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Abstract

For challenges associated with the ageing population, robot assistants are becoming a promising

solution. Human-Robot Interaction (HRI) allows a robot to understand the intention of humans

in an environment and react accordingly. This thesis proposes HRI techniques to facilitate the

transition of robots from lab-based research to real-world environments.

The HRI aspects addressed in this thesis are illustrated in the following scenario: an elderly per-

son, engaged in conversation with friends, wishes to attract a robot’s attention. This composite

task consists of many problems. The robot must detect and track the subject in a crowded

environment. To engage with the user, it must track their hand movement. Knowledge of the

subject’s gaze would ensure that the robot doesn’t react to the wrong person. Understand-

ing the subject’s group participation would enable the robot to respect existing human-human

interaction.

Many existing solutions to these problems are too constrained for natural HRI in crowded

environments. Some require initial calibration or static backgrounds. Others deal poorly with

occlusions, illumination changes, or real-time operation requirements. This work proposes

algorithms that fuse multiple sensors to remove these restrictions and increase the accuracy

over the state-of-the-art.

The main contributions of this thesis are:

1) A hand and body detection method, with a probabilistic algorithm for their real-time asso-

ciation when multiple users and hands are detected in crowded environments.

2) An RGB-D sensor-fusion hand tracker, which increases position and velocity accuracy by

combining a depth-image based hand detector with Monte-Carlo updates using colour im-

ages.

3) A sensor-fusion gaze estimation system, combining IR and depth cameras on a mobile robot

to give better accuracy than traditional visual methods, without the constraints of tradi-

tional IR techniques.

4) A group detection method, based on sociological concepts of static and dynamic interactions,

which incorporates real-time gaze estimates to enhance detection accuracy.
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method alternating between positive and negative values. This will cause the

wrong root of the sensor fusion method to be chosen, resulting in a gaze angle

of approximately 15° for the given experiment. . . . . . . . . . . . . . . . . . . . 153
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Chapter 1

Introduction

1.1 Background

In the modern world, robots are used in a wide range of environments for a diverse number

of applications. Currently, the most successful robotic applications are in industrial plants,

laboratories and other highly structured environments. Autonomous mobile robots have not

yet reached a level of maturity, where they can operate effectively in unconstrained, real-world

environments. Many complications exist in developing mobile robots with autonomous opera-

tion in such settings; Human-robot interaction (HRI), robot navigation, and robot-environment

interaction are all complex research topics with many unsolved difficulties. However, as mobile

robot complexity increases, so does the range of applications that they can perform.

Human-robot interaction can be defined as the study of natural and effective communication

between robots and humans. Through HRI techniques, a robot can understand the inten-

tion of humans in an environment and react accordingly. There are many research areas that

compose this multidisciplinary field: people detection, body part localisation, face recognition,

facial expression recognition, socially aware navigation, gesture recognition, audio recognition,

human-activity detection, human attention detection and group detection, to name but a few.

Many of these problem areas have been researched in the context of general computer vision.

However, HRI requirements of a moving camera, potentially distant subjects, and computa-
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tionally efficient algorithms, necessitate specific solutions that are discussed in this thesis.

For seamless interaction between autonomous mobile robots and humans, many problems need

to be solved. Most notably, for the introduction of robots in real-world environments, compu-

tationally efficient sensing techniques must be developed so that HRI is unimpeded by crowds

and dynamic environments. Crowded environments are challenging for many HRI solutions.

To simplify the problem, many current techniques make assumptions, such as the number or

placement of people within a scene, unoccluded poses, static cameras or requirements of worn

devices for gaze estimation and audio recognition. Practical HRI systems do not have this

luxury, as real-world demands are entirely variable in nature.

One of the major challenges that the modern world faces is in healthcare. Whilst the quality

of healthcare solutions obviously improves over time, the continuing problem of global ageing

populations [10] with improved survival rates due to medical advances, will place increasing

strain on healthcare providers. This demographic shift will not only place greater demands on

a smaller number of eligible healthcare providers, but will actually change the nature of the

care that is provided to patients. Most notably, elderly patients and those with chronic diseases

will require increasing support from assistive technology and patient monitoring. With the ever

increasing demand on improving quality of life, new innovations in technology are required to

help future populations receive adequate care.

The introduction of autonomous mobile robots into the healthcare environment could provide a

way of alleviating future problems in global health [11]. Capable of performing simple, tedious

tasks on a continuous basis, these robots could serve as a valuable tool in freeing up the working

time of nurses. Alternatively, robots could provide a convenient way of providing patient

monitoring and assistance in houses or nursing homes. The development of HRI solutions,

capable of operating in crowded and dynamic environments, is necessary for autonomous mobile

robots to operate in these healthcare environments.

To this end, the aim of this thesis is to provide mobile robots with sensing methods, which

are capable of operating in crowded and dynamic environments, in order to facilitate HRI.

Specifically, the problems of detection and tracking of people and their associated hands, human
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attention detection through gaze estimation, and group identification are addressed in the

following work. To achieve the required robustness, accuracy and computational efficiency,

information from multiple input sensors is used. Amongst them, depth cameras are employed,

which produce images whose pixel values are not colour, but the distance to the closest object

in the relevant direction. RGB-D cameras are those that produce both colour and depth images

from the same device. Furthermore, when the Microsoft Kinect is referenced in this thesis, only

the physical depth camera is being specified and not any gesture or pose recognition software

that is supplied with the camera.

Most traditional HRI systems rely on information from colour cameras. Robot perception in

colour images is complicated by issues such as lighting variances, depth ambiguity and differing

skin colours. As such, many previous methods simplify the problem, with techniques such as

background modelling, specific user initialisation poses or assumptions of unoccluded upright

poses. This limits the potential adoption of such methods in an effective HRI framework,

particularly one for use in crowded healthcare environments, elderly care, for wheelchair users

or those requiring walking aids. However, through a combination of modern sensors, including

RGB-D and infrared (IR) cameras, this thesis proposes techniques that are not subject to such

constraints.

1.2 Thesis Structure

Chapter 2 reviews the current state-of-the-art in HRI techniques. Particular focus is given to

HRI problems that overlap with the methods proposed in this thesis. A history of the significant

developments in mobile robotics is first presented. Due to their importance to almost every HRI

system, people and group detection methods are then reviewed, followed by the related problem

of localising individual body parts. Hand detection is usually a prerequisite for classifying

gestures, so recent gesture recognition systems are also presented. Finally, methods for human

attention detection and gaze estimation are surveyed.

Chapter 3 presents a hand and body association algorithm designed for crowded and dynamic
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environments. A hand detection method is initially presented that uses a novel histogram

descriptor, with geodesic distances from depth images used to filter background noise in crowded

environments. A computationally efficient body detection method is then described, which also

employs geodesic distances. Finally, a Bayesian algorithm for associating hands and bodies is

presented, for when multiple people and hands are detected in a crowded environment. The

method is evaluated in nine controlled environments, and three crowded environments, with

results compared to two competing techniques.

Chapter 4 presents an RGB-D sensor-fusion algorithm for tracking hands in crowded and dy-

namic environments. Firstly the tracked hand state is formulated, together with the process

of incorporating depth-image based hand detections and Monte-Carlo updates from colour im-

ages. Colour updates use dynamically learned, per-subject skin colour information. A method

is then described to combine asynchronous depth and colour updates that have different com-

putational speeds. Hand tracking accuracy is evaluated using nine controlled environments,

and three crowded environments. Results are compared against the Kalman filter, when using

three different depth-image based hand detectors.

Chapter 5 proposes a sensor-fusion gaze estimation system that uses IR and depth cameras on

a mobile robot. The hardware setup is firstly described, including the IR LEDs and camera

employed. Using this setup, an IR pupil detection method is presented. Resulting eye positions

are used to generate a noisy gaze estimate using depth image information. Finally, a more

accurate gaze estimation method is described that uses both IR and depth information. This is

confirmed through experiments using a moving robot and multiple moving people, with results

compared to the current state-of-the-art.

Chapter 6 presents a group detection algorithm that incorporates real-time gaze estimates to

enhance the detection accuracy of static and dynamic interactions. A pairwise group detection

process is first defined, with a subsequent recursive algorithm used to fully specify group mem-

bership. A novel set of features is extracted, based on sociological concepts of group structure.

Group detection accuracy is evaluated using two approaches: a custom model-based method

and a logistic regression classifier.
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Chapter 7 concludes the work in this thesis, summarising the technical contributions and dis-

cussing its limitations. Potential future work is reviewed, with possible applications of the

presented methods considered.

1.3 Thesis Contributions

The main technical contributions of this thesis can be summarised into the following aspects:

1. A hand and body association algorithm designed for crowded and dynamic

environments.

The proposed method combines a hand detector, robust to noise in crowded environments,

with a computationally efficient body detector; a subsequent Bayesian hand and body

association algorithm is presented for when multiple people and hands are detected in a

crowded environment.

2. An RGB-D sensor-fusion algorithm for tracking hands in crowded and dy-

namic environments.

The proposed method increases position and velocity accuracy by combining a depth-

image based hand detector with Monte-Carlo updates using colour images.

3. A sensor-fusion gaze estimation system, combining IR and depth cameras on a

mobile robot to give better accuracy than traditional visual methods, without

the constraints of traditional IR techniques.

The proposed calibration-free method uses IR eye detection with depth image analysis,

to produce accurate gaze estimates of multiple dynamic people on a moving robot, at a

longer range than traditional IR techniques.

4. A group detection algorithm that uses gaze estimates to enhance the detection

accuracy of static and dynamic interactions.

A novel set of features, based on sociological concepts of group structure, is used to

classify groups based on tracked subjects’ position, velocity and gaze estimates.
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Chapter 2

Human-Robot Interaction - A

Literature Review

2.1 Introduction

In 1920, science fiction author Karel Capek wrote a play, entitled R. U. R, which popularised

the word “robot”. The term is derived from “Robota”, meaning forced labour in the author’s

native Czech. The first electronic autonomous robots were created in Bristol between 1948 and

1949, and were called “Machina Speculatrix” by their inventor, W. G. Walter. These robots,

shown in Figure 2.1a, were designed to move towards light sources, using analogue electronics

and light sensors.

Between 1966 and 1972, research was conducted in Stanford University on the first digital robot

that incorporated planning algorithms. Named “Shakey the robot”, and shown in Figure 2.1b,

it was equipped with a camera, range finder and bump sensors. The robot was able to solve

tasks requiring navigation, such as, “push the block off the platform”. In accomplishing this,

the project introduced multiple techniques, such as the A∗ search algorithm, which are still

used to this day. In the wake of these early successes, public interest in robotics grew rapidly.

One of the first commercially available mobile robots was called “HERO 1”, shown in Fig-
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(a) 1948 (c) 1982 (e) 2000 (g) 2008 (i) 2011

(b) 1966 (d) 1993 (f) 2004 (h) 2010 (j) 2012

Figure 2.1: Timeline of major developments in the history of mobile robots. Details of the
robots and their images sources are as follows: (a) is a “Machina Speculatrix” robot, designed
by W. G. Walter in Bristola. (b) is “Shakey the Robot”, developed at Stanford Universityb.
(c) is “HERO 1”, a robot sold by Heathkitc. (d) is the “Xavier” robot, developed at Carnegie
Mellon University [17]. (e) is the famous Honda “ASIMO” robotd. (f) is the “RP-7”, made
by InTouch Health [11]. (g) is the “Care-O-Bot 3” built by Fraunhofer IPAe. (h) is the “PR2”
robot from Willow Garagef. (i) is the “Scitor G3” robot, manufactured by Metralabs [18]. (j)
is the “RP-Vita”, the updated model of the “RP-7” from InTouch healthg.

ahttp://www.extremenxt.com/walter.htm - Accessed 21/09/2014
bhttp://www.computerhistory.org/revolution/artificial-intelligence-robotics/13/289/1229?

position=0 - Accessed 21/09/2014
chttp://commons.wikimedia.org/wiki/File:Hero1.jpg - Accessed 21/09/2014
dhttp://world.honda.com/news/2000/c001120_5.html - Accessed 28/09/2014
ehttp://wiki.ros.org/Robots/Care-O-bot?action=AttachFile&do=view&target=Care-o-bot_3.jpg -

Accessed 28/09/2014
fhttp://wiki.ros.org/Robots/PR2?action=AttachFile&do=view&target=pr2Image.png - Accessed

21/09/2014
ghttp://www.intouchhealth.com/products-and-services/products/rp-vita-robot/ - Accessed

28/09/2014

http://www.extremenxt.com/walter.htm
http://www.computerhistory.org/revolution/artificial-intelligence-robotics/13/289/1229?position=0
http://www.computerhistory.org/revolution/artificial-intelligence-robotics/13/289/1229?position=0
http://commons.wikimedia.org/wiki/File:Hero1.jpg
http://world.honda.com/news/2000/c001120_5.html
http://wiki.ros.org/Robots/Care-O-bot?action=AttachFile&do=view&target=Care-o-bot_3.jpg
http://wiki.ros.org/Robots/PR2?action=AttachFile&do=view&target=pr2Image.png
http://www.intouchhealth.com/products-and-services/products/rp-vita-robot/
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ure 2.1c, and sold by Heathkit in 1982. Designed for education purposes, the robot featured

light, sonar, motion and sound sensors. Computation was performed using the Motorola 6808

processor, 4 kB of RAM and compact cassettes for data storage. The rapid increase in compu-

tation power through the 1980s and 1990s naturally led to increases in robot complexity.

In 1993, the “Xavier” robot was developed at Carnegie Mellon University. Shown in Figure 2.1d,

it was the first mobile robot that could be teleoperated via the Web, and contained twin cameras

for stereo vision, a range and sonar sensor, and bump sensors. With further developments

in mobile robotic capabilities, the possible applications of teleoperation grew. Around 2004,

InTouch Health released the “RP-7” remote presence robot, shown in Figure 2.1f. The robot

was designed to allow clinicians to remotely see and interact with patients. To do this, the robot

features two cameras, a microphone and infrared collision avoidance sensors. A video input jack

on the back of the robot allows for the connection of an endoscopic or fluoroscopy camera. This

allows a remote physician to directly view the same images as the medical team performing the

examination. In 2012, InTouch Health released an updated model to the “RP-7”, called the

“RP-Vita”, shown in Figure 2.1j.

In 2000, Honda released the famous “ASIMO” humanoid robot, which stands for “Advanced

Step in Innovative Mobility”. “ASIMO”, shown in Figure 2.1e, is designed to be a multi-

functional robot assistant, especially for those suffering from reduced mobility. Initially capable

of walking at 1.6 kilometres per hour (km/h), newer models have demonstrated speeds of

2.7 km/h.

The “Care-O-Bot 3” is shown in Figure 2.1g and was released by Fraunhofer IPA in 2008.

The robot is primarily designed to assist people in their homes. Targeted at supporting the

independence of elderly and handicapped people, the “Care-O-Bot” operates autonomously,

unlike robots such as the “RP-7”. It can perform fetch and carry tasks using its built-in tray,

and can play music and games using its interactive touch screen. To facilitate this, the robot

is equipped with stereo cameras, time of flight cameras and two laser range finders.

In 2010 the successful “PR2” robot, shown in Figure 2.1h was released by Willow Garage.

The “PR2” serves as the company’s exemplar robot platform for their open source Robot
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Operating System (ROS). More information on ROS is given in Appendix B, as it is the main

software platform used in this thesis. The “PR2” has a large number of actuators and sensors,

including multiple stereo cameras, multiple colour cameras, an inertial measurement unit, two

accelerometers, two laser range finders, and two hand gripper pressure sensors.

With the continuing problem of global ageing populations [10], elderly care will be an increas-

ingly important motivation for mobile robotic research. The holistic systems required for this

application are, however, are still in their infancy. In one of the first long-term user studies of

its kind, Schroeter et al. [18], under the “CompanionAble” project, combined the 2011 “Scitor

G3” robot from Metralabs, shown in Figure 2.1i, and a smart environment to support elderly

dementia patients. The system was evaluated in six user experience trials, where a patient

and an informal care giver lived normally for two days in a test home with the system. The

robot provided services such as appointment reminders, storing offered items and notification of

missed calls. Questionnaires and interviews were used to evaluate user experience, acceptance

and societal impact results. Whilst nearly all participants valued the robot for its embodied

interaction possibilities, it was noted that neither speech recognition, nor people detection were

robust enough.

The research in this thesis aims to extend the state-of-the-art HRI components of such holistic

systems. The following section reviews existing literature in a variety of HRI topics, which

strongly overlap with the subject matter of the methods proposed in this thesis. Techniques by

which people and groups can be detected are described in Section 2.2. Methods for localising

body parts, such as hands, are reviewed in Section 2.3. Gesture recognition techniques, for

commanding and controlling robots, are discussed in Section 2.4. Finally, gaze estimation

methods for human attention detection are described in Section 2.5.

2.2 People and Group Detection

Arguably the single most important precursor to human-robot interaction is the problem of

detecting people, as shown in Figure 2.2. Solutions to this problem have applications in many
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(a) People Detection (b) Group Detection

Figure 2.2: For any HRI task, one of the most common problems to be solved is that of detecting
people, as shown by the hand-drawn red circles in (a). A related problem is that of segmenting
detected people into interacting groups, as shown by the hand-drawn black circle in (b).

other areas of robotics, including navigation [19], human intention detection [20] and face

recognition [21]. Advances in sensor quality, visual features and machine learning techniques

have helped bring about mature solutions to this problem. Until the recent introduction of

depth cameras, most approaches used a single monocular camera. The low cost of digital

cameras, their ability to work in sunlight, and the intuitive appeal vision provides from a

human perspective, have all helped to drive this research.

Human detection is a relatively difficult task from a computer vision perspective. The lack

of explicit models in most methods leads to the use of machine learning techniques, where an

implicit representation is learned from examples. Changing articulated pose, clothing, illumi-

nation and background can all further complicate the problem. Most practical vision systems

thus make good use of features rather than pixel values directly, as a way of encoding ad hoc

domain knowledge that would otherwise be difficult to learn from the raw training data. Ta-

ble 2.1 lists some of the most relevant methods to this thesis, with expanded explanations given

below.

A recent survey into monocular people detection [22] concluded that from a number of state

of the art systems, the two most promising approaches were those that used Haar-like features

[23–25] and those that used Histograms of Orientated Gradients [26, 27]. Reviewed methods

were evaluated based on their computational efficiency and detection accuracy when tested on
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Table 2.1: Select summary of previous people detection methods.

Method Camera Feature Classifier

Haritaoglu et al. [28] Intensity Curvature of

silhouette vertices

Thresholding

Papageorgiou and Poggio [23] Colour Haar-Like SVM

Viola et al. [24] Intensity Temporal Haar-Like AdaBoost

Viola and Jones [25] Intensity Haar-Like AdaBoost

Porikli [29] Colour Histogram Nearest Neighbour

Dalal and Triggs [26] Colour HOG SVM

Zhu et al. [27] Colour HOG AdaBoost

Tuzel et al. [30] Colour Region Covariance Nearest Neighbour

Tuzel et al. [31] Colour Region Covariance LogitBoost

Chen et al. [32] Colour Shape, Colour &

Temporal Statistics

AdaBoost

Mosberger and Andreasson [33] Infrared Local Descriptors Random Forest

Choi et al. [34] Depth HOD SVM

a large and varied test set of upright poses, more commonly known as a pedestrian data set.

Haar-like image features are so called because of their similarity to Haar wavelets. The value of

a Haar-like feature is specified as the difference between the sum of the pixel values within two

rectangular regions. These regions have the same size and shape, are horizontally or vertically

adjacent, and are usually computed at a large number of locations and scales. Although very

coarse, they are sensitive to the presence of edges, bars and other simple image structures.

Within any image, the number of possible permutations of Haar-like features will be far larger

than the number of pixels.

The first work to suggest the use of Haar-like features for object detection was by Papageorgiou

and Poggio [23]. Contrary to later approaches [24,25], the generation of Haar-like features was

formulated as a two dimensional discrete wavelet transform at multiple scales. A descriptor

vector was constructed from the several thousand resulting features for each sample. These

vectors were then used to train a support vector machine (SVM) classifier. Object detection was

performed by evaluating this SVM using a sliding window at multiple scales over a test image.
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(a) Haar-like features (b) People detection

Figure 2.3: (a) shows illustrations of certain Haar-like features. The value of each feature is
equal to the difference of the sum of the pixel values in the black and white regions. (b) shows
hand-drawn, illustratory results of a people detector trained using these Haar-like features.
Image sourced from 1.

The results highlighted the applicability of this feature in capturing image detail consisting of

clear patterns, as shown by the good results for face detection.

To increase the accuracy of human detection in low resolution video, Viola et al. extended the

concept of Haar-like features to capture local motion information [24]. Instead of calculating

the difference between adjacent regions in the same image, motion information was captured by

calculating the difference between the same region in consecutive frames of a video stream. In

this way, the Haar-like feature are computed in time, rather than position. Information about

the direction of motion was additionally extracted by shifting the previous frame of the video

stream in both the horizontal and vertical directions, and re-computing the features. When

training an AdaBoost classifier [35] on a pedestrian detection dataset, the use of temporal

features provided a greatly reduced false positive rate compared to static Haar-like features.

The AdaBoost algorithm combines a collection of weak classification functions to form a

stronger classifier. A weak function is so called because it will not give good classification

results by itself. With an input training set, the algorithm calls a simple learning algorithm

repeatedly in a number of rounds. A set of weights are calculated over the training set, where

1http://www.thehavenresidentialhome.co.uk/images/caring-for-the-elderly.jpg - Accessed
01/10/2014

http://www.thehavenresidentialhome.co.uk/images/caring-for-the-elderly.jpg
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at each round the weights of incorrectly classified examples are increased, so that the simple

learning algorithm focuses more on the harder examples in the training set. Every round,

the simple learning algorithm will return the weak classification function that minimises the

weighted number of misclassified training examples. Good general features are selected in the

initial rounds by the algorithm whilst the hardest to classify training cases are dealt with by

the features in later rounds.

The use of Haar-like features was further developed in the seminal Viola-Jones face detection

framework [25]. As detailed in a recent survey [36], this framework still provides impressive

results for forward orientated face detection. Three main extensions to the original object

detection algorithm [23] were employed. Firstly, during initial feature generation, integral

images were employed to increase the computational efficiency of the process. Secondly, an

AdaBoost classifier, rather than an SVM, was employed to classify resulting descriptor vectors.

Finally, the AdaBoost classifier was constructed in a cascading approach, allowing a reduction

in the classification processing afforded to samples that are decisively negative.

The integral image is a commonly employed technique to speed up calculations involving sum-

mations. For any pixel in a greyscale image, i, its equivalent integral image, ii, value is the

sum of the pixels above and to the left of it:

ii (x, y) =
∑

x′≤x,y′≤y
i (x′, y′) (2.1)

Using an integral image, any rectangular sum can be computed in four array references, as

shown in Figure 2.4. Any of the Haar-like features in Figure 2.3a can thus be computed in

at most 9 operations. It is the extreme computational efficiency of the Haar-like feature that

makes it a suitable for people and face detection, as they produce a very discriminative image

representation when calculated in large numbers. However, many different techniques have

made use of the integral image and its variants [37].

One such variant was presented by Porikli [29], who applied the technique to reduce the com-

putational complexity of histogram generation. Porikli applied these “integral histograms” to
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A

P1 P2

P3 P4

Figure 2.4: Illustration of an integral image. The summation of all pixel values in rectangle A
is given by P4 + P1 − (P2 + P3).

the problem of pedestrian tracking. With a template histogram of the person to track as input,

colour histograms were generated for every possible search space in the image. The author

claims that this process is over a thousand times quicker than traditional histogram generation.

Tracking was shown to be continuous with a fast moving subject. This was contrasted with

the mean-shift algorithm [38], which lost tracking under such a condition.

Histograms of Oriented Gradients (HOG) [26] are a widely used feature for human detection.

The descriptors bear much resemblance to those used in the Scale-Invariant Feature Transform

[39], using locally normalised histograms of gradient orientations. This descriptor is based on

the idea that local object appearance and shape can be characterised by the distribution of

local intensity gradients, even without precise knowledge of the corresponding gradient.

To generate the HOG descriptor, the image window to be characterised is divided into a number

of small spatial regions called cells. For each cell, a histogram of gradient magnitudes and

directions is accumulated over the pixels within it. Each cell is then grouped into larger spatial

blocks, as shown in Figure 2.5a. A sum of the total histogram values is accumulated for each

block and the result is used to normalise all the cells within each block. Presented results [26]

emphasised the importance of strong local normalisation; multiple overlapping blocks should

cover each cell in the entire image window

Zhu et al. [27] presented two modifications to the original HOG method. First, instead of using

a SVM to classify descriptors, the authors used the AdaBoost algorithm, with the same cascade-
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(a) HOG descriptor (b) People detection

Figure 2.5: (a) is an illustration of 4 overlapping HOG blocks. The smallest squares represent
pixels. These are grouped into 9 cells in total, each containing a default of 8 × 8 pixels. One
HOG block is of default size 2× 2 cells, and either has a colour of red or yellow, or one of two
patterns. (b) shows hand-drawn, illustratory results of a people detector trained using HOG
features. Image sourced from 2.

of-rejectors approach proposed in [25]. At each AdaBoost training level, 250 random blocks

were selected. For each block, a separate linear SVM was trained on all positive and negative

samples. The weak classifier chosen at each level of the AdaBoost cascade corresponded to

the SVM that minimised the weighted number of training examples. The authors additionally

used the integral image technique to speed up calculation of the magnitude and orientation of

the image pixels. Whilst these modifications resulted in a twenty times speed improvement,

detection accuracy of the modified algorithm was slightly decreased.

A recent human detection method, shown to have superior results to the HOG approach,

was presented by Tuzel et al. [30]. The authors suggested that regions of an image could be

characterised by the covariance of a number of image statistics, such as intensity differentials.

The integral image was used to reduce the time to calculate covariance matrices, so that it only

depends on the square of the number of image statistics. Pedestrian detection was performed by

again matching a template against a multi-scale sliding window over a test image; a detection

was defined as the most similar search window to the template. In a later work [31], the

authors extended this approach by incorporating covariance descriptors into a machine learning

framework. A generalised version of the AdaBoost algorithm was employed for this task, with

2http://www.clsgroup.org.uk/?q=sites/default/files/styles/home_slide/adaptive-image/

public/homes/images/web1_10.jpg&itok=FnkIFzzo - Accessed 01/10/2014

http://www.clsgroup.org.uk/?q=sites/default/files/styles/home_slide/adaptive-image/public/homes/images/web1_10.jpg&itok=FnkIFzzo
http://www.clsgroup.org.uk/?q=sites/default/files/styles/home_slide/adaptive-image/public/homes/images/web1_10.jpg&itok=FnkIFzzo
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equations reformulated to operate in non-Euclidean space. Presented human detection results

were shown to be superior to the HOG approach.

People detection failure in industrial environments can be disastrous. In these settings, Mos-

berger and Andreasson [33] used domain specific knowledge to increase detection robustness;

knowing that all employees wear reflective safety vests, active IR illumination was used to ob-

tain high intensity reflections. In alternating frames, IR illumination was disabled, giving a

normal intensity image. Local STAR features were detected in the IR image and matched to

the regular image. A random forest classifier was used to discard features not originating from

the reflective vest, and a regressor was used to estimate the distance of reflective vest features

from the camera.

As depth cameras become increasingly prevalent, so do the people detection solutions that use

them. Choi et al. [34] proposed one such method. The depth image was initially downsampled

and segmented into an initial number of regions, based on both distance and normals of neigh-

bouring points. Based on heuristics such as height and width, regions not corresponding to

training examples were discarded. Regions fulfilling all other criteria but size could be merged

with larger regions. The Histogram of Oriented Depths descriptors [40] were calculated for each

resulting region, and were classified as humans using SVMs.

With the development of more sophisticated people detection techniques, more complex prob-

lems can be tackled. Chen et al. introduced a crowd identification method that employs object

classification techniques [32]. Background subtraction and temporal differences of pixels were

used to segment objects within a scene. The resulting objects were classified as crowds using a

combination of methods: temporal features classified by the AdaBoost algorithm, the object’s

self-similarity response, and analysis of its spatio-temporal energies.

Haritaoglu et al. [28] developed a system for detecting and tracking multiple people within a

group called “Hydra”. A combination of background subtraction, region-based shape analysis

and corner detection was used to segment individuals within a crowd. The resulting heads

were then tracked with a dynamic template a second-order motion model. To recover from lost

tracking due to camera occlusions, appearance models were constructed for each person.
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Figure 2.6: Solving the problem of hand detection, as shown by the hand-drawn blue circle,
allows a robot to understand human intentions during HRI.

Ong et al. [20] proposed a holistic behaviour system for classifying human’s intentions, and

reacting to them if necessary. Separate particle filters were used to track people using two

different sensors: laser-based leg detection and monocular head detection. With the leg de-

tector’s greater false-positive rate and the head detector’s lack of depth information, a sensor

fusion algorithm was used to combine both sources and compensate for each disadvantage. A

behaviour inference method classified this 3D position and velocity estimate into one of eight

categories: approaching, hesitating and unconcerned, to name a few.

2.3 Localising Body Parts

Effective HRI solutions need more knowledge than simply the presence or absence of human

subjects. As shown in Figure 2.6, individual parts body parts, such as hands, must be detected

if a robot is to understand human gestures, for example. Locating body parts has a diverse

range of applications, including human activity recognition, human-computer interaction and

robot-person following. Because of its importance for HRI, the main focus of this literature

review is hand detection and tracking methods. However, there are two main ways of extracting

hand information: explicitly detecting the hand and modelling it as a single point, or fitting a

prior hand or body model to a subject. Section 2.3.1 will discuss methods that explicitly detect

the hand and track its movement. Section 2.3.2 will review methods that detect body parts by

fitting prior models to segmented subjects within a scene.
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In contrast to people detection, most research in localising body parts has involved the use

of more discriminative sensors than a simple monocular camera. This is due to the greatly

increased difficulty of the problem. Tracking movement with very high degrees of freedom

[41] and frequent self-occlusions [42] has necessitated the use of multiple cameras or other

depth imaging techniques. The decreasing cost and increasing precision of 3D scanning devices

employing Time-of-Flight (TOF) [43] or structured light techniques further solves the problems

of spatial positioning and configuration of multiple cameras [44].

Depth images are invariant to skin colour, clothing, lighting and many other scene parameters.

Depth values provide strong cues to distinguish a human subject from other objects. As a

result, the region occupied by a human subject is easier to capture in depth, rather than colour

images. Indeed, these facets have prompted the adoption of depth images in increasing numbers

of computer vision problems. For example, Ruhnke et al. [45] recently applied the Harris corner

detector [46] to depth images to find sets of interest points when constructing 3D object models

from partial views.

2.3.1 Explicit Hand Detection and Tracking

A summary of the hand detection methods reviewed in this section is listed in Table 2.2;

methods that additionally track specific hands over time are listed in Table 2.3. It can be

noted that raw hand detection methods almost exclusively use depth cameras. Many methods

employing colour cameras make assumptions of hand motion to simplify the problem. These

algorithm’s therefore explicitly track hands in consecutive frames.

Hand Tracking in Colour Images

As an exception to this statement, Dailey and Bo Bo [47] described a hand detection method

using a colour camera. The authors applied Haar-like features to detect hands in crowded

scenes, although the results had limited success. In contrast, Valibeik and Yang [56] detected

hands with skin colour detection and a motion mask, applied to skin coloured areas. When the
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Table 2.2: Select summary of previous hand detection methods.

Method Camera Feature Description Classifier

Dailey and Bo Bo [47] Intensity Temporal Haar-like AdaBoost

Plagemann et al. [1] Depth Image patch around keypoint at

mesh extremities

“Joint Boost”

Shotton and Sharp [2] Depth Per-pixel depth differences Random Forest

Ikemura and Fujiyoshi [48] Depth Depth histogram difference be-

tween two regions

AdaBoost

Li and Kulic [49] Depth Distance from mesh extremities to

nearest edge in radial directions

Nearest

Neighbour

Table 2.3: Select summary of previous hand tracking methods.

Method Camera Summary

Yang et al. [50] Colour Detect hands by segmenting moving areas and ap-

plying a skin colour mask. Track using similarity

function

Bretzner et al. [51] Colour Detect hands with skin colour. Track with particle

filter

Shan et al. [52] Colour Detect hands by segmenting moving areas and ap-

plying a skin colour mask. Track using particle

filter and mean shift

Carbini et al. [53] Depth

& Colour

Detect hands as skin coloured regions within a set

distance to a detected face. Track using colour and

position probabilities.

Ghobadi et al. [54] Depth Segment hands with per-frame clustering using K-

Means and EM

Nickel and Stiefelhagen [55] Depth

& Colour

Detect hands as connected skin colour regions.

Track the highest probability candidate based on

position and colour

Valibeik and Yang [56] Colour Detect hands by segmenting moving areas and ap-

plying a skin colour mask. Track with a Kalman

filter

Chen et al. [57] Colour Single user’s hands manually initialised. Tracked

with particle filter
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resulting hands were tracked with a Kalman filter, the results were more accurate.

A similar approach was adopted by Yang et al. [50] for extracting a single user’s hand motion.

Multiscale image segmentation was performed every frame, to isolate contiguous, homogeneous

regions. Region matching between consecutive frames was achieved by minimising an error

function that considers similarity between expected positions, area and average intensity. Mo-

tion between frames could then be estimated by calculating the affine transformation between

matched regions. Neighbouring regions with similar motion were then merged, and a skin colour

mask was applied. The largest elliptical region was defined as the head, with the proceeding

two being classed as hands.

Particle filtering has been used by many methods to track hands in colour images. Chen et

al. [57] and Bretzner et al. [51] described methods to track a user’s hand with a single particle

filter. Each method employs a different likelihood function: Chen et al. used multiple visual

cues, including shape information, motion continuity and colour; Bretzner et al. used skin

colour detection and scale-space extrema of blob and ridge features. Chen et al. required a

set prior pose to initialise hand tracking. However, Bretzner et al. automatically tracked skin

coloured regions of interest.

When tracking hands using particle filters, Shan et al. [52] proposed a solution to tackle the

degeneracy problem, where only one sample has a non-negligible weight. Similar to previous

methods, a colour probability image was formed by detecting skin colour regions in the image.

A difference image of the current and previous frame was also calculated, and thresholded

to include only moving regions. Sample weights in the particle filter were based on these

two statistics. After samples were propagated with a constant motion model and reweighted,

they were shifted to areas of high likelihood in the observation function with the mean shift

algorithm [58].

Many of the techniques used by the previous colour image methods, such as continuous mo-

tion assumption, are not necessary in depth based methods. For example, Ghobadi et al. [54]

proposed an early hand segmentation method using time-of-flight cameras. A per-frame clus-

tering solution was employed, where pixels were initially segmented using K-Means. Using the
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generated cluster means, Expectation Maximisation was used to refine the resulting Gaussian

mixture model. However, several authors proposed sensor fusion methods that combine colour

techniques with depth information.

Carbini et al. [53] focused on combining colour techniques and depth information from com-

putation stereo, to track the hands and heads of two people. Hand detection was performed

by identifying skin coloured blobs, which were localised using a depth image. Anatomical con-

straints were used to filter unnatural hand-head combinations. Tracking results were then fused

with speech to facilitate human-computer interaction with a large visual display.

Using the same sensors, Nickel and Stiefelhagen [55] proposed a method to recognise pointing

gestures during HRI. Similar to Carbini et al., skin colour analysis was used to detect heads

and hands, with their 3D positions estimated using computational stereo. A user’s head and

hand locations were tracked in time by evaluating their movement since the previous frame,

anatomic likelihood, and skin colour probability.

Hand Detection in Depth Images

Most depth-based hand detection methods detect a number of features in an image, describe

the features using a vector of information called a descriptor, and classify this descriptor using

a machine learning classifier. Many feature descriptors have attempt to characterise objects by

their shape [59, 60]. One of the most successful is the “shape context”, by Belongie et al. [61],

which the authors used to measure the similarity of two shapes.

In the method, keypoints are generated as edges from the Canny edge detector [62]. The shape

context descriptor is a coarse histogram of the relative coordinates of the edge locations in the

shape. Histogram bins are of log-polar space, so that histogram entries closer the source edge

are weighted more heavily. Point correspondences between two shapes can then be calculated

using a cost matrix of the histogram differences between the two shapes’ keypoints. The

transformation that best aligns the two shapes can then be estimated.

The shape context has been used for a variety of applications. It was recently used by Kaloger-
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(a) “Laboratory conditions” (b) “A significantly more complex scene”

Figure 2.7: Images from the datasets Plagemann et al. used to evaluate their body part
detector [1]. (a) shows the method being evaluated under “laboratory conditions”, whilst (b)
shows results from “a significantly more complex scene”. Images are sourced with permission
from [1].

akis et al. [63] to segment and label 3D meshes. In total, eight different shape descriptors

were used, in conjunction with a conditional random field (CRF) [64], to classify all faces on

a particular mesh. Anguelov et al. [65] described a similar method where, instead of a CRF,

a Markov Random Field was used to address the problem of segmenting 3D scan data into

objects and object classes.

A modified shape context descriptor was developed for head, hand and foot identification, by

Li and Kulic [49]. Keypoints were detected at body endpoints using a hierarchical algorithm.

The distance to the nearest edge was then calculated, in radial directions around the keypoint.

The furthest distance denotes the keypoint direction. Starting at this direction, the rotation

independent “local shape context” descriptor is the concatenation of all radial distances. De-

scriptors were classified as the nearest neighbour to ideal templates.

Plagemann et al. [1, 66] described a similar method for head, hand and foot detection, with

keypoints as body end points. The centre of each mesh in the input point cloud was first

found. The geodesic distance of each point in the mesh was then calculated. The “AGEX”

(Accumulative Geodesic EXtrema) keypoints are the mesh points with the largest geodesic

distances from the centroid, and all other AGEX points. A patch based descriptor was applied

to each keypoint, to assign it to one of the three classes. Figure 2.7 shows images of the datasets

Plagemann et al. used to evaluate their method.

One of the most successful body part detectors was developed by Shotton et al. [2]. The work



58 Chapter 2. Human-Robot Interaction - A Literature Review

θ1θ2

Figure 2.8: Illustration of the depth image descriptor from Shotton et al. [2]. A yellow cross
indicates the pixel, x, being classified. From Equation 2.2, the two offsets from each pixel, x,
are denoted in the figure as: θ = (u,v). The offsets are illustrated with red circles.

details a thirty-one class body-part detector, using a per-pixel classification approach. A simple

depth descriptor was used:

f (x,u,v) = dI

(
x +

u

dI(x)

)
− dI

(
x +

v

dI(x)

)
, (2.2)

where x is a pixel in the depth image dI , and u and v are pixel offsets. Many of these per-pixel

depth differences, illustrated in Figure 2.8, are evaluated, with different u and v offsets, using

a random forest classifier [67]. This algorithm is very fast, but is unsuitable for human-robot

interaction as background subtraction must be performed as a pre-processing step.

Many body part localisation methods have used background subtraction (BGS) to simplify the

problem and decrease computation. This does, however, make them unsuitable for HRI on

mobile robots. As detailed in a recent survey [68], per-pixel GMMs are a widely used method

of colour image BGS [69–71]. Störmer et al. [72] and Langmann et al. [73] extended BGS

methods to depth cameras by generating GMMs for both the infrared and depth images of a

TOF camera.

A similar descriptor to Shotton et al. was proposed by Ikemura and Fujiyoshi [48]. Rather

than calculate the depth differences of two pixels, the authors constructed a descriptor that

expresses the depth differences over two regions. Normalised histograms of depth values are
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computed over squares of 8× 8 pixels. The descriptor is defined as the Bhattacharyya distance

between histograms of two regions, and is termed the “relational depth similarity feature”.

2.3.2 Model Fitting

Body Pose Estimation

With the advent of depth cameras, many recent methods have performed hand detection implic-

itly, finding many body part locations through fitting a full body model. All reviewed methods

have assumed an upright pose, which will fail to track sitting users, or those in hospital beds.

Additionally many methods required background subtraction, or clutter free environments to

work. However, the added context of knowing all joint angles offsets justifies these constraints

in some applications. A summary of the review body pose estimation methods is given in

Table 2.4.

The shape context, introduced in Section 2.3.1, has also been applied to pose estimation meth-

ods. Mori and Malik [74] used it to detect human body configurations in a single colour image.

A bipartite graph was formulated between shape contexts calculated at sampled edge points

on the input image, and prototype test images. Edge weights represent the cost of matching

sample points. Joint angles were calculated using the optimal point correspondence from the

prototype with the lowest matching cost.

A sensor-fusion pose estimation algorithm called “VooDoo” was presented by Knoop et al. [75],

that uses a time-of-flight camera in conjunction with an RGB camera. A cylindrical human

body model was matched to an input body model using the Iterative Closest Point (ICP)

algorithm. With a valid pose from a previous frame, points outside a global bounding box were

first discarded. A bounding box for each body part was also generated, with outliers discarded.

The closest model point to each input point was then found, constrained by sensor data such

as 3D projections from image space face detection. Given these correspondences, ICP was used

to find the optimal body pose.
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Table 2.4: Select summary of previous full body pose estimation methods.

Method Camera Summary

Mori and Malik [74] Intensity Optimal training image found by matching

shape contexts at edge points. Joint angles

found from optimal point correspondence

Knoop et al. [75] Depth

& Colour

Body parts located using bounding boxes of

the previous frame’s pose. Cylindrical body

model matched with ICP

Darby et al. [76] Motion Capture Use particle filtering to track body parts in a

hierarchy of low dimensional spaces

Raskin et al. [77] Motion Capture Use particle filtering to track body parts in a

hierarchy of low dimensional spaces

Zhu and Fujimura [78] Depth Using a correct pose from the previous frame,

find keypoints and use inverse kinematics to

calculate new pose

Siddiqui and Medioni [79] Depth Generate samples from the previous pose,

guided by detected head and hand positions,

and evaluate similarity of input and rendered

depth images

Moutzouris et al. [80] Depth Using a correct pose from the previous frame,

project point to low-dimensional space, sam-

ple, and evaluate high dimensional projections

Moutzouris et al. [81] Depth Extend [80] to find optimal pose estimates for

a hierarchy of body parts
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Zhu and Fujimura [78] proposed a body pose tracking method using a time-of-flight camera.

Background subtraction was first performed. Major body parts were then detected with a

deformable template consisting of a head, neck and trunk, and represented by simple shapes.

Keypoints on the body were specified using the template. Using corresponding points from the

optimal model in the previous frame, a pose estimate was calculated using inverse kinematics.

Siddiqui and Medioni [79] also guide pose estimation using body part detection. Simple depth

thresholding was applied to the input depth image to isolate the subject. The head and hands

were then located through edge detection and shape analysis. Based on the hand and head

locations, samples from the previous optimal pose were generated. For each pose, represented

by a sample, a depth image was rendered. Sample likelihood was based on the difference

of the rendered and input depth images. A prior probability assigned zero probability to

anatomically impossible poses. The optimal pose was given by the sample with the highest

posterior probability.

Moutzouris et al. [80] described a single user 3D pose tracking method, using a multi-camera

setup in a clutter free environment. Successful pose estimation in a particular frame required

a correct pose from the previous frame. This pose was projected to a low dimension space,

where multiple samples were taken and backprojected to the original, high dimensional space.

Each of these backprojected samples constitutes a possible pose for the current frame. Using

a cylindrical human model, the sample which has most volumetric overlap with the input 3D

point cloud was chosen as the current most likely pose. Refinement of limb position was then

performed by rotating limbs that lie sufficiently outside the 3D point cloud, until maximum

overlap is achieved. The authors later extended this technique [81] by finding optimal pose

estimates for a hierarchy of body parts, starting with the whole body, and progressing to limb

components.

Many techniques that use a latent space to describe body poses, such as those by Moutzouris

et al., have the problem that the space describes only those poses used in the training stage. If

a different pose is found in the test set, accuracy will be reduced. Two similar solutions to this

problem were described by Darby et al. [76] and Raskin et al. [77]. The authors enhanced the
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Table 2.5: Select summary of previous hand pose estimation methods.

Method Target Camera Summary

Wang and Popović [3] Hands Colour Single coloured glove detected using GMM

probabilities. Per-frame articulated pose es-

timated with nearest training neighbour

Sigalas et al. [82] Arms Colour Hands detected with background subtraction

and skin colour mask. Arm pose estimated

with particle filter

Buehler et al. [83] Arms Colour Detect single person with head and torso

template. Estimate arm pose with per-pixel

colour probability, HOG and anatomical like-

lihood and a term penalising large temporal

changes

Oikonomidis et al. [84] Hands Depth

& Colour

Track single hand as largest skin coloured re-

gion. Articulated pose estimated with optimi-

sation function

generality of represented poses with a hierarchical dimensionality reduction method. In both

methods, particle filtering was performed in the low dimensional space. Particle were weighted

based on the similarity of the mapped data-space point to input motion capture data.

Hand Pose Estimation

Several accurate hand modelling techniques have been described recently, which calculate the

articulated pose of either the hand and fingers, or arms and hands. They usually assume the

availability of large hand silhouettes, which limit their use in HRI. However, these marker-

less approaches are an active area of research, which overlaps with the body pose methods in

the previous subsection. A summary of the reviewed methods in this section is thus given in

Table 2.5.

Wang and Popović [3] described a method of tracking global position and individual articulation

of the fingers, using a monocular camera. The user was required to wear an ordinary cloth glove,

shown in Figure 2.9, imprinted with a distinctive colour pattern. A training set of model finger
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Figure 2.9: Image of the coloured glove used by Wang and Popović [3]. Image sourced with
permission from [3].

configurations was firstly created, rendered into small raster images at various 3D orientations.

The coloured glove was segmented from an input image using the mean-shift algorithm. The

nearest neighbour training image was then found, using a distance metric that penalises the

distance to the closest pixel of the same colour in both images.

Sigalas et al. [82] estimated hand and arm pose for gesture recognition. Background subtraction

was performed, with a skin-colour mask applied to the resulting area. Each arm was separately

tracked with a 4-dimensional particle filter. A multilayer perceptron was used to classify se-

quences of arm joint angles as one of five gestures. The result was used as input to a radial

basis function network, to prevent invalid state transitions.

Buehler et al. [83] developed an alternate hand and arm pose estimation method, for sign

language translation embedded into TV programmes. The shape and position of the head and

torso was first estimated using a template matching algorithm. A sampling-based framework

was used to generate the optimal hand-arm configuration. This was accomplished with a

cost function that takes into account the colour probability of different body parts, anatomic

likelihood and changes from the previous pose.

Oikonomidis et al. [84] described a method to find the optimal thirty-seven joint model that

fits an input hand using the Kinect sensor. A large hand silhouette was extracted from the

input image using skin colour detection. A hand model hypothesis was evaluated by initially

rendering it as a depth map. This rendered depth map was then compared to the input depth
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map using a distance measure that penalises unnatural hand poses. An optimisation method

was used to minimise this distance measure, using the solution from one frame to generate the

initial optimisation estimation for the next frame.

2.4 Gesture Recognition

Gesture recognition can play an important part in an autonomous HRI system, allowing users

to issue commands to control the robot. On a mobile robot, gesture recognition methods are

necessarily more constrained that in many conventional situations; methods must not assume

a static camera or large hand silhouette. Nonetheless, the introduction of depth cameras has

led to an increase in HRI compatible methods. There are two main types of gesture recognition

in literature: those that differentiate between static hand shapes; and those that analyse hand

motion, usually modelling the hand as a point.

A review of vision-based gesture recognition methods [85], noted that there are four defining

characteristics of human gestures: hand shape, position, orientation and movement. Hidden

Markov Models [86–91] are an effective way of capturing the temporal dynamics of the gesture

recognition process. This is corroborated by summary of the reviewed methods in Table 2.6.

Listed methods include those that recognise hand gestures only, and those that recognise full

body actions.

Dynamic Gesture Recognition

Eickeler et al. [93] presented a dynamic gesture recognition method using intensity images. Dif-

ference images of consecutive frames were first generated, with simple background subtraction

applied. Moments were calculated from this image and used as descriptors for HMMs trained

to recognise thirteen gestures, such as single and two handed waving. Two additional HMMs

were trained on arbitrary movements to prevent transitional gestures from being misclassified

and facilitate continuous gesture recognition.
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Table 2.6: Select summary of previous gesture recognition methods.

Method Camera Dynamics Feature Classifier

Min et al. [92] Intensity Dynamic Hand Position HMM

Eickeler et al. [93] Intensity Dynamic Image Moments HMM

Iwai et al. [94] Colour Dynamic Optical Flow

Fields

HMM

Chen et al. [95] Colour Dynamic Fourier Descriptor HMM

Mori et al. [96] Motion

Capture

Dynamic Body Joint

Angles

Hierarchical

HMMs

Huang and Trivedi [97] Depth Dynamic 3D Shape

Context

HMM

Joslin et al. [98] Colour Dynamic Hand Joint

Angles

HMM

Holte et al. [99] Depth Dynamic Spherical

Harmonics

Nearest

Neighbour

Li and Jarvis [100] Depth Static Chamfer

Transform

Nearest

Neighbour

Gu et al. [101] Depth Dynamic Body Joint

Angles

HMM

Gu et al. [102] Depth

& Colour

Dynamic Body Joint

Angles

HMM

Priyal and Bora [103] Colour Static Krawtchouk

Moments

Nearest

Neighbour

Neto et al. [104] Glove

Sensors

Static Hand Joint

Angles

ANN

Chen et al. [105] Depth

& Colour

Dynamic Space-Time

Subvolumes

ISA

Rui and Anandan [106] Colour Dynamic Optical Flow

Fields

Temporal

Segmentation
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Another intensity image based method was proposed by Min et al. [92], who classified dynamic

shape gestures, using discrete, left-right HMMs with four states. Similar to Schmidt et al. [107],

the system was trained on twelve shapes such as circles, semi-circles and squares. As well as

a self-transition and a transition to the proceeding state, a state could also transition to the

state after the proceeding state; this is termed a “skip transition”. HMM emissions are defined

as the centre coordinate of a single 2D hand position.

Chen et al. [95] presented a dynamic gesture recognition system using colour images. To track

a hand, motion information was extracted from a difference image, and was combined with

background subtraction and a skin colour mask. The external boundary points of the hand

were extracted with a contour following algorithm, and represented as a twenty-two dimensional

Fourier descriptor [60]. Using this information, discrete, four state HMMs were trained to

recognise twenty, single-handed sign language gestures.

In contrast, Gu et al. [101] presented a dynamic gesture recognition system that uses a skeleton

tracker running on the Microsoft Kinect RGB-D camera. A descriptor was used that consisted

of four joint angles from the left arm: elbow yaw and roll, shoulder yaw and pitch. Because the

authors only considered discrete HMMs [86], these joint angles were initially quantised using

K-means clustering. Separate HMMs, with thirty states each, were trained for each of the five

gestures considered: come, go, wave, rise up and sit down.

Joslin et al. [98] emphasised finger tracking, as well as hands, to classify dynamic gestures in

colour images. To extract this information, markers had to be placed on the user’s hand and

fingers, allowing the 3D joint angles of the fingers to be calculated. Using twenty-six joint

angles as emission variables, HMMs were trained to recognise give gestures, such as a grasping

motion and a quotes sign.

Huang and Trivedi [97] proposed a 3D extension to the shape context, in order to classify

gestures and actions in depth images. Background subtraction was first applied, with human-

shaped blobs being tracked with a Kalman filter. Tracked humans were segmented into voxels -

the 3D equivalent of 2D pixels. A single 3D shape context was centred on each tracked subject,

with 3D bins that covered all possible human poses. The normalised number of voxels within
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S1 S2 S3

(a) Left-right HMM

S1 S2 S3

(b) Fully-Connected HMM

Figure 2.10: Illustrations of two different types of HMMs. (a) depicts a left-right HMM, whilst
(b) shows a fully-connected HMM. S1, S2 and S3 represent the states of the HMM, and arrows
indicate a non-zero transition probability between states.

each bin was used as a fifty-two dimension descriptor vector.

Using this descriptor, nine actions such as standing up and sitting down could be classified by

discrete left-right HMMs, illustrated in Figure 2.10a. In contrast, most HMM implementations

allow a transition from one state to any other, a type termed “fully-connected” and shown in

Figure 2.10b.

The 3D shape context was used in another dynamic gesture recognition method, by Holte et

al. [99]. Areas of motion in the depth image were first extracted using image differencing. The

same 3D shape context as used by Huang and Trivedi [97] was then centred over the segmented

body. A descriptor was then generated from the 3D shape context, using spherical harmonics.

The system was evaluated on four, one and two-armed gestures, including clapping and waving.

For each gesture class, the mean descriptor vector of the training examples was calculated. An

input gesture was classified by finding the mean training vector with the lowest distance.

Static Gesture Recognition

As opposed to the previously reviewed methods, which classified a gesture based on hand

movement, Li and Jarvis [100] presented a method of recognising static hand gestures in depth

images. The simple assumption that the hand is the closest object in the scene was used, along

with depth thresholding, to isolate it. A set of eleven single-handed shapes, including finger

pointing, was used for evaluation, with a training image provided for each. For each training
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image, a distance value for an input hand was calculated using Chamfer matching. The output

gesture was defined as the nearest training neighbour.

Priyal and Bora [103] recently described a colour image based system for static hand gesture

recognition. Hands were detected by isolating explicitly defined skin colour regions [108]. This

region was separated into arm, palm and finger components using geometric properties of

width and area continuity. The hand was orientated with respect to the detected fingers, and

normalised to a set size. Krawtchouk moments were extracted from the resulting hand, as

well as all training samples. A gesture was then classified as the training sample with the

Krawtchouk moments that are most similar to those of the test sample. Ten single-handed

gestures were evaluated, including a fist and a number of extended fingers.

If static hand gestures are issued consecutively, transitional hand shapes can be incorrectly

classified as unintended gestures. Neto et al. proposed a solution to this problem [104] using

a combination of two artificial neural networks (ANNs). Joint angles from glove sensors were

fed into an ANN, which classifies the input as one of the system’s trained gestures. A separate

ANN was used to classify the glove sensors as one of a number of transitional gestures to be

filtered. Only if no transitional gesture is detected by the second ANN, did the system allow a

valid gesture from the first ANN to be output. The system was evaluated on ten single-handed

gestures, including an open palm and pointing with the index finger.

The same problem of incorrectly classified transitional gestures was tackled by Iwai et al. [94],

for dynamic gestures. Optical flow was performed on each colour input image. For all flow fields

of a gesture example, the principal components were extracted with PCA. The most significant

flow fields for all training samples were quantised with a clustering method. The observation

symbols for the discrete HMMs used, were the nearest cluster for each test sample’s principal

components. The system was evaluated on seven instrument playing actions and seven Japanese

sign language gestures, each set containing one and two handed gestures.
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Action Recognition

Methods that classify whole body actions, such as walking or sitting down, share many simi-

larities with hand gesture recognition techniques. For example, Chen et al. [105] tackled the

problem of feature selection in action recognition using RGB-D cameras. This was accom-

plished with an unsupervised learning algorithm called Independent Subspace Analysis (ISA).

It was trained on space-time subvolumes, which were randomly extracted from both depth and

RGB data, and output the detected activity class. A second ISA was trained on larger sub-

volumes extracted from the RGB-D data. The output classes of these two separate classifiers

were combined using an SVM variant. Evaluation was performed on two datasets; the first had

six actions that include lifting pushing and waving, the second had ten actions that include

carrying and throwing.

For recognition of action abstractions, Mori et al. [96] proposed a hierarchical HMM structure.

A motion capture system was used to extract a thirty-six dimension vector of joint angles. This

was used to recognise thirty specific actions, such as “lying on the right side” or “sitting in

the Seiza position”. However, a small initial set of continuous HMMs were trained on more

abstract actions, such as “lying” or “sitting”. If an input action was classified as the abstract

class “lying”, it would be evaluated on a less abstract HMM level of actions, such as “lying on

back” or “lying on side”. Only if the input action was then classified as “lying on side” would

it then be evaluated on the most specific HMM level of actions.

A similar hierarchical human action recognition method was proposed by Gu et al. [102]. The

method used the skeleton tracking from the Kinect sensor, and was evaluated in a breakfast

scenario. In the lowest hierarchy level, discrete HMMs with ten states were used to classify six

actions based on eight joint angles from the right arm. The resulting action and object were

used as input to a mid-level Bayes classifier, which output a better estimate of the action, taking

into account object context. In this way an action such as drink, would have less probability

of being correct if it was observed with an object such as cereal. Finally, this action was used

as input to high-level HMMs, which output a refined estimate of the action based on temporal

context. In this way an action such as stir was less likely to be correct if a previous pour action
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Figure 2.11: Gaze estimation techniques allow a robot to know where a detected person is
looking, as illustrated by the hand-drawn red arrows on white background. This can be used in
solving many other HRI problems, such as that of group detection or socially aware navigation.

was detected.

A solution to the similar problem of segmenting continuous human actions was presented by

Rui and Anandan [106]. Background information was first subtracted, followed by dense optical

flow calculation for all frames in the video to segment. Singular value decomposition (SVD)

was performed on the resulting collection of flow fields, and the least significant component

directions were discarded to reduce noise. Finally, the boundaries between actions in the clip

were denoted by discontinuities in the temporal trajectories of the remaining components.

2.5 Gaze Estimation and Human Attention Detection

Gaze estimation techniques allow a robot to know where a detected person is looking, as shown

in Figure 2.11. This has many applications in HRI: awareness of human-human interaction,

context for deictic gestures and filtering audio commands not directed at a robot. Gaze esti-

mation techniques can broadly be divided into methods that require infrared illumination and

those that do not. Whilst infrared methods can allow for very accurate gaze estimates, working

range restrictions have prevented the applicability of these methods to HRI. This problem is

tackled in Chapter 5. A brief description of some of the reviewed gaze estimation methods in

this section is given in Table 2.7, with corresponding advantages and disadvantages listed in

Table 2.8.
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Table 2.7: Brief description of some previous gaze estimation methods.

Method Summary

Haro et al. [109] Illuminate pupil with difference of on & off-axis LED images.

Threshold result and track with Kalman filters.

Morimoto et al. [110] Use two light sources at known positions to generate 3D glint

positions and the corresponding gaze vector

Ji and Zhu [111] Illuminate pupil with difference of on & off-axis LED images.

Detect pupil and glint. Estimate gaze using ANN with pupil-

glint positions

Yoo and Chung [112] Attach LEDs to monitor corners to generate four glints. Illu-

minate pupil with image difference of monitor LEDs and an

extra on-axis LED. Calibration is used to map glint image-

coordinates to monitor coordinates

Nickel and Stiefelhagen [55] Use [26] to track faces. Extract fixed-size intensity and dispar-

ity image. Classify orientation with ANNs

Benfold and Reid [113] Using k-means clustering, classify pixels in fixed-size face image

as hair, skin or background. Classify orientation with random

ferns and a HMM

Czyzewski et al. [114] Illuminate pupil with difference of on & off-axis LED images.

Brightest point is glint. Estimate gaze based on glint position

relative to pupil centre.

Cho et al. [115] Locate monitor with template matching. Detect pupil with

image-based method. Calibration is used to map pupil image-

coordinates to monitor coordinates

Benfold and Reid [7] Use [26] to track heads. Extract HOG descriptor and colour

features. Classify with random ferns

Lee et al. [116] Find pupil with image-based method. Generate glints with an

infrared light. Use MLP for eye depth, used to calculate gaze

Sheikhi and Odobez [117] Motion capture provides subject position and head angles.

Continuous HMM created, where current state represents tar-

get observed

Cho and Kim [118] User’s face is tracked in 3D using computational stereo.

Narrow-view camera on pan-tilt unit focuses in on tracked eye.

Pupil detected with image-based method, with two glints from

IR illumination. Calibration is used to map pupil-glint image

coordinates to coordinates on a separate screen
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Table 2.8: Advantages and disadvantages of previous gaze estimation methods. Calibration
refers to instance or user-specific calibration, and not to one-time calibration, such as generating
internal camera parameters.

Method Camera Range
Calibration

Required?
Multi-User?

Haro et al. [109] Infrared Unspecified No Yes

Morimoto et al. [110] Infrared 30− 80 cm No No

Ji and Zhu [111] Infrared 1.0− 1.5 m No No

Yoo and Chung [112] Infrared 40− 60 cm Yes No

Nickel and Stiefelhagen [55] Depth

& Colour

Unspecified No Unspecified

Benfold and Reid [113] Colour Long No Yes

Czyzewski et al. [114] Infrared 60 cm No No

Cho et al. [115] Head-Mounted

Camera

Unspecified Yes No

Benfold and Reid [7] Colour Long No Yes

Lee et al. [116] Head-Mounted

Camera

3 cm Yes No

Sheikhi and Odobez [117] Motion

Capture

Unspecified No Yes

Cho and Kim [118] Infrared 1.4− 3.0 m Yes No
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For the problem of a robot estimating where a user is pointing, Nickel and Stiefelhagen [55]

documented the increased accuracy when considering head orientation. With a similar method,

Axenbeck et al. [119] used head orientation to enable a mobile robot to estimate the closest

object that a user is looking towards. Both approaches first detect potential subjects using the

Viola-Jones face detection algorithm [25] on input intensity images. Similarly, both approaches

track a subject’s head as a fixed-size bounding box. To estimate head orientation, Nickel and

Stiefelhagen used a computational stereo system to extract pixel values from both intensity

images and disparity images. Conversely, Axenbeck et al. extracted image features using only

a monocular camera. In both cases, an artificial neural network was used to classify these input

features, giving the resulting head orientation.

Mora and Odobez [120] recently used the Microsoft Kinect to estimate gaze. A subject’s face

was initially found using monocular face detection. This area was isolated within the depth

image, and used to estimate head pose. Using a 3D mesh model, the eyes were isolated and

their gazing direction estimated using an appearance-based model. Both the 3D mesh model

and the eye appearance model required user-specific training data, which reduces the method’s

applicability to HRI. A somewhat similar method, combining a 3D head model and appearance-

based gaze estimation, was proposed by Choi et al. [121]. However, the method by Mora and

Odobez gives more competitive gaze estimates during unrestricted head motion.

The Microsoft Kinect was also used by Kim et al. [122] to estimate head pose. The algorithm

works with a single user only, and requires a frontal RGB-D image of the face as training data.

From this image, many synthetic head poses were generated, with corresponding RGB images

rendered. These synthetic training images were then clustered, with each image projected

into the locally optimum PCA subspace for that cluster. For a given input image, its optimal

subspace was found by minimising reconstruction error. The input head pose was then given by

the pose of the most similar training image within the optimal cluster. This method was only

tested on synthetic data and so it is unknown how the system functions in real-world scenarios.

Synthetic head poses were also generated for training data in the head pose estimation method

by Fanelli et al. [123]. Due to their suitability for large training datasets, random regression
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forests were used to detect input head poses. During training, a set of patches, with two rect-

angular areas within them, were randomly sampled from the training examples. The difference

between the average depth values of these rectangular areas was used as the test feature for each

node in a tree. A tree’s leaf node stores a multivariate Gaussian distribution, which specifies

the nose position and head rotation for an evaluated input image.

The head pose estimation method by Padeleris et al. [124] required only a single RGB-D image

of the face as training data. To calculate head pose, a 3D model of the head was made from an

input depth image, and transformed according to a process called particle swarm optimisation.

Each transformed model was rendered as a depth image, and its values were compared to

the training image. The transformation that gave the most similar rendered depth image to

the training image was specified as the relative head pose. The method requires a graphics

processing unit, and only works at 10 frames-per-second, which limits its use in HRI.

Much previous work on visual gaze estimation has been focused on its application to surveillance

systems. In their most recent work [7], Benfold and Reid described a system to detect and track

subjects’ heads in order to estimate their gaze direction. The HOG descriptor [26] was used for

head detection, whilst tracking was performed using a modified Kalman filter. Head poses were

grouped into forty five degree classes and classified using randomised ferns. A combination

of HOG and Colour Triplet Comparisons was found to be the most effective feature for head

pose classification. The authors’ previous paper [113] described a similar method for head

pose classification, using lower resolution images. Random ferns were again used for pose

classification, but a hidden Markov model was used to ensure temporal pose consistency.

Sheikhi and Odobez [117] used a humanoid Nao robot to estimate the subject of a person’s

attention. The method was motivated by the desire for humanoid robots to know who is

speaking to whom in a particular scenario. Using a provided head pose, this “visual focus of

attention” was evaluated using a continuous HMM, with a state per target, and the Gaussian

mean set to the target head positions. The authors state that this obtains more temporally

consistent results than previous solutions that use GMMs [125].

The use of infrared reflection to locate eye landmarks is a mature method of gaze tracking,
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with several different approaches. A common approach is to use an array of on-axis LEDs

to reflect light from the ocular fundus through the pupil, and in alternate frames use off-axis

LEDs to illuminate only the surrounding area. This reflected light from the ocular fundus is

commonly known as the red-eye effect [126], and can be used to find centre of the pupil. Haro

et al. [109] use this principal to track pupil centres in a monocular image. The authors did not

filter visible light and so the difference of the on and off-axis images had significant noise. As a

result, potential eyes were filtered using an adaptive threshold and appearance based modelling.

If a subject remains close to the camera, infrared lighting can be used to view corneal and lens

reflections [127] in sufficiently large images of the eye. Usually, up to four main reflections, or

Purkinje images, are potentially visible. A common method of gaze tracking involves using the

pupil centre along with the first Purkinje image [110,111,114], commonly referred to as a glint.

Several authors have used the relative positions of these two landmarks to coarsely track gaze

on a graphic display [111,114].

To produce the glint, Czyzewski et al. [114] used two vertical off-axis arrays on either horizontal

side of the camera, whilst Ji and Zhu [111] used a single circular LED array, with a large radius,

centred on the camera axis. Due to the system’s lack of calibration, the method by Czyzewski

et al. required a static head. However, methods employing calibration usually suffer from

being person and orientation dependent [111]. Ji and Zhu thus used generalised regression

neural networks to allow head movement without experiment-specific calibration. Morimoto

et al. [110] proposed a different calibration-free technique to estimate gaze under head motion,

using the assumption of two light sources with constant known positions.

The use of two or more Purkinje images can aid in the gaze estimation process, but more

hardware is usually required to generate the extra reflections. Lee et al. [116] used a head

mounted camera with a single infrared light to estimate gaze using the first and fourth Purkinje

images. As this light was off-axis, pupil detection was performed using circular edge detection.

Eye depth was determined using a multi-layered perceptron and, after user-specific calibration,

a user’s gaze in 3D space could be calculated using a geometric transform.

A slightly more cumbersome two-camera wearable device was proposed by Cho et al. [115] to
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determine gaze location on a graphic display. One camera used a template matching method

in order to locate the monitor. The other used circular edge detection with local thresholding

to detect the pupil centre. User-dependent calibration allowed a geometric transformation to

be defined, from the pupil position in image coordinates to monitor coordinates. To account

for slippage of the wearable device after calibration, the authors described a method to alter

the geometric transformation based on tracking corner points of the eye.

Using the pupil location and four reflection points on the eye, Yoo and Chung [112] also proposed

a method of tracking gaze on a graphic display. An LED was attached to each monitor corner

to produce the four eye reflections. Similarly to Cho et al., two cameras were used to allow for

head movement, but they are statically positioned beside the monitor. One camera used skin

detection to track a user’s face. The other, on a pan-tilt base, analysed the user’s eyes, and had

an additional on-axis LED to detect the pupil centre. Using a simple calibration procedure,

and the assumption that the four eye reflections are coplanar reflections of the monitor LEDs,

a mapping function was found to transform the camera image plane to the monitor screen.

It has been noted that all methods of Purkinje image analysis have the same drawbacks of

requiring a high resolution eye image [110,112,114,116,118], and frequently require restrictive

calibration [112,116,118]. Cho and Kim [118] recently attempted to overcome these limitations

with their long range gaze tracker. To detect infrared reflections at natural HRI distances, a

narrow view camera on a pan and tilt unit was used. Two stereo cameras were used to track

a subject’s movement within a scene, and control the pan and tilt unit. Calibration was still

required however, and only one user could be tracked at a time.

2.6 Conclusions

As stated in Chapter 1, human-robot interaction is a multidisciplinary field, composed of many

research areas: people detection, body part localisation, face recognition, facial expression

recognition, socially aware navigation, gesture recognition, audio recognition, human-activity

detection, human attention detection and group detection, to name but a few. This chapter
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has reviewed some of the aspects most relevant to the methods proposed in this thesis.

A review of the significant developments in the history of autonomous mobile robots was first

given in Section 2.1. Methods of people and group detection were then discussed in Section 2.2.

The localising of body parts was detailed in Section 2.3. Specific attention was given to methods

of detecting and tracking hands as a single point, as well as articulated pose estimation methods

for both hands and full bodies. Section 2.4 described Methods by which gestures can be

recognised from the movement of tracked body parts. Finally, gaze estimation techniques, using

both vision and infrared imaging, for human-attention detection, were reviewed in Section 2.5.

Reviewed techniques used a multitude of sensors: intensity and colour images, depth and in-

frared cameras, motion capture systems and wearable devices. Many methods of localising

important features in images were presented, along with corresponding descriptors. Method

restrictions, such as requiring calibration or background subtraction, were stated where appli-

cable. Machine learning techniques for classifying these descriptors were discussed, along with

their application to reviewed methods.

This chapter has reviewed the existing literature for the problems addressed in this thesis. These

problems are illustrated in the following example: an elderly person, engaged in conversation

with friends, wishes to attract a robot’s attention. This composite task consists of many

problems. The robot must detect and track the subject in a crowded environment. To engage

with the user, it must track their hand movement. Knowledge of the subject’s gaze would

ensure that the robot doesn’t react to the wrong person. Finally, understanding the subject’s

group participation would enable the robot to respect existing human-human interaction.

Currently, most successful people and group tracking solutions are very computationally ex-

pensive, restricting their use on mobile robot hardware. Crowded environments pose problems

for most explicit hand detection techniques. On the other hand, model-based pose estimation

methods assume an upright pose, prohibiting sitting users, those in wheelchairs and subjects

with consistent lower body occlusions. Traditional visual gaze estimation methods do not have

the required granularity for many HRI tasks. However, existing infrared methods mostly have

too short a range to be used on a mobile robot. In the following chapters, novel solutions to
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these HRI problems are described that either relax the constraints of existing methods, improve

their accuracy, or decrease their computational expense.

Whilst contemporary mobile robots vary in size depending on their target applications, those

designed for HRI commonly have a height somewhat under that of the average human. In

HRI, this limits the number of people in the robot’s view. This thesis defines the issue of

crowds in indoor human environments as commonly occurring clusters of around five people.

Additionally, the following methods assume that interacting subjects are either standing or

sitting in an indoor environment. Whilst some methods may operate accurately outside these

assumptions, this is the foreseen to be the most common scenario where the presented methods

could be employed. Unusual test cases, such as users with hair completely occluding their faces,

are not considered.



Chapter 3

Hand and Body Association in

Crowded Environments for

Human-Robot Interaction

3.1 Introduction

Human-robot interaction (HRI) solutions provide an important means by which people can

naturally command and control robots in an environment. As discussed in Chapter 1, HRI is

increasingly important in areas such as healthcare, where robots have the potential to assist

the elderly and vulnerable. Many useful HRI tasks, including attention detection and gesture

recognition, require an accurate understanding of the motion of people, and their associated

hands, in an environment. However, many existing solutions for hand and body association

are not robust enough for use in real-world environments. The results of the 2012 ChaLearn

Gesture Challenge [128] illustrate this point: none of the best ranked methods explicitly tracked

The work in this chapter was partially presented in S. McKeague, J. Liu, and G.-Z. Yang, “Hand and body
association in crowded environments for human-robot interaction,” in Robotics and Automation (ICRA), IEEE
International Conference on, May 2013, pp. 2161–2168

79



80 Chapter 3. Hand and Body Association

either people or hands. There is a clear need for robust methods to tackle this problem. The

contribution of this chapter is thus to provide a hand and body association algorithm, designed

for crowded and dynamic environments.

Until recently, most body detection methods used colour cameras, as shown in Section 2.2.

Whilst these methods can provide good detection accuracy, they are usually computationally

expensive, due to the abundance of locations and scales in the image that could contain a

body. Detecting individual body parts, such as hands, is an arguably harder task. For many

HRI tasks, both problems need to be tackled simultaneously, and in real time. In this case, the

computational expense of traditional colour-based body detection methods warrants alternative

solutions to the problem.

Many existing methods of hand and body tracking do not perform well in crowded and dynamic

environments [1]. Frequently, body part detectors simplify the task with assumptions of body

pose and occlusions [1, 49, 74]. However, these constraints cannot be assumed in real-world

environments. Much contemporary research has focused on the problem of full-body pose esti-

mation. As discussed in Section 2.3.2, many well-known methods require a static background [2]

or require a user to adopt a specific pose during tracking initialisation [129,130]. Methods with

such restrictions are unable to be incorporated into an effective HRI framework, particularly

one used in healthcare applications.

The hand-body association framework described in this chapter has three major components,

each representing a novelty of the proposed method. A method of detecting hands in crowded

environments is first introduced. Using depth camera information, geodesic distances are em-

ployed to isolate points local to hand, regardless of their Euclidean distance to points in other

regions. Secondly, a computationally efficient, probabilistic method of identifying body clusters

in a cluttered scene is described. This facilitates the subsequent association of tracked bodies

and hands, based on a Bayesian framework, with increased robustness.

For HRI purposes, the proposed method can handle rapid tracking initialisation, varying back-

ground illumination, differing skin tones and clothing, and multiple hypothesis considerations.

It uses depth images to increase robustness in crowded environments and operates in real-time.
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Figure 3.1: Illustration of the hand-body association system structure.

Accuracy is evaluated using a range of parameters, and compared to two existing methods: the

shape context descriptor [61], and the body part detection method proposed by Plagemann et

al [1]. No existing gesture-based dataset could be found, where environments were crowded

enough to thoroughly test the proposed method. Suitable datasets were thus created, manually

annotated, and made publicly available. Results for these crowded datasets are presented for

all three methods, with improved performance exhibited by the proposed method.

3.2 Method

The three major hand-body association components will be described in this section. A hand

detection method for crowded environments is proposed in Section 3.2.1. An associated body

detection method is described in Section 3.2.2. Finally, the algorithm for probabilistically

associating tracked hands and bodies is described in Section 3.2.3. An overview of how the

separate components are combined in the complete hand-body association framework is shown

in Figure 3.1.
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Figure 3.2: Illustration of the proposed method for hand detection in crowded environments.

3.2.1 Hand Detection

An overview of the proposed method for hand detection in crowded environments in shown

in Figure 3.2. Edge detection is performed on an input depth image, with a novel descriptor

generated for every edge point. A Support Vector Machine (SVM) is then used to identify

descriptors belonging to hands.

As noted in Section 2.3.1, the shape context is a successful image descriptor [61, 63]. The

proposed hand detection descriptor, shown in Figure 3.3, is similarly a histogram, though it is

optimised for crowded environments using depth images. To reduce the hand detection search

space, Canny edge detection is initially performed in the depth image. The resulting edges are

defined as hand keypoints, to be characterised by the proposed descriptor.

The shape context uses log-polar sampling to ensure that the highest concentration of sample

points lies near the keypoint being analysed [131]. The proposed descriptor extends log-polar

sampling to angular binning, as well as distance, to focus on local regions most indicative of a

hand. As shown in Figure 3.3, this is achieved with a keypoint direction that points towards

the centre of the hand. The hand centre is defined to be the mean position of the depth pixels

that comprise it. Additionally, areas in the opposite direction to the hand can be ignored, due

to their lack of information.
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Figure 3.3: Illustration of the proposed hand descriptor histogram, based on log-polar sampling.

Using Euclidean distance to identify points that are local to a keypoint can lead to problems

in crowded environments. As shown in Figure 3.4, unconnected background, other people and

other body parts will frequently have a smaller Euclidean distance than points on the forearm.

Geodesic distances are thus used to ensure that “distance” from a keypoint corresponds to

importance to the descriptor. Dijkstra’s algorithm [132] is used to optimally compute geodesic

distances.

Dijkstra’s Algorithm

The geodesic distance between two pixels in a depth image is the shortest cumulative distance

between them, when traversing paths of neighbouring pixels on the same mesh. Being a graph

search algorithm, the problem can be formulated in terms of the depth image as follows: nodes

in the graph represent local pixels on the same mesh as the keypoint; two nodes are connected

if they represent neighbouring pixels.

Two parameters govern the structure of this graph. The first, mind, is the minimum Euclidean

distance, above which neighbouring pixels are considered belonging to different meshes. Only

neighbouring pixels separated by less than mind are processed. The other parameter, maxd, is

the maximum geodesic distance that pixels can have from the keypoint. Pixels with a greater

distance than maxd are not processed. mind can be equated to the low hysteresis threshold of
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Figure 3.4: Heat map showing the advantage of using geodesic distances to highlight important
regions of a hand in crowded environments. Both geodesic and L1 distances within 0.5 m are
shown, from a point on the fingertips indicated by a black cross.

the Canny edge detector. maxd should be chosen through experimentation. Figure 3.4a shows

the pixel regions that would lie within different values of maxd.

Before the graph is generated, the number of depth pixels with a geodesic distance to the key-

point less than maxd, is not known. Thus, graph nodes are not initially known. To compensate,

a slight modification of Dijkstra’s algorithm is made: neighbouring pixels with a Euclidean dis-

tance of less than mind are iteratively added as graph nodes, if their geodesic distance from

the keypoint is less than maxd. The pseudocode for this algorithm is given in Algorithm 1.

The performance of this algorithm depends heavily on the data structures Q and R. If Q is

an unsorted list, the complexity of the algorithm is given by O (E + V 2), where E is the total

number of edges and V is the number of nodes analysed in the graph. This arises from the

iterative search over V nodes, with DELETE −MIN(Q) taking O (V ) each iteration. The

INSERT(Q) function is simply O (1) complexity, and is executed E times.

If Q is represented with a binary heap then the complexity is reduced to O ((E + V ) log (V )).
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Algorithm 1 Pseudocode of a modified version of Dijkstra’s algorithm, where depth image
pixels are dynamically added as nodes to visit, Q, if their Euclidean distance to an existing
node is less than mind and their geodesic distance from the keypoint is less than maxd.

Require: Q = {(u0, s0) , (u1, s1) . . .}: . an ordered list of nodes to visit, consisting of a node
and ordered on an accumulated distance value

Require: R = {(u0, d0) , (u1, d1) . . .}: . a map holding the results, consisting of a node and
an accumulated distance value

Require: k: . the keypoint for which the descriptor is to be generated
Require: DELETE −MIN(Q) (): . pops the node from Q with the lowest distance value

Q = {(k, 0)}
R = {(k, 0)}
while Q 6= ∅ do

(u, s)← DELETE −MIN(Q) ()
d← R[u]
if s ≤ d then

for all v = neighbours of u do
w = distance from u to v
if w < mind then

dv = d+ w
if dv < maxd then

if R[v] == ∅ or dv < R[v] then
R[v] = dv
INSERT(Q) (v, dv)

end if
end if

end if
end for

end if
end while
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This is due to the O (log (V )) cost for DELETE − MIN(Q), which was previously O (V ).

However, for each analysed node’s neighbour, INSERT(Q) now takes O (log (V )) operations.

A Fibonacci heap, which has a DELETE−MIN(Q) complexity of O (log (V )) and INSERT(Q)

complexity of O (1), could be used instead of the binary heap to give O (E + V log (V )). How-

ever, the efficiency of the binary heap memory structure (a simple array) means that it actually

performs faster in any implementation, despite its theoretical higher complexity [132]. Addi-

tionally, the most efficient implementation of R was found to be a static array. Even though

the size has to be initialised to the depth camera resolution, in practise this was significantly

faster than any map or list data structure. Note also, that because a pixel has 8 neighbours in

this context, E = 8V .

With an algorithm defined to generate the geodesic distance of all points local to a keypoint,

construction of the hand descriptor in Figure 3.3 can be detailed.

Descriptor Generation

For each keypoint, k = [x, y, z]T , in a depth image’s corresponding point-cloud, P , the set of

local points, Pk, are first calculated:

Pk = {x | x ∈ P , g(x,k) < maxd} , (3.1)

where g(x,k) is the geodesic distance of point x = [x, y, z]T from k.

Using these local points, a 2D keypoint direction vector, kd, can be calculated. This vector

points towards the mean of the points in Pk:

kd = P

(
1

N

∑

x∈Pk

x− k

)
,

where N is the number of points in Pk and P = [I2,02,1] is a 2× 3 matrix that projects a 3D

vector onto a 2D plane parallel to the camera image plane. 02,1 is a 2× 1 zero matrix.

For each local point, x ∈ Pk, a 2D direction vector from its keypoint, k, is also calculated. The
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unnormalised vector is defined as:

xd = P (x− k) .

As shown in Figure 3.3, the normalised keypoint direction vector, k̂d, lies at an angle of π
2

relative to the descriptor. Additionally, points situated more than π
2

radians from the keypoint

direction are discarded. For the remaining points, the angular difference, θxk, between the

descriptor and x̂d is then calculated:

θxk = cos−1
(
x̂d ·

(
Rk̂d

))
if x̂d · k̂d >= 0

R =




0 1

−1 0


 ,

where x̂d is the normalised 2D direction vector of local point x, and Rk̂d gives the vector from

the keypoint to the 0° line of the descriptor, illustrated in Figure 3.3.

Knowing both the geodesic distance, g (x,k), and angular difference, θxk, of all local points,

the keypoint’s histogram can be calculated. Rather than assign appropriate bins by taking the

logarithm of these values, it is more computationally efficient to calculate the static histogram

bin boundaries.

The logarithmic distance boundary, bdn, of bin number n, out of a total of Nd, is given as:

bdn = mind

(
maxd
mind

) n

Nd−1

, n = 0 . . . Nd − 1.

As defined in the previous subsection, neighbouring pixels are on the same mesh if their Eu-

clidean distance is less than mind; the maximum geodesic distance of a pixel local to a keypoint

is maxd.

Angular bin boundaries must be symmetric about the keypoint direction. The maximum an-

gular boundary lies at π
2

either side of this direction. Thus, the logarithmic angular boundary,
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ban, of bin number n out of Na − 1 is defined as:

ban = sign

(
n− Na

2
+ 1

)
π

2

| 2n+2
Na −1|

+
π

2
, n = 0 . . . Na − 1.

Note that only even values of Na are considered.

With the histogram bin boundaries defined, a local point, x ∈ Pk, is assigned a distance, xi,

and angular, xj, bin number as follows:

xi = min
n

(
g (x,k) ≤ bdn

)
, n = 0 . . . Nd − 1,

xj = min
n

(θxk ≤ ban) , n = 0 . . . Na − 1.

Each distance-angle bin value, bn, is the total number of local points assigned to it. The

proposed hand descriptor is represented as a vector of concatenated distance-angle bin values.

Distance-angle bins are ordered by increasing distance, and in an anti-clockwise direction;

changing distance can be thought of as an outer loop iteration and angular change as an inner

loop iteration. To make the descriptor invariant to the total number of local pixels, each bin

value, bn, should be normalised to 1. This ensures that the descriptor is scale-invariant.

b′n =
bn∑NdNa−1

k=0 bk
, n = 0 . . . NdNa − 1.

With a hand descriptor generated at every edge keypoint, a SVM is used to perform hand

detection. In addition to the standard training method, a technique from [26] is adopted. An

initial classifier is trained on a subset of all samples. This classifier is used to detect hands

in an additional dataset where none are present. Any resulting false positives are considered

“hard examples”, and are added to the final training set. Performance is then increased when

the classifier is retrained on the expanded training set. For further reading, background theory

to the SVM is presented in Appendix A.
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3.2.2 Body Detection

Initial Clustering

The first stage of the proposed body detection algorithm is to segment the scene into spatially

separated clusters. Removal of the floor plane is a necessary pre-requisite for this task, as it

connects all subjects in the input image. With the depth camera mounted on a mobile robot,

offline calibration of the floor plane unit normal, n̂, and a point in the floor plane, xf , can be

performed.

Points, x = [x, y, z]T , in the input point-cloud, P , are removed if their Euclidean distance to

the floor plane is within a small threshold, ε:

P ′ = {x | x ∈ P , ‖ (x− xf ) · n̂‖ > ε} .

With floor points filtered from point cloud P ′, a connected components algorithm [62] is used

to separate P ′ into spatially separated clusters. Figure 3.5 shows the resulting clusters in a

typical scene.

For many human gestures, planar arms can lie up to 0.3 m from the body; foreshortened hands

can be up to 0.5 m away. This will cause hands and arms to be clustered separately from the

body, as shown in Figure 3.5, unless the minimum cluster separation distance is set to a very

large value. However, this will cause adjacent bodies in crowded environments to be incorrectly

merged, causing the people detection method to fail. This problem motivates the following

Bayesian hand-body association algorithm, described in Section 3.2.3. With this method for

associating separately clustered hands and bodies, a smaller minimum clustering distance can

be chosen, enabling successful people detection in crowded environments.
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a

b

c
d

e f

Figure 3.5: Annotated image showing typical results of the connected components algorithm
on the depth point cloud. Separate clusters are coloured differently, with letters indicating
the different people in the scene. The gesturing hand, highlighted by the black oval, has been
clustered separately from gesturing person “d”. In such crowded scenes, a method of associating
hands to the correct person must be devised.

Body Detection

It can be seen from the depth image in Figure 3.5 that upper bodies all have a similar width

and height, especially compared to the many other background objects that can exist in a

scene. Principal component analysis of a cluster’s points provides a natural way of extracting

this shape information. A probabilistic filtering method can then be applied to the results, in

order to separate bodies from background clusters.

Firstly, for every highest point in every cluster, local points within a set geodesic distance are

extracted using Equation 3.1. For a particular cluster, these N points shall comprise the upper

body set Pb. The covariance matrix, C, of these points, xn = [x, y, z]T , is defined as:

C =
1

N

N∑

n=1

(xn − x̄)(xn − x̄)T ,

where x̄ is the mean of the points in Pb.

The first principal component of the points in Pb, denoted by v0 = [x, y, z]T , will give a vector

running from head to toe, which is largely invariant to orientation and limb pose. Similarly, the
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second principal component, v1, will run horizontally along the upper body. V = [v0,v1,v2],

and its associated matrix of eigenvalues, λ = diag (λ0, λ1, λ2), can be calculated from the

covariance matrix using:

CV = Vλ,

The eigenvalue associated with a particular principal component gives a measure of the variance

of the points along its direction. Thus, the first eigenvalue, λ0, gives a measure of upper body

length. Similarly, the second eigenvalue, λ1, gives a measure of width.

From a training set of body clusters, the mean values of λ0 and λ1 should be calculated, µ0

and µ1, along with the standard deviations, σ0 and σ1 respectively. f0 shall be used to denote

the body detection feature given by λ0, and f1 shall denote the feature given by λ1. Due to the

orthogonality property of principal components, f0 and f1 are independent variables:

v0 · v1 = 0.

The probability that these features indicate the presence of a body, b, can then be naturally

modelled by Gaussian distributions:

P (f0 | b) ∼ N
(
f0 | µ0, σ

2
0

)
, (3.2)

P (f1 | b) ∼ N
(
f1 | µ1, σ

2
1

)
. (3.3)

The Mahalanobis distance of a cluster’s feature vector, d(f0, f1), can be used as a measure of

similarity to the average body in the training set. The square of this distance will be chi-square

distributed, with two degrees of freedom. Setting the body detector to have a reasonable 5%

false negative rate, with respect to the training set, the 0.95 quantile of this distribution occurs

at χ2
2 = 5.991. Segmented clusters with an associated d(f0, f1)2 ≤ 5.991 thus represents a body
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in the scene; those with d(f0, f1)2 > 5.991 can be filtered as background clusters.

d (f0, f1) =

√√√√
1∑

n=0

(fn − µn)2

σ2
n

.

Finally, a noise-invariant reference point, xr, is defined for every detected body. It is calculated

from the mean of the cluster’s analysed point’s, Pb:

xr =
1

N

∑

x∈Pb

x.

3.2.3 Hand-Body Association

Temporal tracking of detected hands and bodies is achieved using multiple independent Kalman

filters [133]. The Kalman filter will be discussed in greater detail in Section 4.2.1. The task

remains, however, of associating one with the other. Recursive Bayesian estimation is used to

provide a solution to this problem.

If a hand is detected in a cluster that is also a known body, they can be associated with a

high probability. However, separate clustering of hands and bodies occurs when the pixels

connecting them are completely occluded. This can only occur with a select number of poses,

such as a “stop” gesture with an outstretched hand, or when a forearm is planar with the body

as shown in Figure 3.5. A natural likelihood for hand-body association in these situations can

be formulated by analysing the displacement between hands and bodies.

Still ensuring generality, a separately clustered hand, h, will be at one of G = {g1, . . . , gN}

different displacements, relative to the body. As such, association likelihood can be most

accurately represented using a Gaussian Mixture Model (GMM). This GMM is trained by

having a user adopt different poses, and recording the hand-body displacement each time

that the hand and body are separately clustered. The GMM is fitted to this data using the

expectation-maximisation algorithm. The resulting mean displacement of component g ∈ G is

µg, and Σg is the corresponding covariance matrix. The probability of hand h being associated
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with GMM component g ∈ G, is dependent on the hand’s displacement from the body, d =

[x, y, z]T :

P (d|g) = N (d | µg,Σg) .

The likelihood of hand h being associated with a particular body, bi, can then be given by the

weighted sum of the hand probabilities for each GMM component g ∈ G:

P (h | bi) =
∑

g∈G
πgP (di|g) , (3.4)

where di is the displacement of hand h from body bi, and πg is the prior likelihood of GMM

component g. Using Bayes theorem, the posterior probability for hand-body association is

given by:

P (bi | h) =
P (h | bi)P (bi)∑I
n=1 P (h | bn)P (bn)

, (3.5)

where I is the number of detected bodies.

When modelling the prior probability, P (bi), of body bi being associated with the hand in

Equation 3.5, it would be beneficial to use temporal information. In this way, a body that

had a high posterior probability of being associated with the hand in the last time period, can

have a higher prior association probability in the current time period. As hands and bodies

are tracked using Kalman filters, which have the Markov property, it is logical to also model

the proceeding hand-body associations as a Markov process. Thus, the probability of bi being

associated with h at time t, given the associated probability at time t − 1, is conditionally

independent of all prior associations:

P
(
bti | bt−1

i , bt−2
i , . . . , b0

i

)
= P

(
bti | bt−1

i

)
.

Additionally, the likelihood of h being associated with bi depends only on the current associa-

tion, and is conditionally independent of all prior associations:

P
(
ht | bti, bt−1

i , . . . , b0
i

)
= P

(
ht | bti

)
.
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Given all hand observations from time 0 : t, Equation 3.5 can be rewritten to incorporate the

new temporal prior:

P
(
bti | h0:t

)
=

P (ht | bti)P (bti | h0:t−1)
∑It

n=1 P (ht | btn)P (btn | h0:t−1)
, (3.6)

where I t is the number of detected bodies at time t. Given a particular hand observation, body

bi = 1 if it is associated with the hand, and bi = 0 if they are not associated. Thus:

P
(
bti | h0:t−1

)
=

1∑

bt−1
i =0

P
(
bti | bt−1

i

)
P
(
bt−1
i | h0:t−1

)
(3.7)

Finally, in order for the posterior probability for each hand-body association at time t − 1 to

be set to the prior probability at time t, the following state prediction is defined:

P
(
bti | bt−1

i

)
=





1 if bti = bt−1
i

0 otherwise

. (3.8)

In this way, the optimal body to be associated with an observed hand, at a given time, is equal

to the maximum a posteriori solution of Equation 3.6.

3.3 Results

The Microsoft Kinect RGB-D camera, attached to a Pioneer P3DX robot, was used for the

following experiments. The depth image was downsampled to a resolution of 160× 120 pixels.

During hand detection, maxd, the maximum geodesic distance of pixels local to a keypoint, was

set to 0.5 m. This maximises the descriptiveness of the forearm whilst reducing the variability

of the bend at the elbow. Run-time performance of the hand detector averages at just over

fifteen frames-per-second (FPS), with SVM classification taking over 70% of execution time.

Hand-body association performance is compared against the shape context [61] and the method

from Plagemann et al. [1]. Completely different, non-overlapping, training and test datasets
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were used for results generation. The training dataset is described and evaluated exclusively in

Section 3.3.1. In Sections 3.3.2 and 3.3.3, this training dataset is evaluated on new and different

test sets. Additionally, the only difference between different runs of the test sets comes from

the small amount of Kalman filter noise. Thus, due to their repeatability, the results need to

be processed only once.

Results are generated using nine controlled test datasets (Section 3.3.2) and three crowded

environment datasets (Section 3.3.3). Four gestures are used in each dataset for testing hand-

body association: a wave to grab the robot’s attention, a subtle push to have the robot leave, a

subtle follow me motion, and a raised hand indicating that the robot should stop. Images of the

gestures can be seen in Figure 3.9. All test datasets used have been made publicly available1.

Ground truth hand and body positions in all datasets were manually labelled on a 640 × 480

resolution colour image, so that results could be automatically generated. Hand and body

detection results are obtained by back-projecting the estimated 3D hand and body positions,

and comparing them with ground truth. Ignoring a body part’s z-component, due to 2D data

labelling, hands are considered detected if they lie within 0.1 m of the ground truth. This

allows for just enough error to accommodate for depth camera noise and inaccuracies from

the ground truth annotation. Using the well-known tri-phase gesture model, only the stroke

phase [134] (the unique component) of a gesture was analysed during results generation. Bodies

are considered detected if they lie within 0.3 m of the ground truth. This distance threshold was

chosen due to the fact that different body detection methods have slightly different detection

points, and a reasonable assumption for a correct detection is if the detection point lies on the

correct torso.

1http://www.imperial.ac.uk/hamlyn/eo/gesturedataset

http://www.imperial.ac.uk/hamlyn/eo/gesturedataset
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Figure 3.6: Graph showing the SVM classification accuracy of the proposed hand descriptor,
for a range of angle and distance bins. Accuracy clearly increases with the number of angle
bins used. Figure similar to the published paper on this work [4].

3.3.1 Algorithm Validation

Hand Descriptor Parameter Optimisation

The training dataset for the hand detector consists of samples from relatively noiseless video

sequences, some containing a person and others of random background. 1, 400 hands from a

single user were manually labelled, along with 11, 500 randomly sampled background examples.

A single split of samples into training and test sets was used for parameter evaluation, with a

70 : 30 ratio. This resulted in a test set of 420 positive and 3450 negative samples. However,

for the results presented in Sections 3.3.2 and 3.3.3, all of this data is used as the training set.

SVM classifiers were trained on the proposed descriptor, using a range of angle and distance

bins. The test set classification accuracy is shown in Figure 3.6. As can be seen, the descriptor

exhibits good performance, even for low numbers of distance and angle bins. Increasing numbers

of angle bins results in a large accuracy increase. However, increasing numbers of distance bins

does not produce such monotonic behaviour. This indicates the importance of the angular

binning scheme for the descriptor’s performance.

Results for the SVM trained on the descriptor with the optimal number of distance and angle

bins, were further analysed. Each entry of the confusion matrix, shown in Table 3.1, shows the
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Table 3.1: Confusion matrix of the optimal SVM classifier for the proposed descriptor. Rows
represent the ground truth class. Columns represent the predicted class.

Hand Background
Hand 405 15

Background 16 3433
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(a) Sensitivity of Proposed Descriptor
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(b) Sensitivity of Shape Context

Figure 3.7: Graph comparing sensitivity of the proposed descriptor and the shape context. The
proposed descriptor outperforms the shape context for every number of angle and distance bins.

classifier’s responses to the hand and background samples from the test set.

To more fully validate its performance, the sensitivity of the proposed descriptor was compared

against that of the original shape context [61]. Using the depth image as input, the shape

context histogram used the normalised number of edge points within set angles, and within set

Euclidean distances. The maximum Euclidean distance of edge points to analyse was set to the

optimal value of 0.3 m. This minimises the effect of background noise on the shape context.

SVMs were trained on shape contexts in the same way as the proposed descriptor. Sensitivity

is defined as:

sensitivity =
TP

TP + FN
,

where TP denotes the number of true positives, and FN denotes the number of false negatives.

The results, shown in Figure 3.7, show the improved performance of the proposed descriptor,

for every combination of angle and distance bins.
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Table 3.2: Table showing the improved performance of an SVM trained on the proposed de-
scriptor, compared to one trained on the shape context.

Accuracy Sensitivity Specificity
Proposed Descriptor 99.2% 96.4% 99.5%

Shape Context 98.5% 92.9% 99.2%

Optimal numbers of distance and angle bins were chosen for the shape context, and used to

construct the results shown in Table 3.2. The test set accuracy, sensitivity and specificity is

detailed for both descriptors, where specificity is defined as:

specificity =
TN

TN + FP
.

TN denotes the number of true negatives and FP denotes the number of false positives.

Hand-Body Association Validation

To evaluate the temporal behaviour of the hand-body association algorithm, an experiment was

devised in which two people were positioned side by side. One of the subjects performed the

pushing gesture for a period of time. This subject then moved their hand in front of the other

person, so that their hand position would be more naturally associated with the wrong person.

This process was repeated over a period of 25 seconds, with the tracked hand alternating in front

of the two subjects. The effects of per-frame likelihood, given by Equation 3.4, and posterior

probability, given by Equation 3.6, were recorded. The results are shown in Figure 3.8.

A higher likelihood value represents a higher hand-body association probability in the current

time instant. In Figure 3.8, time periods where the hand is in front of the wrong subject are

thus obvious. The posterior probability incorporates association probabilities from previous

time instants. As can be seen, this gives a more stable association during transient periods of

incorrectly lower likelihood. However, if the hand has a low likelihood of being associated with

a body for longer than around 3 seconds, the posterior probability will decrease appropriately.

This behaviour can be seen at the 20 second mark, and allows the framework to recover from
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Figure 3.8: Graph showing the effect of differing per-frame likelihood on posterior probabil-
ity. The posterior probability provides stable hand-body association results, during transient
periods of incorrectly lower likelihood. Figure similar to the published paper on this work [4].

incorrect associations.

3.3.2 Results in Controlled Environments

To thoroughly evaluate hand detection performance, three criteria that affect hand detection

difficulty were determined: angle to camera, distance to camera, and range of gesture motion.

In order to rigorously evaluate the hand-body association algorithm under these parameters,

nine controlled test scenarios were recorded. Each scenario is around a minute in length, and

consists of a single subject gesturing towards the camera, at a constant distance but at a range

of angles to the camera.

Three camera distance parameters were defined: 1.5 m, 2.0 m, 2.5 m. Similarly, three gesture
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Table 3.3: Table showing the performance of the proposed body detection algorithm, in a
single subject environment. Performance was compared with four alternative methods, at
three different distances. Acc. is the percentage of accurately detected bodies. FP is the
average number of false positives per-frame. FPS is the average number of frames-per-second
that each method can process.

Method
1.5 m 2.0 m 2.5 m

FPS
Acc. (%) FP Acc. (%) FP Acc. (%) FP

Proposed 98.6 0.33 95.6 0.18 88.9 0.18 30
Haar-Like Body 100 1.05 100 1.05 99.8 0.53 2
Haar-Like Face 96.1 0.03 94.4 0.02 93.7 0.03 4

HOG 27.1 0.04 4.3 0.03 5.0 0.28 6
Plagemann 26.2 0.10 49.7 0.05 53.9 0.02 10

motion ranges were defined: a large motion range using only waves, a medium motion range

with half waves and half subtle gestures, and a small motion range using only subtle gestures.

Each of the nine distance and motion combinations comprise the controlled scenarios.

The results of the proposed body detection method was evaluated in these single subject sce-

narios. For comparison, several competing methods were also evaluated on the exact same

datasets. Table 3.3 shows the combined results of the nine datasets, grouped by distance.

The OpenCV library implementation was used for both the Haar-like body and face detec-

tion methods [25] and the HOG people detection method [26]. The OpenCV Haar-like face

detection classifier used was “haarcascade frontalface alt” and the Haar-like body detection

classifier was “haarcascade mcs upperbody”. The code for Plagemann’s body part detector [1]

was re-implemented, due to the author’s original method being unavailable.

The input colour image was downsampled to a resolution of 320 × 240, and the input depth

image was downsampled to 160× 120. Clock speeds were calculated using a Dell Optiplex 880

computer, with an Intel®Core™i5-650 processor, which has 4 MB cache and a 3.2 GHz clock

speed. The machine has 8 GB of Kingston DDR3 RAM, with a clock speed of 1333 MHz.

Whilst the proposed method has good performance in the single subject scenarios, the results of

the Haar-like face detection algorithm are superior. However, this method runs at a maximum

of 4 FPS on the testbed computer as opposed to the proposed method’s 30 FPS. Indeed,



3.3. Results 101

Table 3.4: Table showing hand detection performance of the proposed algorithm, compared to
two alternatives, in a single subject environment. Scenarios are divided into three distance and
three gesture motion range categories, each using a wide range of gesture angles. Each method
is evaluated on all nine scenarios. Results are shown of both the percentage of accurately
detected hands, and the average number of false positives. The best result for each scenario is
shown in bold.

Method
Large Motion Medium Motion Small Motion

1.5m 2.0m 2.5m 1.5m 2.0m 2.5m 1.5m 2.0m 2.5m
Accuracy (%)

Proposed 88.8 74.8 53.5 78.5 70.0 49.6 76.2 69.9 42.8
Shape Context 93.2 55.6 32.3 68.7 67.7 28.9 50.0 38.6 20.6

Plagemann 49.0 47.0 34.6 15.5 30.3 20.2 17.2 23.9 14.5
False Positives (Per-Frame)

Proposed 0.03 0.04 0.02 0.01 0.03 0.02 0.13 0.07 0.04
Shape Context 0.12 0.26 0.21 0.15 0.40 0.22 0.25 0.28 0.21

Plagemann 1.17 1.26 0.99 1.37 1.41 0.87 1.40 1.38 0.98

the introduction of the proposed body detection algorithm was largely motivated by the high

computational requirements of existing methods. In this way, more resources could be spent

on the arguably harder problem of hand detection.

The poor performance of the HOG method can be explained by the provided OpenCV classifier’s

training set. This contained samples of people where the entire body, from feet to heads, were

visible. Due to the placement of the camera on the mobile robot, even at 2.5 m away, the feet

of the subject were cut off by the bottom of the image. Whilst this dataset is not at all a

fair test of the HOG method’s performance, its results are included as the employed OpenCV

classifier is one of the most popular standard people detectors.

Hand detection performance was also evaluated in the nine controlled scenarios. Performance

of the proposed hand detector was compared with both the shape context and the method by

Plagemann et al. [1]. The entire dataset from Section 3.3.1 was used to train all three methods.

The results are shown in Table 3.4.

As can be seen, the proposed method displays superior performance to the alternate methods,

in almost every category. Most notable is the low number of false positives produced by the

method. It can be seen that as distance to the camera increases, detection accuracy drops.
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For the most part, this pattern is exhibited by all methods. This is due to the fact that depth

camera noise increases with distance. At distances further than 2.5 m, this noise causes too

much variation in the 3D hand points, making detection very difficult.

3.3.3 Results in Crowded Environments

In order to evaluate the complete hand-body association framework, three crowded scenarios

were recorded. Each recording takes place in a different location with different lighting con-

ditions. They shall be referred to based on the university location where they were recorded:

“Computing”, “Corridor”, “Physics”. Each recording is over a minute long; every few seconds,

one or two simultaneous people from the crowd gesture towards the robot. In the same way as

the controlled datasets in Section 3.3.2, people and gestures were manually annotated. Images

of the proposed hand-body association method’s results in these scenes are given in Figure 3.9.

Tracked bodies are displayed in red, tracked hands are displayed in blue, and associations are

denoted with a white line. As can be seen, these scenarios represent a challenging, real-world

environment for HRI.

Hand-body association accuracy for the scenarios is shown in Table 3.5. Association accuracy

is also listed for the shape context and the method by Plagemann et al.. This was generated

by using the proposed hand-body association algorithm, but with body parts detected using

the comparison methods. To highlight the differences between the hand detection results, body

detection for the shape context was performed using the proposed body detection method.

With a minimum association accuracy of 76.7% in such a challenging environment, these results

validate the success of the proposed algorithm. This is further reinforced by the 89.9% associ-

ation accuracy in the “Physics” scenario, and the lower number of false positives produced by

the proposed method. The hand detection method by Plagemann et al. does not perform as

well as the other two methods. This might mainly be due to the fact that the algorithm was

originally evaluated in much simpler, single person environments. Whilst the same training set

was used for all three methods, the method by Plagemann et al. could potentially benefit most

from a larger number of background samples.
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Figure 3.9: Example results showing the accuracy of the proposed hand-body association
method in three different crowded scenes. Each scene has different lighting conditions, and
features a range of people gesturing towards the robot. Tracked bodies are displayed in red.
Tracked hands are displayed in blue. Associations are shown with a connected white line.
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Table 3.5: Table showing hand-body association results for the three crowded scenarios.

Scenario
Computing Corridor Physics

Average Gesture Length (s) 2.3 2.0 2.1

Proposed Descriptor
Hand Detection Accuracy (%) 82.3 80.2 83.3
Body Detection Accuracy (%) 85.1 85.1 91.9

Association Accuracy (%) 87.4 76.7 89.9
False Positive Associations per Frame 0.09 0.14 0.05

Shape Context
Hand Detection Accuracy (%) 57.2 56.3 42.2

Association Accuracy (%) 70.4 57.1 53.9
False Positive Associations Per Frame 1.06 0.68 0.48

Plagemann
Hand Detection Accuracy (%) 28.7 27.2 15.5
Body Detection Accuracy (%) 36.2 34.4 25.0

Association Accuracy (%) 29.8 24.6 10.2
False Positive Associations Per Frame 1.44 1.90 2.89

An additional reason for the reduced performance of the competing methods, is that the training

set had only a single subject and did not have a wide a range of gestures as in the crowded

environments. Thus, the proposed method was best at generalising to hand samples that it

had not been trained on. This is due to the use of geodesic distances in the proposed hand

descriptor, allowing it to perform well in crowded environments and recognise unseen hand

poses.

Association accuracy can sometimes seen to be higher than the hand detection accuracy. This

can be explained as a result of the subtleties of the gestures. If a Kalman filter is created at the

start of a subtle gesture, it can lie within 0.1 m of the ground truth for much of its duration,

even without further detections to update its position. Although decreasing the ground truth

threshold below 0.1 m can alleviate this effect, this results in incorrectly reduced detection

accuracy.

In spite of these results, a source of inaccuracy in the proposed method can be identified, being
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that the hand detector is susceptible to self-occlusions. When a foreshortened hand is presented

that the detector was not trained on, detection frequently fails. Shorter gestures are usually

less pronounced, and thus exhibit this behaviour more often. Decreasing maxd can alleviate

this problem, at the expense of increased false positives.

Section 2.3.2 reviewed full body pose estimation methods. A popular pose estimation method

is the NITE skeleton tracker by PrimeSense Inc.. Like many similar methods, the user was

required to adopt a stationary “T-pose” in order to start tracking. A somewhat recent update

to the method removed this constraint. However, during testing, the average time to start

tracking was still 2.1 s, with the user guide stating that initial calibration takes around 3 s.

With the longest average gesture length being 2.3 s long, this method could not be evaluated

on the presented datasets.

3.4 Conclusions

The contribution of this chapter has been the introduction of a framework for hand and body

association in crowded environments. The proposed method has three main novelties: a hand

detection method, optimised for crowded environments; a computationally efficient body de-

tection method; and a probabilistic algorithm for associating detected hands and bodies. Hand

detection is performed with an optimised histogram descriptor, filled with segmented depth

pixels belonging to the hand. Geodesic distances are used to filter background noise in crowded

environments. This technique is also adopted in the body detection method, which runs in par-

allel. Subsequent hand-body association is performed using a Gaussian mixture model, trained

on the displacement between hands and bodies, and recursive Bayesian estimation.

Detailed hand and body detection results were presented in nine controlled scenarios. Per-

formance was compared against four state-of-the-art body detection methods, and two hand

detection techniques: the shape context [61] and the method presented by Plagemann et al. [1].

Quantitative analysis of the complete hand-body association framework was performed in a

number of crowded environments. The proposed method was shown to give increased detection
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accuracy against competing methods, with a low number of false positives. All datasets used

in this chapter have been made publicly available.

Presented results highlighted the ability of the proposed hand detector to recognise unseen

gestures and subjects in crowded environments. This is due to the use of geodesic distances in

isolating information local to a keypoint. A comparison of the per-frame hand-body association

likelihood and the posterior probability, shows that the hand-body association algorithm uses

past association outcomes to reduce transient misassociations due to noise or misdetections.

Due to the computational efficiency of the proposed body detector method, the whole framework

runs in real-time.

The work presented in this chapter is used repeatedly throughout the rest of this thesis. For

example, tracking has been performed in this chapter using Kalman filters. Chapter 4 will

explore hand tracking strategies, and specifically address whether RGB information can be

used to increase the accuracy of the depth methods presented here. This can be used to

provide added context for deictic gestures, or for ignoring gestures that are part of human-

human interaction. Body detection is an important component of almost every aspect of HRI.

Chapter 5 will use the proposed method to assign gazes to people. This will allow a robot to not

only understand the presence of people in the scene, but detect their focus of attention as well.

Chapter 6 will use the proposed body detector in detecting groups of people. A robot that

understands which people are interacting together can integrate more naturally into human

environments. For example, a robot should not navigate between two conversing people.



Chapter 4

An Asynchronous RGB-D Sensor

Fusion Hand Tracking Framework

using Monte-Carlo Methods

4.1 Introduction

The wide range of applications that mobile robots will perform in the future, such as caregiv-

ing and companionship, necessitates many different sensing methods. Most notably in crowded

environments, including hospitals and nursing homes, robust methods of body part localisation

are vital for HRI problems such as group detection and gesture recognition. These, and many

other HRI fields, have been an actively researched for many years, yet limited work has been

successfully translated from lab-based research into real-world applications. Real-world envi-

ronments pose many new challenges, such as crowds and changing dynamics of moving objects.

The work in this chapter was partially presented in S. McKeague, J. Liu, and G.-Z. Yang, “An asynchronous
rgb-d sensor fusion framework using monte-carlo methods for hand tracking on a mobile robot in crowded
environments,” in Social Robotics, ser. Lecture Notes in Computer Science. Springer International Publishing,
2013, vol. 8239, pp. 491–500

107
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The contribution of this chapter is to provide a hand tracking method, capable of operating in

crowded and dynamic environments, in order to facilitate HRI in real-world applications.

Many methods of localising body parts can be divided into two stages: detection and track-

ing. In Chapter 3, hand and body detection methods were proposed. However, a method of

persistently tracking each detected hand over time must also be specified. In Equation 3.6

for example, a body was given a high prior probability of being associated with a hand, if

they had been previously associated. The required tracking of hands and bodies in time was

accomplished with the Kalman filter. However, many previous methods have been proposed,

with specific advantages and disadvantages.

Existing hand tracking literature can be broadly divided into two categories [135]: appearance-

based methods, reviewed in Section 2.3.1, and model-based methods, reviewed in Section 2.3.2.

Appearance-based methods usually track the hand as a single point, whilst model-based meth-

ods give a more complete pose estimate. Appearance-based methods extract a set of image

features from input information, and classify these as belonging to a hand or not. Model-based

methods match an explicit prior model of the hand to observed input information. Appearance-

based methods are generally faster and work at longer ranges than model-based methods, but

only recognise a discrete number of hand poses.

For HRI tasks, which have real-time and working range requirements, appearance-based meth-

ods are a natural choice. However, problems such as misdetections, caused by occlusions,

and reduced frame rates, caused by computational expense, are exacerbated in crowded and

dynamic environments. Again, it is noted that no top ranking method of the 2012 ChaLearn

Gesture Challenge [128] tracked individual body parts. To fulfil the need for robust hand track-

ing solutions in real-world environments, this chapter proposes augmenting a hand detector,

which uses depth images, with a tracking algorithm that uses colour images. With an efficient

RGB method of updating the tracking position, the computational expense of the depth-based

hand detector is mitigated, and position and velocity accuracy are increased.

The proposed sensor-fusion hand tracker has several novelties. Firstly, a detection-less, Monte-

Carlo RGB update method is used to efficiently update the hand position, when the underlying



4.2. Method 109

depth-based detector fails. This ensures accurate hand position updates at a 30 Hz rate,

regardless of the speed of the depth detector. Secondly, unlike most RGB hand trackers, the

method dynamically learns a skin colour distribution of each tracked subject. This ensures

that the system works seamlessly with people of different races, and is robust to illumination

changes and worn clothing. Finally, a novel asynchronous sensor update method is used to

combine depth and RGB input sources together, for real-time applications.

Results of the sensor-fusion algorithm are compared against the Kalman filter, for three different

underlying depth-based hand detectors, including the method proposed in Chapter 3. To access

the method’s practical value, experiments are conducted in a number of crowded and controlled

environments. The sensor-fusion algorithm is shown to increase both hand-tracking accuracy

and velocity reconstruction.

4.2 Method

A diagram of the proposed sensor fusion algorithm’s system structure is shown in Figure 4.1.

Rounded boxes represent functional components of the algorithm. Square boxes denote inputs

and outputs. Boxes within the dashed line are components of the proposed tracker. Boxes

outside represent the algorithm’s two inputs: an RGB image registered to a corresponding

depth image, and a hand detector that uses the depth image to return a single 3D position and

3D unit direction vector for each hand.

The proposed hand tracker can use any depth-based hand detector as input. Section 4.3

presents results using: the hand detector proposed in Chapter 3, the shape context [61], and

the method by Plagemann et al. [1]. These methods operate at around 15 frames-per-second,

but can achieve low false positive rates.

The proposed tracker is comprised of four main components. The hand state stores probability

distributions of its position, direction and skin colour estimates. Random sampling is used to

generate a number of point positions, near the expected hand. An RGB likelihood function

weighs each sample’s colour similarity, in the latest image, to the expected hand colour. A state
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Figure 4.1: System structure diagram of the proposed sensor fusion algorithm. Rounded boxes
represent functional components. Square boxes denote inputs and outputs. Boxes within the
dashed line are components of the proposed tracker. Boxes outside represent the algorithm’s
two inputs.

update method asynchronously combines depth and RGB measurement updates to maintain a

temporally consistent hand state.

Section 4.2.1 will describe the position and direction components of the hand state, and how

to incorporate tracker updates from the depth-based hand detector. Section 4.2.2 details the

detection-less Monte-Carlo method of updating the hand position RGB images. Section 4.2.3

describes the RGB likelihood function that weighs the random samples. Section 4.2.4 describes

how to update the hand’s colour and direction using RGB images. Finally, Section 4.2.5

describes the asynchronous state update method.

4.2.1 Hand State Prediction and Depth Update

The proposed tracking algorithm adapts the Bayes filter [136], also used in Chapter 3, to

fuse measurement updates from two sources with different characteristics. The first is a hand

detector using depth images, that provides a single value hand estimate with high precision

but lower speed. The second is a hand likelihood function over the whole RGB image that is

computed quickly, but with higher false positives.
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A hand state, s, is modelled with a 3D position, x = [x, y, z]T , and unit vector direction,

−→x = [ux, uy, uz]T : s = [x, y, z, ux, uy, uz]T . A colour component is independently stored,

which is detailed in Section 4.2.4. The goal of the filter at time t is to maintain a probability

distribution of the hand state, given all prior measurements from time 1 to t, z1:t, and knowledge

of how the hand moves in the absence of any measurement:

P (st | z1:t) =
P (zt | st)P (st | z1:t−1)

P (zt | z1:t−1)
. (4.1)

Assuming that the changing hand state is a Markov process, Equation 4.1 can be written

recursively:

P (st | z1:t) ∝ P (zt | st)
∫
P (st | st−1)P (st−1 | z1:t−1) dst−1. (4.2)

At time t the sensor fusion algorithm could receive either a depth measurement, zdeptht , or an

RGB measurement, zRGBt . The following section will formulate equations to estimate the hand

state given depth measurements. Equations to process RGB measurements will be presented

later, with position updates detailed in Section 4.2.2 and colour and direction updates detailed

in Section 4.2.4. Due to their independence:

P (z1:t) = P
(
zdepth1:t

)
P
(
zRGB1:t

)
.

Solutions to Equation 4.2, are commonly split into two parts, called the “prediction step”

(Equation 4.3) and “update step” (Equation 4.4). The “prediction step” defines how the hand

state changes from a previous estimate, st−1, to the current estimate, st, in the absence of any

measurement. The “update step” defines how the current hand state changes in response to a

measurement, zt.

bel (st) =

∫
P (st | st−1)P (st−1 | z1:t−1) dst−1, (4.3)

bel (st) = η P (zt | st) bel (st) . (4.4)
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bel (st) is also known as the prior state distribution; although it estimates the hand state at

the current time, it doesn’t include any measurement at the current time. bel (st), which does

include measurement information for the current time, is also known as the posterior state

distribution.

All depth-based hand detectors give a single point estimate of the hands position and direction:

zdepth = [x, y, z, ux, uy, uz]T . The most natural measurement probability for the depth-based

detection, given the current hand state, P
(
zdepth | s

)
, is thus a Gaussian probability density

function (PDF). It is therefore natural to also model the hand state PDF, P (s | z), as a

Gaussian. This is more computationally efficient than a non-parametric approach, such as a

particle filter.

Under these conditions, the Kalman filter is used to provide a solution to the “prediction step”,

and “depth update step” (Equations 4.3 and 4.4). The Kalman filter represents both the prior

and the posterior hand state PDFs as Gaussians: bel (st) = N
(
µt,Σt

)
, bel (st) = N (µt,Σt).

The “prediction step” of the Kalman filter specifies that between times t − 1 and t, the state

is linearly transformed with added Gaussian noise:

st = Ast−1 + wt−1 (4.5)

P (w) ∼ N (0,Q). (4.6)

Due to the unpredictable nature of hand motion during HRI gestures, the most appropriate

motion model is Brownian motion. Thus A = I6. The prior hand distribution, bel (st), can

then be calculated according to:

µt = µt−1 (4.7)

Σt = Σt−1 + Qt (4.8)

To incorporate a measurement from the depth-based hand detector at the current time, zdeptht ,

the “depth update step” of the Kalman filter also linearly transforms the state, with added
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Gaussian noise:

zt = Hst + vt (4.9)

P (v) ∼ N (0,R) . (4.10)

As the depth-based hand detector gives a direct estimate of position and direction, H = I6.

The posterior hand distribution, bel (st), is then calculated according to:

Kt = Σt

(
Σt + Rt

)−1
(4.11)

µt = µt + Kt (zt − µt) (4.12)

Σt = (I6 −Kt) Σt, (4.13)

where Kt is known as the Kalman gain. Smaller values in Rt, result in a higher gain, meaning

the tracker places more weight on the hand detections, rather than the motion model. Due

to the accuracy of depth-based hand detectors, the measurement covariance, Rt, will be very

small. The direction component of µt is re-normalised after every “depth update step”.

With J independent hand trackers at time t, and K hands detected by the depth-based detector,

the data association problem is tackled with the Hungarian algorithm [137]. This algorithm

provides optimal hand-tracker assignments, unlike a näıve, nearest neighbour approach. A 3×6

matrix, P = [I3,03,3], shall be used to extract the position component from a combined position

and direction vector, where 03,3 is the 3 × 3 zero matrix. A detected hand shall be denoted

as: x. Thus, with a J × K cost matrix of the distance between each mean hand state, Pµ,

and each detected hand, Px, the Hungarian algorithm finds the optimal assignment. With a

particular tracker optimally assigned to a detected hand, x, an additional distance threshold

is applied to prevent wrong matches. The assignment is discarded if: ‖P (µt − x) ‖ > εd. The

threshold, εd, should be set to the maximum distance that the hand could travel, given the

maximum number of allowed misdetections. Without this threshold, a misdetected hand could

result in the tracker being associated with a far away false positive.
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For each unassigned hand, a new tracker is created. The differential entropy of bel (st) is a

measure of the uncertainty about the tracked hand state. A tracker is removed when the

differential entropy of its distance components exceeds a threshold:

1

2
log |2πePΣtP

T | > εe, (4.14)

where the bars represent the matrix determinant. The threshold εe should be chosen based on

the number of hand misdetections to allow, before assuming that the hand is lost.

The best hand estimate at any point in time is given by µt. However, due to the use of the

Brownian motion model in Equation 4.7, this will be no more accurate than the most recent

“depth update step”, given by Equation 4.12. RGB information from the current frame can give

a better state estimate than Brownian noise. The proposed sensor-fusion algorithm thus has

two requirements: use RGB information to compensate for hand misdetections in depth images,

and better predict hand motion with a 30Hz RGB update process. These are accomplished by

effectively modelling the RGB measurement probability: P
(
zRGB | s

)
.

The “RGB update step” description will be separated into three steps: position, direction and

colour. Hand position updates are detailed in Section 4.2.2. This refined position is used in

Section 4.2.4, which details updates to the hand state’s direction and colour components.

4.2.2 Detection-less Monte Carlo RGB Position Update

The task of robust hand detection in RGB images is much more difficult than using depth

images. Figure 4.2 shows a common method of skin colour detection [5] applied to a typical

HRI scene. To perform hand detection on these results, a somewhat arbitrary blob size would

have to be chosen. Blobs above this size would be considered hands, resulting in many false

positives. Additionally, misdetections could result from subjects with darker skin colours. Hand

blob size affects the calculation of a single point to represent the hand; partial occlusions and

varying sleeve lengths would cause much frame to frame instability in this calculation.
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Figure 4.2: Images showing the results of an existing skin colour detection method [5] in HRI
scenes. The varying hand blob sizes and large number of false positives, due to clothing style
and illumination conditions, motivates the decision not to perform explicit hand detection in
the RGB image.
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Taking these disadvantages into consideration, explicit hand detection in the RGB image

should be avoided. Thus, rather than the usual Gaussian PDF, an alternate formulation for

P
(
zRGB | s

)
should be specified. The measurement covariance for the “depth update step”,

Rt, is very small. After a depth update, the resulting bel (s) will be a narrow distribution near

the detected hand. In the subsequent time period, there is a high likelihood that the hand

will be nearby. By analysing adjacent skin coloured regions, an efficient estimate of the hand’s

subsequent movement can be calculated. Taking random samples from the latest prior PDF,

bel(st), provides a good way of evaluating this nearby information.

As noted in Figure 4.1, each input image is a combined depth image registered to an RGB

image. Thus, every pixel will have six components: [x, y, z, r, g, b]T . Each sample, m of M ,

will have two defined properties. The first is its state, s
[m]
t = [x, y, z, ux, uy, uz]T , drawn from

bel (st). If the sample does not lie within a distance threshold, ε, of its closest registered pixel

in the input image, c
[m]
t , then it is discarded. The threshold, ε, should be set to the distance

that the hand could travel since the last “RGB update step”. In the event that the hand is

occluded or has moved too far from the tracker, this threshold ensures that registered pixels

far away from the sample are not considered. The second sample property is its weight, w
[m]
t ,

based on the skin colour probability of its closest pixel. Again, matrix P is used to extract the

a vector’s position component:

sample s
[m]
t ∼ bel(st), if ‖P

(
s

[m]
t − c

[m]
t

)
‖ < ε,

w
[m]
t = P

(
zRGBt | c[m]

t

)
, 1 ≤ m ≤M.

Provided the sample weights are normalised, the complete sample set represents the position

component of the non-parametric posterior PDF, P
(
st | zRGBt , z1:t−1

)
. The RGB likelihood

function itself,P
(
zRGBt | c[m]

t

)
, will be defined in Section 4.2.3. After the Kalman update step,

from Section 4.2.1, the posterior covariance is never more than the prior covariance: Σ ≤ Σ.

Because no explicit hand detection is performed in the “RGB update step”, it can happen

every frame with a reasonable RGB likelihood. If the Kalman equations were used in the

“RGB update step”, the resulting low covariance would limit samples to a small area. It
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would also keep the tracker’s differential entropy low, making the removal of the tracker quite

unpredictable.

Adjusting the position component of the covariance, Σ, only during “depth update steps”

would have the desirable effect of spreading RGB samples over a wider area, the more misde-

tections the depth-based hand detector makes. With enough depth misdetections, the tracker’s

entropy, given by Equation 4.14, would increase to the point where the tracker is deleted. RGB

updates can then be used to refine the expected hand state, µ, for every input image without

a “depth update step”, whether due to misdetections or the lower frame rate of depth-based

hand detectors.

The updated hand position in the “RGB update step” is given by the weighted sum of samples.

All samples are discarded and redrawn in subsequent frames. The mean position of the tracker’s

posterior PDF is then updated as:

ŵ
[m]
t =

[
M∑

n=1

w
[n]
t

]−1

w
[m]
t ,

Pµt ← P
M∑

m=1

s
[m]
t ŵ

[m]
t , (4.15)

where ← represents the assignment operator.

4.2.3 RGB Likelihood Function

The previous section described the sampling process used to update the hand position in the

“RGB update step”. However, the task remains of defining the likelihood function that gener-

ates sample weights: P
(
zRGB | c[m]

)
. The proposed method adaptively learns skin colour on a

per-subject basis, providing invariance to varying illumination conditions.

There are two main facets governing skin colour detection methods in RGB images. A colour

space model (CSM) that represents colour values, and a colour distribution model (CDM)

that models these values [138]. Three main forms of CDM exist [11]: explicitly defined skin

regions, non-parametric skin segmentation and parametric skin segmentation. Non-parametric
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histograms are the best CDM choice for the proposed sensor fusion hand tracker, as a result

of their greater suitability for online learning. Additionally, the hue, saturation, value (HSV)

CSM is selected, due to its ability to remove illumination effects [138]. Thus skin colour is

modelled as a 2D histogram containing hue and saturation values.

The mean of each likelihood function, depth and RGB, should be a constant point on the

hand. Weighing a sample by skin colour probability alone, would position the mean of the

RGB likelihood function near the palm. Short sleeve lengths could cause this point to vary.

The main depth detectors considered [1, 4] provide hand detections around the fingertips. As

the fingertips provides a stable point about which to track the hand, the RGB likelihood mean

should lie over them.

To centre the mean of the RGB likelihood function on the fingertips, two additional probability

functions are introduced. The first is a distance transform, where the likelihood, P d, of a reg-

istered pixel, c, depends on its 3D distance to the closest edge, edge (c). The second likelihood

function is an angular weighting, where likelihood, P a, depends on the perpendicular distance

to the hand direction vector. To calculate this, a vector from the registered pixel to the hand

mean shall be denoted as cd = P (c− µ). Additionally, a matrix, D = [03,3, I3], shall be used

to extract the direction component of the hand state:

P d (c) = e−αedge(c)2

P a (c) = e−β‖c
d−(cd·Dµ)Dµ‖

α and β are scaling parameters, controlling the spread of the probability around areas of

maximum likelihood. α and β should be chosen such that the distributions P d and P a are wide

enough to assign a repeatably high probability to samples near the hand edge and direction,

given the nature of the Monte-Carlo process. Figure 4.3 graphically displays the likelihood

functions P d and P a.

The combined likelihood function for pixel c, P
(
zRGB | c

)
, is simply the product of the three

individual likelihood functions. P c (c) shall represent the skin probability of pixel c, obtained
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Pa

Pd

Figure 4.3: Illustration of the effect of the two likelihood functions, P d and P a. Areas of
high probability are coloured red. P d weighs points along the edge of the hand with a high
probability; P a weighs points along the hand direction with a high probability. When combined
with skin colour probability, the intersection of all three probability functions lies over the
fingertips, which is the tracked point on the hand.

from the current tracker’s skin colour histogram. The mean of this combined likelihood function

will lie over the fingertips, as desired:

P
(
zRGB | c

)
= P c (c)P d (c)P a (c) . (4.16)

Using Equation 4.16, the position component of the “RGB update step” is completely defined.

A method of storing a tracker’s colour histogram, for evaluating P c, remains to be specified.

The next section will thus describe the colour and direction components of the “RGB update

step”.

4.2.4 RGB Colour and Direction Update

Each newly created hand tracker is assigned an initially empty skin colour histogram. After

a “depth update step”, the subsequent registered RGB image is used to update the tracker’s

skin colour histogram. At this time, denoted as t, the nearest registered RGB pixel to the

best hand estimate, µt, is found, denoted as ct. If the distance between these points is below

a threshold, ‖P (µt − ct) ‖ < ε, then the tracker’s histogram is updated with the hand’s skin

colour information.
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Figure 4.4: Images showing segmented hands from the geodesic distance analysis. The segmen-
tation boundaries are given by the black lines, surrounded by white for visibility. The hue and
saturation values of the segmented pixels will be used to update the appropriate tracker’s skin
colour histogram. This provides the proposed algorithm with illumination invariance and the
ability to model various colours of skin.

To isolate skin coloured pixels, all points within a geodesic distance, maxd, to ct are analysed.

These segmented pixels shall be denoted by the set H. As previously noted in Section 3.2.1, the

geodesic distance between two pixels in a registered image is equal to the shortest cumulative

distance between them, whilst traversing neighbouring pixels on the same surface [4].

If ct lies on side of the hand, the area of pixels in H will be larger than if ct lies on the fingertips.

To ensureH has a constant area every time, maxd is initially set to a small value. The Euclidean

distance between the furthest pixels in H is then compared to the length of a hand, taken as

17 cm. If the furthest pixels are less than 17 cm apart, the geodesic segmentation is repeated

with a larger maxd. This process is repeated until the furthest pixels in H are separated by at

least 17 cm. Figure 4.4 shows the results of this segmentation. The hue and saturation values

the pixels in H are used to update the histogram of the appropriate tracker.

As well as the colour measurement, a hand direction measurement can be made from the pixels

in H. For this, a new set of 3D pixels, Hp, shall be created, containing the position component

of every 6D pixel in H: Hp = {Px | x ∈ H}. The normalised, first principal component, v̂,

of the points in Hp, will be a vector running down the length of the hand. This vector is an

estimate of the hand direction. The direction component of the “RGB update step” uses the

Kalman filter equations, presented in Section 4.2.1.
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Due to the fact that only the direction component of the hand state is being updated, and not

the position component, a slight reformulation of Kalman filter “update step” Equations 4.12

and 4.13, is presented below. Again, matrix D is used to extract the direction component of

the hand state, and ← represents the assignment operator.

d = Dµt + DKt DT (v̂t −Dµt)

Dµt ←
d

‖d‖ (4.17)

DΣtD
T ← D (I−Kt) ΣtD

T . (4.18)

4.2.5 Asynchronous Measurement Update

With the “depth update step” and “RGB update step” defined, one last problem remains to

be solved: due to the slower depth-based hand detector, the processing time for depth updates

is longer than RGB updates. Assume that from an image at time t0, a tracker is created from

a depth detection. Figure 4.5 illustrates the problem graphically.

Images are generated at intervals of ∆t, depth updates take ∆d to process and RGB updates

take ∆RGB. Performing a standard depth update at t1 +∆d will cause RGB update information

from images at t2 and t3 to be lost, as ∆RGB < ∆t and ∆d > ∆t + ∆RGB. A method must be

presented to incorporate depth detections from past images, without losing subsequent RGB

information.

To process the depth detection from Figure 4.5 in a temporally consistent manner, the tracker’s

state should first be reverted to what is was at t1. To accomplish this, a history of RGB update

information since the last depth update must be maintained. This history should store the

image used for the update, its time, and the hand state at this time. In the current example,

the most recent depth measurement was at t0. The history would thus include hand states and

images from times: t1, t2, t3.

After reverting the state and performing the “depth update step”, the tracker’s state would

be in an estimated position for time t1, despite the current time being t3 + ∆RGB < t < t4.
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Figure 4.5: Illustration of the asynchronous measurement problem. Images are generated at
intervals of ∆t, depth updates take ∆d to process and RGB updates take ∆RGB. Performing a
standard depth update at t1 + ∆d will cause RGB update information from images at t2 and
t3 to be lost, as ∆RGB < ∆t and ∆d > ∆t + ∆RGB.

To re-include RGB information from images at t2 and t3, the “RGB update step” should be

iteratively re-performed using the relevant images in the history. This would put the tracker’s

state in the most accurate possible estimate for the current time.

4.3 Results

All experiments were performed using a Microsoft Kinect depth camera, attached to a static

Pioneer P3DX robot base. Images were recorded at a resolution of 640×480 pixels. From these

images, a 160 × 120 resolution depth image was created, as input for the depth-based hand

detectors. To ensure that the sensor-fusion tracker’s performance improvement is independent

of the underlying depth hand detector, three different methods are compared: the method

proposed in Chapter 3, the shape context [61] and the method by Plagemann et al. [1].

As stated in Section 4.2.1, εd is the distance threshold for assigning a depth-based hand detection

to a tracked hand. Based on the maximum distance a hand could travel without being detected,

before its corresponding tracker is removed, its value is set to εd = 0.35 m. Fifty samples are used
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during the position component of the “RGB update step”, as this is the maximum number that

still ensured the algorithm worked at 30 Hz. ε is the maximum distance between a sample and

its closest registered RGB pixel. Based on the maximum distance the hand can move between

two “RGB update steps”, its value is set to ε = 0.15 m. The skin colour histogram contains 30

hue bins and 32 saturation bins. This provides a reasonable granularity of hand colour, without

suffering from the curse of dimensionality. Finally, the probability scaling parameters, α and

β, are set to 0.5 and 750 respectively, as this empirically provided repeatable likelihood values

during sampling, for functions P d and P a respectively.

Hand tracking performance is compared to the Kalman filter, using a Brownian motion model,

for all three of the depth-based hand detectors. Evaluation datasets are the same as used

in Chapter 3: Section 4.3.2 presents hand tracking results in nine controlled scenarios and

Section 4.3.3 evaluates the method’s performance in three challenging crowded environments.

Again, hand tracking performance is evaluated using four gestures in each dataset: a wave,

for attracting the robot’s attention; a subtle push, to indicate that interaction has finished; a

subtle “follow me” motion; and a raised hand, for stopping the robot. All evaluated datasets

have been made publicly available1.

The same method as in Chapter 3 was used for automatic results generation. 2D ground truth

hand positions in input images were manually labelled. For every frame, tracked 3D hand

positions are back-projected into 2D, and compared with the ground truth. Ignoring the z

(depth) component, a hand is considered correctly tracked if it lies within 0.1 m of the ground

truth. This value allows for just enough error to accommodate for depth camera noise and

inaccuracies from the ground truth annotation. Using the tri-phase gesture model [134], a

gesture can be split into three stages: preparation, stroke and retraction. The preparation

and retraction stages involve moving the hand away from, and towards, the rest position. As

they contribute little information to the gesture recognition process [82], only stroke phase

annotations are considered.

1http://www.imperial.ac.uk/hamlyn/eo/gesturedataset

http://www.imperial.ac.uk/hamlyn/eo/gesturedataset
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4.3.1 Velocity Estimation Results

Hand velocity is a common measurement used to classify gestures. In order to evaluate the

sensor-fusion hand tracker’s improvements to velocity estimation, an experiment was devised

where a single subject waved towards the camera. As the wave gesture was orthogonal to the

camera, all significant motion occurred in the x-direction.

Using the hand detector proposed in Chapter 3, velocity information was extracted using both

the proposed sensor fusion algorithm and a Kalman filter. A hand’s velocity was calculated as

the first derivative of the tracker’s estimated position. Ground truth velocity was generated in

the same way, with manual labelling of a hand’s position at every frame. Two similar waves

were recorded using this experimental setup, with the results displayed in Figure 4.6.

The sensor-fusion hand tracker can be seen to recreate the wave motion better than the Kalman

filter. Peaks and troughs are more accurately represented, and less information is lost due to

misdetections by the underlying hand detector.

The main difference between the two results, is that occasionally the Kalman filter velocity

drops to zero. The Kalman filter outputs the most likely hand position, given by the “predict

step”, every 30 Hz. If a depth detection fails to happen between two “predict steps”, then the

output position of the second will be the same as the first, with added Gaussian noise. This

can either happen because the depth-based hand detector failed to detect the hand, or because

of its lower frame rate. In either case, the similar position will result in a near zero velocity.

In contrast, the “RGB update step” of the proposed sensor-fusion algorithm occurs at 30 Hz.

Thus, for each outputted position value, RGB information is used to give a better hand estimate

when the depth-based hand detector fails to do so. As can be seen, this results in more accurate

velocity reconstruction.
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Figure 4.6: Two graphs, each comparing the x-component of a tracked hand’s velocity, where a
user waves towards an orthogonal camera. Each graph uses the same experimental setup, only
with a different recording of the wave. The peaks and troughs of both waves are more accurately
represented by the sensor fusion algorithm than the Kalman filter, due to the computationally
efficient RGB update step.
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4.3.2 Results in Controlled Environments

Hand tracking performance of the sensor-fusion algorithm was compared to the Kalman filter,

in nine controlled environments. Each scenario is around a minute long and contains a single

subject gesturing towards the camera. The gesturing subject stands at almost every point

within the cameras viewing angle, but with a constant distance to the camera and constant

gesture speed. The nine scenarios are divided equally between three camera-subject distances,

and three ranges of gesture motion. The camera-subject distances evaluated are: 1.5m, 2.0m

and 2.5m. The three gesture motion ranges are: a large motion range using only waves, a

medium motion range using half waves and half subtle gestures, and a small motion range

using only subtle gestures.

During each of the nine scenarios, the subject stands at four different angles to the camera,

performing four gestures at each. As the target application of the hand tracker is HRI, it is only

tested on subjects gesturing towards the robot. For applications other than HRI, hand tracking

performance under large subject rotation can be improved by retraining the hand detector to

include these situations.

Hand tracking results for each of these categories is displayed in Table 4.1. Quoted figures are

the percentage of correctly tracked hands. S denotes the use of the sensor fusion algorithm,

whilst K denotes the use of a Kalman filter.

Sensor-fusion hand tracking performance is better than the Kalman filter for nearly all scenarios.

This increase is seen for all evaluated depth-based hand detectors. The greatest improvements

are seen for gestures with a larger range of motion. If the range of gesture motion is small, even

if the depth-based hand detector fails, the hand does not move much between frames. Thus,

when using the Kalman filter, a previous hand detection may be a “correct” hand position

for a number of frames. With a large range of motion, misdetections in the depth-based hand

detector are more obvious. The sensor-fusion algorithm’s efficient “RGB update step” gives a

good position estimate of the hand, increasing its tracking accuracy.
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Table 4.1: Table showing the percentage of correctly tracked hands, for the sensor-fusion al-
gorithm (S) and Kalman filter (K), in nine controlled scenarios. Scenarios are divided into
three distance and three gesture motion range categories, each using a wide range of gesture
angles. Results are shown for three different depth-based hand detectors, with the best results
for each scenario shown in bold. The average percentage increase of correctly tracked hands,
when using the sensor-fusion algorithm, is shown in the bottom row.

Large Motion Medium Motion Small Motion
1.5m 2.0m 2.5m 1.5m 2.0m 2.5m 1.5m 2.0m 2.5m

McKeague
S 79.7 70.2 62.2 76.9 68.8 66.8 76.5 65.9 56.0
K 66.9 53.3 48.7 77.0 63.4 67.4 76.2 65.1 44.9

Shape Context
S 79.8 68.0 48.8 74.7 60.9 47.6 71.7 52.5 21.6
K 67.6 50.7 36.3 64.4 57.1 47.8 59.9 48.2 23.7

Plagemann
S 77.2 64.9 36.9 27.5 36.5 18.6 18.5 39.6 11.1
K 41.6 41.7 29.0 23.4 21.1 10.4 10.2 26.1 13.2

Average
Increase

20.2 19.1 11.3 4.8 8.2 2.5 6.8 6.2 2.3

4.3.3 Results in Crowded Environments

Crowded and dynamic environments are extremely challenging for hand trackers. To assess the

sensor-fusion algorithm’s practical value, its performance was evaluated in three such scenarios.

Each dataset is over a minute long, and contains one or two simultaneous people from a crowd

gesturing towards the robot. Each dataset takes place in a different location with different

lighting conditions, and has male and female gesturing subjects with varying skin colours.

Figure 4.7 displays several results from the crowded environments, using the sensor fusion

tracker and the depth-based hand detector from Chapter 3. They highlight situations that

would cause the most problems for traditional RGB hand trackers. 4.7a shows correct hand

tracking from a subject with darker skin colour. 4.7b and 4.7c illustrate the algorithm’s invari-

ance to different clothing styles. A lot of specular reflection can be observed in 4.7d, further

justifying the importance of the algorithm’s learned skin colour histogram.

Quantitative hand tracking results for the crowded environments are displayed in Table 4.2.

As before, quoted figures are the percentage of correctly tracked hands, for the sensor-fusion
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(a) (b) (c) (d)

Figure 4.7: Example results showing the hand tracking performance of the sensor-fusion al-
gorithm in a range of crowded environments. Tracked hands are displayed with a white and
blue circle. Tracking is shown to work well despite different subject of different skin colour (a),
clothing styles (b)(c), and illumination conditions (d). Figure similar to the published paper
on this work [6].

algorithm (S) and the Kalman filter (K), using three depth-based hand detectors.

Again, the performance of the sensor-fusion algorithm surpasses the Kalman filter, for all

but one of the results. Generally, the biggest increases are achieved when the underlying

hand detector doesn’t perform well. In these cases, the sensor fusion algorithm uses RGB

information to compensate for the misdetections by the depth hand detector, thus maintaining

a higher tracking accuracy than the Kalman filter.

Figure 4.8 shows sensor-fusion hand tracking results, when using the depth-based hand detector

from Chapter 3. Tracked hands are contained inside a three circles of expanding size, coloured

red, green and blue. The red circle’s radius is the first standard deviation of the hand state’s x

position component. Green and blue are the second and third standard deviations respectively.

Monte-Carlo samples from Section 4.2.2 will lie within these boundaries. The reliable results

in such a crowded environment demonstrate the robustness of the proposed algorithm.

4.4 Conclusions

The contribution of this chapter has been an RGB-D sensor fusion algorithm for tracking hands

in crowded environments. The algorithm solves two problems with current hand detection

methods. The first is misdetections caused by occlusions, sensor noise, and the highly articulate

nature of the hand. These problems are exacerbated in crowded and dynamic environments.
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Table 4.2: Table showing the percentage of correctly tracked hands, for the sensor fusion algo-
rithm (S) and the Kalman filter (K) in three crowded environments. The average percentage
increase, when using the sensor-fusion algorithm, is shown in the bottom row. Each scenario has
gesturing subjects with varying skin colour, different styles of clothing, and varying illumination
conditions.

Scenario 1 Scenario 2 Scenario 3
McKeague

S 88.4 78.8 89.2
K 87.4 76.7 90.2

Shape Context
S 80.4 63.0 65.3
K 70.5 57.1 53.9

Plagemann
S 58.0 44.6 18.5
K 34.3 34.0 14.2

Average
Increase

11.5 6.2 4.9

Figure 4.8: Hand tracking results of the sensor-fusion algorithm in three crowded environments.
Tracked hands are centred around three circles of expanding size, coloured red, green and blue.
Each circle corresponds to a standard deviation of the hand state’s x component. Monte-Carlo
samples, used to update the hand position in the “RGB update step”, will lie within these
boundaries.
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The second problem the algorithm solves is the computational expense of depth hand detectors.

The sensor fusion algorithm gives accurate hand position estimates at a 30 Hz rate.

Three main novelties of the proposed method were highlighted. A Monte-Carlo RGB update

process was devised to compensate for the large number of false positives during traditional skin

colour detection. A method of online skin colour learning was proposed, so that the algorithm

works with a wide range of skin colours, clothing styles and illumination conditions. Finally an

asynchronous measurement update step was developed, to integrate depth and RGB updates

at different computational speeds into the tracking algorithm.

Tracking performance was evaluated in a large number of controlled scenarios, and several

crowded and dynamic environments. All evaluated datasets have been made publicly avail-

able. The improved performance of the algorithm over standard Kalman filter tracking was

demonstrated, for three different depth-based hand detectors. Using a gesturing subject, the

algorithm’s improved velocity estimation was also shown. This is a result of the efficient way

in which RGB information is used to update hand position.

Hand tracking is a vital component of a HRI system. It is used in many fields, such as gesture

recognition. Software was created for this thesis that combines the presented hand tracking

method, with the hand body association method of Chapter 3 and the gaze estimation method

of Chapter 5. In this way information about the people in the scene, their hand movement, and

their gaze direction can be obtained. This framework could be extended to include information

about gestures, recognition of objects being pointed at, or to facilitate interaction between

robot arms and human hands.



Chapter 5

Gaze Estimation using a Long-Range

Infrared Eye Tracker with Sensor

Fusion

5.1 Introduction

For effective human-robot interaction (HRI), knowledge of both a person’s position and gaze

direction is important. A person’s precise gaze direction gives a good indication of potential

engagement or interest in the robot. This applies to many HRI tasks, and is particularly

useful in crowded environments. Despite the general availability of a wide range of remote

eye tracking devices, there is still a lack of adequately robust gaze tracking platforms for

HRI. Existing vision-based approaches have insufficient granularity required for many HRI

tasks, whilst existing solutions incorporating infrared (IR) lighting are too restrictive for use

on a mobile robot. Thus, to facilitate real-world HRI, the contribution of this chapter is a

The work in this chapter was partially presented in S. McKeague, J. Liu, A. Vicente, and G.-Z. Yang,
“Human gaze estimation using a sensor-fusion based long range infrared eye detector on a mobile robot,” in
Submission, Feb. 2015
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sensor-fusion gaze estimation method, that gives better granularity than the traditional visual

methods, without the constraints of traditional IR gaze estimation approaches.

Whilst people detection is a mature research problem [22], gaze estimation for moving robots

has not been studied extensively. As such, much HRI research makes simple assumptions

on the orientation of interacting subjects in a scene [57, 139, 140]. In certain applications,

under controlled surroundings, gaze can be estimated using head-mounted cameras, static user

positions or motion capture data. These methods, some of which are listed in Table 2.8, are

unsuitable for natural HRI in real-life environments. Without knowledge of gaze direction, the

presence of human-human interaction would cause many HRI methods to fail, particularly in

crowded environments. For example, a subject gesturing towards another person in a scene

would cause many gesture recognition systems to wrongly assume that the subject is trying to

interact with the robot.

There are currently two main methods of gaze detection in literature: visual and infrared illu-

minated. Visual methods use colour cameras, and typically use a machine learning technique

to classify head pose based on pixel information. IR solutions determine gaze by analysing

the retinal and corneal reflections produced by arrays of IR LEDs. Visual methods are com-

putationally expensive, because of the classification of numerous features, and they only allow

for coarse head pose estimation. With many visual methods, a granularity of around forty

five degrees is common [7, 113]. IR-based solutions provide very accurate gaze estimation, but

typically have a short working range [110, 112, 114–116] and require person-specific calibra-

tion [112, 115, 116, 118]. A comprehensive list of the restrictions placed on various infrared

solutions is shown in Table 2.8. As such, very few of these methods are appropriate for typical

HRI applications.

In his 1966 book entitled, The Hidden Dimension, the famed anthropologist Edward T. Hall

described proxemics as “The interrelated observations and theories of man’s use of space as

a specialised elaboration of culture” [141]. Hall segmented the use of interaction space in

proxemics into four distance categories. Arranged in order of increasing distance, they are:

intimate, personal, social and public distances. Personal distances are those up to 1.2 m and
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social distances are between 1.2 m and 3.5 m. Most impersonal business takes place at social

distances [141]. Similar to other modern depth cameras, the Microsoft Kinect has a maximal

range of 0.8–4 m 1. Ideally, gaze estimates would be obtainable at any distance. However, as the

proposed method requires depth information, gaze estimates at public distances are prevented

by hardware constraints.

Nevertheless, for many assistive robot tasks, especially in the domains of healthcare and business

or in crowded environments, the human-robot interaction space will cover personal and social

distances [142]. Accurate gaze estimates of subjects within this space is vital for detecting

their attention [143]: whether directed at the robot, a nearby object, or another human. This

is important for many tasks. For example, separating human-human interaction from subjects

wishing to initiate HRI [117], locating objects that a user is pointing at [55, 144], detecting

gestures using the head [119]. Within the human-robot interaction space, a human’s gaze angle

can be intuitively considered to lie within ±40°; greater values will place the robot outside the

human’s field-of-view.

Previous mobile robot algorithms for attention detection have relied on motion capture infor-

mation [117] or been limited to single users [55, 119]. A recent study into how robots should

approach and engage human subjects stated: “If gaze recognition is developed to work ro-

bustly in a real environment, [results for initiating conversation at social distances] could be

greatly improved because the robot could engage in eye contact to decide whether to initiate

interaction” [145]. The gaze estimation method proposed in this chapter attempts to over-

come previous limitations, and provide robust gaze estimates for mobile robots in real-world

environments. With HRI as the target application, the presented method concentrates on es-

timating subjects’ horizontal gaze angle; the problem of estimating vertical gazing direction is

not tackled in this Chapter.

Figure 5.1 shows example images, from real-world scenarios, where accurate gaze estimates are

needed for effective HRI. The authors are not aware of any current gaze estimation method,

capable of operating on a mobile robot, that offers such required granularity at social distances.

1http://msdn.microsoft.com/en-gb/library/hh438998.aspx - Accessed 13/09/2014

http://msdn.microsoft.com/en-gb/library/hh438998.aspx
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Figure 5.1: Images, from the robot’s view, of real-world scenarios, in which a gaze estimate
solution must function accurately to be of use for HRI.

To achieve this, the following chapter proposes a calibration-free, gaze estimation solution

for mobile robots, by fusing data from an infrared and depth camera. Pupil detection is

initially performed using the difference image from on and off-axis LED illumination. Using

the resulting eye positions, a depth camera is used to produce a noisy estimate of gaze direction,

by calculating the normal vector of a plane fitted to each subject’s forehead. A more stable

estimate of a subject’s gaze direction is obtained from an equation that relates the pixel distance

between detected eyes with the 3D position of the person to the camera. Using the depth-based

gaze estimate to find the correct root of this equation, gives a robust, real-time, gaze estimate

for subjects located between 1.2 m and 2.5 m from the camera.

The proposed gaze estimation method facilitates real-world HRI, by giving finer granularity of

gaze direction than traditional vision-based approaches, with a greatly reduced computational

cost. The technique is shown to produce effective gaze estimates at much longer ranges than

traditional infrared illumination methods, without the constraints of many existing solutions.

The proposed method requires no run-time calibration, and no constraints are placed on the

position or number of people in the scene. These claims are substantiated experimentally under

a wide range of scenarios, with a moving robot and multiple moving people. Performance is

evaluated for a comprehensive number of distances and angles to the robot, with the resulting

gaze estimation accuracy compared to the current state-of-the-art.
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Figure 5.2: Annotated picture of the hardware setup mounted on the mobile robot that is used
for all experiments. The robot can use the proposed gaze detection method to know whether
the subjects wish to engage in HRI. The system uses on and off-axis IR LEDs to illuminate
and darken the pupil respectively. Resulting information from both an IR and a depth camera
are fused to give an accurate gaze estimate. An IR-passing filter is used to reduce the effect of
visible light, and a plastic separator is used to reduce the effects of glare.

5.2 Method

5.2.1 System Setup

The main prerequisite for the proposed gaze detection system is a robot platform on which it

is mounted. In this work, a custom frame, 1.35 m in height, is attached to a Pioneer 3-DX

base, as shown in Figure 5.2. All sensors are mounted at the top of the frame, ensuring that

subjects’ heads are in the robot’s field of view at social distances. This fulfils the requirement

that, during HRI, eyes within ±40° must be detected.

The proposed system is based on the principal of retinal reflection of infrared light in order to

detect eyes. As such an infrared camera, as shown in Figure 5.2, must be used. For this chap-

ter, a Point Grey Flea®3 camera (model number: FL3-U3-13S2M-CS) was employed, with a

Fujifilm lens (model number: DV3.4x3.8SA-SA1). In order to provide the illuminating light, a

circular array of 16 on-axis infrared LEDs surrounds the camera lens, whilst two rectangular

arrays of 24 LEDs each are placed to the side. For observable pupil reflection at large dis-

tances, a compromise between LED power and viewing angle must be sought. Empirically, it

was observed that at least 60 mW/Sr is required for pupil reflection at HRI distances, whilst il-
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lumination half angles of 30° are required to cover all viewing angles. The LEDs employed were

manufactured by Rodan (model number: HIRL5015). A circular infrared-passing filter, manu-

factured by Edmund Optics (model number: 43-949), is used to filter out visible light. Finally,

a plastic separator around the lens prevents the LEDs from shining directly back into the cam-

era. Specific hardware model numbers used have been quoted in this section for completeness,

though the system should function with alternative hardware of similar specifications.

The circular on-axis LEDs are responsible for illuminating a subject’s pupil, whilst the off-

axis LEDs give a similar background illumination and leave the pupil dark. Image subtraction

between alternate frames will be used to isolate pupils in the image. As such, the employed

camera must have a high frame-rate in order to offset the impact that movement within the

scene will have on the image subtraction. The Point Grey camera used operates at 60 Hz,

giving a 1280× 1024 resolution monochrome image in order to view pupils at distances of 3 m.

To facilitate the method’s sensor fusion requirements, this camera must be correctly registered

with a depth camera.

Two pulse signals, with a frequency of the half the camera’s frame rate, are used to alternate

power to the on and off-axis LEDs. A 50% duty cycle and a phase shift of 180° ensures that in

each frame only one set of LEDs is observable, and in the next frame only the opposite LED

set is observable. A circuit diagram of the hardware required to accomplish this is shown in

Appendix C.

5.2.2 Eye Detection

Figure 5.3 shows a schematic structure of the eye detection phase. Image subtraction of alter-

nate frames is used to isolate pupils within the infrared image. This difference image should be

thresholded at an appropriate value to remove the effects of background movement. With the

use of the infrared-passing filter, it was found that the algorithm’s performance does not rely

on an overly accurate threshold value. Using 8-bit pixels, values over 30 successfully removed

background noise, whilst only values over 190 started to affect pupil detection. Potential eye

clusters are subsequently generated using a connected component algorithm [62].
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Figure 5.3: System structure diagram of the eye detection phase. The lighting of the on and
off-axis LEDs is inverted in alternate frames. A subject’s pupil can then be segmented using
image subtraction on a consecutive pair of images. Connected component labelling should be
performed on the resulting thresholded image to find candidate pixel blobs. Finally, anatomic
filtering is used to remove false positives. The on and off-axis face images shown were taken at
a distance of 1.5 m with the user looking directly at the robot.

The difference image can contain noise due to specular reflection from shiny surfaces. Filtering

of clusters, based on anatomic likelihood, is thus performed. For N eye clusters, two strictly

triangular N by N matrices are constructed. The first contains the pixel distance between the

means of the clusters. The second contains the rotation angle from one cluster mean to the

other. The range of pixel distances between human eyes can be defined based on the working

range of the LEDs. The natural range of head angles during HRI can be similarly defined.

The pairs of cluster means that satisfy both distance and angular constraints are defined as

eye pairs. Because the infrared and depth cameras are registered together, the real-world 3D

coordinates of these eye positions can additionally be found from the depth image.

Along with a subject’s illuminated pupil, it was found that glasses produce several additional

specular reflections. Empirically, it seems possible that a preprocessing stage could be used to

filter these extraneous reflections. However, none of the subjects in the results Section 5.3 wore

glasses, and the issue is considered to be outside the scope of this Chapter.
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α

(xr, zr)

(xl, zl)

(a) Diagram of how the registered 3D right and
left eye positions can be directly used to estimate
a subject’s gaze direction.

(xr, zr)

(xl, zl)

α
(xn, zn)

(x̄, z̄)

(b) Diagram of how the nose, (xn, zn), along
with the mean of the nose and the registered 3D
right and left eye positions, (x̄, z̄), can be used
estimate a subject’s gaze direction.

Figure 5.4: Two methods of estimating gaze direction, α, shown by the arrow, using information
from a registered depth image. The gaze angle calculated from Figure (a) is termed the vector
gaze angle, and that calculated from Figure (b) is termed the nose gaze angle. Right and left
eyes are displayed as black circles and denoted by (xr, zr) and (xl, zl) respectively.

Given these eye positions, several techniques can be used to estimate a subject’s gaze angle.

Three depth-based methods will initially be presented in Section 5.2.3. These return a estimate

of a subject’s gaze angle, using the 3D eye pair positions and the depth image. A more accurate

sensor fusion based method will then be presented in Section 5.2.4. This method estimates gaze

angle using the 2D and 3D eye pair positions, information from the infrared camera, and the

result of the depth-based gaze estimate.

5.2.3 Depth-Based Gaze Estimation

Assuming an upright person, 3D right and left eye positions from the depth image will be

defined as rd = [xr, yr, zr]
T and ld = [xl, yl, zl]

T respectively. Due to the inherent noise in the

depth image, these positions tend to be unreliable. Despite this, a gaze angle estimate can still

be calculated using a pair of 3D eye positions, as shown in Figure 5.4a. Defining the vector

between the eyes as −→e = rd−ld
‖rd−ld‖ , this vector gaze angle estimate, αv, can be calculated as:

αv = tan−1

(−→e z
−→e x

)
. (5.1)

To mitigate the noise of the vector method, the nose of a subject could be used to give a more
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robust gaze angle, as shown in Figure 5.4b. This value will be denoted as the nose gaze angle.

As a subject’s nose will always lie in between their eyes and at no more than 6 cm below them.

All points in the registered depth image satisfying these conditions can thus be isolated. The

nose can be found from the point in this set with the furthest perpendicular distance from the

eye vector.

For each point, p, in this isolated set, a vector from the left eye is defined as −→p = p− ld. The

perpendicular distance between this and the eye vector is given by: d = ‖−→p −
(−→p · −→e

)−→e ‖.

The point, p that maximises d is defined as the subject’s nose, n.

Knowing the position of the subject’s eyes and nose, their mid-point can easily be found,

m = rd+ld+n
3

. Gaze direction can be calculated from the vector running through the nose from

this mid-point, −→n = n−m. The nose gaze angle can be calculated as:

αn = tan−1

(−→n x
−→n z

)
. (5.2)

The benefits of using more points to reduce depth image noise will be demonstrated through

experimentation in Section 5.3. Thus, a final method of detecting gaze direction using the

depth image was devised, using as many points as possible. The forehead of a subject can be

well approximated as a plane that lies perpendicular to the gaze direction. Being the largest

planar region of the face, analysis of the forehead can be used to robustly detect gaze direction.

The planar region of the forehead can be defined as the area between both eyes, starting 3 cm

above them and extending to no more than 8 cm. All points in the registered depth image

that satisfy these conditions can be easily extracted, as shown in Figure 5.5. Fitting a plane to

these segmented points and finding its normal vector allows the computation of the subject’s

gaze direction. The effect of the depth camera’s projected IR light can be seen in the image.

Because the light is low intensity and mostly static from frame-to-frame, it is not visible when

the difference image is calculated and thresholded, as described in Section 5.2.2.

Calculation of the forehead region is most accurate when the forehead is free from occlusion

due to hair. Several subjects in the results Section 5.3 have hair that partially occludes the
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(a) −30° (b) 0° (c) 30°

Figure 5.5: IR images showing the points comprising the planar region of a subject’s forehead,
when standing at 3 different angles to the camera. These points are coloured white and lie
within the green box. As the white points are 2D pixels corresponding to the 3D forehead
points, there is a perspective error for the more distant points at ±30°. This, along with sensor
noise, accounts for the slightly differing bounding box size at 0°. The darker white points on
the face are IR points from the depth camera. As they are low intensity and are mostly static,
they have no effect on the thresholded difference image, described in Section 5.2.2.

forehead, and it was found that this did not greatly affect the results. The ability of the system

to deal with fully occluded foreheads is solely due to the accuracy of the depth camera, and is

not evaluated in this Chapter.

To extract the forehead plane, an N × 4 matrix A shall be created, where N is the number

of segmented forehead points. The left-most columns are filled with each point’s x, y and z

values. The right-most column should be filled with 1s. We shall denote the forehead plane to

be found as a vector x = [x0, x1, x2, x3]T that best satisfies x0x+x1y+x2z+x3 = 0, considering

each forehead point. Calculating x involves solving the overdetermined linear system:

minimise
x

‖Ax‖ = 0 ,

subject to ‖x‖ = 1 . (5.3)

This system can be solved using a linear least squares approach. Singular value decomposition

can give a numerically stable solution the least squares problem. Using this approach, the real
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matrix A is factorised into:

A = USVT .

The null space of A is spanned by the last 4− r rows of the 4× 4 matrix VT , where r denotes

the rank of matrix A. The value of x that best solves Equation 5.3 is given by the right-singular

vector of A, which has the smallest singular value.

The normal vector of the forehead plane is used to give an estimate of the gaze direction. This

estimate will be termed the forehead gaze angle, and can be calculated as:

αf = tan−1

(
x0

x2

)
. (5.4)

5.2.4 Sensor Fusion Gaze Estimation

To offset the noise in the depth image, especially during camera or subject motion, the precision

of the eye positions in the infrared image can be exploited to give the following sensor fusion

gaze estimate. The mid-point of the eye vector, md = rd+ld
2

, will be used due to its stability,

compared to rd or ld individually. The x-pixel component of the right eye relative to the

midpoint of the infrared image shall be ir, with the corresponding left eye being il. Knowing

the focal length, f , of the infrared pinhole camera model, Figure 5.6 illustrates how gaze angle,

α, can be derived using this sensor fusion method.

From Figure 5.6, the relationship between ir and il with the 3D right and left eyes, rd and ld,

can be given as:

−ir =
xr
zr
f,

−il =
xl
zl
f. (5.5)

With the previously defined stable estimate of md = [xm, ym, zm]T , the following relationship
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Figure 5.6: Illustration of how to derive gaze angle by fusing information from both the depth
image and an IR pinhole camera. Right and left eyes, (xr, zr) and (xl, zl), are displayed as
black circles with their midpoint, (xm, zm), shown as a white diamond. Interpupillary distance
is denoted as L, camera focal length as f , and −ir and −il denote the x-coordinates of the
right and left eyes relative to the centre of the image plane. The sensor fusion algorithm aims
to robustly calculate gaze angle, α, shown by the arrow between the eyes.

between the interpupillary distance, L, and the gaze angle, α, can be defined:

xr = xm −
L

2
cos (α) , zr = zm +

L

2
sin (α) ,

xl = xm +
L

2
cos (α) , zl = zm −

L

2
sin (α) . (5.6)

Substituting Equations 5.6 into Equation 5.5 allows us to draw a relationship between pixel

and world eye coordinates:

il − ir =
xm − L

2
cos (α)

zm + L
2

sin (α)
f − xm + L

2
cos (α)

zm − L
2

sin (α)
f,

= 4fL
zm cos (α) + xm sin (α)

L2 sin2 (α)− 4z2
m

. (5.7)

It can be noted that Equation 5.7 is not algebraically solvable for gaze angle α. One possible

solution would be to simplify the equation, using the fact that under all normal HRI distances

zm � L. Defining Dp = il − ir, Equation 5.7 can be rewritten to give an unsigned estimate of
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the gaze angle, which shall be denoted as αu:

Dp =
xm − L

2
cos (αu)− xm − L

2
cos (αu)

zm
f,

αu = cos−1

(
Dpzm
fL

)
. (5.8)

The smaller a subject’s |xm|, the more accurate αu will be from Equation 5.8. During interme-

diate testing it was found that for |xm| > 0.5, Equation 5.8 failed to give valid αu values, due

to Dp decreasing to the point where Dpzm � fL. As this gives values close to 0, and due to

αu being an unsigned value, a different solution to Equation 5.7 must be found.

Rewriting Equation 5.7 as a function, f (α), enables the calculation of α as the roots of the

f . Due to the fact that f is differentiable, many numerical analysis methods can be applied

to find its roots. The Newton-Raphson method is an iterative root finding algorithm, and was

chosen for this purpose due to its fast convergence.

f (α) =
zm cos (α) + xm sin (α)

L2 sin2 (α)− 4z2
m

− Dp

4fL
,

d (f (α))

dα
= 4fL

sin (α)3 zmL
2 − 2 sin (α) zmL

2

(sin (α)L− 2zm)2 (sin (α)L+ 2zm)2

+ 4fL
− cos (α) sin (α)2 xmL

2 + 4 sin (α) z3
m − 4 cos (α)xmz

2
m

(sin (α)L− 2zm)2 (sin (α)L+ 2zm)2 .

(5.9)

To better understand f (α), Figure 5.7 shows how it is affected by differing subject position

and gaze angle. If a subject is facing directly towards the camera, f (α) should have only

one root, at 0°. For non-zero gaze angles, f (α) should have two roots. As demonstrated in

Figure 5.7f, a subject with a positive gaze angle results in the positive-most root being equal to

its value. Conversely, as shown in Figure 5.7d, a subject with a negative gaze angle results in

the negative-most root being equal to its value. In both cases, the other root is unstable. The

result of this sensor fusion method will be the value of the stable root, which will be termed

αs.

An important limitation of the Newton-Raphson method is that it only returns one root. If the
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Figure 5.7: Six graphs of f (α), with roots marked in red, and the corresponding RGB image of
the subject that generated the graph. (a) to (c) show graphs for three different gaze angles with
a subject positioned in the centre of the camera. (d) to (f) show graphs for the same angles,
but with a subject standing at various locations in the image. For a gaze angle of exactly 0°,
f (α) should have only one root, at 0°. For gaze angles of ±30°, f (α) should have two roots.
At 30°, the positive-most root of f (α) is a stable value of 30°. At −30°, the negative-most root
is a stable value of −30°. The other root in both cases is unstable.
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function is known in advance, the returned root can be predicted from the supplied starting

point. However, as Figure 5.7 shows, changes to f (α) for a moving subject would mean

that näıve application of the Newton-Raphson method would, somewhat randomly, return the

unstable, incorrect root. A method must thus be devised to select which of the two roots is

returned by the Newton-Raphson method.

In each of the graphs in Figure 5.7, it can be seen that, for non-zero gaze angles, both roots are

separated by the function minimum. This function minimum is equal to the sole root of d(f(α))
dα

within ±40°. Calculating the second differential of f (α) allows us to use the Newton-Raphson

method to find this root.

Knowing the functional minimum, which shall be defined as fmin, we can then alter the domain

of the original Newton-Raphson method to limit returned roots. If the positive-most root is

required, the input domain should be set to [fmin, 45°]. If the negative-most root is required,

the input domain should be [−45°, fmin]. In each case, the initial guess should be set to the the

mean of the domain bounds.

Now that the returned Newton-Raphson root can be selected in advance, the question remains:

how is it determined whether to return the positive-most or the negative-most root? Conve-

niently, each of the gaze angles, αv, αn and αf defined in Section 5.2.3 return a signed estimate

for gaze angle, albeit a noisy one. αf will be shown in Section 5.3 to be the most accurate

of these methods. Thus, if αf > 0, then the positive-most root should be returned from the

Newton-Raphson algorithm, otherwise the negative-most root should be returned. In this way,

the result of αf is used to select the stable root of f (α), αs; the gaze estimate of the sensor

fusion method.

To add increased robustness to the αf values from Equation 5.4, we can low pass filter the

results over a very small time window. Transient periods where αf has an incorrect sign will

thus not result in the wrong Newton-Raphson root being selected. Thus, for a moving window,

WT , at time T , αf is adjusted as follows:

α′f =

∑
t∈WT

αf,t

|WT |
(5.10)
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The only remaining task for calculating αs is to define the interpupillary distance, L, first

introduced in Equation 5.6. Due to the biological importance of interpupillary distance, many

studies have been done to establish its average value [146]. Using these studies, we take an

average value of L to be 67 mm.

5.3 Results

The depth camera used in all experiments was a Microsoft Kinect, with resolution 640 × 480

pixels, running at 30 Hz, and mounted on the robot shown in Figure 5.2.

As stated in Section 5.2.2, when detecting blobs in the infrared difference image, most pupil

values were around 190 and most noise values were below 30. Thus, values above a threshold of

150 were used to detect blobs, as a trade off between pupil detection accuracy and noise removal.

During anatomical filtering, cluster pairs were filtered as pupils, based on their angular and

distance separation. During HRI, it is considered that a subject’s head will be tilted horizontally

by no more than 30°; any cluster pair that forms a greater angle is thus discarded. Pupil

detection can be reliably performed between 1–3 m. Within this working range, pupils are

separated by distances of roughly 15–75 pixels; any cluster pair separated by distances outside

this range is thus discarded. Finally, as a compromise between suppressing spurious depth-

based gaze estimates, and the systems reaction time to a user looking in the opposite direction,

a window size of 0.08 seconds was used during low-pass filtering.

The performance of the proposed sensor fusion algorithm was evaluated under several different

scenarios, with multiple static and dynamic people, using both a static and moving robot. As

previously discussed, the sensor fusion algorithm uses one of the three depth methods from

Section 5.2.3. The most robust depth method will thus first be determined, in Section 5.3.1.

Its performance will then be compared to the sensor fusion algorithm, in Section 5.3.2. Finally,

these results will be presented alongside a state-of-the-art RGB gaze estimation method [7], in

Section 5.3.3. Results were generated for a total of forty six recordings, equating to over ten

minutes of ground truth annotated experiments.
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The following experiments can be classified into three different categories (Figure 5.8): those

with a static subject, those with moving subjects and those with a moving robot. To evaluate

how gaze detection accuracy is affected by the distance of the subject to the camera, a series of

recordings were made of a static subject, at a known distance, looking in a particular direction

(Figure 5.8a). In each recording, the user stood at one of three distances from the camera:

1.5 m, 2.0 m and 2.5 m. Additionally, nine angles were evaluated in the recordings, ranging

from −40° to 40°, in 10° intervals. Figures 5.7a to 5.7c show screenshots of three of the 2.5 m

static recordings.

For effective HRI, a gaze detection method will have to work under both people and robot

movement. For each of these cases, a scenario was designed to evaluate the effect on gaze

detection accuracy. The scenario to test the impact of moving people is shown in Figure 5.8b.

For angles of −30° to 30°, in 10° intervals, the person moves forward and backwards, throughout

the robot’s 35° field of view, between 1.2 m and 2.5 m. Figures 5.7d to 5.7f are screenshots

of these recordings. This scenario is performed with both one and two simultaneous people.

Lastly, Figure 5.8c shows the scenario designed to investigate the effects robot motion. For

the same range of angles used in the static scenario, the robot moves forward and backwards

between 1.5 m and 2.5 m. The robot and people all moved at a slow walking pace.

5.3.1 Depth-Based Gaze Estimation Results

Figure 5.9 is a bar chart of the gaze angles generated by each of the three depth methods,

vector, nose and forehead, for the static scenarios (Figure 5.8a). At 1.5 m the three methods

are quite comparable. However, as distance increases the standard deviation of the vector and

nose methods increases dramatically, whilst the standard deviation of the forehead method

remains relatively constant. Additionally, the mean of the forehead method is closer to the

ground truth at increasing distance.

This pattern is repeated in the results of both the moving person and moving robot scenarios

(Figures 5.8b and 5.8c), which can be seen in Figure 5.10. The standard deviations of the

forehead method in the moving robot experiments are much smaller than the other two methods,
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Figure 5.8: Diagrams of the 3 different scenarios used to evaluate gaze estimation accuracy.
“r” denotes the robot position, and “s” denotes the subject position. As explained in the text,
α = (−40°,−30°, . . . , 30°, 40°), d = (1.5 m, 2.0 m, 2.5 m). (a) evaluates how gaze accuracy is
affected by distance and angle to a static subject. (b) tests how accuracy depends on a subject
moving throughout the camera’s 35° field of view. This scenario is performed with both one
and two simultaneous people. (c) evaluates how accuracy is affected by a robot moving towards
and away from a subject, using the same gaze angles in (a).
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Figure 5.9: A bar chart of the gaze angle generated by each of the 3 depth methods considered,
vector, nose and forehead, for the static scenario distances of 1.5 m, (a), 2.0 m, (b), and 2.5 m,
(c). The bar value equates to the mean gaze angle for the particular method and distance-
angle combination. The first standard deviation is displayed with an error bar. Especially
with greater distances, the forehead method has a generally more accurate mean, and a much
smaller standard deviation than the other two methods.
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(a) Moving Person
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(b) Moving Robot

Figure 5.10: A bar chart of the gaze angle generated by each of the 3 depth methods considered,
for the single moving person scenario (a), and the moving robot scenario (b). Similar to the
static scenario results (Figure 5.9), the mean of the forehead method is generally more accurate
than the other two methods. The standard deviation of the forehead method, especially in the
moving robot experiments, is also much smaller.

with more accurate mean values at more extreme angles. In the moving person experiment, the

performance difference is less marked. However, all methods perform worse at negative angles

than positive angles, with the gaze estimates being underestimated. This seems to be due to

a “layering” effect in the Kinect’s depth image, where at far distances, depth points tend to

clump into layers, perpendicular to the camera plane. This effect is more notable under added

movement noise and at negative angles, causing inaccuracies in the depth pixels, and thus the

gaze estimates.

5.3.2 Sensor-Fusion Gaze Estimation Results

Due to its superior results, the sign of the forehead gaze angle was used to select the stable root

of the sensor fusion method, as described in Section 5.2.4. Its performance was then evaluated

using all the scenarios in Figure 5.8. To allow for a detailed results comparison, box plots of the

two methods were generated. Results from the three static scenarios are shown in Figure 5.11,

whilst the two moving scenarios are shown in Figure 5.12. For each ground truth value, the

results from the forehead method are shown in blue to the left, whilst the sensor fusion results
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are shown in red to the right. The median gaze estimate at each distance-angle combination

is displayed as a line on the box, which extends from the upper to the lower quartiles of the

data. Whiskers are also plotted, which show the most extreme data points within 1.5 times the

interquartile range.

The sensor fusion gaze estimates in the static scenarios (Figure 5.11), are clearly very accurate.

The precise median and small interquartile range are present at all tested distances, with

performance being visibly better than the forehead method.

The results in Figure 5.12a show that although a moving subject naturally produces more noise

in the depth image, the median of the sensor fusion method is never more than around 8° from

the ground truth. For most tested angles, this is much more accurate than the forehead method,

validating the method’s robustness under HRI conditions.

Sensor fusion results from the moving robot scenario (Figure 5.12b), for every tested angle

except −10°, are equally as accurate. The interquartile range is smaller than that of the

moving person. This could be explained by the smoother motion of the robot compared to a

person. Except at −10°, the median value is consistently close to the ground truth, although

slight deviances are present at smaller angles. A screenshot for the 0° moving robot scenario,

along with a plot of Equation 5.7, is shown in Figure 5.7e. At α = 0, the graph has the smallest

gradient. Noise in the depth image, from the moving robot and person, tends to translate the

graph parallel to the y-axis. This will cause the biggest change in the roots of α for gaze angles

near 0°. Despite this, the results are still conclusively better than the forehead method, which

itself was the best of the three depth methods proposed in Section 5.2.3.

To further investigate the anomalous result for the moving robot experiment at −10°, Fig-

ure 5.13 is a plot of gaze angle against time for angles of −10° (Figure 5.13a) and −40° (Fig-

ure 5.13b). The large variance of the sensor fusion method at −10° can be explained by the

associated forehead gaze angle. When the sign of the forehead gaze angle is continuously wrong

for longer than the low-pass filtering window size, the wrong root of the sensor fusion method

will be chosen. This wrong root corresponds to the estimated angles around 15° in Figure 5.13a.

Whilst a longer low-pass filtering window could be chosen to improve the results, this is the
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Figure 5.11: Box plots comparing gaze angles generated for the static scenarios using both the
proposed sensor fusion algorithm and the forehead method. For each discrete ground truth
angle, the forehead results are shown to the left and the sensor fusion results are shown to the
right. Boxes extend from the upper and lower quartiles of the data, with the median shown
as a line in the box. Whiskers extend to the most extreme data point within 1.5 times the
interquartile range. Results for distances of 1.5 m, (a), 2.0 m, (b), and 2.5 m, (c), are shown.
At virtually every distance-angle combination the sensor fusion algorithm has both a closer
median and a smaller interquartile range than the forehead method.
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(a) Moving Person
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Figure 5.12: Box plots comparing the sensor fusion gaze angle to that generated from the
forehead method, for the single moving person scenario (a) and the moving robot scenario (b).
Under depth camera noise from a moving person (a), both methods exhibit more noise than
the results for the static scenario. However, the median of the sensor fusion method is closer
to the ground truth for most gaze angles, being at most around 8° away. With sensor noise
from a moving robot (b), the small interquartile range of the sensor fusion method should
be noted, along with its consistently more accurate median value than the forehead method.
The only exception to this is at −10°, which can be explained by the sign of the forehead
method alternating between positive and negative values. This will cause the wrong root of
the sensor fusion method to be chosen, resulting in a gaze angle of approximately 15° for the
given experiment.
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Figure 5.13: A graph of estimated angle against time for the moving robot scenario at −10° (a)
and −40° (b). The sensor fusion algorithm’s anomalous results at −10° can be explained by
the fluctuating sign of the forehead method. As its sign is used by the sensor fusion algorithm,
if it is continuously wrong for longer than the low-pass filter window, then the sensor fusion
result will also be wrong. This is the only experiment of all 46 to exhibit this problem, and it
can be contrasted with the algorithm’s accuracy and stability at −40°.

only experiment out of a total of forty six recorded to exhibit this problem. Additionally, these

results can be contrasted with those at −40°, where the sensor fusion method gives a consis-

tently accurate result using a moving robot. This suggests that the granularity of the system

is as small as 1°–2°, even during movement.

5.3.3 Results Comparison with State-of-the-Art

Due to the restrictions of most infrared gaze estimation methods, as discussed in Section 2.5,

and the requirements of exactly replicating the hardware setup and experimental conditions,

such as lighting, a meaningful results comparison would be prohibitively difficult. Thus, the

sensor fusion results were compared against a state-of-the-art RGB gaze detection method [7].

As this method has a restriction on the camera viewing angle when used with moving subjects,

only results from the static scenarios could be compared. As can be seen from the results in

Figure 5.14, the sensor fusion method greatly outperforms the competing method. For every

distance-angle combination, the median value is closer to the ground truth and interquartile

range is smaller. The proposed algorithm is also more computationally efficient, producing
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Figure 5.14: Box plots comparing gaze angles generated by the proposed sensor fusion method
and a state-of-the-art RGB gaze detection method [7] for the static scenario. At every ground
truth angle, the results from the comparison method are plotted in blue to the left, whilst the
sensor fusion results are plotted in red to the right. For every distance-angle combination, the
sensor fusion method has a more accurate median value and a smaller interquartile range.

gaze estimates at a full 30 Hz, whilst the competing method would occasionally drop to around

20 Hz due to the computational expense of the HOG method employed [26].

The results in Figure 5.14 were shown to the author of the method, who confirmed that they

were representative of the algorithm’s performance. He noted that the poor performance at 0°

and 1.5 m was probably because the subject had little visible hairline. During classifier training,

it was found that the classifier drew many of its features from the hairline of the subject, as it

provided a good indication of the subject’s gaze direction.
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Figure 5.15: Box plot of the sensor fusion gaze angle for two simultaneously moving people.
The corresponding results are displayed at either side of each ground truth angle. Due to the
fast velocity of the subjects in these experiments, some inaccuracies arise as a result of the
greater depth camera noise than in previous experiments. However, the results are still more
accurate than the comparison RGB method in the more noiseless static scenario (Figure 5.14).
Additionally, the distance of 2.5 m at which the more inaccurate values occur, exceeds the
range of other IR gaze estimation methods.

5.3.4 Gaze Estimation in HRI

In order to further evaluate the sensor fusion algorithm under real-world conditions, the moving

person scenario (Figure 5.8b) was repeated with two people moving at the same time. To

accomplish this, the people detection method from Chapter 3 was used, with the Kalman filter

tracker from Chapter 4. The Hungarian algorithm, described in Section 4.2.1, was used to

assign detected gazes to tracked people.

Three experiments were performed. In each, one person’s gaze was the opposite of the other.

Thus, instead of seven different experiments with angles (−30°,−20°, . . . , 20°, 30°), three exper-

iments were performed with angles (±30°,±20°,±10°). The results are shown in Figure 5.15.

Due to depth camera noise arising from the fast moving people, the gaze estimates at 10° are

slightly over estimated. However, the results are still more accurate than the static results of

the competing RGB method (Figure 5.14). It should also be noted that the distance of 2.5 m

at which most of these inaccurate values seem to occur is much greater than the working range

of most other infrared gaze estimation methods.
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Figure 5.16: Images, from the robot’s view, of the sensor fusion algorithm’s performance in
typical HRI scenes. Gaze estimates are displayed with a red arrow, that has been projected
into an RGB image for visualisation purposes. By estimating the gaze of everyone in the scene,
the subject gesturing towards the robot can be correctly identified as wanting to initiate HRI.

Images of the sensor fusion algorithm’s performance in typical HRI scenes are shown in Fig-

ure 5.16. Two background subjects are not interacting with the robot, but by analysing all

three peoples’ gaze, the gesturing subject can be correctly identified as wanting to initiate HRI.

Crowds and dynamics cause problems for many existing gaze detection methods. However, the

proposed method is designed to robustly work in real-world environments. To assess this, the

robot was placed outside a lecture hall, and recorded people leaving a lecture. Gaze estimates

of the people walking past are shown in Figure 5.17. These scenes were previously illustrated

in Figure 5.1, as the types of crowded scenarios where accurate gaze estimates are needed for

effective HRI.

5.4 Conclusions

The contribution of this chapter has been a sensor-fusion based gaze estimation method, using

both infrared pupil detection and depth camera data, for use on a mobile robot. The method

is designed to facilitate HRI tasks, such as human-attention detection and group detection.
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Figure 5.17: Images from the robot’s view, showing the estimated sensor fusion gaze angles
in real-world scenarios, including those originally shown in Figure 5.1. Gaze estimates are
displayed with a red arrow on a white background, that has been projected into an RGB image
for visualisation purposes. For people looking into the camera, this arrow will naturally appear
quite short.

Most existing methods of infrared gaze estimation have too short a range to be applied to this

problem area, as well as user-specific calibration. Many traditional vision-based methods lack

the gaze accuracy required for HRI tasks. With the benefits of the proposed sensor fusion

method, these drawbacks are compensated. The calibration-free method works for natural HRI

distances of 1.2 m to 2.5 m, is not constrained by the number of moving or static people in a

scene, and gives accurate gaze estimates at a 30 Hz rate.

The algorithm used two arrays of infrared LEDs, one near the camera axis that illuminates

a subject’s pupil, and one off-axis array that provides background illumination. Each array

is activated in alternate frames, with the image difference providing clearly segmented pupils.

Based on the detected eyes of each subject, two gaze estimates are generated: one based on

forehead analysis from depth images, and a more accurate sensor-fusion estimate that com-

bines the forehead estimate with eye positions in the infrared image. Each sensor-fusion gaze

estimate involves numerically solving an equation using the Newton-Raphson method. How-

ever, the equation has two roots and only one is the correct gaze estimate. To select the root

corresponding to the subject’s gaze, the estimate from the forehead analysis is used.

The accuracy of the proposed sensor-fusion method was evaluated under multiple conditions:
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using a static subject, using multiple moving people and with a moving robot. Forty six

experiments were performed, equating to over 10 minutes of ground truth annotated data.

The performance of the sensor fusion method was tested against a state-of-the-art vision-based

method and the results of the forehead analysis method. In the vast majority of cases, the

sensor-fusion algorithm greatly outperformed the comparison methods, with a higher running

speed than the vision-based method.

Chapter 6 uses the proposed gaze estimation method to detect groups. An analysis is presented

of how the inclusion of gaze information affects group detection accuracy. Without a suitable

method of evaluating gaze direction, many HRI methods would fail when exposed to background

human-human interaction. In future work, the proposed gaze estimation method should be

combined with the hand detection and tracking modules presented in Chapters 3 and 4. With

an added gesture recognition module, this work would allow a robot to ignore gestures directed

at humans, and respond to gestures aimed at the robot.



Chapter 6

Multi-Modal Gaze Contingent Group

Detection

6.1 Introduction

To seamlessly integrate robots into human-environments, methods must be developed by which

robots can understand human social context: a robot should avoid interrupting an interacting

group, it should not navigate through the middle of two conversing people, but it should

consider interacting with an ungrouped person. This problem of group detection impacts many

additional aspects of a robot’s behaviour. For example, a robot that detects a gesturing subject

should not respond if they are gesturing to someone else. The contribution of this chapter is

to provide a method of group detection for mobile robots, which uses detected subjects’ gaze

directions to robustly detect static and dynamic interactions.

People detection and tracking is a widely studied problem in computer vision and robotics.

Much less research tackles the problem of group identification, with many methods using only

spatial and motion information [147, 148]. However, real-world environments are frequently

cluttered, crowded, and have ungrouped people passing close to each other. In these situations,

knowledge of only a subject’s position and velocity is not enough to robustly determine their

group participation. A more informative indicator must be used.

160
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Chapter 5 proposed a real-time gaze estimation method, which used infrared eye detection

and depth image analysis. When combined with the people detection method from Chapter 3,

accurate gaze estimates on a mobile robot were obtained for multiple moving people. Such gaze

estimates are an important indicator of group participation, especially in narrow or crowded

environments.

Many previous group detection methods make no distinction between the different structures of

static and dynamic groups [8,9,149,150]. However, from existing sociological literature, specific

models for both can be defined. With a detection method that explicitly handles these two

distinct formations, the resulting group classification accuracy can be increased.

The proposed group detection method thus uses the detected gaze of subjects in a scene,

combined with their position and velocity information. From this information, a novel set of

group detection features is defined, based on sociological concepts of static and dynamic group

structures. The proposed method firstly identifies interacting pairs of people in a scene, using

a subsequent recursive algorithm to complete the group detection process. Two classification

approaches are compared: a model-based method, which calculates interaction probability using

multiple likelihood functions, and a logistic regression model [151]. Group detection accuracy

is evaluated under a wide range of group configurations, using moving and stationary subjects.

The performance of the employed features is also detailed, with the impact of gaze information

on group classification explicitly quantified. Finally, performance is compared to the state-of-

the-art, using four external datasets.

6.2 Method

6.2.1 Sociological Group Concepts

Sociology is the study of social behaviour. In the field of sociology, an important concept

in the formal definition of groups is the “facing”, F-formation [152]. The F-formation is a

circular arrangement of the spatial-orientations of group members, such that they form a shared
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(a) Picture of a conversing group formed in an
F-formation, with the components of their shared
transactional spaced annotated. Conversation is di-
rected into the inner “O”-space. To achieve this,
participants position themselves in the “P”-space.
Areas outside the group lie in the “R”-space.

(b) Wide shot picture showing multiple groups nat-
urally formed by F-formations

(c) Images of static pairs

(d) Images of dynamic pairs (e) Images of dynamic groups

Figure 6.1: (a) and (b) show images of circular F-formations that static groups of people
naturally adopt when interacting, and especially when conversing. Images of static pairs in (c),
show a different arrangement called the vis-a-vis F-formation. As shown in images from (d),
dynamic pairs of people also form a different structure, termed the side-by-side arrangement.
As dynamic group size increases, (e), the side-by-side arrangement sometimes separates, but
generally the participants’ gaze still maintains a common focus.



6.2. Method 163

transactional space. This formation is common amongst static groups of talking people, and

is illustrated in Figures 6.1a and 6.1b. As shown, the space around the formation can be

divided into a number of sections. The “O”-space is the inner part of the group’s space, and

is where interactions are directed. Areas outside the group’s transactional space are defined as

the “R”-space. Participants of the group position themselves between these two areas, in an

area known as the “P”-space. The dimensions of these spaces naturally depend on the number

of participants in the group. Kendon doesn’t explicitly state what these letters stand for.

Kendon notes that in conversations between two static people, a different arrangement is com-

mon, where participants directly face each other. Shown in Figure 6.1c, this arrangement is

termed the vis-a-vis F-formation. In a similar way, dynamic groups have their own unique

formations. Figure 6.1d shows candid images of dynamic pairs forming what Kendon terms

a side-by-side arrangement. Figure 6.1e shows slightly larger dynamic groups. As group size

increases, the side-by-side arrangement sometimes separates, but generally the participants’

gaze still maintains a common focus.

A related concept in the definition of groups is that of proxemics, introduced by the anthro-

pologist Edward T. Hall. Hall described proxemics as: “The interrelated observations and

theories of man’s use of space as a specialised elaboration of culture” [141]. Defined as the

study of humans, anthropology and sociology have complimentary theories for defining groups.

Expounding on this topic, Hall explores how the space required for interactions between people

is influenced by their environment. Through observations and interviews with healthy adults

from the United States, Hall defined four different distance categories that govern the different

types of interpersonal interactions that occur within them.

Actions such as wrestling or comforting take place at intimate distances of 0–50 cm. Interactions

amongst close acquaintances take place in personal distances of 50–120 cm. Impersonal business

takes place within social distances of 1.2–3.5 m, though most involvement happens up to 2.1 m.

Finally, little interactions other than public speaking occur at public distances of 3.65 m and

above.

It is common within social environments for people to arrange themselves in groups with an
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Depth Camera

Infrared LEDs

Infrared
Camera

Figure 6.2: Image of robot equipped with an infrared gaze detector and a depth camera for
people detection. The proposed group detector can reduce disruption by enabling the robot to
either move around, not through, the group or wait until the conversation has finished before
interacting with a participant.

F-formation, as shown in Figure 6.2. For a mobile robot to accurately detect interacting groups,

a method of detecting people and their associated gaze must be defined. To provide robustness

in crowded environments, the people detector from Chapter 3 was employed. Building further

on previous work, gaze estimation was performed using the method from Chapter 5. This

method uses on and off-axis infrared LEDs to segment pupils within a scene, with additional

depth-image analyses used in calculating subjects’ gaze angles. Section 5.3 displays the accurate

results of this gaze detector, at distances of 1.2 m to 2.5 m.

A flowchart of the proposed group detection algorithm is shown in Figure 6.3. This method

is motivated by conceptualising a group as a collection of interacting persons. Thus, pairs

of interacting people within a scene are initially identified. Any detected pairs that share a

common participant are merged together. People that are have not been assigned to a group

are then evaluated, to see if they are interacting with an existing group. If so, then they are

merged into the appropriate group. This last step is repeated until no further unassigned person

is added to the groups in the scene.
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N
People

Evaluate
(N-1)^2 - 1

Pairs of People

Merge
Interacting

Pairs together

Evaluate
Unassigned

People

M
Groups

Merged
Unassigned

Person to Group?

Yes

No

Figure 6.3: A flowchart of the proposed group detection algorithm.

6.2.2 Pairwise Group Detection

The first step in the proposed group detection algorithm is to detect whether two people are

interacting. To achieve this, a pairwise interaction probability is generated, based on three

modalities: the distance between the two people, their gaze direction and their speed. The

pairwise probability will be generated for all permutations of possible pairs in the scene. Two

ways of generating the pairwise interaction probability will be presented and evaluated in

Section 6.3: a model-based method and classification using logistic regression.

In the model-based method, three separate likelihood functions are defined; one for each of the

distance, gaze and velocity modalities. Each function takes, as input, features from the two

people being evaluated. Function outputs are a normalised probability; high values indicate

a high probability that the two people are interacting. Each likelihood function is then com-

bined to give the final pairwise interaction probability. A logistic regression model is also used

to generate a pairwise interaction probability, using the same features from the model-based

method as input.
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Pairwise Feature Extraction

In Section 6.2.1 it was noted that as the space between two people increases, the nature of

possible interactions changes. At public distances, above 3.65 m, meaningful interaction with

another person is unlikely. Thus, the distance between two people in a scene can be used

to indicate interaction likelihood. In defining the distance feature for generating the pairwise

interaction probability, a person’s height is ignored, and their position is defined as x = [x, z]T .

The feature chosen is the Euclidean distance between two people, and is denoted as ‖∆x‖.

A person’s gaze direction is an obvious cue of their focus of attention. Gaze features are thus

a natural indicator of pairwise interaction probability, and can be extracted using the gaze

estimation method from Chapter 5. There are situations when the gaze detector fails to detect

a person’s gaze: if they look away from the camera, if they blink, or if they look down to the

ground. To explicitly model this situation a feature, g, shall be introduced. If the gaze of pair

participant i ∈ {1, 2} is detected, then gi = 1, otherwise gi = 0. If gi = 0, as replacement for

their detected gaze, person i’s assumed gaze is directly away from the camera.

As illustrated in Figure 6.1c, when two static people interact it is natural for their gaze be fo-

cused on each other, as a result of the common vis-a-vis formation. It can thus be assumed that

when one person looks directly at another, they have a high pairwise interaction probability.

To model this, a static gaze feature, θsi , shall be defined that encodes the angular difference

between a person’s gaze and the other person in the pair being evaluated. Figure 6.4a illus-

trates how θsi is calculated. In all equations, the value cos (θsi ) is used as the static gaze feature,

instead of θsi , because it is normalised between 1 and −1.

As shown in Figure 6.1d, dynamic pairs of people have a side-by-side arrangement rather than

a vis-a-vis formation. This changes their natural gazing direction, due to the need to both look

where they are going and maintain interaction. Gaze directions for dynamic pair participants

are frequently focused between the direction of motion and the other participant. Another

example of this can be seen in Figure 6.5. It can thus be assumed that when a moving person

has a gaze direction that is the average of their motion direction and the direction of the
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θs
a

(a) Illustration of a static pair. It is natural for in-
teracting participants to look directly at each other,
shown by the vector “a”. θs is the angular difference
between a person’s gaze and the other participant.

θd

a

b

(b) Illustration of a dynamic pair. It is assumed
that a pair participant’s gaze is focused between the
direction of the other person, given by the vector
“a”, and their motion direction, given by the vector
“b”. θd is the angular difference between a person’s
gaze and the mean of vectors “a” and “b”.

Figure 6.4: Illustration of the gaze features, θs and θd, for generating the pairwise interaction
probability. In each illustration, gaze features are calculated for the person given by the green
circle, with the other pair participant represented by the red circle. The unmarked arrow
extending from the green person denotes their gaze direction.

other person in the pair being evaluated, they have a high pairwise interaction probability. A

dynamic gaze feature, θdi , is introduced to model this, encoding the angular difference between

a person’s detected gaze and this assumed gazing direction for dynamic pair participants.

Figure 6.4b illustrates graphically how θdi is calculated. Again, the value cos
(
θdi
)

shall rather

be used as the dynamic gaze feature, due to its normalised range.

To maintain a constant interaction space, the velocities of interacting pair participants must

be similar. Again this can be seen from Figure 6.1. Thus, two velocity features are used in

generating the pairwise interaction probability: µv, the magnitude of the mean velocity of the

two people; and ∆v, the magnitude of the velocity difference of the two people.

With all features used to generate the pairwise interaction probability now defined, the complete

list can be stored as a vector: fp−p = [‖∆x‖, cos (θs1) , g1, cos (θs2) , g2, µv,∆v, cos
(
θd1
)
, cos

(
θd2
)
]T .

The task remains to classify interacting pairs of people, given a pairwise feature vector extracted

from each permutation of possible pairs in a scene.
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Figure 6.5: Image of a pair moving towards the camera. Each participant’s gaze is approxi-
mately half way between the direction of motion, and the other person. This is due to the need
to look where they are going, whilst maintaining interaction.

Pairwise Group Classification

With the distance, gaze and velocity features defined, pairwise group classification can be

performed using either the model-based method or through logistic regression. However, the

three model-based likelihood functions for the three modalities must still be defined. The

function inputs are all elements of fp−p.

In the model-based pair classification method, the distance likelihood function shall be denoted

as sd (‖∆x‖). Intuitively, people located within personal distances (0–1.2 m) [141] should have a

high distance likelihood. As two people move further apart, this likelihood should exponentially

decrease. This behaviour can be modelled by the following piecewise Gaussian function:

sd (‖∆x‖) =





1 if ‖∆x‖ < ud,

exp

(
−
(
‖∆x‖−u

σd

)2
)

otherwise.

(6.1)

ud is a positive variable that denotes the distance within which two people will have a maximum

distance likelihood. For distances outside this value, the positive σd value controls how quickly

the likelihood decreases. Low values of σd result in probabilities that decrease faster with

distance. Figure 6.6 illustrates the effect of distance between two people on their distance
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Figure 6.6: A graph of how the model-based, pairwise distance likelihood varies with distance
between two people. Likelihood is maximal at personal distances, and decreases exponentially
as the candidates move further apart. This graph was generated using the optimal model-based
parameters, as defined in Section 6.3.2. Thus, ud = 0.296 and σd = 0.397.

likelihood probability.

The gaze likelihood function for the model-based pair classification method shall be denoted as

sθ (θi, gi). θi is the angular difference between pair participant i’s detected and expected gaze

directions, as shown in Figure 6.4. For static pair participant i, this difference has already been

defined as θsi . The corresponding gaze likelihood is thus sθ (θsi , gi). Similarly, for dynamic pair

participant i, the difference between detected and expected gazes has been defined as θdi . This

corresponding gaze likelihood is sθ
(
θdi , gi

)
.

The guiding principle when defining sθ (θi, gi) is that two people looking in their expected gaze

directions should have a maximum pairwise gaze likelihood. As their focus of attention moves

away from the expected values, likelihood should exponentially decrease. A scaled von Mises

distribution, being the circular equivalent of the Gaussian function, can be used to capture this

behaviour:

sθ (θi, gi) =





exp (τ cos (θi)− τ) if gi = 1,

c otherwise,

(6.2)

sθ (θ1, g1, θ2, g2) = sθ (θ1, g1) · sθ (θ2, g2) . (6.3)
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Figure 6.7: A polar plot of how the model-based, pairwise gaze likelihood, varies with a pair
candidate’s gaze angle. Gaze difference, θ, is the angular difference between the person’s
detected and expected gaze directions, as defined in Figure 6.4. A difference of 0° thus gives
a maximal likelihood. As the person’s gaze deviates from its expected direction, likelihood
decreases appropriately. This graph was generated using the optimal model-based parameters,
as defined in Section 6.3.2. Thus, τ = 8.7.

Note that a non-detected gaze gives a constant likelihood of c. τ is a positive variable that

controls how quickly a person’s gaze likelihood decreases, as their gaze deviates from its expected

direction. A higher τ results in faster decreasing probabilities. The effect of a person’s gaze

direction on gaze likelihood is shown graphically in Figure 6.7.

Finally, the velocity likelihood function for the model-based pair classification method shall be

denoted as sv(µv,∆v). This function should assign a high interaction likelihood to subjects

with similar velocities, especially as their average velocity increases. This behaviour can again

be captured with a piecewise Gaussian function:

sv(µv,∆v) =





exp

(
−
(

∆v

σv

)2
)

if µv > uv,

µv
uv

exp

(
−
(

∆v

σv

)2
)

otherwise.

(6.4)

If a pair’s µv is above the positive variable uv, then their velocity likelihood is given by an
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Figure 6.8: A plot of how the model-based, pairwise velocity likelihood for two candidates
varies with their speed. Plotted values assume that they are both facing in the same direction.
Velocity likelihood is maximal when their speeds are similar, and above a threshold. The
more the candidates’ speed differs, the more the interaction likelihood decreases. This graph
was generated using the optimal model-based parameters, as defined in Section 6.3.2. Thus,
σv = 0.267 and uv = 0.549.

exponential function that has a maximal value when both participants have the same velocity.

If µv drops below uv then likelihood is reduced, as slower velocities provide less information

about groupings in the scene. σv is a positive variable that controls how quickly interaction

likelihood decreases as the velocity of the two people differs. Low values of σv result in more

quickly decreasing values. The effect of the pair’s speed on velocity likelihood is shown in

Figure 6.8.

The three model-based likelihood functions defined for distance, gaze and velocity modalities

must be combined to generate the pairwise interaction probability. In accomplishing this,

the differences between static and dynamic groups, shown in Figures 6.1c and 6.1d, must be

incorporated. Thus, the following equation for the model-based pairwise probability places

more weight on the static gaze features for slow moving pairs, with the dynamic gaze features
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taking precedence for faster pairs.

smp−p (fp−p) = (1− sv (µv,∆v)) sθ (θs1, g1, θ
s
2, g2) sd (‖∆x‖)

+ sv (µv,∆v) sθ
(
θd1, g1, θ

d
2, g2

)
sd (‖∆x‖) . (6.5)

Whilst sθ is parameterised in terms of θi for clarity, only cos (θi) is directly used in sθ and

fp−p. Two people whose pairwise interaction probability is above a threshold, smp−p > λmp−p,

are defined to be interacting as a group. The values of model-based parameters pp−p =
(
ud, σd, τ, c, uv, σv, λ

m
p−p
)

will be defined in Section 6.3.2.

As stated previously, a logistic regression model can also be used to generate a pairwise interac-

tion probability, using the same input features, fp−p, as the model-based method. In explaining

the logistic method, a dummy vector, φ = [1, fTp−p]
T , of size 10 × 1, shall be created for every

9 × 1 pairwise feature, fp−p. The resulting pairwise probability from the logistic method shall

be denoted as slp−p. Standard logistic regression uses the regression coefficients w to model the

equation:

slp−p = σ
(
wTφ

)
, (6.6)

ln

(
slp−p

1− slp−p

)
= w0 + w1‖∆x‖+ w2 cos (θs1) + w3g1 + w4 cos (θs2) + w5g2

+ w6µv + w7∆v + w8 cos
(
θd1
)

+ w9 cos
(
θd2
)
,

(6.7)

where σ is the logistic sigmoid function. However, this function will give a different slp−p value

if the order of pair participants, i ∈ {1, 2}, are swapped when extracting fp−p. Specifically,

the terms involving cos (θs1) and cos (θs2), g1 and g2, cos
(
θd1
)

and cos
(
θd2
)
, must be made order-

independent. This can achieved by enforcing their corresponding regression coefficients to be

equal:

ln

(
slp−p

1− slp−p

)
= w0 + w1‖∆x‖+ w2 (cos (θs1) + cos (θs2)) + w3 (g1 + g2)

+ w4µv + w5∆v + w6

(
cos
(
θd1
)

+ cos
(
θd2
))
.

(6.8)
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With the number of regression coefficients reduced from 10 to 7, this technique has the added

benefit of requiring less data to train the classifier. In the same way as the model-based method,

two people are said defined to be interacting as a group if their resulting pairwise probability is

above a threshold: slp−p > λlp−p. By ordering the output probabilities for all negative training

data samples, λlp−p is set equal to the probability sample that gives the desired false positive

rate of the classifier.

Both the model-based method and the logistic classifier can be used to list all pairs of interacting

people in a scene. However, this list of pairs can contain overlapping people, as might be the

case with a group of three or more people. Thus, all pairs with a common participant should

thus be merged. This will result in a list of groups with unique participants, and a list of people

that have been labelled as not interacting with another person.

6.2.3 Person-to-Group Merging

In groups of three or more people, a participant does not have to directly interact with a specific

person. For example, one person might direct their attention between the two other group

participants. To resolve this, the merged pairs of interacting people generated in Section 6.2.2

will be used as an initial set of groups, as shown in Figure 6.3. For the remaining unassigned

people, a method of detecting whether they are interacting with an existing group must be

devised.

To this end, a person-to-group interaction probability is introduced. The person-to-group prob-

ability will be calculated for each permutation of unassigned people to existing groups. To

generate it, the same two methods from the pairwise group detection step are used: a model-

based method and a logistic classifier.

Classifying a person as interacting with a group is a different problem than classifying two

people as interacting. It requires different models, training and test data. Thus, the person-to-

group probability is not calculated using the pairwise features fp−p. A different set of features

is extracted, though still from the same three modalities: distance, gaze and velocity.
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Person-to-Group Feature Extraction

In Figure 6.1b it can be seen that different groups with the same number of people can be spread

out over different areas. Specifically, in the F-formation all people are roughly equidistant from

the mean. This distance is not constant however: a person interacting with a small, tight

group will be closer to its mean than a person interacting with a large, spread out group. A

sensible distance feature for calculating person-to-group interaction probability should thus take

into account the spread of the people within the existing group. This is accomplished using

Mahalanobis distances, rather than the Euclidean distances used in fp−p.

To calculate the Mahalanobis distance between an unassigned person and an existing group,

the covariance matrix, C, of the positions, x = [x, z]T , of all group members is calculated. For

group a group of size N , with mean position, x̄ = [x̄, z̄]T , the covariance matrix is defined as:

C =
1

N

N∑

k=0

(xk − x̄)(xk − x̄)T .

The Mahalanobis distance, DM , of an unassigned person with position x, to this group is given

by:

DM (x) =

√
(x− x̄)T C−1 (x− x̄),

The gaze features used to generate the person-to-group probability are the same used for the

pairwise probability, with two modifications. Firstly, a group cannot be said to have a gaze of

its own, and thus only one vale of θs and θd is used. Secondly, the expected gaze direction of the

unassigned person must be redefined, to take all members of the existing group into account.

For static groups, as shown in Figure 6.1a, a participant’s gaze direction is naturally focused

towards “O”-space in the F-formation; this can be approximated as the mean position of the

other group members. Figure 6.1e suggests that as dynamic groups increase in size, the side-

by-side arrangement of the participants sometimes separates, but generally the participants’

gaze still maintains a common focus. Similar to the case of dynamic pairs, group participants

need to both look where they are going and maintain interaction. These expected gazing
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θs

a

(a) Illustration of a static group. It is natural for an
interacting person to look towards the mean of the
remaining group participants, shown by the vector
“a”. θs is the angular difference between an unas-
signed person’s detected gaze and this expected gaze
direction.

θd

a

ba+b

(b) Illustration of a dynamic group. It is assumed
that a group participant’s gaze is focused between
the mean position of the remaining group partici-
pants, given by vector “a”, and the group’s direction
of motion, given by vector “b”. θd is the angular dif-
ference between an unassigned person’s gaze and the
mean of vectors “a” and “b”.

Figure 6.9: Illustration of the gaze features, θs and θd, for generating person-to-group interaction
probability. In both illustrations, gaze features are calculated for the unassigned person given
by the green circle. Members of the existing group are denoted by red circles. The unmarked
arrow extending from the unassigned green person denotes their gaze direction.

directions are shown for an unassigned static person, in Figure 6.9a, and an unassigned dynamic

person, in Figure 6.9b. Equivalent to their pairwise probability definitions, θs and θd denote

the angular difference between the unassigned person’s detected and expected gaze directions,

when interacting in an existing static and dynamic group respectively.

The velocity features of the person-to-group interaction probability are equivalent to those of

the pairwise probability. µv is the magnitude of the average velocities of the unassigned person,

and mean velocity of the group participants. ∆v is the magnitude of the velocity difference

between the unassigned person, and the mean velocity of the group participants.

The complete list of features used to calculate the person-to-group probability are thus:

fp−g = {MD (x) , cos (θs) , g, µv,∆v, cos
(
θd
)
}. The remaining task is to use these features,

generated from each permutation of unassigned people to existing groups, and classify whether

they are interacting together or not.
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Person-to-Group Classification

Classifying an unassigned person as interacting with an existing group or not, can again be

performed with either the model-based method or logistic regression. The three model-based

likelihood functions used to generate the person-to-group interaction probability are the same

as for the pairwise probability, with one small modification: as there is only one static and

one dynamic gaze feature, the gaze likelihood function is given by Equation 6.2, rather than

Equation 6.3. The person-to-group gaze likelihood is thus given by sθ (θs, g) when evaluating

an unassigned static person and group, and sθ
(
θd, g

)
when evaluating an unassigned dynamic

person and group.

The equation to calculate the model-based person-to-group probability is very similar to that

for the pairwise probability, given by Equation 6.5:

smp−g (fp−g) = (1− sv (µv,∆v)) sθ (θs, g) sd (MD (x)) + sv (µv,∆v) sθ
(
θd, g

)
sd (MD (x)) .

An unassigned person who has a person-to-group probability above a threshold, smp−g > λmp−g,

will be merged into the comparison group. The values of model-based parameters pp−g =
(
ud, σd, τ, c, uv, σv, λ

m
p−g
)

are different to those used to generate the pairwise probability. They

will be defined in Section 6.3.2.

To generate the person-to-group probability using logistic regression, the same features, fp−g,

as the model-based method are used as input. Unlike the logistic classifier used to generate the

pairwise probability, standard logistic regression can be performed on fp−g, as the features are

order-independent. The classifier output, denoted as slp−g, is the probability that an unassigned

person is interacting with an existing group. If this value is greater than a threshold, slp−g >

λlp−g, then the person and group are merged. The value of λlp−g can be generated in the same

way as λlp− p for the pairwise logistic classifier.

The result of both the model-based method and logistic classifier is to generate an amended

list of groups in the scene, whose definition may have changed as a result of unassigned people



6.3. Results 177

being merged into them, and a list of the remaining unassigned people.

6.2.4 Recursive Merging Algorithm

Section 6.2.2 defined a method by which all pairwise groups in the scene could be detected.

Section 6.2.3 defined a method by which people unassigned to a group could be merged into

an existing group. The complete group detection algorithm, as shown in Figure 6.3, involves

generating initial pairwise groups, then recursively merging unassigned people into existing

groups, until no more merging takes place. Algorithm 2 formally defines this process.

Algorithm 2 Overall group detection algorithm, detectGroups, which uses a recursive
process to merge unassigned people into existing groups. getPairwiseGroups is the func-
tion described by Section 6.2.2 and mergePeopleIntoGroups is the function described
by Section 6.2.3.

Require: P . A list of people not assigned to a group
Require: G . A list of existing groups
function recursiveMerge(P , G)

Pu: . An updated list of people not assigned to a group
Gm: . An updated list of merged groups
Pu, Gm ← mergePeopleIntoGroups(P , G)
if Gm = G then

return P , G
else

return recursiveMerge(Pu, Gm)
end if

end function

Require: P : . A list of people in the scene
function detectGroups(P )

Pu: . A list of people not assigned to a pair
Gm: . A list of merged pairwise groups
Pu, Gm ← getPairwiseGroups(P )
return recursiveMerge(Pu, Gm)

end function

6.3 Results

To evaluate group detection performance, datasets of natural groups were recorded using the

robot pictured in Figure 6.2. Over twenty minutes of data was collected, of grouped and
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Table 6.1: Categories of groups recorded for use as positive samples when evaluating group
detection methods.

Group Size Movement Frames Length (s)
2 Static 982 33
2 Dynamic 1806 60
3 Static 2904 97
3 Dynamic 433 14
4 Static 2301 77

Total 8426 281

Figure 6.10: Images of static and dynamic groups used as positive samples for the group
detection methods.

ungrouped persons. Static and dynamic groups with two, three and four participants were

recorded, for use as positive samples. A breakdown of group categories with corresponding

numbers of frames is detailed in Table 6.1. Dataset recordings were made at a 30 Hz rate.

Images from the datasets shown in Figure 6.10. As negative samples, ungrouped people were

recorded, in various scenarios. These are documented in Table 6.2, with some corresponding

images shown in Figure 6.11.

As can be seen from the images, there is no quantifiable boundary between people who are

grouped and ungrouped. Groups in the datasets were formed naturally by the participants.

The task of the group detection methods is to replicate this subjective human judgement of

what constitutes a group, and what does not.

Sections 6.3.1 and 6.3.2 will use these datasets to evaluate the performance of the logistic
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Table 6.2: Categories of ungrouped persons recorded for use as negative samples when evalu-
ating group detection methods. The categories were selected to test both the pairwise group
detection and person to group merging stages.

People Dataset Description Frames Length (s)
2 2 Static Ungrouped 15677 523
2 2 Dynamic Ungrouped 776 26
2 1 Static Ungrouped, 1 Dynamic Ungrouped 2975 99
3 2 Static Grouped, 1 Static Ungrouped 989 33
3 2 Static Grouped, 1 Dynamic Ungrouped 873 29
3 2 Dynamic Grouped, 1 Static Ungrouped 1468 49

Total 22758 759

Figure 6.11: Images of static and dynamic ungrouped persons used as negative samples for the
group detection methods. Note that in order to evaluate the person to group merging stage,
some images show scenes where a group is present, as well as an ungrouped person.
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Figure 6.12: Normalised histograms for distance feature values, ‖∆x‖, between two people,
both for when they are interacting as a pair, shown in blue, and when they are not, shown in
red. As can be seen, the distance feature alone does not provide enough information to separate
the two classes.

classifier and model-based method on these datasets. Section 6.3.3 will then evaluate the logistic

classifier on publicly available datasets and compare the results with the state-of-the-art.

6.3.1 Feature Evaluation

Before detailing the group detection results, an analysis will be performed of the group classi-

fication capacity of the main pairwise features, fp−p. This analysis will use all the data from

two person groups, described in Tables 6.1 and 6.2, incorporating both the positive samples

of paired people, and the negative samples of ungrouped people. All presented histograms are

normalised so that the sum of their elements adds up to 1.

Figure 6.12 shows a histogram of the Euclidean distance between two people, ‖∆x‖, for both

positive pairs of people and negative unpaired people. As can be seen, the distance feature does

not well separate the two classes. However, in general, pairs of people have a closer separating

distance than their unpaired counterparts.

Figure 6.13 shows equivalent histograms for the static gaze feature, cos (θs). Figure 6.13a shows

values of cos (θs) when the gaze detector successfully detected a person’s gaze. Figure 6.13b
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Figure 6.13: Normalised histograms of the static gaze feature, cos (θs), for when the gaze
detector captures a person’s gaze, (a), and when it fails to detect a person’s gaze, (b). When
the gaze detector fails, a person is assumed to be looking directly away from the camera. Good
class separation is achieved when a person’s gaze is detected.

shows values of cos (θs) when the gaze detector fails to detect a person’s gaze. As mentioned

previously, when the gaze detector fails, a person’s gaze is assumed to be directly away from

the camera. This is because the gaze detector fails when both eyes are not visible, and in this

situation it can be assumed that the person is looking away from the camera. The assumed

gazing direction, directly away from the camera, is the average of all gazing directions where

both eyes are not visible.

With gazes successfully detected by the gaze detector, Figure 6.13a shows that cos (θs) values

can separate paired and unpaired people well. As expected, pairs of people have cos (θs) values

approaching 1, meaning their gaze is close to the other person. Conversely, unpaired people

have cos (θs) values closer to −1, indicating that they are looking away from the other person.

When the gaze detector fails to detect a person’s gaze, Figure 6.13b shows that cos (θs) values

appear to give no informative information. The values for people who are in pairs, and those

who are not, are very similar. This motives the introduction of the feature, gi ∈ fp−p, so that

the failure of the gaze detector can be explicitly specified.

Figure 6.14 shows histograms of the dynamic gaze feature cos
(
θd
)
. Figure 6.14a shows values

of cos
(
θd
)

when the gaze detector successfully detected a person’s gaze. Figure 6.14b shows
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Figure 6.14: Normalised histograms of the dynamic gaze feature, cos
(
θd
)
, for when the gaze

detector successfully detects a person’s gaze, (a), and when it fails, (b). Like the static gaze
feature, good class separation can be achieved with cos

(
θd
)

values when a person’s gaze is
successfully detected.

values of cos
(
θd
)

when the gaze detector fails to detect a person’s gaze.

Similar to the static gaze feature, when the gaze detector successfully detects a person’s gaze,

cos
(
θd
)

provides good information for classifying interacting and non-interacting pairs, as

shown in Figure 6.14a. Paired people have cos
(
θd
)

values close to 1, meaning their detected

gaze is close to the expected direction. Unpaired people have a much wider distribution of

cos
(
θd
)

values. As expected, this indicates more variation in the gaze of ungrouped people.

Figure 6.15 shows normalised 2D histograms for the two velocity features, µv and ∆v. Fig-

ure 6.15a shows a 2D histogram for pairs of people, whilst Figure 6.15b is a 2D histogram for

unpaired people.

The high density of samples at the origin of both histograms represents features derived from

static participants. For moving participants, a clear separation can be seen between paired and

unpaired people, using both velocity features. Paired people have a low velocity difference, ∆v,

with a varying mean velocity, µv. Unpaired people, on the other hand, have ∆v values with

much greater variance.
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Figure 6.15: Normalised 2D histograms for the two velocity features, µv and ∆v. Features from
pairs of people are shown in (a). Features from unpaired people are shown in (b). The large
number of samples at the origin of both graphs represents static subjects. Outside this area,
the two histograms are visually separable. This suggests that, for moving subjects, accurate
classification of interactions can be made using both features.

6.3.2 Results Analysis

In the following results, random subsampling cross-validation was used during classifier training.

For each one of 10 random splits, 40% of the data was used as training data, and the remaining

60% was used for testing. The final classification accuracy, displayed in the following ROC

curves and accuracy tables, was the average performance over all random splits. To generate

the ROC curves for the logistic classifier, the threshold parameters λlp−p and λlp−g are varied

for pairwise and person-to-group detection respectively. The equivalent parameters for the

model-based method are λmp−p and λmp−g.

For each random split of the training data, the pairwise group detection methods from Sec-

tion 6.2.2 were trained on groups of size 2. Scenarios with 3 people were used to train the

person to group merging methods from Section 6.2.3. To fit the regression coefficients of the

logistic classifier, maximum likelihood estimation was used [151]. When determining the opti-

mal model-based parameters, pp−p and pp−g, for a particular training dataset, the Nelder-Mead

simplex algorithm [153] was employed.
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To accomplish this, an error function is created that takes as input: the training features, fp−p

or fp−g, their corresponding ground truth values, and a set of current parameter values, pp−p

or pp−g. The function output is the total number of positive and negative training misclassifi-

cations produced.

The Nelder-Mead method is based around a simplex that lies in the 7 dimensional parameter

space, centred around an initial estimate of the function minimum. The vertices of the simplex

are transformed, based on their function values, until they finally contract on the function

minimum. This method was chosen as it does not require the derivatives of the model-based

functions. Because of their parameterised piecewise limits, calculation of the function deriva-

tives would be non-trivial. Sensible initial values were provided, based on sociological informa-

tion and human knowledge of group definitions: ud = 1.20, σd = 0.50, τ = 4.0, c = 0.16, uv =

0.50, σv = 0.25, λm = 0.001.

Figure 6.16 displays ROC curves comparing the results of the model-based method and the

logistic classifier. The two methods were separately trained and tested for both pairwise group

detection, Figure 6.16a, and person to group merging, Figure 6.16b. Whilst both methods

can be see to provide adequate group detection accuracy, the logistic classifier has improved

performance in both detection tasks. In particular, very high pairwise group detection accuracy

is achieved with the logistic classifier.

In explaining the higher performance of the logistic classifier, the analysis of the group detection

features from Section 6.3.1 shall be referred to. Specifically, the combination of µv, ∆v, cos (θs)

and cos
(
θd
)

can be seen to provide good class separation. The model-based method provides a

group detection algorithm that is based on general sociological principles. The logistic classifier

however, constructs a group detection method based entirely on the underlying data. As a

consequence of the employed features providing robust group information, the logistic model of

the data is very accurate. Additionally, in all experiments, cross-validation was used to ensure

that the optimal logistic model is not overfitted, and is capable of performing in a wide range

of scenarios.

An additional reason for the logistic classifier’s higher performance is the large amount of
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(b) Person to Group Merging

Figure 6.16: Figure showing ROC curves for both the logistic classifier and the model-based
method. (a) shows pairwise group detection results. (b) shows results for the person to group
merging stage. The logistic classifier has superior performance for both detection stages, espe-
cially pairwise group detection.

training data available. As the model-based method is constructed from human knowledge

of group definitions, only a small amount of training data is needed to fine-tune the model

parameters. The logistic classifier has a large amount of training data available to construct a

group detection model that is sufficiently general, but tailored to the provided dataset. With

less training data available, the accuracy and generality of the logistic model would be reduced.

The model-based method would not be affected however, as it is not constructed from the

underlying data.

To evaluate the importance of the gaze detector to the group detection algorithm, a mod-

ified feature vector was implemented that contains no gaze information. The gaze-less fea-

tures used to generate the pairwise interaction probability are thus: f¬gp−p = {‖∆x‖, µv,∆v}.

Similarly, the gaze-less features used to generate the person-to-group probability are: f¬gp−g =

{MD (x) , µv,∆v}. These features were extracted from all datasets using the same number of

cross-validation splits, and training and test ratios, as before.

A logistic classifier for detecting interacting pairs was trained using f¬gp−p; a corresponding

person-to-group merging classifier was trained using f¬gp−g. Figure 6.17 displays the decrease

in performance when compared to the logistic classifiers that use gaze information. As can
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Figure 6.17: ROC curves that present logistic classification results with, and without, informa-
tion from the gaze detector. (a) shows pairwise group detection results. (b) shows person to
group merging results. In both cases, the inclusion of gaze information greatly increases the
group detection results.

be seen, the inclusion of gaze estimates greatly increases the results of both pairwise group

detection, Figure 6.17a, and person to group merging, Figure 6.17b. This clearly indicates the

importance of the gaze detector in the group detection process.

In explaining the classification improvements that gaze information provides, the analysis of

the group detection features from Section 6.3.1 shall again be referred to. Paired and unpaired

people were shown to have overlapping ‖∆x‖ values. Indeed, the more crowded the environment,

the less information ‖∆x‖ will provide when separating groups. Figure 6.15 shows that static

paired and unpaired people cannot be clearly separated by the velocity features, µv and ∆v.

Thus, knowing a static person’s gaze direction is essential for accurately classifying whether or

not they are in a group, especially in crowded environments.

Table 6.4 further details the performance difference between the logistic classifier, with and

without gaze information, and the model-based method. When generating the results of each

of the 10 cross validation splits, each of the three tested method’s thresholds was chosen to give

a false positive rate of 0.1. Equivalent to the ROC curves, the values quoted in Table 6.4 are

the average accuracy over all 10 splits. To test the methods’ ability to scale to larger groups,

training data did not include samples from four person groups. For this case, each method’s
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Table 6.3: Group detection accuracy for the logistic classifier, with and without gaze informa-
tion, and the model-based method. As shown, for both the pairwise group detection, and the
people to group merging classifiers, the threshold of each algorithm was set to produce a false
positive rate of 0.1. The best results are emboldened, and are produced by the logistic classifier
using gaze information.

Ground Truth
Logistic

Accuracy (%)
Model-Based
Accuracy (%)

Logistic Accuracy
Without Gaze (%)

Pairwise Group Detection
Pairs 93.59 59.75 68.26

Non-Pairs 90.00 90.00 90.00

Person to Group Merging
Merge 86.50 82.39 77.33

Non-Merge 90.03 90.03 90.02

training parameters were set to the average of those generated in each cross validation split.

These optimised parameters for the model-based pairwise group classifier were: ud = 0.30, σd =

0.40, τ = 8.70, c = 0.10, uv = 0.69, σv = 0.25, λmp−p = 0.001. Those for the person-to-group

merging classifier were: ud = 0.69, σd = 0.44, τ = 4.63, c = 0.17, uv = 0.55, σv = 0.27, λmp−g =

0.001.

The tabular results mirror those of the ROC curves in Figures 6.16 and 6.17: The logistic

classifier has better accuracy than the model-based method for pairwise group detection, and

the use of gaze information improves the accuracy of both group detection stages. To further

justify the stated explanation for this, Table 6.4 breaks down the results into the separate

datasets categories of positive group samples.

It can be seen that both logistic classifiers detect dynamic groups with a high accuracy. How-

ever, when gaze information is removed, static group detection reduces dramatically. These

results corroborate the explanation that velocity features, µv and ∆v, well separate dynamic

groups, but gaze is required for static group detection. The poor performance of the model-

based method for the group of 4 persons, is explained by the fact that this dataset was not

used in any training data. For this 4 person dataset, 22.64% of frames had a group of size

3 detected using the model-based method. The pairwise model-based parameters, pp−p, were

thus probably overfitted to the training datasets of paired people, and did not allow for the
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Table 6.4: A breakdown of the group detection accuracy for the categories of groups recorded
as positive samples. Results are displayed for the logistic classifier, with and without gaze
information, and the model-based method. The threshold of each algorithm was set to produce
a false positive rate of 0.1. The best results are emboldened, and are mainly produced by the
logistic classifier using gaze information.

Group Size Movement
Logistic

Accuracy (%)
Model-Based
Accuracy (%)

Logistic Accuracy
Without Gaze (%)

2 Static 85.64 46.28 14.34
2 Dynamic 97.90 67.08 97.77
3 Static 85.00 85.12 74.50
3 Dynamic 96.46 64.08 96.19
4 Static 79.66 0.78 29.99

increased spread of the 4 person group formation.

6.3.3 Results in Crowded Environments

To assess group detection performance in crowded, unconstrained environments, the robot was

placed outside a lecture hall, recording people as they leave. As people tend to form natural

groups as they exit lectures, this dataset is used to demonstrate the proposed group detection

method’s real-world practicality.

Figure 6.18 shows the results of the group detection algorithm, using the logistic classifier.

Figures 6.18d and 6.18e show a person looking down at their phone and notes. The subject’s

gaze is thus not detected, and they are not merged with the group in front of them. In

Figure 6.18f one of the subjects then looks up, towards the direction of this group. His detected

gaze, and corresponding features, result in him correctly being merged into the group.

As part of a collaborative work on an unpublished paper [154], the results of the logistic group

detector were compared against published state-of-the-art results using four external datasets.

Two “CoffeeBreak” datasets from Cristani et al. [8] were used, each 2 minutes long, with

91 and 75 frames of manually annotated ground truth groups, respectively. Additionally, a

“CocktailParty” dataset from Setti et al. [9] was used, containing 320 frames of ground truth

groups, which were manually annotated every 5 seconds over a 30 minute video. Images from
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(a) (b)

(c) (d)

(e) (f)

Figure 6.18: Images of group detection results, using logistic classification, on a recording of
students exiting a crowded lecture theatre. Each subfigure has an RGB image and a rotated
point cloud from the same time instance. A white ellipse is overlaid on the detected groups,
so that the the outermost participants lie on its edges. Note that in (d) and (e), the use of
the gaze detection method from Chapter 5 means that the subjects looking down are correctly
separated from the nearby groups. When one of the subjects then looks at the people in front
of him, shown in (f), he is then included in the group.

the datasets are shown in Figure 6.19. Each dataset contains the positions of people in the

scene, their gaze orientation, and ground truth annotated groups. Comparison results were also

generated for a synthetic dataset from [8], containing 100 frames of ground truth annotated

people positions, orientations and group membership.

For each dataset, a single random split of 40% of the frames were used to train the logistic

classifier with the remaining 60% used to evaluate it. The pairwise classifier was trained only on

groups of size 2, whilst the people to group merging classifier was trained on all permutations

of larger groups. Using metrics from [9], a group of size N is correctly detected if it contains

at least 2
3
N correct members, and no more than 1

3
N false participants are included. Correctly



190 Chapter 6. Multi-Modal Gaze Contingent Group Detection

(a) “CoffeeBreak” Scenarios

(b) “CocktailParty” Scenario

Figure 6.19: Images from publicly available group detection datasets, used to compare the logis-
tic group classifier against the state-of-the-art. The “CoffeeBreak” scenario, (a), was published
in [8], and the “CocktailParty” scenario, (b), was published in [9]. All images kindly supplied
by the authors.

detected groups are denoted as true positives, TP , mistakenly detected groups as false positives,

FP , and missing groups are denoted as false negatives, FN . Precision and recall can then be

defined as:

precision =
TP

TP + FP
recall =

TP

TP + FN
(6.9)

The results of four different methods, using these datasets, were presented in [9]. Table 6.5

compares these presented results with that of the proposed group detection method. As shown,

the proposed logistic group detector gives a very high precision and recall for all datasets except

the “CocktailParty” scenario.

The accurate results of the “Synthetic” and “CoffeeBreak” scenarios can be attributed to the

method’s descriptive features, extracted from the training set. These features generalise well

in describing the groups found in the test data, allowing for accurate group classification. In

comparison, the advantage of the competing methods is that any internal parameters are set

using prior knowledge. Thus, they dont require explicit training data. An additional reason for

the high performance in the “CoffeeBreak” scenario is due to its short length, which reduces
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Table 6.5: Table comparing the precision and recall of the proposed method to four state-of-the-
art techniques, using four publicly available datasets. The largest values in each category are
emboldened. The logistic group detector gives accurate results for all but one of the datasets.

Method Synthetic CoffeeBreak 1 CoffeeBreak 2 CocktailParty
Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.

Proposed 0.98 0.98 0.81 0.89 0.92 0.99 0.31 0.33
Multi-Scale [9] 0.86 0.94 0.63 0.76 0.94 0.78 0.69 0.74
Cristani et al. [8] 0.73 0.83 0.42 0.59 0.58 0.49 0.59 0.74
Dominant Sets [149] - - 0.62 0.54 0.72 0.71 - -
IRPM [150] 0.71 0.54 0.63 0.54 0.55 0.19 0.50 0.46

the variance between the training and test sets.

The poor performance in the “CocktailParty” scenario can be attributed to several factors.

Some groups found in this dataset have arrangements very different to the normal F-formation.

The proposed group features were based on the sociological principles defined in Section 6.2.1.

If these are heavily contravened by the ground truth, performance will suffer. For example,

one ground truth group consisted of a cluster of three people in an F-formation and an extra

two people in the “R”-space. These outlying people are positioned at 1.5 m and 2 m from the

F-formation centre, with one looking away from everyone else. The subjectivity of including

the extra two people in the group could thus be argued, but the results of Table 6.5 do not

take this into account. An additional reason for the poor performance in the “CocktailParty”

dataset is that people’s gazes are estimated using a visual-based method, which can give coarse

gaze granularity. The proposed method, however, was designed around the availability of

accurate gaze estimates, such as provided by the sensor-fusion method of Chapter 5. As the

“CocktailParty” scenario has different sensor inputs than the system was designed for, this

could account for the reduced performance.

6.4 Conclusions

The contribution of this chapter has been a method of detecting static and dynamic groups,

which incorporates real-time gaze estimates to enhance gaze detection accuracy. Group detec-

tion is an important aspect of HRI, enabling robots to understand social context in human
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environments. Many previous group detection methods do not explicitly account for dynamic

groups. However, it was shown that group arrangements vary drastically between static and

dynamic interactions, necessitating distinct solutions to classify them. To account for this, a

novel set of features was defined, based on sociological concepts. These features were extracted

from person displacement, velocity and gaze information. The importance of accurate gaze

estimates was highlighted when detecting static interactions.

Gaze estimates were obtained through the method in Chapter 5 with position and velocity

information obtained from the people detection method of Chapter 3. In using this information,

the proposed group detector firstly identifies pairs of interacting people in a scene. A subsequent

recursive algorithm is used to merge unassigned people into existing groups, completing the

detection process. Two classification methods were evaluated: a model-based method, which

uses a combination of likelihood functions to estimate interaction probability, and a logistic

regression model.

Classifier performance was compared using more than twenty minutes of recorded groups, of

various sizes and at various speeds. A detailed analysis of features chosen for group classification

was presented, along with their suitability for static and dynamic groups. Logistic regression

was shown to classify groups more accurately than the model-based method. Due to the robust

features employed, performance compared favourably to four state-of-the-art methods, using

four external datasets.

Group detection has many important applications in HRI. One of the most promising is that of

socially aware mobile robot navigation. An introductory work in this topic was carried out [13],

using the group detection method from this chapter. Detected group were assigned a shared

interaction space, which a moving robot should not enter. Using this information, a navigation

algorithm was devised that would find alternate paths around a detected group’s interaction

space. In this way, a moving robot is better able to conform to human social norms when

navigating an environment. To evaluate the proposed navigation framework, scenarios were

recorded where a group lay between the robots initial pose and the goal. It was shown that a

commonly used trajectory planner, with standard obstacle avoidance, frequently violated the
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group’s shared interaction space. However, using the group-aware navigation algorithm, the

group was mostly undisturbed by the robot moving to its goal.



Chapter 7

Conclusions

The contribution of this thesis has been to provide mobile robots with sensing methods, which

are capable of operating in crowded and dynamic environments, in order to facilitate HRI.

Accurate sensing methods for HRI are important, as autonomous robots will play an increasing

role in improving quality of life in the future. To cope with problems such as global ageing

populations, robot assistants will become a more viable and prevalent solution.

As medical advances give rise to longer life expectancy, it becomes increasingly important to

develop methods by which quality of life can be improved. Innovation in mobile robotics holds

much untapped potential for continuous monitoring of the elderly, providing assistive care, and

managing chronic diseases. Although HRI has been the focus of much recent research, the

deployment of a robot capable of seamless operation in crowded, human-centric environments,

has still not been realised. It is this problem that has been investigated in this thesis, as it is

a notable hurdle for the adoption of mobile robots in healthcare environments.

Effective HRI techniques allow a robot to understand the intentions of humans in an envi-

ronment, and act accordingly. As has been shown, there are many research areas in this

multidisciplinary field. This thesis has specifically addressed the HRI problems of detection

and tracking of people and their associated hands, human attention detection through gaze

estimation, and group identification. Many existing methods to these problems have been de-

veloped in the context of general computer vision. However, their suitability for HRI is reduced
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by such research challenges as occlusions from potentially distant subjects in crowded environ-

ments, requirements of computational efficiency, dynamics of moving people with unconstrained

pose, a moving camera and illumination changes. The HRI methods presented in this thesis

used multiple input sensors to mitigate problems caused by these research challenges, thereby

furthering the state-of-the-art.

The main limitations of the work presented in this thesis come from sensor limitations, specifi-

cally the accuracy of the Microsoft Kinect depth camera. It was found that reliable depth values

were only obtainable within distances of approximately 1.2 m to 2.5 m. At further distances,

pixels near the edges of objects tend to exhibit a lot of noise, and frequently have no obtainable

depth information. The SwissRanger SR3000 time-of-flight depth camera was evaluated as an

alternative method. Whilst its depth values were more accurate than those of the Kinect, it’s

low resolution of 144×176 pixels and poor performance on a moving robot reduced its applica-

bility for HRI. Additionally, the presented methods were not tested in outdoor environments,

as the performance of both depth cameras is negatively affected by bright sunlight.

Due to the narrow nature of the fingers, resultant noise from edge pixels in the depth camera

significantly alters the hand appearance at far distances. As such, hand detection rates in

Chapter 3 were greatly reduced after 2.5 m. Depth camera noise was also the limiting factor

in the range of the gaze estimation method of Chapter 5. Principally, the forehead estimation

method, described in Section 5.2.3, displayed poor performance at distances further than 2.5 m.

Whilst the employed infrared LEDs were found to illuminate pupils accurately at over 3 m, in

the absence of depth camera noise they would also limit the maximum range of the system.

In both chapters, a more accurate depth camera would overcome these problems. In July 2014,

a new “Kinect v2” sensor was released by Microsoft, which promises greater depth accuracy at

further distances. If it is shown to have good performance on a moving robot, it could easily

increase the detection rates and maximum range of both the hand and body detectors from

Chapter 3 and the gaze estimation method of Chapter 5.
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7.1 Technical Contributions of Thesis

Four main contributions were presented in this thesis.

Chapter 3 presented a hand and body association algorithm designed for crowded

and dynamic environments. Results of the hand detector highlighted its ability to recognise

unseen gestures and subjects in a crowded environment. This is due to the use of geodesic dis-

tances in isolating information local to the hand. Results of the proposed body detector showed

comparable performance to state-of-the-art visual methods, but at a fraction of the computa-

tional cost. Finally, it was shown that the hand-body association algorithm effectively used

past association outcomes to reduce transient misassociations, due to noise or misdetections.

Chapter 4 presented an RGB-D sensor-fusion algorithm for tracking hands in

crowded and dynamic environments. Tracking results in crowded environments demon-

strated that the RGB update step successfully compensated for misdetections from the depth-

image based hand detector, caused by sensor noise, occlusions and the highly articulate nature

of the hand. Due to the RGB update step’s efficiency, velocity reconstruction of a gesturing

subject was shown to have increased accuracy.

Chapter 5 proposed a sensor-fusion gaze estimation system that combined in-

frared and depth cameras on a mobile robot. The sensor-fusion techniques allowed

the calibration-free method to provide better accuracy than traditional visual methods, with-

out the constraints of traditional IR methods. This was proved experimentally under multiple

conditions: using a static subject, using multiple moving people and using a moving robot.

Unlike traditional IR techniques, the proposed method is not limited by the number of people

in a scene and has a long range: accurate gaze estimates were achieved between 1.2 m and

2.5 m.

Chapter 6 presented a group detection algorithm that uses gaze estimates to en-

hance the detection accuracy of static and dynamic interactions. Existing sociological

theory was used to extract a novel set of features for detecting static and dynamic groups.

This was validated experimentally, where gaze-based information was shown to be especially
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important in static group detection. Using these robust features, a logistic regression classifier

was shown to give better performance than a pre-defined model-based method.

7.2 Future Work

This thesis has presented a number of mobile-robot sensing methods to facilitate HRI. These

methods have numerous potential applications, providing most benefit in crowded environ-

ments, due to the difficulties posed for many existing techniques. However, the work in this

thesis can be extended and, to compensate for previously highlighted limitations, its results

improved in many ways.

One problem common to virtually all HRI sensing methods, including those proposed in this

thesis, is that a user must be continuously in the field of view (FOV) of all cameras during

interaction. The Microsoft Kinect has a 57° horizontal FOV, which is already larger than many

of its competitors. With modern navigation systems, robots tend to make quick horizontal

rotations. Thus, not only does a user have to be in front of the robot for the sensing methods

to work, but any interaction attempt can be cancelled by somewhat unpredictable robot motion.

Additionally, as the methods proposed in this thesis have a maximum range of 2.5 m, the user

will have to be relatively close to the robot to initiate interaction.

This problem could be solved using active vision, which would involve manipulating the robot’s

location in order to better view salient information. This would require the incorporation of

additional sensors, such as a microphone array or an omni-directional camera. For example, a

user could audibly call to a nearby robot, which would use acoustic source localisation to detect

where the sound is coming from. Alternatively, the user could perform a predefined gesture,

recognised and located using the robot’s omni-directional camera. In both examples, the robot

would then navigate to the detected person and continue interaction using its conventional

sensors, and the methods proposed by this thesis.

One of the most significant results of this thesis is the sensor-fusion hand and body association

system from Chapters 3 and 4. Despite this system having many potential HRI applications,
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none were explored in this thesis. A gesture recognition module would greatly complement the

presented work, allowing users to command and control the robot. One of the main limitations

of existing gesture recognition systems is the hand tracking component. As highlighted in Sec-

tion 2.4, most methods rely on simple techniques, such as monocular skin colour detection. This

frequently imposes restrictions such as a static camera, single-user operation, or uncluttered

environments. The body pose estimation methods reviewed in Section 2.3.2 would impose their

own limitations, such as requiring standing users, if applied to this problem.

By applying the presented sensor-fusion hand and body association system to the problem of

gesture recognition, many restrictions of existing methods could be overcome. Special attention

should be given to multi-user scenarios, crowded environments and performance on a moving

robot. The hand-body association system is uniquely suited for these situations, affording the

potential for a large improvement over the state-of-the-art. Using the hand-body association

algorithm for gesture input, the most appropriate machine learning algorithm would have to be

investigated. An important, related avenue of investigation would be to detect the start and end

of a gesture issued via the hand-body association system. Many previous methods discussed

in Section 2.4 expect a continuous stream of gestures; this assumption will not hold for real-

world HRI. A final area of investigation would be how the robot could separate background

gestures issued in human-human interaction from intentional gestures in HRI. The proposed

group detection method of Chapter 6 could form a strong basis in solving this problem.

Despite the presented work being evaluated in challenging scenarios, other environments can

be identified where HRI could be of more practical use. Specifically, patients could benefit

greatly from the introduction of HRI in healthcare environments. Thus, the results presented

in this thesis should be further explored by applying them in hospitals and nursing homes.

However, these environments introduce specific problems that will require overcoming some of

the constraints imposed by the presented methods. For example, it was noted in Chapter 5

that the gaze estimation method assumes an upright person. In order for the robot to be used

by patients lying in bed, this restriction will have to be overcome. Additionally, the sociological

group definitions used in Chapter 6 assumed healthy, standing people. The suitability of these

definitions would have to be re-evaluated for wheelchair users, and those with reduced mobility.
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So far, such complicating factors have received little attention in HRI literature.

Each new environment that the proposed methods are evaluated in introduces the prospect of

reduced performance due to environmental factors. This is because each method has a number

of chosen parameters that may not work well if the assumed environment changes significantly.

For example, the optimal blob detection threshold in Chapter 5 could change under large

lighting variances, as could the number optimal of colour histogram bins in Chapter 4. The

presented results should be further explored in different environments to see how they are

affected.

To combat any performance reduction due to manually tuned parameters, a system of adaptive

parameter selection could be introduced. This would involve automatically finding optimal

parameters for the current situation. The system could be extended to re-optimise parameters

if the employed hardware changes. For example, if more computational power were available

then the number of samples used in Chapter 4 could be increased, probably leading to improved

results. Alternatively, if the employed depth camera was upgraded, depth-based parameters in

Chapters 3 and 5 could benefit from re-optimisation.

There are many further research areas that could be combined with the presented work, to

form a holistic HRI system of more benefit to its users. The people detector in Chapter 3 does

not allow the robot to identify detected people. However, if combined with a face recognition

system, the robot would be able to perform such HRI tasks as fetching items for a specific user.

Audio recognition could be used to issue natural commands to a robot. A facial expression

recognition component would allow a robot to tailor any HRI to a subject’s emotional state.

This could entail finishing interaction if a user is annoyed, or extending it if they are happy.

Future HRI systems will no doubt leverage many such components, to solve problems of ever

increasing complexity. It is hoped that the presented work will bring that future a step closer.
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Appendix A

Support Vector Machines

Since its introduction in 1995, the SVM gained popularity for its performance as a non-

probabilistic binary classifier. For linearly separable, two-class classification problems, many

previous approaches were either dependent on an arbitrarily chosen parameter values or the

order in which data is presented [151]. The SVM attempts to find the solution with the smallest

classification error, by analysing the minimum margin of the data points. This is defined to be

the smallest distance between the decision boundary and the closest data samples from both

classes. The decision boundary is chosen so that this minimum margin is maximised. This

section will present an overview of the standard theory behind the SVM, as it is used for hand

classification in Chapter 3.

Input training data comprises N input vectors, X = (x1, . . . ,xN), with corresponding target

values t = (t1, . . . , tN), where tn ∈ (1,−1). Each xn is a D × 1 hand descriptor vector from

Section 3.2.1, where D is the dimensionality of the descriptor. If xn is a descriptor of a hand,

then its corresponding tn = 1; otherwise, for example, if the descriptor is from a background

keypoint, it’s corresponding tn = −1.

New data points, x, are classified as hands or background according to the sign of a function

y(x). This function will satisfy y(xn) > 0 for hands where tn = 1, and y(xn) < 0 for non-hands

where tn = −1. The decision boundary will thus be a hyperplane defined by y(x) = 0, shown
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Figure A.1: Illustration of a SVM classifier, in 2D space, trained on two classes, shown by black
and white data points. In the presented hand detection application, hands are represented by
white circles, and non-hands are represented by black circles. The decision boundary is a solid
line, mid-way between two margin hyperplanes, shown by dashed lines. The dashed margin
hyperplanes intersect the nearest data points from each class, termed “support vectors”, such
that the distance between them is maximised.

in Figure A.1.

y (x) = wTx + b. (A.1)

w is a D × 1 vector that is normal to the decision boundary, and b is the offset of the decision

boundary from the origin. To prove this, picking two points, xA and xB, on the decision bound-

ary gives: y (xA) = y (xB) = 0. Then, from the equation: y (xA)− y (xB) = wT (xA − xB) = 0,

it can be said that vector w is orthogonal to every vector on the decision boundary. Addition-

ally, the following can be formulated: wTxA = −b. Diving both sides by ‖w‖ shows that the

distance from the origin, of a point on the decision surface, in the direction of its normal, is

−b
‖w‖ .

Any point, x, can be represented by its orthogonal projection onto the decision boundary,

x⊥, and its orthogonal distance to the decision boundary, r, such that: x = x⊥ + r w
‖w‖ .

Multiplying both sides by wT and adding b gives: y (x) = wTx⊥ + wT r w
‖w‖ + b. Knowing
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that y (x⊥) = wTx⊥ + b = 0 and wTw = ‖w‖2, gives the result: r = y(x)
‖w‖ . In other words,

the perpendicular distance of a point x to the decision boundary is given by y(x)
‖w‖ . Again, these

relationships are shown diagrammatically in Figure A.1.

The decision boundary parameters w and b will be chosen as those which maximise the distance

from the decision boundary to the closest training set points in each class. These points are

termed “support vectors”, and will be denoted by the set S. This optimisation problem can be

formulated by firstly assuming that the support vectors will be at a perpendicular distance of

1
‖w‖ from the decision boundary. Thus:

wTxm + b =





1 if tm = 1

−1 if tm = −1.

, xm ∈ S (A.2)

Subject to these constraints, we wish to maximise the minimum margin, by choosing values

of w and b in order to maximise 1
‖w‖ . This can be formulated by combining the cases in

Equation A.2:

maximise
w,b

1

‖w‖ (A.3)

subject to gn (w, b) ≥ 0 , 1 ≤ n ≤ N (A.4)

where gn (w, b) = tn
(
wTxn + b

)
− 1 (A.5)

Due to the square root involved in calculating Equation A.3, it is computationally easier to

minimise 1
2
‖w‖2. Lagrange multipliers, a = (a1 . . . aN), are used to solve this constrained

optimisation problem, with one multiplier for each of the constraints in Equation A.4. The

Lagrangian solution is then given by:

minimise
w,b

maximise
a≥0

L(w, b,a) =
1

2
‖w‖2 −

N∑

n=1

an
(
tn
(
wTxn + b

)
− 1
)

(A.6)

Because of the inequality in Equation A.4, Lagrange multipliers are subject to: an ≥ 0. Many
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an values will be zero, corresponding to xn values for which gn (w, b) > 0 in Equation A.4.

However the xn values for which gn (w, b) = 0, will have a corresponding an > 0. These points

are the “support vectors”.

Setting to zero the derivative of the Lagrange function, with respect to w (Equation A.7) and

b (Equation A.8), gives the desired decision boundary parameters; those which maximise the

minimum margin. Using the fact that ‖w‖2 = wTw, these are:

w =
N∑

n=1

antnxn (A.7)

0 =
N∑

n=1

antn. (A.8)

To calculate the optimal Lagrange multipliers, a, Equations A.7 and A.8 can be substituted

into Equation A.6. This eliminates w and b using their maximised conditions. Thus, under

the constraints of Equation A.8 and an ≥ 0, the optimal value of a is given by maximising the

following equation with respect to a:

maximise
a≥0

L̃(a) =
N∑

n=1

an −
1

2

N∑

n=1

N∑

m=1

anamtntmxTnxm (A.9)

subject to
N∑

n=1

antn = 0 (A.10)

am ≥ 0 , 1 ≤ m ≤ N (A.11)

With optimal a values defined, by substituting Equation A.7 into Equation A.1, a new hand

descriptor can be classified as hand or background according to the sign of:

y (x) =
N∑

n=1

antnx
Txn + b. (A.12)

This equation reveals that only “support vectors”, xn with a corresponding an > 0, have any

effect on the optimal decision boundary. However, an optimal value for b remains to be defined.

Denoting the “support vector” indices in the training set as the set S, any point xn with n ∈ S
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satisfies tny (xn) = 1. Finally, with this observation, Equation A.12 can be used to give:

tn

(∑

m∈S
amtmxTnxm + b

)
= 1,

b =
1

tn
−
∑

m∈S
amtmxTnxm (A.13)



Appendix B

Mobile Robot Navigation Frameworks

Two robot frameworks were investigated in the creation of this thesis: Player and ROS. How-

ever, due to its many advantages, all code was written in ROS. Real-time code was written in

C++, although many tools, such as the two shown in Figure B.1, were written in Python.

B.1 Player

For many years Player was the industry standard robot framework. It provided a networked

robot server along with an abstraction layer to handle data communication with the robots

sensors and actuators.

The Player server is initialised with a configuration file detailing the sensors and actuators to be

made available. For each device to be configured, the port to which the device is connected is

specified, along with a driver by which is can be accessed. An device identifier is also specified,

which is the unique identifier by which the device is accessed on the Player server. This is

composed of an interface, which denotes the generic device type, and an index to facilitate

unique addressing. A sample configuration file is shown in Figure B.2.

The Player server can also be loaded with drivers that refer to virtual devices. These virtual

devices do not control any hardware themselves, but rather operate on sensor input from other

222
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(a) Annotation tool (b) Web-based teleoperation programme

Figure B.1: Screenshot of a two tools used in this thesis, that were written in Python using the
ROS libraries. (a) shows a ground truth annotation tool, used for manually tagging people,
hands and gestures. (b) shows a teleoperation tool, that allows a user to remotely control the
robot using a web interface. A live map, showing robot and detected people positions, along
with a video feed from the robot are displayed in real-time on the client’s screen. The robot’s
movement can be controlled with on-screen controls, keyboard commands or a joystick.

driver

(

name ‘‘p2os position’’

provides [‘‘position:0’’]

)

driver

(

name ‘‘sicklms200’’

provides [‘‘laser:0’’]

port ‘‘/dev/ttyS1’’

)

Figure B.2: Implementation code of sample player driver.
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devices. They are used to implement important predefined algorithms in real-time, making

their output conveniently available through the Player server.

The AMCL virtual device driver, for example, performs the Adaptive Monte-Carlo Localization

algorithm on sensor information from a robots odometry, a laser device and a predefined map,

outputting an accurate estimate of the robots location within this map.

The devices made available through the Player server are accessed through the Player client

libraries. The client libraries connect to a networked Player server and handle retrieval of device

information and actuator control. Control programs can be written in a variety of languages

to facilitate ease of robot interaction.

Multiple networked client programmes can simultaneously connect to a Player server. Commu-

nication between clients is facilitated by a thread-safe memory map, implemented as a device

driver called “Blackboard”. In this way a client program can be confined to operating on one

aspect of the overall robot control, improving the modularity of the overall system.

B.2 Robot Operating System

Development on the Robot Operating System (ROS) was started by the Willow Garage com-

pany in 2007. It has quickly become the state of the art robot framework, finding use in many

high profile projects such as those in the Surrey Space Centre. It provides a much richer de-

velopment environment than Player, with a multitude of debugging and analysis tools. The

framework is composed of a very modular system of message passing, facilitating far better

transparency into the inner workings of the framework than provided by Player.

The ROS communication infrastructure is built on a graph architecture, where process are

represented as nodes that can both publish messages and subscribe to messages. ROS ensures

that all message passing dependencies are handled at run time, enabling the developer to indi-

vidually design each component of the system with seamless modularity. For example, a people

tracking system might be implemented using a foreground detection node that passes messages
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Figure B.3: Illustration graph of the ROS communication infrastructure for the hand and body
association method described in Chapter 3.

to a point tracking node. At run-time ROS would enable the foreground detection node to

be replaced with a feature detection node publishing the same type of messages, ensuring the

function of the system remains the same. In this way ROS allows the developer to observe the

output of swapping of algorithmic components, without any code changes necessary.

ROS contains invaluable tools for recording and playback of all sensor information, for visualis-

ing point cloud information published from 3D scanners and for plotting graphs of accelerometer

data, to name but a few, that facilitate research in human-robot interaction.



Appendix C

Gaze Estimation Circuit Diagram

In Section 5.2.1, hardware was required that generated two pulse signals, so that in each camera

frame only one set of LEDs is observable, with the opposite LED set being observable in the

proceeding frame. The frequency of the pulse signals should thus be half the camera’s frame

rate, with a 50% duty cycle and a phase shift of 180°. Figure C.1 is a circuit diagram of the

hardware used to alternate the power to the on and off-axis LEDs, using a square wave signal

oscillator. This circuit diagram was designed in collaboration with the third author of the paper

where the technique is published [12].
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Figure C.1: Circuit diagram of the hardware used to alternate power to the on and off-axis
LEDs. Screw terminal J1 is connected to the on-axis LEDs and screw terminal J3 is connected
to the off-axis LEDs. Screw terminal J2 is connected to a square wave oscillator with frequency
equal to half the camera’s frame rate. As shown, the two pins propagate waves that have a
50% duty cycle and are separated by phase shifts of 180°. In this way only one set of LEDs
is observable in each frame, and in the subsequent frame only the opposite set of LEDs is
observable. The 633 nm wavelength LEDs provide a visual means of detecting if power is
supplied to their connected set of IR LEDs.



Appendix D

Proof of Image Permissions

Figure 2.1d

From: Reid Simmons

Sent: 29 September 2014 15:12

To: McKeague, Stephen

Subject: Re: Image Permission

Yes, although obviously with appropriate attribution.

On 9/29/2014 9:41 AM, Stephen McKeague wrote:

>Hello Prof. Simmons,

>

>My name is Stephen McKeague, and I am a robotics Ph.D. student at Imperial College London. May I have permission to use

an unaltered copy of Figure 1 from your paper “Xavier: An Autonomous Mobile Robot on the Web” in my thesis?

>

>Many thanks

>Stephen

Figure 2.1f

From: S Valibeik

Sent: 29 September 2014 14:46

To: McKeague, Stephen

Subject: Re: EO Robot

thanks , np.

On Mon, Sep 29, 2014 at 2:43 PM, Stephen McKeague wrote:

>Hi Salman, hope you’re well.

>

>Could I have permission to use your picture of the RP-7 from Figure 2.4(a) in your Ph.D. thesis, in my own thesis

>

>Many thanks

>Stephen

228
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Figure 2.1i

From: Christof Schrter

Sent: 29 September 2014 16:03

To: McKeague, Stephen

Subject: Re: Image Permission

Hi Stephen,

feel free to use that picture of the robot, I would only ask that you cite the mentioned paper for reference. [. . . ]

On 29.09.2014 16:45, Stephen McKeague wrote:

>Hello

>

>My name is Stephen McKeague and I am a robotics Ph. D. student at Imperial College London. Can I have permission to use an

unaltered copy of Figure 2 (left) from your paper “Realization and User Evaluation of a Companion Robot for People with Mild

Cognitive Impairments” in my thesis?

>

>Many thanks,

>Stephen

Figure 2.3b

From: Stephen McKeague

Sent: 29 September 2014 15:00

To: thehavenresidentialhome

Subject: Image Permission

Hello,

My name is Stephen McKeague and I am a Ph. D. student at Imperial College London researching robot techniques for elderly

care. Could I have permission to use an unaltered copy of the following image from your website in my Ph. D. thesis?

http://www.thehavenresidentialhome.co.uk/images/caring-for-the-elderly.jpg

Many thanks,

Stephen

Figure 2.5b

From: Stephen McKeague

Sent: 28 September 2014 19:32

To: Chris Coverley

Subject: Image Permission

Hello

My name is Stephen McKeague and I am a Ph. D. student at Imperial College London researching robot techniques for elderly

care. Could I have permission to use an unaltered copy of the following image from your website in my Ph. D. thesis?

http://www.clsgroup.org.uk/?q=sites/default/files/styles/home_slide/adaptive-image/public/homes/images/web1_10.jpg&

itok=FnkIFzzo

Many thanks

Stephen

http://www.thehavenresidentialhome.co.uk/images/caring-for-the-elderly.jpg
http://www.clsgroup.org.uk/?q=sites/default/files/styles/home_slide/adaptive-image/public/homes/images/web1_10.jpg&itok=FnkIFzzo
http://www.clsgroup.org.uk/?q=sites/default/files/styles/home_slide/adaptive-image/public/homes/images/web1_10.jpg&itok=FnkIFzzo
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Figure 2.7

From: knowlabs on behalf of Sebastian Thrun

Sent: 29 September 2014 01:54

To: McKeague, Stephen

Subject: Re: Image Permission

yes of course

On Sat, Sep 27, 2014 at 4:04 PM, McKeague, Stephen wrote:

>Dear Prof. Thrun,

>

>I am a robotics Ph.D. student at Imperial College London. May I have permission to include an unaltered copy of Figure 2 from

your paper “Real-time Identification and Localization of Body Parts from Depth Images” in my Ph.D. thesis?

>

>Kind regards

>Stephen McKeague

Figure 2.9

From: Robert Wang

Sent: 28 September 2014 01:17

To: McKeague, Stephen

Subject: Re: Image Permission

Hi Stephen,

Yes. That’s fine.

Best,

Rob

On 9/27/2014 4:08 PM, McKeague, Stephen wrote:

>Dear Dr. Wang

>

>I am a robotics Ph. D. student at Imperial College London. May I have permission to use an unaltered copy of Figure 1 (left)

from your paper “Real-Time Hand-Tracking with a Color Glove” in my Ph.D. thesis?

>

>Kind regards

>Stephen McKeague

Figure 6.19

From: Marco Cristani

Sent: 16 September 2014 09:01

To: McKeague, Stephen

Subject: Re: Group Detection Dataset Pictures

Dear Stephen,

thanks for the interest for the group stuff! Francesco (in cc) will send you some images soon.

Best,

Marco

On 15/09/2014 17:57, McKeague, Stephen wrote:

>Hello Prof. Cristani
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>My name is Stephen, and I am a Ph.D. student at Imperial College London. Regarding your group datasets at the URL below,

could you please provide me with screenshots of the real datasets? I would like to include some results in my thesis, but need a

comprehensive page of screenshots to be able to do so.

>http://profs.sci.univr.it/~cristanm/ssp/

>Many thanks in advance for your time

>Stephen

http://profs.sci.univr.it/~cristanm/ssp/
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