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Abstract

We introduce Bayesian Expansion (BE), an approximate numerical technique for passage
time distribution analysis in queueing networks. BE uses a class of Bayesian networks to ap-
proximate the exact joint probability density of the model by a product of conditional marginal
probabilities that scales efficiently with the model size. We show that this naturally leads to
decomposing a queueing network into a set of Markov processes that jointly approximate the
dynamics of the model and from which passage times are easilycomputed.

Approximation accuracy of BE depends on the specific Bayesian network used to decompose
the joint probability density. Hence, we propose a selection algorithm based on the Kullback-
Leibler divergence to search for the Bayesian network that provides the most accurate results.
Random models and case studies of increasing complexity show the significant accuracy gain of
distribution estimates returned by BE compared to Markov and Chebyshev inequalities that are
frequently used for percentile estimation in queueing networks.
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1. Introduction

Passage time distribution analysis is a fundamental tool for computing percentiles of response
times and throughputs in queueing models. Performance metric percentiles are widely used in
specifying quality-of-service requirements and service level agreements for IT services [1]. Ex-
isting methods for passage time analysis in general networks focus on numerical approximation
and simulation because closed-form analytical expressions for passage time distributions exist
only in special cases [4, 14]. Simulation-based estimates apply to general models, but they re-
quire many samples and repeated experiments to estimate distributions accurately. This is a

Email address:g.casale@imperial.ac.uk (Giuliano Casale)



/ Performance Evaluation 00 (2010) 1–22 2

limiting factor in what-if analysis, sensitivity studies,and in sizing studies based on constrained
optimization that often require evaluating hundreds of thousands of possible system configura-
tions [1]. Analytical percentile bounds based on Markov or Chebyshev inequalities are usually
cheaper to evaluate than simulation [17], however they do not offer comparable accuracy for the
distribution body, while they can be effective for tail estimates [11]. Exact theoretical formulas
are accurate and computationally efficient [10, 12, 16, 5, 8,19, 14, 15], but they apply only to
special networks, often cyclic or tree-like topologies forwhich Laplace transform expressions of
response time distributions are available.

To address the above limitations we introduce Bayesian Expansion (BE), a new approxi-
mate method for passage time distribution analysis in queueing networks with finite state space.
The distinguishing feature of BE is that it approximates state probabilities driven by a class of
Bayesian networks [18]. Bayesian networks have been recently applied in measurement-driven
performance evaluation [23], however the present paper is (to the best of the author’s knowledge)
the first work that applies these models to the theoretical issues underlying queueing networks
rather than to inference and learning from data sets. We showthat a Bayesian network natu-
rally defines an approximation of both transient and equilibrium state probability densities of
a queueing network in terms of simpler marginal probabilities. This approximation has two
main features: first, it tackles state space explosions issues; next, it naturally defines a decom-
position of the queueing network into a set of aggregated models that can be used for passage
time analysis. The idea of decomposing a performance model into a set of Markov processes
has been considered in very few works in the literature [2, 7]; the fundamental innovation of
BE is to introduce a Bayesian network that strives to maximize prediction accuracy based on
information-theoretic techniques. This effectively approximates state probabilities and achieves
low computational costs for passage time analysis.

The remainder of this paper is organized as follows. After introducing required definitions in
Section 2, we describe BE in Section 3 and show that its accuracy can depend significantly on
the choice of the Bayesian network used to approximate the joint probability density. We then
develop in Section 4 a Bayesian network selection strategy based on the Kullback-Leibler diver-
gence. Application of the BE technique to general queueing networks is discussed in Section 5.
Finally, using case studies and random models of tractable size we show in Section 6 that BE
approximates passage time distributions with accuracy that is often very close to exact results
and significantly more accurate than Markov and Chebyshev inequalities that are widely used
for percentile estimation.

2. Background

For simplicity of exposition, we focus on a class of closed queueing models composed by a
set ofM stations connected with an arbitrary topology network, however the BE methodology
applies with minor changes also to other queueing networks with finite state space, e.g., an
open network of queues with finite buffers. The closed queueing network is assumed to be
populated by a finite set ofN jobs. Upon completion from queuei, a job is routed to queuej with
probabilitypi, j. We illustrate the methodology on models where stations serve jobs according to a
processor sharing (PS) or infinite server (IS) policy, we discuss generalization to other scheduling
disciplines in Section 5. Service times are assumed to be exponentially distributed, extension to
other service time distributions is also discussed in Section 5. We indicate withµi the mean
service rate of stationi; for load-dependent stations this is allowed to be a function µi(ni) of
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the number of jobsni currently in stationi. Special cases areµi(ni) = niµi(1), where the load-
dependent station is an infinite server, andµi(ni) = min(ci, ni)µi(1), which is a multi-server station
with ci ≥ 1 servers. Based on these assumptions, the Markov process underlying the queueing
network has state space

S =
{
n | n ≡ (n1, n2, . . . , nM),

∑M
i=1 ni = N, ni ≥ 0

}
(1)

and infinitesimal generatorQ specifying the rates of transition between pairs of states in S ×
S. Defineπ(n) ≡ π(n1, n2, . . . , nM) to be the joint probability density that characterizes the
equilibrium of the Markov process, and letπ = {π(n1, n2, . . . , nM)} be the equilibrium distribution
vector such thatπ = πQ, π1 = 1, where1 is a column vector of ones. The model enjoys the
product-form solution

π(n1, n2, . . . , nM) =
1

G(N)

M∏

i=1

βi(ni), n ∈ S, (2)

whereβi(ni) = 1/
∏ni

k=1 µi(k), andG(N) is a normalizing constant that can be computed efficiently
using the convolution algorithm [3]. Marginal distributions are also easily computed by

π(ni) = β(ni)
Gi(N − ni)

G(N)
, π(ni, n j) = β(ni)β(n j)

Gi, j(N − ni − n j)

G(N)
(3)

whereGi(N − ni) is the normalizing constant of a queueing network having station i removed
and a population ofN − ni jobs, and similarlyGi, j refers to a model with both stationsi and j
removed. From the properties of convolution it follows thatthe entire set of values in (3) can
be computed efficiently inO(N2) for fixed number of queues, beingN the total job population
which is the main driver of computational costs in queueing networks. This is relevant for the
application of (3) to BE discussed in Section 4.3.

2.1. Established Techniques for Passage Time DistributionAnalysis

Given a Markov process initialized according to a probability distributionα over a state
spaceΣ, passage time analysis studies the distributionF(t) of the time to first reach a subset of
statesΣ0 ⊂ Σ after the initial position. This problem models a number of common questions
that arise in queueing theory such as computing job inter-arrival time percentiles or determining
response time distributions. We here consider generalizedpassage time problems in which only
events due to activation of asubsetof rates of jump toΣ0 is considered in the analysis. This
allows to evaluate, for instance, inter-arrival times of jobs following a given route. In this case
F(t) is phase-type (PH-type) distributed with representation(α,T), whereT is obtained from
the infinitesimal generatorQ of the Markov process by setting to zero all off-diagonal rates in
the considered subset that jump to states inΣ0. We refer toT as asubgeneratorof the Markov
process, which is also called in the literature a PH-generator. For a PH-type distribution, the
cumulative distribution function is readily computed as

F(t) = 1− αeTt1,

whereeTt is the matrix exponential function applied toTt. Recall that the transient stateπ(t)
of an absorbing Markov process with subgeneratorT is computed by the Kolmogorov forward
equations as

π(t) = π(0)eTt.
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It is then easy to see that passage time distribution analysis is equivalent to computing

F(t) = 1− π(t)1, π(0) = α, (4)

hence it is a special case of transient analysis. From basic properties of the matrix exponential,
it is also

π(t) = lim
n→∞
π(0)eT∆t1eT∆t2 · · ·eT∆tn, (5)

where∆tl = tl − tl−1 = t/n, t0 = 0, andtn = t. Thus, for a sufficiently largen one may accurately
approximate the passage time solution by solving transientanalysis problems over a sequence of
small intervals. This approach is well-investigated in Markov process theory [21, 13], where it is
often exploited that for∆tl → 0 it is

eT∆tl ≈ I + T∆tl + o(∆tl
2).

Therefore, for small∆tl one may sequentially evaluate

π(tl) = π(tl−1)(I + T∆tl), l = 1, . . . , n, (6)

in order to approximately integrate the Kolmogorov forwardequations up to timetn. Alterna-
tively, one may use the uniformization technique on each interval∆tl to account for higher-order
terms in the expansion of the matrix exponential, thus achieving better accuracy at moderately
increased costs [3].

Finally, we observe that in queueing network models the matrix T is often prohibitively
large, since its order is the same of the infinitesimal generator of the underlying Markov process.
This order grows combinatorially with the number of queues and jobs in the network. Thus, the
above formulas can be applied directly for passage time analysis only on small queueing network
models. For our reference model with IS and PS servers, the order ofT is small with respect to
other types of queueing networks, nevertheless it is often hard to consider passage time problems
with more than a few tens of jobs. In the next section, we develop the BE technique which tackles
these limitations.

3. Bayesian Expansion

We now develop the proposed application of Bayesian networks to queueing network approx-
imation. A Bayesian network is a probabilistic model used tocharacterize conditional depen-
dencies between random variables. Given a set of random variablesn1, n2, . . . , nM, conditional
dependencies are expressed using a directed acyclic graph (DAG) such that each random variable
ni has one or more parent variablesnpar(i) = {n j , nk, . . .}, wherepar(i) mapsi into the indexes of
the parent variables forni . Thanks to the acyclic structure of the DAG, the joint equilibrium
distribution of a Bayesian network admits a product-form expression

π(n1, n2, . . . , nM) =
M∏

i=1
π(ni |npar(i)), (7)

whereπ(ni |npar(i)) is replaced byπ(ni) if ni is theroot nodeof the DAG for which it is convention-
ally assumedpar(i) = i. Bayesian networks are often used in machine learning to approximate
an empirical distributionπ(n1, n2, . . . , nM) that is too expensive to compute explicitly from a data
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Figure 1: Three possible Bayesian trees (BTs) for a joint probability densityπ(x1, x2, x3, x4)

set or too large to store in memory. The functionpar(·) fully characterizes the Bayesian network
and in the rest of the paper is referred to as itsdependence structure.

Bayesian networks are here applied to the approximation of aqueueing network equilibrium
distributionπ(n1, n2, . . . , nM) with the aim of addressing state space explosion issues. Wefocus
on a class of Bayesian networks with tree-like dependence structure, referred to as Bayesian
Trees (BTs), where all random variablesni have a single parent. A BT readily defines asecond-
order product approximation

π(n1, n2, . . . , nM) ≈
M∏

i=1
π(ni |npar(i)) =

M∏

i=1

π(ni, npar(i))

π(npar(i))
, π(npar(i)) =

∑N−npar(i)

ni=0 π(ni, npar(i)), (8)

where for the root node we defineπ(ni |npar(i)) = π(ni) =
∑N−ni

nj=0 π(n j, ni), for any j , i such that
par( j) = i. Approximation (8) is computed using the marginal probabilities π(ni, npar(i)) alone,
thus it is computationally efficient since a joint state distribution withNM values is approximated
using onlyMN2 marginal values. Techniques to define the dependence structure of the BN are
discussed later in Section 4. Figure 1 gives examples of BTs approximating a joint probability
densityπ(x1, x2, x3, x4). The dependence structure of the BTs is as follows

par(·) structure
BT x1 x2 x3 x4

a 3 3 3 3
b 4 1 1 4
c 1 1 4 1

Thus, e.g., the joint probability density is approximated by BTb as the second-order expression

π(x1, x2, x3, x4) ≈ π(x1|x4)π(x2|x1)π(x3|x1)π(x4). (9)

3.1. Bayesian Expansion

We initially consider a queueing network observed in steady-state with equilibrium distribu-
tion π(n1, n2, . . . , nM) and introduce Bayesian expansion (BE) by the following definition.

Definition 1 (Bayesian Expansion). A BT for the joint probability densityπ(n1, n2, . . . , nM) of
a queueing network defines aBayesian expansionof the model, which is a set of M aggregated
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Markov processes, one for each station in the network. The aggregated process for station i has
infinitesimal generator Qi defined on the state space

Si =
{
n | n ≡ (ni, npar(i), nrem(i)), nrem(i) = N − ni − npar(i)

}
,

where npar(i) is the parent variable of ni in the BT. The aggregated process of the root node of the
BT is defined to be identical to the aggregated Markov processof any of its child nodes.

The above definition states that the second-order product approximation (8) maps the Markov
process underlying a queueing network into a family of simpler Markov processes with state
space (ni , npar(i), nrem(i)) ≡ (ni, npar(i)), wherenrem(i) is dependenton the other variables. Each
aggregated process may be seen as a queueing network composed by stationi, stationpar(i),
and the aggregate serverrem(i) = {1, 2, . . . ,M} \ {i, par(i)} that describes the remainder of the
network. Note that therem(i) server is not necessarily a flow equivalent server since BE is later
applied to the transient case where the Chandy-Herzog-Woo theorem does not hold [3]. Note also
that BE differs from the methods in [2, 7] since it considers,thanks to the BT, justM aggregated
processes instead ofM2. The key property of the BE is that the state of any queue inrem(i) can
be estimated using a specialization of (8) as discussed in the next section.

3.2. Approximate Infinitesimal Generators
We now define the infinitesimal generatorsQi , i = 1, . . . ,M, of the aggregated Markov pro-

cesses generated by BE. These infinitesimal generators are fundamental for passage time distri-
bution analysis as described later in Section 3.3. Since theaggregated process for stationi has
state spaceSi , its underlying generatorQi is immediately defined by the ratesqi(n, n′) connect-
ing pairs of states (n, n′) ∈ Si × Si . The ratesqi(n, n′) are readily obtained by summing in each
staten the departure rates from stationsi, par(i), andrem(i) leading to staten′. The departure
rates from stationsi andpar(i) when they are busy are readily computed as service rates scaled
by routing probabilities. Conversely, the departure rate from rem(i) is approximated by the ag-
gregate throughput flowing out from therem(i) subnetwork into a given stationk = 1, . . . ,M.
Conditioning on staten = (ni , npar(i)), the aggregate rate of departure fromrem(i) to k may be
written as1

µrem(i),k(ni, npar(i)) =
∑

j∈rem(i)

nrem(i)∑
nj=1
π(n j | ni, npar(i))µ j(n j)p j,k (10)

where it is implicitlynrem(i) = N − ni − npar(i). The issue associated with (10) is that it cannot be
computed directly from the BE. This is becauseπ(n j | ni , npar(i)) involves three independent ran-
dom variables, but BE considers only second-order marginalprobabilities of the typeπ(ni, npar(i)).
To overcome this issue we introduce an approximation to estimate the departure rate fromrem(i).
We assume that whenp j,k > 0, j ∈ rem(i), the BT imposes at least one between

par( j) = i or par( j) = par(i) or par(par(i)) = j (11)

for all i = 1, . . . ,M, i , j , par(i). To justify the above conditions, let us observe first that then
when the rates (10) are considered in the global balance equations of the aggregated Markov pro-
cesses they define a summation over marginal probabilitiesπ(n j, ni, npar(i)) = π(n j | ni , npar(i))π(ni, npar(i)).

1This expression is exact at equilibrium for the class of product-form networks assumed in Section 2. For more
general models it may be considered as an approximation or reformulated with higher-order conditional probabilities
involving more than three random variables. In the latter case also (12) should be extended to approximate such proba-
bilities in the spirit of (8).
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Hence, if the departure rate ofj ∈ rem(i) is evaluated for some destinationk, (11) assures that
(8) can be applied to (10) in a computationally efficient manner as

π(n j, ni , npar(i)) ≈ π(n j | npar( j))π(ni, npar(i))

using a single conditional probability term2. This is obvious ifpar( j) = i or par( j) = par(i),
while for the third condition in (11) one needs first to apply Bayes formula toπ(npar(i) | n j) in
order to computeπ(n j | npar(i)) and then use the latter in place ofπ(n j | npar( j)). To avoid a complex
notation, we limit to describe the approximation based onπ(n j | npar( j)).

Based on the above discussion, if (11) holds the departure rate for jobs leavingrem(i) may
now be approximated as

µrem(i),k(ni , npar(i)) ≈
∑

j∈rem(i)

nrem(i)∑
nj=1
π(n j | npar( j), n j ≤ nrem(i))µ j(n j)p j,k, (12)

where

π(n j | npar( j), n j ≤ nrem(i)) =
π(n j, npar( j))∑nrem(i)

nj=0 π(n j, npar( j))
. (13)

Expression (13) leverages on our knowledge ofnrem(i) to exclude from the normalizing constant
originally used in the conditioning ofπ(n j | npar( j)) all eventsn j > nrem(i) which clearly cannot
occur sincej ∈ rem(i). This provides a tighter approximation of the departure rates compared to
normalizing over all possible values of then j random variable. More importantly, equation (12)
uses (13) to approximate the rates of the stationsrem(i) usingonly marginal probabilities that
are available in the BE which addresses the main limitation of (10). Summarizing, by assuming
to use a BT that satisfies (11) we are now able to define a set of approximate generators̃Qi based
on (12).

3.3. BT-based Passage Time Distribution Analysis

The application of the definitions given in the previous section to passage time analysis re-
quires to consider the transient state of the queueing network. Although BE extends in a straight-
forward way to transient joint densitiesπ(n1, n2, . . . , nM; t), i.e., by expressing the dependence on
the timet in each of the marginal probabilities in (8), these joint densities are not usually known
in advance, which makes it difficult to establish criteria for BT specification. From now on, we
therefore assume to define the BT based on the equilibrium distributionπ only.

For the sake of brevity, we also limit our discussion to statespaces of the type (1), however
the approach extends with minor changes also to related state spaces, such as those obtained by
extending (1) with the tagged job approach in order to determine response time distributions [16],
see Section 5.

Using the equilibrium BT, we model the passage times in the queueing network using a set of
non-homogeneous Markov processes with generatorsQ̃i(t) defined similarly to the generators̃Qi

introduced in Section 3.2. Let us assume that a passage time distribution is iteratively evaluated
over a discrete set of instantst0 = 0 < t1 < . . . < tn. As such, marginal probabilities at time

2For instance, ifpar( j) = w , i , j, then one would need an extra summation on all possible values of the random
variablenw which increases significantly computational costs for defining the aggregated generatorsQi .
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Algorithm 1
input: BT
input: initial probability distributionsπi (0), 1≤ i ≤ M
input: observation instantst0 = 0 < t1 < t2 < . . . < tn
input: reference stationf
for l = 1, . . . , n

define the subgeneratorsTi (tl ), 1≤ i ≤ M, from πi (tl−1) using (14) and (15)
determineπi (tl ), 1 ≤ i ≤ M, using (16) or uniformization
determineF(tl ) = 1− π f (tl )1

end
output: F(tl ) for l = 1, . . . , n

Figure 2:Algorithm for BT-based Passage Time Distribution Analysis

tl−1 have been all computed when starting the evaluation at timetl > tl−1. Defining the non-
homogeneous generators at each of these instants involves two steps. First, we extend (12) to
include the dependence on the current instant of timetl as follows

µrem(i),k(ni , npar(i), tl) ≈
∑

j∈rem(i)

nrem(i)∑
nj=1
π(n j | npar( j), n j ≤ nrem(i), tl−1)µ j(n j)p j,k, (14)

where all marginal probabilities are available from the solution for tl−1 < tl and

π(n j | npar( j), n j ≤ nrem(i), tl−1) =
π(n j, npar( j), tl−1)

∑nrem(i)

nj=0 π(n j, npar( j), tl−1)
(15)

beingπ(n j, npar( j), tl−1) the estimated marginal joint density of queuesj andpar( j) at timetl−1.
Next, we define the non-homogeneousgeneratorsQ̃i(tl), 1≤ i ≤ M, by replacingµrem(i),k(ni, npar(i))
in Q̃i with µrem(i),k(ni , npar(i), tl). Note that a similar approach may be used to extend (10) and
specify a set of non-homogeneous generatorsQi(t) that do not use approximation (14); thus,
Q̃i(t) may be seen as an approximation of such generators.

Finally, let the subgenerator̃Ti(tl) be obtained from̃Qi(tl) by setting to zero the off-diagonal
jump rates of interest to states in setΣ0. We generalize (6) to the non-homogeneous case as

πi(tl) = πi(tl−1)(I + T̃i(tl)∆tl), (16)

for i = 1, . . . ,M andl = 1, . . . , n, where∆tl = tl − tl−1. For example, given a reference stationf ,
1 ≤ f ≤ M, used to compute throughput or response time distributions, (16) allows to compute
the probability mass absorbed by states inΣ0 at time tl as F(tl) = 1 − π f (tl)1. Alternatively,
one may choose to average the probability mass absorbed overtime in all aggregated Markov
processes; numerical results of this approach are usually slightly worse than the ones obtained
with the reference station technique, however averaging may be conceptually easier to define
when studying passage times that involve the joint output ofseveral stations. A pseudo-code
summarizing the proposed passage time analysis algorithm is given in Figure 2. Similarly to
standard passage time analysis described in Section 2.1, the uniformization technique can be
used in place of (16) to obtain better accuracy at increased costs.

3.4. Illustrating Example
The example in this subsection illustrates a typical case where selecting different BTs to

define the BE returns very different accuracy levels in the passage time distribution estimates.
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Figure 3: BE approximation for a multi-tier application model

This suggests that the accuracy of BE is conditional on the selection of a proper BT. To address
this issue, we develop in the next section a greedy strategy that selects a BT to be used in BE
with the aim of maximizing accuracy while satisfying computational cost constraints. When
applied to the example in this section, such technique is able to select the BT that returns the
most accurate approximation.

We consider a queueing network model of a multi-tier application. Figure 3(a) illustrates the
model, which includes three load dependent stations, modeling think times (tt), network delays
(nd), and a quad-core front server (f s). The front server is connected to a database back-end
(db) modeled by a single server queue. Service rates areµtt = 0.1s−1, µnd = 1s−1, µdb = 30s−1,
andµ f s = 20s−1. Routing probabilities at the departure from the front server arepf s,nd = 0.8,
pf s,db = 0.2; the job population isN = 15.

par(·) structure
BT nf s nnd ndb ntt

1 nd nd nd nd
2 tt tt tt tt
3 nd nd f s nd

Table 1: Dependence structures in Figure 3. Rows indicate the parent of each variable in a BT.

The distributionF(t) of a passage time variablet (in seconds) is observed at the output of
the nd station for all jobs and estimated using time instant differing for a step of∆tl = 18ms.
Figure 3(b) compares approximate and exact results for the different choices of the BT given in
Table 1 using the same tabular representation ofpar(·) introduced in Section 3. BT1 and BT2
are simple trees with a single level below the root; BT3 has instead two levels and a structure
similar to the routing matrix of the network. Time for evaluation of a single point by BE is close
to constant and on average equal to 158msin all three cases. For BT1 the differences in the exact
and approximate solutions are small, with minor deviationsobserved in approximation of the
tail; these arise due to small errors in capturing the exact decay rate of the passage time density.
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Conversely, although the dependence structure of BT2 is similar to BT1, a different choice of
the root leads in this example to significantly underestimate the passage time distribution. The
vertical gap of BT2 from the exact distribution is more than 10% of the probability mass, thus
inevitably leading to significant deviations in percentileestimates on the horizontal axis. Specif-
ically, the relative error in estimation of the 95th percentiles is 6.72% for BT1, 17.65% for BT2,
and 50.42% for BT3, thus supporting our claim that the BT selection is of paramount importance
for the approximation accuracy of BE. This motivates the investigation in the next section.

4. Bayesian Tree Specification

Stemming from the observation in Section 3.4 that differentBTs provide different approxi-
mation accuracies for passage time distribution analysis,we focus in this section on the definition
of a BT that can provide accurate results at the lowest possible computational costs. Specifically,
the stated goal of this section is to explain how to specify a BT in order to satisfy the following
set of requirements:

• the approximate subgeneratorsT̃i(t) can be defined inO(N2) as the total populationN
grows. This is the minimum achievable complexity for a second-order product approxi-
mation. It is also a stronger requirement than asking for an aggregate state space that grows
asO(N2) since the former includes the cost of computing the approximate transition rates
in (14).

• in order to maximize accuracy, the approximate subgeneratorsT̃i(t) should be as close as
possible, with respect to some distance metric, to the subgeneratorsTi(t) that are defined
from the aggregated Markov processesQi(t).

The main findings and contributions of this section to achieve such goals are the following:

• we obtain in Section 4.1 a recursive expression to efficiently compute the approximate
transition rates in (14); based on this result, we argue in Section 4.1 that it is always
possible to define all subgeneratorsT̃i(t) in O(N2);

• we then develop an automatic BT specification technique based on binary linear program-
ming (BLP). The BLP expresses computational cost requirements as linear binary con-
straints (Section 4.1), whereas it models approximation accuracy using a binary linear
objective function (Section 4.2);

• we argue in Section 4.3 that canonical BLP objective functions used in the literature for
BT specification [9] do not account for the properties of BE. We therefore provide a new
criterion for BT specification based on the conditional entropy metric [18].

4.1. Efficient Computation of Subgenerators
Let us define stationj ∈ rem(i) asO(1)-approximablewithin the subgenerator̃Ti(tl) if the ra-

tio between the cost of estimating the departure rate fromj to k in (14) and the cost of generating
the aggregated state space isO(1) under increasing populations. Thus, for aO(1)-approximable
station, (14) imposes a fixed computational overhead for defining the subgenerators. Let us de-
note this departure rate by

µ j,k(npar( j), nrem(i), tl) =
nrem(i)∑
nj=1
π(n j | npar( j), n j ≤ nrem(i), tl−1)µ j(n j)p j,k, (17)
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such that from (14) it is

µrem(i),k(ni , npar(i), tl) =
∑

j∈rem(i)
µ j,k(npar( j),N − ni − npar(i), tl).

Note thatO(1)-approximability is non-trivial, since a naive implementation of (14) leads to a
O(N) overhead instead ofO(1). We first provide sufficient conditions for a station to beO(1)-
approximable.

Proposition 1. In a BT satisfying (11), all stations are O(1)-approximablewithin all subgenera-
tors where they belong torem(i) since the service rates admit the following recursive expression

µ j,k(npar( j), nrem(i), tl) = γ j(nrem(i))µ j,k(npar( j), nrem(i) − 1, tl)+ π(n j = nrem(i)|npar(j), tl−1)µ j(nrem(i))p j,k

with termination conditionµ j,k(npar( j), 0, tl) = 0, and where

γ j(nrem(i)) =

∑nrem(i)−1
n′j=0 π(n′j, npar( j), tl−1)
∑nrem(i)

n′j=0 π(n
′
j, npar( j), tl−1)

.

This recursive expression allows to compute all rates in O(N2) prior to defining the subgenerators
T̃i and thus keeps the cost for their definition to O(N2).

Proof. We rewrite (17) as

µ j,k(npar( j), nrem(i), tl) =
nrem(i)−1∑

nj=1
π(n j |npar(j), n j ≤ nrem(i), tl−1)µ j(n j)p j,k

+ π(n j = nrem(i)|npar(j), tl−1)µ j(nrem(i))p j,k,

and the result follows immediately by observing that

nrem(i)−1∑
nj=1

π(n j |npar(j), n j ≤ nrem(i), tl−1)µ j(n j)p j,k =

nrem(i)−1∑
nj=1

π(n j, npar(j), tl−1)
∑nrem(i)

n′j=0 π(n
′
j, npar( j), tl−1)

µ j(n j)p j,k

= γ j(nrem(i))
nrem(i)−1∑

nj=1

π(n j, npar(j), tl−1)
∑nrem(i)−1

n′j=0 π(n′j, npar( j), tl−1)
µ j(n j)p j,k

= γ j(nrem(i))µ j,k(npar( j), nrem(i) − 1, tl)µ j(n j)p j,k.

The above theorem shows that, for a BT satisfying (11) such that (14) holds, it is always
possible to define all subgeneratorsT̃i(tk) in O(N2). We now show that a BT satisfying (11)
always exists.

Proposition 2. There exist at least M BTs such that the corresponding BE has stations that are
O(1)-approximable in all subgenerators where they belong torem(i).

Proof. Consider a BT where there exists a random variablenw that acts as root node for all other
random variables, i.e.,par(i) = w for 1 ≤ i ≤ M. Clearly, there existM of such BTs depending
on the choice ofw = 1, . . . ,M. It readily follows that, for each of these, (11) is always satisfied
becausepar( j) = par(i) = w in all aggregated Markov processes.
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The last result guarantees the existence of at leastM BTs satisfying (11) and this allows an
efficient definition of the subgenerators by Proposition 1. However, the set of BTs satisfying (11)
often includes also other BTs in addition to theseM. In fact, a BT which defines a BE where all
stations areO(1)-approximable satisfies the following set of constraints

M∑
i=1

ei,i =1, (18)

M∑
j=1

ei, j =1, i = 1, . . . ,M; (19)

p j,kei,w ≤ej,i + ej,w + ew, j, i, j, k,w = 1, . . . ,M; i , j , w; (20)

where the binary variablesei, j ∈ {0, 1} uniquely define the dependence structure of the BT as

ei, j =


1, if par(i) = j,

0, otherwise.
(21)

for i, j = 1, . . . ,M. The first two conditions guarantee that the BT is feasible. In fact, constraint
(18) assures that there is a single root node. Note that if theroot is selected among identical
stations the outcome is a random decision of the BLP solver. Instead, (19) guarantees that each
random variable has a single parent node. The last condition(20) characterizes the class of BTs
where all stations areO(1)-approximable. Note thatew,i does not appear in it since the constraint
is always satisfied ifei,w = 0, otherwiseei,w = 1 implies trivially ew,i = 0. These conditions
formalize (11), wherew ≡ par(i), which enforces that a single conditional probability is needed
for approximation (14); this in turn assuresO(1)-approximability by Proposition 1. Note that the
destination variablek ranges across 1, . . . ,M instead of{i, par(i)} because in some passage time
analysis problems, noticeably in response time distribution analysis, the approximation requires
to detail also inner transitions withinrem(i), see Section 5. Whenever such transitions are not
needed, one may instead limit to be eitheri or w ≡ par(i).

The above characterization uniquely identifies the set of BTs where all stations areO(1)-
approximable. The next subsection explains how to use the above characterization to select a BT
within this set that gives accurate approximation results.

4.2. Approximation Accuracy

Consider a set of weightswi, j associated to the variablesei, j that define theO(1)-approximability
constraints such that the objective functionf =

∑
i, j wi, jei, j quantifies the reward of choosing a

specific BT for BE. We can express the problem of selecting thebest BT structure as the problem
of maximizing f ; the challenge is to define a set of weights that may be representative of BE
approximation accuracy. Based on these approach, we readily obtain the BT by solving, a BLP
subject to theO(1)-approximability constraints and where the objective function f quantifies the
relative merit of choosing a particular BT. Note that since BLP is NP-hard in the general case,
approximate methods may be used for its solution on large instances. We first discuss the critical
definition of the weightswi, j in the BLP objective function. DefineI (ni , n j) to be themutual
information[18] of random variablesni andn j , i.e.,

I (ni, n j) =
N∑

ni=0

N−ni∑

nj=0

π(ni, n j) log
π(ni, n j)

π(ni)π(n j)
≥ 0. (22)
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A classic result obtained by Chow and Liu in [18] is that ifwi, j = I (ni, n j) then the BT with
maximum weightfmax = max

∑
i, j wi, jei, j has equilibrium (8) which gives the closest approxi-

mation of the original distributionπ(n1, n2, . . . , nM). A Chow-Liu BT can be easily determined
by computing the maximum weight spanning tree defined over the complete graph with edges
weighted bywi, j , which is computed inO(M2 log M) by Kruskal’s algorithm. In the classic result
of Chow and Liu, distance from the optimal solution uses the Kullback-Leibler divergence [18].
For a probability distributionP(n1, n2, . . . , nM) and an approximation modelPa(n1, n2, . . . , nM),
this is defined as

D(P ||Pa) =
∑

(n1,n2,...,nM)

P(n1, n2, . . . , nM) log
P(n1, n2, . . . , nM)
Pa(n1, n2, . . . , nM)

, (23)

which may be interpreted as the average surprise, in an information-theoretic sense, resulting
from comparing an empirical distribution with its approximation.

Based on the optimality result of Chow and Liu, one would expect a Chow-Liu BT to be
optimal also for queueing network approximation. However,this is not often the case, for in-
stance BT2 in Figure 3 is an example of Chow-Liu BT that is clearly suboptimal compared to
the other BTs. Indeed, since passage time analysis with BE involves several approximations not
necessarily limited to the specification of the BT, it is not easy to assess the role of each of these
(and possibly their mutual interactions) in determining the final approximation accuracy. The
interpretation we propose to explain the reduced effectiveness of Chow-Liu BTs in BE is that
the effect of (8) at the level of the aggregated Markov processes is reflected mainly in the error
of (14) relatively to the transient version of (10), rather than at the level of the joint probability
distribution. That is, while Chow and Liu minimize the divergence

Dcl
= D(π(n1, n2, . . . , nM) ||

∏M
i=1 π(ni |npar(i))), (24)

our interpretation considers the following divergence more relevant for the accurate definition of
the subgenerators in BE

Dbe
=

M∑

i=1

∑

j∈rem(i)

Dbe
i, j , Dbe

i, j = D(π(ni, npar(i), n j) || π(n j|npar( j))π(ni, npar(i))), (25)

where we consider the equilibrium distributions since we have assumed in Section 3.3 to specify
equilibrium BTs only. This interpretation is clearly a simplification, for example it ignores the
approximation error due to assuming that (10) holds also in atransient regime, which is the
implicit assumption driving the definition of (14). Unfortunately, the lack of analytic results
for transient analysis of queueing networks makes it hard toverify exactly the validity of such
interpretations, thus we limit to show in Section 6 the increased accuracy of the BTs defined with
the proposed approach.

4.3. Greedy Selection Strategy

We are now in condition to propose a weighting scheme for the selection of the BT that
drives the queueing network approximation in BE based on (25). Let us begin by defining the
joint entropyof a set ofV random variables

H(x1, . . . , xV) = −
∑
x
π(x1, . . . , xV) logπ(x1, . . . , xV), (26)
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Algorithm 2
input: number of queuesM
input: marginal distributionsπ(ni , nj ) for all pair of stations (i, j)
for i = 1, . . . ,M

for j = 1, . . . ,M
computewi, j = H(nj |ni )

end
end
solve fbe = min

∑
i, j wi, jei, j subject to (18)-(20) andwi, j = H(nj |ni ).

define BT based onei, j values according to (21)
output: BT

Figure 4:Bayesian tree selection algorithm

which for V = 1 is the usual entropyH(x) = −
∑

x π(x) logπ(x). We can write the Kullback-
Leibler divergenceDbe

i, j as

Dbe
i, j =

∑

(ni ,npar(i),nj)

π(ni, npar(i), n j) log
π(ni, npar(i), n j)π(npar( j))

π(ni, npar(i))π(n j, npar( j))
(27)

which yields

Dbe
i, j =

∑

(ni ,npar(i),nj )

π(ni, npar(i), n j) logπ(ni, npar(i), n j) +
∑

(ni ,npar(i),nj)

π(ni, npar(i), n j) logπ(npar( j))

−
∑

(ni ,npar(i),nj)

π(ni, npar(i), n j) logπ(ni, npar(i)) −
∑

(ni ,npar(i),nj )

π(ni, npar(i), n j) logπ(n j, npar( j)). (28)

Since in the last three terms the logarithm is affected just by a subset of variables of (ni , npar(i), n j),
we can sum the innerπ(ni, npar(i), n j) terms on the other variables and rewrite the expression as

Dbe
i, j = −H(ni, npar(i), n j) − H(npar( j)) + H(ni, npar(i)) + H(n j, npar( j)), (29)

where all terms in (28) are now interpreted as joint entropies. We can then observe that the
evaluation of this divergence would require a computational cost forH(ni, npar(i), n j) that grows
cubically with the population, hence approximations are needed to studyDbe

i, j in order to keep
the complexity quadratic.

We propose a BT selection strategy where we evaluate the effect of adding j with parent
par( j) to the BT by assuming that the parent of previously added nodes is fixed. This is equivalent
to assigningj andpar( j) with a greedy algorithm that tries to perform the best decision for the
current set of choices assuming that past decisions are optimal. Under this greedy approach,
H(ni , npar(i), n j) andH(ni, npar(i)) are unaffected by the next decision onpar( j), because the latter
entropy is fixed, while the former appears wheneverp j,i > 0 and does not depend on the choice
of par( j). Therefore, it follows that the greedy decision affects only the difference

∆(par( j)) = H(n j, npar( j)) − H(npar( j)). (30)

Thus, by minimizing∆(par( j)) we obtain an approximate algorithm for minimization ofDbe.
However,∆(par( j)) is easily shown to be theconditional entropy

H(n j | npar( j)) = −
N∑

nj=0

N−nj∑
npar( j)=0

π(n j, npar( j)) logπ(n j |npar( j)). (31)
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Based on this result, we propose to define the BT that drives the queueing network approximation
by the dependence tree thatminimizesthe sum of weightswi, j = H(n j | ni) subject to theO(1)-
approximability constraints, see the pseudo-code in Figure 4. An important aspect connected to
this definition is that the conditional entropy can be computed efficiently inO(N2) by (3), thus
this greedy approach is compatible with the computational costs targeted by BE. In this approach,
wi, j is interpreted as the change in the divergenceDbe

i, j if n j is added to the BT with variableni as
parent. Experimental results provided in Section 6 show thelarge improvement of approximation
accuracy of the conditional entropy selection compared to the Chow-Liu approach.

5. Generalization of Bayesian Expansion

We now discuss the ability of BE to generalize to models whichdo not satisfy some of the
assumptions taken in Section 2.

5.1. Tagged Job Approach and Response Time Distribution Analysis

Another standard approach for passage time analysis, alternative to the calculation ofF(t)
by (4), is the use of state spaces defined with the tagged job. Such spaces include an auxiliary
random variablektag, 1 ≤ ktag ≤ M, which describes the current position of a test customer
that cycles into the network of queues [16]. In such models, the equilibrium probability for
the underlying Markov process has therefore the formπ(n1, n2, . . . , nM, ktag). The tagged job
approach is useful to compute response times at the level of individual queues (sojourn times)
and at the level of the network (cycle time) using passage time analysis. Cycle times are obtained
by initializing the process in the equilibrium state seen upon arrival by a job to a reference queue
f and then definingΣ0 as the set of states where the tagged job re-entersf following its departure
from a queuei , f . Sojourn times have a similar initialization, butΣ0 is defined as the set of
states reached immediately after the tagged job leavesf .

BE can be readily generalized to support the tagged job approach by the approximation

π(n1, n2, . . . , nM, ktag) ≈
M∏

i=1
π(ni |npar(i), ktag), (32)

such that each aggregated Markov process includes the auxiliary variablektag that provides the
joint probability of observing the tagged job in a certain position while the active state in the
aggregated process is (ni , npar(i)). This generalization increases moderately the state space sizes
of the aggregated processes by a factor ofM. Nonetheless, this cannot be avoided, at least
without increasing approximation errors, because replication of thektag variable is needed to
determine the rate of transition of the tagged job fromktag ∈ rem(i) into stationsi or par(i) for
each state (ni , npar(i)). Note also that the movements of the tagged jobwithin rem(i) that change
the ktag value should be accounted for in the generators; such rates are easily computed with
an expression equivalent to (14) but defined using the transient probabilities of the aggregated
process for stationktag.

5.2. Scheduling Disciplines

Auxiliary random variables may also be needed to represent internal details of scheduling
disciplines different from IS or PS. For example, in order tocompute cycle times in a queueing
network with one or more FCFS stations, one needs to track explicitly the relative position of the
tagged job during its residence time in a FCFS buffer. Thus, the equilibrium probability in these



/ Performance Evaluation 00 (2010) 1–22 16

models takes the formπ(n1, n2, . . . , nM, ktag, kf c f s), where the buffer positionkf c f s, 0≤ kf c f s ≤ N,
is zero whenktag is not a FCFS station. Similarly to (32), the auxiliary variable kf c f s should be
replicated in the state spaces of the aggregated Markov processes defined by BE.

Indeed, for models with FCFS stations the application of BE would require a greater compu-
tational effort than for the IS/PS case, since the state space size would be up toN times larger.
However, this appears to be an intrinsic limitation common to numerical techniques that evalu-
ate directly the Markov process underlying the queueing network, rather than originating from
specific aspects of the BE approach. We expect similar issuesto arise also with other scheduling
disciplines different from FCFS depending on the range of variability of the auxiliary random
variables introduced by these disciplines.

5.3. Non-Product-Form Models

It appears possible to generalize the BE technique at least to some classes of non-product-
form models. While this is still an open subject for investigation, a number of general consider-
ations can be already drawn on the feasibility of this extension.

The product-form assumptions are used in BE approximation as follows: (i) for the efficient
evaluation of the conditional entropies in the pseudo-codein Figure 4 by means of (3); (ii)
for the definition of the initial probability vectorπi(0), which we assume to be the equilibrium
distribution ofQi seen immediately after activation of a state into theΣ0 set assuming that the
process is not stopped upon entering this set. For closed product-form models, when this event is
associated to a job arrival or departure the distributionπi(0) is known to be the equilibrium state
distributionπ of an equivalent model having a population with a job less [20].

Extensions of BE to non-product-form models require the definition of suitable replacements
for the probabilities in (i) and (ii) . However, due to the lack of exact closed-form expressions
these quantities should be computed by solving the Markov process underlying the queueing
network. Therefore, these additional computational costsshould be considered prior to starting
an analysis with BE.

Furthermore, non-product-formmodels should be distinguished into two classes. A first class
includes non-product-form networks which can be studied with reasonable effort directly at the
Markov process level, such as queueing networks supportingRS-RD blocking, limited forms of
state-dependence, or including queues with PH-type or MAP service processes [7]. BE is ex-
pected to generalize to these models, although the maximum job population that can be analyzed
could be smaller than for the product-form case on some instances. A second class is instead
formed by models for which the BE state space aggregation would still lead to extremely large
state spaces, also accounting for the auxiliary variables.For instance, networks with multiple
queues supporting BAS blocking are often intractable at theMarkov process level due to the
rapid combinatorial growth of precedence conditions for unblocking. Such models would be
probably difficult to study also using the BE approach.

6. Numerical Validation

This section reports experiments on random models and case studies of increasing complex-
ity that illustrate the accuracy of the BE approach to passage time distribution analysis. BE is
compared with Markov and Chebyshev inequalities that are often used in the literature for per-
centile estimation [17]. For a passage time metricY having meanE[Y] and varianceVar[Y],
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model Cond. Ent. BT Chow-Liu BT Markov ineq. Chebyshev
metric N M X R X R X R X R
∆cd f 5 4 1.2 3.0 1.5 4.0 30.1 30.0 20.1 20.0
∆cd f 10 4 0.9 1.8 0.8 3.7 29.8 29.5 20.1 20.0
∆pct 5 4 8.4 15.8 14.5 20.1 565.4 565.8 79.0 78.7
∆pct 10 4 3.0 8.6 11.7 19.1 558.5 557.4 79.4 79.3

Table 2: Error analysis of 95th percentile estimation. Experimental results on random models
with N jobs andM queues (1.0 ≡ 1% error).X are inter-arrival times,Rare network cycle times.

Markov inequality provides the bound

FY(t) ≥ 1−
E[Y]

t
(33)

whereas Chebyshev inequality is given by [11]

FY(t) ≥ 1−
Var[Y]

(t − E[Y])2
. (34)

Throughout this section, we consider two passage time metrics: X is a random variable repre-
senting the job inter-arrival times at a reference station,R represents network cycle times. Exact
values ofX andRare obtained using exact numerical methods for small and medium-sized mod-
els and estimated with long-run simulations (10 million samples) for large models.

6.1. Random Models of Tractable Size

Due to the high costs of exactly computing passage times by numerical techniques, for the
random model evaluation we consider models with tractable state space size. These models
haveM = 4 queues,N = {5, 10} jobs, and random topology. With these parameters, the exact
evaluation of passage times in a single model requires between 5 and 15 minutes on an Intel Core
Duo 2.16 GHz machine, whereas BE executes in a few seconds using ourprototype MATLAB
implementation. Passage times are measured at the output ofa randomly-chosen station of the
network, both for inter-arrival times (random variableX) and cycle times (random variableR).
BE is executed using the equilibrium BT defined by the conditional entropy method and for
comparison also with the Chow-Liu BT. BT selection by BLP takes no more than a few seconds
at the beginning of each run. We quantify accuracy error of anapproximationF̃Y(t) using two
metrics:

• the mean absolute relative error∆pct of the 95th percentile position

∆pct =

∣∣∣∣∣∣∣
F̃−1

Y (0.95)− F−1
Y (0.95)

F−1
Y (0.95)

∣∣∣∣∣∣∣
(35)

• the mean absolute relative error∆cd f of the mass corresponding to the 95th percentile

∆cd f =

∣∣∣∣∣∣∣
F̃Y(F−1

Y (0.95))− 0.95

0.95

∣∣∣∣∣∣∣
(36)
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whereF−1
Y (0.95) is the exact value of the 95th percentile ofY. The two error metrics may be

interpreted graphically as the relative errors of the approximationF̃Y(t) with respect to the exact
distributionFY(t) on the horizontal axis (∆pct) and on the vertical axis (∆cd f). Since distributions
bend horizontally around the 95th percentile, a small probability mass error∆cd f is strongly
amplified in the corresponding percentile error∆pct which is therefore a challenging metric for
validation.

Table 2 gives results of the experiments on models with random topologies and service rates.
Markov and Chebyshev inequalities offer poor accuracy witherrors up to 557%. Markov in-
equality errors are enormous, yet also Chebyshev inequality is clearly unsatisfactory with errors
up to 79%. Conversely, BE with the conditional entropy BT offers the best average error. For the
∆cd f metric, we see that the error of BE is always less than 3.0%. The stricter∆pct metric shows
that BE has already good performance for small population (N = 5), but accuracy increases as
the total population grows. This effect can be explained by noting that, for low population values,
the conditional probabilities in approximation (12) are computed by summing a small number
of terms, hence estimation errors in a single term are heavily reflected on the entire summation.
Furthermore, as the population grows, our reference model approaches a Jackson network hence
queues tend to be mutually independent and the error of (12) with respect to (10) decreases. We
also observe that BE based on Chow-Liu BTs performs effectively as well, however the average
performance is significantly worse than for the conditionalentropy approach. Indeed there exist
some models where the Chow-Liu BT performs better than the conditional entropy BT, unfortu-
nately the lack of exact solutions for transient analysis makes it difficult to gain more insights on
the underlying reasons.

With respect to computational times, in the experiments with N = 5 the mean time for
computation of a single point for the throughput with BE is 6ms, and it grows to 20ms for
N = 10; for response time these are 6msand 21ms, respectively. Usually, at least some tens or
hundreds of points are needed for an accurate approximationof passage time distributions. This
provides good intuition on the high efficiency of the BE method compared to the several minutes
required for the exact evaluation of a single model by numerical techniques.

6.2. Case study 1: cyclic queueing network
Throughout the next subsections, we report case studies of increased complexity that prove

that the BE technique can provide very good accuracy in models with structured topologies.
Indeed, as shown in Table 2, there exist also cases where the approximation error exceeds 15%
(e.g., for cycle time analysis), however in all our experiment we observed BE accuracy to grow
systematically as the number of jobs in the network increases.

We consider a cyclic network composed byM = 4 queues having ratesµ1 = 1, µ2 = 2,
µ3 = 3,µ4 = 4, and population ofN = 5, 10, 20 jobs. For this class of networks there exist several
exact and efficient analysis techniques [10, 12, 16, 5, 8, 19,14], thus BE is neither needed nor
recommended to analyze this class of models and we provide this example just for illustration
purposes. We are here interested in studying the inter-arrival time distribution of jobs observed
at the output of station 3. This can be formulated as a passagetime analysis problem with initial
distributionπ(0) identical to the equilibrium distribution of a model with N − 1 jobs relatively to
the states where queue 4 is busy; elsewhere the initial probability is set to zero. For instance, the
probability inπ(0) relatively to staten = (2, 1, 1, 1) is the same probability of state (2, 1, 1, 0) in
a model with a job less; the initial probability for state (1, 2, 2, 0) is instead zero. The states with
nonzero probability identify the setΣ0 which is reached upon activation of a departure transition
from queue 3.
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(a) Case study 1:
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(b) Case study 2: topology with multiple loops
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(c) Case study 3: complex network. See case description for routing probabilities.

Figure 5: Routing topologies used in the case studies. Dotted edges indicate the subset of transi-
tions toΛ0 that are considered in the generalized passage time analysis, see Section 2.1.

On this model, the times for evaluation of a single point by BEare 5msfor N = 5, 7msfor
N = 10, and 30ms for N = 20. Results forN = 5 are shown in Figure 6(a) proving the good
agreement between exact solution and BE approximation based on the conditional entropy BT.
Small discrepancies are noted forF(t) > 0.7, however these differences disappear on models
with N = 10 andN = 20 (not shown in the figure) where BE further improves its accuracy.
Figure 6(a) also shows the inaccuracies of Markov and Chebyshev inequalities and provides
another case where the Chow-Liu BT yields worse results compared to the conditional entropy
BT. The dependence structure of the BTs used in Figure 6(b) isreported below.

par(·) structure
BT n1 n2 n3 n4

Cond. Ent. 4 4 4 4
Chow-Liu 1 1 1 1

We also considers the same model discussed above in the case where station 3 hasc2 = 2
servers, thus its load-dependent rate isµ3(n) = 3 min(2, n). Results in Figure 6(b) show that
BE performance is quite insensitive to the presence of load-dependence rates and actually the
performance of the Chow-Liu BT is even improved. Note that the BT selection strategy returns
in this case the following BTs:
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(a) Case 1: load-independent cyclic model
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(b) Case 1: load-dependent cyclic model
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(c) Case 2: topology with multiple loops
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(d) Case 3: complex network

Figure 6: Distribution of inter-arrival times (X) in experimental case studies

par(·) structure
BT n1 n2 n3 n4

Cond. Ent. 4 4 4 4
Chow-Liu 2 2 1 1

6.3. Case study 2: topology with multiple loops

We now evaluate the performance of BE on a medium-scale modelwith M = 10 queues
having multiple loops between stations, a case that cannot be addressed by exact analytic meth-
ods [19]. Service rates are set toµi = 10− i, i = 1, . . . , 10; routing probabilities are shown in
the topology diagram in Figure 5(b). The time for evaluationof a single point with BE is 2.5s
for N = 25 and 9.6s for N = 50. The integration step is∆tl = 0.0155. Results forN = 50
are qualitatively similar to the other cases and shown in Figure 6(c) in comparison with a long-
run simulation with 10 million samples. We do not observe anysignificant deviation between
approximation and exact results. Furthermore, this reports a case where the Chow-Liu BT per-
forms equally well of the conditional entropy BT. The dependence structure of the two BTs is
reported below.
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par(·) structure
BT n1 n2 n3 n4 n5 n6 n7 n8 n9 n10

Cond. Ent. 9 9 9 9 9 9 9 9 9 9
Chow-Liu 1 8 8 8 8 8 8 1 8 8

6.4. Case study 3: complex network

This is a large-scale model that we have investigated to prove the scalability of BE with
the model size. The population isN = 50 jobs which yields a prohibitively large state space
with 1014 states that are reduced to only 13, 270 by BE. The model hasM = 16 stations, where
stations 1 and 16 are IS, stations 2− 15 are PS. Stations are arranged according to the topology
shown in Figure 5(c), which represents an architecture composed of four sub-networks which
receive jobs from the IS station 1. Service rates are as follows µ1 = 1, µ2 = 5, µ3 = 3.33,
µ4 = 10, µ5 = 2, µ6 = 1.67, µ7 = 20, µ8 = 1, µ9 = 1.25, µ10 = 5, µ11 = 1.67, µ12 = 3.33,
µ13 = 5, µ14 = 2.5, µ−1

= 10, andµ16 = 1. Routing probabilities not specified in Figure 5(c) are
p1,2 = p1,4 = p1,7 = p1,11 = 0.25, p7,8 = 0.2, p7,9 = 0.8, p11,12 = 0.1, p11,13 = 0.2, p10,1 = 0.5,
p10,7 = 0.5, p11,14 = 0.3, p11,15 = 0.4. Station 7 is a multi-server station withc7 = 5 servers.
Numerical results shown in Figure 6 confirm the effectiveness of BE.

par(·) structure
BT n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13 n14 n15 n16

Cond. Ent. 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12
Chow-Liu 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7. Conclusion

We have presented Bayesian Expansion (BE), a numerical approximation algorithm for es-
timating passage time distributions in queueing network models, a problem of growing interest
for IT service sizing. The technical innovations brought bythe BE approximation are several,
among which the main ones are: i) the idea of approximating anintractable state space of a
queueing model by means of a Bayesian tree; ii) the derivation of a technique to define Bayesian
trees driven by the conditional entropy metric, which is shown to be more effective in BE than
established methods used in machine learning [9]; iii) the efficient and accurate applications of
the above ideas to the passage time distribution analyses inqueueing networks; iv) the applicabil-
ity of the methodology to networks that do not impose cyclic of tree-like topologies considered
in several works [10, 12, 16, 5, 8, 19, 14]. Numerical resultsshow that BE typically provides
accurate results on random models and case studies.

Open challenges include: i) extension and assessment of theBE approximation on non-
product-form models (see Section 5); ii) extension of BE to scheduling disciplines other than
IS and PS, possibly the class of symmetric policies, and evaluation of the resulting accuracy;
iii) assessing BE applicability to multiclass networks, which involve a large number of random
variables in the joint probability density and therefore are inherently more challenging to ap-
proximate; iv) a comparison with fluid techniques that have shown to be a valuable approach to
transient analysis [6].
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