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Abstract

We introduce Bayesian Expansion (BE), an approximate nigaleechnique for passage
time distribution analysis in queueing networks. BE usefaascof Bayesian networks to ap-
proximate the exact joint probability density of the modglebproduct of conditional marginal
probabilities that scales efficiently with the model sizee ¥how that this naturally leads to
decomposing a queueing network into a set of Markov prosetbesd jointly approximate the
dynamics of the model and from which passage times are easifputed.

Approximation accuracy of BE depends on the specific Bapasiétwork used to decompose
the joint probability density. Hence, we propose a selecélgorithm based on the Kullback-
Leibler divergence to search for the Bayesian network thatigdes the most accurate results.
Random models and case studies of increasing complexity $tesignificant accuracy gain of
distribution estimates returned by BE compared to Markal @hebyshev inequalities that are
frequently used for percentile estimation in queueing oeks.

Keywords: Passage time analysis, queueing network models, Bayesiaorks

1. Introduction

Passage time distribution analysis is a fundamental te@dmputing percentiles of response
times and throughputs in queueing models. Performancempetrcentiles are widely used in
specifying quality-of-service requirements and servael agreements for IT services [1]. Ex-
isting methods for passage time analysis in general nesiodus on humerical approximation
and simulation because closed-form analytical expresdimnpassage time distributions exist
only in special cases [4, 14]. Simulation-based estimgtptydo general models, but they re-
quire many samples and repeated experiments to estimatidbaions accurately. This is a
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limiting factor in what-if analysis, sensitivity studiesnd in sizing studies based on constrained
optimization that often require evaluating hundreds ofidamds of possible system configura-
tions [1]. Analytical percentile bounds based on Markov bellyshev inequalities are usually
cheaper to evaluate than simulation [17], however they doffier comparable accuracy for the
distribution body, while they can be effective for tail estites [11]. Exact theoretical formulas
are accurate and computationally efficient [10, 12, 16, 3,98,14, 15], but they apply only to
special networks, often cyclic or tree-like topologiesyidrich Laplace transform expressions of
response time distributions are available.

To address the above limitations we introduce Bayesian isipa (BE), a new approxi-
mate method for passage time distribution analysis in gagueetworks with finite state space.
The distinguishing feature of BE is that it approximatesesfaobabilities driven by a class of
Bayesian networks [18]. Bayesian networks have been rigcamplied in measurement-driven
performance evaluation [23], however the present pap&y th€ best of the author’s knowledge)
the first work that applies these models to the theoretisalis underlying queueing networks
rather than to inference and learning from data sets. We shatwva Bayesian network natu-
rally defines an approximation of both transient and equiilib state probability densities of
a queueing network in terms of simpler marginal probaksiti This approximation has two
main features: first, it tackles state space explosiongsssext, it naturally defines a decom-
position of the queueing network into a set of aggregatedeaisatiat can be used for passage
time analysis. The idea of decomposing a performance mateki set of Markov processes
has been considered in very few works in the literature [2tI7@ fundamental innovation of
BE is to introduce a Bayesian network that strives to maxéngizediction accuracy based on
information-theoretic techniques. This effectively appmates state probabilities and achieves
low computational costs for passage time analysis.

The remainder of this paper is organized as follows. Afteoucing required definitions in
Section 2, we describe BE in Section 3 and show that its acgwan depend significantly on
the choice of the Bayesian network used to approximate the goobability density. We then
develop in Section 4 a Bayesian network selection strataggdbon the Kullback-Leibler diver-
gence. Application of the BE technique to general queueatgorks is discussed in Section 5.
Finally, using case studies and random models of tractabtevee show in Section 6 that BE
approximates passage time distributions with accuradyishaften very close to exact results
and significantly more accurate than Markov and Chebysheyualities that are widely used
for percentile estimation.

2. Background

For simplicity of exposition, we focus on a class of closeéuging models composed by a
set of M stations connected with an arbitrary topology network, ésv the BE methodology
applies with minor changes also to other queueing netwoiils finite state space, e.g., an
open network of queues with finite buffers. The closed quepeietwork is assumed to be
populated by a finite set & jobs. Upon completion from queulga job is routed to queugewith
probabilityp; ;. We illustrate the methodology on models where stationsegebs according to a
processor sharing (PS) or infinite server (1S) policy, weass generalization to other scheduling
disciplines in Section 5. Service times are assumed to berexyially distributed, extension to
other service time distributions is also discussed in $ach. We indicate withy; the mean
service rate of statioiy for load-dependent stations this is allowed to be a fumctign;) of
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the number of job#; currently in statiori. Special cases ayg(n;) = niu;(1), where the load-
dependent station is an infinite server, ar(d;) = min(c;, nj)ui(1), which is a multi-server station
with ¢; > 1 servers. Based on these assumptions, the Markov procdsgying the queueing
network has state space

S={nIn=(n,ny,....nm), XM n =N, n > 0) (1)

and infinitesimal generatd® specifying the rates of transition between pairs of stateS x

S. Definer(n) = n(ng, Ny, ...,Ny) to be the joint probability density that characterizes the
equilibrium of the Markov process, and fet= {n(ny, ny, . .., Ny)} be the equilibrium distribution
vector such thatr = 7Q, 71 = 1, wherel is a column vector of ones. The model enjoys the
product-form solution

M
ﬂ(n]_, n2,...,nM) = ﬁ Hﬂi(ni), nes (2)
i=1

wheregi(n) = 1/ l—lﬂi:l,lli (k), andG(N) is a normalizing constant that can be computed efficiently
using the convolution algorithm [3]. Marginal distributiv are also easily computed by

Gi(N —nj) (N —n —nj)
G(N) ° G(N)

whereG;(N - n;) is the normalizing constant of a queueing network havigist i removed
and a population oN — n; jobs, and similarlyG; ; refers to a model with both stationgnd j
removed. From the properties of convolution it follows tHa entire set of values in (3) can
be computed efficiently i®(N?) for fixed number of queues, being the total job population
which is the main driver of computational costs in queueiatyworks. This is relevant for the
application of (3) to BE discussed in Section 4.3.

Gi|
#(n) = A(n) a(n, nj) = Bn)B(N;) — (3)

2.1. Established Techniques for Passage Time DistriblAioalysis

Given a Markov process initialized according to a probapiiistribution @ over a state
spaceX, passage time analysis studies the distribuE¢r) of the time to first reach a subset of
statesX® c X after the initial position. This problem models a number ofnenon questions
that arise in queueing theory such as computing job intévedtime percentiles or determining
response time distributions. We here consider generatiasdage time problems in which only
events due to activation of subsetof rates of jump ta=® is considered in the analysis. This
allows to evaluate, for instance, inter-arrival times digdollowing a given route. In this case
F(t) is phase-type (PH-type) distributed with representamT), whereT is obtained from
the infinitesimal generatd® of the Markov process by setting to zero all off-diagonatsain
the considered subset that jump to stateE’inWe refer toT as asubgeneratoof the Markov
process, which is also called in the literature a PH-geperdtor a PH-type distribution, the
cumulative distribution function is readily computed as

F(t)=1-ae™,

wheree't is the matrix exponential function applied Td. Recall that the transient staigt)
of an absorbing Markov process with subgenerdt@s computed by the Kolmogorov forward
equations as

n(t) = x(0)e™.
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It is then easy to see that passage time distribution asdlysiquivalent to computing
F(t) =1-=(t)1, 7(0) = ¢, 4)

hence it is a special case of transient analysis. From bagpepies of the matrix exponential,
itis also
x(t) = lim ﬂ-(o)eTAtleTAtz c..glht )
Nn—oo

whereAt; =t — t_; = t/n, tp = 0, andt, = t. Thus, for a sufficiently larga one may accurately
approximate the passage time solution by solving transiealtysis problems over a sequence of
small intervals. This approach is well-investigated in Marprocess theory [21, 13], where itis
often exploited that foAt) — O itis

e ~ | + TAY + o(At?).
Therefore, for smallt; one may sequentially evaluate
a(t) =xt-)( +TAY), I1=1,...,n, (6)

in order to approximately integrate the Kolmogorov forwagliations up to timé,. Alterna-
tively, one may use the uniformization technique on eacdtrual At, to account for higher-order
terms in the expansion of the matrix exponential, thus a@miebetter accuracy at moderately
increased costs [3].

Finally, we observe that in queueing network models the imdtris often prohibitively
large, since its order is the same of the infinitesimal geoedd the underlying Markov process.
This order grows combinatorially with the number of queuad @bs in the network. Thus, the
above formulas can be applied directly for passage timeyaisadnly on small queueing network
models. For our reference model with IS and PS servers, ther of T is small with respect to
other types of queueing networks, nevertheless it is oféed to consider passage time problems
with more than a few tens of jobs. In the next section, we agvtiie BE technique which tackles
these limitations.

3. Bayesian Expansion

We now develop the proposed application of Bayesian netsuorgueueing network approx-
imation. A Bayesian network is a probabilistic model usedharacterize conditional depen-
dencies between random variables. Given a set of randomblasi,, ny, ..., Ny, conditional
dependencies are expressed using a directed acyclic gd&@) 6uch that each random variable
n; has one or more parent variablgs, = {n;j, Nk, ...}, wherepar(i) mapsi into the indexes of
the parent variables fam. Thanks to the acyclic structure of the DAG, the joint edprilim
distribution of a Bayesian network admits a product-forrpression

M
a(ng, My, ...,Ny) = 1‘[l (il Npar(iy) (7)
I=

wheren(nilNargy) is replaced byr(n;) if n; is theroot nodeof the DAG for which it is convention-
ally assumegpar(i) = i. Bayesian networks are often used in machine learning tooappate
an empirical distributiomr(ng, n,, . . ., Ny) that is too expensive to compute explicitly from a data
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Figure 1: Three possible Bayesian trees (BTs) for a joinbabdlity densityr(xy, X2, X3, X4)

set or too large to store in memory. The functjman(-) fully characterizes the Bayesian network
and in the rest of the paper is referred to aslépendence structure

Bayesian networks are here applied to the approximatiorgokaeing network equilibrium
distributionz(ny, Ny, . . ., Ny) with the aim of addressing state space explosion issueSobus
on a class of Bayesian networks with tree-like dependencetate, referred to as Bayesian
Trees (BTs), where all random variablghave a single parent. A BT readily definesexond-
order product approximation

M M (i, N
A T 1.:1[ Er(lnp::;()l)) 7(Mpar)) = o™ (. Npary). (8)
where for the root node we defin€ni|nya)) = 7(n) = Zr’:'j‘:g‘ x(nj, m), for any j # i such that
par(j) = i. Approximation (8) is computed using the marginal prolitibd 7(n;, Nyar)) alone,

thus it is computationally efficient since a joint state disttion with N™ values is approximated
using onlyMN? marginal values. Techniques to define the dependencesteust the BN are

discussed later in Section 4. Figure 1 gives examples of Bpsoximating a joint probability

densityr(x1, X2, X3, X4). The dependence structure of the BTs is as follows

par(-) structure
BT | Xy X X3 X4

a 31333
b 4 11|14
c 111]4]1

Thus, e.g., the joint probability density is approximatgd33b as the second-order expression

(X1, X2, X3, Xa) & m(Xa|Xa)7w(Xo|Xa)7r(Xa| X1)7r(Xa). 9)

3.1. Bayesian Expansion
We initially consider a queueing network observed in stestdye with equilibrium distribu-
tion (ny, Ny, ..., ) and introduce Bayesian expansion (BE) by the followingrdédin.

Definition 1 (Bayesian Expansion)A BT for the joint probability densitgt(ng, na, . .., ny) of
a queueing network definesBayesian expansioof the model, which is a set of M aggregated
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Markov processes, one for each station in the network. Tigesgated process for station i has
infinitesimal generator Qdefined on the state space

S = {nl n= (ni7 npar(i)» nrem(i))» r]rem(i) =N- n — npar(i)}»

where R is the parent variable ofirin the BT. The aggregated process of the root node of the
BT is defined to be identical to the aggregated Markov prooéasy of its child nodes.

The above definition states that the second-order prodpebajnation (8) maps the Markov
process underlying a queueing network into a family of senpllarkov processes with state
space i, NparGiy> Nrem()) = (Mi, Npar(i)), Wherenemg) is dependenbn the other variables. Each
aggregated process may be seen as a queueing network cahigyosetioni, stationpar(i),
and the aggregate servem(i) = {1,2,..., M} \ {i, par(i)} that describes the remainder of the
network. Note that theem(i) server is not necessarily a flow equivalent server sincesB&tér
applied to the transient case where the Chandy-Herzog-Wémsém does not hold [3]. Note also
that BE differs from the methods in [2, 7] since it considéngnks to the BT, jusM aggregated
processes instead M2. The key property of the BE is that the state of any queuenn(i) can
be estimated using a specialization of (8) as discussecaindkt section.

3.2. Approximate Infinitesimal Generators

We now define the infinitesimal generat®si = 1,..., M, of the aggregated Markov pro-
cesses generated by BE. These infinitesimal generatoraratarhental for passage time distri-
bution analysis as described later in Section 3.3. Sincadlgeegated process for statibhas
state spac§, its underlying generatd®; is immediately defined by the ratggn, n’) connect-
ing pairs of statesn, ') € S x S;. The rategyi(n, n") are readily obtained by summing in each
staten the departure rates from stationgar(i), andrem(i) leading to state"’. The departure
rates from stationsandpar(i) when they are busy are readily computed as service ratiEsisca
by routing probabilities. Conversely, the departure radenfrem(i) is approximated by the ag-
gregate throughput flowing out from them(i) subnetwork into a given statidn= 1,..., M.
Conditioning on stat& = (n;, Npary), the aggregate rate of departure froem(i) to k may be
written as

Nrem(i)
Hrem()k(NMis Npari)) = 2 2 (Nj1Ni, Npargi) ) (N}) Pjk (10)
jerem(i) nj=1
where it is implicitly niemgy = N — Ny — Npargy. The issue associated with (10) is that it cannot be
computed directly from the BE. This is becaugg; | ni, nyari)) involves three independent ran-
dom variables, but BE considers only second-order margidlabilities of the typa(ni, Npar))-
To overcome this issue we introduce an approximation tonegé the departure rate fraem(i).
We assume that whem > 0, j € rem(i), the BT imposes at least one between

par(j=i  or  par(j)=par(i) or  par(par(i) = ] (11)

foralli=1,...,M,i # j # par(i). To justify the above conditions, let us observe first thatt
when the rates (10) are considered in the global balanceiegsaf the aggregated Markov pro-
cesses they define a summation over marginal probab#itigsn;, Nparg)) = 7(Nj | i, Npariiy) 77 (N, Npary)-

1This expression is exact at equilibrium for the class of padorm networks assumed in Section 2. For more
general models it may be considered as an approximationfannrelated with higher-order conditional probabilities
involving more than three random variables. In the lattesecalso (12) should be extended to approximate such proba-
bilities in the spirit of (8).
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Hence, if the departure rate pfe rem(i) is evaluated for some destinatiGn(11) assures that
(8) can be applied to (10) in a computationally efficient memas

(N}, N, Npary) ~ 71N [ Npar(j)) 71 (N, Npari))

using a single conditional probability tefmThis is obvious ifpar(j) = i or par(j) = par(i),
while for the third condition in (11) one needs first to applgy@s formula tor(Nparg) | n;) in
order to computa(n; | Nariy) and then use the latter in placeagh; | npagj)). To avoid a complex
notation, we limit to describe the approximation basedr@m | Nparj))-

Based on the above discussion, if (11) holds the departtedanjobs leavingem(i) may
now be approximated as

nrem(l)

,Urem(i),k(ni, npar(i)) ~ 2 Z ﬂ(n] | Npar(j), Nj < nrem(l)),uj(n])p] ks (12)

jerem(i) nj=1

where
7(Nj, Npar(j))

nr m|
Z i ﬂ(nl’npaf(l))

Expression (13) leverages on our knowledgegf; to exclude from the normalizing constant
originally used in the conditioning of(n; | nparj)) all eventsn; > nemg) Which clearly cannot
occur since € rem(i). This provides a tighter approximation of the departutes@ompared to
normalizing over all possible values of therandom variable. More importantly, equation (12)
uses (13) to approximate the rates of the statiens(i) usingonly marginal probabilities that
are available in the BE which addresses the main limitatigd®). Summarizing, by assuming
to use a BT that satisfies (11) we are now able to define a sepobdimate generatoi®; based
on (12).

7(Nj | Npar(j)s Nj < Nrem(i)) = (13)

3.3. BT-based Passage Time Distribution Analysis

The application of the definitions given in the previous &ecto passage time analysis re-
quires to consider the transient state of the queueing mktwdthough BE extends in a straight-
forward way to transient joint densitie$n;, n, . . ., ny; t), i.e., by expressing the dependence on
the timet in each of the marginal probabilities in (8), these jointsigas are not usually known
in advance, which makes it difficult to establish criteria BX specification. From now on, we
therefore assume to define the BT based on the equilibriutmidison zr only.

For the sake of brevity, we also limit our discussion to stgaces of the type (1), however
the approach extends with minor changes also to relatesl gpatces, such as those obtained by
extending (1) with the tagged job approach in order to deitegmesponse time distributions [16],
see Section 5.

Using the equilibrium BT, we model the passage times in tfeziging network using a set of
non-homogeneous Markov processes with gener&gtsdefined similarly to the generato@
introduced in Section 3.2. Let us assume that a passage i&tnibution is iteratively evaluated
over a discrete set of instartts= 0 < t; < ... < t,. As such, marginal probabilities at time

2For instance, ipar(j) = w # i # |, then one would need an extra summation on all possible saifigne random
variableny, which increases significantly computational costs for deditthe aggregated generat@s
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Algorithm 1

input: BT

input: initial probability distributionsr;(0), 1<i <M
input: observation instants =0<t; <ty <...<t,
input: reference statiof

define the subgeneratofg(t)), 1 <i < M, from z;(t-1) using (14) and (15)
determiner;(t), 1 <i < M, using (16) or uniformization
determineF(t) = 1 — ¢ ()1

end

output: F(ty) for1 =1,..., n

Figure 2:Algorithm for BT-based Passage Time Distribution Analysis

ti_1 have been all computed when starting the evaluation at timet,_;. Defining the non-
homogeneous generators at each of these instants inveleesteéps. First, we extend (12) to
include the dependence on the current instant of tjrae follows

Nrem(i)

Hrem(iyk(Mis Mpari), 1) & X 30 (N1 Mpar(j), Nj < Nrem(i)s ti-1)pj (Nj) Piks (14)

jerem(i) nj=1
where all marginal probabilities are available from theusioh fort,_; < t; and
7(Nj, Npar(j» ti-1)

(N | Mpar(j)> Nj < Mrem(i) t-1) = i
Y20’ (0, Mar(i)» i-1)

(15)

beingn(nj, Npar(j), ti-1) the estimated marginal joint density of queyesndpar(j) at timet;_;.
Next, we define the non-homogeneous gener@qts, 1<i < M, by replacingemyk(Ni, Npar(i))
in Qi with Hrem(),k(Ni, Noari), t1). Note that a similar approach may be used to extend (10) and
specify a set of non-homogeneous genera@($) that do not use approximation (14); thus,
Qi(t) may be seen as an approximation of such generators.

Finally, let the subgeneratdi(t;) be obtained fron@Q;(t;) by setting to zero the off-diagonal
jump rates of interest to states in &t We generalize (6) to the non-homogeneous case as

mi(t) = mt_)( + Ti(h)At), (16)

fori=1,...,Mandl = 1,...,n, whereAt, =t —t_1. For example, given a reference station
1< f < M, used to compute throughput or response time distributideg allows to compute
the probability mass absorbed by state€tnat timet, asF(t) = 1 — n¢(t))1. Alternatively,
one may choose to average the probability mass absorbedimeein all aggregated Markov
processes; humerical results of this approach are usuigjhtlg worse than the ones obtained
with the reference station technique, however averaging lbeaconceptually easier to define
when studying passage times that involve the joint outpigeskral stations. A pseudo-code
summarizing the proposed passage time analysis algorgtgivén in Figure 2. Similarly to
standard passage time analysis described in Section 2 Lntformization technique can be
used in place of (16) to obtain better accuracy at increassis.c

3.4. lllustrating Example

The example in this subsection illustrates a typical caseriselecting different BTs to
define the BE returns very different accuracy levels in th&spge time distribution estimates.
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Figure 3: BE approximation for a multi-tier application nebd

This suggests that the accuracy of BE is conditional on tleeten of a proper BT. To address
this issue, we develop in the next section a greedy stratemyselects a BT to be used in BE
with the aim of maximizing accuracy while satisfying comgtitinal cost constraints. When
applied to the example in this section, such technique is tbkelect the BT that returns the
most accurate approximation.

We consider a queueing network model of a multi-tier apgitica Figure 3(a) illustrates the
model, which includes three load dependent stations, nragg#ink times {t), network delays
(nd), and a quad-core front servefg). The front server is connected to a database back-end
(db) modeled by a single server queue. Service rategigee 0.15 ™, png = 15, ugp = 30s,
anduss = 20s™t. Routing probabilities at the departure from the front semrepssng = 0.8,
Ptsdb = 0.2; the job population it = 15.

par(-) structure

BT | Nfs Nng Ndp Mt
nd | nd | nd | nd
tt tt tt tt
nd | nd| fs | nd

WN -

Table 1: Dependence structures in Figure 3. Rows indicateadinent of each variable in a BT.

The distributionF(t) of a passage time variablgin seconds) is observed at the output of
the nd station for all jobs and estimated using time instant diffgrfor a step ofAt) = 18ms
Figure 3(b) compares approximate and exact results foriffezeht choices of the BT given in
Table 1 using the same tabular representatiopanf:) introduced in Section 3. BT1 and BT2
are simple trees with a single level below the root; BT3 haseiad two levels and a structure
similar to the routing matrix of the network. Time for evatiaa of a single point by BE is close
to constant and on average equal torhs@ all three cases. For BT1 the differences in the exact
and approximate solutions are small, with minor deviatiobserved in approximation of the
tail; these arise due to small errors in capturing the exacayrate of the passage time density.
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Conversely, although the dependence structure of BT2 igagito BT1, a different choice of
the root leads in this example to significantly underestinthé passage time distribution. The
vertical gap of BT2 from the exact distribution is more th&@¥d of the probability mass, thus
inevitably leading to significant deviations in percenéltimates on the horizontal axis. Specif-
ically, the relative error in estimation of the 95th perdlestis 672% for BT1, 1765% for BT2,
and 5042% for BT3, thus supporting our claim that the BT select®afiparamount importance
for the approximation accuracy of BE. This motivates theegtigation in the next section.

4. Bayesian Tree Specification

Stemming from the observation in Section 3.4 that diffeh$ provide different approxi-
mation accuracies for passage time distribution analyg&gpcus in this section on the definition
of a BT that can provide accurate results at the lowest plessitmputational costs. Specifically,
the stated goal of this section is to explain how to specifyTarBorder to satisfy the following
set of requirements:

« the approximate subgeneratdrgt) can be defined ifO(N?) as the total populatioil
grows. This is the minimum achievable complexity for a seorder product approxi-
mation. Itis also a stronger requirement than asking foiggmegyate state space that grows
asO(N?) since the former includes the cost of computing the appnate transition rates
in (14).

« in order to maximize accuracy, the approximate subgeoesi(t) should be as close as
possible, with respect to some distance metric, to the sudygéorsT;(t) that are defined
from the aggregated Markov processaé).

The main findings and contributions of this section to achigwch goals are the following:

« we obtain in Section 4.1 a recursive expression to effiiezampute the approximate
transition rates in (14); based on this result, we argue icti@®e 4.1 that it is always
possible to define all subgeneratdé) in O(N?);

» we then develop an automatic BT specification techniquedan binary linear program-
ming (BLP). The BLP expresses computational cost requirgsnas linear binary con-
straints (Section 4.1), whereas it models approximaticiuigcy using a binary linear
objective function (Section 4.2);

» we argue in Section 4.3 that canonical BLP objective fumgiused in the literature for
BT specification [9] do not account for the properties of BEe Werefore provide a new
criterion for BT specification based on the conditional epyrmetric [18].

4.1. Efficient Computation of Subgenerators

Let us define statiof € rem(i) asO(1)-approximablawithin the subgeneratd (t) if the ra-
tio between the cost of estimating the departure rate fréok in (14) and the cost of generating
the aggregated state spac®id) under increasing populations. Thus, faDél)-approximable
station, (14) imposes a fixed computational overhead fonohefithe subgenerators. Let us de-
note this departure rate by

Nrem(i)
Hik(Npar(j)s Nrem(i)» tr) = Zl 7(N;j | Npar(j)s Nj < Nrem(iy» ti=1)i¢j(N}) Pjks (17)

nj=



/ Performance Evaluation 00 (2010) 1-22 11
such that from (14) it is

Mrem@i)k(Ni> Npariy> 1) = 2 ik(Npar(j)» N = Ni = Npariy, 1)

jerem(i)

Note thatO(1)-approximability is non-trivial, since a naive implemation of (14) leads to a
O(N) overhead instead dd(1). We first provide sufficient conditions for a station to ®€l)-
approximable.

Proposition 1. In a BT satisfying (11), all stations are(D)-approximablavithin all subgenera-
tors where they belong t@m(i) since the service rates admit the following recursive esgion

Hik(Npar(j)> Nrem(i)» 1) = ¥j(Mrem())Ujk(Mpar(j)s Nrem@) — L, 1) + (N} = Nrem(i)INparg)> ti-1)j (Nrem@i)) Pjik
with termination condition; k(Npar(j), 0, ti) = 0, and where

rem(i -1 V2
223:(()) ﬂ(nj, npar(j)»tl—l)

L .
Ty’ 70 Npa(y), t-1)

¥i(Nrem@p)) =

This recursive expression allows to compute all rates(N®) prior to defining the subgenerators
T and thus keeps the cost for their definition tiND).

Proof. We rewrite (17) as

nrem(i)*l
Hik(Npar(j)> Nrem@p)» 1) = Zl 7(NjINparg)s Nj < Nrem(y, t-1)j(N}) Pjk
nj=

+ 71(Nj = Nrem@i)|Nparg)» t-1)14j (Mremi)) Pjks

and the result follows immediately by observing that

Mrem() —1 Mrem(i)—1 7Z'(nj, Mpar(j)> tl’l)
% 7(NjIMparg)> Nj < Mremy, ti-1)uj(N}) Pjk = g Hi(i)Pix
o1 n=t Ty AN Npay), ti-a)
nrem(i)fl ﬂ(nj, npar(j), t'*l)
= ¥i(Mem)) Hi(N)Pix

rem(i -1 /
nj=1 22]:(()) ﬂ(nj, npar(j): tl—l)
= ¥ (Mrem(i))tj k(Npar(j)> Mhem() = 1, 1) (N}) Pjk-
[l

The above theorem shows that, for a BT satisfying (11) suah (t¥) holds, it is always
possible to define all subgeneratdrgt,) in O(N?). We now show that a BT satisfying (11)
always exists.

Proposition 2. There exist at least M BTs such that the corresponding BE tadisiss that are
O(1)-approximable in all subgenerators where they belongeta(i).

Proof. Consider a BT where there exists a random variaplthat acts as root node for all other
random variables, i.epar(i) = wfor 1 < i < M. Clearly, there exisM of such BTs depending
on the choice ofv = 1,..., M. It readily follows that, for each of these, (11) is alwayssfeed
becausgar(j) = par(i) = win all aggregated Markov processes. O
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The last result guarantees the existence of at lgaBfTs satisfying (11) and this allows an
efficient definition of the subgenerators by Proposition @éwver, the set of BTs satisfying (11)
often includes also other BTs in addition to thédeln fact, a BT which defines a BE where all
stations ar@(1)-approximable satisfies the following set of consti®int

M
€ =1, (18)

i=1

M
2. 6 =1, i=1,...,M; (29)

j=1
Pik&.w <€ji + €jw + ew,j> Ljpkw=21....Mi#]j#w, (20)

where the binary variables; € {0, 1} uniquely define the dependence structure of the BT as

1, if par(i) = j,
— 21
& {O, otherwise (21)

fori,j =1,..., M. The first two conditions guarantee that the BT is feasibidatt, constraint
(18) assures that there is a single root node. Note that ifdbeis selected among identical
stations the outcome is a random decision of the BLP solwste&d, (19) guarantees that each
random variable has a single parent node. The last condRi@ncharacterizes the class of BTs
where all stations ar®(1)-approximable. Note that,; does not appear in it since the constraint
is always satisfied i, = O, otherwisee,, = 1 implies trivially e,; = 0. These conditions
formalize (11), wherav = par(i), which enforces that a single conditional probability éeded
for approximation (14); this in turn assur@¢l)-approximability by Proposition 1. Note that the
destination variabl& ranges across, 1. ., M instead of{i, par(i)} because in some passage time
analysis problems, noticeably in response time distrilouéinalysis, the approximation requires
to detail also inner transitions withiem(i), see Section 5. Whenever such transitions are not
needed, one may instead limit to be either w = par(i).

The above characterization uniquely identifies the set of Bhere all stations ar®(1)-
approximable. The next subsection explains how to use threeatharacterization to select a BT
within this set that gives accurate approximation results.

4.2. Approximation Accuracy

Consider a set of weightg ; associated to the variableg that define th€&(1)-approximability
constraints such that the objective functibr= 3; ; wi j& j quantifies the reward of choosing a
specific BT for BE. We can express the problem of selectindpdst BT structure as the problem
of maximizing f; the challenge is to define a set of weights that may be reptathee of BE
approximation accuracy. Based on these approach, we yedstdin the BT by solving, a BLP
subject to theD(1)-approximability constraints and where the objectivedtion f quantifies the
relative merit of choosing a particular BT. Note that sindePHBs NP-hard in the general case,
approximate methods may be used for its solution on lardanees. We first discuss the critical
definition of the weightsv; ; in the BLP objective function. DefinE(n;, n;) to be themutual
information[18] of random variables; andn;, i.e.,

N N-n ( )
|.m) = 2, ), 7)) log s 20 (22)

o (mr(ng)
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A classic result obtained by Chow and Liu in [18] is thawif; = 1(n;, n;) then the BT with
maximum weightfnax = maxy;; ; wi ;& ; has equilibrium (8) which gives the closest approxi-
mation of the original distributiom(ny, Ny, ..., Ny). A Chow-Liu BT can be easily determined
by computing the maximum weight spanning tree defined owerctmplete graph with edges
weighted byw; j, which is computed i©(M? log M) by Kruskal’s algorithm. In the classic result
of Chow and Liu, distance from the optimal solution uses thiéli&ck-Leibler divergence [18].
For a probability distributioP(ny, ny, . .., ) and an approximation modef(ny, ny, ..., Nw),
this is defined as

P(n]_, No,..., nM)

_ = 23
Pa(ny, ng,...,nM)’ (23)

Z)(P“ Pa) = Z P(nl, nz,...,nM)Iog

(N1.n2,.....Nm)

which may be interpreted as the average surprise, in anniraon-theoretic sense, resulting
from comparing an empirical distribution with its approxition.

Based on the optimality result of Chow and Liu, one would ex@eChow-Liu BT to be
optimal also for queueing network approximation. Howeteis is not often the case, for in-
stance BT2 in Figure 3 is an example of Chow-Liu BT that is djesuboptimal compared to
the other BTs. Indeed, since passage time analysis with Bivies several approximations not
necessarily limited to the specification of the BT, it is nasg to assess the role of each of these
(and possibly their mutual interactions) in determining fimal approximation accuracy. The
interpretation we propose to explain the reduced effectigs of Chow-Liu BTs in BE is that
the effect of (8) at the level of the aggregated Markov preesss reflected mainly in the error
of (14) relatively to the transient version of (10), rathiearn at the level of the joint probability
distribution. That is, while Chow and Liu minimize the digence

D = D(r(ne, Ny, ..., ) Il TN 7(NilNpary)), (24)

our interpretation considers the following divergence eralevant for the accurate definition of
the subgenerators in BE

M
1)"9=Z Z o, D = D((Mi, Npary N)) 1 7(N)Npar ()T o). (25)

i=1 jerem(i)

where we consider the equilibrium distributions since wegtessumed in Section 3.3 to specify
equilibrium BTs only. This interpretation is clearly a silifipation, for example it ignores the
approximation error due to assuming that (10) holds also tiraasient regime, which is the
implicit assumption driving the definition of (14). Unfortately, the lack of analytic results
for transient analysis of queueing networks makes it hangetdy exactly the validity of such
interpretations, thus we limit to show in Section 6 the imsed accuracy of the BTs defined with
the proposed approach.

4.3. Greedy Selection Strategy

We are now in condition to propose a weighting scheme for glection of the BT that
drives the queueing network approximation in BE based o). (R&t us begin by defining the
joint entropyof a set ofV random variables

H(X1,...,xv) = =2 a(Xq, ..., xv) lognr(Xa, ..., Xv), (26)



/ Performance Evaluation 00 (2010) 1-22 14

Algorithm 2
input: number of queuels!
input: marginal distributiona(n;, nj) for all pair of stationsi j)

fori=1,..., M
for j=1,..., M
computew; j = H(nj|n;)
end
end

solve fpe = min 3; ; Wi j&,j subject to (18)-(20) and; j = H(njIn;).
define BT based os j values according to (21)
output: BT

Figure 4:Bayesian tree selection algorithm

which forV = 1 is the usual entropid(X) = — >, n(X) logn(x). We can write the Kullback-

Leibler divergenceD® as

7(Ni, Npary, N (Nparj))

DPe = 7(Ni, Npariy, Ni) 10 27
S Z ), 1108 (I P &)
(nlsnpar(l)sn])
which yields
P = Z (N, Npar(iy, Nj) 10971 (Ni, Npar(y, Nj) + Z (N, Npar(i)» M) 1097 (Mpar()
(ni,npar(i)’nj) (ni’npar(i),nj)
- Z 7T(I"Ii, npar(i), nj) |Og 7T(I"Ii, npar(i)) - Z 7T(I"Ii, npar(i), n,—) |Og ﬂ(nj, npar(,-)). (28)
(M, Npary-N;) (M, Npary-N;)

Since in the last three terms the logarithm is affected just §ubset of variables ofi{ Nparg), N;j),
we can sum the innetr(n;, Npay, Nj) terms on the other variables and rewrite the expression as

DP = —H (i, Npariy, Nj) = H(Mpar(j)) + H, Npar) + H (N}, Npar(y) (29)

where all terms in (28) are now interpreted as joint entrepi#/e can then observe that the
evaluation of this divergence would require a computationat for H(n;, nyar), n;) that grows
cubically with the population, hence approximations aredssl to stud;@ff in order to keep
the complexity quadratic.

We propose a BT selection strategy where we evaluate thet effeaddingj with parent
par(j) to the BT by assuming that the parent of previously adde@s@fixed. This is equivalent
to assigningj andpar(j) with a greedy algorithm that tries to perform the best deni$or the
current set of choices assuming that past decisions armalptiUnder this greedy approach,
H (i, Npariy, Nj) andH (i, npary) are unaffected by the next decisionoar(j), because the latter
entropy is fixed, while the former appears whengwgr> 0 and does not depend on the choice
of par(j). Therefore, it follows that the greedy decision affectlydhe difference

A(par(j)) = H(nj, Nparjy) — H(Mpar(j)- (30)

Thus, by minimizingA(par(j)) we obtain an approximate algorithm for minimization ©fe.
HoweverA(par(j)) is easily shown to be theonditional entropy

N N-n;
HNj M) = = X X 7(nj, Mpar(j)) 10g (N Npar(j)- (31)

;=0 Npar(j)=
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Based on this result, we propose to define the BT that drivegukueing network approximation
by the dependence tree thatnimizesthe sum of weightsv ; = H(n; | n;) subject to theD(1)-
approximability constraints, see the pseudo-code in EigurAn important aspect connected to
this definition is that the conditional entropy can be coragfficiently inO(N?) by (3), thus
this greedy approach is compatible with the computationstictargeted by BE. In this approach,
w; j is interpreted as the change in the diverge@ﬁ?if n; is added to the BT with variablg as
parent. Experimental results provided in Section 6 shoveattge improvement of approximation
accuracy of the conditional entropy selection comparetedhow-Liu approach.

5. Generalization of Bayesian Expansion

We now discuss the ability of BE to generalize to models witiomot satisfy some of the
assumptions taken in Section 2.

5.1. Tagged Job Approach and Response Time Distributioty8isa

Another standard approach for passage time analysispaties to the calculation of(t)
by (4), is the use of state spaces defined with the tagged joth §aces include an auxiliary
random variablekag, 1 < kg < M, which describes the current position of a test customer
that cycles into the network of queues [16]. In such moddis, équilibrium probability for
the underlying Markov process has therefore the fam, n,, ..., Nw, kiag). The tagged job
approach is useful to compute response times at the levabofidual queues (sojourn times)
and at the level of the network (cycle time) using passage &malysis. Cycle times are obtained
by initializing the process in the equilibrium state seenrmprrival by a job to a reference queue
f and then definingo as the set of states where the tagged job re-eftlridowing its departure
from a queue # f. Sojourn times have a similar initialization, iy is defined as the set of
states reached immediately after the tagged job lefves

BE can be readily generalized to support the tagged job agprby the approximation

M
n(Ng, N2, ..., N, Kiag) =~ Hln(nilnpar(i), kiag), (32)
=

such that each aggregated Markov process includes theaayxiairiablek.g that provides the
joint probability of observing the tagged job in a certairsiion while the active state in the
aggregated process is (Nparg))- This generalization increases moderately the stateesgiaes

of the aggregated processes by a factoiMof Nonetheless, this cannot be avoided, at least
without increasing approximation errors, because reitineof the kag variable is needed to
determine the rate of transition of the tagged job friagg € rem(i) into stations or par(i) for
each stater(, npar;)). Note also that the movements of the taggedydthin rem(i) that change
the kiag value should be accounted for in the generators; such ratesaasily computed with
an expression equivalent to (14) but defined using the gahgirobabilities of the aggregated
process for statiokag.

5.2. Scheduling Disciplines

Auxiliary random variables may also be needed to represgetrial details of scheduling
disciplines different from IS or PS. For example, in ordectanpute cycle times in a queueing
network with one or more FCFS stations, one needs to tradicékpthe relative position of the
tagged job during its residence time in a FCFS buffer. THeseguilibrium probability in these
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models takes the form(n, Ny, . . ., N, kiag, Kicts), where the buffer positiokicts, O < Kicfs < N,
is zero wherkgag is not a FCFS station. Similarly to (32), the auxiliary vék.ss should be
replicated in the state spaces of the aggregated Markoesses defined by BE.

Indeed, for models with FCFS stations the application of Bitld require a greater compu-
tational effort than for the IS/PS case, since the stateespize would be up tdl times larger.
However, this appears to be an intrinsic limitation commmnumerical techniques that evalu-
ate directly the Markov process underlying the queueingvoiit, rather than originating from
specific aspects of the BE approach. We expect similar igsussse also with other scheduling
disciplines different from FCFS depending on the range oifabdity of the auxiliary random
variables introduced by these disciplines.

5.3. Non-Product-Form Models

It appears possible to generalize the BE technique at leagire classes of non-product-
form models. While this is still an open subject for inveatign, a number of general consider-
ations can be already drawn on the feasibility of this extens

The product-form assumptions are used in BE approximagdolibows: (i) for the efficient
evaluation of the conditional entropies in the pseudo-dadeigure 4 by means of (3); (ii)
for the definition of the initial probability vector;(0), which we assume to be the equilibrium
distribution of Q; seen immediately after activation of a state into Igeset assuming that the
process is not stopped upon entering this set. For closetliprdorm models, when this eventis
associated to a job arrival or departure the distributigf) is known to be the equilibrium state
distributionzr of an equivalent model having a population with a job les§.[20

Extensions of BE to non-product-form models require thenitédn of suitable replacements
for the probabilities in (i) and (ii) . However, due to the kaof exact closed-form expressions
these quantities should be computed by solving the Markoegss underlying the queueing
network. Therefore, these additional computational csistaild be considered prior to starting
an analysis with BE.

Furthermore, non-product-form models should be distisiged into two classes. A first class
includes non-product-form networks which can be studieti wéasonable effort directly at the
Markov process level, such as queueing networks suppdRB8+RD blocking, limited forms of
state-dependence, or including queues with PH-type or M&Rice processes [7]. BE is ex-
pected to generalize to these models, although the maximlimgpulation that can be analyzed
could be smaller than for the product-form case on someriose& A second class is instead
formed by models for which the BE state space aggregationdasiill lead to extremely large
state spaces, also accounting for the auxiliary varialtes.instance, networks with multiple
gueues supporting BAS blocking are often intractable atMiagkov process level due to the
rapid combinatorial growth of precedence conditions foblaoking. Such models would be
probably difficult to study also using the BE approach.

6. Numerical Validation

This section reports experiments on random models and tadies of increasing complex-
ity that illustrate the accuracy of the BE approach to passige distribution analysis. BE is
compared with Markov and Chebyshev inequalities that aenaised in the literature for per-
centile estimation [17]. For a passage time me¥fibaving mearE[Y] and variance/ar[ Y],
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model | Cond. Ent. BT| Chow-Liu BT | Markovineq. | Chebyshev
metric| N M| X R X R X R X R
Acdt 5 4]1.2 3.0 15 4.0 30.1 30.0|20.1 20.0
Acgf |10 4| 0.9 1.8 0.8 3.7 29.8 295| 20.1 20.0
Apct 5 4|84 158 | 145 20.1 | 565.4 565.8| 79.0 78.7
Apet |10 4] 3.0 8.6 11.7 19.1 | 558.5 557.4/ 79.4 79.3

Table 2: Error analysis of 95th percentile estimation. Eipental results on random models
with N jobs andM queues (D = 1% error).X are inter-arrival timesR are network cycle times.

Markov inequality provides the bound

Fy(t) > 1- @ (33)

whereas Chebyshev inequality is given by [11]

Var[Y]
((—EV? (34)

Throughout this section, we consider two passage time osefXiis a random variable repre-
senting the job inter-arrival times at a reference statirgpresents network cycle times. Exact
values ofX andR are obtained using exact numerical methods for small andumedized mod-
els and estimated with long-run simulations (10 million géem) for large models.

Fy(t) >1-

6.1. Random Models of Tractable Size

Due to the high costs of exactly computing passage times menigal techniques, for the
random model evaluation we consider models with tractatsite space size. These models
haveM = 4 queuesN = {5,10} jobs, and random topology. With these parameters, the exact
evaluation of passage times in a single model requires leetvand 15 minutes on an Intel Core
Duo 216 GHz machine, whereas BE executes in a few seconds usingatotype MATLAB
implementation. Passage times are measured at the outpuboflomly-chosen station of the
network, both for inter-arrival times (random variat{g and cycle times (random variabi.

BE is executed using the equilibrium BT defined by the cooddi entropy method and for
comparison also with the Chow-Liu BT. BT selection by BLPeakio more than a few seconds
at the beginning of each run. We quantify accuracy error adgsroximationFy(t) using two
metrics:

+ the mean absolute relative ereys; of the 95th percentile position

F,%(0.95)- F{(0.95)
F;1(0.95)

pct =

(35)

 the mean absolute relative erbyy s of the mass corresponding to the 95th percentile

Fy(F;(0.95))- 0.95
0.95

Acar = (36)
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whereF1(0.95) is the exact value of the 95th percentileYof The two error metrics may be

interpreted graphically as the relative errors of the apipnation Fy(t) with respect to the exact
distributionFy(t) on the horizontal axisA.t) and on the vertical axis\¢qf). Since distributions
bend horizontally around the 95th percentile, a small podita mass errorAqq¢ is strongly
amplified in the corresponding percentile erfgg; which is therefore a challenging metric for
validation.

Table 2 gives results of the experiments on models with rantd@ologies and service rates.
Markov and Chebyshev inequalities offer poor accuracy witiors up to 557%. Markov in-
equality errors are enormous, yet also Chebyshev inegusliearly unsatisfactory with errors
up to 79%. Conversely, BE with the conditional entropy BTeoéfthe best average error. For the
Acqr metric, we see that the error of BE is always less th@f@3 The strictei\ .t metric shows
that BE has already good performance for small populafinr:(5), but accuracy increases as
the total population grows. This effect can be explaineddiyng that, for low population values,
the conditional probabilities in approximation (12) arergouted by summing a small number
of terms, hence estimation errors in a single term are heeefilected on the entire summation.
Furthermore, as the population grows, our reference mguebaches a Jackson network hence
gueues tend to be mutually independent and the error of (tR)espect to (10) decreases. We
also observe that BE based on Chow-Liu BTs performs effelgtias well, however the average
performance is significantly worse than for the conditicerattopy approach. Indeed there exist
some models where the Chow-Liu BT performs better than théitonal entropy BT, unfortu-
nately the lack of exact solutions for transient analysikesat difficult to gain more insights on
the underlying reasons.

With respect to computational times, in the experimentfiwt = 5 the mean time for
computation of a single point for the throughput with BE im$ and it grows to 2fhs for
N = 10; for response time these amm$and 2Ins respectively. Usually, at least some tens or
hundreds of points are needed for an accurate approximattipassage time distributions. This
provides good intuition on the high efficiency of the BE metlstompared to the several minutes
required for the exact evaluation of a single model by nuca¢techniques.

6.2. Case study 1: cyclic queueing network

Throughout the next subsections, we report case studiexddsed complexity that prove
that the BE technique can provide very good accuracy in nsodéh structured topologies.
Indeed, as shown in Table 2, there exist also cases whergihexdmation error exceeds 15%
(e.g., for cycle time analysis), however in all our expernimee observed BE accuracy to grow
systematically as the number of jobs in the network increase

We consider a cyclic network composed by = 4 queues having rateg = 1, u» = 2,
us = 3,14 = 4, and population ol = 5,10, 20 jobs. For this class of networks there exist several
exact and efficient analysis techniques [10, 12, 16, 5, 814p,thus BE is neither needed nor
recommended to analyze this class of models and we provisiexample just for illustration
purposes. We are here interested in studying the interahtime distribution of jobs observed
at the output of station 3. This can be formulated as a pasBageanalysis problem with initial
distributionzr(0) identical to the equilibrium distribution of a model Wi — 1 jobs relatively to
the states where queue 4 is busy; elsewhere the initial pilithas set to zero. For instance, the
probability inz(0) relatively to staten = (2, 1, 1, 1) is the same probability of state,@ 1, 0) in
a model with a job less; the initial probability for state 212, 0) is instead zero. The states with
nonzero probability identify the s& which is reached upon activation of a departure transition
from queue 3.
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(a) Case study 1: (b) Case study 2: topology with multiple loops
cyclic network

12 13

LN

6 5 4 11 14 16

3——2 8§——10

LT

77— 9

(c) Case study 3: complex network. See case descriptioréting probabilities.

Figure 5: Routing topologies used in the case studies. Dettiges indicate the subset of transi-
tions toA that are considered in the generalized passage time asadgsi Section 2.1.

On this model, the times for evaluation of a single point by@E Snsfor N = 5, 7msfor
N = 10, and 3@nsfor N = 20. Results foN = 5 are shown in Figure 6(a) proving the good
agreement between exact solution and BE approximatiordb@s¢he conditional entropy BT.
Small discrepancies are noted fe(t) > 0.7, however these differences disappear on models
with N = 10 andN = 20 (not shown in the figure) where BE further improves its aacy
Figure 6(a) also shows the inaccuracies of Markov and Chelwmequalities and provides
another case where the Chow-Liu BT yields worse results esatpto the conditional entropy
BT. The dependence structure of the BTs used in Figure 6¢ppisrted below.

par(-) structure

BT Ny No n3 Ny
Cond.Ent.| 4 | 4 | 4 | 4
Chow-Liu | 1 1 1 1

We also considers the same model discussed above in the base station 3 has, = 2
servers, thus its load-dependent ratg4dén) = 3 min(2 n). Results in Figure 6(b) show that
BE performance is quite insensitive to the presence of bgkndence rates and actually the
performance of the Chow-Liu BT is even improved. Note thatBT selection strategy returns
in this case the following BTs:
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(c) Case 2: topology with multiple loops (d) Case 3: complex network

Figure 6: Distribution of inter-arrival times{]) in experimental case studies

par(-) structure
BT n N Nz ong
Cond.Ent.| 4 | 4 | 4| 4
Chow-Liu | 2 | 2| 1] 1

6.3. Case study 2: topology with multiple loops

We now evaluate the performance of BE on a medium-scale meitlelM = 10 queues
having multiple loops between stations, a case that caratiiressed by exact analytic meth-
ods [19]. Service rates are setigo= 10—1i,i = 1,...,10; routing probabilities are shown in
the topology diagram in Figure 5(b). The time for evaluatidra single point with BE is Bs
for N = 25 and 9%s for N = 50. The integration step iat; = 0.0155. Results foN = 50
are qualitatively similar to the other cases and shown imfei@(c) in comparison with a long-
run simulation with 10 million samples. We do not observe sigyificant deviation between
approximation and exact results. Furthermore, this repoase where the Chow-Liu BT per-
forms equally well of the conditional entropy BT. The depence structure of the two BTs is
reported below.
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par(-) structure
BT Ny Ny N3 Ny Ns Ne nz Ng Ng Mo
Cond.Ent.| 9 1 919|919, 9]9]|]9]|29 9
Chow-Liu | 1| 8|8 |8|8|8|8] 1|8 8

6.4. Case study 3: complex network

This is a large-scale model that we have investigated toeptiog scalability of BE with
the model size. The population ¢ = 50 jobs which yields a prohibitively large state space
with 10 states that are reduced to only, 230 by BE. The model hasl = 16 stations, where
stations 1 and 16 are IS, stations 25 are PS. Stations are arranged according to the topology
shown in Figure 5(c), which represents an architecture cm@qg of four sub-networks which
receive jobs from the IS station 1. Service rates are aswsllg = 1, u» = 5, uz = 3.33,

M4 = 10,/15 = 21,“6 = 1.67,,[17 = 201,“8 = 1,,[19 = 1.25,,“10 = 5,,“11 = 1.67,/112 = 3.33,
t13 = 5,114 = 2.5, 471 = 10, andus = 1. Routing probabilities not specified in Figure 5(c) are
P12 = Pra = P17 = P11 = 0.25,p78 = 0.2, p7g = 0.8, p1112 = 0.1, p1113 = 0.2, p1o1 = 0.5,
P1o7 = 0.5, p1114 = 0.3, p1115 = 0.4. Station 7 is a multi-server station with = 5 servers.
Numerical results shown in Figure 6 confirm the effectiverefBE.

par(-) structure
BT L M M3 Ny N5 Ng Nz Ng Ng Mo N1 M2 M3 Na Mms M
Cond.Ent.| 12| 12| 12|12 |12 |12 |12 | 12| 12| 12 | 12 | 12 | 12| 12| 12 | 12
Chow-Liu | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7. Conclusion

We have presented Bayesian Expansion (BE), a numericabgippation algorithm for es-
timating passage time distributions in queueing networklet® a problem of growing interest
for IT service sizing. The technical innovations broughttbg BE approximation are several,
among which the main ones are: i) the idea of approximatinghaactable state space of a
gueueing model by means of a Bayesian tree; i) the derivati@ technique to define Bayesian
trees driven by the conditional entropy metric, which iswshdo be more effective in BE than
established methods used in machine learning [9]; iii) ffieient and accurate applications of
the above ideas to the passage time distribution analysgrimeing networks; iv) the applicabil-
ity of the methodology to networks that do not impose cycfitree-like topologies considered
in several works [10, 12, 16, 5, 8, 19, 14]. Numerical ressiitsw that BE typically provides
accurate results on random models and case studies.

Open challenges include: i) extension and assessment d@Ehapproximation on non-
product-form models (see Section 5); ii) extension of BEdbesluling disciplines other than
IS and PS, possibly the class of symmetric policies, anduetiain of the resulting accuracy;
iii) assessing BE applicability to multiclass networks,igrhinvolve a large number of random
variables in the joint probability density and therefore arherently more challenging to ap-
proximate; iv) a comparison with fluid techniques that haveven to be a valuable approach to
transient analysis [6].
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