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Abstract 

Objective: To characterize a long-term model of recovery from critical illness, with particular 

emphasis on cardiorespiratory, metabolic and muscle function 

Design: Randomized controlled animal study 

Setting: University research laboratory 

Subjects: Male Wistar rats 

Interventions: Intraperitoneal injection of the fungal cell wall constituent, zymosan or n-saline. 

Measurements and Main Results: Following intervention, rats were followed for up to two weeks. 

Animals with zymosan peritonitis reached a clinical and biochemical nadir on day 2. Initial reductions 

were seen in body weight, total body protein and fat, and muscle mass. Leg muscle fiber diameter 

remained subnormal at 14 days with evidence of persisting myonecrosis, even though gene 

expression of regulators of muscle mass (e.g. MAFbx, MURF1, myostatin) had peaked on days 2-4 

but had normalized by Day 7. Treadmill exercise capacity, forelimb grip strength and in vivo 

maximum tetanic force were also reduced. Food intake was minimal until Day 4 but increased 

thereafter. This did not relate to appetite hormone levels with early (6h) rises in plasma insulin and 

leptin followed by persisting subnormal levels; ghrelin levels did not change. Serum IL-6 level 

peaked at 6h but had normalized by Day 2 whereas IL-10 remained persistently elevated and HDL 

cholesterol persistently depressed. There was an early myocardial depression and rise in core 

temperature, yet reduced oxygen consumption and respiratory exchange ratio with a loss of diurnal 

rhythmicity that showed a gradual but incomplete recovery by Day 7.  

Conclusions: This detailed physiological, metabolic, hormonal, functional and histological muscle 

characterization of a model of critical illness and recovery reproduces many of the findings reported 

in human critical illness. It can be used to assess putative therapies that may attenuate loss, or 

enhance recovery, of muscle mass and function. 
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Introduction 

Insults such as infection, trauma and hemorrhage can trigger a dysregulated release of pro- and 

anti-inflammatory mediators that, through a final common pathway, may progress to multi-organ 

failure and death. In survivors, a combination of severe inflammation, critical illness neuromyopathy, 

catabolic loss of protein, metabolic modifications, and prolonged immobility frequently results in loss 

of muscle mass and weakness. Recovery of muscle function can take many months and may be 

incomplete (1-3). Interventions shown to clearly ameliorate and/or reverse this muscle dysfunction 

are lacking. This is, in part, due to the dearth of good pre-clinical models that can evaluate both 

pathophysiologic mechanisms and the use of putative therapies.  

 Animal, particularly rodent, models of critical illness abound. However, they generally focus 

on short-term outcomes ranging from hours to a few days (4). Models examining the prolonged 

recovery phase of critical illness are rare, despite inadequate recovery being increasingly 

recognized as having a major negative impact upon long-term quality of life (2,5). Muscle biopsies 

from affected patients confirm significant atrophy and wasting (6-10), though direct inferences from 

single fiber level pathology to functional tests of muscle strength and fatigue are limited. 

Experiments utilizing in situ muscle force generation by direct nerve stimulation have been reported 

(11,12), but also have limitations, being pre-terminal and/or requiring deep anesthesia.  

 Zymosan, a cell wall glucopolysaccharide of the fungus Saccharomyces Cerevisae, signals 

via Toll-like receptor-2 to induce a non-bacterial, non-endotoxic sterile local inflammatory stimulus 

with sustained release of lysosomal enzymes, reactive oxygen species and cytokines, which triggers 

a systemic inflammatory, sepsis-like response (13). When suspended in paraffin and injected 

intraperitoneally, zymosan produces a prolonged peritonitis (14-16). Clinical features initially 

resemble bacterial sepsis with piloerection, tachycardia, fever and reduced spontaneous movement. 

Catabolism, evidenced by reduced body mass and muscle atrophy, occurs after five days or so, 
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followed by clinical recovery with resumption of feeding and restoration of lost body weight and 

muscle mass (16).  

 The aim of our study was to develop, comprehensively characterize and validate a long-term 

model of rodent critical illness and recovery, based on zymosan peritonitis, which would simulate the 

metabolic and physiological responses seen in humans. We wished to demonstrate initial weight 

loss, muscle weakness and anorexia that would recover in line with clinical recovery. We describe 

accompanying changes in total body oxygen consumption and respiratory exchange ratio, overall 

body composition, hemodynamics, muscle mass, function and histology during the recovery phase 

from critical illness. Importantly, we also describe a new electromyographic technique for sequential 

assessment of muscle function. 

Materials and Methods 

Animal model 

Male Wistar rats (Charles River, Margate, UK) of approximately 300g body weight, were singly 

housed for at least 72 hours pre-induction of peritonitis. They had free access to water and standard 

rat chow (Harlan Teklad, Madison, WI) containing 18% protein and 5% fat. Ambient temperature 

was controlled between 19-23°C and humidity at 55±10%. Lights were automatically turned on at 

07.00 hours and off at 19.00 hours. Studies were performed under UK Home Office project licence 

and guidelines under the Animals (Scientific Procedures) Act 1986. Ethical approval was given by 

the University College London Ethics Committee. 

 Zymosan A (Sigma Aldrich, St Louis, MO), mixed with liquid paraffin (Merck, Darmstadt, 

Germany) to a concentration of 25 mg/ml (14), was homogenized with an Ultra-Turrax T25 electric 

homogeniser (Janke & Kunkel IKA, Staufen, Germany) at 24000 rpm for five mins, then sterilized in 

boiling water for 90 mins, aliquoted into 25 ml samples and stored at 4°C until required. Zymosan 

(30 mg/100 gm body mass) was administered intraperitoneally (i.p.) via a 19G needle under a brief 
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period of isoflurane anesthesia. ‘Sham-treated’ animals received an equivalent volume of saline 

injection only, whereas ‘naive', non-operated animals received no i.p. injection. 

 Animals were returned to their cages following injection. Fluid resuscitation was not given 

over the duration of study. Animals were checked at least four times daily and scored to assess 

insult severity (Table 1) (17). When clinical scores had returned to normal, they were scored on a 

daily basis. Any animal displaying signs of distress, or an inability to move, right itself or respond to 

external stimuli, was culled. Some animals did not display any clinical signs of illness (thus having a 

clinical severity score of ‘0’), or lose body mass, and had normal or near-normal food intake during 

the course of the study. Animals scoring ‘0’ at 24 hours after induction of sepsis (when illness 

severity was most pronounced in affected animals) were excluded from subsequent analysis.  

Temporal analysis  

Procedures and tests described below were not all performed on the same animals. Apart from body 

weight and food intake, which were measured daily, the tests described below were performed at up 

to eight timepoints: 6 hours, and 1, 2, 4, 7, 10, 12, and 14 days’ post-administration of zymosan or n-

saline.  

Food intake, body mass and tissue mass 

Body weight and food intake were measured daily at 08.00 hours. Care was taken to collect and 

account for discarded food. After culling, gastrocnemius and soleus muscles were rapidly dissected 

and weighed before freezing in liquid nitrogen for subsequent biochemical analysis (see later). 

Core temperature 

Body temperature was measured via a rectal probe attached to a Homeothermic Monitor (Harvard 

Apparatus). 

Exercise capacity and muscle function tests:  

Videos demonstrating the functional tests are available within the Supplementary Materials  
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Forelimb grip strength 

Muscle function tests were performed using a grip strength meter (Linton Instrumentation, Diss, 

Norfolk, UK) on Days 0, 2, 5, 8 and 12. Familiarization with the grip strength meter was ensured 

over a week prior to study commencement. The forelimbs were placed on a T-bar attached to a 

force transducer shaft connected to a peak amplifier, and allowed to flex before being pulled 

horizontally away gently by the base of the tail (18). The maximum grip force exerted by the rat until 

it released its grip was recorded. This was repeated five times for each animal (at 20 second 

intervals). The mean maximum peak force (in grams) was calculated from the top three values 

obtained (18). 

Treadmill  

Exercise capacity was determined using a rodent treadmill (Harvard Apparatus, Edenbridge, Kent, 

UK) at baseline (prior to sepsis induction) and then repeated on Days 2, 4, 7 and 14. Animals were 

pre-acclimatized to the treadmill in five sessions over two days, with increasing belt speed exposure 

over a 5 min interval. Formal assessment was then made by increments in belt speed rate (by 5 

cm/s every 2 min) until animal fatigue occurred. This was determined by the inability to keep up with 

the belt speed despite a mild electric shock deterrent applied to the hind-legs when the animals 

touched the metal grid immediately behind the belt. If this occurred >3 times at one speed (19), the 

protocol was stopped. Performance time (in minutes) was used as a marker of exercise capacity.  

Hind-limb myography 

This was performed under isoflurane anesthesia with animals placed supine and temperature 

maintained at 37°C on a purpose-built rig (Harvard Apparatus) on Days 0, 2, 4, 7 and 14. Alternate 

hindlimbs, from which the fur was shaved, were tested at alternate timepoints. The hindlimb was 

fixed into position so that two needle electrodes could be inserted into the posterior muscle bulk. 

The electrodes provided an electrical stimulus via PowerLab 4/35 (ADInstruments, Oxford, UK) 

resulting in plantar flexion. A fixed length chain connecting the foot to a force transducer measured 
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the force generated by this movement. The mean of three measures of force (Newtons) was taken 

at increasing single stimuli between 1-15 V. This was followed by continuous submaximal electrical 

stimulation (electrical pulses at 12V for 0.05 seconds set at 40Hz) for 3.5 min to generate tetany. 

This enabled calculation of the submaximal tetanic force at the start of the fatigue protocol, and the 

fatigue index at 2 min (20). This index was derived from the proportion of tetanic force maintained at 

2 min compared with the initial tetanic force during the fatigue test. Examples of traces obtained are 

shown in Supplementary Figure 1. Following myography, animals recovered fully from anesthesia 

and a full range of movement was observed in the tested hind limb.  

Blood cytokine, gut hormone, and adipokine measurements 

Blood samples were taken after either culling by decapitation (truncal blood: mixed arterial-venous) 

or by cardiac puncture, and divided equally into two chilled lithium-heparin test tubes, one of which 

contained 5 mg 4-(2-Amino-ethyl)benzenesulfonylfluoride hydrochloride (AEBSF) (Sigma Aldrich, St 

Louis, MO) and 100 µl aprotinin (10,000 kIU/ml, Sigma Aldrich) for analysis of gut hormone levels21. 

Both tubes were spun immediately at 4000 g for 15 mins and the plasma aliquoted into plastic 

Eppendorf tubes, one of which contained 25 µl 1M HCl, to which 500 µl plasma from the ‘gut 

hormone’ test tube was added for preservation of active ghrelin (21). The Eppendorf tubes were 

snap-frozen in liquid nitrogen before storage at -80°C. Plasma biochemistry was analysed by The 

Doctors Laboratory, London, UK and the Department of Clinical Biochemistry, Charing Cross 

Hospital, London UK using standard analysers. Gut hormones, leptin and cytokines were measured 

in duplicate using rat-specific multiplex bead-based assays (Millipore, Billerica, MA). Readings 

greater than two standard deviations from the mean for each gut hormone at each timepoint were 

not included in the final analysis (to account for extreme outliers). 

In vivo metabolic behavior 

The Comprehensive Laboratory Animal Monitoring System (CLAMS) and Oxymax for Windows 

software (Columbus Instruments, Columbus, OH) were used to measure oxygen consumption (VO2) 

and carbon dioxide production (VCO2) in naïve rats, or sham-operated and zymosan-treated rats 
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immediately after i.p. injection. The CLAMS is an open-circuit system where a continuous supply of 

room air (set at 400 ml/min) is delivered to, in our lab, four closed tightly-sealed cages. Gas sensors 

were calibrated before each study against known concentrations of oxygen (20.5%) and carbon 

dioxide (0.05%). O2 and CO2 concentrations were measured from air sampled from each cage for 

two minutes in turn, and of room air after every fourth sample. The rats remained in the metabolic 

carts for 7 days, apart from a 5-10 min period each morning when they were weighed and their 

cages cleaned.  

Cardiac function 

Under brief isoflurane anesthesia, spontaneously breathing rats with shaved chests underwent 

echocardiography (Vivid 7 DimensionTM, GE Healthcare, Bedford, Beds, UK) with a 14 MHz probe at 

0-2 cm depth, as previously described (22). Fractional shortening was calculated from internal left 

ventricular dimensions during at end-diastole and systole taken from parasternal short-axis views by 

M-mode (two-dimensional) echocardiography. Heart rate and respiratory rate were measured from 

these recordings. Pulsed wave Doppler measured aortic flow velocity in the aortic arch, with colour 

Doppler confirming the direction of flow. Stroke volume was calculated as the product of the velocity-

time integral of each waveform and aortic cross-sectional area, assuming an aortic diameter of 0.28 

cm (23). Cardiac output was computed as the product of stroke volume and heart rate. Studies were 

performed sequentially in the same animals pre-intraperitoneal injection, and on days 2, 4, 7 and 14. 

In separate studies, echocardiography was performed at 6h or 24 h post-injection just prior to culling 

for blood and tissue sampling.  

Rodent body composition 

In some studies, rats were culled on Day 12 by cervical dislocation under isoflurane anesthesia. The 

contents of the gastrointestinal tract were cleared manually, and any intra-abdominal fluid removed. 

The carcass was then frozen at -80°C, before being dissolved in 1 ml 3M KOH in 65% ethanol 

(VWR, Radnor, PA) per 1g carcass mass, sealed in a plastic pot and placed in an oven at 70°C for 5 
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days. The bones were removed by passing the liquid through a sieve and the total amount of liquid 

was then made up to 1000 ml by addition of 100% ethanol. From this a sample of fluid was removed 

and stored for analysis of protein and fat content. 

 Carcass protein and fat content were determined using a modified Lowry Protein Assay kit 

(Thermo Scientific, Rockford, IL) and a glycerol assay (Randox, Crumlin, Co. Antrim, N Ireland), 

respectively. The glycerol assay kit included all of the necessary reagents with the exception of the 

glycerol standard, for which 1M glycerol (VWR) was used.  

RNA isolation, cDNA synthesis and real-time PCR 

Total RNA was extracted from 20-30 mg gastrocnemius muscle using the RNeasy Fibrous tissue 

mini kit (Qiagen, Courtaboeuf, France) (24). cDNA was generated from 400 ng RNA using iScript 

cDNA synthesis kit (Bio-Rad, Marnes-la-Coquette, France). The selected forward and reverse 

primer sequences are listed in Supplementary Table 1. Real time PCR was performed in 20 µl final 

volume and optimized concentrations for each primer using the SsoFast EvaGreen Super mix (Bio-

Rad) and a CFX96 Real Time PCR Detection System, C1000 Thermal Cycler (Bio-Rad). Beta-actin 

was used to normalize the expression levels of genes of interest. Primers were designer using 

Primer 3 software from gene sequences obtained from GenBank. Primer specificity was determined 

using a BLAST search. 

Muscle histology 

Animals culled on Days 2, 7 and 14 had gastrocnemius and soleus muscle dissected and rapidly 

frozen in 2-methylbutarate (Merck) cooled with liquid nitrogen before storage at -80°C until 

sectioning. These animals did not undergo exercise training nor the tests of muscle function 

described above. Serial cryostat sections were cut at 8 µm (OTF, Bright, Huntingdon, UK) and 

embedded in OCT (Sakura Finatek, Tatcham, UK).  

 Staining with hematoxylin and eosin (H&E) was performed on a ST5020 Multistainer (Leica 

Biosystems, Milton Keynes, UK). Muscle pathology was assessed by a neuropathologist blinded to 
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group and sampling time. H&E stained sections were assessed semi-quantitatively for necrosis, 

regeneration and atrophy in five randomly selected high power fields on a Leica bright field 

microscope: 0, 1-3 (mild), 4-9 (moderate), and ≥10 and/or focal clustered or circumscribed pathology 

(marked). Assessment of regenerating fibers was limited to recognition of early phase regeneration 

(intensely basophilic small fibers with large central nuclei resembling myotubes) and late phase 

regeneration (mature sized fibers with internalised nuclei). It was not possible to reliably distinguish 

regenerating fibers between these two phases from fibers undergoing atrophy as both can appear 

slightly basophilic and granular in H&E stained sections. Inflammation was assessed for its cellular 

type, location (perimysium, endomysium and/or blood vessels) and graded semi-quantitatively (0 

none, 1 mild, 2 moderate, 3 severe). Intramuscular motor nerves were not assessed. 

 For cell morphometry, myofiber size was assessed by measuring fiber diameter (FD). 

Immunohistochemical labelling with alpha sarcoglycan (Leica NCL-L-a-SARC, NovocastraTM), a 

muscle-specific membrane protein, (concentration: 1:200, incubation period: 1 hour at room 

temperature) was performed using an automated staining machine (IntelliPATH FLXTM, A. Menarini 

Diagnostics, Wokingham, UK). Horseradish peroxidase-conjugated streptavidin complex and 

diaminobenzidine were used as chromogen. Images were digitized on a LEICA SCN400 scanner for 

subsequent digital image analysis using Definiens. Each section was screened prior to analysis to 

ensure inclusion of regions sectioned optimally in the transverse plane and to exclude regions of 

perimysial connective tissue, focal folds and other artefacts. The mean normal fiber size range in 

naïve animal gastrocnemius and soleus muscle was established by measuring lesser fiber diameter 

in approximately 100 optimally transversely sectioned fibres in random fields. In all samples, 

myofibers <15 micron diameter with angular or polygonal profiles were designated atrophic. Fibers 

adjacent to myotendinous insertions show increased fiber size variability and internal nuclei as a 

normal histological feature and were therefore excluded from the atrophy and regeneration count.  

Statistical analysis 
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Animals that developed clinical signs of recurrence of illness (after previous recovery), or began to 

lose weight after having previously been gaining weight, were a priori excluded from analysis. Data 

were checked for normality using the Shapiro-Wilk test and are presented as mean and standard 

deviation. For comparisons between unpaired groups for change in body mass, food intake, and 

area-under-the curve from the metabolic carts, the Kruskal-Wallis test with Dunn’s post hoc analysis 

was used. Unpaired Student’s t tests were performed for comparison of the change in body 

composition between zymosan and naïve groups. Two-way ANOVA with post hoc Bonferroni 

analysis was performed for statistical analysis of biochemical, gut hormone, cytokine, blood gas, 

echocardiography, atrogene and muscle strength and fiber diameter measurements. Statistical 

analyses were performed with GraphPad Prism computer software (Version 5.00 for Windows, 

GraphPad Software, San Diego, CA). Statistical significance was set at the 5% level.  

 

Results  

For details of animal numbers tested in the separate studies, see Supplementary Table 2. No naïve 

or sham-treated animal died prematurely. In accord with previous reports (14), of the 150 zymosan-

treated animals, 15 were excluded as they were not clinically affected, while one had a fluctuating 

course of weight loss and intermittent partial weight gain without ever surpassing its original body 

mass and so was also excluded a priori. The 24 hour clinical severity score was similar between 

groups of zymosan-treated animals culled at 24 hours, Day 2, 4, 7 or 12 (p=0.40). The naïve and 

sham groups remained healthy throughout (Score 0). Of note, despite receiving the same insult, the 

macroscopic appearances of the peritoneal cavity in zymosan-treated animals varied greatly on 

post-mortem examination, from normal to showing considerable fibrous tethering of the visceral 

organs, small abscesses and serous fluid. While not formally assessed, these changes appeared to 

correlate with both clinical severity and recovery of body mass.  

Food intake, body mass and impact of clinical severity (Fig 1) The initial body mass pre-insult 

(range 274-333 g) was similar between groups, stratified by either intervention or by day culled. In 
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naïve and sham animals, body weight increased in a similar, near-linear fashion (Fig 1a), with both 

groups gaining 29% at 12 days. Animals receiving zymosan initially lost weight, reaching a nadir of 

12% weight loss at Day 4. They regained baseline weight by Day 7 and, by Day 12, had increased 

body weight by 13.3%. Loss of weight at Day 4 was severity-dependent (Fig 1b). Cumulative food 

intake (Fig 1c) was significantly reduced in the zymosan group (p<0.001 compared to naïve and 

sham animals) with daily intake being significantly lower until Day 6. Animals with a 24-hour severity 

score ≥1 (range 1-4, mean 3) had a significantly lower food intake over 12 days compared to 

clinically unaffected (Score 0) zymosan-treated animals. (Fig 1d)  

Muscle mass and body composition (Fig 2) 

Over the first week, zymosan-treated animals (n= 8) had reduced muscle mass with significant 

reductions in wet gastrocnemius mass at Days 2, 4 and 7, and soleus mass at Day 4 and 7 (Fig 2a, 

b). Total body protein content (Fig 2c) and, in particular, fat content (Fig 2d) were significantly lower 

in the zymosan group. 

Regulators of skeletal muscle mass (Fig 3) 

The mRNA levels of several critical regulators of skeletal muscle mass (‘atrogenes’) were 

determined in naïve and zymosan-treated animals, including myostatin, a muscle-secreted protein 

that negatively regulates skeletal muscle mass (25, 26); MAFbx and MuRF1, two E3-ubiquitin 

ligases involved in the control of ubiquitin-proteasome-dependent proteolysis (27, 28); microtubule-

associated protein 1 light chain 3 β (LC3b), an important regulator of the autophagy-lysosome-

dependent pathway29; and cathepsins B and L, two lysosomal proteases (29, 30). Zymosan induced 

a marked increase in the mRNA level of these genes, the expression of which peaked at day 2 

(MAFbx, MuRF1, LC3b, cathepsin B and cathepsin L) or day 4 (myostatin). Transcript levels 

returned to baseline values by day 7. 

 

Metabolic monitoring (Fig 4) 



	  

15	  

In separate 7-day experiments, oxygen uptake and carbon dioxide production were measured 

continually in metabolic cages, from which the respiratory exchange ratio (RER) was calculated. 

Naïve and sham animals had virtually identical traces with clear diurnal variation. In contrast, 

zymosan induced a rapid and marked depression of VO2 and VCO2 with a significant fall in RER that 

did not recover until Days 5-6. Notably, there was complete loss of diurnal rhythmicity with zymosan 

that had not recovered by Day 7.  

Cardiac function (Fig 5) 

Cardiac function measured sequentially by echocardiography under brief anesthesia on Days 2, 4, 7 

and 14 revealed initial myocardial depression in the zymosan-treated animals, with a significant 

decrease in stroke volume at Day 2 (p=0.002). Heart rate was initially unchanged but was 

significantly lower in the zymosan group from Day 4 onwards, and this persisted until Day 14 

(p=0.006). In a separate group of animals (culled immediately after echocardiography), no difference 

was seen in any variables measured at 6 hours’ post-zymosan. However, by 24 h, heart rate was 

significantly raised and stroke volume had fallen by approximately 50% in the zymosan animals. 

Cardiac output was correspondingly reduced (Supplementary Table 3). By 24 hours, core 

temperature was significantly elevated in the zymosan group (Supplementary Fig 2a).  

Muscle function (Fig 6)  

Forelimb grip strength was measured on Days 0, 2, 5, 8 and, 12 (Figs 6 a,b). Whereas grip strength 

in naïve rats progressively increased from Day 5 onwards with a 18±7% rise by Day 12, grip 

strength in the zymosan animals initially fell (-14±6% on Day 2) and had still not returned to baseline 

values by Day 12. The loss of grip strength seen in the zymosan animals reflected their reduced 

body mass (Figure 6b). 

In separate studies, treadmill testing undertaken on Days 0, 2, 4, 7 and 14 showed a significant 

decrease in exercise capacity in the zymosan group that had not recovered by Day 14 (Fig 6c). In 

vivo myography performed in these animals at the same timepoints revealed a significant fall in 
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contractile strength at Day 2 (Fig 6d). Maximum tetanic force measured at the start of the fatigue 

studies (where a submaximal electrical stimulation was applied) also decreased significantly in the 

zymosan group at Day 2 (Supplementary Fig 3). The persistently lower mean fatigue index in 

zymosan-treated animals, did not reach statistical significance (p=0.12) (Fig 6e). 

Plasma electrolyte, hepatic, lipid and hormone biochemistry, and cytokine levels (Fig 7) 

Sham-treated and naïve animals showed similar electrolyte, lipid and hormone profiles. There was 

an initial deterioration in renal function, as denoted by significant elevations in plasma urea and 

creatinine (Figs 7 a,b). Alkaline phosphatase showed a later peak (Day 4) in the zymosan group but 

normalized by Day 7, whereas alanine transaminase fell significantly at 24h and remained low 

thereafter (Fig 7c and 7d). Bilirubin levels did not change (data not shown). Total cholesterol was 

significantly lower in zymosan-treated animals at 1-2 days’ post-insult while HDL cholesterol 

remained suppressed from Day 1 through to Day 7 (Figs 7e,f). 

 Interleukin-6 (IL-6) was significantly elevated at 6 hours in zymosan-injected animals 

compared to naive, but had normalized by Day 2 (Fig 7g). On the other hand, interleukin-10 (IL-10) 

remained elevated throughout (Fig 7h).  

 Plasma leptin and insulin levels showed a similar pattern after zymosan, with an early 

elevation at 6 hours, but a significant fall from Day 2 which had not recovered by Day 7 (Figs 7i,j). 

There were no significant differences in either plasma glucose or ghrelin levels between groups at 

any timepoint (data not shown). 

 Hemoglobin levels in zymosan treated-animals were elevated compared to naïve rats at Day 

2 (14.8 ± 0.24 g/dl vs. 12.9 ± 0.44 g/dl, p<0.05) (Suppl Fig 2b) but fell to similar levels by Day 7 and 

continued to fall thereafter (Days 12 and 14).  

Muscle histology (Figs 8,9)  
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Muscle from naïve animals was histologically normal with no necrosis or inflammation and <1% of 

fibers showing atrophy or internalised nuclei. Across both sham and septic groups, gastrocnemius 

was histologically normal or showed rare isolated atrophic or necrotic fibers. However, soleus 

demonstrated mild-to-moderate scattered atrophic and necrotic fibers and perimysial inflammation in 

varying combinations in 9 of 10 sham animals. The septic group showed pathological changes from 

Day 2 through Day 14 with moderate-to-marked pathology in one or more domains (predominantly 

scattered myofiber atrophy and necrosis), most frequently seen in Day 7 samples. None of the septic 

animals showed complete resolution by Day 14, with moderate-to-severe changes persisting in half. 

Inflammation primarily centred on the perimysium with macrophages predominating, and with 

accompanying edema and focal extension into the fascicles. Regeneration was mostly observed in 

Day 7 and Day 14 septic samples, with scattered smaller and mature-sized fibers as well as focally 

accentuated or prominent circumscribed regeneration. Very early stage regenerating fibers 

resembling myotubes were virtually never observed. Examples of histological abnormalities seen in 

soleus muscle are shown in Fig 8. 

 The mean myofiber diameter of gastrocnemius (p=0.02) and soleus (p<0.001) was 

significantly reduced in the zymosan-treated group. Maximal change (-12%) was seen for 

gastrocnemius at Day 2, while for soleus a nadir of 15% was seen on both Days 7 and 14. In 

comparison to naïve samples, the spread of myofiber size was smallest in both muscle types on Day 

2 (Fig 9). 

Discussion 

We aimed to develop a well-characterized long-term zymosan peritonitis model that would provide a 

useful and clinically relevant laboratory model of human critical illness and recovery by extensive 

characterization of cardiovascular, muscle, hormonal, and metabolic profiles. An early loss of body 

mass, muscle mass, total protein and fat, with reduced food intake, metabolic derangement and 

cardiovascular and functional muscle compromise correlated with the clinical severity of illness. 

Recovery in body weight and muscle functionality was slow with many aspects of muscle function 
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and strength, and metabolic and hormonal profiles not recovering, even after 1-2 weeks. Soleus 

muscle histology showed persisting inflammation, atrophy and necrosis, with some evidence of 

regeneration in the recovery phase. This model thus reflects changes reported in patients suffering 

from critical illness (10, 31, 32). 

 As with critically ill patients, there is considerable heterogeneity in the individual host 

response in these rats. Regardless of an identical insult being given to animals of similar age, 

gender and rearing, some responded with negligible clinical severity whereas others became 

critically ill and even succumbed. Acknowledging this variability, zymosan-treated animals were 

excluded a priori if their 24-hour clinical severity score was zero, or if a secondary deterioration 

occurred after several days of clinical improvement. Clinically unaffected animals maintained a near-

normal food intake throughout, and with minimal consequences on body mass, plasma biochemistry 

and echocardiography. Of note, we previously demonstrated variability at clinical, biochemical and 

molecular levels in a 3-day rat model of fecal peritonitis, with distinct hemodynamic and gene 

transcriptomic profiling as early as 6 hours that enabled survival prognostication (17, 22).  

 The choice of species is important in extrapolating findings to the human response to critical 

illness. Seok et al demonstrated marked differences in the transcriptomic response between mice 

and humans suffering burn, trauma and endotoxemic insults (33). We recently reported that mice 

become rapidly hypothermic, hypoglycemic and profoundly hypometabolic within hours of a fecal 

peritonitis insult; by contrast, the phenotype in rats is more comparable to septic humans (34). 

 The focus of this present model was on the recovery phase following critical illness. We 

therefore specifically opted to minimize interventions such as vascular line placement, fluid 

administration and antibiotics, though ad libitum access to food and water was permitted. Timepoints 

were chosen to capture the clinical nadir and subsequent recovery period.  

 Our zymosan model suffered an initial 10-15% weight loss before recovering to baseline 

between days 5-8. Food intake was low for the first two days, but gradually increased to normal over 
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the next 3-4 days. These findings were less severe than those reported by Minnaard et al (16). In 

conjunction with the weight loss there was a marked reduction in total body protein and fat mass. 

 Each degree rise in temperature is associated with a 10-15% increase in oxygen 

consumption (35). Notwithstanding an early rise in core temperature that persisted for at least 24 

hours in the zymosan group, there was an early marked fall in oxygen consumption (~25-30%) that 

persisted for several days, with an ongoing loss of diurnal rhythmicity. While decreased activity 

levels and food intake contribute to this decrease in metabolic rate, by Day 7 there was an obvious 

improvement in clinical severity and near-normalization of food intake. Other mechanisms need to 

be considered, including decreases in ATP-coupled respiration as a consequence of mitochondrial 

dysfunction and a greater degree of uncoupled respiration that would account for the pyrexia despite 

decreased muscular activity and food oxidation (36-38). In man, oxygen consumption rises in the 

early phase of uncomplicated sepsis, but then normalizes as organ dysfunction develops (39). In 

survivors, a rebound increase in oxygen consumption occurs during the recovery phase (39, 40). In 

human sepsis there are many interventions that either increase (e.g. inotropes, feeding, fluid 

resuscitation) or suppress (e.g. sedation, mechanical ventilation, antipyretics) metabolism, but which 

are avoided in a ‘purer’ laboratory model. This human pattern was not directly reflected in our 

zymosan model. 

 The fall in respiratory exchange quotient reflects the shift towards oxidation of endogenous 

fat and protein. This is due to both the decrease in food intake and to an inflammation-related shift in 

substrate utilization. This is consistent with the marked decrease in muscle mass and total body fat 

and protein stores. A very similar pattern was seen with plasma leptin and insulin levels in response 

to zymosan, with an early increase over naïve and sham groups at 6 hours, normalization at 24 

hours, and marked and persisting subnormality from Day 2 onwards, despite progressive clinical 

recovery and increased food intake. The early rise in leptin may be related to an involvement in the 

acute inflammatory response, while the subsequent fall may reflect reduced body fat stores (41). 

Plasma insulin, like leptin, correlates with body fat when fasting and after ingestion of food or 
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carbohydrate (42, 43). Insulin resistance is a well-recognised feature of critical illness (44). 

Peripheral insulin has intrinsic anabolic actions that can prevent muscle protein breakdown (45, 46). 

The low levels seen in our model during recovery may partly explain the enduring reduction in 

muscle mass observed in the zymosan-treated animals. Unlike humans (47), no change in ghrelin 

was detected in the septic animals. 

 The initial rise in hemoglobin following zymosan likely reflects initial hemoconcentration due 

to volume depletion from decreased fluid intake and increased capillary leak, whereas the 

subsequent anemia seen after Day 7 is probably related to bone marrow suppression and 

erythropoietin resistance caused by sepsis. 

 To our knowledge, no temporal assessment has been made of muscle function during 

sepsis. Treadmill exercise capacity has been assessed in animal models of heart failure (48, 49), 

diabetes (50), aging (51, 52) and skeletal muscle pathophysiology (53-56). Motorised rodent 

treadmills have been used in sepsis models though as a means of determining the impact of 

endurance training on outcomes (57-60). The early and persisting fall in treadmill exercise capacity 

reflected the decrease in grip strength and the myography fatigue index shown with repetitive twitch. 

Our in vivo myography technique offers a novel means of monitoring sequential changes in muscle 

function as it allows full recovery of the animal following assessment while employing the same 

principles of electrical stimulation and fatigue as described elsewhere. As electrode placement is in 

the hind-limb muscle bulk, the set-up limits determination of individual muscle performance, but is 

rather more comparable to compound muscle forces that occur physiologically. 

 Previous sepsis models have used terminal experiments to assess muscle contractility at a 

single timepoint. Following cecal ligation and puncture, reduced contractile force and increased 

fatigue were shown in rat soleus at 7 days (7), and extensor digitorum longus at 10 days (8). In both 

these studies, the distal tendon was attached to a force transducer with complete denervation of the 

surrounding musculature. Minaard and colleagues assessed neuromuscular function in zymosan 

peritonitis by direct peroneal nerve stimulation, primarily affecting the tibialis anterior. Reduced 



	  

21	  

torque measurement was seen in zymosan treated rats compared to controls by day 6 and 

improvement was seen by day 11, albeit not to pre-insult levels. Tibialis anterior is a fast twitch 

muscle with predominantly type II fibers (61) that causes dorsiflexion. This may be affected 

differently from muscle groups causing plantar flexion, as assessed in our model. Here, multiple 

muscle fiber types are active, in particular soleus which is predominantly a slow-twitch, 

mitochondria-rich muscle with a large percentage of type I fibers. 

 Histopathological analysis revealed tissue damage in the form of macrophage-predominant 

fascial inflammation, edema and a necrotising myopathy consistent with observations in septic 

humans. Interestingly, gastrocnemius was virtually unaffected, whereas soleus bore the brunt of the 

pathological changes. Rat gastrocnemius is composed of multiple fiber types with type II subtypes 

predominating in the white, superficial portion and a higher type I content in the red, deep portion. 

Importantly, the histopathological changes do not represent an artefact of secondary damage 

induced by either electromyographic electrode insertion or exercise as samples were also taken 

from non-exercised, non-tested animals and showed similar changes. Despite improvements in 

functional, biochemical and metabolic parameters, at a cellular level there was ongoing 

inflammation, necrosis, atrophy and regeneration in the septic animals beyond day 7, with 

considerable variation in severity between individual animals.  

 The increased expression of MAFbx and MuRF1 strongly suggest involvement of the 

ubiquitin-proteasome pathway in zymosan-induced muscle mass loss, as previously reported (16). 

Increased expression of MAFbx and MuRF1 was demonstrated in C2C12 myotubes incubated for 

24 hours with plasma pooled from septic patients at different timepoints in their ICU admission (62). 

Importantly, plasma incubation was associated with a concomitant fall in myosin content. We 

previously reported activation of the ubiquitin-proteasome pathway in skeletal muscle biopsies taken 

from septic patients (63). As observed for MAFbx and MuRF1, an increase in LC3b, cathepsin B and 

cathepsin L mRNA levels paralleled the decrease in muscle mass induced by zymosan injection, 

implying involvement of the autophagy-lysosome pathway in muscle catabolism. These data agree 
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with previous observations that cathepsin L mRNA and protein level are both increased in skeletal 

muscle of septic rats (64). Overall, these data support a role for both ubiquitin-proteasome and 

autophagy-lysosome dependent proteolysis in the zymosan septic model. Myostatin expression did 

not parallel expression of either ubiquitin-proteasome- or autophagy-lysosome-related genes, 

suggesting that myostatin signalling is probably not involved in the regulation of these genes. 

 In summary, we have performed a detailed metabolic, hormonal, muscle functional and 

histological characterization of a long-term rodent model of critical illness induced by intraperitoneal 

injection of zymosan, with a novel assessment of muscle functionality. This reflects many, though 

not all, of the features reported in human critical illness. This model appears useful for investigating 

changes occurring during critical illness, and for assessing putative therapies that may attenuate 

loss, or enhance recovery, of muscle mass and function. 
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Figure legends:  

Figure 1. Effect of zymosan on body mass and food intake.  

Rats were studied at 1, 2, 4, and 7 days after i.p. injection of zymosan (30 mg/100 g body mass), n-

saline (Sham), or no injection (Naive). Zymosan-injected animals with a clinical score of 0 at 24 

hours were excluded from analysis. Change in (a) body mass and (c) cumulative food intake are 

shown (zymosan-injected animals with a clinical score of zero at 24 hours were excluded from 

analysis.) Data are expressed as mean (±SD). n=4 (Naive); n=4 (Sham) n=5-8 (Zymosan). Also 

shown are the effects of zymosan on 12-day body mass and food intake according to clinical score 

at 24 hours. (b) Change in body mass and (d) total food intake are shown for naïve animals (n=5) 

and zymosan-treated animals with a clinical severity score of either 0 (n=8) or 1-4 (n=22). Data are 

expressed as median ± IQR (box) and range (whiskers). ** p<0.01 vs. Naive; ***p<0.0001 vs. Naive; 

+p<0.05 vs. Score 0; ++p<0.01 vs. Score 0 

 

Figure 2. Effect of zymosan on wet muscle mass and body composition.  

Mass of (a) gastrocnemius and (b) soleus muscles taken from the left leg at 2, 4, or 7 days after i.p. 

Zymosan (n=5-8), n-saline (Sham, n=4), or no injection (Naïve, n=4) are shown. Data are expressed 

as mean (±SD). Day 12 total body protein (c) and fat (d) mass are shown for animals receiving no 

intervention (Naïve, n=8) or Zymosan (n=12). Data are expressed as mean (±SD). **p<0.01 vs. 

Naive; ***p<0.0001 vs. Naive. +p<0.05 vs. Sham 

 

Figure 3. Effect of zymosan on atrogene RNA expression in skeletal muscle.  

Relative expression of (a) MAFBx, (b) MuRF1, (c) LC3b, (d) Cathepsin B, (e) Cathepsin L, and (f) 

Myostatin as a percentage of control samples. Data are expressed as mean (±SD). *p<0.05 vs. 

Control; *p<0.05 vs. Control **p<0.01 vs. Control; +p<0.05 vs. Day 2; ++p<0.01 vs. Day 2 
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Figure 4. The effect of a single intraperitoneal injection of zymosan on oxygen consumption 

and respiratory exchange ratio over 7 days. (a) Oxygen consumption, (b) carbon dioxide 

production and (c) respiratory exchange ratio (VCO2/VO2) were measured for 7 days after injection 

of i.p. zymosan (n=8), i.p. n-saline (Sham, n=4), or no injection (Naïve, n=4). Readings are shown 

from 12.00 pm on the first day. The insert graphs depict the area under the curve, analysed by 

ANOVA. Data are expressed as mean (±SD). *p<0.05 vs. Naïve and Sham 

 

Figure 5. Effect of zymosan on physiologic and echocardiographic parameters.  

Sequential measurement of zymosan injected (n=6) and naïve (n=6) animals at Baseline, 2, 4, 7, 

and 14 days of (a) heart rate, (b) stroke volume, and (c) cardiac output were undertaken. Zymosan-

treated animals with a clinical score of 0 at 24 hours were excluded. Data are expressed as mean 

(±SD). *p<0.05 vs. Naïve 

 

Figure 6: Effect of zymosan on forelimb grip strength, exercise capacity, sequential force 

generation with increasing electrical stimulation, and fatigue studies. 

Grip strength was measured at baseline and on Days 2, 5, 8 and 12 after injection of i.p. zymosan 

(n=9), or no injection (Naïve, n=5) using a grip strength meter (a). Results corrected for body mass 

(b) are also shown. Treadmill performance time (c), in vivo myography (d), and change in the 

maximal tetanic force generated on submaximal electrical stimulation (e) was measured at baseline, 

2, 4 and 7 days following zymosan (n=7-16) and naive (n=7-10), with additional animals undertaking 

treadmill and myography tests on Day 14 (zymosan n=5-8, naive n=3-4). Data are expressed as 

mean (±SD). *p<0.05 vs. Naive 
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Figure 7: Effect of zymosan on plasma electrolyte, hepatic & lipid biochemistry, cytokine,  

insulin, and leptin levels.  

Plasma levels of (a) urea, (b) creatinine, (c) ALP, (d) ALT, (e) total cholesterol, (f) HDL cholesterol, 

(g) IL-6, (h) IL-10, (i) insulin, and (j) leptin were measured at 6 and 24 hours, and Days 2, 4, and 7 

after injection of i.p. zymosan (n=5-10), i.p. n-saline (Sham, n=3-4), or no injection (Naïve, n=3-5). 

Data are expressed mean (±SD). *p<0.05 vs. Naïve; **p<0.01 vs. Naïve; ***p<0.001 vs. Naïve 

 

Figure 8. Examples of histopathological changes.  

Near-normal histology was frequently seen in the septic gastrocnemius (a). Sham soleus samples 

had mild-moderate change with scattered necrotic fibers (black arrows, b). Areas of clustered 

necrotic and atrophic fibers with fascial inflammation (black arrow, c) seen in septic soleus. More 

florid change with myofascitis and confluent necrosis occurred in some septic soleus samples (d). 

 

Figure 9: Effect of zymosan on myofiber diameter of soleus and gastrocnemius. 

Mean fiber diameters on Days 2 (n=4), 7 (n=6) and 14 (n=8) following i.p. zymosan are shown in 

frequency histograms for gastrocnemius (a) and soleus (b) with comparison against naïve 

specimens (n=4). Sham controls (n=4 per timepoint) are also shown (c and d).  

 

Supplementary Figure 1:  Schema of typical myography traces.  

Following calibration with a known weight (1), three measures of plantar flexion force are made at 

sequentially increasing voltages from 1 to 15V (2). Fatigue is generated by applying repetitive 

electrical impulses with a height and width of 12V and 0.05s respectively set at 40Hz for 3.5 min 
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(3). Maximum tetanic force (Tmax) and tetanic force at 2 min (T2 min) can be recorded to calculate the 

fatigue index such that; Fatigue index = T2 min/Tmax  

 

Supplementary Figure 2. Effect of zymosan on core temperature and hemoglobin.  

Core temperature (a) was measured at 6 and 24 hours after injection of i.p. zymosan (n=7-8), i.p. 

n-saline (Sham, n=4), or no injection (Naïve, n=4-5). Hemoglobin (b) was also measured at 6 and 

24 hours, and Days 2, 4, 7, 12 and 14 after injection of i.p. zymosan (n=5-10) or no injection 

(Naïve, n=3-5). Zymosan-treated animals with a clinical score of 0 at 24 hours were excluded. Data 

are expressed mean (±SD). **p<0.01 vs. Naïve; +p<0.05 vs. Sham. 

 

Supplementary Figure 3: Changes in sequential force generation with increasing electrical 

stimulation 

In vivo myography was performed at baseline (a), Day 2 (b), Day 4 (c) and Day 7 (d) following 

zymosan (n=16) and no injection (n=10). Further tests were done on Day 14 (e) in the septic (n=8) 

and naïve group (n=4). Data expressed as mean (±SD). 2-way ANOVA used for data analysis with 

post-test Bonferroni. * p<0.05, ** p<0.01, *** p<0.001   

 

Supplementary Table 1: Oligonucleotide primers used for PCR analysis 

Gene GeneBank 

accession no. 

Primer sequences 5’–3’ 

Actb  NM_031144.2 Fwd: GTC CAC CCG CGA GTA CAA CCT T  
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(Actin beta) Rev: TTG CAC ATG CCG GAG CCG TT 

Atg5  

(Autophagy related gene 5) 

NM_001014250.1 Fwd: TGT CTC TGC TGT CCT GTT GG  

Rev: GGA GCC AAA AAG GAA AAA GG 

Bnip3  

(BCL2/adenovirus E1B 

19kDa interacting protein 3) 

NM_053420.3 Fwd: AGA TTG GAT ATG GGA TTG GTC AAG  

Rev: CCC TTT CTT CAT AAC GCT TGT G 

Ctsb  

(Cathepsin B) 

NM_022597.2 Fwd: CCA TCG CAC AGA TCA GAG AC  

Rev: CCA CAT TGA CTC GGC CAT TG 

Ctsl1  

(Cathepsin L1) 

NM_013156.2 Fwd: CAC AAT GGG GAG TAC AGC AAC  

Rev: TGT GCT TCT GGT GGC GAT AG 

LC3b  

(microtubule-associated 

protein 1 light chain 3 beta)  

NM_022867.2 Fwd: ACG GCT TCC TGT ACA TGG TC  

Rev: GTG GGT GCC TAC GTT CTG AT 

MAFbx/atrogin-1  

(F-box protein 32)  

NM_133521.1 Fwd: TCC GTG CTG GTG GGC AAC AT  

Rev: AAG CAC ACA GGC AGG TCG GT 

MuRF1  

(Muscle RING finger 1) 

NM_080903.1 Fwd: TGC AGC GGA TCA CTC AGG AGC A  

Rev: TGA GCG GCT TGG CAC TCA GA 

Mstn  

(Myostatin)  

NM_019151.1 Fwd: TGA CGG CTC TTT GGA AGA TGA CGA  

Rev: ATA TCC ACA GCT GGG CCT TTA CCA 

 



	  

35	  

Supplementary Table 2: Animal use 

 Temperature, 

muscle mass, 

6 & 24 hr echo, 

biochemistry, 

cytokines, gut 

hormones‡$ 

Grip Body 

composition$ 

Twitch, 

treadmill, 

histology# 

 

Sequential 

echo 

Metabolic 

cart 

†† 

Used 37 10** † 12** 24 6 9 

Died/culled 21 5 0 0 4 4 Zymosan 

Excluded* 6 5 3 0 0 1 

Naïve 21 5 8 16 6 5 

Sham 20 5 − − − 5 

* On the basis of clinical score 0 at 24 hours 

‡ Not all animals were used for all measurements 

† One of these animals was unwilling to perform grip strength measurements so was excluded 

from the subsequent analysis 

$ Hemoglobin concentrations were obtained from animals already counted in the Body composition 

and Temperature groups, and from 5 additional animals (3 zymosan, 2 naive) from another 

experiment not listed here 

** These groups were combined to obtain the food intake and body mass data (Fig 1) 

†† Incomplete data was obtained from one animal in each group and these three animals were not 

included in the subsequent analysis 

# Histological analysis included 4 additional naïve animals  
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Supplementary Table 3: Echocardiographic parameters  

Heart rate 

(beats/min) 

Stroke volume 

(ml) 

Cardiac output 

(l/min) 

 

6 hours 24 hours 6 hours 24 hours 6 hours 24 hours 

Zymosan 433 (29) 479 (29)+++ 0.29 (0.07)** +++ 0.22 (0.05) 125 (25) 106 (27) ** ++ 

Sham 427 (35) 391 (30) 0.35 (0.02) 0.39 (0.06) 146 (10) 151 (16) 

Naive 435 (28) 436 (48) 0.33 (0.04) 0.35 (0.06) 143 (10) 152 (22) 

 

At 6 and 24 hours after i.p. zymosan (n=7-8), i.p saline (sham, n=4) or no intervention (naïve, n=4-5). Data 

are expressed as mean (±SD). **p<0.01 vs. Naive; ++p<0.01 vs. Sham: +++p<0.001 vs. Sham 

 

 


