comprising 5,283 sequences for 

200 genera that the use of the Kimura-2-parameter (K2P) model in DNA barcoding studies is 

poorly justified. I demonstrate that K2P is neither expected nor confirmed to be an 

appropriate model for closely related COI sequences. In addition, I show that the use of 

uncorrected distances yields higher or similar identification success rates for NJ trees and 

distance-based identification techniques. K2P also does not widen the barcoding gap for 

closely related sequences. I conclude that the spread of K2P through the barcoding literature 

is difficult to explain and urge the use of evidence-based approaches to DNA barcoding. 

  

                                                 
1
 A version of this chapter has been published as “Srivathsan, A., and Meier, R. (2011). On the inappropriate 

use of Kimura-2-parameter (K2P) divergences in the DNA-barcoding literature. Cladistics 28(2): 1096-0031.” I 

was the first author. 
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2.2 Introduction 

DNA barcoding was proposed by Hebert et al. (2003) as a solution to the species 

identification problem caused by a mismatch between the number of employed taxonomists 

and species on our planet. High identification success rates were initially reported using a set 

of analytical techniques that remained largely untested given that the movement was in its 

infancy. What followed was a debate about, for example, the intellectual merits and analytical 

rigor of DNA barcoding (e.g. Sperling 2003; Moritz & Cicero 2004; Will & Rubinoff 2004; 

Will et al. 2005; Brower, 2006; Meier et al. 2006). Subsequently new analytical techniques 

were developed (e.g. Meier et al. 2006; Kuksa & Pavlovic 2007; Little & Stevenson 2007; 

Sarkar et al. 2008), but some of the poorly justified earlier methods continued to persist and 

flourish in the literature. I believe that it is important to address the methodological 

shortcomings of these techniques and I would argue that it is most effective to discuss them 

individually. For example, it was recently shown that the use of mean instead of closest 

interspecific distances leads to an overestimation of the so-called “barcoding gap” between 

the intra- and interspecific variability, thus giving investigators the erroneous and 

counterintuitive impression that species identification is getting easier as more species are 

sampled (Meier et al. 2008). In this chapter I will address the use of the Kimura-2-parameter 

model (Kimura 1980) in DNA barcoding studies. Here I describe some conceptual problems 

and test K2P using empirical data. 

 

The original species identification method proposed by Hebert et al. (2003) involved 

the construction of neighbour-joining (NJ) trees based on K2P divergence which is measured 

in terms of nucleotide substitutions per site d, although the barcoding literature generally 

reports them as distances. d is given by: 
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𝑑 ≡  − (
1

2
) ln(1 − 2𝑃 − 𝑄) − (

1

4
) ln(1 − 2𝑄)   … (Equation 3.1) 

where 𝑃 = (
1

4
)(1 − 2𝑒−4(𝛼+𝛽)𝑡 + 𝑒−8𝛽𝑡) 

𝑄 = (
1

2
)(1 − 𝑒−8𝛽𝑡) 

 

α and β represent the rate of transitional and transversional mutations per site per year 

and t is the time since divergence of the two sequences. 

 

Sequences for the same species are generally considered to be correctly identified as 

long as they form a monophyletic cluster on an NJ tree and the intraspecific distances are 

below a threshold. It is beyond the scope of this chapter to summarize the arguments against 

the use of distances, the choice of COI, NJ trees, and monophyly as a criterion for 

determining identification success (see Will & Rubinoff 2004; DeSalle et al. 2005; Meyer & 

Paulay 2005; Will et al. 2005; Rubinoff 2006; Roe & Sperling 2007; Meier 2008; Meier et al. 

2008; Ward et al. 2009), but the use of K2P requires more scrutiny given that distance-based 

techniques will continue to be popular in DNA barcoding. For example, a survey of the 

barcoding literature published in 2010 revealed that K2P was used in 106 publications (ca. 

2/3 of all empirical barcoding studies published in 2010) which is probably partially due to 

the popularity of the Barcode of Life Datasystem (BOLD) (Ratnasingham and Hebert, 2007), 

which uses K2P for taxon ID trees.  

 

This widespread use is surprising given that its justification in Hebert et al. (2003: 

315) was brief: “For the species-level analysis, nucleotide-sequence divergences were 

calculated using the Kimura-2-parameter (K2P) model, the best metric when distances are 
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low (Nei & Kumar 2000) as in this study”. The lack of justification has been pointed out 

before (e.g. Magnacca & Brown 2010; Moniz & Kaczmarska 2010), but in the absence of a 

comparative study based on data, the conceptual objections are unlikely to affect the 

barcoding literature. In addition, it is not uncommon that authors of DNA barcoding 

manuscripts are asked by reviewers and editors to use K2P. I hope that an explicit study of 

K2P’s behavior will prove persuasive and encourage a more evidence-based approach to data 

analysis.  
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2.3 Materials and Methods 

I tested the performance of K2P using the ten most recently published, suitable 

metazoan datasets from BOLD (accessed on March 4, 2011: Dettai et al. 2011; Ekrem, et al. 

2010; Francis et al, 2010; James et al, 2010; Lakra et al. 2011; Mecklenburg et al. 2011; 

Pauls et al. 2010; Sweeney et al. 2011; Victor 2010). I deemed datasets unsuitable if they had 

<50 sequences, data for <10 species, very low identification success (Allcock et al. 2011), 

very short sequences (Baird et al. 2011), or major discrepancies between BOLD and the 

corresponding publication with regard to which sequences were identified to species 

(Baldwin et al. 2011). Unless mentioned otherwise, I removed sequences that were only 

identified to genus or family level (Ekrem et al. 2010; Dettai et al. 2011; Sweeney et al. 

2011). However, species labeled with “sp.” were retained as long as they formed 

monophyletic clusters on neighbor-joining trees. 

 

I established the size of the barcoding gap for uncorrected and K2P distances using 

TaxonDNA (v 1.6.2) (Meier et al. 2006) by calculating the differences between the smallest 

inter- and the largest intraspecific distance for each sequence (see Meier et al. 2008). I tested 

whether K2P is an appropriate model for the data by submitting them to jModelTest (v 0.1.1) 

(Posada 2008) which uses an ML tree built by PhyML (v 2.4.4) (Guindon & Gascuel 2003). 

The appropriate models were chosen using the Akaike Information Criteria (AIC). Note that 

p-distances are not included in jModelTest and that the software only tests whether K2P is 

preferred over other models. I not only analyzed full datasets, but also each genus separately. 

The genus-level analyses were carried out because species identification relies on choosing 

appropriate models for closely related sequences. Note that for model-testing sequences 

identified to genus were included in the analyses. 
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In order to test whether analyses using K2P yield higher identification success than 

those based on p-distances, I constructed NJ trees for each of the ten datasets based on both 

kinds of distances using PAUP v 4.0 (Swofford 2003; with ties broken randomly). I then used 

a Python script to create a group membership character for each species and mapped it onto 

the tree in order to identify based on the consistency index of the characters which species 

were not monophyletic. I also conducted a “best close match” analysis as described in Meier 

et al. (2006) using TaxonDNA (v 1.6.2). The latter used the 1% threshold from BOLD and 

the 3% threshold that is often suggested in the barcoding literature. “Best Close Match” 

distinguishes between “correct”, “incorrect”, and “ambiguous” identifications; the latter is for 

sequences that have an equally good match to sequences from several species. 
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2.4 Results and Discussion 

Any use of models requires justification. For K2P, Nei & Kumar (2005) argue that it 

ought to be used for sequences whose transition to transversion ratio is large, but the authors 

also stated that p-distances are preferable when sequences are short and derived from closely 

related species. Nei & Kumar (2005) point out that in these cases p-distances and model-

based distances yield similar results and that a drawback of complex models is that they have 

more variance in estimating the model parameters (Nei & Kumar, 2005). Based on these 

comments, it already appears unlikely that K2P is appropriate for studies of short and closely 

related barcoding sequences. This prediction is confirmed by my model testing. jModeltest 

does not favor the use of K2P for any of the ten full or the 200 genus-level data sets (Fig. 

2.1).  

 

 

Figure 2.1: Models selected using Akaike Information Criterion  

(AIC) for the 200 genera in the ten datasets. 



20 

My analyses also reveal that the use of K2P does not increase species identification 

success rates. NJ trees remain the most popular method in distance-based barcoding studies 

although some studies suggest that it is the least accurate method (e.g. Meier et al. 2006; 

Little & Stevenson 2007). I found that for the ten datasets from BOLD, NJ trees based on p-

distances performed better than those based on K2P. The former yielded more 

“monophyletic” species for the Dettai et al. (2011) dataset where two of the species were 

only paraphyletic on the K2P tree while being weakly supported as monophyletic on the NJ 

tree using p-distances (Lycodichthys antarcticus: bootstrap 36, Paraliparis leobergi: 

bootstrap 60). I can thus conclude that even if one were to adopt a utilitarian point of view of 

using whatever model increases identification success, K2P would not be a good choice.  

 

Overall, K2P also does not increase the identification success when “best close 

match” is used (see Table 2.1 and Table 2.2). At a 1% threshold, two datasets have larger 

numbers of correct identifications using K2P and one using p-distances. At 3%, both methods 

yield the same result. A closer scrutiny of the analysis output reveals that the differences 

between K2P and p-distances are due to the probability of observing ambiguity. Given that 

transitions and transversions contribute differently to divergences based on K2P, K2P is less 

likely to yield ambiguous matches of a query sequence with sequences from multiple species. 

This may at first appear to be an advantage, but K2P more or less randomly breaks the ties 

identified by p-distances. For example, the Ekrem et al. (2010) and Lakra et al. (2011) 

datasets include two sequences for which the K2P analyses yield incorrect matches while the 

p-distances indicated ambiguity (using Best Match, i.e. without threshold).    



21 

Table 2.1: Summary of results of Best Close Match analysis with 1% threshold [numbers in brackets in column 1 are as follows: (Number of sequences/Number of 

sequences with at least one sequence overlapping by >300bp/Number of sequences with conspecifics/Number of species)]. 

 

 
Dataset 

Correct Incorrect Ambiguities 
Sequences without 
identities within 1% Number of 

Singletons 

p K2P p K2P p K2P p K2P 

Dettai et al. (555/555/540/73) 

(Actinopterygian fish) 
96.1(519) 96.1(519) 0.7(4) 0.7(4) 2.2(12) 2.2(12) 0.9(5) 0.9(5) 15 

Ekrem et al. (379/373/351/76) 

(Chironomidae) 
95.4(337)* 95.4(335) 0(0) 0(0) 0(0) 0(0) 4(14) 4.6(16)* 22 

Francis et al. (1896/1889/1862/160) 

(Mammals) 
94.9(1768) 95(1770)* 0.43(8) 0.43(8) 0.05(1)* 0(0) 4.6(85)* 4.6(84) 27 

James et al. (230/229/227/7) 

(Earthworms) 
97.4(221) 97.4(221) 0(0) 0(0) 0(0) 0(0) 2.6(6) 2.6(6) 2 

Lakra et al. (251/251/247/75) 

(Marine fish) 
95.6(236) 95.6(236) 0.8(2) 0.8(2) 2.8(7) 2.8(7) 0.8(2) 0.8(2) 4 

Mecklenburg et al. (684/684/649/111) 

(Marine fish) 
96(623) 96(623) 0(0) 0(0) 3.1(20) 3.1(20) 0.9(6) 0.9(6) 35 

Pauls et al. (463/463/452/42) 

(Smicridea) 
94.5(427) 94.9(429)* 0.4(2) 0.4(2) 2(9)* 1.6(7) 3.1(14) 3.1(14) 11 

Mitter et al. (72/70/64/11) 

(Butterflies) 
100(64) 100(64) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 6 

Sweeney et al. (686/686/680/45) 

(Aquatic macroinvertebrates) 
87.2(593) 87.2(593) 1(7) 1(7) 7.1(47) 7.1(48)* 4.9(33)* 4.7(32) 6 

Victor (67/67/60/20) 

(Actinopterygian fish) 
98.3(59) 98.3(59) 1.7(1) 1.7(1) 0(0) 0(0) 0(0) 0(0) 7 

* indicates the larger value 
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Table 2.2: Summary of results of Best Close Match analysis with 3% threshold [numbers in brackets in column 1 are as follows: (Number of sequences/Number of 

sequences with at least one sequence overlapping by >300bp/Number of sequences with conspecifics/Number of species)]. 

 
Dataset 

Correct Incorrect Ambiguities 
Sequences 

without identities 
within 3% 

Number of 
Singletons 

P K2P P K2P p K2P p K2P 

Dettai et al. (555/555/540/73) 

(Actinopterygian fish) 
97.0 (524) 97.0 (524) 0.7 (4) 0.7(4) 2.2(12) 2.2(12) 0(0) 0(0) 15 

Ekrem et al. (379/373/351/76) 

(Chironomidae) 
98(344) 98(344) 0(0) 0(0) 0(0) 0(0) 2(7) 2(7) 22 

Francis et al. (1896/1889/1862/160) 

(Mammals) 
98.4(1832) 98.4(1832) 0.5(9) 0.5(9) 0.05(1)* 0(0) 1.1(20) 1.1(21)* 27 

James et al. (230/229/227/7) 

(Earthworms) 
99.1(225) 99.1(225) 0.4(1) 0.4(1) 0(0) 0(0) 0.4(1) 0.4(1) 2 

Lakra et al. (251/251/247/75) 

(Marine fish) 
95.5(236) 95.5(236) 0.8(2) 0.8(2) 2.8(7) 2.8(7) 0.8(2) 0.8(2) 4 

Mecklenburg et al. (684/684/649/111) 

(Marine fish) 
96.7(628) 96.7(628) 0(0) 0(0) 3.1(20) 3.1(20) 0.2(1) 0.2(1) 35 

Pauls et al. (463/463/452/42) 

(Smicridea) 
96.5(436) 96.9(438)* 0.4(2) 0.4(2) 2(9)* 1.5(7) 1.1(5) 1.1(5) 11 

Mitter et al. (72/70/64/11) 

(Butterflies) 
100(64) 100(64) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 6 

Sweeney et al. (686/686/680/45) 

(Aquatic macroinvertebrates) 
90.6(616)* 90.4(615) 1(7) 1(7) 6.9(47) 7(48)* 1.5(10) 1.5(10) 6 

Victor (67/67/60/20) 

(Actinopterygian fish) 
98.3(59) 98.3(59) 1.7(1) 1.7(1) 0(0) 0(0) 0(0) 0(0) 7 

 

* indicates the larger value 
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My results raise the question why K2P may have been proposed in the first place. 

The application of nucleotide substitution models will generally yield distances that are 

larger than those based on uncorrected distances. This may have been an attractive 

property as model-based distances yielded higher values and thus implied a better 

interspecific separation. Indeed, I do find that the barcoding gaps tend to be larger under 

the K2P-model than with uncorrected p-distance (Fig. 2.2). However, upon closer 

inspection, K2P only makes a difference for sequences with large interspecific differences 

(Fig. 2.2). 

  

 

 
 

 Figure 2.2: The difference between the K2P barcoding gap (K2Pinter-K2Pintra) and the uncorrected 

barcoding gap (pinter-pintra) is positively correlated with average interspecific distances (values above bars). 

 

This becomes apparent when sequences with >5% smallest interspecific distances are 

excluded from analysis. Now, K2P and uncorrected distances yield similar barcoding 
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gaps (Table 2.3). This means that the use of K2P helps little with species identification 

given that the main challenge in DNA barcoding is to distinguish between closely related 

species. Species with large interspecific distances are readily identified using many 

techniques.  

 

Table 2.3: Impact of K2P on barcoding gap: difference between K2P and p-distances for average 

intraspecific and average interspecific sequence divergences (* = all interspecific distances > 5%). 

Dataset 

All data <5% interspecific distance 

Average 

intraspecific  

(K2P-p) 

Average 

interspecific  

(K2P-p) 

Average 

intraspecific 

(K2P-p) 

Average 

interspecific  

(K2P-p) 

Dettai et al.  

(2011) 
0.015 0.114 0.000 -0.143 

Ekrem et al.  

(2010) 
0.050 1.207 NA* NA* 

Francis et al. 

(2010) 
0.006 0.923 0.003 0.013 

James et al.  

(2010) 
0.010 1.487 0.040 -0.022 

Lakra et al.  

(2011) 
0.000 1.470 NA* NA* 

Mecklenburg et al. 

(2011) 
0.000 0.127 -0.001 0.038 

Mitter et al.  

(2011) 
0.000 0.180 0.000 0.034 

Pauls et al.  

(2010) 
0.005 0.861 0.000 0.005 

Sweeney et al. 

(2011) 
0.002 1.066 -0.029 -0.026 

Victor  

(2010) 
0.039 1.136 0.0765 0.0043 
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2.5 Conclusions 

There are no obvious reasons why one should use K2P in DNA barcoding 

analyses. K2P is neither expected to perform better than uncorrected distances based on 

theoretical arguments, nor is its use supported by model testing or empirical evidence. 

K2P was introduced into the barcoding literature in 2003 and in contrast to most ideas in 

science it subsequently spread through copying with little further inquiry. It is particularly 

surprising that this copying has transcended the Metazoa barcoding literature. Although 

introduced for COI barcodes, K2P is now also used for plastid markers, including intron 

markers that are popular for barcoding plants (e.g. Lee et al. 2010; Ren et al. 2010; Pang 

et al. 2011). But surely these genes have very different evolutionary properties. I hope 

that the arguments and empirical data presented here can reverse the trend and inspire 

authors, reviewers, and editors to follow established criteria before using evolutionary 

models. 
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CHAPTER 3
2
 

________ 

An update on DNA Barcoding: Low species coverage 

and an increasing number of unidentified barcodes 

3.1 Abstract 

DNA barcoding was proposed in 2003, the Consortium for the Barcode of Life was 

established in 2004, and the movement has since attracted more than $80 million funding. 

Here we investigated how many species of multicellular animals have been barcoded. We 

compared the numbers in a public database (GenBank as of January 2012) with those in 

the Barcode of Life Database (BOLD) and found that GenBank contained COI sequences 

for ca. 60,000 species while BOLD reported barcodes for ca. 150,000 species. The 

discrepancy was likely due to a large amount of unpublished data in BOLD. Overall, the 

species coverage was sparse, growth rates were low, and the barcode accumulation curve 

for Metazoa was linear with only 4,788 species added in 2011. In addition, the vast 

majority of species in the public database (73%) were barcoded by projects that were 

unlikely to be related to the DNA barcoding movement. Particularly surprising was the 

large number of DNA barcodes in GenBank that were not identified to species (Jan 2012: 

74%), with insect barcodes often being identified only to order. Of these, several hundred 

thousand were then suppressed by NCBI because they did not satisfy the iBOL/GenBank 

                                                 
2
 A version of this chapter has been published as “Kwong, S., Srivathsan, A., and Meier, R. (2012). An 

update on DNA Barcoding: Low species coverage and an increasing number of unidentified barcodes. 

Cladistics 28(6): 639-644.” I wrote the scripts that generated the statistics from genbank flatfiles. 
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early release agreement. Species coverage was considerably better for target taxa of DNA 

barcoding campaigns (e.g. birds, fishes, Lepidoptera), although it also fell short of 

published campaign targets.  
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3.2 Introduction 

This chapter was motivated by two observations in 2012:  

(1) We used GenBank to blast a COI sequence from an unidentified species of 

chloropid flies and the top 100 BLAST matches were for sequences that had only been 

identified to order (labeled as “Diptera sp.”). These unidentified sequences had been 

overwhelmingly submitted by DNA barcoding projects. Once excluded, the informative 

sequences came predominantly from projects not associated with the DNA barcoding 

campaign. We thus decided to investigate how many identified and unidentified COI 

barcode sequences have been submitted to GenBank and what proportion came from 

DNA barcoding projects.  

 

(2) Two papers in Molecular Ecology Resources highlighted discrepancies 

between the data in BOLD (DNA Barcode of Life Data System: 

http://www.boldsystems.org; Ratnasingham & Hebert 2007) and GenBank (Federhen 

2011; Ratnasingham & Hebert 2011). For example, the numbers of species that had been 

barcoded according to BOLD differed considerably from the number of species for which 

there were sequences in GenBank. This was mostly due to unpublished data in BOLD 

that were available for query-matching but could not be downloaded. These data were 

included in the species counts on the BOLD websites that reported how many species 

have barcodes. We therefore investigated the species coverage in a public database such 

as GenBank where the data are available. Given that BOLD has only few identification 

tools, access to the original data is critical for most sophisticated analyses. Lastly, an 

update on the species coverage achieved by the DNA barcoding movement also appeared 

timely given that the technique was proposed almost ten years ago and Canadian agencies 

http://www.boldsystems.org/
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alone had invested and/or pledged more than 80 million Canadian dollars to DNA 

barcoding (iBOL 2010).  

 

The use of DNA sequences for species identification has a long history (e.g., 

Nanney 1982; Bartlett and Davidson 1991; see also Sperling 2003; Will & Rubinoff 

2004; Will et al. 2005; Cameron et al. 2006; Meier 2008), but it only received much 

attention after it was formally proposed as “DNA Barcoding” in 2003 (Hebert et al. 

2003). One year later an international Consortium for the Barcode of Life (CBOL) was 

established. This was followed by the creation of a specialized sequence database 

“BOLD” in 2007 (Ratnasingham & Hebert 2007). According to Marshall (2005), the goal 

of CBOL is “to tag every organism on Earth, starting with the 1.7 million species that 

have been named and moving on to the estimated 10 million to 20 million that have not” 

(see also Hajibabaei et al. 2005).  

 

It is envisioned that this goal be accomplished in stages by initially concentrating 

the resources on particular branches of the Tree-of-Life. Two of the most prominent 

barcode campaigns are the “All Birds Barcoding Initiative (ABBI)” (Hebert et al. 2004) 

and “Fish Barcode of Life Initiative (FISH-BOL)” (Ward et al. 2009) whose explicit 

goals were outlined by Ratnasingham & Hebert (2007): “seek to deliver barcode coverage 

for all species of birds and fishes by 2012”. Financially these goals were realistic given 

that as early as 2005, “funding [was] in place to ensure that the DNA barcode library for 

animals will grow by at least 500,000 records [the first] 5 years, providing coverage for 

some 50,000 species” (Hebert & Gregory 2005). These taxa were also fairly easy targets 

given that their taxonomy is comparatively well studied (Will et al. 2005). 
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Obtaining high identification success rates with DNA barcodes is critically 

dependent on having good species coverage in the DNA barcode databases against which 

unidentified sequences are queried (Little & Stevenson 2007; Meier 2008; Virgilio et al. 

2008). In building these databases from scratch, one would expect that the number of 

barcoded species would initially increase rapidly given that tissues for common species 

are readily available. The growth would later plateau as rarer species have to be sampled 

(Lim et al. 2011); i.e., overall we would expect a “barcode accumulation curve” that 

resembles the kind of asymptotic collector’s curve that is typically found in biodiversity 

studies (Colwell & Coddington 1994; Gotelli & Colwell 2001; Meier & Dikow 2004). 

Note however that this curve is not expected to be uniform given that sampling would be 

carried out in different geographical locations or taxonomic groups at different times. 

 

In order to determine the progress of the DNA barcoding campaign, we here 

downloaded all GenBank COI sequences for Metazoa. We characterized the barcode 

(species) accumulation curves for all of Metazoa and three taxa that are targeted by 

specific DNA barcoding campaigns (birds, fishes and Lepidoptera). We furthermore 

determined the proportion of identified and unidentified sequences, investigated how 

many sequences were submitted by barcoding projects, and determined the number of 

identical sequences among those that are labeled as “Diptera sp.” in GenBank. Our study 

complemented a paper by Taylor & Harris (2012) who surveyed the DNA barcoding 

literature and found that most barcoding studies target invertebrates and continue to use 

NJ trees for sequence identification (Taylor & Harris, 2012). Information on the relative 

proportion of identified and unidentified sequences in GenBank can also be found in Page 

(2011). 
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3.2 Materials and Methods 

In order to assess the growth of species coverage, a total of 855,442 metazoan 

COI sequences were downloaded from GenBank (January 2012). The COI sequences 

were identified using taxon-specific “taxonomy” searches combined with gene identifiers 

[COI(Gene Name) OR “cytochrome oxidase subunit 1”(Gene Name) OR 

“cytochrome c oxidase subunit 1”(Gene Name) OR “cytochrome c oxidase subunit 

I”(Gene Name) OR “cytochrome oxidase subunit I”(Gene Name) OR COX1(Gene 

Name)]. Note that this search strategy yields overestimates of species coverage because it 

does not exclude partial COI sequences that are very short and/or pertain to the non-

barcoding portion of the gene. Sequences were considered to be the product of a DNA 

barcoding project if the words “barcode” or “barcoding” (“bar cod”, “barcod”, or “bar-

cod”) were present in the full GenBank entry. All other sequences were considered 

unrelated to DNA barcoding (“general systematics” henceforth). In order to determine 

barcode accumulation curves, we used the sequence submission dates to sort sequences 

by submission time and taxa. Barcode accumulation curves were then generated for all of 

Metazoa and the focal taxa of three DNA barcoding campaigns: (ABBI: birds, FISH-

BOL: fishes, iBOL: Lepidoptera). The sequences for the latter were identified through 

taxonomy searches in GenBank (ABBI: “Dinosauria”, FISH-BOL: “Chondrichthyes, 

Actinopterygii, and Hyperoartia”, iBOL: “Lepidoptera”). The barcode coverage in 

GenBank was compared with the coverage reported in BOLD (accessed January 2012). In 

order to determine the proportion of unidentified sequences in GenBank, we identified 

those that were not identified to species. Given that we found many sequences that were 

identified only to order, we also determined the amount of redundant/repetitive 
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sequencing for 46,017 “Diptera sp.” barcodes. We used objective clustering (Meier et al. 

2006) to identify identical (0%) and near-identical (< 1%) sequences. Note that a large 

number of these unidentified sequences (341,978 according 

to http://iphylo.blogspot.sg/2012/04/dark-taxa-even-darker-ncbi-pulls-

dna.html#disqus_thread) were then suppressed by NCBI because they did not meet the 

minimum data standard for an iBOL early release entry. 
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3.3 Results and Discussion 

3.3.1 Species coverage: Metazoa 

We found identified COI sequences for 60,930 species of Metazoa in GenBank; 

i.e., the species coverage was thus very sparse considering that the vast majority of 

described species are Metazoa, and Marshall (2005) estimated that there are 1.7 million 

described and 10-20 million undescribed species. Of course, some habitats and countries 

would be better represented than others, but our results suggested that a large number of 

DNA barcodes remained to be characterized even for the common species.  

 

Arguably even more surprising than the sparse species coverage was that most of 

the growth came from projects unrelated to DNA barcoding (Fig. 3.1). In fact, even if all 

sequences from DNA barcoding projects were to be removed from GenBank, the number 

of species with COI sequences would have only dropped by ca. 16,000 because most 

identified sequences came from “general systematics” projects. Thus, by 2012, it 

appeared that the generously funded DNA barcoding projects had only generated 

barcodes for ca. 22,000 species of which 6,000 were shared with other GenBank projects 

(Fig. 3.1). This fell well short of the 50,000 species for which funding had been obtained 

by 2005 (Hebert & Gregory, 2005). Secondly, in terms of species accumulation in the 

database over years, we found a near-linear curve with an overall less than impressive 

slope (Fig. 3.1). Presumably, species accumulation would be influenced by both 

geographical locations of the funded projects, taxonomic group and the commonality of 

species. Nonetheless, we expected to see a rapid increase in the acquisition rate given that 

it should be straightforward to obtain identified specimens in the initial phase of the 

project. 
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Figure 3.1: Species coverage and species overlap between sequences submitted by barcoding and other 

projects. y-axis represents number of species.  

 

 

Table 3.1: Number of COI sequences submitted to Genbank since 2002.  

* includes sequences submitted before 2002. 

 

Year 

Barcode projects General systematics projects 

No. of 

submitted 

entries 

Percentage of 

unidentified 

entries 

No. of 

submitted 

entries 

Percentage of 

unidentified 

entries 

2002* 331 0.12% 22,574 6.25% 

2003 196 1.53% 10,395 11.98% 

2004 1,569 41.17% 15,934 6.06% 

2005 7,978 30.10% 17,529 12.70% 

2006 7,171 24.93% 22,635 9.92% 

2007 6,330 7.74% 28,190 10.42% 

2008 23,980 24.47% 40,292 9.95% 

2009 49,391 28.02% 48,442 17.46% 

2010 262,136 82.24% 54,685 16.61% 

2011 212,915 85.73% 22,769 14.87% 

Total 571,997 73.98% 283,445 12.69% 
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For example, between 12/2010 and 12/2011 only 4,788 new species were added. Note 

that this small number is unlikely due to manpower or equipment shortage given that 

during the same period more than 200,000 barcodes were submitted to GenBank (Table 

3.1). 

 

Our species coverage numbers deviated considerably from what was reported in 

BOLD which provided information on the “formally described species with barcodes”. 

According to an update from early 2012, BOLD reported that the COI sequences for 

146,067 species were known. Given that most sequences in BOLD were likely to belong 

to Metazoa, at least half of the Metazoa data were not publicly available. The user could 

query a sequence against the full database, but the underlying data remained hidden. This 

raised a number of issues – especially if identifications that were based on BOLD 

searches were to be used in publications (Federhen 2011). In a reply to Federhen (2011), 

Ratnasingham & Hebert (2011) thus “emphasize(d) the need for caution in the 

interpretation of identifications based on a reference library with entries that have seen 

limited validation.” In the literature such identifications should be clearly attributed to 

BOLD with a specification of which version of the database was used.  
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3.3.2 Species coverage: BOLD campaign taxa 

The contributions by DNA barcoding projects were more impressive for those taxa 

that were campaign targets. We evaluated three BOLD campaigns. The largest number of 

species with COI sequences in GenBank was found for Lepidoptera (7,742 species) with 

its ca. 160,000 described species (Kristensen et al., 2007) (Fig. 3.2). We saw a significant 

increase in the number of barcoded species over 2010 and 2011. The fish campaign could 

draw on sequences from >4,244 species for the ca. 31,000 described species while the 

bird campaign was surprisingly far from being in its final stages given that only 2,838 of 

the >10,000 described species had COI sequences (Fig. 3.2).  

 
Figure 3.2: Species coverage for barcoding campaign taxa Lepidoptera, birds, and fishes.y-axis represents 

number of species 

 

Note that Ratnasingham & Hebert (2007) had predicted complete species coverage for 

birds and fishes by 2012. This however was not completed by the end of 2012. Again, the 

species coverage reported in BOLD was higher than in GenBank. According to the 
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database, 66,430 species of Lepidoptera, 8,293 species of fishes, and 3,892 species of 

birds had been covered. There was additional information for FISH-BOL in the form of a 

progress report which indicated that as of July 2010 25% of the 31,000 species had 

barcodes (ca. 7,800 species) (Becker et al., 2011); i.e., only ca. 500 species had been 

added in 1.5 years. This would imply that the growth in the number of barcoded species 

was slowing considerably before even half of the species diversity had been covered. 

Becker et al. (2011) indicated that the main problems were freshwater fishes (but see 

Collins et al. 2012), covering the species of certain geographic regions (Asia, South 

America, Africa), and obtaining properly identified tissues. Not surprisingly, the technical 

problems with obtaining sequences were comparatively minor.  

 

Unfortunately, there were two problems with interpreting the species numbers in 

BOLD. First, it was unclear whether they pertained to described species or also 

“predicted” species although this made a big difference (Cameron et al. 2006) given that 

only barcodes for properly identified specimens can be used for the identification of 

future query sequences. Indeed, it would be surprising if BOLD had almost ten times as 

many identified barcodes of Lepidoptera than GenBank. Second, if the species counts in 

BOLD included predicted species, the reported coverage of, for example, 40% for the 

Lepidoptera was misleading because it was based on comparing predicted species with 

the number of described species.  

 

Yet, the total number of described and undescribed Lepidoptera species was estimated 

to be 400,000-500,000 (Kristensen et al. 2007) and the existing barcodes for 66,430 

species corresponded to a species coverage of approximately 15% as opposed to BOLD’s 

reported figure of 40%. Similarly, the number of described fish species was 31,000, but 
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the true diversity was much higher given that about 4,000 of these species were described 

within the 10 years prior to this study (Becker et al. 2011). It would thus be desirable if 

BOLD were to distinguish between identified and predicted species and use appropriate 

denominators to quantify species coverage (number of described species for identified 

barcodes and estimated number of species for predicted species). Clearly distinguishing 

between described and undescribed diversity would also highlight the importance of 

DNA barcoding for the discovery of cryptic species (Bickford et al., 2007). This will 

arguably be one of the more lasting contributions of the barcoding movement as long as 

potentially cryptic species are later confirmed based on additional data (Gomez et al. 

2007; Tan et al. 2010).  

3.3.3 Unidentified vs. Identified sequences 

One of the most surprising features of the DNA barcodes in GenBank was the 

huge number of unidentified sequences (see also Page 2011). There were 571,997 COI 

barcodes in GenBank but a staggering 423,188 sequences (74%) were not identified to 

species (Table 3.1). The vast majority of these barcodes had only very approximate 

identifications. For example, the 49,629 barcodes for Diptera included 46,017 barcodes 

that were only identified to “Diptera sp.”. Similarly, 195,348 of the 270,301 Lepidoptera 

barcodes were only identified to order (“Lepidoptera sp.”). Presumably many of these 

unidentified sequences came from environmental samples because we found a large 

number of identical or near-identical sequences. For example, clustering at 1% revealed 

that at least one of the “Diptera sp.” species had been sequenced 1,000 times while 

another had 305 identical sequences.  This repetitive sequencing highlighted the problem 

of using DNA barcodes for evaluating environmental samples. Without presorting, 

processing such samples with molecular tools will be very costly and time-consuming. 
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Table 3.2: Number of COI sequences submitted to GenBank for barcoding campaign taxa after 2002. 

*includes sequences submitted before 2002. 

 

Year 

iBOL (Lepidoptera) ABBI (Birds) FISH-BOL (Fishes) 

No. of 

submitted 

entries 

Percentage of 

unidentified 

entries 

No. of 

submitted 

entries 

Percentage of 

unidentified 

entries 

No. of 

submitte

d entries 

Percentage of 

unidentified 

entries 

2002* 216 1.39% 0 0.00% 0 0.00% 

2003 0 0.00% 0 0.00% 0 0.00% 

2004 852 60.21% 424 0.00% 0 0.00% 

2005 4,289 35.09% 0 0.00% 760 0.53% 

2006 213 7.04% 2,134 0.05% 196 0.00% 

2007 872 3.44% 125 0.00% 1,770 2.43% 

2008 3,031 22.47% 2,285 0.00% 8,397 1.13% 

2009 31,466 29.31% 1,875 0.00% 3,905 9.35% 

2010 139,591 85.31% 2,570 23.23% 16,579 57.43% 

2011 89,771 90.41% 3,877 0.52% 9,895 39.84% 

Total 270,301 78.51% 13,290 4.65% 41,502 9.50% 

 

We previously mentioned that most species with COI sequences were sequenced by 

projects that were unlikely to be related to the DNA barcoding movement. The reverse 

was true for the unidentified sequences where the DNA barcoding projects contributed 

approximately three quarters
 
of all unidentified barcodes (Table 3.1). Surprisingly the 

proportion of unidentified sequences was also very high for taxa that were subject to 

BOLD barcoding campaigns. The three BOLD campaign taxa evaluated here contributed 

ca. 50% of all barcodes in GenBank, but most Lepidoptera barcodes (78%) and many fish 

barcodes (34%) were not identified to species (Table 3.2). The only exception was the 

bird project whose sequences were overwhelmingly identified (95%).  

 

 

Overall, the number of barcodes in GenBank was again much lower (571,997) 

than the numbers reported in BOLD, which reported 1,502,590 barcodes of which the 

vast majority were generated by the Canadian Centre (1,124,561 sequences). Note that 

the proportion of unidentified sequences submitted by DNA barcoding projects was not 
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only high but also rapidly increasing (Table 3.1). This may have reflected a change of 

emphasis in the movement from providing an identification tool to using sequences for 

biodiversity assessment. It also coincided with Schindel & Scott’s (2010: 112) proposal 

of taxon labels (“a unique, stable, text-phrase applied to an unpublished taxon 

concept…”) for taxa that have only provisionally been identified. Schindel & Scott (2010: 

113) elaborated: “Ecologists and other non-taxonomists could publish results using taxon 

labels, thereby avoiding the delay often associated with waiting for taxonomists to put 

formal names on specimens.” It appears that there was less emphasis on barcoding 

identified specimens and the importance of species descriptions. 
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3.4 Conclusions 

The DNA barcoding campaign is one of the best-funded and most visible 

movements in biodiversity research. It promises easier ways to identify species based on 

data that do not require taxon-specific knowledge. However, we found that in terms of 

species coverage and accessibility of data, DNA barcoding leaves much to be desired and 

the number and quality of DNA barcodes will have to improve considerably in order to 

achieve the ambitious goals of the movement. In the past much scrutiny and criticism of 

DNA barcoding were devoted to the philosophical and methodological shortcomings 

(Will & Rubinoff, 2004; Will et al. 2005; Brower 2006; Cameron et al. 2006; Meier et al. 

2008; Chapter 2), but our study highlighted the need to carefully evaluate whether the 

movement is capable of delivering sufficient species coverage to make the technique 

useful to a wide variety of users (Cameron et al. 2006).  
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3.5 An Update 

 

Recently, some of the access problems to DNA barcodes existing in 2012 have 

been solved. Barcode of Life Datasystems (BOLD) made the database much easier to 

download data from, leading to access to additional sequences. Yet the several of these 

issues persists, e.g. as per BOLD public database, there are >2 million arthropod barcodes 

available for download of which only 667,092 are identified from ~81,000 species; 

currently from GenBank, there are 506,265 arthropod sequences of which ~250,000 are 

identified to species representing 48,074 species. These are creating a number of concerns 

developing tools for identifications using barcodes; and my hope is that proportion and 

number of identified sequences from existing barcodes increases. Furthermore, 

integration of public data from BOLD to GenBank is still desirable, given that BOLD is 

limited in its genes of choice and requires a separate set of tools for identification due to 

differences in format of taxonomy information as well as sequence data downloaded. 
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CHAPTER 4  

________ 

The databases for diet and parasite analyses: barcoding 

the Nee Soon Swamp forest and the bioinformatic 

retrieval of barcode sequences from GenBank 

4.1 Abstract 

In order to identify DNA sequences obtained through shotgun sequencing or 

metabarcoding from environmental samples, the reads must be matched to DNA barcodes 

with known identity. In this chapter, I describe the databases that were used in the two 

chapters of my thesis that analyze DNA sequences from primate fecal samples (chapters 5 

and 6). Both chapters intially analyze plant diets and for this purpose I utilize global and 

“local” databases. The latter comprise DNA barcodes for putative diet species and these 

barcodes were generated in the lab over the course of this thesis for the purpose of diet 

analyses. The global databases include all publicly available sequences in addition to all 

local sequences. The most recent version of the plant barcode databases, as of May 2014, 

comprised 28,680 species (7,539 genera) for rbcL, 37,068 species (7,894 genera) for 

matK and 22,820 species (5,053 genera) for trnL-F. However, the next two chapters of 

the thesis go beyond diet analyses and also match reads from the fecal samples to non-

plant eukaryotes. For this purpose, I used publicly available rDNA databases. I also built 

a COI database, and a more targeted 18S rDNA database for non-human primate parasite 
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sequences. Here, I characterize the databases and describe the methods that were used for 

ensuring sequences homology of the downloaded data from GenBank.  
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4.2 Introduction 

Databases of DNA barcodes are fundamental to identifying DNA sequence reads. 

In the following two chapters, the main focus is the diet of two colobine primate species. 

Being phytophagous primates, the diets can be identified using plant barcode databases 

that include DNA barcodes for putative food items. Unfortunately, the choice of plant 

barcode genes is not straightforward. Several proposed genes lack the desired taxonomic 

resolution, i.e., they fail to distinguish closely related species (Little & Stevenson 2007). 

The Consortium for Barcode of Life (CBOL) originally supported and approved rbcL and 

matK for the identifications of plants. This choice of markers was the result of testing the 

discriminatory power of a number of chloroplast markers in plants (Hollingsworth et al. 

2009). However, it has become clear that these genes do not have sufficient taxonomic 

resolution. Different barcode genes have been suggested (Kress & Erickson 2007; Li et 

al. 2011), but apart from  the CBOL recommendations there is no clear consensus which 

DNA barcode genes should be used for plants. This is in contrast to DNA barcodes for 

Metazoa where COI is used for most clades. 

 

In my study, I use three plant barcodes: rbcL, matK and trnL-F. This choice was 

made based on several considerations: the most comprehensive barcode databases are 

available for rbcL and matK. Both have sequences for >7000 genera of plants. I also 

included trnL-F in my studies because in the next two chapters of my thesis I compare the 

performance of metagenomics and metabarcoding. The gene of choice for metabarcoding 

is the P6 loop of trnL-F (Taberlet et al., 2007), so that this gene was also sequenced and 

analyzed for the metagenomic study. The P6 loop is nested within the longer trnL-F 

barcode sequences that can be generated using primers designed by Taberlet et al. (1991). 

Lastly for Chapter 5, note that I also included trnH-psbA given that it is has been widely 
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recognised to improve taxonomic resolution in a number of studies (Kress & Erickson 

2007; Parmentier et al, 2013). This barcode was excluded in Chapter 6 due to the the 

large size of the datasets used.  

 

In the next two chapters, I analyze the diet of two species of colobine primates. 

The first comprises diet analysis of captive primates in the Singapore Zoological Gardens 

(Chapter 5), and the second is a diet analysis of a wild population (Chapter 6). In both 

studies, I analysed diet using a combination of a “local” database of DNA barcodes for 

putative food plants and a “global” database that also includes all data from GenBank. 

For the captive primates, i.e. red shanked douc langurs (Pygathrix nemaeus), the diet was 

known and hence the main aim was to test diet analysis techniques after building a 

barcode database of sequences from the known diet plant species. Identified leaf samples 

were provided by the Singapore Zoo. In the case of the diet of a wild population of 

banded leaf monkeys, Presbytis femoralis in Singapore, a database of barcodes from the 

habitat of the primate was needed. However, obtaining a comprehensive barcode database 

for the rich flora of the native habitat is exceedingly difficult (Elliot & Davies 2014), 

given that it is a tropical rain forest with high species diversity (Brook et al. 2003). Based 

on current survey results, the native habitat contains ca. 730 tree and liana species (Wong 

et al.  2013). Despite extensive plant sampling that is still ongoing, we were only able to 

generate DNA barcodes for 248 species. For these, I contributed 287 sequences across 

three different barcodes.  

 

Given the difficulty of obtaining complete DNA barcode databases, I complement 

my data with all angiosperm barcode sequences from GenBank. There has been a steady 

accumulation of sequences for rbcL, matK and trnL-F (Fig. 4.1) over the years. Many of 
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the sequences were gathered for phylogenetic purposes, but they are now also used as 

DNA barcodes (Gielly and Taberlet, 1994; Nepal and Fergusen, 2012). Ever since the 

setup of the Consortium for Barcode of Life (2004), there seems to be a slight increase in 

species accumulation for rbcL and matK. With increased sampling intensity, >20,000 

species have been barcoded for these genes. However, even though data from GenBank is 

easy to access and download, the acquired sequences may not comprise only homologous 

regions. This is because over the years, different primer pairs have been used for 

sequencing the same genes. Another problem with downloads is that they often comprise 

more than the desirable gene fragment (e.g. full chloroplast genomes). One way to avoid 

such sequences would be to exclude any sequence that was not submitted by a barcoding 

study (limiting keyword to BARCODE). However, this will lead to the loss of a large 

number of data for many species for which barcodes were generated in phylogenetic 

studies. Therefore, it is preferable to bionformatically extract the regions homologous to 

the barcode segment from the set of downloaded sequences from GenBank. 

 

Figure 4.1: Accumulation of identified species in GenBank over years. 

 

In this chapter, I describe how DNA barcodes were obtained for the tree and liana 

species occuring in Nee Soon Swamp forest. I furthermore describe procedures to obtain 
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a set of homologous sequences from GenBank. For this, I bioinformatically mined the 

data downloaded to obtain homologous regions by using a modified version of BLAST 

based on a pipeline built in Alfried Vogler’s laboratory that was used in Hunt et al. 

(2007)’s study for Coleoptera phylogeny. The databases were designed to be suitable for 

a taxonomy assignment pipeline (as described in chapter 5) that was then used. This 

pipeline uses the NCBI taxonomy and thus links GI number information with NCBI taxid 

to generate taxonomic profiles for the sequences. I will demonstrate that the species 

recovery through this pipeline yielded similar taxonomic profiles as obtained by 

downloading plant barcode data from BOLD. This is promising given that any pipeline 

based on GenBank data will have greater utility because it is not limited to the recognized 

barcode regions only. I also built COI and rDNA databases, in order to allow for 

identification of additional eukaryotes in the metagenomes (e.g. intestinal parasites). 
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4.3 Methods 

4.3.1 Local databases 

Tissue Samples  

For Chapter 5, tissues corresponding to seven foliage species provided as diet to primates 

(Pygathrix nemaeus) were obtained from the Singapore Zoo. For Chapter 6, samples 

obtained from the habitat of banded leaf monkeys (Presbytis femoralis) were used. Here, 

leaf sampling was first carried out for five plots of 25 x 50 metres in the forest; these plots 

were selected after estimating the range of Presbytis femoralis. Given that these primates 

mostly feed in the canopy (Bennett, 1983), the criteria for collecting vegetation was 

plants with a girth of ≥40cm at approximately 1.3m from the ground for trees and a 

minimum height of 5m for lianas. Furthermore, I collected 87 plant samples 

opportunistically when helping Andie Ang with her field work for Presbytis femoralis. 

Overall, 369 samples from 137 species were collected. I vouchered the specimens and 

aided in sample collection (see “AS” vouchers, Table 4.1). 

 

More recently, another extensive survey of Nee Soon Swamp forest is being carried out 

by the Plant Systematics Laboratory at the National University of Singapore (Singapore). 

Plant tissue specimens (1,802 leaf specimens) have been collected from the swamp forest. 

The barcoding of the forest is ongoing, but I was able to already use some of the data 

(“Q” vouchers, Table 4.1).  

 

DNA extraction and sequencing 

For DNA extraction, tissues were ground using liquid nitrogen and extraction was carried 

out either with QIAGEN Blood and Tissue Kit (GmBH), or with the CTAB method 
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(Kutty et al., 2007).  Fragments of three chloroplast ‘barcoding’ regions were amplified 

representing matK (557-781 bp), rbcL (429-586 bp) and trnL-F (615-955 bp). The primer 

pairs used were as follows (annealing temperatures are in brackets): rbcLa_f and 

rbcLa_rev (54-55°C) (Kress and Erickson, 2007), 3F_KIM f and 1R_KIM r (52°C) (Kim 

Ki-Joong, unpublished) and trnL c and f (52-55°C) (Taberlet et al., 1991). The PCR 

reactions were done using the following conditions: Initial denaturation at 95°C for 5 

min, followed by 35 cycles of 94°C for 1 minute, annealing for 1 min and 72°C for 1 min 

30 sec. Final extension was at 72°C for 5 min. Gel extractions were performed if there 

were multiple bands present after optimization of conditions. The amplified PCR products 

were purified with SureClean (Bioline, Randolph, MA). Cycle sequencing was performed 

using BigDye Terminator v3.1 and products were analysed in both directions on an ABI 

3100 Genetic Analyser (Perkin Elmer, Waltham, MA). Sequences were edited with 

Sequencher v 4.6 (Gene Codes Crop, Ann Arbor, MI, USA). 

4.3.2 Data mining from GenBank 

In order to obtain sets of barcode sequences from GenBank, I first downloaded sequences 

using the following keywords for angiosperms: rbcL: (Magnoliophyta[Organism]) AND 

(rbcL[Gene Name] OR ribulose 1,5-bisphosphate carboxylase/oxygenase[Gene Name] 

OR Ribulose bisphosphate carboxylase[Gene Name] OR RuBisCO large subunit[Gene 

Name]); matk: (Magnoliophyta[Organism]) AND (matk[Gene Name] or maturase-k[Gene 

Name]) and trnL-F: (Magnoliophyta[Organism]) AND (trnL[Gene Name] OR trnL-F). 

For COI the keywords are described in Chapter 3.  
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Figure 4.2 : Overview of database generation using data downloaded from GenBank. 

 

I modified the BLAST based pipeline of Hunt et al. (2007) to obtain homologous regions 

(Fig. 4.2) of barcodes from the downloaded sequences. The principle behind this pipeline 

is to use a curated set of sequences corresponding to the desired gene region (i.e., regions 

we desire to extract). These sequences are then used to fish out homologous sequences 

from the downloaded material. For barcodes approved by CBOL, obtaining a curated set 

was easy because DNA barcodes could be downloaded from GenBank using the keyword 

(“BARCODE”). For trnL-F, I manually obtained a subset representing several different 

families that contained the target region. Using BLASTN, these sequences were matched 

to a database generated using sequences downloaded as mentioned above. The search was 

conducted using word-size 11, e-value 1e-5. Using the pipeline described above, I could 

then extract the region of interest based on BLAST start and end position. I excluded any 
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matches that were too short (<50% of the mean sequence length of the curated set of 

reads). 

4.3.3 rDNA databases 

In order to characterize rDNA sequences from the metagenome, in Chapter 5 I used 

MG-RAST’s pipeline of rDNA prediction (Glass et al., 2010). However, the procedure 

for upload of such large datasets to the MG-RAST online server is slow, and hence in the 

larger scale study described in Chapter 6, I analysed the data locally. I first examined the 

sequences using SILVA SSU and LSU rDNA databases (Pruesse et al., 2007). I also built 

a local parasite database after doing a literature search on common parasitic infections in 

primates. The list of taxa included in the local parasite database is given in Appendix 4.  
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4.4 Results 

For the diet barcode dataset used in Chapter 5, I generated 19 sequences for seven 

diet plant species (Appendix 1, Supplementary Table T1). The local dataset for the Nee 

Soon swamp forest comprises 248 taxa, of which 211 had ≥2 barcodes sequenced. This 

corresponded to 180 species (191 sequences) for matK, 223 species (248 sequences) for 

rbcL, and 207 species (211 sequences) for trnL-F. Of these 127 species and 7 genera did 

not have data in GenBank. Of the 650 barcodes included in chapter 6, I sequenced  ~280 

barcodes. 

 

Table 4.1: List of species barcoded from Nee Soon. * represents multiple sequences where only a 

representative is listed. 

SL No. Species 
Number of 

barcodes 
matK rbcL trnL-F 

1 Adinandra dumosa 3 AS003 AS003 AS003 

2 Aeschynanthus wallichii 2 Q4U122 Q4U122  
3 Agelaea borneensis 3 AS166 AS166 AS166 

4 Agelaea macrophylla 3 Q10U122* AS191 Q10U122 

5 Aglaia elliptica 3 Q4T59 Q4T59 Q4T59 

6 Aglaia leptantha 2  AS056 AS056 

7 Aglaia odoratissima 3 Q4T60 Q4T60 Q4T60 

8 Aglaonema simplex 3 Q10120 Q10U120 Q10U120 

9 Agrostistachys borneensis 3 Q2U38 Q2U38 Q2U38 

10 Alangium nobile 3 Q3T63 Q3T63 Q3T63 

11 Albizia pedicillata 3 AS283 AS283 AS283 

12 Ancistrocladus tectorius 1   Q2U45 

13 Anisophyllea disticha 3 AS286 AS286 AS286 

14 Anodendron candolleanum 3 Q3U163 Q3U163 Q3U163 

15 Antidesma coriaceum 2  Q10U133 Q10U133 

16 Antidesma cuspidatum 2  Q10U114 Q10U114 

17 Aphanamixis polystachya 2 AS156  AS156 

18 Aporosa falcifera 3 Q4U159 Q4U159* Q4U159 

19 Aporosa frutescens 3 AS043 AS027 AS027 

20 Aporosa lucida 2  AS058 AS058 

21 Aporosa symplocoides 2  Q8T46 Q8T46 

22 Archidendron clypearia 2 AS273  AS273 

23 Artabotrys suaveolens 2 AS188  AS188 

24 Artocarpus integer 2 AS127  AS127 

25 Artocarpus lacuca 2  AS037 AS037 

26 Asystasia gangetica 3 AS119 AS119 AS119 

27 Asystasia nemorum 3 AS095 AS095 AS095 

28 Baccaurea bracteata 1   Q3U164 

29 Baccaurea parviflora 2  AS053 AS053 

30 Bauhinia semibifida 2  AS026 AS026 

31 Breynia racemosa 3 AS006 AS006 AS006 

32 Byttneria maingayi 3 AS208 AS208 AS208 
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33 Calophyllum dispar 2  Q4T61 Q4T61 

34 Calophyllum ferrugineum 3 Q10U129 AS285* Q10U129 

35 Calophyllum pulcherrimum 3 AS017 AS017* Q10U146 

36 Calophyllum rubiginosum 1   Q10U143 

37 Calophyllum wallichianum 3 Q4U143 Q4U143 Q4U143 

38 Campnosperma squamatum 2  Q3U179 Q3U179 

39 Canthium confertum 3 Q10U98 Q10U98 Q10U98 

40 Carallia brachiata 2  Q8U74 Q8U74 

41 Cayratia mollissima 3 AS229 AS229 AS229 

42 Cinnamomum iners 3 AS103 AS103 AS103 

43 Cissus nodosa 3 Q8U92 Q8U92 Q8U92 

44 Clerodendrum deflexum 3 AS098 AS075* AS098 

45 Clerodendrum disparifolium 3 Q1U06 Q1U06 Q1U06 

46 Cnestis palala 2 AS347 AS347  
47 Commersonia bartramia 3 AS120 AS120 PAS120 

48 Connarus semidecandrus 3 Q4U155 Q4U155 Q4U155 

49 Coptosapelta flavescens 3 AS327 AS327 AS327 

50 Coptosapelta griffithii 3 AS247 AS247 AS247 

51 Cratoxylum arborescens 1   Q2T13 

52 Cratoxylum formosum 2  AS129 Q10U147 

53 Cryptocarya ferrea 2  Q3U167 Q3U167 

54 Cyathocalyx ramuliflorus 3 Q8A Q8A Q8A 

55 Cyathostemma excelsum 3 AS085 AS085 AS085 

56 Cyathostemma viridiflorum 3 AS074 AS074 AS074 

57 Cyclea laxiflora 3 Q8U109 Q8U109 Q8U109 

58 Dalbergia parviflora 3 Q1U09 Q1U09 Q1U09 

59 Dalbergia rostrata 3 AS135 Q3T44 Q3T44 

60 Dapania racemosa 3 Q3U170 Q3U170 Q3U170 

61 Dasymaschalon wallichii 3 Q3U127 Q3U127 Q3U127 

62 Dendrotrope varians 2  Q1U32 Q1U32 

63 Derris maingayana 3 Q3U193 Q3U193 Q3U193 

64 Dillenia excelsa 3 Q3U165 Q3U165 Q3U165 

65 Dioscorea orbiculata 1  Q2U04  
66 Dioscorea pyrifolia 2 AS022 AS022  
67 Diospyros lanceifolia 3 Q2U11 Q2U11 Q2U11 

68 Diospyros oblonga 3 Q4T63 Q4T63 Q4T63 

69 Diospyros subrhomboidea 3 Q8U199 Q8U99 Q8U99 

70 Dissochaeta echinulata 3 AS203 AS203 PAS203 

71 Dissochaeta gracilis 3 AS152 AS152 PAS152 

72 Dracaena porteri 3 Q2U22 Q2U22 Q2U22 

73 Durio singaporensis 3 Q10U121 Q10U121 Q10U121 

74 Dysoxylum cauliflorum 1 AS161   
75 Elaeocarpus salicifolius 1  AS031  
76 Elaeocarpus stipularis 3 AS235 Q3U146 Q3U146 

77 Erycibe leucoxyloides 3 Q8U76 Q8U76 Q8U76 

78 Erycibe tomentosa 3 Q10U137 AS054* AS141* 

79 Erythropalum scandens 3 AS201 AS201 AS201 

80 Eurya acuminata 3 Q1T06 Q1T06 Q1T06 

81 Fibraurea tinctoria 3 AS004* AS004* Q2U09 

82 Ficus apiocarpa 3 Q4U153 Q4U153 Q4U153 

83 Ficus aurata 3 AS002 AS002 AS002 

84 Ficus fistulosa 3 AS010 AS010* AS121 

85 Ficus sagittata 3 AS220 AS220 Q8U88 

86 Ficus variegata 1   Q1U17 

87 Fissistigma latifolium 3 AS007 AS007* AS007 

88 Fissistigma manubathricum 3 Q10U099 Q10U099 Q10U099 

89 Flacourtia rukam 3 Q8U75 AS123 AS123 

90 Freycinetia angustifolia 3 AS130* Q4U105 Q4U105 

91 Freycinetia javanica 2  Q4U129 Q4U130 

92 Friesodielsia borneensis 3 AS133 AS133 Q3U140 
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93 Friesodielsia glauca 2  Q10U126 Q10U126 

94 Friesodielsia latifolia 3 AS170 AS170 AS170 

95 Garcinia celebica 1  Q8T36  
96 Garcinia forbesii 1  Q8U80  
97 Garcinia nervosa 1  Q4U145  
98 Garcinia parvifolia 1  AS021*  
99 Gironniera nervosa 3 AS018 AS018 AS018 

100 Glochidion borneense 1 Q4U107   
101 Glochidion zeylanicum 3 Q10U131 Q10U131 Q10U131 

102 Gluta wallichii 2 Q4U125 Q4U125  
103 Gonystylus confusus 3 Q3U190 AS046 AS046 

104 Grenacheria amantacea 3 AS171 AS171* AS171 

105 Grewia laevigata 3 AS117* AS023* AS087 

106 Gynochthodes coriacea 3 AS299 AS299 Q8U89 

107 Gynochthodes sublanceolata 3 AS168 AS168 AS168 

108 Gynotroches axillaris 1  AS034  
109 Hornstedia leonurus 3 Q1U14 Q1U14 Q1U14 

110 Horsfieldia polyspherula 2 Q3U138 Q3U138  
111 Horsfieldia sucosa 1  Q3T7  
112 Hypserpa nitida 3 Q4U144 Q4U144 Q4U144 

113 Iodes ovalis 3 AS101* AS101 AS144 

114 Iodes velutina 3 Q1U18 Q1U18 Q1U18 

115 Ixonanthes icosandra 2  AS212 AS212 

116 Ixora congesta 3 Q8U73 AS009 Q8U73 

117 Jasminum elongatum 3 Q10U139 Q10U139 Q10U139 

118 Justicia vasculosa 2 AS062 AS062  
119 Kibatalia maingayi 3 Q3U124 Q3U124 Q3U124 

120 Knema communis 3 AS128 AS128 AS128 

121 Knema latericia 3 Q4U134* Q4U134 Q4U134 

122 Knema laurina 3 AS164 AS164 AS164* 

123 Knema malayana 3 AS066 AS066 Q3U147 

124 Koompassia malaccensis 1   Q10U141 

125 Kopsia singapurensis 3 Q4U109 Q4U109 Q4U109 

126 Kunstleria ridleyi 3 AS196 AS196 AS196 

127 Lasianthus attenuatus 1   Q10U102 

128 Leea indica 3 AS028 AS028 Q3U186 

129 Leuconotis griffithii 3 Q2U24 AS242 Q2U24 

130 Limacia scandens 3 AS177 AS177 AS177 

131 Lindsaea cultrata 1  Q1U02  
132 Lithocarpus conocarpus 3 AS083 AS083 AS083 

133 Lithocarpus lucidus 2 Q3U126 Q3U126  
134 Litsea erectinervia 3 Q3U144 Q3U144 Q3U144 

135 Litsea grandis 3 Q3T60 Q3T60 Q3T60 

136 Litsea machilifolia 3 Q10U127 Q10U127 Q10U127 

137 Lophopetallum wightianum 3 Q2U10 Q2U10 Q2U10 

138 Luvunga crassifolia 2 Q4U149  AS217 

139 Lygodium logifolium 1  AS060  
140 Maasia glauca 2 Q3U157 Q3U157  
141 Macaranga bancana 2  Q2U27 Q2U27 

142 Macaranga gigantea 1   AS322 

143 Macaranga heynei 2  AS036 AS036 

144 Maclurodendron porteri 3 Q10U136 Q10U136 Q10U136 

145 Maesa ramentacea 3 AS035 AS035 AS035 

146 Mallotus paniculatus 2  AS049 AS049 

147 Matthaea sancta 3 AS149 AS149 PAS149 

148 Melanochyla angustifolia 3 Q3U155 Q3U155 Q3U155 

149 Melanochyla caesia 3 AS207 AS207 AS207 

150 Melastoma malabathricum 2  AS015* AS099* 

151 Meliosma simplicifolia 2  Q1U10 Q1U10 

152 Memecylon dichotomum 3 Q8U84 Q8U84 Q8U84 
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153 Memecylon garcinoides 3 Q8U114 Q8U114 Q8U114 

154 Microcos latifolia 2 Q1T47 Q1T47  
155 Mikania micrantha 3 AS116 AS116 AS116 

156 Mitrella kentia 3 Q1T27 AS096 Q1T27 

157 Morinda citrifolia 2  AS115 AS115 

158 Mussaendopsis beccariana 3 Q3U168 Q3U168 Q3U168 

159 Myristica elliptica 3 Q4T13 Q4T13 Q4T13 

160 Myristica iners 2  Q8U94 Q8U94 

161 Myristica maxima 2 Q8B Q8B  
162 Neoscortechinia sumatrensis 3 AS126 AS126 AS126 

163 Nepenthes gracilis 2 AS014 AS014  
164 Nephelium laurinum 3 Q4U120 Q4U120 Q4U120 

165 Osmelia phillippina 2  AS082 AS082 

166 Paraderris montana 1  Q3U145  
167 Parameria polyneura 3 AS352 AS352 AS352 

168 Paramignya scandens 3 AS173 AS173 AS173 

169 Passiflora laurifolia 3 AS143 AS143 AS143 

170 Pentace triptera 1   Q10U128 

171 Piper caninum 2 AS178 AS178  
172 Piper flavimarginatum 1  Q3U174  
173 Piper macropiper 1   Q10U107 

174 Piper pedicellosum 3 Q1U31 Q1U31 Q1U31 

175 Piper porphyrophyllum 2  AS045 AS045 

176 Polyalthia angustissima 3 AS092 AS092 AS092 

177 Polyalthia cauliflora 3 Q4U140 Q4U140 Q4U140 

178 Polyalthia glauca 3 AS057 AS057 AS057 

179 Polyalthia lateriflora 3 Q3U158 Q3U158 Q3U158 

180 Polyalthia rumphii 3 Q2U32 Q2U32 Q2U32 

181 Pometia pinnata 3 Q4T23 Q4T23 Q4T23 

182 Popowia fusca 3 AS073 AS073 AS073 

183 Porterandia anisophylla 3 Q3U133 Q3U133 Q3U133 

184 Pouteria malaccensis 3 Q2U06 Q2U06 Q2U06 

185 Prunus arborea 3 Q8U108 Q8U108 Q8U108 

186 Prunus grisea 3 Q8U91 Q8U91 Q8U91 

187 Prunus polystachya 3 AS293 AS293 AS293 

188 Psychotria ovoidea 2  Q10U153 Q10U153 

189 Psychotria rhinocerotis 2  Q10U130 Q10U130 

190 Psychotria sarmentosa 2  AS169* Q3U194 

191 Psydrax sp 3 Q2U44 Q2U44 Q2U44 

192 Pterisanthes polita 3 Q3U132 Q3U132 Q3U132 

193 Pternandra coerulescens 1  AS011  
194 Pternandra echinata 3 AS005 AS005 AS005 

195 Pyramidanthe prismatica 3 AS174 AS174* AS175 

196 Radermachera pinnata 3 Q3T2 Q2U28 Q2U28 

197 Rhaphidophora maingayi 2 AS205 AS205  
198 Rhaphidophora montana 1  Q3U181  
199 Rhodamnia cinerea 2 AS274  AS274 

200 Rourea acutipetala 3 Q2U35 Q2U35* Q2U35 

201 Rourea asplenifolia 1  Q10U118  
202 Rourea fulgens 2  AS239 AS239 

203 Rourea mimisoides 1   Q10U115 

204 Rourea minor 2 AS337  AS337 

205 Salacia korthalsiana 1  Q3U128  
206 Scaphium macropodum 1  Q3U129  
207 Securidaca phillippinensis 3 AS100 AS100 AS100 

208 Smilax setosa 2 AS269 AS269  
209 Spatholobus ferrugineus 3 AS067 AS067 AS067* 

210 Spatholobus ridleyi 3 AS214 AS214 Q4U150 

211 Stenochlaena palustris 1  AS167  
212 Sterculia cordata 3 AS059 AS059 AS059 
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213 Sterculia lanceolata 3 Q2U10 Q2U10 Q2U10 

214 Sterculia rubiginosa 1  Q4T16  
215 Streblus elongatus 1  Q4U161  
216 Strombosia ceylanica 3 AS044 AS044 AS044 

217 Strophanthus caudatus 3 AS048 AS048 AS048 

218 Symplocos fasciculata 3 Q4U115 Q4U115 AS222 

219 Syzygium lineatum 1   Q10U125 

220 Syzygium nemestrinum 3 Q8U110 Q8U110 Q8U110 

221 Syzygium oblatum 1  Q3T42  
222 Syzygium pachyphyllum 3 Q8T39 Q8T39 Q8T39 

223 Syzygium papillosum 1  Q3U135  
224 Syzygium pseudoformosum 3 Q8U83 Q8U83 Q8U83 

225 Syzygium ridleyi 3 AS042* AS042 Q4U137 

226 Tetracera indica 3 AS020* AS020 AS020 

227 Tetracera macrophylla 3 AS136 AS136 AS136 

228 Tetrastigma leucostaphylum 2 AS038* AS030*  
229 Tinospora microcarpa 3 AS213 AS213 AS213 

230 Uncaria attenuata 3 Q10U110 Q10U110 Q10U110 

231 Uncaria cordata 1   Q10U151 

232 Uncaria lanosa 2  AS040 AS040 

233 Uncaria longiflora 1   Q4U138 

234 Urophyllum sp 3 Q3U150 AS013 AS013 

235 Uvaria cordata 2 AS163 AS163  
236 Uvaria griffithii 3 Q10U119 Q10U119 Q10U119 

237 Uvaria lobbiana 3 Q1U07 Q1U07 Q1U07 

238 Uvaria pauciovulata 3 AS155 AS155 AS155 

239 Vanilla griffithii 3 Q8U170 Q8U70 Q8U70 

240 Vatica pauciflora 3 AS112 Q3U131 AS112 

241 Ventilago maingayi 1 AS346   
242 Vitex pinnata 2 AS097  AS097 

243 Willughbeia coriacea 3 AS243 AS138 AS138 

244 Xanthophyllum ellipticum 3 Q4U154 Q4U154 Q4U154 

245 Xylopia magna 3 Q2U18 Q2U18 Q2U18 

246 Xylopia malayana 3 Q10U132 Q10U132 Q10U132 

247 Ziziphus calophylla 3 AS114 AS176* Q3U134 

248 Ziziphus elegans 1     Q3U156 

 

 

The current estimate of the diversity of species of trees and lianas in Nee Soon is 

~720 species. Therefore in order to build a comprehensive database, much more 

sampling, vouchering and DNA sequencing needs to be carried out. In my thesis the 

problem of having only an incomplete barcode database was largely solved by including 

data from GenBank. Many of the Nee Soon genera that lacked DNA barcodes were 

fortunately represented in GenBank. After filtering out sequences that did not correspond 

to the barcode region and trimming the remaining sequences to the barcode region, I 

obtained 63,107 sequences for rbcL, 73,705 sequences for matK and 37,538 sequences for 

trnL-F. Overall this corresponded to data for 28,457 “species” for rbcL, 36,888 “species” 
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for matK and 22,613 “species” for trnL-F. However, among these 1,853, 1,915 and 758 

contained “sp.” as epithet. The genus level diversity was 7,532 (410 families), 7,888 (421 

families) and 5,048 (280 families) for rbcL, matK and trnL-F, respectively. To this I 

added the locally sequenced data. Across all four databases the dominant families in 

terms of species diversity were Poaceae, Fabaceae, Asteraceae and Orchidaceae. Note 

that my method for sequence extraction was effective because the species numbers in my 

databases are similar to what is available in BOLD (which contains data largely mined 

from GenBank by the team responsible for BOLD, Ratnasingham and Hebert, 2007). 

BOLD public dataset currently comprises data for 23,346 species for rbcL and 31,362 

species for matK. Lastly, the version of the database used in Chapter 5 was slightly older, 

and hence had fewer sequences, while in Chapter 6, I present results based on the latest 

database generated as of May 2014. Using the same procedures, I also included a 

database of trnH-psbA comprising 25,497 sequences for 2,638 genera in 251 families in 

Chapter 5. 

 

Next, I built a COI database corresponding to the Metazoa barcode region. 

Overall,  900,499 sequences were downloaded from GenBank and 765,218 sequences 

were left after trimming to the barcode region and removing non-COI sequences. The 

dominant phylum in the database was Arthropoda, followed by Chordata, Mollusca and 

Annelida (Fig. 4.3). Lastly, I used different databases for characterizing rDNA sequences 

in the sample. While in Chapter 5, I used MG-RAST’s annotation tools, in Chapter 6 I 

first used SILVA to assess the sequences. I also created a target non-human primate 

parasite database for SSU rDNA (18S) comprising 5,148 sequences from 25 genera. 

These databases were then used for characterizing the biology of species in Chapter 5 and 

Chapter 6. 
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Figure 4.3: Distribution of sequences across various phyla in the COI database. 
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CHAPTER 5
3
 

__________ 

 Comparing the effectiveness of metagenomics and 

metabarcoding for diet analysis of a leaf-feeding 

monkey (Pygathrix nemaeus)  

5.1 Abstract 

Fecal samples are of great value as a non-invasive means to gather information on 

the genetics, distribution, demography, diet, and parasite infestation of endangered 

species. Direct shotgun sequencing of fecal DNA could give information on these 

simultaneously, but this approach is largely untested. I used two fecal samples to 

characterize the diet of two Red-Shanked Doucs Langurs (Pygathrix nemaeus) that were 

fed known foliage, fruits, vegetables and cereals. Illumina HiSeq produced ~74 and 67 

million paired reads for these samples, of which ~10000 (0.014%) and ~44000 (0.066%), 

respectively, corresponded to chloroplast genomes. Sequences were matched against a 

database of available chloroplast ‘barcodes’ for angiosperms. The results were compared 

with ‘metabarcoding’ using PCR amplification of the P6 loop of trnL. Metagenomics 

identified 7 and 9 of the likely 16 diet plants, against 6 and 5 identified by metabarcoding. 

Metabarcoding produced thousands of reads consistent with the known diet, but the 

                                                 
3
 A version of this Chapter has been published as ”Srivathsan A., Sha, J.C.M., Vogler, A.P., Meier R. 

(2014). Comparing the effectiveness of metagenomics and metabarcoding for diet analysis of a leaf-feeding 

monkey (Pygathrix nemaeus). Molecular Ecology Resources. doi:10.1111/1755-0998.12302” where I 

designed the study and conducted data analyses. 
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barcodes were too short to identify several plants to genus. Metagenomics utilized 

multiple, longer barcodes that combined had greater power of identification, but rare diet 

items were not recovered. Read numbers for diet species in metagenomic and 

metabarcoding data were correlated, indicating that both are useful for determining 

relative sequence abundance. Metagenomic reads were uniformly distributed across the 

chloroplast genomes; thus if chloroplast genomes are used as reference, the precision of 

identifications and species recovery would improve further. Metagenomics also recovered 

the host mitochondrial genome and numerous intestinal parasite sequences in addition to 

generating data useful for characterizing the microbiome. 
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5.2 Introduction 

Rare, endangered and elusive animals are difficult to study in the field (Ang et al. 

2010). Not only is it time-consuming to locate individuals but they may also stop 

behaving naturally once they discover the observer. In this situation fecal samples 

become important because they can provide ecological information (Kohn & Wayne 

1997) even without direct observation. Such samples can be collected opportunistically or 

by using detection dogs (Reed et al. 2011) and hold a wealth of biological information (da 

Silva et al. 2012). DNA based methods have become important for characterizing these 

samples to obtain information on the genetics, diet, distribution, demography, gut 

parasites and intestinal flora of a species (Ang et al., 2012, da Silva et al. 2012, 

Lamendella et al. 2011, Shehzad et al. 2012). In terms of diet, most DNA based studies 

currently adopt a metabarcoding approach, i.e., PCR-amplified short DNA ‘barcodes’ for 

diet items are sequenced using next generation sequencing (NGS) (Valentini et al. 2009; 

Shehzad et al. 2012). With the decreasing cost of NGS, the obvious alternative is PCR-

free shotgun sequencing of genomic DNA (Taberlet et al. 2012). This yields large 

numbers of random sequence reads from which the relevant information can be extracted 

in silico (i.e., a metagenomic approach). Here I compare the power of metagenomic and 

DNA metabarcoding approaches to identify the food plants from feces of captive colobine 

Red Shanked Douc Langurs (Pygathrix nemaeus) that were fed a known diet. 

Additionally I used the fecal samples to recover sequences of the host, as well as other 

eukaryotic sequences that might indicate the presence of intestinal parasites. 

 

Diet studies on fecal samples have traditionally been carried out using visual 

analyses of physical remains. Newer methods have included chemical analyses of plant 

cuticular wax (Dove & Mayes 1996), immunoassays (Pierce et al. 1990; Symondson 
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2002) or residual DNA of food items (Murray et al. 2011). The latter can be implemented 

by matching sequences from fecal samples against sequence databases of potential food 

sources. Initially, these sequences could be obtained via PCR amplification using lineage 

specific (Jarman et al. 2004; Deagle et al. 2007) or generic primers (Bradley et al. 2007), 

followed by cloning and sequencing. Recently, such amplicons are being sequenced using 

NGS. This approach has been applied to carnivorous (e.g. Shehzad et al. 2012), 

herbivorous (e.g. Valentini et al. 2009) and omnivorous animals (De Barba et al. 2014). 

One advantage of metabarcoding is that amplicons for multiple samples can be 

multiplexed. On the other hand, all PCR-based approaches have potential limitations due 

to amplification biases towards certain taxa (Pompanon et al. 2012), difficulty to obtain 

amplicons (Zarzoso-Lacoste et al. 2013), and the generation of PCR errors (Coissac et al. 

2012) and chimerical sequences due to jumping PCR (Paabo et al. 1990). 

 

Certain experimental procedures can mitigate these limitations (De Barba et al. 

2014; Zarzoso-Lacoste et al. 2013), but the PCR step would be avoided altogether by 

metagenomics. In addition, a metagenomic approach would allow for characterization of 

reads bioinformatically to address not only the diet, but also the population genetics of the 

focal species (Ang et al. 2012), its intestinal parasites (Stensvold et al. 2011) and the 

microbiome of the gastrointestinal tract (Lamendella et al. 2011). While metabarcoding 

with multiple PCR primers could also be used for such multi-dimensional 

characterization of samples, it remains constrained by pre-determined choices of 

barcoding genes, which could preclude, for example, the detection of carnivory in species 

that are assumed to be phytophagous. In addition, the cost advantage of metabarcoding 

erodes as more genes are amplified.  
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The use of shotgun sequencing for diet characterization was championed by Bon 

et al. (2012) for coprolites. Here I apply metagenomics to fresh fecal samples of a 

phytophagous monkey and develop methods for identifying plant species from such data. 

By using captive animals I was able to test the methods against a known set of food plants 

with the greatest challenge being the low diagnostic power of plant barcodes 

(Hollingsworth et al. 2011) and the long digestion times of douc langurs (Lambert 1998) 

that are likely to favor the dominance of microbial DNA in the extraction (Lamendella et 

al. 2011). I address these issues by developing bioinformatic strategies for extracting 

plant sequences and comparing the results to metabarcoding data for the same samples.  
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5.3 Materials and Methods 

5.3.1 Diet composition 

Two individuals of Pygathrix nemaeus (PN1: male, 6 years old; PN2: male, 5 

years old) were fed leaves of 7 species: Acalypha siamensis (acalypha), Cinnamomum 

iners (wild cinnamon), Hibiscus rosa-sinensis (hibiscus), Hemigraphis sp., Leucaena 

leucocephala (miracle plant), Morus alba (mulberry), and Terminalia catappa (ketapang). 

At the beginning of the third day of the trial, cinnamon was replaced by Baphia nitida 

(baphia). These plants were provided as a mixed bunch of leaves and eight non-foliage 

species were added to the diet, including Malus domestica (apple), Daucus carota 

(carrot), Ipomoea batatas (sweet potato), Vigna unguiculata (long bean), Pyrus sp. (pear), 

Zea mays (corn), Cucumis sativus (cucumber) and Oryza sativa (rice, provided as cooked 

rice balls). To optimize the time of sample collection, I used feeding trials to determine 

the Transit Time (TT) and Mean Retention Time (MRT) of the diet in the gut of the 

primate using bead markers (Appendix 2, Methods). 

 

5.3.2 Sample preparation and Next Generation Sequencing 

Fecal samples were collected 72 hours after the beginning of the feeding trial (see 

Results) and stored in -80°C prior to DNA extraction. Ten DNA extractions were 

conducted for each sample by randomly sampling the surface and interior of a single fecal 

pellet (QIAGEN DNeasy Blood and Tissue Kit with an additional wash step using Buffer 

AW2). The fecal samples were extracted on different days in a laboratory where no 

experimental work on plants was being conducted. DNA from the different extractions 

was quantified using Nanodrop and only those with A260/280 between 1.8 and 2.0 were 
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combined in equal amounts, after which the samples were split in separate sets to be used 

for metagenomics and metabarcoding respectively. For metagenomics, one library was 

constructed for each fecal sample (clone insert size 280-300bp). These were multiplexed 

in one lane of Illumina HiSeq 2000 and paired 76bp reads were obtained using TruSeq PE 

Cluster Kit v3 and TruSeq SBS Kit v3. 

 

For metabarcoding, P6 loop of the chloroplast trnL intron from fecal DNA was 

amplified using primers trnL-g and trnL-h (Taberlet et al. 2007). Each sample was tagged 

using eight variable nucleotides at the 5’ end of each primer that were designed using 

oligoTag (Coissac 2012; >= 5 variable sites; <3 bp homopolymers; additional 

dinucleotide CC was added to 5’ end). PCR amplifications were carried out for 45 cycles 

as in Quéméré et al. (2013) using BioReady rTaq DNA polymerase (Bulldog Bio, Inc., 

Portsmouth, NH) with a reaction mixture of 2.5 µl Buffer, 1 µl dNTPs, 0.36 µM forward 

and reverse primers, 0.25 µl of rTaq polymerase. Three independent PCR replicates were 

obtained for each sample; PCR products were purified using the MinElute PCR 

Purification Kit (QIAGEN). Products were quantified with a Fragment 

Analyzer™ Automated CE System (Advanced Analytical) and combined in equimolar 

ratios before sequencing with lllumina MiSeq (Illumina Inc) using the TruSeq Nano DNA 

sample preparation kit (150 PE). 
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5.3.3 Diet database 

A barcode database for known diet species comprising rbcL, matK, and trnL-F, 

(the latter containing the metabarcoding fragment) was prepared for the 16 plant species 

that were fed during the trial as well as 35 other “potential” diet plants (list of fodder 

plant species that are regularly fed by the Singapore Zoological Gardens; Appendix 1 

Table T1). Seven of the 16 known diet species were sequenced with the Sanger method 

(Chapter 4). The trnL fragments were used to create the diet database for metabarcoding. 

I used ecoPCR (Ficetola et al. 2010) to only retain the fragments of trnL that 

corresponded to amplification productions generated with the g-h primer pair (Taberlet et 

al., 2007). All sequences < 10 bp and > 200 bp were excluded.  

 

5.3.4 Plant database 

In order to assess the ability of the two approaches to identify plants even if the 

diet was not known a priori, I generated a database comprising all barcode sequences 

available at GenBank for rbcL, matK, trnL-F and trnH-psbA using the BLAST based 

pipeline of Hunt et al. (2007) (Chapter 4). This dataset was complemented with our rbcL, 

matK and trnL-F sequences for the seven foliage species used in the feeding trial to yield 

databases of the following sizes: matK: 55,996 sequences for 7165 genera in 401 families; 

rbcL: 48,831 sequences for 7,058 genera in 421 families; trnL-F: 37,241 sequences for 

5,052 genera in 281 families; trnH-psbA: 25,497 sequences for 2,638 genera in 251 

families). For metabarcoding, I obtained trnL fragments for 4,602 angiosperm genera 

corresponding to the region amplified by the g-h primer pair. 
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5.3.5 Data analysis 

Metagenomic approach 

An initial assessment of quality scores across the Illumina data was done using 

FASTQC (http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/) and sequences were 

analyzed either with or without assembly. For the assembly-free analyses, FASTQ 

sequences were converted to FASTA, and raw ‘single-end’ reads (SE analyses’) or 

paired-end reads (PE analyses) were matched against the diet and plant barcode 

databases. For single-end analyses, each read was matched to the database using 

BLASTN (Altschul et al. 1990) as implemented in the BLAST 2.2.27+ suite under the 

default MEGABLAST settings (word-size 28). To check for false positives, all reads 

showing matches to the diet database were also tested for BLAST hits against the generic 

nucleotide (NT) database of GenBank to establish if these reads represent non-plant 

sequences. This analysis revealed that plant sequences were only reliably distinguished 

from bacterial sequences if the hit length exceeds 50 bp; removing shorter matches 

eliminated all matches to non-plant sequences. I then recorded identification success rates 

at 100% and 98% (=1bp mismatch) identity. Lower identity thresholds were rejected 

because they yielded identifications to plants that were not known to be fed to the animals 

in the Singapore Zoo. 

 

For single end analyses I used every read that gave a hit to single or multiple 

species (comprising taxon set 𝑆1 for a read that matched from end 1 and 𝑆2 for a read that 

matched from end 2). Species/genus level identifications were made only when the 

number of species/genera in 𝑆1 (or 𝑆2) were not >1, i.e. they were unequivocal with 

respect to other sequences in the database. Identifications were categorized as 

“ambiguous” when matches to multiple species/genera were obtained. For the paired-end 

http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/
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analysis up to 152-bp of sequence information could be used for identification; i.e., the 

set of genera identified was 𝑆 = 𝑆1 ∩ 𝑆2 (conflicting identifications from both ends were 

excluded). Both single- and paired-end analyses were repeated for each gene in the plant 

database and I recorded whether identifications were based on matches to one, two, or 

three barcode genes. The pipeline is available to download at 

https://github.com/asrivathsan/readsidentifier-1.0 and the details are provided in 

Appendix 3 

 

Additionally I attempted a diet analysis based on assembled reads. Sequences 

were assembled using SOAPdenovo2 (Luo et al. 2012; Zhou et al. 2013) using three k-

mer settings (31, 41, 51) before choosing the k-mer length that maximized species 

identification success (k=31, Appendix 1 Table T3-4). Assembled contigs were matched 

against the plant database using MEGABLAST with an overlap of >100bp and a 98% 

identity threshold for identifications. 

  

Metabarcoding approach 

For metabarcoding, I followed the methods in Quéméré et al. (2013) and De 

Barba et al. (2014). PE reads were first aligned and merged using illuminapairedend 

(http://www.grenoble.prabi.fr/trac/OBITools). Reads were assigned to the samples using 

ngsfilter under criteria of perfect match of tag sequence and a maximum of 2bp mismatch 

with the primer sequence, after which obisplit was used to divide the files. Identical 

sequences were clustered while retaining information on sequence counts using obiuniq. 

Sequences having length of <10bp were removed. I used two stringent filtering criteria 

after more relaxed criteria led to several erroneous identifications: (1) FC1: removing 

sequences with counts <0.1% of the most common sequence [~100 reads, similar to 

https://github.com/asrivathsan/readsidentifier-1.0
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Hilbert et al. (2013)] and (2) FC2: removing sequences with counts <1% of the most 

common sequence [~1000 reads, similar to Quéméré  et al. (2013)]. Sequence variants 

were identified using obiclean and sequences were tagged as “head”, “internal” and 

“singleton”. These assignments of obiclean can be explained as follows: obiclean 

identifies all sequences that are 1 bp (or specified threshold) away from another sequence. 

Once identified, the sequences with the maximum counts are called “head” sequences 

while the variants are called “internal”. Sequences that do not have any variants are then 

tagged as “singleton” (see Shehzad et al. 2012). Identifications were made using ecotag, 

and only “head” and “singleton” sequences were used for genus level identifications if 

identity was >98% (Quéméré  et al. 2013) or >95% (De Barba et al. 2014). 

 

Comparison of metagenomics and metabarcoding 

I used three criteria to compare the performance of metagenomics and 

metabarcoding. Firstly, I tested whether diet sequences were recovered by matching reads 

to the diet database; this database is species-poor and most reads are sufficiently 

diagnostic for a particular species. Secondly, I determined if read abundances were 

correlated for the same diet species using diet database [Spearman's rho, R Development 

Core Team (2011)]. Thirdly, I tested whether the diet reads could be identified to 

species/genus using the plant database containing all angiosperm barcodes in GenBank.  

 

Proportion of chloroplast reads in metagenomic data 

I used BLAT searches (Kent 2002) with word-size 11 against all 366 full 

chloroplast genomes in NCBI Genomes (as of 6 Aug 2013) to extract all potential 

chloroplast reads. These reads were then filtered through BLASTN searches (word-size 

11) against all non-human genomes in NCBI (other_genomic database) to retain only 
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those with matches exclusive to angiosperm chloroplast genomes. Distribution of these 

reads was studied by BLASTN (word-size 11) searches against a reference cp-genome 

using a 50bp overlap threshold. For each read, the position in the chloroplast genome was 

recorded to generate a map of hits. All best Score (S) matches were mapped; i.e., some 

reads were mapped multiply if they had tied S values for multiple sites. 

 

Characterization of host mtDNA 

To test whether host information can be retrieved, mitochondrial genomes were 

characterized by using MEGABLAST to match assembled contigs (see above) against 

the mitochondrial genome of Pygathrix nemaeus (JF293096.1). The matches were 

validated as non-human primate sequences and coding regions were translated and 

mapped using BRIG 0.95 (Alikhan et al. 2011). For quality checking, raw reads of each 

individual were also mapped using BWA (Li & Durbin 2009) and mismatches between 

contigs and reads were recorded as ambiguous bases. 

 

Characterization of other eukaryotic DNA 

For identifying other eukaryote reads, FASTQ files were submitted to MG-RAST 

(Glass et al. 2010) using the default pipeline with quality filtering, RNA and protein 

prediction, clustering and taxon assignment. In addition, the reads were matched against a 

sample database of 698,981 COI sequences downloaded from GenBank. SE and PE reads 

with matches to rDNA or COI were then identified against NT requiring a 70bp overlap. 

rDNA identifications were made at 98% identity, while COI identifications were 

summarized at both 98% and 95% identity. If multiple taxa had the same top similarity 

level, ambiguity was noted. The taxonomic classification of identified species was plotted 

at several hierarchical levels.  
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5.4 Results 

5.4.1 Illumina sequencing 

The TT of P. nemaeus was determined to be 27.8 hours and the MRT was 48.8 

hours. After 72 hours, 80% of the bead markers had passed. Fecal samples were therefore 

collected at 72 hours after the beginning of the feeding trial. DNA extracted from these 

samples was sequenced to obtain 74,325,939 (11.3 Gb) and 67,127,731 (10.2 Gb) reads 

of 76 bp from PN1 and PN2, respectively (Table 5.1). The mean sequence quality was 

high (Phred score ~38), but decreased beyond 60 bp and showed very low scores beyond 

70 bp. Across both samples, the mean, upper and lower quartiles of Phred scores were 

>20 for the first 60 bp. For metabarcoding 268,779 (PN1) and 289,834 (PN2) reads were 

available for variant calling and filtering  

 

Table 5.1: Sequences used in metagenomic and metabarcoding analyses of samples. For metagenomics, 

data are summarized using the plant database. 

 PN1 PN2 

Metagenomics   

Total Number of reads 74,325,939 67,127,731 

Single-end reads matching to barcode sequences 494 2001 

Reads used for Single-End analyses (100% identity) 281 1107 

DNA fragments overlapping barcode sequences 359 1257 

DNA fragments with both ends overlapping barcode 

sequences 

135 744 

DNA fragments used for Paired-End analyses (98 %identity) 105 545 

Metabarcoding   

Total Number of reads 268,779 289,834 

Unique sequences 10,740 8,592 

Unique sequences passing FC1 110 99 

Unique sequences passing FC2 13 14 
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5.4.2 Comparison of metagenomics and metabarcoding 

Best estimate of diet based on metagenomic and metabarcoding data 

 While the diet that was offered to the douc langurs is known, it remains unclear 

whether all species were consumed over the 72 hours of the trial. Our best estimate of diet 

thus has to be based on molecular evidence and I used all reads (metabarcoding and 

metagenomic) and our best identification criteria (see under “identification”) for this 

purpose. For this, I matched the reads against the diet database. This showed that the 

metagenomic data included reads for ten (PN1) and fifteen (PN2) plants (Table 5.2, 

Green/Yellow; PE analysis). The corresponding numbers for metabarcoding (using FC1) 

were sixteen for PN1 and fourteen for PN2. Given the overlap between the data, our best 

estimate of the diet is 16 diet plant genera for each of the two samples. 

 

Abundance 

Next I correlated read numbers in the metagenomic data with read numbers of the 

corresponding metabarcoding data. Spearman’s rank-correlation coefficient at >0.7 was 

highly significant when comparing metagenomic (paired-end) and metabarcoding (FC1) 

reads (Table 5.3). Across all analyses, most hits were for Cinnamomum followed by 

Leucaena and Terminalia (Table 5.2). The only major deviations were Calophyllum and 

Mangifera in PN1 that were only found in large numbers using metabarcoding.  
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Table 5.2: Genus level identifications using the various approaches tested in this study. Recovery of a 

genus and read quantifications were determined using the diet database comprising “known” (highlighted in 

bold) and “potential” diet genera. PE: Paired End; SE: Single End; Green: Recovered and unambiguously 

identified; Yellow: Recovered but ambiguous identification; Red: absent. Ligustrum was not included due 

to lack of data for potential diet species in GenBank. Baphia and Daucus identified using metabarcoding 

only at 95%. 

 
 

PE SE 

 

Metabarcoding (FC1) 

PN1 PN2 PN1 PN2 PN1 PN2 

 
Consistent Identifications 

Leucaena 10* 102* 19* 164* 
 

34105* 59734* 

Terminalia 11* 9* 19* 21* 
 

11017 18049 

 
Inconsistently identified 

Acalypha 2 1 4 4 
 

2483* 2060* 

Baphia 
 

6 
 

6 
 

766* 1993* 

 
Unambiguously identified by metagenomics 

Vigna 3* 19* 11* 29* 
 

4177 4316 

Cinnamomum 30 156 79 303 
 

105975 107878 

Ficus 4 1 7 3 
 

9747 1630 

Averrhoa 4 19* 8* 35* 
 

5171 21191 

Ipomoea 2 2 5 3 
 

5223 1541 

Daucus 1 7* 
 

15* 
 

12775 8945 

Morus 
 

1 
 

3 
 

383 2234 

 
Unambiguously identified by metabarcoding 

Hibiscus 
 

2 
 

1 
  

148* 

Calophyllum 
  

1 
  

5698 
 

 
Present, but not identified 

Zea 1 4 
 

3 

 

577 1614 

Pterocarpus 
   

1 156 112 

Malus 
 

2 
 

8 
  

Pyrus 
 

1 
 

1 
  

Mangifera 
     

958 
 

Cucumis 
     

190 
 

*identified to species as Vigna unguiculata, Leucaena leucocephala, Averrhoa carambola, Daucus carota, 

Terminalia catappa, Acalypha siamensis, Hibiscus rosa-sinensis, and Baphia puguensis. Glycine max (likely 

misidentification) was also identified to species for PN2 in metabarcoding.  
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Table 5.3: Correlation between the abundance of each genus using metabarcoding (FC1) and metagenomic 

(paired-end) approaches. Only identifications made under same identity threshold  

(98%) for the two approaches were considered. 

 

Genera compared Sample Spearman’s ρ n p-value 

All genera identified* 
PN1 0.822 14 0.0003 

PN2 0.717 14 0.004 

     

Identified using both approaches 
PN1 0.899 9 0.00097 

PN2 0.723 11 0.012 

 

* If a genus is not identified by one approach it was represented by zero reads 

 

Identification 

Our best estimate of the diet was based on the diet database consisting of fairly 

distantly related species. However, in order to compare the performance of metagenomics 

and metabarcoding, it is more important to assess whether diet elements can be identified 

against a database of all (available) angiosperm barcodes. With regard to metagenomics, 

preliminary analyses based on SE and PE reads revealed that only identifications based 

on at least two different barcode loci were reliable, because matches based on single 

barcode genes yielded too many plant genera that were not part of the known diet 

(Appendix 1 Table T5). Once the 2 gene criterion for genus-level identification was 

applied, the PE analysis identified 7/16 (PN1) and 9/16 (PN2) genera, whereas the SE 

analyses identified 8/16 (PN1) and 7/16 (PN2) of the diet genera (Table 5.2, Fig. 5.1, 

Green). On the other hand assembly based analyses yielded fewest identifications (Fig. 

5.1). For metabarcoding, I found that the FC1 criterion performed best, but the number of 

identifications was much lower than for metagenomics (PN1: 6/16 and PN2: 5/16) (Fig. 

5.1). In contrast, using FC2 I found fewer diet genera but this criterion also avoided some 

misidentifications (Fig.5.1). The latter criterion for metabarcoding and assembly based 

analyses for metagenomics trades-off identification certainty against number of 

identifications; i.e., the more stringent criteria yielded only known diet genera, but there 



76 

were very few of them while the less stringent criteria identified a larger number of diet 

genera albeit at the expense of the occasional misidentification. For example, PE analyses 

(metagenomics) and FC1 (metabarcoding) yielded only one misidentification, while SE 

analyses yielded one misidentification per sample (Fig. 5.1). Thus, overall the results of 

SE and PE analyses are very compatible, but the PE matches are arguably more reliable. 

Hence I consider the PE analysis and FC1 as best identification criteria for metagenomics 

and metabarcoding. Note that these conclusions were not sensitive to choosing 95% or 

98% identity threshold for metabarcoding.  
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Figure 5.1: An overview of the genus level identification success for five approaches tested. Te: Terminalia, Le: Leucaena, Ba: Baphia, Ci: Cinnamomum, Ac: 

Acalypha, Vi: Vigna, Ip: Ipomoea, Da: Daucus, Hi: Hibiscus, Mo: Morus, Py: Pyrus, Or: Oryza, Ma: Malus, Cu: Cucumis, He: Hemigraphis, Ze: Zea, Fi: Ficus, 

Av: Averrhoa, Ca: Callophyllum, Li: Ligustrum. Dark green: known diet; light green: potential diet; red: others (potential misidentifications). SE: single end, PE: 

paired end, FC1: filtering criterion 1, FC2: filtering criterion 2. 
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At the species level, PE analyses identified three (PN1) and five (PN2) species, 

while SE analyses identified four (PN1) and five (PN2) species (Table 5.2). 

Metabarcoding (FC1) yielded three (PN1) and five (PN2) species-level identifications; 

however, one species was misidentified (Baphia nitida as Baphia puguensis) in both 

samples and Glycine max (“other” species; likely misidentification) was identified for 

PN2. Overall both metagenomics and metabarcoding yielded fewer identifications at 

species-level due to the poor species-level resolution of cp-DNA barcodes. Next, I 

assessed the genus-level overlap between the identifications made by the two methods. 

There was overlap for Leucaena, Terminalia, Acalypha and Baphia (Fig. 5.1, Table 5.2), 

while Vigna, Ipomoea, Daucus, Ficus, Averrhoa and Morus were identified only using 

metagenomics, and Hibiscus, Calophyllum and Ligustrum were identified only using 

metabarcoding. Note that Ligustrum was not recovered in the diet database, as data for 

this diet species was not available in GenBank.  

 

The main problems with identifications based on the two methods differed. For 

metagenomics, the low read counts caused some species to remain undetected because 

they only had matches to one barcode gene and thus failed the multi-gene criterion. For 

example, two (PN1) and four (PN2) additional “known” and “potential” diet plants with 

low read counts satisfied only the single gene criterion (Appendix 1 Table T5). The main 

challenge for metabarcoding was the poor diagnostic value of the amplified barcode 

region. Even dominant diet elements such as Cinnamomum, Ipomoea, Ficus, Vigna and 

Averrhoa could not be identified to genus because the barcode for these species is not 

genus-specific; i.e., the PCR step had generated enough reads for these genera to be 

above the detection threshold but they could not be diagnosed reliably against a broad 

taxonomic database. Overall, species detection based on metabarcoding is thus limited by 
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the diagnostic power of the barcodes and several diet species could only be identified to 

family. 

5.4.3 Number of chloroplast sequences 

In order to test whether the metagenomic reads cover the chloroplast genome 

uniformly, I obtained 218,652 sequences for PN1 and 236,600 for PN2 with BLAT (see 

methods). Most were identified as bacterial sequences in BLAT searches against the 

genomic reference database, but 10,561 (0.014% of PN1) and 44,167 (0.066% of PN2) 

reads were likely genuine cpDNA. In order to test the efficiency of BLAT, I compared 

the recovered read numbers with those found via BLAST searches against the three 

barcode regions in the diet database. BLAT proved effective because it recovered ~85% 

(PN1) and 92% (PN2) of these reads. Overall, the chloroplast genome of Magnolia 

denudata (NC_018357.1) had the highest number of read hits and it was used to study the 

topological distribution of the sequences via BLASTN matches (yielding results for ~88-

90% of reads). The sequences were overall uniformly distributed except that there were 

larger numbers of reads in the inverted repeat regions (Fig. 5.2). This shows that an 

expansion of the reference database from four barcode regions to full genomes would 

provide additional sequences that can be used to assess the diet. 
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Figure 5.2 (a) Mapping of single-end reads of PN1 onto the Magnolia denudata chloroplast genome: Locations of inverted repeats are marked by arrows as estimated 

using the genome map from CpBase (http://rocaplab.ocean.washington.edu/tools/cpbase). Reads have approximately equal representation outside of the repeat region 

(see text). 
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 Figure 5.2 (b) Mapping of single-end reads of PN2 onto the Magnolia denudata chloroplast genome: Locations of inverted repeats are marked by arrows as estimated 

using the genome map from CpBase (http://rocaplab.ocean.washington.edu/tools/cpbase). Reads have approximately equal representation outside of the repeat region 

(see text). 
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5.4.4 Characterization of host mt-DNA and eukaryotic DNA 

Assembly of PN1 and PN2 libraries from the maternally related monkeys 

produced 25 and 9 mitochondrial contigs of >100bp length which provided two identical, 

and nearly complete mitochondrial genomes with an average similarity of 99.1% to 

Pygathrix nemaeus (JF293096.1; Appendix 1 Fig. S1). Based on rDNA and COI 

sequences (Fig. 5.3, details in Appendix 1 Tables S6-9), numerous sequences from 

nematodes, protozoa, fungi and plants were obtained.  Many corresponded to nematodes 

(4-12% of rDNA identified), specifically to Strongyloides fuellerboni (based on LSU, 

SSU rDNA and COI). Among the Protozoa, several hits were for the heterokont 

Blastocystis sp. (>3000 reads for PN2 based on SSU rDNA) and amoebozoan Entamoeba 

sp. (>2000 reads for PN1 and PN2 based on SSU rDNA). More precise species-level 

identification would require comparison to databases of homologous regions but there is 

evidence for the presence of “Entamoeba sp. RL3” which is known to be colobine-

specific (Stensvold et al. 2011). Lastly, both rDNA (at 98% identity) and COI analyses 

(at 95% identity) revealed arthropod sequences, but they could not be identified beyond 

the order level based on COI. However, SE data suggested presence of Ceratitis sp. and 

Drosophila sp. in PN1, based on three sequences. COI analyses showed also the presence 

of Gallus sp. sequences suggesting that chicken had been ingested. Upon inquiry, the 

Singapore Zoo confirmed that the rice balls included cooked chicken. The LSU and SSU 

rDNA to plant sequences were largely congruent with the results of the barcode-based 

analyses particularly at higher taxonomic levels. 
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Figure 5.3: Eukaryote identifications based on COI and rDNA (pair-end, 98% identity, 70bp overlap): Green taxa present in both samples; Red=expected species (e.g., 

diet species, host). Species level identities shown only for Strongyloides, Blastocystis and Entamoeba. SE refers to Single End reads. 
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5.5 Discussion 

Our study documents how a metagenomic approach can be used to identify food 

plants from fecal DNA of a mammal with long food retention times. I optimized 

bioinformatic procedures for plant identifications to genus-level based on paired end data 

and found chloroplast reads for many of the diet species. I also demonstrated that shotgun 

sequencing allows for a broad characterization of fecal samples. The same data that were 

used for diet analysis also document intestinal parasites and yield information on the 

genetics of the studied individuals. In addition, I revealed the unexpected presence of 

chicken in the monkey’s diet, which could only be explained after the Singapore Zoo 

confirmed that rice balls that were fed to the monkeys contained chicken. This documents 

that unexpected diet items can be identified with metagenomics. Additional uses of the 

metagenomic data would include analyses of the gut microbiomes. 

 

In this chapter I used samples from captive animals for which all potential diet 

items were known. Therefore I could test which bioinformatic strategy yields reliable 

results. I was also able to reject those strategies that either identified too few diet genera 

or mistakenly identified plant genera that are not part of the known diet. For my samples, 

I found that the following criteria yield the best results for the metagenomic data: (1) read 

identity with reference barcode ≥ 98%; (2) read overlap of 50 bp, and (3) use of two 

different reference DNA barcodes. Using these criteria, single-end (SE) and paired-end 

(PE) analyses yield largely compatible results with seven to nine of the diet taxa 

identified based on a genus-level identification against a broad database containing tens 

of thousands of plant barcodes (Fig. 5.1). Between SE and PE analyses I found that the 

latter marginally improved reliability. I also carried out an assembly-based analysis. It 
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again yields compatible results but only up to five diet genera are detected; i.e., much 

deeper sequence coverage would be needed for a complete characterization of the diet via 

assembled data. Thus, overall I identified seven and nine genera for the two samples 

using PE analyses. However, there is evidence that this list of diet genera is incomplete. 

Some reads are ambiguous when identified based on all data in Genbank but they can be 

assigned to diet species when matched against the species-poor 'diet database'. Moreover, 

a union of the set of plants recovered by metagenomics and metabarcoding revealed at 

least sixteen diet genera for each sample (Table 5.2). This dramatic increase and failure to 

detect low abundance diet items indicate that the coverage of my shotgun sequencing was 

insufficient for a complete characterization of the diet. Such a characterization would 

either require target enrichment, higher throughput, or identifying species based on more 

chloroplast genes. Once these additional data are available, my recommended 

bioinformatic techniques should be able to identify most diet plants. 

 

Given the coverage problems with my metagenomic data, one may conclude that 

metabarcoding is a better and potentially cheaper technique because many samples can be 

multiplexed. However, the metabarcoding analyses using trnL are plagued by ambiguity 

problems which result in the identification of even fewer plant taxa to both genus and 

species (Table 5.2; Fig. 5.1). Particularly problematic are eight diet taxa that have fairly 

high read counts (in PN1 and/or PN2), but cannot be identified to genus because the reads 

have ambiguous matches. This includes the dominant diet item, Cinnamomum. The only 

reason why I can identify these reads in my study is because the potential diet species are 

known and distantly related. Alternatively, one could abandon taxonomic identifications 

and only determine the number of Operational Taxonomic Units (OTUs) as a measure of 

taxonomic diet diversity. As long as the species were distantly related, the number of 
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OTUs could be determined and they could be identified to family. However, depending 

on the number of species in the habitat, this level of information may not be useful for 

conservation purposes. There are several ways for obtaining better results with 

metabarcoding. Firstly, one could follow De Barba et al. (2014) who initially identified 

diet items to family before using more taxon-specific primers for variable genes such as 

nrITS for a second round of PCR and sequencing. However, this strategy erodes the 

potential cost advantage of metabarcoding. Alternatively, one could increase the number 

of amplified barcoding genes in the initial step itself. Such PCR-based amplification of 

multiple genes may also avoid misidentifications based on a single gene, as was observed 

in my study for Baphia nitida. Especially, barcoding variable markers such as ITS2 could 

be used for improving taxonomic resolution (Hollingsworth et al. 2011). However, the 

choice of barcodes will depend on degradation level of the samples and amplification 

efficiency of each primer. In my study, metabarcoding was based on an average of 51 and 

53bp fragments of trnL for the PN1 and PN2 respectively (Hollingsworth et al. 2011), 

while metagenomic SE analyses uses only 76 bp reads. Such short reads can be used to 

characterize intact as well as highly degraded samples as insert sizes for library 

preparation of metagenomic samples can be adjusted to the nature of the sample.  

 

One of the concerns with metabarcoding is amplification biases during the PCR 

stage. However, using trnL, I find very little evidence for such a bias. Most of the diet 

species in both samples are represented in the metabarcoding data. Indeed, there is overall 

a strong correlation between read numbers for the same genera in the metagenomic and 

metabarcoding datasets with only two major discrepancies (Table 5.3). The correlation of 

read counts is welcome news because one of the ultimate goals of NGS diet analysis is 

arguably to quantify biomass intake from counts of DNA reads. Metagenomics allows for 
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direct counts, but it currently comes at a higher cost than metabarcoding; i.e., it would be 

useful if metabarcoding reads could be used to estimate read quantity in DNA extractions. 

Of course, further research would be needed before read counts can reliably be correlated 

with feeding preferences and biomass intake. With regard to douc langurs in the 

Singapore Zoo, a recent study indicates that the species prefers Leucaena, Terminalia and 

Morus over Acalypha, Hibiscus and Hemigraphis (Xue & Sha 2010) and my results are 

consistent with two of the top choices (while Cinnamomum was not used in the 

preference test). This suggests a broad correlation between dietary preferences 

determined by direct observation and read recovery although the number of sequence 

reads is likely determined by many factors including differential rates of digestion 

(Deagle et al. 2010) which will be affected by structural differences, such as between 

leaves and fruits. As an example, Baphia was provided only on the third day of the 

feeding trial but the corresponding reads were already present in the feces at the end of 

the same day, despite the mean transit time of food being ~28 hrs. Surely, there will be 

complex interrelationships between biomass, read numbers, feeding preference, time of 

food intake, and retention time.  

 

Given the advantages and disadvantages of metagenomics and metabarcoding, 

recommendations for future diet studies will be case specific. The advantage of 

metagenomics is that dominant diet taxa are identified with a greater resolution while the 

metabarcoding data has better coverage for rare diet taxa. Looking into the future, it is 

likely that NGS cost will decline and DNA barcode coverage will increase. Currently, 

trnL is only available for ~5000 angiosperm genera while rbcL is available for >7000 

genera. This means that additional trnL diet reads that currently have definite matches at 

the genus-level will become ambiguous while those that are already ambiguous will 
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remain so because denser taxon sampling does not resolve ambiguity. Metagenomics, 

however, will benefit from lower cost and be less affected by ambiguity because it uses 

the signal of multiple barcodes (Li et al., 2014). As more barcode regions are used for 

species identification, more metagenomic reads will become informative. For example, I 

could have used ~10,000 and ~44,000 sequences if whole chloroplast genomes had been 

available for identification. Given that my metagenomic reads are largely uniformly 

distributed across the cp-genome (Fig. 5.2), going from <3000bp of barcode sequence 

used here to full cp genomes would result in an ~50x increase of the data available for 

identification. Fortunately, more authors argue for longer and more barcodes as reference 

(Meier et al. 2006; Nock et al. 2011; Chapter 3), so that this development is already 

underway.  

 

Overall, metabarcoding remains particularly attractive when a diet item has to be 

picked from a small number of distantly related, potential choices with discrete trnL 

barcodes while metagenomics is currently particularly valuable for the following 

cases: first, for species with little prior information on biology because selecting the 

correct primers for PCRs is difficult. Second, for endangered species where few samples 

are available that should be studied exhaustively. Metagenomics simultaneously 

provides data on the host, its intestinal parasites, and associated microbes. For example, I 

here characterized the eukaryotic reads and additional work could have been done on the 

gut microbiome (Lamendella et al. 2011). Particularly, interesting was the recovery of the 

mitochondrial genome of the host and a gut nematode belonging to Strongyloides 

(probably S. fuellerboni) (Fig. 5.3). This nematode has been found in Asian and African 

non-human primates (Labes et al. 2011). I also recorded the presence of Entamoeba sp., 

and in particular Entamoeba sp. RL3, a lineage found only in Colobinae (Stensvold et al. 
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2011). Additionally, I found sequences similar to the common fecal parasite Blastocystis 

sp. (Alfellani et al. 2013). Lastly a very small number of sequences matched insects 

revealing the presence of fruit (Tephritidae) and vinegar flies (Drosophilidae), which are 

likely to be plant-associated ingestions. Overall, this suggests that metagenomic data 

generated from wild samples allows for studies where a wider and more holistic picture of 

the ecology is desired. It can potentially give novel insights into multiple aspects of 

biology of endangered species and help with understanding pathogens that may be of 

conservation relevance. Generated from captive samples, it provides important veterinary 

information. In all, moving towards a metagenomic analysis of fecal DNA promises to 

provide numerous new insights into species-interactions that will go well beyond diet 

characterization.  
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CHAPTER 6 

__________ 

Metagenomics outperforms metabarcoding and field 

observations for diet characterization and yields 

additional information on host genetics and parasite 

infestation of the banded leaf monkeys (Presbytis 

femoralis) 

 

6.1 Abstract 

In this study I document how metagenomic data from fecal samples obtained in a 

Southeast Asian rainforest can be used to infer simultaneously the diet, mitochondrial 

genetics, and parasite community of the critically endangered Singapore population of the 

banded leaf monkey Presbytis femoralis. I compare the results of metagenomics with 

observational data collected in the field and find that metagenomics gives deeper dietary 

profiles than observational studies, which are likely to overlook rare feeding events for 

elusive animals. Furthermore, I compare the performance of metagenomics and 

metabarcoding and find that metagenomics outperforms metabarcoding because more 

species are represented in the data and they can be identified to a lower taxonomic level 

(species/genus). Based on our previous study on red-shanked douc langurs (Pygathrix 

nemaeus), recovering fewer species in the metabarcoding data is surprising while the 
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better taxonomic precision of metagenomic reads is not unexpected. I again find that the 

number of reads in the metagenomic and metabarcoding correlate. In the current study, I 

also refine the analysis of metagenomic data in order to provide more accurate dietary 

profiles using exact alignments. Overall, I obtain very diverse dietary profiles for banded 

leaf monkeys. I identify diet species from 60 genera from six samples and identify the 

dominant 21 plant genera that are present in ≥3 samples. I discuss the implications of the 

results for conservation and management of banded leaf monkeys. I furthermore obtain 

full mitochondrial genomes and optimize the assembly pipeline of such genomes from 

metagenomic data. Overall, I find very low genetic variation across the mt-genomes of 

the putatively highly inbred banded leaf monkeys in Singapore. Particularly interesting is 

the finding of heteroplasmy in five of six genomes, which prompts further investigation 

on the prevalence of heteroplasmy in wild populations. Lastly, in addition to Entamoeba, 

Blastocystis and Strongyloides that are prevelant (in 5-6 of the samples), I detect the 

presence of Oesophagostomum and Trichostrongylus in one, thus revealing the need to 

study these populations in greater detail for parasite prevalence. 
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6.2 Introduction 

Obtaining information on the ecology of endangered species is critical for 

establishing effective conservation measures. In order to gather this information, 

numerous conservation biologists spend years of field work that yield information on 

population size, feeding ecology, social systems, and other behavioural traits (Ang et al. 

2010; Smith & Smith 2013; Sommer & Mendoza 1995). Information obtained in such 

field studies can be supplemented by obtaining data from non-invasive samples such as 

feces, hair, etc (da Silva et al. 2012). Given that fecal samples have genetic material from 

diet, host, parasites as well as the microbiomes (Kohn & Wayne 1997), they are a very 

useful resource to characterize multiple aspects of ecology of a species. In chapter 5, I 

discussed how the small contributions of diet, host, and parasite species to the overall 

metagenome can be characterized reliably and provide useful biological information. I 

established the methodological procedures for analysing metagenomic data to 

characterize the diet from fecal samples and compared it with an existing metabarcoding 

approach to diet analyses using the P6 loop of trnL (Taberlet et al. 2007; Valentini et al. 

2009). The comparison revealed the advantages as well as the limitations of both 

approaches. I found that metagenomics could identify plants with greater resolution by 

using longer reference barcode sequences for multiple genes. However, the data lacked 

information on rare diet species. On the other hand metabarcoding could recover reads for 

a larger number of plant species, but they could often not be identified to genus. Lastly 

the abundances of plant barcode sequences in the two approaches were correlated. 

 

Based on the previous study, I predict that a comprehensive diet characterization 

from a fecal sample would require at least one of the following: (a) higher throughput in 

metagenomics, (b) a combination of both metagenomics and metabarcoding that would 
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combine the advantages of the two approaches, or (c) a two-step characterization of 

samples using metabarcoding as done by De Barba et al. (2014). The latter design 

requires an initial metabarcoding experiment to characterize diet species sequences to 

family and a follow-up metabarcoding experiment with family-specific primers for 

amplifying a short fragment of nrITS that would then be sequenced for identification to 

species/genus. Arguably, this approach would only be effective for characterizing low-

diversity diets, because a diverse diet would require the laborious task of designing 

several family-specific primers, carrying out numerous PCR experiments, and sequencing 

many products using NGS. I have therefore argued that metagenomics may be a better 

approach because it offers the opportunity to not only characterise the diet without 

numerous amplification experiments, but also provides a wealth of other biological 

information based on complex environmental samples for endangered species. In this 

chapter, I use two of the three recommendations outlined above. I use a metagenomic 

approach to the study of fecal DNA, but I use greater coverage depth to identify a larger 

number of rare species. At the same time, I combine metagenomic and metabarcoding 

data for the same samples in order to study the biology of an endangered population of a 

colobine primate, the banded leaf monkey (Presbytis femoralis femoralis).  

 

The Singapore population of the banded leaf monkey is critically endangered (Lim 

et al. 2008), but there are reasons why one has to be concerned about the species itself. 

Currently there are three recognised subspecies of P. femoralis, of which P. femoralis 

femoralis is found in the southern Malay peninsula and Singapore (Fig.5.1) (Ang et al. 

2012). The second subspecies, Presbytis f. robinsoni ranges from the northwest Malay 

Peninsula extending north to Thailand and Myanmar, while the third, Presbytis f. percura 

is only found in eastern Sumatra. These recognised subspecies show variation in amounts 
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of black fur/white pigmentation.   However, we have data demonstrating that there is high 

genetic divergence (~10% based on Cytb) between this subspecies and P. femoralis 

robinsoni, the subspecies found on the Northern Malay Peninsula (Meyer et al. 2011). 

This suggests that the Southern subspecies is likely to be a separate species. The main 

reason why these results have not been published is that there is no genetic information 

for the third subspecies P. femoralis percura. The type location for Presbytis femoralis 

femoralis is Singapore and as mentioned, the Singapore population is particularly 

endangered (Lim et al. 2008; Wilson & Reeder 2005). The population size is very small 

and the current population size estimate for these primates is only ~40 individuals (Ang et 

al. 2010; Lim et al. 2008). Over last 200 years Singapore has lost over 95% of its 

vegetation cover and as a consequence nearly 1/3 of its original plants and animal species 

(Ang et al. 2012; Brook et al. 2003). The banded leaf monkey is barely surviving. They 

were widespread across the island in the 19
th

 century, but eventually became restricted to 

two forest fragments (Bukit Timah Nature Reserve, BTNR and Central Catchment Nature 

Reserve, CCNR). Upon the construction of the Bukit Timah Expressway in 1983, gene 

flow between the two populations ceased, and in 1987 the population in BTNR became 

extinct (Yang & Lua 1988). Thus these primates are currently limited to a small fragment 

of CCNR in Singapore.  
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.  

Fig. 6.1 : Distribution of the three currently recognized subspecies of P. femoralis (Ang et al. 2012) 

 

Currently, little is known about the biology of P. femoralis femoralis. The main 

obstacle has been that these primates are difficult to study in field. They are very shy and 

elusive (Ang 2010) and the forests that they inhabit are dense, secondary and freshwater 

swamp forests that are difficult to traverse; thus observational study has been challenging 

(Ang 2010; Hüttche 1994). This is evident from the fact that a six-month study in the 

1990s led to only 13 sightings (Hüttche 1994).  More successful was a later, three-year 

study (2008-2011), during which 115 observations were made (Ang 2010). However, it 

has been particularly difficult to obtain meaningful ecological information. For example, 

the abovementioned study described only 31 feeding observations (Ang 2010) yielding an 

overall list of 27 plant species. Feeding behaviour was particularly difficult because direct 

observations are often obstructed by the canopy (Bennett 1983).  In addition, it is difficult 

to obtain voucher material for the food trees given that much of the vegetation is out of 

reach, the observations are made from a distance, and tree and liana species diversity of 

the native habitat supports >700 species (Wong et al. 2013). This lack of information on 

the diet is unfortunate because a sound understanding of diet is important for an efficient 
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resource management of ecosystems that support endangered species (Cowlishaw & 

Dunbar 2000; Merlender et al. 1998). Moreover, these primates are found in a forest 

within an urban environment which creates serious concerns for viability of populations, 

as any alteration in habitat (e.g., loss of critical diet species) could lead to extinction of 

the species (Quéméré  et al. 2013). Lastly, the urban setting also leaves potential for the 

transmission of parasites from and to humans.  

 

One source for obtaining diet information of primates is fecal samples. The study 

of primate diets via feces has a nearly thirty-five year history. It started with 

morphological studies that were conducted on diet remnants in samples from baboons, 

vervets, Sykes’ and colobus monkeys (Moreno-Black 1978). Later, DNA based 

approaches were utilized. Using PCR and cloning, Bradley et al. (2007) conducted diet 

analyses on chimpanzees. However, with the advent of Next Generation Sequencing 

(NGS), faster alternative methods are becoming popular. For example, Quéméré et al. 

(2013) used metabarcoding to investigate the dietary diversity and plasticity in the 

golden-crowned sifaka Propithecus tattersalli. Such NGS based studies consisted of two 

steps: (I) PCR based amplification of short fragments of DNA using generic primers, and 

(II) amplicon sequencing of these products using NGS technologies. However, such a 

PCR-based approach has limitations. Firstly, it depends on the availability of sufficiently 

general primers that can amplify the DNA of all potential dietary species. This requires a 

priori knowledge of the diet range and may interfere with genuinely new insights into the 

nutritional resources of a species (see Chapter 5). Secondly, there is a chance for an 

amplification bias that may skew the representation of the various taxa in the fecal 

samples. While for the red shanked douc langurs, I found the bias to be minimal, several 

authors expect these biases to be a significant problem (Hamad et al. 2014; Pompanon et 
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al. 2012). Lastly, the primer designed is required to amplify short fragments of the 

degraded DNA in fecal samples. However, these fragments often lack sufficient 

variability to classify several organisms to genus (Chapter 5). Typical examples for the 

short fragments used for the study of animal diets are ~100 bp of 12S (Shehzad et al. 

2012) and for plant diets a 40-140 bp long piece of the P6 loop of trnL (Taberlet et al. 

2007).  

 

In the previous chapter I demonstrated that the issue of diet plant identification to 

genus can be largely resolved using a metagenomic approach. This approach has the 

additional advantage of being multi-dimensional and allows for the assembly of 

mitochondrial genomes and identification of intestinal parasites. An alternative method to 

obtain complete mitochondrial genome sequence from fecal DNA would involve PCR 

and sequencing; for example, Matsui et al. (2007) conducted PCR on 17 fragments of 

300-2,000 bp lengths mt-DNA for  Propithecus verreauxi (Verreax’s sifakas) to 

characterize the mitochondrial genome (Matsui et al. 2007). Otherwise PCR-based 

approaches generally rely on single or a few gene fragments. For example, we previously 

sequenced the hypervariable region I of d-loop for our P. femoralis samples and found 

that the population was genetically impoverished (Ang et al. 2012). Using metagenomic 

data, population genetics studies can be based on entire mitochondrial genomes instead of 

being restricted to the short HV-I region of d-loop. In the future, the multi-dimensionality 

of metagenomic datasets can be used to look for other types of interactions. For example, 

parasitism can drive populations with low genetic variability to extinction (Whitehorn et 

al. 2011) and gut parasites have been shown to cause mortality (Chapman et al. 2005). 

Once more metagenomic data are available, the frequency of such correlation can be 

studied.  



98 

 

My first aim in this chapter is to address how the information obtained from NGS 

based analyses of environmental samples compares with traditional methods of studying 

feeding ecology using observational data.  Secondly, I extend the comparison of 

metagenomics and metabarcoding from the study of captive Douc Langurs (see Chapter 

5) to the much more complex diet analysis of samples collected in the wild. Thirdly, I 

here test whether a metagenomic approach is successful even if the available barcode 

database does not contain sequences for all potential food plants. Such cases are common 

because it is rare that barcode sequences are available for all potential diet species (Elliot 

& Davies 2014). Fourthly, I develop bioinformatic strategies that reduce 

misidentifications based on metagenomic data when only incomplete databases are 

available. Lastly, I characterize the biology of Singapore’s banded leaf monkeys in terms 

of diet, host mitochondrial diversity, and parasites. 
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6.3 Materials and Methods 

6.3.1 Fecal sample collection, DNA extraction and sample validation 

Fecal samples used in the study were collected opportunistically by Andie Ang 

during her field studies on the Singapore population of the banded leaf monkeys. Groups 

of monkeys were observed followed and if defecation was observed, the sample was 

collected and brought back for storage at -70 °C. Note that samples were collected on 

different days and from places that were separated by man-made barriers (military 

infrastructure), thus increasing the likelihood that these were from different groups of 

monkeys (Ang et al. 2012). DNA was extracted as described in Chapter 5 using the 

QIAGEN DNeasy Blood and Tissue Kit according to the manufacturer’s protocol with an 

extra wash step using Buffer AW2. Four independent extractions were carried out, and 

for each of these extractions, the interior of the feces was randomly sampled. The outside 

layer of the fecal sample was avoided in order to avoid contamination (Hamad et al. 

2014).  

 

In order to ensure that samples originated from Presbytis femoralis, a 12S 

fragment was amplified using primers L14724: CTGGGATTAGATACCCCACTAT and 

H15149: GAGGGTGACGGGCGGTGTGT (Ang 2010). PCR amplifications were carried 

out using Taqara ExTaq polymerase (Reaction mixture: 2.5 µL reaction buffer, 2 µL 

dNTPs, 1 µLMgCl2, 1.2 µL of each primer and 0.15 µL of Takara ExTaq; reaction 

conditions: Initial denaturation of 95°C for 5 min followed by 35 cycles of 95°C for 1 

min, annealing at 56°C, and extension 72°C for 1 min, final extension at 72°C for 5 min). 

The amplified products were purified using Bioline Sure-Clean solution (UK) using the 

manufacturer’s protocol. Cycle sequencing reactions were carried out using BigDye 
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Terminator v3.1 and the sequences were analysed using the ABI3730xl DNA Analyzer. 

Sequences were edited using Sequencher 4.1 to obtain 12S fragments ranging between 

300-400 bp. The sequences were validated as Presbytis sp. using BLAST against NCBI. 

6.3.2 Next Generation Sequencing 

DNA extractions from six validated banded leaf monkey samples (henceforth 

called BLM1-6) were sent for Next Generation Sequencing using Illumina HiSeq 2000 

and MiSeq platforms. We used the same approach as in Chapter 5. For HiSeq sequencing, 

one library was constructed for each fecal sample (fragment size 280-300 bp). Two 

samples multiplexed in one lane of Illumina HiSeq 2000 and paired 76 bp reads were 

obtained using TruSeq PE Cluster Kit v3 and TruSeq SBS Kit v3. Additionally, we have 

datasets generated using the Illumina MiSeq platform for platform comparison purposes. I 

added this data to the analyses for diet and the mitochondrial genome. This dataset 

contained paired 300 bp reads. The libraries were prepared using the TruSeq Nano DNA 

sample preparation kit, with insert sizes of ~700 bp. Data were generated using one run of 

MiSeq per sample. 

 

For the metabarcoding experiment, we used two sets of samples: the first set 

comprised four samples with the same extractions (BLM1, BLM3, BLM4, BLM6) that 

were used for metagenomics. The second set comprised different extractions from the 

same samples that were used for metagenomics (BLM2 and BLM5). For all six, the P6 

loop of chloroplast trnL intron was amplified using primers trnL-g and trnL-h (Taberlet et 

al. 2007), that the latter were tagged using eight variable nucleotides at the 5’ end of each 

primer that were designed using oligoTag (Coissac 2012) under the following criteria >= 

5 variable sites; <3 bp homopolymers; the additional dinucleotide CC was added to 5’ 
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end. The PCRs were carried out using BioReady rTaq DNA polymerase (Bulldog Bio, 

Inc., Portsmouth, NH) with reaction conditions and mixtures as described in Chapter 5. 

Three PCR replicates were obtained for each sample and the products were purified using 

a MinElute PCR Purification Kit (QIAGEN). Using Fragment Analyzer™ Automated CE 

System (Advanced Analytical), the products were quantified and pooled at equimolar 

ratios. Illumina MiSeq (Illumina Inc) was then used to obtain ~200,000-400,000 paired 

reads of 150bp; the libraries were prepared using the TruSeq Nano DNA sample 

preparation kit (150 PE). 

6.3.3 Databases used in the study 

Databases used in this study were previously described in Chapter 4. Briefly, the 

plant barcode databases consist of 73,892 sequences from 7,894 genera and 410 families 

for matK, 37,747 sequences from 5053 genera and 281 families for trnL, and 64,049 

sequences from 7,539 genera, and 421 families for rbcL. This included 191, 248 and 211 

barcodes for matK, rbcL and trnL-F respectively for species from Nee Soon Swamp 

(Chapter 4). For other eukaryotes and general characterization of metagenomes, COI 

(Chapter 4), SSU and LSU rDNA (SILVA, Pruesse et al. 2007) databases were used. A 

more targeted database of common non-human primate parasites was compiled based on 

a literature survey (Appendix 4). Sequences corresponding to SSU rDNA (18S) for these 

genera were downloaded from GenBank; this database comprised 5854 sequences from 

26 genera (Appendix 4). 
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6.3.4 Data analysis 

Prior to analyses, FASTQ files were trimmed using Trimmomatic v 0.32 (Bolger 

et al. 2014) under the following parameters: minimum average quality score=30, 

minimum length=50 after removal of all bases below average score of 20 at the start and 

end of sequences (LEADING=20, TRAILING=20). The obtained FASTQ files were 

converted to FASTA for further analyses.  

 

Diet 

For diet analyses using metagenomics, we followed the identification strategies 

developed in Chapter 5. For diet identification, MEGABLAST searches (word-size=28) 

for each end of the paired-end data were independently conducted against the three plant 

barcode databases. The results were filtered at 50 bp overlap and 98% identity threshold. 

The identification pipeline was then used to assign each read to different taxonomic levels 

(e.g., species, genus, family). Lastly, the results for the two ends were compared, 

conflicting matches were removed and the congruent genus-level identifications were 

reported (paired-end analyses). All genera identified using only single barcode were 

excluded (see Chapter 5: two gene criterion). 

 

In the previous chapter I demonstrated that reliable plant identification requires 

matches to at least two barcoding genes. However, this criterion occasionally still yields 

misidentifications. Assembly-based approaches may be able to reduce misidentification 

although they would generally yield fewer identifications (see Chapter 5). Thus a further 

refinement of this methodology was tested. It was motivated based on the concern that 

BLAST creates local alignments that may lead to reads matching partially to reference 

sequence despite the read being in the interior of the reference sequence. A more precise 
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alignment could be obtained using global alignment algorithms, but they are 

computationally too expensive for mining entire metagenomes. Thus, I use a two-step 

approach, where the reads identified by BLAST were extracted and then aligned using the 

Needleman-Wunsch algorithm (Needleman & Wunsch 1970) to all reference sequences 

in the plant databases. This was done using glsearch36 as implemented in the FASTA 

suite (Pearson 1990), which generates exact global alignments such that the alignment is 

global for the query and local for the reference sequences. Outputs were generated in the 

BLAST tabular format, thus I could apply the same identification pipeline described 

above for BLAST-based read identifications.  

a. Comparison of metagenomic with field data 

Observational data on the feeding ecology of the primates was obtained by Andie 

Ang during three years of field studies. 1,085 hours of field work were conducted in 

which 31 feeding observations were made. A feeding record was made whenever a 

monkey manually or orally handled a food item and brought it to the mouth (Ang 2010). 

The list of diet plant species based on direct observation was compiled and compared 

with identifications made based on metagenomic data (Table 6.1).  
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Table 6.1 List of known diet plants for P. femoralis in Singapore. Data obtained from A. Ang . * represent 

plants for which the corresponding genus does not have two or more barcodes, and thus cannot be identified 

using established criteria. 

 

S.No. Species Material fed 

(leaves/fruits) 

Number of 

observations 

1 Adinandra dumosa Flowers 1 

2 Agelaea macrophylla Fruits 1 

3 Artocarpus elasticus  Fruits 1 

4 Bauhinia semibifida Leaves and flowers 1 

5 Erycibe tomentosa Leaves 1 

6 Fagraea fragrans Leaves 1 

7 Falcataria moluccana* Leaves 1 

8 Fibraurea tinctoria Leaves and flowers 2 

9 Hevea brasiliensis Leaves 2 

10 Ixonanthes reticulata Fruits 1 

11 Knema malayana Fruits 1 

12 Litsea castanea Leaves 1 

13 Litsea elliptica Fruits 1 

14 Litsea firma Fruits 1 

15 Lophopetalum multinervium Fruits 1 

16 Madhuca sp. Fruits 1 

17 Nephelium lappaceum Fruits 1 

18 Nothaphoebe umbelliflora* Leaves 1 

19 Palaquium xanthochymum Fruits 1 

20 Passiflora laurifolia Leaves 1 

21 Pellacalyx axillaris Fruits 1 

22 Prunus polystachya Fruits 2 

23 Pterocarpus indicus Leaves 1 

24 Syzygium grande Leaves 1 

25 Tetracera indica Fruits 1 

26 Xanthophyllum ellipticum Fruits 2 

27 Xanthophyllum eurhynchum Leaves 1 
 

b. Comparison of metagenomic with metabarcoding data 

In order to obtain a diet-estimate based on metabarcoding, paired-end reads were 

merged using illuminapairedend. Sequences were assigned to different samples using 

ngsfilter following which unique reads were obtained using obiuniq. All sequences <=10 

bp were excluded using obigrep. Next, the sequences were tagged as “head”, “singleton” 

and “internal” using obiclean as in Chapter 5. Lastly I applied filtering criteria based on 

sequence counts (FC1, Chapter 5). 
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Next I compared the abundance of sequences corresponding to diet species 

between metagenomics and metabarcoding. In chapter 5, I used diet databases for a 

known diet. This was possible because more than 95% of the plant reads in the 

metagenomic data could be assigned to one diet plant species. Assigning reads to a 

species is much more challenging if the diet is unknown and not all diet species have been 

barcoded. In order to nevertheless compare the two approaches, I directly matched the 

sequences from the metabarcoding datasets to the metagenomic datasets. This was done 

by mapping the metabarcoding reads onto the metagenomic reads. In our case this is 

feasible because of the short length of the metabarcoding fragments (longest sequence 

retained after filtering was 64 bp long). In order to map the metabarcoding data I 

generated a fasta file containing the unique reads retained after the application of the FC1 

criterion and variant calling. These sequences were mapped onto unassembled 

metagenomic data using BWA (Li & Durbin 2009) under criteria of perfect match 

criterion, allowing multiple mappings (up to 100,000) (bwa aln –n 0 –k 0; bwa samse –r 

100000).  

 

This approach gives a direct read based correlation but has the following 

disadvantage: it can be used to correlate read counts only in cases where there is a 

metagenomic match for a metabarcoding read (i.e., abundance information is present for 

both metagenomics and metabarcoding). If a metabarcoding sequence does not map to the 

metagenomic dataset, i.e., if there are 0 reads in metagenomic datasets corresponding to 

the metabarcoding fragment, it could either be because a) it is not present in metagenomic 

dataset or b) a metabarcoding sequence is generated due to an artefact of PCR/sequencing 
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(Coissac et al., 2012). In latter case, representing metagenomic data with the abundance 

information of “0” for the corresponding fragment would be misleading.  

 

To account for the possibility that a valid metabarcoding read lacks a 

metagenomic match, I used a second strategy similar to Chapter 5, where I compared all 

the reads that have been identified to a plant family. At family-level most (94-96%) of 

metagenomic reads were identified. Moreover, this approach will overcome the above 

mentioned problem, as the variants are likely to be identified to the same family [under 

95% identity threshold (Quéméré  et al. 2013)] for metabarcoding. Since they are in much 

lower frequency than the original sequence, the variants will not modify the cumulative 

read count for the family. 

 

Mitochondrial genomes 

In order to assemble the mitochondrial genome of Presbytis femoralis I first 

compared 4 different assemblers (SOAPDENOVO2 (Luo et al. 2012), VELVET (Zerbino 

& Birney 2008), METAVELVET (Namiki et al. 2012) and IDBA-UD (Peng et al. 2012) 

to identify the best assembly algorithm for characterizing mitochondrial genomes using 

one sample (BLM6). Varying k-mer sizes (k=31, k=41 and k=51) were tested. This range 

of k-mer was selected based on our previous results for diet analyses for Pygathrix 

nemaeus and other studies focussing on fecal metagenomes (Rumen: Hess et al. 2011 and 

Giant Panda: Zhu et al. 2011). Additionally, SOAPDENOVO2 and IDBA-UD allow for a 

multi-k-mer approach; thus I also assembled datasets using multiple k-mers (ranging from 

k=31 to k=51 using these). Optimized assembly parameters were then used to construct 

the reference mitochondrial genome. Coding regions were annotated and validated. 
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Reads from HiSeq and MiSeq datasets for each sample were mapped back onto 

the reference genome using BWA (Li & Durbin 2009). I first identified variant sites by 

visual inspection of the mitochondrial genome. To validate the identified sites variant 

calling was done using GATK using UnifiedGenotyper with ploidy=1 (McKenna et al. 

2010). Results obtained using HiSeq and MiSeq datasets from the same sample were 

cross checked for validation. 

 

Parasites and other eukaryotes 

In order to characterize which other Metazoa species were represented in the fecal 

samples, reads were matched against COI databases using settings identical to those in the 

diet analyses. Lastly, for other taxa, I matched sequences to SSU and LSU rDNA 

[SILVA, (Pruesse et al. 2007)] using BLASTN (word-size=11), and tested different 

percentage thresholds. While SILVA was useful in identifying microbial sequences, it 

lacked sufficient coverage to characterize eukaryotic gut parasites like helminths and 

nematodes. Therefore I generated a local database containing sequences from 18S for 

common, known non-human primate parasites (Appendix 5.4.1). For all identifications 

that were made using single barcodes (COI, SSU), I validated the match by extracting the 

reads and matching them to NT in GenBank that is the general nucleotide database 

(Chapter 5). 
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6.4 Results  

6.4.1 Illumina sequencing 

Illumina sequencing using HiSeq produced ~67 to ~108 million 76 bp reads per end for 

each sample (Table 6.2). Illumina MiSeq data comprised ~23 to ~29 million paired reads 

per sample; here the reads were of variable lengths with most reads having an average 

read length of 299 bp. Overall, this was equivalent to 10 to 16 Gb of data for each sample 

using HiSeq and 14to 17 Gb of data for each sample using MiSeq. After quality trimming 

at an average Phred score of 30, ~55-90 million reads per end for HiSeq and ~17-20 

million paired reads for MiSeq were retained (Table 6.2). For metabarcoding 272,103 to 

419,407 sequences per sample were generated that were subsequently filtered and 

subjected to variant calling and diet identification. 

Table 6.2. Number of reads generated from each sample for Illumina HiSeq and Illumina MiSeq datasets 

and the metabarcoding experiment. 

 

Sample HiSeq (paired reads) MiSeq (paired reads) Metabarcoding 

Raw data Post Q30 Raw data Post Q30 

BLM1 107,675,433 90,201,101 28,715,570 16,869,060 338,131 

BLM2 72,660,997 59,224,598 27,760,062 19,816,607 419,407 

BLM3 85,963,340 72,349,546 26,595,637 19,029,890 371,919 

BLM4 66,986,068 55,545,954 23,190,419 17,495,162 272,103 

BLM5 68,188,666 55,310,058 27,840,572 17,516,063 294,907 

BLM6 76,440,420 63,645,750 26,591,829 17,827,909 320,270 

 

6.4.2 Diet analysis 

The proportion of barcode reads used for paired-end analyses for HiSeq data was similar 

across the samples, and ranged between 0.004% - 0.008%; i.e., datasets contained a much 

larger proportion of diet reads compared to the study in Chapter 5 (Fig. 6.2, Chapter 5, 

Fig. 5.2). The lowest proportion was found for BLM3, which contained nearly five times 

as many barcode sequences as compared to the number of plant barcode sequences 

obtained for fecal samples of Pygathrix nemaeus. Thus with HiSeq data itself, these 
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samples had many more plant sequences for analyses. Adding MiSeq data gave additional 

reads; however the proportion of sequences in MiSeq data was variable for BLM5 and 

BLM6. Note that MiSeq data had been generated from different extractions for three 

samples so this appears to have affected the proportion of sequences. However given the 

preponderance of HiSeq sequences in the combined dataset, the proportion of sequences 

in each of the samples was similar and these datasets were used for further analyses. 

 

Fig. 6.2 Percentage of sequences used for paired-end analyses for plant identifications. 

In terms of identifications, I found that number of genera identified by metagenomics was 

much larger than by metabarcoding (Table 6.3). Using metabarcoding 5-11 genera could 

be identified per sample, while using metagenomics 12–42 genera were identified. 

Another major factor influencing identification success rates was BLAST versus exact 

pairwise alignment. BLAST yielded a larger number of identified taxa (Table 6.3, 

green/yellow/red), but at the cost of eight, putative misidentifications given that the 

“identified” diet species are not known from Singapore’s flora (Table 6.3, red). Only one 

such taxon is found when exact global alignments are used. However based on glsearch 

some plausible diet species are not identified so that a more conservative set of genera are 

identified [overall 146 “correct” identifications (Table 6.3, yellow and green) using 

glsearch36 vs 157 using BLAST ].  
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Table 6.3: Genus level identifications made using metagenomics and metabarcoding. MG: Metagenomics, 

MB: Metabarcoding. Green/ Yellow/ Red shaded cells represent identifications. Grey cells for 

metagenomics highlight the differences between BLAST-based and glsearch-based identifications (i.e. grey 

cells in MG: BLAST column represents identification made by glsearch only, and vice-versa). BLM1-6 

represented as 1-6. 

 

 

 

MG: BLAST   MG: GLSEARCH   MB: FC1 

1 2 3 4 5 6 

 

1 2 3 4 5 6   1 2 3 4 5 6 

  Present in Nee Soon checklist 

Fibraurea                            

Prunus                            

Bauhinia                            

Ficus                            

Artocarpus                            

Dalbergia                            

Hevea                            

Litsea                            

Strychnos                            

Xanthophyllum                             

Knema                            

Passiflora                            

Cyathocalyx                            

Securidaca                            

Morinda                            

Adenia                            

Erythropalum                            

Psydrax                            

Adinandra                            

Pellacalyx                            

Callerya                            

Cassia                            

Horsfieldia                            

Smilax                            

Tinomiscium                            

Tinospora                            

Paederia                            

Inga                            

Erycibe                            

Aspidopterys                            

Entada                            

Pternandra                            

Myristica                            

Persea                            

Hoya                            

Pterocarpus                            

Artabotys                            

Macaranga                            

Coscinium                            

Agelaea                            

Pertusadina                            

Lophopetalum                            

Ziziphus                            

Dialium                            
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Salacia                            

Uncaria                            

Ardisia                            

Carallia                            

Freycinetia                            

Magnolia                            

Mussaenda                            

Premna                            

Sterculia                            

Tetracera                            

Mussaendopsis                            

Rhizophora                            

Willughbeia                            

Goniothalamus                            

Radermachera                            

Symplocos                            

Archidendron                            

Vanilla                     

Absent from Nee Soon checklist, present in Singapore checklist  

Acacia                                         

Cananga                                         

Manihot                                         

Solanum                                         

Ctenolophon                                         

Xylia                                         

Loeseneriella                                         

Lindera                                         

Polygala                                         

Manilkara           
 

                            

Absent from Singapore checklist  

Borismene                                         

Cephalanthus                                         

Calycocarpum                                         

Dioscoreophyllum                                         

Euptelea                                         

Fleroya                                         

Leptodermis                                         

Micrandra                                         

Pentaclethra                                         

Senegalia                                         

Vachellia                                         
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Dietary profile for the banded leaf monkeys 

Using a combination of metagenomic (glsearch) and metabarcoding techniques, I 

estimate the diversity of diet taxa to be 14 - 42 plant genera in the different samples (Fig. 

6.3). Note this is conservative, firstly because I here use the exact alignments for 

metagenomics in combination with metabarcoding. Secondly, this approach is unlikely to 

include those diet species that do not have a reference barcode in the database. The 

smallest diversity of diet items was found for BLM3, and a surprisingly large diversity 

was observed for BLM6. Note that BLM3 also had the smallest proportion of reads 

recovered (Fig. 6.2). 

 

Figure 6.3 Number of genera identified per sample. Results are a combination of identifications made by 

glsearch36 and metabarcoding. 

 

Overall, sixty genus level identifications were made; 53 of these are from plants 

that have been recorded in the habitat of the primate, 7 of these are present in Singapore, 

even though they haven’t been found in the habitat. These identifications were made 

using the exact alignments for metagenomics (glsearch) and metabarcoding, and I 

excluded identifications to plant genera not found in Singapore; these are likely to be 

erroneous. Of these, 19 plant genera were identified for three or more samples. Two 
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genera (Fibraurea and Prunus) were identified across all samples. Xanthophyllum, and 

Ficus were identified in five samples; while Passiflora, Strychnos, Securidaca, 

Dalbergia, Hevea, Artocarpus, Litsea, Bauhinia and Knema were identified in four 

samples (Fig. 6.4). Fourteen of the 53 diet plant genera identified based on fecal DNA 

were also observed to be diet genera by the field study of Ang (2010). Two others were 

identified only using the BLAST based approach. Eleven of these genera with molecular 

and observational evidence are amongst the 19 taxa identified for ≥3 fecal samples. 

Overall, I found that field observations led to a taxonomic profile that revealed mostly the 

dominant components of the primate’s diets.  
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Fig. 6.4. Combined genus level identifications for the six samples using both HiSeq and MiSeq for 

metagenomics and metabarcoding data. Genera observed during field studies are highlighted in red. 

Eupetalea, Leptodermis, and Micrandra were excluded (likely misidentifications, Table 6.3) 
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Comparison with metabarcoding 

a) Identifications 

A number of metabarcoding sequences could only be identified to family, and 

hence this taxonomic category was chosen to compare the two approaches. This 

comparison is also fair because 94-96% of the metagenomic reads could be identified to 

family. Overall, the two approaches yielded congruent results with the majority of the 

identifications made by the two approaches being in agreement (Table 6.4). However, 

very few families were identified using only the metabarcoding approach (1-4 families 

per sample). Only for BLM3 did both approaches perform similarly while for all others 

metagenomics outperformed metabarcoding. Interestingly BLM3 also had the smallest 

proportion of plant reads, thus leading to a similar problem as that described in Chapter 5.  
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Table 6.4: Comparison of family level identifications of metagenomic and metabarcoding data. Green: 

Identified by both, Orange: identified using metagenomics only, Yellow: Identified using metabarcoding 

only. Values show number of barcodes identifying a particular family in metagenomics. 

 
Same extraction 

Different 

extractions 

Number of 

samples 

 
BLM1 BLM3 BLM4 BLM6 BLM2 BLM5 

 Fabaceae 3 3 3 3 3 3 6 

Menispermaceae 3 3 3 3 3 3 6 

Moraceae 3 3 3 3 3 3 6 

Rosaceae 3 3 3 3 3 3 6 

Rubiaceae 3 2 3 3 3 3 6 

Lauraceae 3  3 3 3 3 6 

Apocynaceae 3 2 - 3 3 2 5 

Euphorbiaceae 3 3 3 -  3 5 

Annonaceae 3  3 3 

 
 5 

Loganiaceae 3 - 2 2 3  5 

Polygalaceae 2 - 2 2 2 2 5 

Celastraceae - -  3 2 3 4 

Convolvulaceae -  - 3 2 3 4 

Erythropalaceae - - 3 3 3 2 4 

Myristicaceae - - 2 2 3 2 4 

Passifloraceae 3 3 - 3 3 - 4 

Connaraceae - - 3 3 

 
3 3 

Magnoliaceae - - 2 3 2 - 3 

Rhizophoraceae 3 2 - 3 - - 3 

Sapotaceae - - 2 3 - - 3 

Smilacaceae - 2 - 3 2 - 3 

Asteraceae - - - 2 - 2 2 

Bignoniaceae - - - - - 2 2 

Malvaceae - - - 3 - 2 2 

Pentaphylacaceae 3 3 - - - - 2 

Primulaceae - - - - 2 3 2 

Araceae - - - 3 - - 1 

Berberidaceae - - - - - - 1 

Cornaceae - - - - - 2 1 

Ctenolophonaceae - - - 2 - - 1 

Dilleniaceae - - - 3 - - 1 

Elaeagnaceae - - - - - 2 1 

Hamamelidaceae - - - - - 2 1 

Lamiaceae - - - 3 - - 1 

Malpighiaceae 3 - - - - - 1 

Melastomataceae 2 - - - - - 1 

Pandanaceae - - - 3 - - 1 

Phyllanthaceae - - - - 

 
 1 

Rhamnaceae - - - - - 3 1 

Sapindaceae  - - - - - 1 

Symplocaceae - - - - 

 
 1 
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b) Correlation between the number of metabarcoding and metagenomic reads for the 

same diet species 

The correlation of read abundance in metagenomic and metabarcoding data was 

strong (rho >0.7, p<0.05), based on read-read mapping (Fig. 6.5). Read-read mapping 

also showed that the sequences corresponding to the metabarcoding fragments that were 

most abundant were almost always present in the metagenomic datsets. Of the ten most 

abundant sequences in the metabarcoding data, all were recovered in the metagenome for 

BLM1, BLM2, BLM6.  9/10 were recovered for BLM5 and 7/10 for BLM3 and BLM4; 

the latter two also had the fewest genera identified.  Overall, I observed that, as expected, 

sequencing was deep enough in order to recover the P6 loop of trnL for dominant plants; 

i.e., the short ~50bp fragment was not present for rare taxa in the metagenomes. The 

strong correlation was further validated when the second approach was used, where I 

compared the number of reads identified to a given family using both metagenomics and 

metabarcoding. This approach is not based on mapping metabarcoding reads onto 

metagenomic sequences. Here for BLM4 and BLM6, ρ was within 0.5 to 0.6 (Table 6.5), 

while others showed strong correlation. For BLM4 and BLM6, the poorer correlation was 

likely a result of using a 95% threshold for metabarcoding, as a few dominant sequences 

could not be identified to family at this threshold. Lowering the identity threshold to 90% 

improved the correlation to ρ =0.728 for BLM4 and ρ =0.775 for BLM6. Note that there 

was no evidence that it mattered whether the DNA for metagenomics and metabarcoding 

was extracted once or at two different times.  
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Figure 6.5. Scatterplot showing the number of metagenomic reads containing the P6 loop of trnL. The y-

axis represents the read counts corresponding to the same sequence for metabarcoding. 

 

Table 6.5 Spearman’s ρ for correlation between number of reads corresponding to a family in the 

metagenomic and metabarcoding datasets. 

 

 Identified using both approaches Identified using either approach 

 ρ p-value Number of 

taxa 

ρ p-value Number 

of taxa 

BLM1 0.879121 1.90E-05 13 0.754911 8.33E-06 26 

BLM2 0.916094 1.09E-05 13 0.746323 4.33E-05 23 

BLM3 0.883333 0.003075 9 0.731707 0.000558 18 

BLM4 0.811723 0.007889 9 0.52056 0.04665 15 

BLM5 0.782372 0.001572 13 0.625952 0.000817 25 

BLM6 0.871988 5.46E-07 20 0.765473 1.31E-06 29 
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6.4.3 Recovery of host mt-DNA 

a) Assembly optimization 

Four different algorithms were compared for one sample (BLM6) in order to 

determine the optimal approach for assembling the mitochodrial genome of the host based 

on the short-read in the HiSeq datasets (Table 6.6). Overall, I found that as the size of k-

mer increases, N50 [defined as: “the length of the contig overlapping the midpoint of the 

length-order concatenation of contigs (Mäkinen et al., 2012)] increases, but the number of 

scaffolds drops. Moreover, given that we were interested in mitochondrial genome 

assembly, the use of longer k-mers led to splitting of the mitochondrial contigs despite 

longer N50. This is likely due to splitting at low coverage regions (e.g. for 

SOAPdenovo2, number of mt-contigs was 6 (k=51), 6 (k=41) and 3(k=31)). A multi-

kmer approach using SOAPDENOVO2 and IDBA-UD retained a maximal number of 

contigs while also maximizing the N50 and average scaffold length. Number of 

mitochondrial contigs obtained using SOAPDENOVO2 and IDBA-UD was 3 and 4, 

respectively. I chose IDBA-UD for assembling all datasets given that it yielded the 

complete mitochondrial genome without any gaps and also had the better N50 as 

compared to SOAPDENOVO2. The coding regions for the mitochondrial genome were 

validated by checking for stop codons in Artemis (Rutherford et al. 2000). 
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Table 6.6 Assembly statistics for BLM6 for the four software packages compared at k=31, k-41, k=51 and 

multi-k-mer approach with k varying between k=31 to 51. 

 

 SOAP 

DENOVO

2 

VELVET META-

VELVET 

IDBA UD 

     
K31 

Number of scaffolds >100bp 1110149 1540719 1537360 NA 

N50 649 519 520  

Longest scaffold 126390 14742 14742  

Mean length 351 347 348  

     

K41 

Number of scaffolds >100bp 615381 506148 505363 NA 

N50 1056 1185 1187  

Longest scaffolds 228740 70323 70323  

Mean length 487 552 555  

     

K51 

Number of scaffolds >100bp 319068 198026 196001 NA 

N50 1608 2035 2037  

Longest scaffolds 269962 101107 101107  

Mean length 620 763 765  

     

K31-51 

Number of scaffolds >100bp 1193665 NA NA 742840 

N50 759   972 

Longest scaffolds 172746   231523 

Mean length 361   458 

 

b) Low genetic variability and heteroplasmy in mitochondrial genomes  

A complete reference mitochondrial genome of 16,548 bp was constructed for BLM6 

using IDBA –UD as described. Reads for the other samples from MiSeq and HiSeq were 

mapped onto the reference mitochondrial genomes using BWA (Liu et al. 2012). The 

average coverage for the six samples was as follows (values are HiSeq/MiSeq), BLM1: 

21.6/7.3, BLM2: 19.5/9.2, BLM3: 7.8/11.6, BLM4: 37.2/31.2, BLM5: 103.3/41.1, 

BLM6: 37.1/10.2. SNP calling using GATK led to identification of only three variable 

sites in the mitochondrial genomes. This was validated by manual inspection of the read 

mappings on to the reference genome constructed for BLM6. Two of the identified sites 

suggested the presence of biallelic heteroplasmy in the individuals. I tested whether this 
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heteroplasmy may be due to technical problems. This can happen (1) if errors were 

generated due to non-specific mapping in the tRNA sequences of the genome. However 

one of the sites was located in the hypervariable region or the d-loop while the other site 

was located in the CDS of ATP8. The heteroplasmy in d-loop had been previously 

observed for the same samples using PCR amplification and Sanger sequencing of the 

products thus further validating that these cases of heteroplasmy are not due to mapping 

errors. (2) The mapped sequences may not reflect heteroplasmy but are errors due to the 

mapping of NuMTs from the nuclear genomes. However, this is unlikely, given that the 

ratio of the polymorphisms is 50% in some samples (Table 6.7) and the nuclear genome 

would not be represented in similar abundance as the mitochondrial genome. (3) The 

polymorphisms could be observed due to contaminations during extraction and cross-lane 

contaminations in Illumina HiSeq. The latter was not the case given that MiSeq data 

yielded similar results. Furthermore, it is very unlikely that these results are due to 

genomic contaminations because three of the MiSeq runs (BLM2, BLM5 and BLM6) 

were generated from independent DNA extractions from the same fecal samples and they 

have the same polymorphisms. 

Thus these heteroplasmic sites are likely to reflect the genetic make-up of the host 

monkeys. Based on the combination of polymorphisms 3 distinct “haplotypes” can be 

inferred: BLM2 and BLM4 are distinct from BLM1, 3, 5, 6. Furthermore the use of NGS 

allows us to quantify the level of heteroplasmy. Based on this, BLM6 showed a distinctly 

different profile from BLM1, 3, and 5 at both the positions (892 and 8673), and therefore 

I determine that there are at least four different genotypes represented in the six samples. 
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Table 6.7 SNPs identified and their position in the reference mitochondrial genome. (a) shows combined analyses of HiSeq and MiSeq data with potential heteroplasmic 

sites highlighted (b) provides the results by HiSeq and MiSeq separately.   

 

 

 

 

 

 

 

 

 

 

 

 

  By Depth By Percentage 

(a) 

 

Sample 

Position 

892 

T/G 

Position 

8309 

G/A 

Position 

8673 

A/G 

Position 

892 

T/G 

Position 

8309 

G/A 

Position 

8673 

A/G 

BLM1 14/41 29/0 10/8 25/75 100/0 55/45 

BLM2 0/29 0/35 0/29 0/100 0/100 0/100 

BLM3 14/42 24/0 15/18 25/75 100/0 45/55 

BLM4 8/65 51/0 2/79 11/89 100/0 2.5/97.5 

BLM5 88/99 119/2 80/39 47/53 97.5/2.5 67.2/32.8 

BLM6 30/7 17/0 24/3 81/19 100/0 89/11 

  HiSeq MiSeq 

(b) 

 

Sample 

Position 

892 

T/G 

Position 

8309 

G/A 

Position 

8673 

A/G 

Position 

892 

T/G 

Position 

8309 

G/A 

Position 

8673 

A/G 

BLM1 6/32 21/0 8/6 8/9 8/0 2/2 

BLM2 0/19 0/26 0/19 0/100 0/9 0/10 

BLM3 2/19 3/0 4/9 4/14 13/0 9/7 

BLM4 6/34 22/0 1/41 2/31 29/0 1/38 

BLM5 57/69 78/2 57/24 31/30 41/0 23/15 

BLM6 16/4 4/0 16/1 14/3 13/0 8/2 
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6.4.4 Parasites and others Metazoa in the fecal material 

Reads and assembled contigs were first matched to SILVA SSU and LSU rDNA 

databases; however, no parasite sequences could be confidently detected, beside 

Blastocystis and Entamoeba. Therefore, I used a locally generated database of SSU rDNA 

for non-human primates and matched the reads at 98% identity, 50 bp overlap criteria. 

Once sequences were identified I matched these sequences to NT in GenBank and 

considered only those that were validated. The searches revealed presence of several 

protists and nematode sequences in these samples. Overall besides the common parasites, 

I found sequences for Strongyloides sp., Oesophagostomum sp. and Trichostrongylus sp 

in the database (Table 6.8). Most hits to Strongyloides were to Strongyloides fuellerbonii, 

or they were unidentified at species level. Using assembled data I found hits to at least 

four different species of Entamoeba in the various samples (corresponding to E. bovis, 

E.moshkovskii, E. hartmanni, and the colobine specific Entamoeba sp. RL3).  

Table 6.8: Parasite sequences identified using paired end analyses and local non-human parasite database 

Parasite BLM1 BLM2 BLM3 BLM4 BLM5 BLM6 

Blastocystis sp. X X X X X X 

Entamoeba sp.  X X X X X X 

Strongyloides sp.* X X X X X X 

Oesophagostomum sp.      X 

Trichostrongylus sp.      X 

 

Using a COI database I found that two samples (BLM3 and BLM6) had relatively 

high number of identifications to other eukaryotes. In both BLM3 and BLM6, I identified 

sequences from Drosophilidae, Muscidae, while identifications unique to each sample 

were BLM3: Sarcophagidae and BLM6: Sepsidae, Tortricidae. At genus level the closest 

hits were to, Gatesclarkeana (Tortricidae, BLM6), Dicranosepsis (Sepsidae, BLM6), 

Leucophenga and Stegana (Drosophilidae, BLM6). A few of sequences gave hits to 
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Ophyra/Coenosia/Sacrophaga (Muscidae and Sacrophagidae) however, these became 

ambiguous when the retrieved reads were BLASTed to all of nucleotide (NT) database. 
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6.5 Discussion 

Studying diet is fundamental to understanding the ecology of a species. For 

endangered species, beyond ecology, characterization of diet is essential for designing 

effective conservation strategies. This is because the availability of food resources can 

play an important role in determining the geographical distribution of a species and its 

population density (Marshall 2009). Thus methods of characterizing diet have been of 

considerable interest for researchers studying these species (Marshall 2009, Ang 2010). 

Fecal samples have been a useful resource for obtaining this information as the DNA of 

the ingested food can be characterized. In chapter 5, I proposed a metagenomic approach 

to diet analysis using fecal DNA and established procedures for analysing these samples. 

In this chapter I consolidate this approach and assess the method for characterizing the 

diet of a wild population of an endangered primate in Singapore, Presbytis femoralis.  

  

6.5.1 Evaluating NGS based diet analyses against “traditional” field studies  

 

Traditionally, the diet of endangered mammals has been studied using field 

observations. The morphological and/or molecular characterization of fecal material was 

later added to the repertoire, but the evaluation of the DNA content is still rudimentary. In 

the red-shanked douc langur study (Chapter 5), I determined that plant diet taxa can be 

retrieved and identified using metagenomics, but this study was based on captive zoo 

animals with a known diet; i.e., the question whether similar analyses can be carried out 

in a more realistic setting remained un-answered. In the current study, I generated a diet 

profile consisting of 60 dietary plant genera for banded leaf monkeys (Presbytis 

femoralis) using NGS based techniques. Overall, I find good agreement between 

observational and DNA sequence evidence. Nearly half of the species obtained from 
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observational studies (11/24 genera) are also identified in ≥3 fecal samples.  During any 

observational study of the diet of a species, researchers are more likely to observe feeding 

events involving important diet species. Therefore good overlap between observational 

and metagenomic evidence is expected and was here observed. In terms of frequency of 

feeding, Ang (2010) observed the monkeys feed on three genera (Fibraurea, Hevea, 

Prunus) twice and one other (Xanthophyllum) thrice. In metagenomic analyses of fecal 

samples, I found DNA from Fibraurea and Prunus in all six samples, Xanthophyllum in 

five and Hevea in four samples. Beyond the dominant taxa in three or more samples, two 

(Adinandra and Pterocarpus) were identified using the conservative exact alignment 

approach, while two others (Lophopetalum and Agelaea) were identified using BLAST. 

This suggests that overall we see an overlap of 16 genera between observational data and 

NGS based diet analyses.  Amongst the remaining 8 that were observed, two cannot be 

identified due to lack of ≥2 barcode references in the database. Thus only six 

species/genera in the observational data remain unaccounted for. Clearly, the results from 

DNA based inference are reflecting what is observed in the field. 

 

Upon combining results for metagenomic and metabarcoding data, I found a diet 

of 14-42 taxa per sample; most of these were identified using metagenomics. This 

richness is similar in diversity or greater than the diversityfound for another primate with 

a rich diet [golden sifakas, Quemere et al. (2013)]. In the latter study the average OTU 

richness was found to be 13.0±3.8. The high diversity in these fecal samples is partly due 

to the physiology of colobine guts which retains food for a long time (Lambert 1998); 

thus a fecal sample provides information of multiple days of diet. My analysis of only 6 

samples adds 46 plant taxa to the observational data that required ~36 months of field 

work. When combined with the ten genera of plants identified using observational 
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techniques only, I obtained an overall diet list of 70 plant genera. At family level, the 

combination of NGS based studies and field techniques yield 44 families, 41 of which are 

found in NGS datasets. These results suggest that the banded leaf monkeys in Singapore 

utilize a very broad array of food plants. Obtaining such an extensive list through 

observation would be very expensive because it would require years of fieldwork given 

that the species is rare, shy and elusive. Given that metagenomics can extract information 

for a wide variety of diet items and provide taxonomic resolution, I would argue that it is 

the preferred method for characterizing the banded leaf monkey diet. Metagenomics has 

the additional advantage that it can identify lianas that are diet elements, while feeding 

observations on the latter are hard to obtain in the field (Ang 2010). Thus we identified 

climbers such as Erythropalum scandens (in 3 samples) which are relatively rare in Nee 

Soon Swamp forest (see section 6.5.5). Using these analyses, I can also determine that the 

likelihood of these primates feeding on animals is low; most of the COI based 

identifications made in the study are likely to be insects that are associated with either 

plants (Tortricidae) or feces (Drosophilidae, Sepsidae, Muscidae, Sarcophagidae). 

However, observational data still has the advantage that the observer can identify the 

plant parts that are being eaten and that species-level identifications can be obtained if 

voucher material can be retrieved from the food plants.  
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6.5.2 Comparison between metagenomics and metabarcoding for samples from wild 

The high taxon diversity in the fecal samples for banded leaf monkeys provides an 

opportunity to compare the metagenomic and metabarcoding approaches at a broad 

taxonomic range. In terms of identifications, our results parallel the results for the diet 

analyses of douc langurs where metagenomics outperformed metabarcoding in providing 

greater taxonomic resolution. Only 5 to 11 genus level identifications were made using 

metabarcoding data in contrast to 12 to 42 using metagenomics. Note that most of these 

identifications are likely to be correct given that the identified genus is known to occur in 

Nee Soon Swamp Forest, the natural habitat of banded leaf monkeys in Singapore despite 

the search being conducted against all angiosperm barcode sequences 

 

One major difference between my banded leaf monkey and the douc langur 

studies is that in most cases (5 of 6 samples) the metagenomic data yielded larger 

numbers of family level identifications. This is likely to be due to the fact that number 

and proportion of reads corresponding to the barcode regions for the six samples was ~5-

fold greater than in the douc study in Chapter 5. In the latter study, I had concluded that 

the metagenome coverage was not sufficient for a complete diet profile. It appears that 

this problem is largely addressed by the much higher coverage in the banded leaf monkey 

samples. The reason for this larger coverage is unclear. There are multiple possible 

factors; firstly the biology of the two organisms may differ despite both being 

phytophagous colobine species. Colobines have evolved a complex digestive system 

presumably to retain food long enough to digest enzyme resistant polysaccharides 

(Kirkpatrick et al., 2001), but there are differences even among colobine species. For 

examples the Transit Time for food for Rhinopithecus bieti (Kirkpatrick et al. 2001) and 

Pygathrix nemaeus (Chapter 5) are estimated to be 27-29 hours, while for Trachypithecus 
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cristatus and Nasalis larvatus it was found to be between 14-18 hours (Dierenfeld et al. 

1992; Sakeguchi et al. 1991). These differences do not follow phylogenetic patterns 

(Wang et al. 2012), so that it is difficult to predict retention times and gut physiology of 

banded leaf monkeys. Secondly there may be differences in the types of materials 

ingested; for example animals in Singapore Zoo may have better access to younger and 

tender plant parts. Lastly the genomic smears for the extractions differed in the two 

studies, with the red-shanked douc langur samples having a larger proportion of long 

DNA strands while the field samples had more degraded profiles (Fig. 6.6). Recently, 

Cordona et al. (2012) showed that the degradation of fecal samples and storage conditions 

play an important role in affecting the taxonomic distributions of microbes in the feces.  

This is likely to also hold for the proportion of cp-DNA. Note that the distribution of size 

fragments was similar across the samples for P. femoralis (Fig. 5.2) 

 

Fig. 6.6 Genomic smears of samples used in this study and Chapter 5. 

  

BLM1 BLM2 BLM3 BLM4 BLM5 BLM6 
PN1 PN2 
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6.5.3 Read counts are correlated between metagenomic and metabarcoding data.  

 

One of the surprising results is that the read counts in the metagenomic and 

metabarcoding datasets are significantly correlated (Fig. 5.4). Such a correlation was 

already observed in my analysis of the red-shanked douc langur data. It suggested that the 

PCR step in metabarcoding did not bias the sequence profile greatly. This is heartening 

given that there has been considerable discussion of whether PCR biases abundance 

information (Pompanon et al. 2012). We find little evidence for this. Note that it has been 

recorded that PCR success decreases as the length of the amplification product increases 

(Little 2014) and therefore the lack of bias should not be generalised to other primer pairs. 

 

Overall my results imply that if a large number of plant reads are recovered, 

metagenomics will outperform metabarcoding both in terms of taxon recovery and 

precision of identification. This increased recovery need not necessarily require greater 

throughput and is likely to depend either on species, the nature of the diet, and/or the 

nature of the samples. Indeed, the additional ~20 million reads obtained using the MiSeq 

platforms added at most 1-2 genus level identifications to the HiSeq based identifications 

which implies that higher coverage is unlikely to radically change the diet profile for the 

samples. Given that our results are based on colobine primates with long digestion times, 

an initial throughput of ~10 Gb appears to be a good starting point for the diet analysis of 

a phytophagous monkey with similar dietary complexity and food retention time as these 

monkeys. 
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6.5.4 Refining the metagenomic approach 

 

In order to advance the utility of metagenomics for fecal samples, it is important 

to find analysis methods that are capable to identify many diet taxa while being robust 

against misidentifications. This is particularly difficult when the identifications have to 

utilize a DNA barcode database that lacks many of the putative diet taxa. Unfortunately, it 

is difficult to obtain a comprehensive barcode database for tropical rainforests (Elliot & 

Davies 2014). I was able to use and contribute to a database consisting of three barcode 

genes sequenced for ~250 species of tree and liana species, but the species estimate for 

the habitat of the monkeys is ~700 species (Wong et al. 2013).  

 

In order to avoid misidentification, I tested the use of exact global alignments for 

read-based species identification (Ray et al. 2012). While the issues with BLAST-based 

taxonomic classification have been discussed in the past (Little 2011; Little & Stevenson 

2007), it is still often preferred because it is faster and requires less computational power 

(Loh et al. 2012). The concerns behind using BLAST are two-fold: BLAST is heuristic 

such that it does not exhaustively search the sequence-space and is likely to miss 

sequences that are distant from the query sequences (Sharma and Mantri 2014). This is 

because it requires a perfect match to the seed sequence which is determined by the word-

size in the BLAST search. Two of the settings commonly used are BLASTN and 

MEGABLAST. In the case of the first, the word-size is by default 11 and in the case of 

latter 28. These settings influence how distant sequences are retrieved. For diet analyses, I 

used the MEGABLAST settings given that I was identifying at 98% identity, i.e., a 

mismatch of 1-bp between the query sequence and the database sequence. This high 

identity threshold is necessary given the low variation amongst plant barcode sequences. 
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Given a 50-bp overlap and 98% identity threshold, the choice of the larger word size of 

28 is thus not a problem. Indeed, when I tested varying word-sizes on the data from red-

shanked douc langurs, the results varied by only 2 sequences in overall recovery when 

BLASTN or MEGABLAST were tried. MEGABLAST search on the other hand was 

much faster.  

 

A second concern is that BLAST is a local alignment tool, such that it may 

terminate the alignment of sequences prematurely (Altschul et al. 1990, Heyn et al., 

2010). This generates uncertainty in the results especially if they pertain to reads matched 

to plant barcodes with their low diagnostic values. Higher precision can be obtained with 

global alignments (pairwise or multiple sequence alignments). Optimizing multiple 

sequence alignment on raw data of 76 bp is computationally difficult. Thus, I utilized the 

Needleman Wunsch algorithm for pairwise exact alignments on sequences retrieved from 

blast based searches of the data (Pearson 1990). When applied to my data, the global-

local algorithm in glsearch36 reduced identification inaccuracies; however, it also 

reduced the number of identifications that are likely to be correct given that the plant 

genera occur in the habitat of banded leaf monkeys (for example Lophopetallum and 

Agelaea that were also in observational data). Some of these “lost” identifications are 

probably due to the requirement of full length overlap of sequences in global alignments 

instead of 50 bp in BLAST searches. Global alignments can therefore refine results, but 

these gains come at a cost. Nonetheless the approach should be used; especially when 

moving from genus-level to species-level identification. 
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Assembling the metagenome:  

The assembly of metagenomes is difficult given that the data are derived from a 

complex mixture of DNA belonging to a number of organisms at varying amounts. There 

has been considerable discussion on the optimal parameters that should be used for 

characterizing the microbiome using metagenomic data. Using both single k-mer strategy 

and multi-k-mer strategies I compared the assembly parameters across four different 

softwares and optimized it for my HiSeq data. I chose the k-mer range of 31-51 for 

assessing the assemblies given a sequence length of 76 bp. This also corresponded to the 

range of k-mers in earlier studies of fecal metagenomes from rumen gut (Hess et al. 2011) 

or giant panda feces (Zhu et al. 2011). Overall, as the k-mer size increased the N50 of 

assembly improved; however it came at the cost of fewer contigs. As observed in the case 

of the red-shanked douc langurs, this is not necessarily an improvement given that it can 

lead to loss of the rarer fraction of metagenomes such as plant chloroplast fragments. 

Even for mitochondrial genomes, longer k-mers led to fragmentation of contigs (see 

Results). Therefore, to optimize the metagenomic assembly I used a combination of N50 

and number of contigs. Overall, the multi-kmer approach yielded best results, with both 

SOAPDENOVO2 and IDBA-UD outperforming the other platforms. I used IDBA-UD to 

characterize the complete mitochondrial genome of P. femoralis because it yielded the 

larger N50 and yielded no gaps in the mitochondrial genome.   
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6.5.5 Implications on the biology and conservation of the banded-leaf monkeys  

Diet 

In this study I built a dietary profile for the Presbytis femoralis population in 

Singapore. Here I find that the diet is highly diverse, which corroborates earlier results by 

Ang (2010) based on few observations. The most common diet plants which are found in 

at least four of the samples are: Fibraurea, Prunus, Ficus, Artocarpus, Dalbergia, Hevea, 

Litsea, Strychnos, Xanthophyllum, Bauhinia and Knema. Of these 11, eight have been 

also been observed to be consumed (Ang 2010). Currently, we do not have precise 

information available for the abundance of plants in the forest; however, upon discussions 

with an expert botanist regularly working in the native habitat of the monkeys and 

referring to the checklist of common plants found in these forests (Tan et al. 2013), we 

find that a number of these plants are also common in Nee Soon suggesting that these 

primates are feeding on plants that are abundant in the forest (Fibraurea, Prunus, Ficus, 

Artocarpus, Litsea, Strychnos, Xanthophyllum, Bauhinia, Knema). This pattern is similar 

to what has been described for Presbytis melalophos (Davies et al. 1988), which was 

found to feed on the abundant taxa found in the forest. However, despite the consumption 

of common plants there is also some preference for certain dietary taxa such as 

Erythropalum and Securidaca that are not commonly present in the forest, suggesting that 

there are feeding preferences that should be considered in conservation programs. 

Overall, it is, however, difficult to infer whether this is because these primates are 

generalists when it comes to feeding ecology or whether they have adapted to the local 

flora for their diet. Nonetheless, this is encouraging for the primates as it implies that food 

resources are unlikely to be limiting factor for their survival. Yet the presence of rarer 



135 

plants like Erythropalum and Securidaca in three and four of the samples, respectively, 

suggests certain preferences for food plants that may be limiting for population growth. 

Knowledge of such diet information is particularly relevant in the light of an 

ongoing project in Singapore that aims to reconnect forest fragments. Until 1987, 

Singapore’s banded leaf monkey population inhabited two fragments of forest (BTNR 

and CCNR), which became separated after the construction of an expressway. The 

population in BTNR went extinct in 1987. Recently there has been an endeavour by 

Singapore’s National Parks Board to reconnect the two forest fragments using an Eco-

Link, “an ecological bridge that connects the two nature reserves”. Currently trees are 

being planted on this link. In order to rehabilitate the banded leaf monkeys to BTNR, the 

preferred food plants should be planted to facilitate and encouragement the movement of 

banded leaf monkeys into BTNR. Particular focus should be given to the rarer plants as 

mentioned above. With ongoing efforts of vegetation sampling in Nee Soon Swamp 

forest, we will soon be obtaining abundance information of plants in the forest, such that 

these decisions can be made and implemented.  

 

Mitochondrial DNA: low variability and heteroplasmy 

I find alarmingly low variability across the entire mitochondrial genomes of 

Singapore’s banded leaf monkeys. Previously, we had sequenced the d-loop sequences 

based on the fecal samples and found one variable site across the six samples. With six 

complete mitochondrial genomes now being assembled, I find only two additional 

variable sites. It is difficult to make any genetic inference on this variability given a 

limited number of samples. However, given the population size of ~40 individuals, this 

result is a reason for concern given that the primates sampled in my study were likely to 

be from different groups (Ang et al. 2012). Based on the genomic composition of the 
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mitochondrial genomes, we can determine that there are at least four different genotypes 

represented in these six samples. As documented by Ang et al. (2010), the banded leaf 

monkey population is expanding again, but the lack of genetic variability will make the 

population vulnerable against disease and parasites. Earlier, we pointed out that the low 

genetic variability is probably due to human disturbance over the last two hundred years 

where the monkey population went through a bottleneck, and is now only slowly 

recovering (Ang et al. 2010). Yet, the small population size and low genetic variability 

mean that the translocation of individuals from the southern Malaysian population should 

be discussed. 

 

In addition to low variability, I found a number of gut parasite sequences. Most of 

them were from common parasites (Blastocystis sp., Entamoeba sp). Strongyloides sp. 

(likely to be Strongyloides fuellerbonii) sequences were found in all six samples. This is a 

common parasite in non-human primates and can cause strongyloidiasis, fatal cases of 

which have been reported in chimpanzees, gibbons, woolly monkeys etc. (Bennett et al., 

1998). It is also known to infect humans (King & Mascie-Taylor, 2004). BLM6 deviated 

from the other samples as it contained sequences from Oesophagostomum and 

Trichostrongylus. The sequences from Oesophagostomum matched to multiple species, 

which were O. aculeatum, O. stephanostomum, and O. venulosum. O. aculeatum has been 

reported in southeast Asia (Malaysia) (Arizono et al. 2012). To my knowledge this is the 

first indication of these two groups of nematodes in a non-human primate population in 

Singapore. The presence of these parasite sequences in the population calls for a closer 

monitoring of these primates and reveals the threat of potential infections. This is of 

critical importance for both conservation of the primates as well as assessing risks to 

human health (Chapman et al., 2006). In future, more targeted characterization of 
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parasites can be carried out to determine the pathogenicity of these parasites in the 

population.  

 

Particularly interesting are the heteroplasmic sites in the mitochondrial genomes 

in 5/6 samples from these primates. Currently there is very little information available 

about the extent of prevalence of heteroplasmy across non-human animals, although 

several sporadic reports exist (e.g. Volmer et al. 2011; Shigenbou et al. 2005). 

Heteroplasmy refers to the presence of at least two different mitochondrial genomes 

within an individual. A common occurence in aged individuals is somatic heteroplasmy 

where mutations accumulate over time in certain types of cells. However, the pattern of 

heteroplasmic sites in banded leaf monkeys suggests that these are inherited as the same 

polymorphisms are present in sequences that represent different individuals. Such 

heritable heteroplasmy could be due to either mutation in germline tissues or leakage of 

paternal mitochondria (“paternal leakage”) during fertilization of the egg (Kvist et al., 

2003). In terms of its biological significance, while heteroplasmy has been discussed in 

relation with human disease, it is currently unknown whether it is associated with other 

factors such as biology of a species or population size and thereby, inbreeding. 

Presumably this lack of information is due to the fact that for years polymorphisms in mt-

DNA sequences were masked by Sanger sequences where “double peaks” were often 

represented by ambiguity codes. With the advent of NGS based analyses, these aspects of 

genomes can now be studied in greater detail.  

 

6.5.6 Future directions 

In this chapter I show the promise of a metagenomic approach to obtain an 

understanding of the biology of an endangered species in terms of diet, host genetics and 
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parasites. I have tested this on a phytophagous colobine primate in Chapter 5 and 6 using 

8 samples and 14 datasets (8 HiSeq, 6 MiSeq). The next step in optimizing this approach 

would be to test the metagenomic approach on other mammals and beyond mammals to 

birds, insects etc on larger sample sizes, which was a limitation in the case of the banded 

leaf monkeys. Furthermore it remains to be seen how effective the metagenomic approach 

would be for different types of feeding strategies; i.e., carnivory, insectivory and 

omnivory. In order to effectively test this approach, the recommendation would be to test 

it on organisms where there is observational data on feeding and where there is 

opportunity to compare with metabarcoding. This will help us understand whether this 

method is robust across different dietary types and different lifestyles. It will also help us 

understand the question of throughput required for different organisms so that 

recommendations can be made for studying them in larger numbers. 

 

The second key question that comes out of the current study is the question of 

diversity. I evaluate metagenomic data by identifying reads against barcode databases. 

Generally, I then used lists of identified reads as measures of diversity. However, such 

lists are underestimates because some metagenomic reads remain unidentified but 

represent additional species. Thus obtaining measures of diversity without using reference 

sequences would be desirable (Quemere et al. 2013). Currently this is being done in two 

ways; first, several studies use the concept of Molecular Operational Taxonomic Units (or 

MOTUs) where DNA sequences are clustered and the number of sequence clusters is 

used as a measure for diversity (Ratnasingham & Hebert 2013). Others have employed a 

tree based approach to finding potential taxonomic groups (Pons et al. 2006; Zhang et al. 

2013). However, applying these approaches to small fractions of metagenomes requires a 

number of considerations. For microbiomes, researchers have developed methods to use 
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rRNAs from shotgun metagenomic data, to either cluster or reconstruct trees based on 

rRNA sequences (Sangwan et al. 2012). However, read based clustering can only be 

achieved when sequences are long (Mande et al. 2012); which is unlikely to be the case 

when the focus is on degraded fractions of the samples (Valentini et al. 2009). While 

sequences can be assembled, these will not depict the diet diversity, given that low 

frequency reads will not assemble (Chapter 5, Thomas et al. 2012).  Even if short reads 

are aligned, lack of homology across sites could lead to an overestimation of species 

because the same species may be represented by several clusters. Other signature based 

tools exist but it is currently difficult to determine how these would perform for assessing 

the species/genus diversity of plant sequences. Finding appropriate methods for 

estimating diversity without DNA barcodes is thus one of the frontiers although from a 

conservation point of view, identifications will remain important.  
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6.6 Conclusions 

The proposal of sequencing ~10 Gb of data per sample to infer diet of a species 

cannot be defended without a discussion of the cost effectiveness of this approach. 

Recently, 1 Gb of sequence data costs 40 USD (Zhou et al. 2013) and thus ~10 Gb of data 

amounts to nearly 500 USD after inclusion of cost for library preparation. This seems 

large compared to metabarcoding where in a recent study 50 million paired sequences 

corresponding to P6 loop of trnL were generated for 91 samples; this amount of data 

corresponds to the cost of sequencing one sample. But this excludes manpower cost that 

comes prior to sequencing. In a recent study optimizing accuracy of metabarcoding, De 

Barba et al. (2013) recommend that multiple replicates (4, as per De Barba et al. (2013)) 

per sample with different barcodes ought to be sequenced for data quality purposes. Such 

procedures are very labour intensive. Moreover, the use of minibarcodes (Little 2014; 

Taberlet et al. 2007) limits taxonomic resolution such that additional steps (such as family 

specific primer design for nrITS, PCR optimization and second round of sequencing) are 

required before taxonomic resolution is achieved. Given that bioinformatic procedures, 

although intensive, can largely be automated, I would argue that metagenomics is cost-

effective because it saves the manpower cost. Besides, even though the molecular cost per 

sample is higher for metagenomics, I consider it the preferred choice if taxonomic 

resolution is desired. This is particularly desirable for plants where barcodes are fraught 

with ambiguity problems (Hollingsworth 2011). It is also useful when diet is not the only 

focus and where any PCR based approach may require several rounds of optimization for 

every dimension, each of which would require deep sequencing.  
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CHAPTER 7 

__________ 

A foray into the future of environmental forensics 

This thesis started at a time when species identification via molecular markers 

largely consisted of generating DNA barcoding databases for taxa or habitats (see datasets 

for Chapter 2). Diet analyses using NGS had just started via metabarcoding (2009: 

Valentini et al. and Deagle et al.). Four years later, run-of-the-mill DNA barcoding 

studies still dominate the literature, but more publications are starting to appear that make 

use of the better taxon coverage of DNA barcodes in metabarcoding studies (Baamrane et 

al. 2012; De Barba et al. 2014;  Hilbert et al., 2013; Quéméré  et al., 2013; Shehzad et al. 

2012; Soininen et al. 2013) . Beyond diet, metabarcoding is now used for characterizing 

various types of environmental samples including arthropod “soups” (Ji et al. 2013), soil 

(Andersen et al. 2012), and leaf litter (Yang et al. 2014).  During my PhD research, 

researchers started discussing the possibility of doing diet analyses using direct 

sequencing via a metagenomic approach. For example, looking into the future, in 2012 

Taberlet et al. stated: “A simpler possibility to avoid PCR would be to directly sequence 

the eDNA extract with NGS platforms, which can produce several billion sequence reads 

per experiment (e.g. using the Illumina HiSeq 2000 platform)… However, at the moment, 

we do not know the proportion of potentially informative sequence reads (i.e. the 

proportion of mitochondrial, chloroplast and nuclear ribosomal DNA) that is possible to 

obtain in such a sequencing experiment.” My thesis provides information on this point for 

phytophagous primates (<<1% of the reads are of chloroplast origin). More recently, 
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Andrew et al. (2013) suggested the elimination of the PCR amplification step as one of 

the challenges for NGS based studies for trophic interactions, and called it “theoretically 

possible” should cost of sequencing come down and should genome sequences become 

available for individual species. In this transition, where researchers have started 

considering possibilities for metagenomics, I investigate such an approach in depth, 

develop strategies to address the above mentioned questions using DNA barcodes and 

show the promises and current shortcomings of this method. The key conclusions are 

summarised here.  

7.1 Optimizing metagenomics under challenging conditions 

The bioinformatic strategies optimized in this thesis are designed for 

reconstructing the diet of species from fecal samples under challenging conditions: first, 

the species in question were colobines which have long digestion times (Lambert 1998, 

Chapter 5). Second, the monkeys are phytophagous and I had to use plant barcodes which 

are harder to generate and have lower species-specificity than COI (Hollingsworth et al., 

2011). Third, Chapter 6 applies these techniques to a wild population of primates living in 

a species-rich tropical forest. Despite these problems, I was able to characterize the diet at 

the genus level with all common reads being identified. Given that diet identification 

could be achieved with good reliability under these circumstances, metagenomics is a 

promising approach even under challenging conditions. Of course, this prediction needs 

to be empirically tested on different organisms from different habitats. In particular 

library coverage is likely to need adjustments in order to account for different types of 

diets. One of the drawbacks of metagenomics as inferred from Chapter 5 is that it may not 

be able to identify rare taxa even with ~10 Gb coverage. However, coverage appeared to 
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be no problem for the samples in Chapter 6 which documents the need to adjust sampling 

conditions to specific circumstances. 

7.2 Metagenomics and metabarcoding correlate, at least for trnL 

PCR amplification biases have been a concern in diet analyses using 

metabarcoding. While there has been considerable interest in quantifying read abundance 

to infer dominant dietary components (Deagle et al. 2013), researchers have continued to 

question whether this is because it is often assumed that the PCR step skews read counts 

(Andrew et al., 2013). This is because no study has systematically studied the correlation 

between read counts in metabarcoding and metagenomics. Fortunately, my datasets could 

be used for this purpose and overall I observed strong correlations suggesting that 

sequences generated after amplifying trnL P6 loop reflect the original DNA sequence 

abundances in the extracted DNA. This suggests that, while metabarcoding may have 

other problems (low taxonomic resolution for plants), it may be possible to use it to 

quantify read numbers. Of course, read counts alone will not solve the problem of how to 

translate them to biomass. This will require a lot more research into DNA content and 

differential digestion rates (Deagle et al. 2010).  

 

7.3     DNA barcoding: how to go forward in an NGS era? 

While Andrew et al. (2013) specified that reference genomes would be needed for 

a characterization of metagenomes, I demonstrate that much can be gained through the 

analysis of DNA barcodes for plant identifications. When DNA barcoding was initially 

proposed, the idea was to identify sequences from unknown individuals using a database 

of barcodes (Hebert et al. 2003). While there was a lot of debate about taxonomic 
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implication of barcodes when it was proposed (Moritz & Cicero 2004), there was little 

doubt that a standardized sequencing of a single gene (or two genes for plants) would 

enable researchers to use molecular markers for sorting unidentified specimens. NGS-

based studies have further pushed the frontiers in this field, but many problems remain. 

One is of the paucity of identified DNA barcodes for the 1.5 million described species of 

Metazoa, which renders many species unidentifiable via DNA barcodes. Second, 

methodological practices in DNA barcoding should be justified and the use of techniques 

such as K2P NJ trees should be abandoned. Unless the DNA barcoding movement adopts 

more rigorous analysis techniques, it will be difficult to implement large-scale 

bioinformatic pipelines that will be respected outside of the field. Given the amount of 

data generated by NGS, it is preferable if the analytical techniques are computationally 

tractable. Lastly, it is important that the barcode databases come with structured 

taxonomic databases, so that bioinformatic pipelines yield information on taxonomic 

hierarchies. This was the strategy pursued in my thesis where my pipeline used GenBank 

data and NCBI taxonomy. rDNA databases satisfying these criteria are already available 

(e.g., SILVA: Pruesse et al. 2007), and similar tools should be developed for DNA 

barcodes of all eukaryotes. 

7.4     Towards a holistic characterization of eDNA 

In this thesis I have characterized the diet, parasites and host mitochondrial 

genomes for captive red shanked douc langurs (Pygathrix nemaeus) and for individuals of 

a wild population of the banded leaf monkeys (Presbytis femoralis). Yet, I ignored most 

of my data; i.e., the microbiome that was represented by >90% of the reads.  

Characterizing the microbiome is the next logical step of my study, given that some 

assemblies have already been generated. The microbial flora living in the gut of these 
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colobines is particularly interesting. For years, it has been known that colobine guts 

contain diverse bacteria specialized for digesting plant material and degrading cell walls 

for the release of nutrients (Kay et al. 1976). Like ruminants, they have multi-chambered 

guts with symbiotic bacteria in the fore-stomach (Kay and Davies 1994). Yildrim et al. 

(2010) provided a preliminary 16S taxonomic profile; nonetheless little else is known 

about the bacterial community. Based on my shotgun metagenomes, I will now be able to 

look at the functional profile of these sequences and determine the genes that aid in 

digestion. The high throughput data generated in my study allows for the comparison of 

leaf monkey microbiomes with the rumen gut microbiome generated from cows using 

~250 Gb of data (Hess et al. 2011). Combined with the characterization of diet, parasites 

and host, we will be able to address a multitude of questions about the biology of an 

organism about which we knew very little and important information could be obtained 

before seeing the species. 
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Appendices 

Appendix 1 

Supplementary tables and figure for chapter 5 

Tables T1-9 

Supplementary Table T1: List of accession numbers of sequences used in the diet 

database. *sequenced locally (known foliage plants) 

Species matK rbcL trnL-F 

Acacia auriculiformis GU134998 JX856621 - 

Acalypha siamensis - KM029997* KM030006* 

Adenanthera pavonina GU135053 GU135287 AF278486 

Averrhoa bilimbi - - AJ582291 

Averrhoa carambola FJ670048 FJ670180 JN620114 

Azadirachta indica AY128180 JX856639 EF489263 

Bambusa multiplex EF125166 M91626 DQ137347 

Baphia nitida EU361867 AM234261 AY232777 

Bauhinia blakeana JN881361 JX856641 FJ801074 

Calophyllum inophyllum HQ331553 HQ332016 AB817676 

Carica papaya JX092002 JQ025026 JX091823 

Caryota rumphiana JF344997 JF738928 - 

Cenchrus purpureus JQ588784 JQ593414 AB817696 

Cinnamomum iners KM030013* KM029998* KM030005* 

Cocos nucifera JQ586726 JQ590456 AM113647 

Cratoxylum formosum HQ331588 AF518395 AY389798 

Cucumis sativus AJ970307 AJ970307 AJ970307 

Daucus carota HM850728 HM849948 
FJ490764/ 

HQ323879 

Dillenia suffruticosa - FJ860354 - 

Dimocarpus longan JN407209 JN407382 EU721213 

Ficus auriculata JQ773629 JQ773647 - 

Ficus benjamina JQ773509 JQ592814 AF501605 

Garcinia mangostana HQ331601 JX664049 GQ456077 

Hemigraphis sp. KM030014* KM029996* KM030009* 
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Hibiscus rosa-sinensis KM030012* KM029999* KM030008* 

Ipomoea batatas JX629287 JX011625 AY101071 

Leucaena leucocephala KM030010* KM030000* KM030003* 

Malus domestica AF309207 - JX122471 

Mangifera indica JQ586472 JF739088 KC479210 

Manihot esculenta NC_010433 NC_010433 NC_010433 

Manilkara zapota GU135011 JX856724 DQ924309 

Morus alba KM030011* KM030001* KM030004* 

Moringa oleifera JX092021 JX091931 JX091843 

Munitingia calabura JQ589354 JQ594271 AY328166 

Murraya paniculata GU135010 GU135173 AY295280 

Musa acuminata FJ871652 FJ871827 FJ621283 

Myristica fragrans EU669472 AY298839 AY145351 

Nephelium lappaceum EU720584 - EU721175 

Oryza sativa NC_008155 NC_008155 NC_008155 

Polygonum chinense JN407191 JN407357 HQ843150 

Psidium guajava JQ024987 JQ025077 - 

Pyrus communis JQ391389 JQ391389 AM157400 

Pyrus pyrifolia AP012207 AP012207 AP012207 

Pterocarpus indicus JN083546 JF739158 AF208953 

Samanea saman JQ587830 JQ592000 AF522965 

Swietnia macrophylla JQ588350 JQ592736 EF489262 

Syzygium zeylanicum DQ088619 - - 

Tamarindus indica JQ587876 JQ592062 AF365206 

Terminalia catappa - KM030002* KM030007* 

Vigna unguiculata NC_018051 NC_018051 NC_018051 

Zea mays NC_001666 NC_001666 NC_001666 

 

Accession numbers in bold represent sequences used for metabarcoding experiment. 
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Supplementary Table T2: Analyses of metagenomic sequences against diet database: 

summary of number of reads by barcode (Paired end analyses). 

 

 PN1  PN2 

 rbcL trnL-F matK Total  rbcL trnL-F matK Total 

Acalypha 

siamensis 
- 2 - 2  1 - - 1 

Averrhoa sp. 2 2 0 4  .4 13 2 19 

Baphia nitida - - - -  - 2 4 6 

Cinnamomum 

iners 
8 14 8 30  35 79 42 156 

Cucumis sativus - - - -  - - - - 

Daucus carota 0 1 0 1  1 1 5 7 

Ficus sp. 1 2 1 4  - 1 - 1 

Hemigraphis sp. - - - -  - - - - 

Hibiscus rosa-

sinensis 
- - - -  - - 2 2 

Ipomoea batatas 0 1 1 2  1 1 - 2 

Leucaena 

leucocephala 
4 5 1 10  25 44 33 102 

Malus domestica - - - -  - 2 - 2 

Morus alba - - - -  - - 1 1 

Oryza sativa - - - -  - - - - 

Pyrus sp. - - - -  - - 1 1 

Terminalia 

catappa 
5 6 - 11  3 6 - 9 

Vigna unguiculata 2 0 1 3  3 1 15 19 

Zea mays 1 0 0 1  - 2 2 4 

Total 23 33 12 68  67 143 88 332 
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Supplementary Table T3: Assembly of PN1 and PN2 metagenomic dataset using 

SOAPdenovo2 at various k-mers. Identifications for diet species were made using diet 

database under criteria of 98% identity and 100bp overlap.  

 

 

PN1 PN2 

K31 K41 K51 K31 K41 K51 

Number of contigs 

>100bp 
1,359,037 836,554 509,432 1,786,760 1,023,421 459,282 

Mean Size/ Median size 320/166 406/192 449/234 291/154 304/178 371/209 

N50 469 655 614 423 331 423 

Longest Contig 27,630 247,751 142,410 23,818 131,275 191,115 

Number of known diet 

species identified 
3 3 1 5 3 2 

 

 

Supplementary Table T4: Number of contigs matching to the diet database. Assembly 

was done using K=31, K=41 and K=51. K=51 revealed poorer results than other two 

(Supplementary Table T3) and hence was not shown here. Values shown are: Number of 

contigs/ Average coverage/ length of longest contig. 

 

Species 
PN1 PN2 

K31 K41 K31 K41 

Acalypha siamensis - - - - 

Baphia nitida - - - - 

Cinnamomum iners 5/2.4/435 3/2/275 5/9.9/1656 5/6.6/1217 

Cucumis sativus - - - - 

Daucus carota - - 1/3.0/122 - 

Hemigraphis sp. - - - - 

Hibiscus rosa-sinensis - - - - 

Ipomoea batatas - - - - 

Leucaena leucocephala 3/1.3/177 1/2/126 7/6.4/617 8/5.2/2221 

Malus domestica - - - - 

Morus alba - - - - 

Oryza sativa - - - - 

Terminalia catappa 3/2.4/273 1/1/147 1/2.0/167 - 

Vigna unguiculata - - 2/2.8/152 1/2/152 

Zea mays - - - - 

Averrhoa carambola.   2/2.4/168 - 
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Supplementary Table T5: Genera identified from metagenomic datasets of PN1 and 

PN2 when tested against plant database (Paired end). Known and Potential diet taxa are 

highlighted in bold. 

Genus Number of genes giving identification 

PN1 PN2 

Terminalia 4 4 

Leucaena 3 4 

Vigna 3 4 

Ficus 3 2 

Averrhoa - 3 

Cinnamomum 2 2 

Ipomoea 2 1 

Acalypha 2 1 

Baphia - 2 

Morus - 2 

Daucus 1 3 

Neolitsea - 2 

Pyrus - 1 

Hibiscus - 1 

Rhodostemononodaphne 1 1 

Oxalis 1 - 

Dorstenia 1 - 

Ligustrum 1 - 

Dapania 1 1 

Anadenanthera - 1 

Atherosperma - 1 

Austrobuxus - 1 

Cotoneaster - 1 

Glycine - 1 

Lindera - 1 

Litsea - 1 

Mimozyganthus - 1 

Persea - 1 

Pterocyclus - 1 

Tripsacum - 1 
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Supplementary Table T6: Eukaryote identification based on rRNA sequences (MEGABLAST, 98% identity, 70bp overlap); summary 

derived from top 500 hits of NT. Values in bracket represent  (number of Paired end reads from PN1 / number of End 1 reads from PN1) and 

(number of Paired end reads from PN2 / number of End 1 reads from PN2). 

 

Phylum Order Family  Genus Species 

Amoebozoa (1336/2776) (1492/2912) Nil nil Entamoeba (1336/2776) (1492/2912) Entamoeba bovis (4/56) (11/56) 

Amoebozoa (1336/2776) (1492/2912) Nil nil Entamoeba (1336/2776) (1492/2912) Entamoeba histolytica (137/890) (150/886) 

Amoebozoa (1336/2776) (1492/2912) Nil nil Entamoeba (1336/2776) (1492/2912) Entamoeba sp. RL3 (27/193) (30/199) 

Amoebozoa (1336/2776) (1492/2912) Nil nil Entamoeba (1336/2776) (1492/2912) Entamoeba invadens (1/27) (0/36) 

Arthropoda (5/20) (9/58) Diptera (1/13) (0/4) multiple multiple multiple 

Arthropoda (5/20) (9/58) Hemiptera (0/0) (8/17) Psyllidae (0/0) (3/4) multiple multiple 

Ascomycota (4/11) (2/6) Sordariomycetes (0/0) (2/4) multiple multiple multiple 

Basidiomycota (1/4) (1/24) Ustilaginales (1/1) (0/0) Ustilaginaceae (1/1) (0/0) multiple multiple 

Basidiomycota (1/4) (1/24) Polyporales (0/0) (1/3) Polyporaceae (0/0) (1/3) Polyporus (0/0) (1/3) Polyporus umbellata (0/0) (1/3) 

Chordata (4/10) (11/42) Primates (0/3) (8/20) Cercopithecidae (0/0) (5/14) Macaca (0/0) (2/8) Macaca fascicularis (0/0) (2/8) 

Heterokontophyta (42/57) (2652/3521) Blastocystida (42/57) (2652/3521) Blastocystidae (42/57) (2652/3521) Blastocystis (42/57) (2652/3521) Blastocystis sp. MJ99-568 (0/2) (23/132) 

Heterokontophyta (42/57) (2652/3521) Blastocystida (42/57) (2652/3521) Blastocystidae (42/57) (2652/3521) Blastocystis (42/57) (2652/3521) Blastocystis sp. NandII (16/18) (1253/1649) 

Heterokontophyta (42/57) (2652/3521) Blastocystida (42/57) (2652/3521) Blastocystidae (42/57) (2652/3521) Blastocystis (42/57) (2652/3521) Blastocystis sp. subtype 1 (0/0) (4/27) 

Nematoda (338/458) (248/353) Rhabditida (333/453) (244/350) Strongyloididae (306/426) (224/310) Strongyloides (293/419) (212/304) Strongyloides fuelleborni (31/85) (37/87) 

Streptophyta (249/400) (1398/2123) Laurales (13/34) (106/227) Lauraceae (12/31) (89/196) Cinnamomum (11/27) (69/160) Cinnamomum camphora (8/20) (48/119) 

Streptophyta (249/400) (1398/2123) Apiales (1/3) (1/7) Apiaceae (1/3) (1/4) Daucus (1/3) (0/3) Daucus carota (1/3) (0/3) 

Streptophyta (249/400) (1398/2123) Malvales (6/11) (2/8) Malvaceae (6/11) (1/6) Gossypium (6/11) (0/1) Gossypium hirsutum (6/11) (0/0) 

Streptophyta (249/400) (1398/2123) Piperales (1/1) (0/0) Saururaceae (1/1) (0/0) Saururus (1/1) (0/0) Saururus cernuus (1/1) (0/0) 

Streptophyta (249/400) (1398/2123) Fabales (4/20) (30/96) Fabaceae (4/20) (27/89) Vigna (1/4) (0/6) multiple 

Streptophyta (249/400) (1398/2123) Fabales (4/20) (30/96) Fabaceae (4/20) (27/89) Parkia(0/1) (4/8) multiple 

Streptophyta (249/400) (1398/2123) Malpighiales (1/5) (1/13) Euphorbiaceae (1/1) (1/4) Acalypha (0/1)(1/3) multiple 

Phylum Order Family  Genus Species 

Streptophyta (249/400) (1398/2123) Rosales (1/5) (10/21) Moraceae (1/2) (7/9) Ficus (1/1) (1/1) multiple 
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Streptophyta (249/400) (1398/2123) Solanales (1/5) (2/19) Convolvulaceae (1/2) (2/11) Ipomoea (1/2) (1/6) Ipomoea purpurea (0/0) (1/3) 

Streptophyta (249/400) (1398/2123) Sapindales (1/1) (0/1) Anacardiaceae (1/1) (0/0) multiple multiple 

Streptophyta (249/400) (1398/2123) Poales (1/9) (27/66) Poaceae (1/8) (26/62) Zea (0/0) (14/42) Zea mays (0/0) (13/40) 

Streptophyta (249/400) (1398/2123) Myrtales (1/10) (5/31) multiple multiple multiple 

Streptophyta (249/400) (1398/2123) Brassicales (0/1) (1/9) Brassicaceae (0/1) (1/9) multiple multiple 

Streptophyta (249/400) (1398/2123) Myrtales (1/10) (5/31) Combretaceae (0/8) (4/25) Terminalia (0/8) (4/20) Terminalia catappa (0/8) (4/16) 

Streptophyta (249/400) (1398/2123) Fabales (4/20) (30/96) Fabaceae (4/20) (27/89) Albizia (0/3) (6/18) Albizia julibrissin (0/3) (6/17) 

Streptophyta (249/400) (1398/2123) Rosales (1/5) (10/21) Moraceae (1/2) (7/9) Morus (0/0) (6/8) Morus nigra (0/0) (1/2) 

Streptophyta (249/400) (1398/2123) Ophioglossales (0/0) (2/3) Ophioglossaceae (0/0) (2/3) multiple multiple 

Streptophyta (249/400) (1398/2123) Oxalidales (0/0) (7/11) Oxalidaceae (0/0) (6/9) multiple multiple 

Streptophyta (249/400) (1398/2123) Cucurbitales (0/0) (1/5) Cucurbitaceae (0/0) (1/5) Cucumis (0/0) (1/2) Cucumis sativus (0/0) (1/1) 

Streptophyta (249/400) (1398/2123) Fabales (4/20) (30/96) Fabaceae (4/20) (27/89) Malus (0/0) (2/3) Malus domestica (0/0) (2/2) 

Streptophyta (249/400) (1398/2123) Fabales (4/20) (30/96) Fabaceae (4/20) (27/89) Leucaena (0/0) (1/3) multiple 

Streptophyta (249/400) (1398/2123) Malpighiales (1/5) (1/13) Euphorbiaceae (1/1) (1/4) Acalypha (0/0) (1/3) multiple 

Streptophyta (249/400) (1398/2123) Malvales (6/11) (2/8) Thymelaeaceae (0/0) (1/1) Gonystylus (0/0) (1/1) Gonystylus bancanus (0/0) (1/1) 

Streptophyta (249/400) (1398/2123) Myrtales (1/10) (5/31) Melastomataceae (0/0) (1/1) Clidemia (0/0) (1/1) Clidemia dentata (0/0) (1/1) 
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Supplementary Table T7: Eukaryote identification based on COI sequences (Megablast, 98% identity, 70bp overlap) summary derived 

from top 500 hits of NT. 

 

Phylum Order Family Genus Species 

Chordata (60/65) (81/95) Primates (55/59) (76/86) Cercopithecidae (54/58) (76/86) Pygathrix (53/57) (73/83) Pygathrix nemaeus (1/8) (3/7) 

Chordata (60/65) (81/95) Galliformes (2/3) (2/6) Phasianidae (2/3) (2/6) Gallus (2/2) (2/5) multiple 

Nematoda (0/5) (3/5) Rhabditida (0/4) (3/5) Strongyloididae (0/4) (3/5) Strongyloides (0/4) (3/5) Strongyloides fuelleborni (0/4) (3/5) 

Streptophyta (9/12) (83/99) Fabales (1/1) (2/6) Fabaceae (1/1) (2/6) multiple multiple 

 

 

 

Supplementary Table T8: Eukaryote identification based on COI sequences (Megablast, 95% identity, 70bp overlap) summary derived 

from top 500 hits of NT. 

 

Phylum Order Family Genus Species 

Arthropoda (3/6) (1/1) Diptera (2/4) (0/0) multiple multiple multiple 

Chordata (66/69) (97/102) Primates (61/63) (89/93) Cercopithecidae (60/62) (89/93) Pygathrix (59/61) (86/90) Pygathrix nemaeus (1/8) (4/8) 

Chordata (66/69) (97/102) Galliformes (2/3) (3/6) Phasianidae (2/3) (3/6) Gallus (2/2) (3/5) multiple 

Nematoda (7/16) (5/9) Rhabditida (7/14) (5/8) Strongyloididae (5/12) (5/8) Strongyloides (5/12) (5/8) Strongyloides fuelleborni (5/12) (5/8) 

Streptophyta (12/13) (97/109) Fabales (1/1) (5/9) Fabaceae (1/1) (5/9) multiple multiple 

Streptophyta (12/13) (97/109) Cucurbitales (0/0) (1/2) Cucurbitaceae (0/0) (1/2) multiple multiple 
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Supplementary Table T9: Arthropod identifications based on single end analyses using COI sequences (Megablast, 95% identity, 70bp 

overlap), summary derived from top 500 hits of NT. Sequences in bold represent those that had paired end match to same insect order. 

 

Sequence 

(Total=6) 
Species Genus Family Order Class Phylum 

1 Ceratitis capitata Ceratitis Tephritidae Diptera Insecta Arthropoda 

2 Drosophila fraburu Drosophila Drosophilidae Diptera Insecta Arthropoda 

3 Ceratitis curvata Ceratitis Tephritidae Diptera Insecta Arthropoda 

4 Unidentitfied Unidentitfied Unidentified Diptera Insecta Arthropoda 

5 Brachycaudus sp. C1760 Brachycaudus Aphididae Hemiptera Insecta Arthropoda 

6 Unidentified Unidentified Unidentified Unidentified Insecta Arthropoda 
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Supplementary Figure 

Figure S1: Contigs of PN1 and PN2 identified as mitochondrial sequences were mapped 

onto P. nemaeus genome. 
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Appendix 2 

Supplementary Methods for Chapter 5 

Feeding trial 

Captive P. nemaeus at the Singapore Zoo were studied to obtain information on 

transit and retention time. Rate of food processing was determined by feeding bead 

markers whereby transit time (TT) was assessed as the first appearance of the bead 

markers in the feces while the mean retention time (MRT) referred to the average time 

taken for the passage of 10-90% of recovered plastic beads marker (Remis & Dierenfeld 

2004): 

𝑀𝑅𝑇(ℎ) =  ∑ 𝑀𝑖𝑇𝑖

𝑛

𝑖=1

/ ∑ 𝑀𝑖

𝑛

𝑖=1

 

Where Mi is the amount of markers excreted in the ith defecation at time Ti and n is 

the total number of defecations. 
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Appendix 3: Description of taxonomic categorization pipeline 

This pipeline has been scripted to summarize taxonomy information from blast outputs. It 

can be downloaded from https://github.com/asrivathsan/readsidentifier-1.0  where the 

source code is available. 

 

The steps followed are as follows, and the functions written in the script are in the 

brackets, and can be accessed from the abovementioned link. 

(I) BLAST is conducted against a database, and summary of top hits is obtained per 

sequence (by default BLAST generated 500 best hits). The output format 6 is 

chosen.  

(II) Every subject sequence that the query has a matched to is linked with the TAXID 

information as obtained by gi_taxid.dmp (matchdb) 

(III) Any hit below a user specified minimum overlap threshold are removed. Once 

removed the best identity hit is retained per sequence. (parse) 

(IV) The user is asked to define an identity threshold. All sequence below this 

threshold are removed (best_by_id) 

(V) Taxonomy assignment is conducted.  

a. First taxid information is matched to the various hierarchical levels 

available for a particular taxid. (tax_to_cat) 

b. For every blast hit a consistency profile is created. Here if a sequence 

matches to multiple taxa at a particular taxonomical hierarchy number of 

taxa are recorded (consist) 

c. Taxid are converted to Taxonomic names to generate output files 

(cat_to_name) 

https://github.com/asrivathsan/readsidentifier-1.0
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d. Similar procedure is followed for paired-end analyses. However, prior to 

generating a profile per sequence, I identify the taxon set S1 and S2 and an 

intersection of these two is then used to generate the taxonomic 

information for the sequence (consistpe). 
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Appendix 4: Parasite database 

Parasite Host species Location Reference 

Ancyclostoma Erythrocebus patas Africa Adedokun et al. 

(2002) 

Ascaris Macaca nigra, Macaca 

mulatta, Presbytis entellus 

Asia Jones-Engel et al. 

(2004), Remfry 

(1978), Parmar et al. 

(2012) 

Balantidium Cercopithecus aethiops, 

Cercopithecus mitis, 

Cercocebus torquatus, 

Cercocebus albigena, Papio 

cyanocephalus, Cercopithecus 

neglectus, Pan troglodytes, 

Hylobates leucogenys, 

Erythrocebus patas 

Africa Muriuki et al., 1998, 

Munene et al. 

(1998), Karere and 

Munene (2002), 

Adedokun et al. 

(2002) 

Bertiella Colobus guereza, 

Cercopithecus ascanius, 

Macaca fuscata, Papio 

ursinus, Trachypithecus 

cristatus 

Africa,Asia Chapman et 

al.(2005), Gotoh 

(2000), Goldsmid 

(1974), Palmieri et 

al. (1980) 

Blastocystis Macaca nigra, Macaca 

nigrescens, Macaca hecki, 

Macaca tonkeana, Macaca 

Maura, Macaca ochreata, 

Macaca fascicularis, Macaca 

nemestrina, Papio 

cyanocephalus, Cercopithecus 

aethiops, Lophocebus 

albigena, Procolobus 

rufomitratus 

Asia, Africa, 

Captive 

Jones-Engel et al. 

(2004), Legesse et al. 

(2004), Chapman et 

al. (2011), Chapter 5 

Cryptosporidium Cercopithecus aethiops,Papio 

cyanocephalus, Macaca sinica, 

Semnopithecus priam, 

Trachypithecus vetulus 

Asia, Africa Legesse et al. (2004), 

Ekanayake et al. 

(2006) 

Dicrocoeliidae Colobus guereza, 

Cercopithecus ascanius 

Africa, Chapman et 

al.(2005),  

Dipetalonema Saguinus geoffroyi, Aotus 

trivirgatus, Ateles fusciceps, 

Ateles geoffroyi, Cebus 

capucinus, Presbytis obscura 

Asia, Neotropics Thatcher and Porter 

(1968), Mak et al. 

(1980) 

Endolimax Macaca nigra, Lophocebus 

albigena, Procolobus 

rufomitratus, Cercopithecus 

ascanius, Colobus guereza, 

Cercopithecus mitis 

Asia, Africa Jones-Engel et al. 

(2004), Chapman et 

al. (2011) 

Entamoeba Piliocolobus tephrosceles, 

Colobus 

guereza,Cercopithecus 

ascanius, Papio 

cyanocephalus, Cercopithecus 

aethiops, Cercopithecus mitis, 

Cercocebus torquatus, 

Cercocebus albigena, Macaca 

nigra, Micaca nigrescens, 

Macaca hecki, Macaca 

tonkeana, Macaca Maura, 

Africa,Asia, 

Captive 

Chapman et 

al.(2005), Muriuki et 

al., 1998, Jones-

Engel et al. (2004), 

Munene et al. 

(1998), Legesse et al. 

(2004), Parmar et al. 

(2012), Chapman et 

al. (2011), Karere 

and Munene (2002), 

Gillespie et al. 
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Macaca ochreata, Macaca 

fascicularis, Presbytis entellus, 

Lophocebus albigena, 

Procolobus rufomitratus, 

Cercopithecus neglectus, 

Colobus angolensis, Hylobates 

syndactylus, Gorilla gorilla, 

Pan troglodytes, Hylobates lar 

(2005), Levecke et 

al. (2007), Chapter 5 

Enterobius Cercopithecus ascanius, 

Macaca sinica, Macaca 

mulatta, Papio cyanocephalus, 

Cercopithecus mitis, Papio 

ursinus, Trachypithecus 

cristatus, Erythrocebus patas 

Africa,Asia Chapman et 

al.(2005),Dewit et al. 

(1991), Remfry 

(1978)  Munene et 

al. (1998), Goldsmid 

(1974), Palmieri et 

al. (1980), Adedokun 

et al. (2002) 

Giardia Cercopithecus ascanius, 

Procolobus rufomitratus, 

Lophocebus albigenus, 

Hylobates syndactylus, Gorilla 

gorilla, Hylobates lar, 

Hylobates leucogenys 

Africa, Captive Chapman et 

al.(2005), Chapman 

et al. (2011), 

Levecke et al. (2007) 

Hymenolepis Presbytis entellus, Macaca 

sinica, Macaca mullatta 

Asia Dewit et al. (1991), 

Remfry (1978) 

Oesophagostomum Piliocolobus tephrosceles, 

Colobus 

guereza,Cercopithecus 

ascanius, Macaca arctoides 

Macaca sinica, Macaca 

mulatta, Cercopithecus mitis, 

Macaca fuscata, Papio 

ursinus, Trachypithecus 

cristatus, Pan paniscus 

Africa, Asia Chapman et 

al.(2005), Nath et al., 

2012, Remfry 

(1978), Munene et 

al. (1998), Gotoh 

(2000), Goldsmid 

(1974), Palmieri et 

al. (1980), Hasegawa 

et al. (1983) 

Physaloptera Macaca sinica, Macaca 

mulatta, Saguinus geoffroyi 

Asia, Neotropics Dewit et al. (1991), 

Thatcher and Porter 

(1968) 

Plasmodium Pan troglodytes, Gorilla 

gorilla 

Africa Prugnolle et al. 

(2009) 

Schistosoma Papio cyanocephalus, 

Cercopithecus mitis, Papio 

ursinus 

Africa Munene et al. 

(1998), Goldsmid 

(1974) 

Spirometra Papio cyanocephalus, 

Presbytis entellus, Macaca 

mullatta, Saguinus geoffroyi 

Africa, Asia, 

Neoptropics 

Nobrega-Lee et al. 

(2007), Parmar et al. 

(2012), Thatcher and 

Porter (1968) 

Streptopharagus Cercopithecus ascanius, 

Macaca sinica, Macaca 

mulatta, Papio cyanocephalus, 

Macaca fuscata, Papio 

ursinus, Cercopithecus 

neglectus 

Africa,Asia Chapman et 

al.(2005), Dewit et 

al. (1991), Munene 

et al. (1998), Gotoh 

(2000), Goldsmid 

(1974), Karere and 

Munene (2002) 

Strongyloides Piliocolobus tephrosceles, 

Colobus 

guereza,Cercopithecus 

ascanius, Papio 

cyanocephalus, Cercopithecus 

aethiops, Cercopithecus mitis, 

Cercocebus torquatus, 

Cercocebus albigena, Macaca 

Africa,Asia, 

Captive 

Chapman et 

al.(2005), Muriuki et 

al., 1998, Dewit et 

al. (1991), Remfry 

(1978), Legesse et al. 

(2004), Gotoh 

(2000), Goldsmid 

(1974), Paramar et 
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sinica, Macaca mulatta, 

Macaca fuscata, Papio 

ursinus, Presbytis entellus, 

Cercopithecus neglectus, 

Colobus angolensis, Hylobates 

syndactylus. Hylobates 

leucogenys, Pygathrix 

nemaeus, Erythrocebus patas, 

Pan paniscus 

al. (2012), Karere 

and Munene (2002), 

Gillespie et al. 

(2005), Levecke et 

al. (2007), Chapter 5, 

Adedokun et al. 

(2002), Hasegawa et 

al. (1983) 

Taenia Cercopithecus aethiops, 

Erythrocebus patas 

Africa Sulaiman et al. 

(1986) 

Trichostrongylus Macaca sinica, Macaca 

mulatta, Papio cyanocephalus, 

Cercopithecus mitis, Papio 

ursinus 

Asia, Africa Dewit et al. (1991), 

Munene et al. 

(1998), Goldsmid 

(1974) 

Trichuris Piliocolobus tephrosceles, 

Colobus 

guereza,Cercopithecus 

ascanius, Papio 

cyanocephalus, Cercopithecus 

aethiops, Cercopithecus mitis, 

Cercocebus torquatus, 

Cercocebus albigena, 

Trachypithecus geei, Macaca 

sinica, Macaca hecki, Macaca 

tonkeana, Macaca fuscata, 

Papio ursinus, Presbytis 

entellus, Colobus angolensis, 

Hylobates concolor, 

Trachypithecus francoisi, 

Hylobates hoolock, 

Erythrocebus patas, Pan 

paniscus 

Africa,Asia, 

Captive 

Chapman et 

al.(2005), Muriuki et 

al., 1998, Dewit et 

al. (1991), Jones-

Engel et al. (2004), 

Gotoh (2000), 

Goldsmid (1974), 

Parmar et al. (2012), 

Gillespie et al. 

(2005), Levecke et 

al. (2007), Liu et al. 

(2013), Nath et al. 

(2012), Adedokun et 

al. (2002), Hasegawa 

et al. (1983) 

Trypanosoma Macaca silenus, Lemur catta, 

Saimiri sciurius, Macaca 

mullatta 

Captive, Asia, 

Neotropics 

Pung et al. (1998), 

Ziccardi and 

Lorenco-de-Oliveira 

(1997), Fulton and 

Harrison (1946) 

Trypanoxyuris Alouatta villosa, Aotus 

trivirgatus, Ateles fusciceps, 

Ateles geoffroyi, Saguinus 

geoffroyi,  

Neotropics Thatcher and Porter 

(1968) 

 

 

 




