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Institute of Theoretical Physics, Faculty of Mathematics and Physics,
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Abstract

Recently, a computational technique for ab initio calculation of the inter-atomic and inter-

molecular non-radiative decay processes has been developed [1]. It combines the Fano formalism

with the Green’s function method known as the algebraic diagrammatic construction. The problem

of normalization of continuum wave functions stemming from the use of the Gaussian basis sets is

solved by using the Stieltjes imaging technique. In the present paper, the methodology is extended

in order to describe the inter-atomic decay of excited doubly ionized states of clusters. The new

computational scheme is applied to compute the inter-atomic decay rates of doubly ionized states

formed by Auger relaxation of core vacancies in NeAr and MgNe van der Waals clusters.
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I. INTRODUCTION

Core ionization of an atom leads to Auger decay in which the vacancy is filled by one of

the valence electrons and another valence electron is ejected to the continuum. On the other

hand, inner-valence ionization of isolated atoms does not lead to decay by electron emission

because of energetic constraints. In 1997, Cederbaum et al. [2] discovered a non-radiative

decay mechanism characteristic of inner-valence vacancies in weakly bound clusters. It

turns out that in clusters such an ionization can initiate a process called inter-atomic or

inter-molecular Coulombic decay (ICD). In this process, the inner-valence vacancy is filled

by an outer-valence electron and the excess energy is transferred to a neighboring species

from which another electron is emitted. The ICD process is often interpreted as a transfer

of virtual photon between the two cluster units. Unlike the Auger decay which is essentially

intra-atomic, ICD is of inter-atomic nature and thus is strongly affected by the environment.

Furthermore, the charge separation in the ICD final states usually leads to fragmentation

of the cluster (Coulombic explosion). The theoretical predictions [2] were first confirmed

experimentally by Marburger et al. [3] who studied the ICD process in Ne clusters. Jahnke et

al. [4] provided very clear experimental proof for ICD in 2s-ionized Ne dimers using electron-

ion-ion coincidence spectroscopy in which the kinetic energy of the ICD electron and the

total kinetic energy release (KER) between two Ne+ ions were measured in coincidence.

Another inter-atomic decay phenomenon, electron-transfer-mediated decay (ETMD), was

later described by Zobeley et al. [5]. In ETMD, the initial vacancy is filled by an electron

from a neighboring species. The secondary electron is ejected from the same or another

neighboring species. Hence, the ETMD final states are characterized by the initially ionized

atom being neutral at the end of the process. Consequences of ICD and related effects are of

general relevance, in particular for understanding the multiple ionization and fragmentation

of clusters upon exposure to high-energy radiation.

Rühl and co-workers investigated the fragmentation of argon clusters following their 2p-

shell ionization and clearly demonstrated the relevance of triple ionization processes [6]. An

efficient mechanism for triple ionization of clusters following the absorption of a single x-ray

photon, based on the ICD process, was later proposed by Santra and Cederbaum [7]. Let

us consider the specific example of the neon dimer. For a neon atom Kelly [8] calculated

that almost 30% of all dications produced in Auger decay of Ne+(1s−1) are highly excited,
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possessing at least one hole in the 2s shell. This finding is in a good agreement with the

measurement of Mehlhorn et al. [9] as well as with the more recent experimental study of

Kádár et al. [10]. Still, the triple ionization threshold of a single neon atom is energetically

too high for the autoionization of those states to be possible. In neon dimer, however, the

possibility of the charge separation over both cluster subunits lowers the triple ionization

threshold significantly and inter-atomic processes like ICD can occur – the 2s vacancy is

filled by one of the now five 2p electrons of the atom which has undergone Auger decay

and another electron is ejected from the 2p shell of the neighboring atom. The resulting

trication then undergoes fragmentation. Santra and Cederbaum [7] not only showed that

such a process is energetically possible but also proved that it is very efficient. Utilizing the

CAP-CI (configuration interaction with complex absorbing potential) technique [11] they

calculated a decay lifetime of about 80 fs for the one-site inner-valence excited states of

the (Ne2)
2+ dication. As in the case of singly ionized clusters other related processes such

as ETMD can occur as well. The high efficiency and general relevance of the processes

stimulated extensive experimental research. ICD from the Auger final states of a 2p vacancy

in argon was unambiguously identified by Morishita et al. in argon dimers [12] and in ArKr

[13] and more recently ICD in Ne dimer following the Auger decay of Ne(1s−1) is being

successfully studied [14–16].

No doubt, for a thorough understanding of the processes under consideration and for

the theoretical simulation of measurable quantities such as the spectra of ICD electrons

and the kinetic-energy release spectra of the ionic fragments, detailed knowledge of the

relevant decay widths as a function of cluster geometry is essential. Averbukh and Ceder-

baum [1] developed an accurate and computationally efficient method for calculating the

ICD decay widths of singly ionized clusters. It is based on the size-consistent and fast-

convergent Green’s function method known as algebraic diagrammatic construction (ADC)

in combination with the Fano resonance formalism and Stieltjes imaging technique. The

method proved to be superior to the Wigner-Weisskopf method [17] since effects like orbital

relaxation, intra-atomic correlation, and channel coupling are fully taken into account. Fur-

thermore, size-consistency (i.e., energy separability with respect to dissociation of a large

system into multiple non-interacting fragments) and compactness of the matrices to diag-

onalize resulting from comparatively small explicit configuration space [18, 19] makes the

ADC-based approach applicable even to large atomic or molecular clusters, for which alter-
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native methods such as CAP-CI [20, 21] are not suitable. Still, in applications of the present

method to extended systems attention has to paid to the fact that size-consistency in the

dissociation limit need not necessarily ensure the proper size-intensive or size-extensive scal-

ing of physical quantities. In contrast with order-by-order expansions, advanced Green’s

function methods such as ADC, which involve infinite partial summations of the diagram-

matic perturbation series, may break another essential requirement for the correct scaling

of physical quantities which is usually reffered to as charge consistency. It has been shown

[22, 23] that an improper truncation in the many-body expansion of the propagator under

consideration can yield a violation of the exact number of particles in the corresponding

one-particle density.

The goal of the present work is to extend the ADC-based method to describe the inter-

atomic decay of excited doubly ionized states of clusters. The theoretical aspects of the

computational scheme are described in the next section. In Sec. III we report on the cal-

culations of ICD and ETMD decay widths of excited states formed by Auger relaxation of

core vacancies in NeAr and MgNe. The most important conclusions are summarized in Sec.

IV.

II. THE METHOD

A. Fano formalism

In order to calculate the non-radiative decay widths of excited doubly ionized states of

clusters we utilize the general approach introduced by Fano [24] and adapted by Howat et

al. [25] to the specific case of Auger decay. The basic assumption is that at some energy E

close to the energy Eres of the decaying state (resonance) the exact continuum wave function

has the following “bound state in the continuum” character,

|Ψα,E〉 = aα(E)|Φ〉 +
Nc∑

β=1

∫
Cβ,α(E, ǫ)|χβ,ǫ〉dǫ (α = 1, . . . , Nc) (1)

with Nc being the number of open decay channels β and Eβ are the corresponding threshold

energies, Eβ < E. In the present application the discrete state |Φ〉 corresponds to the initial

excited doubly ionized state with both holes located on the same cluster subunit while the

decay channels β are triply ionized states characterized by specific three holes and the spin
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state. The final states of an inter-atomic decay satisfy further condition that the three holes

are distributed over more that one constituent of the cluster. The continuum wave functions

are assumed to diagonalize the Hamiltonian,

〈χβ′,ǫ′|H|χβ,ǫ〉 = (Eβ + ǫ)δβ′,βδ(Eβ′ + ǫ′ − Eβ − ǫ), (2)

where H is the full Hamiltonian of the system. The orthogonality of the continuum to the

discrete state is not required, 〈Φ|χβ,ǫ〉 6= 0. This makes the Fano theory very flexible with

respect to approximating the discrete and continuum wave functions.

Inserting the Fano ansatz (1) into the Schrödinger equation (H − E)|Ψα,E〉 = 0 yields

(EΦ − E)aα(E) +

Nc∑
β=1

∫
Mβ(E, ǫ)Cβ,α(E, ǫ)dǫ = 0 (3)

aα(E)M∗
β(E, ǫ) + (Eβ + ǫ − E)Cβ,α(E, ǫ) = 0 (β = 1, . . . , Nc).

We have introduced the discrete state energy EΦ = 〈Φ|H|Φ〉 and the discrete state-

continuum coupling matrix element Mβ(E, ǫ) = 〈Φ|H−E|χβ,ǫ〉. The shape of the coefficient

aα(E) describing the dilution of the discrete state |Φ〉 throughout a band of continuum states

is obtained by solving the system (3) (for detailed derivation see Refs. [24, 25]):

|aα(E)|2 =
Γα(E)/2π

(E − Eres)2 + Γ(E)2/4
. (4)

This allows the interpretation of the expression

Γ(E) =
Nc∑
β=1

Γβ(E) =
Nc∑

β=1

2π|Mβ(E, E − Eβ)|2 (5)

as the (energy-dependent) resonance width. The on-shell, energy-independent quantity is

obtained as Γloc = Γ(Eres), where Eres stands for the resonance energy

Eres = EΦ +
Nc∑
β=1

P

∫
|Mβ(E, ǫ)|2

E − Eβ − ǫ
dǫ. (6)

Eres can often be well approximated by the discrete state energy, Eres ≈ EΦ.

B. Algebraic diagrammatic construction of the particle-particle propagator

In order to apply the approach described above to calculation of the lifetimes of doubly

ionized states the discrete state and continuum wave functions, |Φ〉 and |χβ,ǫ〉, are needed.
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In the framework of many-body Green’s functions techniques it is the particle-particle (pp)

propagator derived from the two-particle Green’s function that contains the information (ex-

citation energies, transition moments) about doubly ionized states of an N -particle system.

The pp-propagator is defined as the limit [26, 27]

Π(t, t′) = lim
t1,t2→t

t′
1

,t′
2
→t′

iG(t1, t2; t
′
1, t

′
2) (7)

where the two-particle Green’s function is

Grs,r′s′(t1, t2; t
′
1, t

′
2) = −〈ΨN

0 |T̂ cr(t1)cs(t2)c
†
s′(t

′
2)c

†
r′(t

′
1)|Ψ

N
0 〉. (8)

Here, |ΨN
0 〉 is the exact ground state of the N -particle system, r, s label the states of a

suitable one-particle basis (usually the Hartree-Fock orbitals), cr(t) denote the field operators

in Heisenberg representation, and T̂ is the Wick’s time ordering operator. Assuming a time-

independent Hamiltonian, the Fourier transform of the pp-propagator can be introduced,

Π(ω) =

∫
eiω(t−t′)Π(t, t′)d(t − t′) = ΠI(ω) − ΠII(ω). (9)

The two parts ΠI(ω) and ΠII(ω) are associated with the double attachment (N +2 particles)

and double removal (N−2 particles) problem, respectively, and can be treated independently.

In the following we will focus on ΠII(ω) which is relevant to doubly ionized systems.

Useful approximation for the pp-propagator was developed by Schirmer and Barth [27]

using the so-called algebraic diagrammatic construction (ADC) technique. ADC [28–30] is

based on a specific resummation of the perturbation series for the considered quantity and

allows derivation of a set of systematic approximation schemes (ADC(n) schemes) which

are complete through order n of perturbation theory (PT) and in addition contain infinite

partial summations of the diagrammatic perturbation series. The starting point of the ADC

approach is the observation that the exact (N − 2)-particle part ΠII(ω) can be written in

the general algebraic form

ΠII(ω) = f †(ω1 − K − C)−1f (10)

where C is referred to as effective interaction matrix, K is the diagonal matrix of zeroth-

order double-ionization energies, and f is the matrix of modified transition amplitudes. The

matrices operate on the space of all (N − 2)-particle configurations |φN−2
J 〉 obtained by the

application of the physical excitation operators (ci, c†a) onto the Hartree-Fock (HF) ground
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state |ΦN
0 〉. The configurations may be classified as two-hole (2h; |ΦN−2

i,j 〉 = cicj|Φ
N
0 〉),

three-hole-one-particle (3h1p; |ΦN−2
a,i,j,k〉 = c†acicjck|Φ

N
0 〉) configurations, etc.

An essential feature of the ADC approximations is the fact that the size of the required

explicit configuration space is limited for a given order n. For example, the zeroth and first

order scheme is formulated in the space of 2h configurations only while both 2h and 3h1p

configurations are required for the second and third order scheme. In general, at each even

order n = 2µ the next higher class of configurations [(µ+2)h−µp] comes explicitly into play.

Another notable advantage of the ADC approach is that the effective interaction matrix C

is hermitian.

The explicit formulae for the effective Hamiltonian K + C for the extended[50] second-

order approximation of the pp-propagator [2p-GF/ADC(2)x] used in the present work can

be found in Ref. [27]. Within this scheme the initial (discrete) and the final (continuum)

states of the decay needed for the Fano theory are obtained as eigenvectors of the effective

Hamiltonian expressed in configuration subspaces which will be specified below. The corre-

sponding eigenvalues approximate the double-ionization energies. At the 2p-GF/ADC(2)x

level the energies of the main (2h) states of the (N − 2)-particle system are exact through

the second order of PT while the energies of the satellite (3h1p) states are accurate through

the first order. For comparison, in the usual wave function approach such as configuration

interaction, in order to obtain the double-ionization energies correctly through the second

order of PT the 4h2p configurations for the ionic states and the 2h2p configurations for

the N -particle ground state have to be included explicitly into the expansion [27]. This

demonstrates an essential property of the ADC approach: Although the explicit space of

the ADC(2) equations is restricted to the ionic 2h and 3h1p configurations, both the effects

of higher ionic configurations and of neutral ground state correlation are taken into account

by the use of the effective interaction matrix C. Its elements are no longer first-order

expressions in the two-particle interaction but rather include higher-order terms.

C. Initial and final states of the decay process in the framework of 2p-

GF/ADC(2)x

In this subsection we describe how the bound (|Φ〉) and the continuum (|χβ,ǫ〉) components

of the (N − 2)-electron wave function (1) can be expanded in terms of the 2h and 3h1p
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configurations spanning the configuration space of the 2p-GF/ADC(2)x scheme. The general

strategy is to sort the configurations into those corresponding to the possible final states

of the inter-atomic decay and those contributing to the expansion of the bound component

|Φ〉. The final states of the decay are characterized by three vacancies (“holes”) and a single

electron in the continuum (“particle”) and the corresponding configurations are, therefore, to

be found in the 3h1p excitation class[51]. The separation of the 3h1p configurations into the

initial and final states expansions can be based on energy considerations, provided we have

a good approximation of the discrete state energy EΦ at hand prior to the calculation. The

3h1p configurations corresponding to the open decay channels originate from the (N − 3)-

electron 3h configurations which are lower in energy than the decaying state,

E
(N−3)
i,j,k = 〈Φ

(N−3)
i,j,k |H|Φ

(N−3)
i,j,k 〉 < EΦ, |Φ

(N−3)
i,j,k 〉 = cicjck|Φ

N
0 〉. (11)

Thus, it is possible to obtain the 2p-GF/ADC(2)x approximation for the bound component

|Φ〉 by restricting the configuration space to those excitations which satisfy the appropriate

energy criterion (do not correspond to open channels),

|Φ
(N−2)
J 〉 = ĈJ |Φ

N
0 〉,

{ĈJ} ≡ {cicj , i < j; c†acicjck, i < j < k, E
(N−3)
i,j,k > EΦ}. (12)

Although the above approach leads in principle to an appropriate bound state, the need

of a priori knowledge of the energy expectation value EΦ as well as the energies of the 3h

states E
(N−3)
i,j,k represents a serious difficulty. The energy EΦ is a result of the ADC calculation

succeeding the configurations selection and, therefore, has to be somehow approximated at

the selection stage. Moreover, the 3h energies as given by the Eq. (11) are only the lowest

order approximations to the true triply ionized states energies. Due to those uncertainties in

the involved energies, the scheme (12) can lead to a wrong selection whenever the initial state

lies closely to one or more triple-ionization thresholds. Such a situation is rather common

for the inter-atomic decay processes which typically lead to the production of low energy

electrons.

In the present paper, with respect to the drawbacks of the aforementioned scheme, we

follow an alternative strategy proposed in Ref. [1], which is based on the spatial rather than

on the energetic characteristics of the 2h and 3h1p configurations. Consider a heteronuclear

weakly bound cluster A++B, where A++ is the initially doubly ionized subunit and B is
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neutral at the beginning of the process. Let us further suppose that the considered excited

state of A++ can decay by one of the inter-atomic decay mechanisms but cannot decay

non-radiatively as long as it is isolated. Then, the final states of the inter-atomic decay

will be characterized by three vacancies, one or more residing on the cluster subunit B.

Consequently, in order to avoid open channels in the initial state expansion, one can restrict

the 3h1p configurations in the 2p-GF/ADC(2)x expansion to those with all the holes residing

on the cluster subunit A,

|Φ
(N−2)
J 〉 = ĈJ |Φ

N
0 〉,

{ĈJ} ≡ {cjcj , i < j; c†acicjck, i < j < k, ϕi,j,k ∈ A}. (13)

Here, ϕi ∈ A stands for an occupied molecular spin-orbital of the neutral cluster localized

on the subunit A. This way, the intra-atomic relaxation and correlation effects inside the

subunit A are taken into account, whereas any kind of inter-atomic decay cannot be described

due to the restriction imposed on the holes. When the 2p-GF/ADC(2)x Hamiltonian K+C

is diagonalized in the configuration subspace defined by Eq. (13), the bound component

|Φ〉 can be identified as the eigenvector with the largest overlap with the 2h configuration

corresponding to the initial two vacancies.

The two approaches to the problem of selection of 3h1p configurations contributing to

the initial state 2p-GF/ADC(2)x expansion are not exactly equivalent. The major difference

is that the scheme (13) rejects all 3h1p configurations with one or more holes residing

outside the subunit A and therefore cannot describe any inter-atomic correlation in the initial

state. However, such 3h1p configurations are coupled to the 2h configuration describing the

initial two vacancies on the subunit A much weaker than the configurations included by the

scheme (13) and their effect on the bound component |Φ〉 can be neglected. A more serious

limitation of the spatial selection scheme is its inapplicability to symmetric systems, such

as homonuclear diatomics, where the molecular orbitals are delocalized over two or more

cluster subunits due to symmetry requirements (such as σg,u orbitals in Ne2). Adaptation of

the method to symmetric systems for the case of ICD of inner-valence singly ionized states

has been discussed in Ref. [31]. The problem proves to be significantly more complicated in

the case of inter-atomic decay of doubly ionized clusters and will be addressed in a future

publication.

Once the ADC approximation for the bound component |Φ〉 is acquired, we need to
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construct appropriate approximation of the continuum components |χβ,ǫ〉 describing the

possible final states of the inter-atomic decay. In the present approach this is done via a

separate 2p-GF/ADC(2)x calculation in the configuration space spanned by all 3h1p config-

urations which originate from the (N−3)-electron 3h configurations with energy expectation

value lower than EΦ, supplemented by all 2h configurations which couple with them. Even

though EΦ is known at this point of the calculation, the above discussion regarding the

uncertainties in evaluation of the condition (11) still holds due to the approximate character

of the lowest-order energies E
(N−3)
i,j,k . However, the resulting total decay widths prove to be

rather insensitive to the selection of 3h1p configurations included in the final states ADC.

Thus, in order to improve the correlation in the continuum and convergence of the Stieltjes

algorithm discussed in the following subsection, it is better to include all the configura-

tions originating from the 3h states which are energetically close to EΦ, even though they

might correspond to closed channels. The fact that the Fano formalism does not require

the orthogonality of the bound and the continuum components allows to include even some

configurations which were already used in the bound component expansion. When the con-

figuration space is constructed, the approximate continuum components |χβ,ǫ〉 are identified

as the 2p-GF/ADC(2)x eigenstates of 3h1p character:

|χβ,ǫ〉 ≈ |Ψ3h1p
q 〉 =

∑
J

Yq,J |Φ
(N−2)
J 〉, 1 −

∑
[J ]=3h1p

|Yq,J |
2 ≪ 1. (14)

D. Application of the Stieltjes imaging technique to the calculation of decay

widths

Despite the ability of 2p-GF/ADC(2)x to produce 3h1p-like wave functions in the con-

tinuum region of the spectrum, there still exist major difficulties in associating the 2p-

GF/ADC(2)x eigenstates with the continuum states of the Fano theory. These difficulties

stem from the fact that the ADC(n) calculations, and ab initio quantum chemical calcu-

lations in general, are routinely performed using L2 bases, usually the Gaussian ones. As

a result, the L2 and not the scattering boundary conditions are imposed and the wave

functions |Ψ3h1p
q 〉 are not energy normalized, but rather to

〈Ψ3h1p
q′ |Ψ3h1p

q 〉 = δq′,q. (15)
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Moreover, the corresponding eigenenergies E3h1p
q are discrete and are not expected to fulfill

the energy conservation relation for the non-radiative decay, E3h1p
q = EΦ. Finally, it is not

possible to define rigorously to which decay channel particular state |Ψ3h1p
q 〉 belongs. Indeed,

the scattering boundary condition corresponding to the outgoing electron of kinetic energy

ǫβ is not imposed on the L2 function |Ψ3h1p
q 〉, neither is it derived from an (N − 3)-electron

state of a well defined energy Eβ.

In order to deal with the above complications, let us rewrite Eq. (5) as

Γ(E) = 2π

Nc∑
β=1

〈Φ|H − E|χβ,E−Eβ
〉〈χβ,E−Eβ

|H − E|Φ〉. (16)

It can be noticed that the |χβ,E−Eβ
〉 define an Nc-dimensional space at a given energy E, in

which they act as basis vectors. If the objective is the calculation of the total decay width

only, one can perform an unitary transformation of the basis in this Nc-dimensional space,

Nc∑
β=1

|χβ,E−Eβ
〉〈χβ,E−Eβ

| =

Nc∑
β=1

|χ′
β,E−Eβ

〉〈χ′
β,E−Eβ

|. (17)

This shows that the 3h1p states |Ψ3h1p
q 〉 can be used in the calculation of the total decay

widths, even though they do not correspond directly to the open decay channels. Rigorous

calculations of the partial decay widths, on the contrary, are not possible in the same manner.

The use of the L2 2p-GF/ADC(2)x eigenstates instead of the true continuum functions

in the formula (16) can be further justified in the following way. Eq. (16) relates the total

decay width to the matrix elements coupling the bound and the continuum components

of the wave function, 〈Φ|H − E|χβ,E−Eβ
〉. The bound component |Φ〉 is effectively zero

outside some spatial region which we will call here the “interaction region”. The interaction

region roughly defines the dimension of the system in which the decay process occurs and

is spanned by the L2 basis used in the expansion of |Φ〉. The continuum components |χβ,ǫ〉

are, on the other hand, nonzero even at the infinite distance from the cluster. Apparently,

the Hamiltonian matrix elements between the discrete and continuum components gain a

non-vanishing contribution only from the interaction region. One can, thus, substitute the

continuum components in Eq. (16) by the approximate wave functions |χ̃β,ǫ〉, which are

equivalent to the true continuum components within the interaction region and go to zero

outside. Consequently, it is possible to use L2 approximations, such as |Ψ3h1p
q 〉, in the total

width calculation, provided they are
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1. re-normalized such that they are equal to the continuum wave functions inside the

interaction region,

2. interpolated in energy such that they satisfy the energy conservation E3h1p
q = EΦ.

Both these goals can be achieved using the procedure known as the Stieltjes imaging.

This technique has been introduced by Langhoff [32] in the context of the calculation of

the photoionization cross section using the L2 wave functions and generalized to evaluate

decay rates evaluation by Hazi [33]. The renormalization of the so-called pseudo-spectrum

of the discrete L2 states possessing energies in the continuum region of the true spectrum

can be achieved using the fact that the spectral moments of the quantities of the type of Eq.

(5) calculated using the pseudo-spectrum are good approximations to the spectral moments

constructed using the true continuum. In our case this leads to

∑
β

∫
Ek|〈Φ|H − E|χβ,E−Eβ

〉|2dE ≈
∑

q

(E3h1p
q )k〈Φ|H − E|Ψ3h1p

q 〉|2. (18)

This property allows us to use the techniques of the moment theory in order to obtain

the correct matrix element of the kind of Eq. (5) interpolated to the needed value of the

continuum state energy [i.e., Eres ≈ EΦ, cf. Eq. (6)]. This can be done through a series of

consecutive approximations of increasing order nS. At each order the renormalized decay

width is obtained in terms of quadrature abscissas and weights for a generalized Gaussian

quadrature rule associated with the weight function Γ(E). nS is the order of the highest

orthogonal polynomial generated during the Stieltjes imaging calculation which is equivalent

to the use of the lowest 2nS − 1 approximate spectral moments (18). For details of the

implementation of the method employed in the present work, see Refs. [34, 35]. The more

spectral moments one can reliably calculate using the pseudo-spectrum the higher is the

maximal possible value of nS and also the quality of the final result. A reliable calculation

of the spectral moments, in turn, requires a high density of the pseudo-spectrum states. The

density can be controlled by the choice of the L2 basis.

As noted above, the necessity of the transformation (17) prevents the formulation of a

rigorous procedure for the calculation of the partial widths within the framework of the

present method. Such a calculation must involve the true degenerate continuum functions

corresponding to the various decay channels, which is not the case for the L2 states |Ψ3h1p
q 〉.
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Nevertheless, it is still possible to estimate partial widths using the Stieltjes imaging tech-

nique by an ad hoc procedure suggested in Refs. [1, 36]. It can be summarized as follows:

1. For each 3h channel β, construct the channel-specific couplings,

γq,β(E) = 2π|〈Ψ|H − E|P̂βΨ
3h1p
q 〉|2, (19)

where P̂β is the projection operator corresponding to the given channel.

2. Apply the Stieltjes imaging procedure to the couplings γq,β(E) using the corresponding

energies E3h1p
q in order to obtain the un-normalized estimates for the partial rates Γ̃β

at the energy EΦ.

3. Normalize the obtained estimates such that they sum up to the correct total rate Γ:

Γβ ≈
Γ̃β∑
β Γ̃β

Γ. (20)

Within the 2p-GF/ADC(2)x approach the projection operators P̂β are defined naturally

since each 3h1p configuration corresponds to three specific holes defining (together with the

spin state) in the lowest-order approximation one of the final states of the decay. Thus, we

put

P̂β =
∑

a

|Φ̃N−2
a,i,j,k,ξ〉〈Φ̃

N−2
a,i,j,k,ξ|, (21)

where the wave functions |Φ̃N−2
a,i,j,k,ξ〉 differ from the 3h1p configurations |ΦN−2

a,i,j,k〉 in that they

are spin-adapted, i.e., their spin parts are eigenfunctions of the total spin operators for both

the (N − 2)- and (N − 3)-electron systems. Therefore, the channel index β is in one to one

correspondence with the combination of the hole indices i, j, k and the 3h1p spin state ξ.

Such a choice of the projection operators is expected to produce reasonable results whenever

the inter-channel coupling is weak, such as between the ETMD and ICD classes of channels

(i.e., between the final states of the types A+B++ and A++B+ respectively). Within each

of the ICD or ETMD classes, on the other hand, the inter-channel coupling can be strong

and any partial width obtained via the above approach has to be considered as a crude

approximation only.
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III. ICD AFTER AUGER IN VAN DER WAALS CLUSTERS

Two classes of systems exhibiting inter-atomic decay, which have been studied inten-

sively in the past, are rare-gas and alkaline-earth-rare-gas clusters. ICD following single

inner-valence ionization of Ne in neon-rare-gas clusters were investigated theoretically and

experimentally in a series of works [4, 5, 31, 37–39]. The alkaline-earth-rare-gas clusters were

studied by Averbukh and co-workers in Refs. [1, 40]. Inter-atomic decay following Auger

decay in clusters, predicted in Ref. [7], was first observed experimentally in argon dimers

[12] and in ArKr [13] and more recently in neon dimers [14–16]. The potential energy curves

of all the states involved in the cascades of the Ar and Ne dimers have been reported by

Stoychev et al. [41, 42]. Except of the single-point computation in Ref. [7] nothing is known

on the respective ICD rates. It is thus natural to apply the present method first to di-

atomic rare-gas clusters. We will also pay attention to alkaline-earth-rare-gas clusters as

they exhibit considerably different behavior. In the following we report on the results of the

calculations on the ICD widths of Ne2+(2s−12p−1)Ar and MgNe2+(2s−12p−1).

However, before we move on to the application of the presented method to the calcula-

tion of the inter-atomic decay widths of doubly ionized clusters, it is desirable to perform

benchmark calculations on a system with known decay width. Since essentially nothing is

known about the inter-atomic decay widths of doubly ionized clusters we had to look for a

suitable atomic Auger decay process. By far the most extensively studied is the decay of

multiply-ionized neon with the 1s vacancy. The major disadvantage of this system is that

it produces fast Auger electrons with kinetic energy over 800 eV. Such electrons are very

difficult to describe using Gaussian basis sets. Nevertheless, despite rather low density of

the pseudo-spectrum |Ψ3h1p
q 〉 at the desired energy, the Stieltjes algorithm converges and

stable results with respect to basis set can be obtained.

We have used the standard cc-pV6Z basis for Ne augmented by additional [5s,5p,5d]

Gaussian functions on Ne and [3s,3p,3d] functions on 6 ghost centers around the atom. In

Tab. I the present results are compared to the recent calculation by Karim and Logan [43],

who used the self-consistent Hartree-Fock model with the inclusion of the spin-orbit coupling.

Good agreement of their data with the older work by Bhalla et al. [44] shows that the effects

arising from the spin-orbit coupling are negligible and therefore the present theory should be

adequate for the description of the process under consideration. We observe that the present
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method produces decay widths which are by 10-20% smaller than those calculated by Karim

and Logan. Considering the difficulties stemming from the high kinetic energies of the Auger

electrons and also the imperfections of the reference calculations the agreement is very good.

Besides this comparison, the reliability of the present method is further supported by the

success of the original Fano-ADC-Stieltjes method based on 1p-GF/ADC(2x), which has

been tested extensively for both intra- and inter-atomic decay processes of singly ionized

and excited states [1, 31].

A. Rare-gas clusters

Let us proceed to the study of inter-atomic decay in NeAr dimer. The calculations

of the decay widths have been carried out using cc-pVTZ bases on both Ne and Ar atoms

augmented by continuum-like diffuse functions of the Kaufmann-Baumeister-Jungen (KJB)-

type [45], 5s5p5d on Ne, 6s6p8d3f on Ar, and by additional 3s3p3d KJB-type functions at

the centers (0, 0, 0), (0, 0,±R/4) and (0, 0,±5R/8). Here, R is the internuclear distance and

the molecular axis is along the z-axis. With this choice we achieved good convergence in

the basis as well as reliable Stieltjes imaging results.

Fig. 1 shows the energies of all considered levels of triply ionized NeAr together with

the potential energies of the initial states of the decay, Ne2+(2s−12p−1 1P )Ar (red) and

Ne2+(2s−12p−1 3P )Ar (blue). The latter curves are the Fano discrete state energies obtained

by 2p-GF/ADC(2)x in a restricted set of configurations as described in Sec. IIC, and shifted

to match the known atomic data at large inter-atomic distances R. The fact that in ICD

after Auger there are two possible spin multiplicities of the initial state is one of the main

differences compared to ICD of a single inner-valence vacancy and we will see that it brings

about some interesting phenomena. Furthermore, the initial state can exhibit either Σ or Π

spatial symmetry. The Σ symmetry is (at large internuclear distances) characterized by the

Ne(2pz) vacancy while the Π symmetry by the Ne(2px) or Ne(2py) one. The corresponding

energies differ only a little below the equilibrium internuclear distance Req of the neutral

cluster and are degenerate at large internuclear distances. Therefore, the two red and two

blue curves are nearly indistinguishable in the scale of Fig. 1.

The black, brown and green curves represent the three classes of accessible final states

of the decay, see below. The corresponding energies have been calculated in the lowest-
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order approximation of Eq. (11) and again shifted to match atomic values at large R. The

black curves represent the final states of ICD, Ne2+(2p−2)Ar+(3p−1). This class splits into

three groups approaching different energies in the asymptotic range, characterized by the

symmetry of the doubly ionized neon. The highest-lying group contains doublet 3h states

Ne2+(2p−2 1S)Ar+(3p−1), the middle one doublet states Ne2+(2p−2 1D)Ar+(3p−1), and the

lowest group comprises both the doublet and quartet 3h states Ne2+(2p−2 3P )Ar+(3p−1).

The brown curves are the energies of the final states of ETMD, Ne+(2p−1)Ar2+(3p−2), again

splitting into three groups according the 1S, 1D and 3P symmetry of Ar2+. The last class of

final states (green curves) are the ETMD channels Ne+(2p−1)Ar2+(3s−13p−1). The higher-

lying states correspond to 1P while the lower lying to 3P symmetry of Ar2+.

Fig. 2 shows the total decay widths of the doubly ionized singlet 1Σ (Γ
1Σ, dashed line)

and 1Π (Γ
1Π, dash-dotted line) states of Ne2+(2s−12p−1)Ar. As a reference, the total decay

width Γ2s of the single vacancy Ne+(2s−1)Ar calculated by the method of Ref. [1] (equivalent

to the present one) is shown by the full line. The fast decreasing curves in the lower left

corner are the partial ETMD widths. The first observation is that the decay width of

both the singly and doubly ionized initial states follow quite closely the 1/R6 dependence

(dotted line), predicted for dipole-allowed inter-atomic decay processes at large interatomic

distances (cf virtual photon transfer model, [21, 40, 46]), over the whole geometry range. At

the equilibrium geometry, Γ
1Σ is about twice larger than Γ2s, while Γ

1Π is only about 1.3

times larger. The ETMD partial widths Γ
1Σ
ETMD and Γ

1Π
ETMD behave also quite similarly to

Γ2s
ETMD, but the ratio of the magnitudes is slightly larger than found for the respective ICD

widths (about 2.5 for both symmetries). As expected, all ETMD partial widths decrease

exponentially with increasing R which is caused by the electron-transfer character of the

process which requires overlap of the wave functions of the involved atoms.

The similar qualitative behavior of the widths of singly and doubly ionized initial states

with the same inner-valence vacancy can be understood by looking at the decay process in

the first order of PT. Fig. 3 shows the two possible pathways of the inter-atomic decay –

the energy transfer and the electron transfer (cf Eqs. (1)–(5) in Ref. [7]). The important

point is that in the first order of PT the initial 2p vacancy on Ne is only a spectator.

Therefore, the whole picture is very similar to that of ICD of a single 2s vacancy. The

present method goes beyond first order PT and accounts also for the higher-order processes

involving pathways in which the initial 2p vacancy participates actively. The analysis of the
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partial widths (cf Sec. IID) shows, however, that the contribution of those processes is only

up to 5% of the total width. The difference in magnitude of the decay widths of singly and

doubly ionized states is, therefore, to be attributed to the fact that the spectator 2p vacancy

changes substantially the symmetry of the decaying state and the shape of the occupied

orbitals. Another interesting effect of the spectator 2p vacancy is that the 1Σ state decays

faster than the 1Π state, even though the leading contribution to the decay width comes in

both cases from the same integral (ϕNe(2s)ϕNe(2pz)|kϕAr(3pz)), at least at large internuclear

distances where the notation ϕi for spatial atomic orbitals notation is meaningful (see also

the discussion concerning partial decay widths). The presence of Ne(2p) vacancy parallel

(Σ) or perpendicular (Π) to the molecular axis changes in a different ways the shape of the

occupied atomic orbitals, leading to variations of the magnitude of the inter-atomic decay

widths.

Fig. 4 shows the total decay width of the triplet states of Ne2+(2s−12p−1)Ar. Again,

dashed and dash-dotted lines correspond to 3Σ and 3Π symmetries, respectively. The full

line shows the reference Γ2s of the single vacancy Ne+(2s−1)Ar which is, of course, the same

as in Fig. 2. The most striking difference between the decaying states of triplet and singlet

multiplicity is the substantial change in the magnitude of their total decay widths. While

in the singlet multiplicity the decay widths of the doubly ionized states in both Σ and Π

symmetries are larger than that of a single 2s vacancy, the contrary is true for the triplet

multiplicity where both Γ
3Σ and Γ

3Π drop below Γ2s. This decrease is stronger in the case

of Σ symmetry, to the extent that the 3Σ state decays slower than the 3Π state although in

the singlet spin multiplicity the opposite applies.

In order to explain this interesting behavior we have to analyze the partial widths for

the ICD process. Even though we emphasized in Sec. IID that the proposed method to

compute partial widths is non-rigorous, we believe that the obtained qualitative picture

is correct. In Tab. II we have summarized partial ICD decay widths into three distinct

classes of the 3h channels defined by their total spin multiplicity and the symmetry of the

Ne2+ dication. The first column describes the symmetry of the initial doubly ionized state

Ne2+(2s−12p−1)Ar. The second column lists the partial widths into the doublet 3h channels

derived from the singlet Ne2+(2p−2 1S/D) (i.e., we have summed partial decay widths for

all doublet channels characterized by the singlet Ne2+(2p−2 1S/D) and arbitrary 3p hole on

Ar), third column those into the doublet channels derived from the triplet Ne2+(2p−2 3P ),
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and the fourth column those into the quartet 3h channels. Quartet final states are accessible

only from the triplet initial states. The last two columns list the total decay widths and ICD

lifetimes, respectively. We observe that the singlet initial states decay almost exclusively

into doublet Ne2+(2p−2 1S/D)Ar+(3p−1) states, the 1Σ state decaying thereby 1.5 faster

than the 1Π state. In the case of triplet initial states, the efficiency of the decay into the

same final doublet states drops by a factor of about 10 (even more in the case of 1Σ initial

state). Now, however, the quartet channels are accessible and become the most efficiently

populated. The contribution of the doublet channels with Ne2+(2p−2 3P ) is negligible for

all initial states.

The question we would like to answer is: why does the 3Π state decay faster than the 3Σ

one although the opposite situation is encountered in the singlet multiplicity. In the following

discussion we show how the Ne(2pz) vacancy in the 3Σ decaying state hinders some of the

decay pathways which are among the most efficient ones for the other considered initial

states.

It is not surprising that the most efficient decay processes are those which proceed via

energy-transfer where the involved orbitals are spatially as close to each other as possible.

Speaking in terms of atomic orbitals, the most efficient pathway would be where an electron

from the Ne(2pz) orbital fills the Ne(2s) vacancy and another electron is ejected from the

Ar(3pz) orbital, whenever this pathway is operative. In the following we will refer to it as

the main ICD pathway. In the 1Π decaying state the initial outer-valence vacancy is either

Ne(2px) or Ne(2py) and the Ne(2pz) orbital is doubly occupied. Therefore, an electron

with the spin appropriate to fill the Ne(2s) vacancy is available and the main ICD pathway

leads to the doublet Ne2+(2p−1
x,y2p

−1
z

1D)Ar+(3p−1
z ) final state. In the 1Σ decaying state the

Ne(2pz) orbital is only singly occupied but the remaining electron has the opposite spin

than the one left in the Ne(2s) orbital. Hence, the main ICD pathway is again operative

and results in the doublet Ne2+(2p−2
z

1S/D)Ar+(3p−1
z ) state. Corresponding partial widths

are plotted as the full lines in the upper (1Σ) and lower (1Π) panel of Fig. 5, respectively.

For both the 1Π and 1Σ decaying states the above discussed partial widths are found to be

the largest indeed.

The situation becomes more involved for the triplet decaying states. The cause of the

substantial decrease of the partial widths into the doublet Ne2+(1S/D)Ar+ channels lies

in the fact that an atom cannot change the total spin during an intra-atomic radiative
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decay. Therefore, in the first order of PT, the final states involving Ne2+(1S/D) are only

accessible via an electron-transfer processes where the Ne(2s) vacancy is filled by an Ar(3p)

electron with successive ejection of an electron from the Ne(2p) orbital. Still, energy-transfer

pathways can be found in the second order of PT. In Fig. 5 the dashed lines show the largest

partial widths into the doublet Ne2+(1S/D)Ar+ final states for the 3Σ (upper panel) and 3Π

(lower panel) decaying states. We observe that the higher-order contributions prevail and

the partial widths exhibit the 1/R6 dependence on the internuclear distance.

Let us turn our attention to the quartet Ne2+(3P )Ar+ channels and consider again

the main ICD pathway. The analysis of the 3Π initial state is fully analogical to that

of the 1Π one. The Ne(2pz) orbital is doubly occupied and, therefore, one of the elec-

trons can drop into the Ne(2s) vacancy, leading via the main ICD pathway to the quartet

Ne2+(2p−1
x,y2p

−1
z )Ar+(3p−1

z ). Corresponding partial width is plotted as the dashed-dotted

line in the lower panel of Fig. 5. Comparison with other partial widths confirms that the

main ICD pathway is the most efficient decay process. In the case of the 3Σ decaying

state the initial outer-valence vacancy is Ne(2pz). The fact that this orbital which plays

an important role in the main ICD pathway is only singly occupied changes the situation

considerably. If the main ICD pathway were operative, the final state would be quartet

Ne2+(2p−2
z

3P )Ar+(3p−1
z ) but such a state does not exist. In other words, the main ICD

pathway is hindered by the initial Ne(2pz) vacancy since the single electron left in this or-

bital has incorrect spin to fill the Ne(2s) hole. Therefore, in the case of 3Σ decaying state

the inner-valence vacancy can only be refilled by an electron from the Ne(2px) or Ne(2py)

orbitals. This, however, leads to less efficient transfer of the excess energy to the neighboring

argon. Corresponding partial width, shown by the dashed-dotted line in the upper panel

of Fig. 5, is about 3.5 times smaller than the partial width of the main ICD pathway for

the 3Π decaying state. It should be noted that also in the case of the 3Π state the initial

outer-valence hole blocks certain decay pathways, but only the less efficient ones. Therefore,

the total ICD width Γ
3Π is larger than Γ

3Σ.

B. Alkaline-earth-rare-gas clusters

After the thorough discussion on Ne2+Ar let us report now more briefly on ICD in

MgNe2+. The calculations have been carried out using uncontracted cc-pVQZ basis sets
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on both atoms augmented by 9s9p9d KJB-type diffuse functions on Ne, 6s6p6d functions on

Mg and 5s5p5d functions at the centers (0, 0, 0), (0, 0,±R/4) and (0, 0,±5R/8). The poten-

tial energy curves of the doubly and triply ionized states involved in the decay calculated

on the same level of theory as in the case of NeAr are plotted in Fig. 6. Note that there

are three more open ETMD channels of the type Mg2+(3s−2)Ne+(2p−1). These lie at rather

low energy in the range 46–54 eV and are not shown in the figure. Included in the figure are

the higher-lying ETMD channels Mg2+(2p−13s−1)Ne+(2p−1) to demonstrate that they are

closed over the whole range of internuclear distances.

Figs. 7 and 8 show the ICD and ETMD widths of the singlet and triplet states of

MgNe2+(2s−12p−1), respectively. The full line represents in both figures the reference ICD

width of MgNe+(2s−1). We observe that, as in the case of NeAr, the ICD and ETMD widths

of doubly ionized states behave qualitatively as those of the single inner-valence vacancy.

However, in strong contrast to NeAr the decay widths of MgNe follow the virtual photon

transfer model behavior 1/R6 only at very large internuclear distances, R > 9 Å. At smaller

internuclear distances pronounced orbital overlap enhancement of the ICD widths is evident.

The magnitude of the non-radiative decay widths, though, is significantly smaller than in

the case of NeAr at the respective equilibrium internuclear distances [compare the lifetime

1300 fs of MgNe+(2s−1) and 48 fs of Ne+(2s−1)Ar]. This cannot be explained solely by the

reduced number of decay channels, stemming from the fact that there are six electrons in the

Ar(3p) shell but only two in the Mg(3s) shell. The deeper reason for the increased lifetime

of MgNe+(2s−1) can be understood in terms of the so called virtual photon transfer model

[46] which relates the interatomic decay width to the radiative lifetime of the initial vacancy

and the total photoionization cross section of the secondarily-ionized atom. At the virtual

photon energy E[Ne+(2s−1 2S)]−E[Ne+(2p−1 2P )] the photoionization cross section of Mg

is σMg = 0.26 Mb which is very small compared to that of Ar, σAr = 31 Mb [47]. The con-

nection of the decay rates and ionization cross sections and other quantities in the context

of ICD was discussed at length by Averbukh et al. [40]. At this point it is also interesting

to assess the strong effect of the orbital overlap observed in MgNe by comparing the decay

rates of Ne+(2s−1)Ar and MgNe+(2s−1) at the equilibrium distance of NeAr (Req = 3.5 Å).

At that distance the rates become rather comparable, reaching the values of Γ2s = 13.6 meV

for Ne+(2s−1)Ar and Γ2s = 3.3 meV for MgNe+(2s−1), respectively. Clearly, the much larger

equilibrium distance of MgNe is a central factor. Because of that nuclear dynamics is ex-
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pected to play an important role for MgNe. Once the nuclear wave packet is created on the

attractive potential curves of MgNe2+(2s−12p−1), it will move towards smaller internuclear

distances where the decay is strongly enhanced.

The significant orbital overlap enhancement of the decay rates indicates that electron-

transfer processes strongly influence the inter-atomic decay at small internuclear distances.

This also shows up in the dependence of the rates on the spin multiplicity and symme-

try of the decaying state. For example, in NeAr we observed that the decay processes

Ne2+(2s−12p−1 3P )Ar → Ne2+(2p−1 1S/D)Ar+(3p−1) were strongly suppressed. As ex-

plained in the previous subsection, the reason lies in the fact that those processes are essen-

tially of electron-transfer character due to the necessity for the change of the total spin of

the Ne2+ cation (energy-transfer pathways can only be found in higher orders of PT). Since

in the case of MgNe the electron transfer prevails over the energy transfer the doublet states

Mg+(3s−1)Ne2+(2p−1 1S/D) are nearly equally populated in both 1Π and 3Π symmetries,

see the second column in Tab. III. For the same reason we observe from Fig. 8 that the

decay of MgNe2+(2s−12p−1) is similarly efficient in 3Σ and 3Π symmetries below R = 5 Å.

The decay width of the 3Σ state significantly decreases due to the effects discussed in the

context of NeAr at larger internuclear distances where energy transfer starts to dominate.

IV. CONCLUSIONS

In the present paper we have presented an L2 method for the calculation of the total

widths of inter-atomic (inter-molecular) decay processes of excited doubly ionized states of

clusters. Thereby, we focus mainly on those doubly ionized states which are the final states

of the common Auger decay of core levels. The approach is fully analogous to that of Ref.

[1] developed for the calculation of the total rates of the inter-atomic decay of singly ionized

clusters. Both methods are based on the Fano resonance formalism, the ADC approach

to the solution of the multi-electron problem, and the Stieltjes imaging technique for the

renormalization of the discretized continuum. The fundamental difference between the two

methods is that the present one is based on the two-particle propagator in order to describe

doubly ionized intermediate states and triply ionized final states of the decay plus an electron

in continuum. In the present implementation, based on the 2p-GF/ADC(2)x scheme, the

former states are treated correctly through the second order of perturbation theory while the

21



latter ones are exact through the first order. The method takes into account physical effects

like intra-atomic correlation and orbital relaxation in the initial state and inter-channel

mixing in the final states of the decay. In principle, the method can be further improved

by making use of higher ADC approximations. ADC(3) level of theory [30], improving

significantly the description of the initial state, would still be computationally tractable as

it does not increase the configuration space. The ADC(4) level, necessary to further improve

the description of the final states of the decay, introduces the next higher 4h2p excitation

class and would significantly increase the computational demands.

One of the most notable advantages of the ADC-based approach is the separability of the

ADC solution of the multi-electron problem with respect to dissociation of the system into

non-interacting fragments (size-consistency). The method is therefore expected to be able

to treat also polyatomic and molecular clusters. However, possible violation of the charge-

consistency in the ADC expansion of the pp-propagator has to be carefully analized whenever

the method is to be applied to extended systems as it can lead into improper scaling of the

physical properties with increasing size of the system [23]. Another important feature of

the presented method is the ability of the Stieltjes imaging technique to produce converged

results of the ICD and ETMD decay widths over six or more orders of magnitude (cf Fig.

5). Such an accuracy is essential for precise description of the inter-atomic decay processes.

One of the most serious drawbacks of the method is connected with the selection of the

physical excitation operators in the bound-state calculation. The implemented approach

[see Sec. IIC] can become ambiguous for clusters with significant orbital overlap, such as

hydrogen-bonded clusters, and is completely inapplicable to systems with molecular orbitals

delocalized due to the inversion symmetry. For such systems specific selection schemes

have to be developed. Another limitation of the present approach is its inability to produce

accurate partial decay widths, which is caused by the L2 description of the decay continuum.

We have shown, however, that the non-rigorous procedure of Ref. [36] for the estimation of

partial decay widths can give many very interesting answers at least at the semi-qualitative

level.

In the present paper the methodology was applied to study the decay rates of differ-

ent Ne2+(2s−12p−1) states in NeAr and MgNe. It has been shown that the presence of a

spectator Ne 2p-hole does not influence much the dependence of the decay width on the

internuclear distance found in the decay of a single Ne(2s−1) vacancy. On the other hand,
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the magnitude of the decay width depends on the symmetry and spin multiplicity of the

decaying doubly ionized states. Partial widths analysis was used successfully to explain

these effects. Pronounced differences between NeAr and MgNe clusters are found. They are

caused in part by the small photoionization cross section of Mg, which allows the contri-

bution of electron-transfer decay pathways to be revealed. The shortest lifetimes are found

for the Ne2+(2s−12p−1)Ar and the MgNe2+(2s−12p−1) state of the 1Σ symmetry. These

lifetimes are 25 fs and 833 fs, respectively, at the respective equilibrium geometry. If MgNe

had the same internuclear distance as NeAr, its lifetime would have been 145 fs. Finally,

we remark that in larger clusters the lifetimes are much shorter due to the increased num-

ber of neighbors. Furthermore, as shown by Deleuze and co-workers [48], ICD in larger

van der Waals molecular clusters need not necessarily lead to Coulombic explosion but can

also initiate rather complex charge rearrangement reactions resulting in the formation of

covalently bound dicationic assemblies. These remarkable features makes the polyatomic

systems interesting objects to study.
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[25] G. Howat, T. Åberg, and O. Goscinski, J. Phys. B 11, 1575 (1978).

[26] N. Fukuda, F. Iwamoto, and K. Sawada, Phys. Rev. 135, A932 (1964).

[27] J. Schirmer and A. Barth, Z. Phys. A 317, 267 (1984).

[28] J. Schirmer, Phys. Rev. A 26, 2395 (1982).

[29] J. Schirmer, L. S. Cederbaum, and O. Walter, Phys. Rev. A 28, 1237 (1983).

[30] A. Tarantelli and L. S. Cederbaum, Phys. Rev. A 39, 1639 (1989).

[31] V. Averbukh and L. S. Cederbaum, J. Chem. Phys. 125, 094107 (2006).

[32] P. W. Langhoff, in Electron-Molecule and Photon-Molecule Collisions, edited by T. Rescigno,

V. McKoy, and B. Schenider (Plenum, New York, 1979).

[33] A. U. Hazi, in Electron-Molecule and Photon-Molecule Collisions, edited by T. Rescigno,

V. McKoy, and B. Schenider (Plenum, New York, 1979).

[34] F. Müller-Plathe and G. H. F. Diercksen, Phys. Rev. A 40, 696 (1989).

[35] F. Müller-Plathe and G. H. F. Diercksen, in Electronic Structure of Atoms, Molecules and

Solids, edited by S. Canuto, J. D’Albuquerque e Castro, and F. J. Paixão (1990).

[36] I. Cacelli, V. Caravetta, and R. Moccia, Mol. Phys. 59, 385 (1986).

[37] R. Santra, J. Zobeley, and L. S. Cederbaum, Phys. Rev. Lett. 85, 4490 (2000).

[38] S. Scheit, V. Averbukh, H.-D. Meyer, N. Moiseyev, R. Santra, T. Sommerfeld, J. Zobeley, and

L. S. Cederbaum, J. Chem. Phys. 121, 8393 (2004).

[39] T. Jahnke, A. Czasch, M. Schoffler, S. Schossler, M. Kasz, J. Titze, K. Kreidi, R. E. Grisenti,

A. Staudte, O. Jagutzki, et al., Phys. Rev. Lett. 99, 153401 (2007).

[40] V. Averbukh, I. B. Müller, and L. S. Cederbaum, Phys. Rev. Lett. 93, 263002 (2004).

[41] S. D. Stoychev, A. I. Kuleff, F. Tarantelli, and L. S. Cederbaum, J. Chem. Phys. 128, 104307

(2008).

[42] S. D. Stoychev, A. I. Kuleff, F. Tarantelli, and L. S. Cederbaum, J. Chem. Phys. 129, 074307

(2008).

[43] K. R. Karim and L. Logan, Physica Scripta 58, 574 (1998).

[44] C. P. Bhalla, N. O. Folland, and M. A. Hein, Phys. Rev. A 8, 649 (1973).

[45] K. Kaufmann, W. Baumeister, and M. Jungen, J. Phys. B 22, 2223 (1989).

[46] J. A. D. Matthew and Y. Komninos, Surf. Sci. 53, 716 (1975).

25



[47] D. A. Verner, G. J. Ferland, K. T. Korista, and D. G. Yakovlev, Astrophys. J. 465, 487 (1996).

[48] M. S. Deleuze, J.-P. Francois, and E. S. Kryachko, J. Am. Chem. Soc. 127, 16824 (2005).

[49] D. C. Griffin, D. M. Mitnik, and N. R. Badnell, J. Phys. B 34, 4401 (2001).

[50] In the strict 2p-GF/ADC(2) scheme the 3h1p−3h1p block of the interaction matrix C vanishes.

The extended 2p-GF/ADC(2)x approximation differs in that the first-order contribution to

the 3h1p− 3h1p interaction is used which would otherwise appear only in the 2p-GF/ADC(3)

scheme. In this way the description of the satellite states improves considerably.

[51] We do not consider higher-lying final states, characterized, for example, by four vacancies,

an excited electron and an electron in continuum, which can be accessible for initial states of

sufficiently high energy. Such final states belong to the 4h2p excitation class and cannot be

described at the 2p-GF/ADC(2)x level of theory. To describe them ADC(4) would be needed.

26



TABLES

Configuration Present Karim&Logan

1s−12s−1 1S 275 316

1s−12s−1 3S 168 203

1s−12p−1 1P 204 214

1s−12p−1 3P 213 232

TABLE I: Auger decay widths (in meV) for various electron configurations of doubly ionized neon

atom.
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Ne2+(1S/D)Ar+ (1/2) Ne2+(3P )Ar+ (1/2) Ne2+(3P )Ar+ (3/2) ΓICD τICD

1Σ 26.3 0.02 – 26.3 25.0

3Σ 1.83 0.35 3.30 5.48 120.1

1Π 17.9 0.17 – 18.1 36.4

3Π 1.77 0.82 5.61 8.20 80.3

TABLE II: Partial decay widths (in meV, Req = 3.5 Å) of the 1,3Σ and 1,3Π decaying states into

different classes of ICD channels. Shown are also the total decay rates (meV) and lifetimes (fs) of

these states. For more details, see text.
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Mg+Ne2+(1S/D) (1/2) Mg+Ne2+(3P ) (1/2) Mg+Ne2+(3P ) (3/2) ΓICD τICD

1Σ 0.75 0.04 – 0.79 833

3Σ 0.39 0.08 0.12 0.59 1116

1Π 0.29 0.06 – 0.35 1881

3Π 0.23 0.08 0.22 0.53 1242

TABLE III: Partial decay widths (in meV, Req = 4.4 Å) of the 1,3Σ and 1,3Π decaying states into

different classes of ICD channels. Shown are also the total decay rates (meV) and lifetimes (fs) of

these states.
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FIGURE CAPTIONS

FIG. 1: (Color online) Potential energy curves of the doubly and triply ionized states of NeAr

relative to the energy of the neutral ground state at equilibrium geometry. The vertical dashed

line show the equilibrium internuclear distance, Req = 3.5 Å, of the neutral cluster. The groups of

curves are discussed in the text.

FIG. 2: Total decay widths and the ETMD partial widths (steeply decreasing curves in the lower

left corner) of the singlet states of Ne2+(2s−12p−1)Ar (Γ
1Σ, Γ

1Π, dashed and dashed-dotted lines)

compared to that of Ne+(2s−1)Ar (Γ2s, full line). The dotted straight line shows a 1/R6 curve

normalized to Γ2s at large R. The marked lifetime corresponds to Γ2s at the equilibrium geometry

of the neutral cluster.

FIG. 3: The two pathways of the inter-atomic decay of Ne2+(2s−12p−1)Ar.

FIG. 4: Total decay widths and the ETMD partial widths (steeply decreasing curves in the lower

left corner) of the triplet states of Ne2+(2s−12p−1)Ar (Γ
3Σ, Γ

3Π, dashed and dashed-dotted lines)

compared to that of Ne+(2s−1)Ar (Γ2s, full line). The dotted straight line shows a 1/R6 curve

normalized to Γ2s at large R. The marked lifetime corresponds to Γ2s at the equilibrium geometry

of the neutral cluster.
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FIG. 5: Selected partial widths of Ne2+(2s−12p−1)Ar Σ (upper panel) and Π (lower panel) initial

states. Atomic orbitals notation, valid at large internuclear distances, is used to define the 2h and

3h states of NeAr.

FIG. 6: (Color online) Potential energy curves of the doubly and triply ionized states of MgNe

relative to the energy of the neutral ground state at equilibrium geometry. The vertical dashed

line shows the equilibrium internuclear distance, Req = 4.4 Å, of the neutral cluster. The po-

tential energy curves of the open Mg2+(3s−2)Ne+(2p−1) ETMD channels fall into the energy

range 46–54 eV and are not shown. The green curves represent the higher lying ETMD chan-

nels Mg2+(2p−13s−1)Ne+(2p−1) that are closed over the whole range of R.

FIG. 7: Total decay widths and ETMD partial widths (steeply decreasing curves in the lower

left corner) of the singlet MgNe2+(2s−12p−1) states (Γ
1Σ, Γ

1Π, dashed and dashed-dotted lines)

compared to that of MgNe+(2s−1) (Γ2s, full line). The dotted straight line shows a 1/R6 curve

normalized to Γ2s at large R. The marked lifetime corresponds to Γ2s at the equilibrium geometry

of the neutral cluster. The width of the radiative decay of the Ne(2s−1) vacancy in free neon atom

[49] is shown by the thin horizontal dashed line.

FIG. 8: Total decay widths and ETMD partial widths (steeply decreasing curves in the lower

left corner) of the triplet MgNe2+(2s−12p−1) states (Γ
3Σ, Γ

3Π, dashed and dashed-dotted lines)

compared to that of MgNe+(2s−1) (Γ2s, full line). The dotted straight line shows a 1/R6 curve

normalized to Γ2s at large R. The marked lifetime corresponds to Γ2s at the equilibrium geometry

of the neutral cluster. The width of the radiative decay of the Ne(2s−1) vacancy in free neon atom

[49] is shown by the thin horizontal dashed line.
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