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Abstract 

Inflammation associated with asthma mainly affects large airways and is accompanied 

by extensive structural changes, termed airway remodelling. 5-10% of patients with 

asthma suffer from severe or refractory asthma which is difficult to control despite 

receiving high doses of inhaled and sometimes oral corticosteroids (CS). These 

patients show more prominent characteristics of airway remodelling, specifically 

sub-epithelial fibrosis and airway smooth muscle (ASM) thickening. 

My project focuses on one of the cells implicated in airway remodelling, 

circulating fibrocytes, which are bone marrow-derived peripheral blood mesenchymal 

progenitors expressing both leukocyte markers, such as CD45, and mesenchymal 

proteins including collagen I (Col I). Fibrocytes migrate to the sites of disease under 

the guidance of chemokine receptors such as CC chemokine receptor type 7 (CCR7), 

and differentiate into α–smooth muscle actin (α-SMA)–expressing myofibroblasts, a 

process that is facilitated by a variety of pro-inflammatory cytokines and growth 

factors. Myofibroblasts can promote subepithelial fibrosis as well as contribute to 

ASM thickening. Indeed, the number of fibrocytes in peripheral blood is correlated 

with the decline rate of forced expiratory volume in 1s (FEV1) in patients with chronic 

obstructive asthma. Most importantly, there is increased recruitment of fibrocytes to 
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the airway wall of patients with severe asthma. However, the mechanisms driving the 

accumulation of fibrocytes in the airways of these patients are currently unclear. 

I hypothesised that in severe asthma there are increased numbers of circulating 

fibrocytes that have an increased capacity to differentiate into myofibroblasts and 

have differential responses to pro-inflammatory mediators and asthma therapeutic 

agents compared to non-severe asthma. 

Fibrocytes were isolated from the non-adherent non-T (NANT) cell fraction of 

peripheral blood mononuclear cells (PBMC) of healthy subjects and patients with 

non-severe or severe asthma. The number of fibrocytes (Col I+/CD45+ cells) and 

differentiating fibrocytes (α-SMA+ cells), as well as the expression of CCR7 and 

glucocorticoid receptor (GR) in fibrocytes were determined by flow cytometry. 

Apoptosis was determined by Annexin V/propidium iodide staining. Messenger 

ribonucleic acid (mRNA) expression was quantified by reverse transcription 

quantitative polymerase chain reaction (RT-qPCR). Fibrocytes were also isolated 

from the adherent fraction of PBMC. 

Severe asthmatic patients had a higher number of circulating fibrocytes with a 

greater capacity to differentiate into myofibroblasts in culture compared to healthy 

subjects and patients with non-severe asthma. 
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Severe asthmatic fibrocytes did not have a heightened responsiveness to either 

interleukin (IL)-4, IL-13, nerve growth factor or brain-derived neurotrophic factor. 

Dexamethasone induced apoptosis in NANT cells, including fibrocytes and 

differentiating fibrocytes, from healthy subjects and patients with non-severe asthma, 

but not in the cells from patients with severe asthma. Dexamethasone also reduced 

CCR7 expression in fibrocytes from patients with non-severe asthma but not in those 

from patients with severe asthma. The relative CS insensitivity in severe asthmatic 

fibrocytes may be related to the lower expression of the GR or the heightened c-Jun 

N-terminal kinase activity. 

Salmeterol xinafoate, a long-acting β2-adrenoceptor agonist (LABA), reduced 

the number, myofibroblastic differentiation and CCR7 expression of fibrocytes from 

healthy subjects and patients with non-severe asthma. Salmeterol did not improve the 

suppressive effect of dexamethasone, although it was not detrimental to 

dexamethasone’s effect either. In contrast, tiotropium bromide, a long-acting 

muscarinic antagonist (LAMA), did reduce the number of fibrocytes and 

differentiating fibrocytes from patients with severe asthma. Increasing intracellular 

3’,5’-cyclic adenosine monophosphate (cAMP), the downstream signalling molecule 

of β2-adrenoceptor and muscarinic M2 receptor, by phosphodiesterase type IV 



7 

 

inhibitor (rolipram) and cAMP analogue (8-bromoadenosine-3’,5’-cyclic 

monophosphate) could reduce fibrocytes from patients with severe asthma. 

Patients with severe asthma have elevated numbers of circulating fibrocytes 

showing enhanced myofibroblastic differentiation and are less responsive to the 

suppressive effect of CS and LABA, but can be inhibited by LAMA. This study 

provides insight into a novel target for the treatment of airway remodelling in severe 

asthma. 
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Chapter 1: Background 

1.1 Definition and characteristics of asthma 

Asthma affects 300 million people globally (Masoli, Fabian et al. 2004). The rate of 

asthma has increased in recent decades, paralleled by similar increases in atopic 

sensitization and other allergic diseases such as eczema and rhinitis (1998). 

Worldwide, asthma accounts for around 1% of all disability-adjusted life years lost, 

which is similar to that for diabetes, cirrhosis of liver, or schizophrenia (Bousquet, 

Bousquet et al. 2005). It is estimated that asthma accounts for about 1 in every 250 

deaths worldwide (Masoli, Fabian et al. 2004).  

Asthma is defined according to its clinical, physiological and pathological 

features by the Global Initiative for Asthma (GINA) (Bateman, Hurd et al. 2008) as a 

chronic inflammatory airway disorder associated with reversible airflow obstruction 

and airway hyperresponsiveness (AHR), manifested by recurrent episodes of 

wheezing, breathlessness, chest tightness and nocturnal coughing. Many cells and 

cellular elements are implicated in the chronic inflammation of airways. The clinical 

diagnosis of asthma relies on medical history of characteristic symptoms and 

predisposing factors, and wheezing based on physical auscultation. Lung function 

data provide assessment of airflow limitation and help to confirm the diagnosis of 
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asthma. Airflow limitation is defined as a ratio of forced expiratory volume in 1 s 

(FEV1) to forced vital capacity (FVC) (FEV1/FVC) below the normal value of 0.75–

0.80 in adults. According to the American Thoracic Society (ATS) guidelines (Crapo, 

Casaburi et al. 2000), diagnosis of asthma can be made in patients showing a 

reversibility of ≥ 12% and ≥ 200 mL in FEV1 value, and an improvement of peak 

expiratory flow (PEF) of 60 L/min or ≥ 20% in response to bronchodilator, or diurnal 

variation in PEF of > 20%. Airway hyperresponsiveness (AHR) to methacholine 

indicated by a methacholine provocative concentration causing a 20% fall in FEV1 

(PC20) < 1mg/mL and exercise-induced bronchoconstriction (a 10% decrease in FEV1 

in response to exercise) also help to establish the diagnosis of asthma  

For most conditions categorised as mild to moderate disease, symptoms are 

reversible and can be controlled with inhaled corticosteroids (CS) and long-acting β2 

adrenoceptor-agonists (LABAs). Approximately 5-10% of patients suffer from severe 

asthma which is difficult to control using the current therapies (Aburuz, Heaney et al. 

2007). As these patients suffer from greater lung function impairment, longer disease 

duration, more daily symptoms and sinopulmonary infections, they consume more 

than half of the medical resources in asthmatics in terms of both time and money 
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(Smith, Malone et al. 1997, Serra-Batlles, Plaza et al. 1998, Wenzel, Busse et al. 

2007). 

1.1.1 Definition of severe asthma 

Severe asthma is also known as difficult asthma as defined by the European 

Respiratory Society (ERS) (Chung, Godard et al. 1999), or “refractory asthma”, a 

term coined by the ATS (2000). In accordance with the updated “International 

ERS/ATS guidelines on definition, evaluation and treatment of severe asthma (Table 

1.1)” (Chung, Wenzel et al. 2014), patients with severe asthma (age ≥ 6 years) require 

treatment with high dose inhaled CS (≥2000 μg/day beclomethasone dipropionate or 

equivalent dose using a dry powder inhaler or hydrofluoroalkane metered-dose inhaler 

or other inhaled CS in equivalent dosage) plus a second controller such as LABA or 

leukotriene modifier/theophylline and/or systemic CS for ≥ 50% of the previous year. 

In this study, I recruited patients with severe asthma by the definition of the ATS 

guidelines for refractory asthma in 2000 (Table 1.1) (2000): medically adherent 

patients with at least one of two major criteria for CS usage and at least two minor 

criteria of ongoing asthma are regarded as having refractory asthma while other 

conditions have been excluded and exacerbating factors have been well-treated. 
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Table 1.1: Refractory asthma: workshop consensus for typical 

clinical features*† 

Major Characteristics 

In order to achieve control to a level of mild–moderate persistent asthma: 

1. Treatment with continuous or near continuous ( ≥ 50% of year) oral corticosteroids 

2. Requirement for treatment with high-dose inhaled corticosteroids: 

Drug Dose (μg/d) Dose (puffs/d) 

a. Beclomethasone dipropionate > 1,260 > 40 puffs (42 μg/inhalation) 

> 20 puffs (84 μg/inhalation) 

b. Budesonide > 1,200 > 6 puffs 

c. Flunisolide > 2,000 > 8 puffs 

d. Fluticasone propionate > 880 > 8 puffs (110 μg), > 4 puffs (220 μg) 

e. Triamcinolone acetonide > 2,000 > 20 puffs 

Minor Characteristics 

1. Requirement for daily treatment with a controller medication in addition to inhaled 

corticosteroids, e.g., long-acting β-agonist, theophylline, or leukotriene antagonist 

2. Asthma symptoms requiring short-acting β-agonist use on a daily or near daily basis 

3. Persistent airway obstruction (FEV1 < 80% predicted; diurnal PEF variability 20%) 

4. One or more urgent care visits for asthma per year 

5. Three or more oral steroid “bursts” per year 

6. Prompt deterioration with ≤ 25% reduction in oral or inhaled corticosteroid dose 

7. Near fatal asthma event in the past 

* Requires that other conditions have been excluded, exacerbating factors treated, and 

patient felt to be generally adherent. 

†Definition of refractory asthma requires one or both major criteria and two minor criteria. 
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1.1.2 Airway inflammation in asthma  

Bronchial biopsies from asthmatic patients usually display the infiltration of activated 

mast cells, eosinophils and activated T cells (Bhavsar, Hew et al. 2008). The main 

pathogenic factor of (atopic) asthma is exposure to inhaled allergens triggering a 

CD4+ T-helper lymphocyte type-2 (TH2 cells) –type immune response which drives 

the eosinophilic inflammation (Busse and Lemanske 2001). The asthmatic 

inflammatory response mainly affects the larger airways (Wenzel 2006). 

Most asthmatic patients are atopic (extrinsic asthma), and have a type I 

hypersensitivity to allergens (Wenzel 2006). Inhaled allergens crosslink 

immunoglobulin (Ig) E molecules on sensitized mast cells, which are recruited and 

maintained by stem-cell factor (SCF) and nerve growth factor (NGF) generated by 

epithelial cells, leading to the release of bronchoconstrictor mediators such as 

histamine, prostaglandin D2 and cysteinyl leukotrienes (Kanbe, Kurosawa et al. 2000, 

Galli, Kalesnikoff et al. 2005, Reber, Da Silva et al. 2006). Although no culprit 

allergen can be identified, local synthesis of IgE is presented in the airways of 

non-atopic (intrinsic) asthmatic patients (Ying, Humbert et al. 2001). The infiltration 

of mast cells into the airway smooth muscle (ASM) is associated with AHR in asthma 

(Brightling, Bradding et al. 2002). Myeloid dendritic cells, which are conditioned by 
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thymic stromal lymphopoietin generated by mast cells and epithelial cells, release CC 

chemokine ligand (CCL) 17/thymus and activation regulated chemokine (TARC) and 

CCL22/macrophage-derived chemokine (MDC) to chemoattract and present 

processed peptides from inhaled allergens to CC chemokine receptor (CCR) 

4-expressing TH2 cells (Hammad and Lambrecht 2006). 

CD4+ T-helper lymphocytes (TH cells) dominate the immune response of asthma 

through the production of cytokines. The polarization to TH1 cells or TH2 cells 

depends on cytokine environment: TH1 cells are triggered by interleukin (IL)-12 and 

IL-2, whilst TH2 cells are triggered by IL-4. Asthma is often described as being 

characterised by a TH2/TH1 imbalance that favours TH2 cells (Mosmann, Cherwinski 

et al. 1986). Infiltration of activated TH2 cells into the asthmatic airway induces IgE 

synthesis, ASM hyperplasia and mucus production through IL-4 and IL-13, airway 

eosinophilia through IL-5 and mast cell proliferation through IL-9 (Barnes 2001). 

Therefore TH2 cells are associated with disease severity (Humbert, Corrigan et al. 

1997, Larche, Robinson et al. 2003, Adcock, Caramori et al. 2008). Asthmatic 

patients have a defect in regulatory T (Treg) cells which may favour further TH2 cell 

proliferation (Ling, Smith et al. 2004, Larche 2007). TH1 cytokine interferon (IFN)-γ 

is up-regulated in the airway in severe asthma (Shannon, Ernst et al. 2008), which 
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may be associated with accumulation of TH2 cells and exaggerated eosinophilia 

(Randolph, Carruthers et al. 1999, Randolph, Stephens et al. 1999). 

Eosinophils accumulate at sites of allergic inflammation in response to 

CCL11/eotaxin-1, nerve growth factor (NGF) and brain-derived neurotrophic factor 

(BDNF) expressed by epithelial cells (Lamkhioued, Renzi et al. 1997, Hahn, Islamian 

et al. 2006), IL-5 generated by TH2 cells and mast cells, cysteinyl leukotrienes 

produced by eosinophils (Laitinen, Laitinen et al. 1993, Bjermer, Bisgaard et al. 2003). 

In severe asthma, exaggerated eosinophilia is correlated with higher level of IL-13 

(Saha, Berry et al. 2008), IL-5 (Dente, Carnevali et al. 2006, Nair, Pizzichini et al. 

2009) and  interferon-γ (Randolph, Carruthers et al. 1999, Randolph, Stephens et al. 

1999). Eosinphils release mediators, including major basic protein, cysteinyl 

leukotrienes, transforming growth factor (TGF)-β, reactive oxygen species (ROS) and 

cytokines (Weller 1997, Gleich 2000). Eosinophils promote subepithelial fibrosis 

through the release of TGF-β (Minshall, Leung et al. 1997), but reducing eosinophils 

by IL-5 specific blocking antibodies does not prevent AHR or asthma symptoms 

(Leckie, ten Brinke et al. 2000). Intriguingly, although cysteinyl leukotrienes-induced 

bronchial eosinophilia is insensitive to CS therapy (Laitinen, Laitinen et al. 1993, 
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Bjermer, Bisgaard et al. 2003), the presence of eosinophil is a good marker of CS 

responsiveness (Green, Brightling et al. 2002). 

In more severe disease, IL-8 released by the bronchial epithelium and ASM cells 

(ASMC) recruits and promotes maturation of neutrophils (Hamilton, Torres-Lozano et 

al. 2003, Kikuchi, Kikuchi et al. 2006, Traves and Donnelly 2008, Al-Ramli, 

Prefontaine et al. 2009, Nakagome and Nagata 2011), subsequently augmenting the 

trans-basement membrane migration of eosinophils (Kikuchi, Kikuchi et al. 2006), 

thus amplifying the inflammatory response in asthma. IFN-γ is up-regulated in the 

airway in severe asthma (Shannon, Ernst et al. 2008), which may be associated with 

accumulation of TH2 cells and exaggerated eosinophilia (Randolph, Carruthers et al. 

1999, Randolph, Stephens et al. 1999). Increased number of CD8+ T lymphocytes 

(van Rensen, Sont et al. 2005) and higher level of oxidative stress (Chung and 

Marwick 2010) have also been observed in severe asthma. 

1.1.3 Airway remodelling in asthma 

The asthmatic inflammatory response is accompanied by extensive structural changes 

in the airways, such as epithelial detachment, heightened vascularity, goblet cell and 

submucosal gland proliferation, increased bronchial smooth muscle mass and 

subepithelial fibrosis, termed airway remodelling (Davies, Wicks et al. 2003, Hirota 
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and Martin 2013). The thickness of sub-basement membrane (Chetta, Foresi et al. 

1996) and ASM (Pang and Knox 2000) is inversely correlated with 

post-bronchodilator FEV1 and PC20, suggesting that these changes are directly linked 

to airflow obstruction and AHR. 

Different cells, both structural and inflammatory, have been implicated in the 

development of airway remodelling in asthma. Subepithelial fibrosis is a result of 

increased accumulation of extracellular matrix (ECM) proteins such as collagen (Col) 

I, Col III, and Col V, fibronectin and tenascin in the lamina reticularis (Roche, 

Beasley et al. 1989). These ECM proteins are released mainly by myofibroblasts, 

fibroblasts and ASMC in response to pro-fibrotic mediators such as transforming 

growth factor-β1 (TGF-β1) and connective tissue growth factor (Roche, Beasley et al. 

1989, Jeffery, Godfrey et al. 1992, Vignola, Chanez et al. 1997, Elias, Zhu et al. 

1999). On the other hand, increased ASMC layer thickness is thought be a result of 

ASMC hyperplasia and hypertrophy. In addition, heightened migration of ASMC 

(Vignola, Chanez et al. 1997) and myofibroblasts (Chen and Khalil 2006) towards the 

epithelium in response to epithelium-derived mediators could also contribute to this 

effect. 
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Myofibroblasts are morphologically and biochemically midway between 

fibroblasts and smooth muscle cells, and are responsible for tissue repair after injury 

(Gabbiani 1992). They express contractile α–smooth muscle actin (α-SMA) and ECM 

proteins including Col I (Tomasek, Gabbiani et al. 2002). In asthma there is an 

increase in the numbers of myofibroblasts in the subepithelial area, which directly 

correlates with the degree of subepithelial fibrosis (Brewster, Howarth et al. 1990). 

Although a large population of resident tissue myofibroblasts are mainly found under 

the basement membrane and in the submucosa throughout the lungs (Chen and Khalil 

2006), myofibroblast numbers may increase due to the differentiation 

/dedifferentiation of myocytes (Wenzel and Balzar 2006), epithelial cells 

(epithelial-mesenchymal transition) and fibroblasts (Koumas, Smith et al. 2003). 

Fibroblasts do not have organised contractile elements (e.g. α-SMA), although they 

can undergo slow contraction due to cytoskeletal rearrangement (Singh and Hall 

2008). Most fibroblasts in adult lungs exist in adventitia of vascular structures and 

airways, but fibroblasts can also differentiate from epithelial cells 

(epithelial-mesenchymal transition) or from bone-marrow derived circulating 

progenitor cells (fibrocytes) (Phan 2008). 

http://en.wikipedia.org/wiki/Epithelial-mesenchymal_transition
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Cytokines and growth factors released from structural and inflammatory cells are 

pivotal in airway remodelling. Collagen deposition and ASM thickening are regulated 

by growth factors including neurotrophins (Kilic, Sonar et al. 2011), TGF-β1 (Roth, 

Johnson et al. 2004), epidermal growth factor (Stewart, Fernandes et al. 1995) and 

TH2 cytokines (Barnes 2001, Hashimoto, Gon et al. 2001). Vascular endothelial 

growth factor (VEGF), TGF-β1 and TH2 cytokines are responsible for angiogenesis, 

epithelial cell shedding and mucus hyperplasia in airway remodelling, respectively 

(Undevia, Dorscheid et al. 2004, Siddiqui, Sutcliffe et al. 2007). These mediators 

function in an autocrine or a paracrine manner, to modulate airway remodelling 

(Vignola, Chiappara et al. 1997). The role of TH2 cytokines and neurotrophins will be 

discussed in more detail below. 

1.1.3.1 TH2 cytokines: interleukin-4 and interleukin-13 

IL-4 (also known as B cell stimulatory factor-1, 14.9kDa) and IL-13 (12.5kDa) are 

closely related TH2 cytokines sharing many biological and immunoregulatory 

functions (Chomarat and Banchereau 1998). 

IL-4 and IL-13 are released by both inflammatory (i.e. TH2 cells, nuocytes, TH9 

cells, eosinophils, basophils, mast cells, etc.) and structural cells (i.e. smooth muscle 

cells) (Oliphant, Barlow et al. 2011). The genes for IL-3, IL-4, IL-5, IL-9, IL-13, and 
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granulocyte-macrophage colony-stimulating factor (GM-CSF), clustered on human 

chromosome 5q, are transcribed in cell type-specific manner upon stimulation 

(Koyano-Nakagawa and Arai 1996). The receptors for IL-4 and IL-13 share at least 

one common chain (IL-4Rα). Both cytokines act through a heterodimeric 

IL-4Rα/IL-13Rα1 receptor (Gibejova, Mrazek et al. 2003). However, IL-4 also works 

through an IL-4Rα/IL-4Rγ receptor whilst IL-13 also signals through 

IL-4Rα/IL-13Rα2 receptor (Chiaramonte, Mentink-Kane et al. 2003). IL-13Rα2 is 

expressed intracellularly, on the cell surface, and as a soluble molecule and regulates 

the bioavailability of both IL-13 and IL-4. These receptors transduce the signals 

through janus kinases (JAK) and signal transducer and activator of transcription 6, 

interleukin-4 induced (STAT6), leading to transcription of IL-4 and IL-13 responsive 

genes (Hershey 2003). 

IL-4 and IL-13 are involved in airway remodelling in asthma. Both IL-4 and 

IL-13 are involved in goblet cell hyperplasia and ASMC proliferation in the airways 

(Barnes 2001). In fibroblasts, IL-4 and IL-13 induce proliferation (Lewis, Sutherland 

et al. 2003), myofibroblastic differentiation (Hashimoto, Gon et al. 2001), production 

of CCL11/eotaxin (Richter, Puddicombe et al. 2001), and facilitate 

monocyte-to-fibrocyte differentiation (Shao, Suresh et al. 2008). Given the important 
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roles of IL-4 and IL-13 in the pathophysiology of allergic diseases and asthma, 

several approaches to inhibit these cytokines and their receptors are now being tested 

in clinical trials (Steinke 2004, Hacha, Tomlinson et al. 2012). 

1.1.3.2 Neurotrophins: nerve growth factor and brain-derived 

neurotrophic factor 

Neurotrophins are a family of proteins originally identified as growth factors which 

promote development and survival of the vertebrae nerve system (Lewin and Barde 

1996) but have also been identified as mediators of inflammatory signals on a variety 

of non-neuronal tissues. Four neurotrophins, NGF, BDNF, neurotrophin 3 (NT3) and 

neurotrophin 4/5 (NT 4/5), have been identified in mammals, as well as additional 

factors such as neurotrophin 6 (NT 6) and neurotrophin 7 (NT 7) in other species. 

Neurotrophins are synthesized as precursors (27 kDa) and cleaved into 

pro-neurotrophins (pro-NTs) that are further processed to generate mature 

neurotrophins (13-15 kDa) (Lessmann, Gottmann et al. 2003, Lessmann and 

Brigadski 2009). The mature form of BDNF, NT4 and NT3 have approximately 50% 

amino acid similarity to NGF(McDonald and Chao 1995).  

Neurotrophins bind to cell surface receptors: the low-affinity ‘pan-neurotrophin’ 

p75 neurotrophin receptor (p75NTR), a member of tumour necrosis factor 
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receptor/Fas/CD40 superfamily, and the high-affinity and more specific 

tropomyosin-related kinase (Trk) receptors. Trk receptors consist of TrkA which 

binds to NGF, TrkB which binds to BDNF and NT4 and TrkC which binds to NT3 

(Lu, Pang et al. 2005), initiating receptor auto-phosphorylation and activating 

intracellular signalling cascades, such as phospholipase C, phosphatidylinositol 3 

kinase (PI3K) and mitogen-activated protein kinases (MAPKs). In the respiratory 

organs, both structural cells (nasal, bronchial and pulmonary epithelial cells, ASMC, 

nerves, fibroblasts and pulmonary endothelial cells) and inflammatory cells (T and B 

lymphocytes, eosinophils, mast cells, monocytes and macrophages) express NGF and 

BDNF and their receptors(Prakash, Thompson et al. 2010). 

The expression of neurotrophins is increased in asthma. NGF and BDNF levels 

are increased in the circulation (Bonini, Lambiase et al. 1996, Lommatzsch, 

Schloetcke et al. 2005) and bronchoalveolar lavage fluid from allergen-challenged 

patients with mild allergic asthma (Virchow, Julius et al. 1998). Neurotrophins are 

also increased in mouse models of allergic asthma (Braun, Lommatzsch et al. 1999) 

and in nasal secretion of allergen-challenged allergic rhinitis patients(Raap and 

Braunstahl 2010).  
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At the cellular level, the intracellular Ca
2+

, contractility and proliferation of 

human ASM is enhanced by BDNF, particularly in the presence of tumour necrosis 

factor (TNF)-α (Prakash, Thompson et al. 2009). NGF increases the migration and 

myofibroblastic differentiation of pulmonary fibroblasts MCR-5 (Micera, Vigneti et 

al. 2001) whereas BDNF promotes the proliferation of human ASMC (Aravamudan, 

Thompson et al. 2012). However, the role of neurotrophins in the development of 

airway remodelling, particularly in severe asthma, is currently unknown.  

1.1.3.4 Airway remodelling in severe asthma 

The airways of patients with severe asthma show more prominent subepithelial 

fibrosis and ASM thickening compared to the airways of non-severe asthmatic 

patients, suggesting that there is more profound airway remodelling in severe asthma 

(Levi-Montalcini 1998). Although current asthma treatments can reduce airway 

inflammation, they are less effective in attenuating airway remodelling and more 

specifically reducing ASM mass (Bourke, Li et al. 2011). Thus, a better understanding 

of the molecular and cellular mechanisms promoting airway remodelling in severe 

asthma may lead to the development of more effective treatments. 
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1.2 Fibrocytes 

Fibrocytes, first described in 1994, are bone-marrow derived circulating progenitor 

cells that express haematopoietic markers, such as common leukocyte marker CD45, 

stem cell marker CD34, leukocyte specific protein-1 (LSP-1), monocyte markers 

CD11 and CD14, and ECM proteins, including Col I, Col III, Col V, and vimentin 

(Bucala, Spiegel et al. 1994, Pilling, Fan et al. 2009). Fibrocytes have the ability to 

differentiate into other mesenchymal cells, such as myofibroblasts or adipocytes 

depending on the local microenvironment, manifested by the expression of α-SMA 

and adipocyte lipid-binding protein respectively (Hong, Belperio et al. 2007). 

Fibrocytes contribute to inflammation, angiogenesis and fibrosis by releasing 

mediators such as TNF-α, IL-6, IL-8, GM-CSF, VEGF, matrix metalloproteinase 

(MMP)-9 and TGF-β1 (Hartlapp, Abe et al. 2001). Fibrocytes also express chemokine 

receptors, such as CCR3, CCR5, CCR7 and CXC chemokine receptor (CXCR) 4 

which control migration and recruitment of fibrocytes to injured tissue (Phillips, 

Burdick et al. 2004, Sakai, Wada et al. 2006, Isgro, Bianchetti et al. 2013), 

intercellular adhesion molecule-1 (ICAM-1) to recruit inflammatory cells (Chesney, 

Bacher et al. 1997) and proteins which are important for host defence including 
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CD16/CD32, CD163 and for antigen presentation such as major histocompatibility 

complex class II (Chesney, Bacher et al. 1997). 

1.2.1 Mesenchymal and haematopoietic markers expressed by 

fibrocytes 

Fibrocytes are functionally and physiologically between leukocytes and fibroblasts. 

The identification of fibrocytes usually involves co-detection of at least one 

hematopoietic marker such as CD45 and CD34 plus a mesenchymal protein, such as 

Col I. Thus, fibrocytes are mostly defined as Col I+/CD45 cells (Moeller, Gilpin et al. 

2009), Col I+/CD34+ cells (Chesney, Bacher et al. 1997) or Col I+/CD34+/CD45+ 

cells (Wang, Huang et al. 2008). Some group defined fibrocytes as Col I+/CXCR4+ 

cells, Col I+/CD45+/CXCR4+ cells (Garcia-de-Alba, Becerril et al. 2010) or simply 

Col I+ cells (Yang, Scott et al. 2002). It has been suggested that a combination of 

CD45RO (a low molecular weight isoform of CD45, which is still detectable after 

long term culture), 25F9 (a mature macrophage marker, expressed in macrophages 

and fibrocytes but not in monocytes), calcium binding S100A8/A9 complex (myeloid 

related protein 8/14; calprotectin), but not PM-2K (a marker only on mature 

macrophages but not on fibrocytes) is more selective for human fibrocytes (Pilling, 

Fan et al. 2009). While fibrocytes are myofibroblastically differentiating, they 
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progressively lose CD34 and gain α-SMA (Schmidt, Sun et al. 2003). In my project I 

defined fibrocytes as Col I+/CD45+ cells and differentiating fibrocytes as α–SMA+ 

cells. 

1.2.1.1 Collagen I 

Col I is the most abundant ECM protein amongst 29 types of collagen identified in the 

literature, which forms large, eosinophilic fibres known as collagen fibers (Jensen and 

Host 1997, Rossert, Terraz et al. 2000). It is present in most connective tissues. 

Col I molecules consist of two α1 and one α2 chain, which are encoded by 

COL1A1 gene on chromosome 17 and COL1A2 gene on chromosome 7, respectively 

(Rossert, Terraz et al. 2000). The two genes produce pro-α1(I) chain and pro-α2(I) 

chain in a 2:1 ratio, and undergo extensive post-translational modification before 

assembling in a triple helix (Prockop, Kivirikko et al. 1979). These pro-collagen 

molecules are processed by enzymes outside the cell and arrange themselves into 

long, thin fibrils that cross-link to one another in the spaces around cells. The 

cross-links result in the formation of very strong mature Col I fibers (Cutroneo 2003). 

A variety of soluble molecules modulate Col I synthesis (Rossert, Terraz et al. 

2000). IL-1, IL-4, TGF-β, insulin-like growth fator-1 IGF-1, endothelin-1, or lipid 
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peroxidation products can stimulate Col I production by fibroblasts. TNF-α, IFN-γ, 

IL-10, prostaglandin E2 and CS inhibit Col I production by fibroblasts. 

1.2.1.2 CD45 

CD45, also known as leukocyte common antigen or protein tyrosine phosphatase 

receptor type C (PTPRC) encoded by the PTPRC gene, is a type I transmembrane 

enzyme expressed specially in haematopoietic cells regulating cell development, 

activation, senescence and apoptosis. CD45 is a member of the protein tyrosine 

phosphatase (PTP) family. Various isoforms of CD45 exist: CD45RA, CD45RB, 

CD45RC, CD45RAB, CD45RAC, CD45RBC, CD45RO and CD45RABC 

(Trowbridge and Thomas 1994). 

As CD45 is exclusively expressed on differentiated haematopoietic cells except 

plasma cells and platelets, clinically it is a marker used to identify cells of 

haematopoietic origin. For example, distinguish haematopoietic stem cells from 

mesenchymal stem cells (Calloni, Cordero et al. 2013), and haematopoietic 

malignancies (lymphoma) from solid tumours (carcinoma) (Bobrow, Richards et al. 

1993). 

 

http://en.wikipedia.org/wiki/Protein_tyrosine_phosphatase
http://en.wikipedia.org/wiki/Protein_tyrosine_phosphatase
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1.2.1.3 CD34 

CD34, a single-pass transmembrane sialomucin encoding on human CD34 gene, is a 

marker for early haematopoietic cells and vascular-associated tissue (Nielsen and 

McNagny 2009). CD34 is widely used for the purification for haematopoietic stem 

cells and progenitor cells, including circulating fibrocytes (Bellini, Marini et al. 

2012). CD34 is sometimes used as one of the criteria for fibrocyte definition in line 

with a mesenchymal marker such as Col I (Chesney, Bacher et al. 1997, Wang, Huang 

et al. 2008). Some argue that CD34 may not be useful to distinguish fibrocytes from 

macrophages and dendritic cells, since these cell types also express weak Col I and 

CD34 under certain circumstances (Pilling, Fan et al. 2009). Besides, cultured 

fibrocytes usually lose CD34 during differentiation (Schmidt, Sun et al. 2003). CD34 

is only expressed by 18% of cultured fibrocytes 1 week after isolation, whilst CD45 is 

still expressed by 85% of cultured fibrocytes (Phillips, Burdick et al. 2004). 

Therefore, in this project I chose CD45, instead of CD34, as a haematopoietic marker 

for fibrocyte identification. 

1.2.1.4 α-smooth muscle actin 

α-SMA, also known as aortic smooth muscle actin or α-actin-2 encoded by the 

ACTA2 gene located on 10q22-q24, is a protein contributing to cell-generated 
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mechanical tension. α-SMA incorporates into stress fibers and focal adhesions, 

provides mechanosensory functions and contractile forces which may contribute to 

scar formation and fibrocontractive diseases (Wang, Zohar et al. 2006).  

α-SMA comprises a very large proportion of total cell protein in smooth muscle 

cells and is a defining feature of myofibroblastic differentiation. Human α-SMA is a 

tissue-specific isoform in actin family, along with another three tissue-specific 

isoforms: α-cardiac, α-skeletal and γ–smooth muscle actin, and two cytoplasmic actin: 

γ and β non-muscle actins (Khaitlina 2001). At the early stages of the healing process, 

proto-myofibroblasts develop stress fibres containing cytoplasmic β-actin and γ-actin 

but lacking α-SMA expression (Hinz, Phan et al. 2007). However, 14-18% of total 

cell protein in differentiated myofibroblasts is α–SMA (Arora and McCulloch 1994). 

Generation of α-SMA+ myofibroblasts is induced by mechanical stress, mediator 

signalling and specialized matrix proteins, such as ED-A fibronectin variant (Hinz, 

Phan et al. 2007). Mechanical forces stimulate α–SMA gene transcription through 

Rho/Rho kinase signalling (Zhao, Laschinger et al. 2007). Prolonged culture, 

exposure to TGF-β, platelet-derived growth factor (PDGF), angiotensin II, IL-1, IL-6, 

TNF-α and ROS can up-regulate α–SMA expression (Sappino, Schurch et al. 1990, 

Elger, Drenckhahn et al. 1993, Jarnagin, Rockey et al. 1994, Schmitt-Graff, 
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Desmouliere et al. 1994, Masamune, Watanabe et al. 2009, Barnes and Gorin 2011). 

In fibrocytes, α-SMA expression can be induced through activating mothers against 

decapentaplegic homolog (Smad) 2/3 and stress-activated protein kinases 

(SAPK)/c-Jun N-terminal kinases (JNK) MAPK pathway, and SAPK/JNK signalling 

acts in a positive feedback loop to modulate Smad2/3 (Hong, Belperio et al. 2007). 

IL-4 and IL-13 also increased α–SMA expression (Bellini, Marini et al. 2012).  

1.2.2 Fibrocytes in asthma 

Fibrocytes are thought to be involved in asthma pathogenesis by contributing to 

airway inflammation and remodelling. Circulating fibrocytes are increased in 

asthmatics with chronic airflow obstruction, and their number is correlated with the 

slope of the yearly decline in FEV1 (Wang, Huang et al. 2008, Murray, Chen et al. 

2011). Moreover, fibrocytes increasingly migrate to the ASM compartment of 

asthmatic airways possibly due to the release of platelet-derived growth factor 

(PDGF) by ASM cells (Saunders, Siddiqui et al. 2009). Fibrocyte numbers were also 

found to be increased in bronchial biopsies of mild asthmatic patients with fibroblasts 

in their bronchoalveolar lavage fluids (Nihlberg, Larsen et al. 2006). Furthermore, 

exposure of patients with chronic allergic asthma to allergen increases the numbers of 

fibrocytes in bronchial mucosa and their differentiation into myofibroblasts (Schmidt, 
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Sun et al. 2003). Interestingly, fibrocytes isolated from asthmatic patients with 

chronic airflow obstruction showed greater capacity to differentiate into 

myofibroblasts in response to serum, compared to non-obstructed asthmatic patients 

and non-asthmatic subjects, as a result of increased TGF-β1 release (Wang, Huang et 

al. 2008). The behaviour of fibrocytes is also regulated by a number of mediators 

involved in asthmatic inflammation (see 1.2.2.1-3). Therefore, the increased 

recruitment of fibrocytes to the ASM compartment and their differentiation into 

myofibroblasts may contribute to the enhanced ASM thickness and subepithelial 

fibrosis observed in asthma. 

1.2.2.1 Effect of TH1, TH2 and TH17 cytokines on fibrocytes 

The differentiation of fibrocytes into myofibroblasts is promoted by TH2 cytokines 

IL-13 and IL-4, whilst it is inhibited by the TH1 cytokines IFN-γ and IL-12 (Shao, 

Suresh et al. 2008, Weng, Chen et al. 2013). Asthmatic fibrocytes produce high level 

of collagenous (Collagen I, Collagen III, Collagen V) and non-collagenous 

(Hyaluronan, tenascin-C) matrix components and pro-inflammatory cytokines (IL-6, 

IL-11 and leukaemia inhibitory factor) upon IL-4 and IL-13 stimulation, and 

proliferate, express α-SMA and release CXCL1/growth-regulated oncogene α 
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(GROα), CXCL8/IL-8 and TNF-α in the presence of IL-17A (Bellini, Marini et al. 

2012). 

1.2.2.2 Effect of chemokines and their receptors (e.g. CC chemokine 

receptor 7) on fibrocytes 

The migration of fibrocytes is guided by chemokine gradients (Figure 1.1). Fibrocytes 

have been shown to express CXCR4, CCR3, CCR5 and CCR7. In a mouse model of 

severe asthma, there are higher levels of CCL5/regulated on activation, normal T cell 

expressed and secreted (RANTES), CCL11/eotaxin and CCL24/eotaxin-2 in sputum 

fluid phase and increased expression of CCR3 and CCR5 on their fibrocytes, which 

may be associated with the recruitment of fibrocytes (Isgro, Bianchetti et al. 2013). 

The migration of circulating Col I+/CD45+/CXCR4+ fibrocytes in response to 

CXCL12/stromal cell-derived factor 1 (SDF-1) is associated with increased collagen 

deposition in the lung in a murine model of pulmonary fibrosis (Phillips, Burdick et 

al. 2004). 

CCR7, also known as CD197, is a seven-transmembrane-spanning 

G-protein-coupled receptor found in inflammatory cells (fibrocytes, thymocytes, T 

cells, B cells, dendritic cells), structural cells (lymph node, endothelial cells, smooth 

muscle cells and fibroblasts) and various types of tumours (Birkenbach, Josefsen et al. 
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1993). The expression of CCR7 is up-regulated by IL-4 in CD8+ T lymphocytes 

(Seneviratne, Black et al. 2007). CCL19/macrophage inflammatory protein-3-β 

(MIP-3-β) and CCL21/secondary lymphoid-tissue chemokine (SLC) are the sole 

ligands for CCR7 (Forster, Davalos-Misslitz et al. 2008). CCL19/MIP-3-β, also 

known as EBI1 ligand chemokine, is highly expressed by mast cells and vessels in 

asthma of all severities and ASM in severe disease. Mast cells and ASMC-derived 

CCL19/MIP-3-β mediates ASMC migration and repair (Kaur, Saunders et al. 2006). 

CCL21/SLC is secreted by endothelial cells and lymph nodes and also present in 

lungs and tracheas (Gunn, Tangemann et al. 1998). Both CCL19/MIP-3-β and 

CCL21/SLC act on T cells and dendritic cells and CCL21/SLC also works on B 

lymphocytes and natural killer cells (Palmqvist, Wardlaw et al. 2007). Although the 

role of CCL19/MIP-3-β in the recruitment of fibrocytes to the ASM compartment is 

controversial (Saunders, Siddiqui et al. 2009), CCL21/SLC-CCR7 signalling of 

fibrocytes plays a key role in a murine model of renal fibrosis (Sakai, Wada et al. 

2006). 
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Figure 1.1: The homing and differentiation of fibrocytes in asthmatic airways. Bone 

marrow-derived circulating fibrocytes express chemokine receptors (CCR7, CXCR4, CCR3, CCR5) and 

migrate into airways under the guidance of their ligands (CCL19/MIP-3-β, CCL21/SLC; CXCL12/SDF-1; 

CCL5/RANTES, CCL11/eotaxin, CCL24/eotaxin-2; CCL5/RANTES, CCL11/eotaxin respectively). In the 

presence of IL-4, IL-13 and TGF-β1, fibrocytes produce extracellular matrix proteins including collagen I 

and undergo myofibroblastic differentiation, together with resident fibroblasts, myofibroblasts and airway 

smooth muscle cells, leading to sub-epithelial fibrosis and airway smooth muscle cell layer thickening. 

CCR: CC chemokine receptor; CXCR: CXC chemokine receptor CCL: CC chemokine ligand; CXCL: 

CXC chemokine ligand; IL: interleukin; TGF-β1: transforming growth factor-β1; α-SMA: α-smooth muscle 

actin; ASMC: airway smooth muscle cell. 
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1.3 Current asthma therapies 

Pharmacotherapeutic management of asthma involves chronic management and a plan 

for prevention of acute exacerbations. This often includes the daily use of CS (inhaled 

and sometimes systemic), LABAs, leukotriene modifiers, cromones, anti-IgE therapy, 

methylxanthines and reliever medications, usually short-acting β2-adrenoceptor 

agonists (SABAs) referred to as rapid-acting. Muscarinic antagonists are also used 

when required (Bateman, Hurd et al. 2008). 

1.3.1 Corticosteroids 

CS are currently the cornerstone of asthma treatment. CS are a class of chemicals that 

include steroid hormones naturally produced by adrenal cortex of vertebrates and 

artificially synthetic analogues of these hormones. Glucocorticoids, 

mineralocorticoids and androgens are steroidal hormones synthesized from 

cholesterol within three different cellular zones of adrenal cortex (Neelon 1977). 

Glucocorticoids control gluconeogenesis and the anti-inflammatory response whilst 

mineralocorticoids promote sodium retention and androgens regulate the male 

characteristics, anabolism and estrogen production (Neelon 1977). CS are widely used 

to treat both endocrine and non-endocrine diseases (Williams 1999). Low dose CS are 
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used as physiological replacement for adrenal insufficiency and congenital adrenal 

hyperplasia. At supra-physiological dose CS, initially introduced for the treatment of 

rheumatoid arthritis, are administered as anti-inflammatory agents and 

immunosuppressants (Hench, Kendall et al. 1949). 

1.3.1.1 Corticosteroids and asthma treatment 

CS can be administered as controller medications for persistent asthma in 

different ways: by inhalation, orally or parenterally (Bateman, Hurd et al. 2008). 

Inhaled CS, such as budesonide and fluticasone, reduce asthma symptoms (Juniper, 

Kline et al. 1990), improve quality of life (Juniper, Kline et al. 1990) and lung 

function (Juniper, Kline et al. 1990), control airway inflammation (Jeffery, Godfrey et 

al. 1992) and reduce frequency and severity of exacerbations (Pauwels, Lofdahl et al. 

1997), asthma mortality (Suissa, Ernst et al. 2000) and AHR (2000). Low and high 

dose inhaled CS in adults are defined as equivalent to < 500 μg and > 1000 μg of 

beclomethasone dipropionate per day, respectively (Bateman, Hurd et al. 2008). 

Increasing to higher doses provides little further benefit (Powell and Gibson 2003). 

Oral CS such as prednisolone may be required for asthma exacerbations. However, 

high dose inhaled CS and systemic CS are associated with adverse effects including 

adrenal suppression, bone loss, cataract and glaucoma (Bateman, Hurd et al. 2008). 
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Therefore, the addition of controller medications, such as LABAs, for patients >5 

years of age in step 2 of asthma control, is beneficial to achieve better control and 

reduce the adverse effect of CS (Bateman, Hurd et al. 2008). 

CS suppress inflammatory responses by reducing inflammatory cell number and 

pro-inflammatory mediator release, and increasing the expression anti-inflammatory 

cytokines, chemokines, receptors and adhesion molecules (Chung and Barnes 1999). 

The effect of CS on airway remodelling is less clear. Long-term inhaled CS 

treatment does not eliminate airway remodelling (van Essen-Zandvliet, Hughes et al. 

1994, Ward and Walters 2005), although some reports show that inhaled CS attenuate 

subepithelial fibrosis and airway vascularity (Hoshino 2004). Inhaled CS have been 

shown to reduce reticular basement membrane layer thickness of asthmatic airways 

and collagen deposition (Hoshino, Nakamura et al. 1998, Hoshino, Nakamura et al. 

1998), but other studies failed to demonstrate a significant effect (Jeffery, Godfrey et 

al. 1992). CS inhibit pro-remodelling responses such as the myofibroblastic 

differentiation of fibroblasts (Olivieri, Chetta et al. 1997) and the proliferation of 

ASMC (Chung and Barnes 1999), but some reported the anti-mitogenic effect only 

occurs in the presence of normal basement membrane (laminin) but not pathological 
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basement membrane (collagen), suggesting CS are less effective in established airway 

remodelling (Bonacci, Harris et al. 2003) . 

1.3.1.2 Mechanism of corticosteroid action 

Genomic actions of CS are mediated by nuclear translocation of glucocorticoid 

receptors (GR; more specially, GR-α) and subsequent regulation of gene transcription 

(Figure 1.2). The GR, also known as nuclear receptor subfamily 3, group C, member 

1 (NR3C1), is a ligand-dependent transcription factor. GR belongs to the superfamily 

of steroid/thyroid/retinoid acid receptor proteins that function as ligand-dependent 

transcription factors (Evans 1988). The GR is composed of three major functional 

domains: the N-terminal domain, the central DNA-binding domain, and the 

ligand-binding domain (LBD). Two isoforms, GR-α and GR-β, originate from the 

same NR3C1 gene on chromosome 5 (5q31-32) in human through alternative splicing 

of the GR primary transcript (Hollenberg, Weinberger et al. 1985, Francke and 

Foellmer 1989, Encio and Detera-Wadleigh 1991). The structural differences are in 

the LBD, where the last 50 amino acids of GR-α are replaced by a non-homologous 

15-amino acid sequence in GR-β. GR-α is the predominant isoform to which cortisol 

and other CS bind (Hollenberg, Weinberger et al. 1985) whilst GR-β does not bind 

http://en.wikipedia.org/wiki/Cortisol
http://en.wikipedia.org/wiki/Glucocorticoids
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CS. Most of the studies analysing GR expression did not distinguish between GR-α 

and GR-β isoforms. In my thesis, “GR” denotes total GR, unless otherwise specified. 

In the inactive state, unbound cytoplasmic GR forms a heterocomplex with 

chaperone proteins such as heat shock protein 70 and FK506-binding protein 52 

(Cadepond, Schweizer-Groyer et al. 1991, Pratt, Morishima et al. 2006). Upon CS 

binding, GR dissociates from chaperone proteins, homodimerises via the C-terminal 

LBD and translocates to the nucleus (Bledsoe, Montana et al. 2002), where GR 

inactivates the pro-inflammatory genes by recruitment of co-repressors and inhibition 

of transcription factors (trans-repression). GR suppresses gene transcription by 

interacting with negative glucocorticoid response element (cis-repression) on gene 

promoters. Post-transcriptionally, CS may reduce the mRNA stability of certain 

inflammatory proteins by inducing the expression of proteins which destabilise these 

mRNAs (Barnes 2010). 

GR also acts through glucocorticoid-response element (GRE) on gene promoters 

to activate transcription of anti-inflammatory genes (transactivation), such as 

glucocorticoid-induced leucine zipper (GILZ; also known as TSC22 domain family 

protein 3) (Beaulieu and Morand 2011). Human GILZ protein is constitutively 

expressed in many human tissues (D'Adamio, Zollo et al. 1997, Ayroldi, Migliorati et 
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al. 2001) and is rapidly up-regulated by CS via direct binding of GR to GRE in the 

promoter of the gene encoding GILZ (Asselin-Labat, Biola-Vidamment et al. 2005).  

GR also mediates some of its actions in a nongenomic manner, such as 

phosphorylation of PI3K and protein kinase B (Akt) which leads to activation of 

endothelial nitric oxide synthase and ultimate vasorelaxation (Hafezi-Moghadam, 

Simoncini et al. 2002, Losel and Wehling 2003). 
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Figure 1.2: Anti-inflammatory actions of corticosteroids. CS enter the cell and bind to 

glucocorticoid receptors (GR) in the cytoplasm that translocate to the nucleus. Binding of the activated GR 

homodimer to a GRE in the promoter region of anti-inflammatory genes leads to their transactivation. GR 

homodimers also interact with negative GREs to suppress inflammatory genes by cis-repression. Through 

transrepression, the GR-CS complex interacts and inactivates proinflammatory transcription factors, such 

as nuclear factor-κB (NF ‑ κB) and activator protein-1 (AP-1), thus switching off expression of 

inflammatory genes. RNA pol II: RNA polymerase II. MKP-1: mitogen-activated protein kinase 

phosphatase-1; GILZ: glucocorticoid-induced leucine zipper; β2-AR: β2-adrenoceptor; POMC: 

proopiomelanocortin; CRF-1: corticotrophin releasing factor. Modified from Barnes PJ. J Steroid Biochem 

Mol Biol 2010;31:76 and Holgate ST et al. Nat Rev Immunol 2008;8:218. 
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To investigate the function of GR, dexamethasone and RU-486, the agonist and 

the antagonist respectively, were used in this project. Dexamethasone is a synthetic 

CS, which is 25 times more potent than cortisol/hydrocortisone in its glucocorticoid 

effect, with minimal mineralocorticoid effect (Cantrill, Waltman et al. 1975). 

Clinically, dexamethasone is indicated for the treatment of anaphylaxis, allergy, 

inflammation, emesis and brain edema in cancer patients, to promote the maturation 

of preterm fetal lungs in pregnant mother (Williams 1999) as well as the diagnosis of 

Cushing’s syndrome (dexamethasone suppression test) (Crapo 1979). RU486, also 

known as mifepristone and Roussel-Uclaf-38486, is a synthetic steroid compound 

with anti-glucocorticoid and anti-progesterone effects (Spitz and Bardin 1993). 

Structurally, RU486 is characterized by the bulky phenyl-aminodimethyl group 

substituent in the 11β-position of the steroidal skeleton, which interacts with the 

specific region of the receptor binding pocket in LBD and induces transconformation 

differences in the LBD (Cadepond, Ulmann et al. 1997). Its affinity for GR in rat 

hepatoma tissue culture cells is three times higher than that of dexamethasone (Gagne, 

Pons et al. 1985). Clinically RU486 is used as GR antagonist for refractory Cushing 

syndrome, and as progesterone receptor antagonist for emergency contraception or 

medical abortion (Spitz and Bardin 1993). 

http://en.wikipedia.org/wiki/Cortisol
http://en.wikipedia.org/wiki/Mineralocorticoid
http://en.wikipedia.org/wiki/Mifepristone
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1.3.1.3 Corticosteroid insensitivity in severe asthma 

Patients with severe asthma are less responsive to treatment and require high dose 

inhaled or even systemic CS therapy (Chung, Wenzel et al. 2014). CS insensitivity 

has been associated with comorbidities such as obesity (Sutherland, Goleva et al. 

2008), smoking (Chalmers, Macleod et al. 2002), low vitamin D levels (Gupta, 

Sjoukes et al. 2011) and particularly significant in the non-eosinophilic (low TH2 

inflammation) phenotype (Berry, Morgan et al. 2007). Apart from high-dose inhaled 

CS, one third of adult patients with severe asthma require regular oral CS to maintain 

some degree of asthma control (Ogirala, Aldrich et al. 1991, ten Brinke, Zwinderman 

et al. 2004). However, only 11% patients of childhood difficult asthma are completely 

CS-unresponsive to single intramuscular injection of triamcinolone (Bossley, Saglani 

et al. 2009). 

Relative CS-insensitivity in severe asthma is also observed at the cellular and 

molecular levels. ASMC from patients with asthma are resistant to the 

anti-proliferative and anti-inflammatory effect of CS (Roth, Johnson et al. 2004, 

Chang, Bhavsar et al. 2012). Many in vitro studies focus on the impaired 

transrepession in severe asthma. Dexamethasone is less effective in suppressing the 

release of IL-1β, CXCL8/IL-8, and CCL3/macrophage inflammatory protein-1-α 
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(MIP-1-α) from endotoxin-stimulated peripheral blood mononuclear cells (PBMC) 

and alveolar macrophages, and the release of CCL11/eotaxin and CXCL8/IL-8 from 

TNF-α-stimulated ASMC in severe asthma (Hew, Bhavsar et al. 2006, Bhavsar, Hew 

et al. 2008, Chang, Bhavsar et al. 2012). Also, IL-2 combined with IL-4 reduces CS 

sensitivity in PBMC through down-regulating GR-α, leading to attenuated GILZ 

expression and consequently reduced apoptosis (Vazquez-Tello, Halwani et al. 2013). 

Many mechanisms may lead to CS resistance in severe asthma. Activation of 

MAPK pathways (Abe, Donnelly et al. 2001), up-regulation of GR-β subunit (Roth, 

Johnson et al. 2004), oxidative stress and decreased histone deacetylase (HDAC) 

activity (Bhavsar, Hew et al. 2008) are postulated to be involved in mechanisms 

leading to CS insensitivity in severe asthma (Table 1.2, Figure 1.3). 

1.3.1.4 Effect of corticosteroids on fibrocyte function 

There is an increase in the number of infiltrating fibrocytes in the renal interstitium of 

patients with chronic kidney diseases, which is reduced after corticosteroid therapy 

with a parallel reduction in urinary CCL2/monocyte chemotactic protein (MCP-1) 

level (Sakai, Furuichi et al. 2010). Dexamethasone reduces the proliferation and IL-13 

release in fibrocytes from healthy subjects (Hayashi, Kawakita et al. 2014). Moreover, 

dexamethasone reduces the expression of α-SMA and the release of IL-6 and IL-10 in 
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IL-17-primed fibrocytes from healthy subjects (Hayashi, Kawakita et al. 2013). 

Nonetheless, the effect of CS on fibrocytes from patients with asthma remains unclear 

whilst it is unknown whether fibrocytes isolated from patients with severe asthma 

show CS insensitivity. 
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Table 1.2: Molecular mechanisms of corticosteroid resistance in 

patients with asthma or chronic obstructive pulmonary disease. 

Familial glucocorticoid resistance 

GR modification 

↑ Phosphorylation: ↓ nuclear translocation 

↑ p38MAPKα caused by IL-2 plus IL-4 or IL-13 in patients with severe asthma or 

caused by MIF in patients with severe asthma 

↑ p38MAPKγ in patients with severe asthma 

↑ JNK1 caused by pro-inflammatory cytokines in patients with severe asthma 

↑ ERK caused by microbial superantigens in patients with severe nonallergic asthma 

↓ MKP-1 in patients with severe asthma 

↓ PP2A in patients with severe asthma 

Nitrosylation: ↑ NO from inducible NO synthase 

Ubiquitination: ↑ degradation by proteasome 

Increased GR-β expression 

Increased proinflammatory transcription factors 

AP-1, JNK 

Immune mechanisms 

↓ Treg cells (↓IL-19, ↓vitamin D3) 

↑ TH17 (IL-17) 

Defective histone acetylation 

↓ Acetylation of lysine-5 on histone 4 in patients with severe asthma 

↓ HDAC2 in patients with COPD and patients with severe asthma and smokers with 

asthma 

↑ Oxidative stress 

↑ PI3Kδ activation 

GR: glucocorticoid receptor; MAP: mitogen-activated protein; MAPK: 

mitogen-activated protein kinase; MKP-1: MAPK phosphatase-1; JNK: c-jun 

N-terminal kinase; ERK, extracellular signal-regulated kinase; PI3K: 

phosphoinositide 3-kinase; PPA2: protein phosphatase 2; NO: nitric oxide; IL: 

interleukin; MIF, macrophage migration inhibitory factor; AP-1: activator protein-1; 

Treg: CD4+ regulatory T cell; HDAC2: histone deacetylase 2. 

Modified Barnes PJ, J Allergy Clin Immunol 2013;131:636 
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Figure 1.3: Possible molecular mechanisms of corticosteroid resistance. The 

phosphorylation (P) of glucocorticoid receptors (GR) leads to reduced nuclear translocation of GR. 

GR can be phosphorylated by p38 mitogen-activated protein kinase (p38 MAPK), c-Jun N-terminal 

kinase (JNK) and extracellular signal-regulated kinase (ERK), which can be activated by a variety of 

stimuli such as interleukins (IL), macrophage migration inhibitory factor (MIF) and microbial 

superantigens. Nitric oxide (NO), generated by inducible nitric oxide synthase (iNOS), can nitrate 

tyrosine residues (Tyr) on GR and histone deacetylase 2 (HDAC2), leading to inactivation of GR and 

HDAC2. GR and HDAC2 can also be ubiquitinated (Ub), which results in degradation of GR and 

HDAC2 by the proteasome. Oxidative stress activates phosphoinositide-3-kinase (PI3K) and 

downstream Akt (protein kinase B) and subsequently inhibits HDAC2. Sequestration of nuclear factor 

κB (NF-κB) by activator protein 1 (AP-1) and increased GR-β to glucocorticoid responsive element 

(GRE) binding sites are also associated with corticosteroid insensitivity. 

iNOS 

GR  GR  GRβ 

GR 
 

 

AP-1 

GRE 

 

GR 

 P 

NO Ub 

P 

p38 

MAPK 

P 

JNK 

ERK 

P 

PI3K P 

Akt P 

GR  
HDAC2 

NF-κB 

HAT 

HDAC2 

NO 

P 
Tyr 

Ub 

IL-2+IL-4 

IL-13 MIF 
Inflammatory 

Cytokines 

Microbial 

superantigens  

CS 

 

Oxidative 

Stress 



64 

 

1.3.2 Bronchodilators 

Bronchodilators are widely used for the treatment of asthma. Bronchodilators reduce 

resistance in the bronchi and bronchioles and increase airway flow to the lungs 

(Cazzola, Page et al. 2012). These agents could be either short-acting or long-acting: 

short-acting bronchodilators are rescue relievers for acute bronchospasms, while 

long-acting bronchodilators reduce symptoms and episodes of exacerbations 

(Bateman, Hurd et al. 2008). Three classes of bronchodilators are prescribed 

clinically: β2-adrenoreceptor (β2-AR) agonists, muscarinic antagonists and 

xanthines/phosphodiesterase (PDE) inhibitors. These compounds all involve 

3’,5’-cyclic adenosine monophosphate (cAMP) signalling (Figure 1.5). The effect of 

bronchodilators on fibrocyte function has not been reported. In this project I focus on 

two long-acting compounds: salmeterol xinafoate (salmeterol) and tiotropium 

bromide (tiotropium); PDE4 inhibitor rolipram has been used to investigate the 

downstream signalling of β2-AR and muscarinic M2 receptor. 
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Figure 1.4: Possible mechanisms involving β2-adrenoceptor and muscarinic M2 

receptor-mediated cell proliferation and collagen synthesis. β2-AR and M2 receptor coupled to 

adenylyl cyclase stimulatory and inhibitory, respectively. AC catalyses the conversion of adenosine 

triphosphate to cAMP and pyrophosphate. cAMP, which inhibits the proliferation and collagen synthesis in 

pulmonary fibroblasts, can be hydrolysed by PDE. M2 receptor can also stimulate fibroblast proliferation 

via MEK/ERK pathway. β2-AR: β2-adrenoceptor. AC: adenylyl cyclase. cAMP: 3’,5’-cyclic adenosine 

monophosphate. Epac: exchange protein activated by cAMP. MEK: MAP kinase activating enzyme. ERK: 

extracellular signal-regulated kinase. PDE” phosphodiesterase. Modified from Racké K et al. 

Naunyn-Schmiedeberg's archives of pharmacology 2008;378:193. 
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1.3.2.1 β2-adrenoceptor agonists 

The β2-AR, also known as ADRB2, is a 413-amino acid long seven-transmembrane, 

G-protein coupled receptor (GPCR) which binds adrenaline or neurotransmitters 

affecting muscles or organs (Henderson, Baldwin et al. 1990). Despite the lack of 

direct sympathetic innervation of ASM, β-ARs are expressed throughout the lungs 

(Barnes 1995). β2-AR represents 70% of pulmonary β-AR and are localised to both 

structural cells (ASMC, fibroblasts, epithelial cells, submucosal glandular cells, 

endothelial cells, type I and type II alveolar cells) and inflammatory cells (mast cells, 

macrophages, neutrophils, lymphocytes, eosinophils). Activation of β2-ARs, which 

are linked to adenylyl cyclases by Gs proteins, increases intracellular cAMP levels. In 

ASMC, cAMP increases protein kinase A (PKA) activity, which phosphorylates 

downstream protein modulators (Giembycz and Raeburn 1991), leading to the 

inhibition of phosphoinositol hydrolysis, a reduction in intracellular Ca
2+

 levels, and 

subsequent activation of large conductance K
+
 channels and relaxation of airway 

smooth muscle (Jones, Charette et al. 1990). Activation of β2-AR/Gs 

protein/cAMP/PKA also inhibits collagen II production in chondrocytes (Mitchell, 

Lai et al. 2011) and proliferation of mammary epithelial MCF-10A cells (Bruzzone, 

Sauliere et al. 2014). Activation of β2-AR/Gs/cAMP/exchange protein directly 
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activated by cAMP (Epac) inhibits the proliferation of astrocytoma cells (Mostafavi, 

Khaksarian et al. 2014). Switching the coupling of β2-ARs from Gs to Gi results in 

desensitization due to termination of β2-AR signalling (Johnson 2001). 

Conventional SABAs, such as salbutamol (albuterol), fenoterol and terbutaline, 

work rapidly (within 3 to 5 min), but their effects may only last 4-6 hr. As-needed 

SABA is used to relieve symptoms when asthma control is lost or not achieved. All 

controller treatments serve to reduce the use of SABAs, including the regular use of 

LABAs (Bateman, Hurd et al. 2008), because high dose SABA could worsen asthma 

even leading to death, especially in patients who do not receive concurrent inhaled CS 

therapy (Taylor, Sears et al. 1996). 

Inhaled LABAs such as salmeterol and formoterol, have bronchodilator action 

lasting up to 12 hr (Lotvall 2002). Salmeterol has a delayed onset and is a partial 

agonist of low intrinsic efficacy (Moore, Khan et al. 1998). Salmeterol initially 

partitions rapidly into the lung cells (< 1 min), with its long lipid tail anchoring on the 

hydrophobic exosite within the fourth domain of the β2-AR, then slowly being 

released back outside the cell (25 min), where salmeterol’s “albuterol head group” can 

specifically and repeatedly engage and disengage the active site of the β2-AR 

(Johnson, Butchers et al. 1993). Salmeterol’s relatively slow onset results from the 
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slow desorption from the cells (Johnson 2001), and its long duration thanks to its slow 

dissociation (Green, Spasoff et al. 1996). Its intrinsic efficacy (intrinsic ability to 

activate β2-ARs independent of tissue properties) may reduce side effects and 

desensitization. 

β2-AR agonists also have non-bronchodilator effects. Both SABA and LABA 

reduce the release of histamine from mast cells (Nials, Ball et al. 1994), leading to 

protection against acute exacerbations of asthma (Pauwels, Lofdahl et al. 1997). 

LABAs inhibit plasma exudation by preventing separation of endothelial cells in 

postcapillary venules (Baluk and McDonald 1994, Bolton, Lefevre et al. 1997), and 

decrease vascular densities in the subepithelial lamina propria in asthmatic airways 

(Orsida, Ward et al. 2001). Although salmeterol monotherapy does not attenuate 

collagen deposition in airways in vivo (Roberts, Bradding et al. 1999, Vanacker, 

Palmans et al. 2002), formeterol inhibits the synthesis of collagen in pulmonary 

fibroblasts in vitro (Lamyel, Warnken-Uhlich et al. 2011). LABAs also repress the 

proliferation and the expression of α–SMA, adhesion molecules and GM-CSF in 

pulmonary fibroblasts/myofibroblasts in vitro (Silvestri, Fregonese et al. 2001, 

Spoelstra, Postma et al. 2002, Lamyel, Warnken-Uhlich et al. 2011). Therefore, 

β2-AR agonists have some anti-inflammatory effects in asthma therapy. 
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The combination of an inhaled CS and LABA is the mainstream therapy for 

moderate-to-severe asthma (Chung and Adcock 2004), which is superior to high dose 

inhaled CS monotherapy (Woolcock, Lundback et al. 1996, Masoli, Weatherall et al. 

2005) and avoids LABA monotherapy-associated death (Cockcroft and Sears 2013). 

An addition of salmeterol to inhaled CS therapy greatly improves the symptoms and 

lung function in asthmatic patients whose disease cannot be easily controlled by 

inhaled CS (Greening, Ind et al. 1994). 

Combination therapy provides many additional or synergistic anti-inflammatory 

effects which cannot be achieved by either inhaled CS or LABA therapy alone. β2-AR 

agonists increase the expression of tachykinin neurokinin receptor in ASMC, that may 

increase bronchoconstriction, but can be prevented by inhaled CS (Katsunuma, Mak 

et al. 1998). CS also decrease eosinophil recruitment and increased late response to 

allergen induced by salbutamol (Gauvreau, Jordana et al. 1997). The combination of 

CS and LABA inhibits release of CXCL8/IL-8 and CCL11/eotaxin release from 

human ASMC and GM-CSF from epithelial cells, as well as ASMC proliferation 

(Pang and Knox 2000, Korn, Jerre et al. 2001). Salmeterol also enhances the 

inhibitory activity of fluticasone propionate on ICAM-1 expression in pulmonary 

fibroblasts (Silvestri, Fregonese et al. 2001). 
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At the molecular level, CS may increase the number of β2-ARs (Baraniuk, Ali et 

al. 1997) and modulate the coupling between β2-AR and Gs protein (Mak, Nishikawa 

et al. 1995) (Figure 1.6). On the other hand, β2-AR agonists also improve CS 

sensitivity by increasing intracellular cAMP, leading to protein kinase A 

(PKA)-induced GR nuclear translocation (Eickelberg, Roth et al. 1999) or attenuated 

GR phosphorylation (Mercado, To et al. 2011). However, some argue that high 

concentration of LABA activates cAMP response element-binding protein (CREB), 

which may interfere the anti-inflammatory effect of CS through its interaction with 

NF-κB and AP-1 (Adcock, Stevens et al. 1996). This detrimental effect of LABA on 

CS effect has been observed in rat lungs (Peters, Adcock et al. 1995), but not in 

human monocytes (Seldon, Stevens et al. 1998). 

The effect of combination therapy on airway remodelling is less established 

though. In ovalbumin-challenged rats, combining salmeterol with fluticasone 

propionate attenuates goblet cell hyperplasia, but promotes the deposition of 

fibronectin and collagen in the airway wall (Vanacker, Palmans et al. 2002). 
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Figure 1.5: Interaction of β2-adrenoceptor agonists with corticosteroid effects. β2-AR 

agonists increase production of intracellular 3’,5’-cyclic adenosine monophosphate (cAMP) and subsequent 

activation of downstream protein kinase A (PKA), enhancing glucocorticoid receptor (GR) nuclear 

translocation and DNA binding. β2-AR agonists also interfere the activity of mitogen-activated protein 

kinases, which affect the phosphorylation status of GR. High concentration of β2-AR agonists activate 

cAMP response element-binding protein (CREB) which may block the effect of CS through interact 

with other transcriptional factors, such as nuclear factor-κB (NF-κB), in some species (e.g. rat). CS bind to 

glucocorticoid response elements (GRE) in the promoter region of β2-AR gene, leading to increased 

transcription of β2-AR. RNA pol III: ribonucleic acid polymerase type III. HAT: histone acetyltransferase. 
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1.3.2.2 Muscarinic antagonists 

Muscarinic receptors, also known as muscarinic acetylcholine receptors (mAChRs) or 

M receptors, are seven-transmembrane helix G-protein coupled receptors (GPCRs) 

which respond to acetylcholine from the parasympathetic nervous system (Caulfield 

and Birdsall 1998). Muscarinic receptors can be divided into five subgroups: M1, M2, 

M3, M4 and M5 (Caulfield and Birdsall 1998). Activation of Gq protein-coupled M1, 

M3 and M5 receptors up-regulates phospholipases whereas activation of Gi 

protein-coupled M2 and M4 down-regulates intracellular cAMP (Simon, Strathmann et 

al. 1991). 

In respiratory organs (Gosens, Zaagsma et al. 2006), acetylcholine induces 

bronchospasm and mucus secretion. Acetylcholine is mostly secreted by efferent 

vagal nerves but also by bronchial epithelial cells and inflammatory cells in a 

paracrine or autocrine manner (Sastry and Sadavongvivad 1978). Postsynaptic M1 

receptors, as well as nicotinic receptors, mediate neurotransmission in airway 

parasympathetic ganglia and presynaptic M2 autoreceptors produce negative feedback 

to ganglionic transmission. The postganglionic neurons regulate secretion of mucus 

glands (M3) and the contraction, synergy and cytokine release of airway smooth 

muscle cells (M3, although M2 is the predominant subtype in smooth muscle cells). 
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Stimulation of M3 activates phospholipase C, resulting in activation of protein kinase 

C and generation of inositol 1,4,5-trisphosphate, which increases intracellular Ca
2+

 

and induces ASM contraction (Billington and Penn 2002). M2 activation inhibits 

adenylyl cyclase and downstream PKA and Epac (Iancu, Ramamurthy et al. 2008). In 

pulmonary fibroblasts, cAMP inhibits proliferation through Epac pathway and 

down-regulates the expression of Col I through the PKA pathway (Racke, Haag et al. 

2008). Activation of M2 and M3 may lead to proliferation of pulmonary fibroblasts 

through phosphorylation of mitogen-activated protein kinase kinase/ extracellular 

signal-regulated kinases cascades (Racke, Haag et al. 2008). Muscarinic receptors 

also mediate the release of cytokines and chemokines from epitheial cells (M1, M2, 

M3) and macrophages (M3) (Spears, Donnelly et al. 2009).  

Ipratropium bromide (ipratropium) is a topically active non-selective short-acting 

muscarinic antagonist (SAMA) widely used in asthmatic patients. The effect of 

ipratropium starts to act within 15 to 30 minutes, takes 90 minute to reach maximal 

bronchodilation, with a 6 hr duration (Essayan 2001). Ipratropium can be used along 

with SABA through nebulizers for asthma exacerbation, sometimes as a controller via 

metered dose inhaler to reduce daily use of β2-AR agonist or as an alternative choice 

for patients with severe asthma who do not tolerate or respond to β2-AR agonists 
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(Simon, Strathmann et al. 1991, Caulfield and Birdsall 1998, Chung, Wenzel et al. 

2014).  

Tiotropium bromide (tiotropium) is a highly potent LAMA. The binding 

affinities of tiotropium and the short-acting muscarinic antagonist ipratropium are 

similar, but tiotropium dissociates from M1 and M3 much more slowly compared with 

ipratropium (14.6 hr vs 0.11hr and 34.7 hr vs 0.26 hr respectively), whereas 

dissociation from M2 is relatively similar (3.6 hr vs 0.035 hr) (Birkenbach, Josefsen et 

al. 1993, Disse, Speck et al. 1999). Tiotropium improves the outcome of asthma 

management, although it is often regarded as only an alternative to LABA. The 

addition of tiotropium to high dose inhaled CS in patients with moderate-to-severe 

asthma improves the lung function and symptoms and the effect is not inferior to the 

addition of the LABA salmeterol but is superior to a doubling of the dose of the 

inhaled CS (Palmqvist, Wardlaw et al. 2007, Peters, Kunselman et al. 2010). In 

patients taking high dose inhaled CS and LABA, the addition of tiotropium improves 

FEV1, reduces as-needed use of SABA and the risk of severe exacerbation (Rot and 

von Andrian 2004, Palmqvist, Wardlaw et al. 2007). 

Tiotropium reduces airway inflammation (Meurs, Dekkers et al. 2013). In 

chronic obstructive pulmonary disease (COPD) patients, tiotropium induces apoptosis 
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of CD8+ T lymphocytes and reduces apoptosis of CD4+ T lymphocytes (Profita, 

Riccobono et al. 2012). In addition, it reduces the chemotactic activity of 

macrophages and neutrophils (Buhling, Lieder et al. 2007, Vacca, Randerath et al. 

2011). Tiotropium attenuates the increase in the mass and contractility of ASM, 

mucus hypertrophy and eosinophil infiltration in ovalbumin-challenge guinea pigs 

(Gosens, Bos et al. 2005).  

Fibrotic alteration is a key characteristic of airway remodelling caused by 

pulmonary fibroblasts/myofibroblasts, which are potential targets for tiotropium 

therapy. In fibroblasts, tiotropium abolishes proliferation and collagen synthesis 

induced by muscarinic signalling (Racke, Haag et al. 2008). Intriguingly, although 

tiotropium has a kinetic selectivity for M1 and M3 receptors over M2 receptors, it still 

inhibits the behaviours of pulmonary fibroblasts through an M2-predominant effect 

(Barnes 2000). 

The effect of LAMAs on fibrocyte function is currently unknown. 

1.3.2.3 Phosphodiesterase inhibitors 

Cyclic nucleotide PDEs catalyse the hydrolysis of the phosphodiester bond in the 

second messenger molecules cAMP and cyclic guanosine monophosphate (cGMP) 

(Essayan 2001). Inhibition of PDEs accumulates the intracellular concentrations of 

http://en.wikipedia.org/wiki/Phosphodiester_bond
http://en.wikipedia.org/wiki/Second_messenger
http://en.wikipedia.org/wiki/Cyclic_adenosine_monophosphate
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these cyclic nucleotides, resulting in activation of PKA and protein kinase G (PKG) 

(Maurice, Ke et al. 2014). For example, theophylline is a non-selective PDE inhibitor 

with relative weak bronchodilatory and anti-inflammatory effect (Barnes 2013). 

Selective PDE4 inhibitors show therapeutic potential in asthma, COPD and 

allergic rhinitis (Dyke and Montana 2002). Rolipram is a first generation selective 

PDE4 inhibitor, reversing AHR and bronchoconstriction in guinea pigs chronically 

exposed to endotoxin, a model for severe asthma and COPD (Toward and Broadley 

2001). However, the therapeutic utility of rolipram is restricted due to dose limiting 

side-effects such as nausea and emesis (Hebenstreit, Fellerer et al. 1989). Currently, 

RPL554, a dual PDE3/4 inhibitor, and CHF 6001, an inhaled PDE4 inhibitor, are 

under clinical development for the treatment of asthma (Matera, Page et al. 2014). 
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Rationale 

Patients with severe asthma show exaggerated airway remodelling despite being on 

high-dose inhaled, and often systemic CS treatment. The airways of patients with 

severe asthma also show increased fibrocyte recruitment to the lamina propria and 

ASM compartments, suggesting that fibrocytes may contribute to the development of 

remodelling in severe asthma (Saunders, Siddiqui et al. 2009). However, it is currently 

unknown whether the increased presence of fibrocytes in severe asthmatic airways is 

a result of aberrant proliferation, differentiation and/or migration, or resistance to 

anti-asthma treatments. 

Hypothesis 

I hypothesise that: 

In severe asthma there are increased numbers of circulating fibrocytes that have 

an increased capacity to differentiate into myofibroblasts and have differential 

responses to pro-inflammatory mediators and asthma therapeutic agents 

compared to non-severe asthma, thus contributing to sub-epithelial fibrosis and 

ASM layer thickening. 

Aims 
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In order to address this hypothesis these specific aims were set: 

1. Compare the number of fibrocytes and differentiating fibrocytes, as well as CC 

chemokine receptor 7 (CCR7) expression in fibrocytes, isolated from the 

peripheral blood of healthy subjects and patients with non-severe or severe 

asthma, both immediately after isolation and following culture. 

2. Compare the effect of pro-inflammatory TH2 cytokines (interleukin-4 and 

interleukin-13) and neurotrophins (nerve growth factor and brain-derived 

neurotrophic factor) on the number of fibrocytes and differentiating fibrocytes as 

well as on CCR7 expression in fibrocytes from healthy subjects and patients with 

non-severe or severe asthma. 

3. Compare the effect of corticosteroids (dexamethasone) on the number of 

fibrocytes and differentiating fibrocytes, as well as the expression of CCR7 in 

fibrocytes from all groups. Also, study the mechanisms through which 

corticosteroids mediate their effects on fibrocyte function and compare the 

expression of the glucocorticoid receptor between the fibrocytes of the three 

groups. 
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4. Compare the effect of β2-adrenergic receptor agonists (salmeterol xinafoate) and 

muscarinic antagonists (tiotropium bromide) on the number of fibrocytes and 

differentiating fibrocytes as well as on CCR7 expression in fibrocytes from 

healthy subjects and patients with non-severe or severe asthma. 

5. Compare the responses of fibrocytes isolated from the adherent and non-adherent 

fraction of peripheral blood mononuclear cells. 
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Chapter 2: Materials and Methods 

2.1 Materials 

2.1.1 Peripheral blood mononuclear cell and non-adherent 

non-T cell isolation 

Phosphate-buffered saline (PBS), pure water and ethylenediaminetetraacetic acid 

(EDTA) were from Sigma-Aldrich (Poole, UK). Ficoll-Paque
TM

 PLUS was from GE 

HealthCare (Uppsala, Sweden). Anti-coagulant acid-citrate dextrose (ACD, 

di-Sodium hydrogen citrate) was from Merck KGaA (Darmstadt, Germany). Sheep 

red blood cells (RBC) 100% washed pooled cells was from Rockland (Gilbertsville, 

Pennsylvania, USA). CD3 MicroBead kit, LD column and VarioMACS™ Separator 

were from Miltenyi Biotec (Auburn, California, USA). Trypan Blue Stain and PBS 

(10X) were from Invitrogen –Life Technologies (Paisley, UK). 

2.1.2 Cell culture 

Iscove's Modified Dulbecco's Medium (IMDM), Dulbecco's Modified Eagle Medium 

(DMEM), cell culture grade bovine serum albumin 35% (BSA), foetal bovine serum 

(FBS), non-essential amino-acid solution and L-glutamine were from Sigma-Aldrich. 

6-well tissue culture plates (growth surface area 9.6 cm
2
/well) were from Corning 

http://www.lifetechnologies.com/mv/en/home/life-science/cell-culture/mammalian-cell-culture/classical-media/dmem.html
http://www.lifetechnologies.com/mv/en/home/life-science/cell-culture/mammalian-cell-culture/classical-media/dmem.html
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(Corning, New York, USA). Human fibronectin was from BD Biosciences (San Jose, 

California, USA). The details for different cell treatments used in this thesis are 

shown in Table 2.1. 
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Table 2.1 Inhibitors, drugs and mediators used in the project 

Treatment Source Stock solution 

Recombinant human IL-4 R&D Systems (Abingdon, UK) 100 μg/mL in sterile PBS containing 0.1% BSA 

Recombinant human IL-13 R&D Systems 50 μg/mL in sterile PBS containing 0.1% BSA 

Recombinant human β-NGF R&D Systems 100 μg/mL in sterile PBS containing 0.1% BSA 

Recombinant human BDNF R&D Systems 25 μg/mL in sterile PBS containing 0.1% BSA 

Dexamethasone Sigma-Aldrich 10
-3

 M in cell-culture grade H2O 

RU486 Abcam (Cambridge, UK) 0.1 M in DMSO 

N-acetyl cysteine Sigma-Aldrich 0.613 M in cell-culture grade H2O 

SB202190 Sigma-Aldrich 10
-2

 M in DMSO 

SP600125 Sigma-Aldrich 10
-2

 M in DMSO 

U0126 EMD Millipore 0.5 M in DMSO 

LY294002 Cayman Chemical (Ann Arbor,, 

Michigan, USA) 

10
-2

 M in DMSO 

Salmeterol xinafoate Sigma-Aldrich 10
-2

 M in DMSO 

Acetylcholine chloride Sigma-Aldrich 0.1 M in cell-culture grade H2O 

Tiotropium bromide Biorbyt Ltd (Cambridge, UK) 0.2 M in DMSO 

Rolipram Sigma-Aldrich 2.65 ×10
-2

 M in DMSO 

8-Br-cAMP Abcam 0.1 M in cell-culture grade H2O 

IL-4: interleukin-4; IL-13: interleukin-13; NGF: nerve growth factor; BDNF: brain-derived 

neurotrophic factor; 8-Br-cAMP: 8-Bromoadenosine 3',5'-cyclic monophosphate 
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2.1.3 Antibodies and reagents for flow cytometry 

BD falcon round bottom polystyrene tube, BD FACSCanto
TM

 II device and BD 

FACSDiva software were from BD Biosciences. For detection of cell surface 

markers, antibodies conjugated to different fluorochromes were used either alone or in 

combination. The spectral characteristics and working dilutions of the antibodies used 

are listed in Table 2.2. Fluorochrome-labelled isotype controls were used as negative 

controls. BD™ CompBeads (Anti-Mouse Ig, κ/Negative Control Compensation 

Particles Set) were from BD Biosciences. 
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Table 2.2: Wavelength of maximal excitation and emission absorption 

(Ex-max and Em-max) and final amount of antibodies applied for flow 

cytometry  

Ex-max and Em-max: maximal excitation and emission absorption; FITC: fluorescein 

isothiocyanate; PE: R-phycoerythrin; APC: allophycocyanin; Col I: collagen I; α-SMA: 

α-smooth muscle actin; GR: glucocorticoid receptor; CCR7: CC chemokine receptor 7 

2.1.4 Cell apoptosis assay for flow cytometry 

Fluorescein isothiocyanate (FITC) Annexin V/Dead Cell Apoptosis Kit with FITC 

annexin V and propidium iodide was from Invitrogen –Life Technologies. 

Fluorochrome-labelled antibodies Company Ex-max 

(nm) 

Em-max 

(nm) 

Final 

amount (μg) 

Unlabelled-mouse IgG1 κ anti-human Col I Millipore N/A N/A 0.5 

Unlabelled-mouse IgG1κ anti-human isotype control DAKO N/A N/A 0.5 

FITC-rabbit F(ab’)2 anti-mouse 

immunoglobulins 

DAKO 494 520 2.75 

FITC-mouse IgG1 κ anti-human Col I Millipore 488 518 0.5 

FITC-mouse IgG1κ anti-human isotype control Millipore 488 518 0.5 

APC- mouse IgG1κ anti-human CD45 BD 650 660 0.015 

APC-mouse IgG1κ anti-human isotype control BD 650 660 0.015 

PE-mouse IgG2A anti-human α-SMA R&D 496 578 0.125 

PE-mouse IgG2A anti-human isotype control R&D 496 578 0.125 

PE-mouse IgG1 anti-human CD3 BD 496 578 0.0625 

PE-mouse IgG1 anti-human isotype control BD 496 578 0.0625 

Unlabelled-rabbit IgG anti-human 

glucocorticoid receptor 

Abcam N/A N/A 0.228 

Unlabelled-rabbit IgG anti-human isotype 

control 

Abcam N/A N/A 0.228 

PE-goat IgG anti-rabbit polyclonal (secondary) Abcam 488 575 0.3 

PE-mouse IgG2A anti-human CCR7 BD 496 578 0.125 



85 

 

2.1.5 Cell proliferation assay for flow cytometry 

Click-iT® 5-ethynyl-2'-deoxyuridine (EdU) Flow Cytometry Assay Kit with Pacific 

Blue™ azide was from Invitrogen –Life Technologies. 

2.1.6 Total RNA extraction, cDNA preparation by 

reverse-transcriptase polymerase chain reaction and 

determination of mRNA expression by real- time quantitative 

polymerase chain reaction 

The RNeasy Mini Kit, QIAshredder spin columns, DNAse enzyme and SYBR Green 

PCR Master Mix Reagent were from Qiagen (Crawley, UK). β-mercaptoethanol was 

from Sigma-Aldrich. The NanoDrop 1000 spectrophotometer was from Thermo 

Scientific (Epsom, UK). The deoxynucleotides (dNTPs) were from Bioline (London, 

UK). Avian myeloblastosis virus (AMV) reverse transcriptase reaction buffer and 

enzyme, random primers, recombinant RNasin ribonuclease inhibitor and 

nuclease-free water were from Promega (Southampton, U.K).  The G-storm thermal 

cycler GS1 was from G-storm (Somerton, UK). The Rotor Gene 3000 real-time 

cycler, capillary tubes, and the Rotor Gene 6000 Series software (version 1.7) were 

from Corbett Research (Sydney, Australia). 
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Primers for real-time quantitative polymerase chain reaction (real-time PCR) are 

listed in Table 2.3. Commercial primers for α-smooth muscle actin (α-SMA; 

Hs_ACTA2_va.1_SG; QT02407307), CD45 (Hs_PTPRC_5_SG; QT01869931) and 

glucocorticoid-induced leucine zipper (GILZ; TSC22D3_vb.1_SG; QT00999747) 

were from Qiagen. Customised collagen I (Col I) and 18S primers were produced by 

Eurofins MVG Operon (Ebersberg, Germany). Customised B-cell lymphoma 2 

interacting mediator of cell death-extra long (BimEL) primer was produced by 

Sigma-Genosys (Suffolk, UK). Col I primer was designed according to sequences 

published in the literature (Aoudjehane, Pissaia et al. 2008). Primers for BimEL and 

18S were designed according to their published sequences using the GenScript online 

primer design software. Primer specificity was measured by using the online sequence 

analysis software BLAST (www.ncbi.nlm.nih.gov/BLAST/). 

http://www.ncbi.nlm.nih.gov/BLAST/
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Table 2.3 Primers used for real-time PCR 

Gene Primer Sequences Source 

18S Forward: 5’-CTT AGA GGG ACA AGT GGC G-3’ 

Reverse: 5’-AGC CTG AGC CAG TCA GTG TA-3’ 

Eurofins MVG Operon 

Col I Forward: 5’-CCT CAA GGG CTC CAA CGA G-3’ 

Reverse: 5’-TCA ATC ACT GTC TTG CCC CA-3’ 

Eurofins MVG Operon 

CD45 QT01869931 (Hs_PTPRC_5_SG)  Qiagen 

α-SMA QT02407307 (Hs_ACTA2_va.1_SG) Qiagen 

BimEL Forward: 5’-CGA TCC TCC AGT GGG TAT TT-3’ 

Reverse: 5’-ACT CTT GGG CGA TCC ATA TC-3’ 

Sigma-Genosys 

GILZ QT00999747 (TSC22D3_vb.1_SG) Qiagen 
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2.2 Methods 

2.2.1 Recruitment of healthy subjects and patients with 

non-severe or severe asthma 

Healthy subjects and patients with non-severe or severe asthma, aged between 20 and 

65, were recruited (Table 2.4). All subjects were non-smokers or ex-smokers with < 5 

pack-year smoking history (quit > than 3 years ago) without significant co-morbidities 

e.g. ischaemic heart disease, diabetes, malignancy. Subjects with forced expiratory 

volume in 1 s (FEV1) reversibility ≥ 12% or provocative concentration of 

methacholine causing a 20% fall in FEV1 (PC20) < 8 mg/mL were diagnosed as 

asthmatic patients. Severe asthma was defined according to the American Thoracic 

Society guidelines for refractory asthma (Chapter 1.1), with the presence of at least 

one of two major criteria for corticosteroid (CS) usage (inhaled beclomethasone 

>1260 μg/day or equivalent), and at least two minor criteria (2000). Asthmatic 

patients who did not meet the criteria were included as patients with non-severe 

asthma. This study has been approved by the Royal Brompton & Harefield NHS 

Trust/National Heart & Lung Institute Ethics Committee (London - Chelsea REC 

08/H0708/109). Informed consent was given. 
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Compared to healthy subjects and patients with non-severe asthma, the patients 

with severe asthma used higher doses of inhaled CS, and about two third of them were 

on oral prednisolone treatment. Generally, these patients were more senior, 

predominantly female and had worse lung function. 
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Table 2.4: Clinical characteristics of studied subjects 

 Healthy  Non-severe Asthma Severe Asthma 

Number 18 19 44 

Age, years 40.2 ± 2.3 44.6 ± 3.7 49.2 ± 2.4 

Gender, Female/Male 8/10 10/8 31/13 

Duration of asthma, years N/A 29.0 ± 11.5 28.8 ± 15.7* 

Smoking status None None None 

Inhaled corticosteroid dose, μg BDP 

equivalent 

0 342.1 ± 108.5 2095 ± 118.4**## 

Atopy 10 (55.6 %) 11 (57.9 %) 27 (61.4 %) 

Receiving oral corticosteroids 0 (0 %) 0 (0 %) 29 (66.0 %) 

Pre-bronchodilator FEV1 (L) 3.5 ± 0.2 2.8 ± 0.2** 1.9 ± 0.1***# 

Pre-bronchodilator FEV1 of predicted 

value (%) 

97.9 ± 2.9 87.1 ± 3.1** 67.9 ± 3.5***## 

FEV1/FVC (%) 87.4 ± 1.6 73.4 ± 1.8*** 69.4 ± 1.9*** 

 

Data are expressed as mean ± SEM. BDP, beclomethasone dipropionate (Beclomethasone 

1μg = Fluticasone 0.5μg = Budesonide 0.640μg); FEV1, forced expiratory volume in 1s; FVC, 

forced vital capacity.  

* p < 0.05, ** p < 0.01, *** p < 0.001 compared to healthy subjects. 

# p < 0.05, ## p < 0.01 compared to patients with non-severe asthma. 
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2.2.2 Non-adherent non-T cell isolation and culture 

Non-adherent non-T (NANT) cells were isolated from peripheral blood as previously 

described in the literature (Wang, Huang et al. 2008, Wang, Huang et al. 2012, Weng, 

Chen et al. 2013) with modification in the method of T cell depletion. Peripheral 

blood mononuclear cells (PBMC) were separated from whole blood using 

Ficoll-Paque
TM

 PLUS
 
density gradient centrifugation. Briefly, whole blood containing 

acid citrate dextrose (ACD) was diluted with equal volume of PBS. 10 mL of diluted 

cell suspension was carefully layered over 3 mL of Ficoll-Paque
TM

 PLUS in a 15 mL 

conical tube and centrifuged at 300×g for 30 min, at 20 °C. PBMC were harvested 

from the interface, carefully transferred to a new 50 mL conical tube, mixed with 

PBS, and centrifuged at 300×g for 12 min, at 20 °C. RBC lysis was carried out by 

brief hypotonic shock using 1.8 mL of pure water to re-suspend the cell pellet for 30 

s, and stopped by adding 200 µL of 10× concentrated PBS. The PBMC were then 

diluted with IMDM supplemented with 20% FBS to a density of 4×10
6
 PBMC/mL, 

and cells were seeded in 6-well tissue culture plates (4×10
6
 PBMC/well) and 

incubated at 37°C for 90 min to allow attachment of monocytes. The non-adherent 

cell fraction was then obtained and centrifuged at 300×g for 12 min. 
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Non-adherent cells were then depleted of T cells by treating with sheep RBC, or 

anti-CD3-labelled magnetic beads. The two methods are described below. 

Treatment with sheep RBC: This method is based on the ability of T cells to bind 

to sheep RBC, forming E-rosette structures which can be then removed by 

Ficoll-Paque density gradient centrifugation (Wang, Huang et al. 2008). Briefly, 

non-adherent PBMC were re-suspended in 2 mL of IMDM and mixed with 100% 

sheep RBCs for 1 hr at 4°C. The E-rosette–forming cells were separated by 

Ficoll-Paque centrifugation as described above. The NANT cell fraction was 

harvested from the interface. This method was only used in chapter 3.2.1 for protocol 

optimisation. 

Antibody-labelled magnetic beads: This method involves labelling T cells using 

anti-CD3 antibodies conjugated to magnetic beads, and then removing them by 

placing in a magnetic field according to the manufacturer’s instructions. Briefly, 

1×10
7
 non-adherent cells were re-suspended in 80 μL of PBS containing 0.5% BSA 

and 2 mM EDTA. The cells were then mixed with 20 μL of CD3 MicroBeads and 

incubated for 15 min at 4°C. Finally, cells were washed, re-suspended in 500 μL of 

PBS and applied onto a pre-rinsed LD column in the magnetic field of a MACS 
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Separator. T cells were retained in the column whilst the NANT cells were collected 

in the flow-through fraction. 

Following extraction, viable NANT cell number was determined by Trypan Blue 

staining and haemocytometer counting, and cells were prepared for flow cytometry or 

culture. The NANT cell isolation procedure is illustrated in Figure 2.1. 
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Figure 2.1: Isolation of non-adherent non-T cells from peripheral blood. PBMC were 

isolated from whole blood by Ficoll-Paque centrifugation. PBMC were seeded in 6-well tissue 

culture plates and incubated for 90 min to allow attachment of monocytes. Non-adherent cells were 

collected, and T cells were depleted by anti-CD3-labelled magnetic beads or sheep RBC. NANT 

cells were then prepared for flow cytometry or culture.  

Whole Blood  

Ficoll 

Centrifugation 

 

Red 

Blood 

 Cells

Peripheral Blood 

Mononuclear Cells 

Adherent Cells 

Attachment for 

90 min 

T Cell Depletion 

with Sheep Red 

Blood Cells or 

Anti-CD3-labelled 

Magnetic Beads 

Non-adherent 

Non-T Cells  



95 

 

To culture the fibrocytes derived from NANT cells, 1x10
6
 freshly isolated 

NANT cells were re-suspended in 2 mL of FBS-containing medium (IMDM 

supplemented with 30% FBS and 1% BSA) (Wang, Huang et al. 2008, Wang, Huang 

et al. 2012, Weng, Chen et al. 2013) or FBS-free medium (IMDM supplemented with 

2mM non-essential amino acids and 0.1% BSA; only used in Chapter 3.2.2 and 

Chapter 4.2.1). Cells were then seeded in 6-well tissue culture plates (10
6
 cells/well) 

and incubated in a humidified incubator at 37 °C, 5% CO2 for the required time 

periods in the presence or absence of the treatments (IL-4. IL-13, NGF, BDNF, 

dexamethasone, RU486, N-acetylcysteine, SB202190, SP600125, U0126, LY294002, 

salmeterol, N-acetylcysteine, tiotropium, rolipram, 8-Br-cAMP). The medium was not 

changed throughout the experiment, to avoid removal of un-differentiated fibrocytes 

which were found in suspension (Wang, Huang et al. 2008, Wang, Huang et al. 2012, 

Weng, Chen et al. 2013). Adherent cells were recovered by scrapping, and collected 

together with non-adherent cells. Viable NANT cell number was determined by 

Trypan Blue staining and haemocytometer counting, and cells were prepared for flow 

cytometry. 
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2.2.3 Adherent peripheral blood mononuclear cell isolation and 

culture 

PBMC were isolated from whole blood containing acid citrate dextrose (ACD) using 

density gradient centrifugation with Ficoll-Paque
TM

 PLUS as described above 

(Chapter 2.2.2). PBMC (4×10
6
 cells/well) re-suspended in 1 mL of FBS-containing 

medium (DMEM supplemented with 10% FBS and L-glutamate 2 mM) (Abe, 

Donnelly et al. 2001, Yang, Scott et al. 2002) were seeded in 6-well tissue culture 

plates pre-coated with fibronectin (25 μg/mL or 2.6 μg/cm
2
). Non-adherent cells with 

old media were removed by a single gentle aspiration and 2 mL of new media were 

added on day 3 with or without treatment (dexamethasone, RU486, salmeterol, 

tiotropium, IL-4, IL-13, NGF, BDNF). Adherent cells were harvested by medium 

flushing and scraping on day 6. Viable adherent cell were determined by Trypan Blue 

staining and haemocytometer counting. Fibrocytes (Col I+/CD45+ cells) and 

differentiating fibrocytes (α-SMA+ cells) were determined by flow cytometry. 

For condition optimisation, FBS-free medium (DMEM supplemented with 0.1% 

BSA, 1X non-essential amino acids, L-glutamate 2 mM; Chapter 3.2.4.2 and Chapter 

4.2.4), different amount of fibronectin (0-10 μg/mL or 0-1.0 μg/cm
2
; Chapter 3.2.4.3) 
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and length of culture (3-14 day, Chapter 3.2.4.1) and treatment (treated cells on day 0 

without changing medium on day 3, Chapter 4.2.4) have also been tried. 

2.2.4 Flow cytometry and staining 

Cells stained with antibodies or dyes were prepared in BD falcon round bottom 

polystyrene tube. Flow cytometry was performed using a BD FACSCanto
TM

 II device 

and analysis was carried out using the BD FACSDiva software. 

2.2.4.1 Colour compensation 

In order to avoid spectral overlap and thus false positive events in the flow cytometric 

analysis, colour compensation was carried out. CompBeads are polystyrene beads 

coupled to an anti-Ig κ light chain antibody allowing the binding of the 

fluorochrome-conjugated antibodies. Moreover, beads without anti-Ig κ light chain 

antibody were used as negative control. 

Staining of the BD
TM

 CompBeads was carried out according to the 

manufacturer’s instructions. Briefly, 60 μL of BD
TM

 CompBeads Negative Control 

and BD
TM

 CompBeads were added to 100 μL of staining buffer (PBS containing 0.1% 

BSA) and incubated with the fluorochrome-labelled antibodies at the working 

dilutions (Table 2.2), for 30 min at room temperature. The beads were then washed 
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using PBS, spun at 200×g for 10 min, re-suspended in PBS and transferred to 

polystyrene tubes for flow cytometry. In Figure 2.2, I demonstrated how to carry out 

compensation to avoid spill over between fluorescence channels when performing  

three colour staining using mouse-anti-human anti-Col I/FITC-anti-mouse, 

R-phycoerythrin (PE)-anti-CC chemokine receptor 7 (CCR7) and allophycocyanin 

(APC)-anti-CD45 antibodies. The singlet bead population was selected based on 

forward scatter (FSC) and side scatter (SSC) characteristics (gate P1; Figure 2.2A) 

and the mean fluorescence intensity for each antibody was determined for the positive 

(gate P2) and negative (gate P3) populations. All antibodies, at the dilutions used, 

gave a good resolution between negative and positive populations (Figure 2.2B-D). 

Compensation was automatically calculated by the FACSDiva software. 

For multicolour staining involving non-mouse antibodies (i.e. glucocorticoid 

receptor; GR) or dyes (i.e. cell proliferation assay and cell apoptosis assay), 

fluorescence compensation for spectral overlap was done manually. 
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Figure 2.2: BD
TM

 CompBeads staining by the fluorochrome-conjugated antibodies. 

BD
TM

 CompBeads and BD
TM

 CompBeads Negative Control were stained using anti-Col 

I/FITC-anti-mouse, PE-anti-CCR7 and APC-anti-CD45 antibodies. Beads were selected based on 

their FSC and SSC characteristics (A;P1), and the mean fluorescence intensity for each antibody was 

determined for the positive (P2) and negative (P3) populations (B-D). 

D C 

A B 
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2.2.4.2 Detection of fibrocytes (Collagen I+/CD45+ cells) and their CC 

chemokine receptor 7 or glucocorticoid receptor expression 

Two types of anti-Col I antibodies have been used in this project because commercial 

flurochrome (FITC)-directly labelled mouse anti-human antibody was only available 

after 2013. For Col I+/CD45+ double staining or Col I+/CD45+/CCR7 triple staining, 

Col I was stained with unlabelled primary mouse anti-human Col I antibody (and 

isotype control antibody) and FITC-conjugated secondary rabbit anti-mouse antibody. 

For GR detection and cell proliferation assay, FITC-labelled mouse anti-human 

anti-Col I antibody (and its isotype control antibody) was used. 

For Col I+/CD45+ or Col I+/CD45+/CCR7+ staining (Wang, Huang et al. 2008, 

Moeller, Gilpin et al. 2009, Wang, Huang et al. 2012, Weng, Chen et al. 2013), 5×10
5
 

NANT cells or adherent PBMC were permeabilised with 120 µL of 1X BD FACS™ 

Permeabilizing Solution 2 for 15 min, then washed with PBS (1 mL, 2700 rpm, 7 min, 

4°C) and incubated with primary anti-Col I antibody (or isotope control antibody) for 

30 min, followed by PBS washing (1mL, 2700 rpm, 7 min, 4°C) and incubation with 

FITC-conjugated secondary antibody for 30 min. After washing with PBS (1 mL, 

2700 rpm, 7 min, 4 °C), cells were incubated with the APC-conjugated anti-CD45 

antibody (or its isotype control antibody), with or without PE-conjugated anti-CCR7 
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antibody (or its isotype control antibody) for 30 min. Cells were washed with PBS (1 

mL, 2700 rpm, 7 min, 4°C) and re-suspended in 500 μL of PBS for flow cytometric 

analysis (Figure 2.3B). Fibrocyte number was determined as: % Col I+/CD45+ cells × 

NANT cell number. 

For detection of GR in fibrocytes, NANT cells were incubated with 

APC-conjugated anti-CD45 antibody (or its isotype control antibody) for 30 min, 

washed with PBS (1 mL, 2700 rpm, 7 min, 4 °C), permeabilised with 120 µL of 1X 

BD FACS™ Permeabilizing Solution 2 for 15 min, then washed with PBS (1 mL, 

2700 rpm, 7 min, 4°C) and incubated with FITC-conjugated anti-Col I antibody and 

primary rabbit-anti-human unconjugated anti-GR antibody (or their isotype control 

antibodies) for 30 min, followed by PBS washing (1 mL, 2700 rpm, 7 min, 4°C) and 

incubation with PE-conjugated goat-anti-rabbit antibody for 30 min. Cells were 

washed with PBS (1 mL, 2700 rpm, 7 min, 4 °C) and re-suspended in 500 μL of PBS 

for flow cytometric analysis. 

2.2.4.3 Detection of fibrocytes undergoing myofibroblastic 

differentiation (α-smooth muscle actin+ cells) 

To detect the differentiating fibrocytes, 2×10
5
 cells were permeabilised with 120 μL 

of 1X BD FACS™ Permeabilizing Solution 2, followed by PBS washing (1 mL, 2700 
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rpm, 7 min, 4°C) and staining with PE-conjugated anti-α-smooth muscle actin 

(α-SMA) antibodies (or its isotype control antibody) for 30 min. Cells were washed 

with PBS (1 mL, 2700 rpm, 7 min, 4 °C) and re-suspended in 500 μL of PBS for flow 

cytometric analysis (Figure 2.3C). Differentiating fibrocyte number were determined 

as: % α-SMA+ cells × NANT cell number. 
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Figure 2.3: Detection of fibrocytes and differentiating fibrocytes. Representative flow 

cytometry scatter plots from one experiment are shown. NANT cells from one healthy subject were 

cultured for 7 days in FBS-containing medium. (A) NANT cells were gated on forward and side 

scatter plots (Wang, Huang et al. 2008). (B) NANT cells were stained with primary Col I 

antibody/FITC-conjugated secondary and APC-conjugated anti-CD45 antibody (or isotype control 

antibodies). Col I+/CD45+ cells were identified as fibrocytes. (C) NANT cells were stained with 

PE-conjugated α–SMA antibody (or isotype control antibody). α-SMA+ cells were identified as 

differentiating fibrocytes. 

C 

A 

B 
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2.2.4.4 Cell apoptosis assay 

Apoptosis in NANT cells were evaluated by FITC Annexin V/Dead cell apoptosis kit 

according to manufacturer’s instruction. In apoptosis, phosphatidylserine is 

translocated from the inner cytoplasmic surface of the cell membrane to the outer 

leaflet where it is recognised by annexin V. Propidium iodide binds to nucleic acids 

and is only permeating the cell membranes of dead cells. Briefly, 1x10
5
 NANT cells 

were harvested, washed in cold PBS (1 mL, 2700 rpm, 7 min, 4°C) and pelleted. An 

unstained negative control was used. Cells were re-suspended in 1X annexin-binding 

buffer (10
5
 cells in 100 µL) in the presence of FITC-annexin V (5 µL) and propidium 

iodide (0.1 µg) for 15 min. The live (annexin V
-
/propidium iodide

-
), early apoptotic 

(annexin V
+
/propidium iodide

-
) and late apoptotic (annexin V

+
/propidium iodide

+
) 

NANT cells were then determined using the FITC channel and PE channels of the 

flow cytometer. 
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  B 

A B  

Figure 2.4: Cell apoptosis assay. (A) Phosphatidylserine is translocated from inner cytoplasmic 

surface of apoptotic cell membrane to the outer leaflet for recognition by annexin V. Propidium iodide binds 

to nuclear acid and is only permeant in the late apoptotic cells. An unstained sample is required to set negative 

thresholds (B). Early apoptosis (annexin V
+
/propidium iodide

-
) and late apoptosis (annexin V

+
/propidium 

iodide
+
) was determined in freshly isolated NANT cells (C) and 3-day cultured NANT cells (D) from a 

healthy subject using flow cytometry. 
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2.2.4.5 Cell proliferation assay 

The Click-iT
®

 EdU Flow Cytometry Assay Kit is an alternative to the 

bromodeoxyuridine (BrdU) assay which detects the percentage of S-phase cells in the 

population. EdU is a nucleoside analogue of thymidine with alkyne in its ethynyl 

moiety. EdU can be determined by a click reaction, a copper catalyzed covalent 

reaction between an alkyne and an azide, which is coupled to Pacific Blue
TM

 in this 

kit (Figure 2.5 A). As a result, the EdU incorporated in synthesizing DNA during cell 

proliferation can be detected by flow cytometry. 

The identification of proliferating fibrocytes derived from NANT cells was 

achieved by staining CD45, Col I and EdU according to the manufacturer’s 

instructions. Briefly, 1x10
6
 NANT cells were incubated with EdU (10 µM) in 

FBS-containing medium for 1 hr. Cells were then harvested, washed with PBS (1mL, 

2700 rpm, 7 min, 4°C), pelleted then stained with APC-conjugated mouse anti-human 

CD45 (or its isotype control antibody) for 30 min. Cells were then washed with PBS 

(1 mL, 2700 rpm, 7 min, 4°C), pelleted and fixed with 100 µL of Click-iT
®
 fixative 

(4% paraformaldehyde) for 15 min at room temperature. Cell were then washed (1 

mL, 2700 rpm, 7 min, 4°C), pelleted again and permeabilised with 100 µL of 1X 

Click-iT
®
 saponin-based permeabilization and washing reagent for 15 min, then 
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mixed with 0.5 mL of Click-iT
®
 reaction cocktail containing Copper (II) sulphate, 

Pacific Blue
TM

 dye azide and reaction buffer additive for 30 min at room temperature. 

Cell were then washed (1 mL, 2700 rpm, 7 min, 4°C), pelleted, permeabilised with 

120 µL of 1X BD FACS Permeabilizing Solution 2, washed (1 mL, 2700 rpm, 7 min, 

4°C), and stained with FITC-conjugated mouse anti-human Col I antibody (or isotype 

control antibody). The proportion of Col I+/CD45+/EdU+ cells within Col I+/CD45+ 

cells (% Col I+/CD45+/EdU+ cells) was determined by flow cytometry (Figure 

2.5B-D).
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Figure 2.5: Cell proliferation assay. NANT cells were incubated with EdU (10µM) for 1 hour prior 

to staining with APC-conjugated anti-CD45 antibody, Click-iT
®
 EdU Flow Cytometry Assay Kit (coupled to 

Pacific Blue
TM

 dye) and FITC-conjugated anti-Col I antibody. A click reaction (copper catalyzed reaction) 

occurs between the azide coupled to Pacific Blue
TM

 dye and alkyne on EdU incorporated into synthesizing 

DNA in proliferating cells (A; modified from http://jablonskidiagram.com/illust.html). NANT cells stained 

with isotype control antibodies were used as a negative control (B). Proliferating fibrocytes (Col 

I+/CD45+/EdU+ cells) were identified by flow cytometry immediately after isol\ated from peripheral blood 

(C) or after 7 days in culture (D). 
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2.2.5 Determination of messenger ribonucleic acid expression 

2.2.5.1 Ribonucleic acid extraction 

NANT cells were cultured in 6-well tissue culture plates at a density of 1x10
6
 

cells/well in FBS-containing medium. After treatment as indicated, cells were 

recovered by aspiration, flushing and scraping, followed by washing with PBS (1 mL, 

2700 rpm, 7 min, 4°C) and centrifugation. Cells were then lysed by resuspending in 

350 μL of RLT buffer containing 1% of β-mercaptoethanol for 5 min at room 

temperature. The lysates were stored at -80 °C until RNA was extracted. 

Total RNA was isolated from NANT cells by using the RNeasy Mini Kit 

according to the protocol recommended by the manufacturer. Briefly, cell lysates 

were homogenised by centrifugation through QIAshredder spin columns at 12,000 

rpm for 2 min, mixed with an equal volume (350 μL) of 70% ethanol, transferred to 

RNeasy Mini spin column and centrifuged at 10,000 rpm for 15 s. The RNA retained 

on the silica-based membrane was then washed using 350 µL of buffer RW1 to 

remove contaminants, incubated with a DNase enzyme for 15 min at room 

temperature to remove DNA contamination. The columns were finally washed once 

with 350µL buffer RW1 and twice with 500 µL buffer RPE. The extracted RNA 

product was finally eluted from the column by applying 30 µL of H2O and 
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centrifuging at 10,000 rpm for 1 min, and quantified using a NANODrop 1000 

spectrophotometer. A ratio of absorbance at 260 nm over the absorbance at 280 nm 

(A260/A280) between 1.8 and 2.1 was indicative of highly purified RNA. The 

concentration of RNA was calculated using the following equation: 

RNA concentration (μg/μL)= (A260 × 40 μg/mL × dilution factor)/1000 

2.2.5.2 Reverse transcriptase PCR 

To denature the RNA strands, approximately 0.25-0.5 μg of diluted RNA product in a 

final volume of 10 μL was incubated for 5 min at 70 °C on the heating block of a 

G-storm thermal cycler. The denatured RNA was then mixed with 10 μL of 

reverse-transcription reaction mix which contained dNTPs (2 mM), random primers 

(25ng/mL), recombinant RNasin ribonuclease inhibitor (40 U), AMV reverse 

transcriptase (10U) and 1X AMV reverse transcriptase reaction buffer. The mixture 

was returned to G-storm thermal cycler, incubated at 42 °C for 60 min followed by 

incubation at 90 °C for 4 min to inactivate the reverse transcriptase enzyme. The final 

complementary DNA (cDNA) product was then diluted in 20 µL of nuclease-free 

H2O. 
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2.2.5.3 Real-time PCR 

2.5 μL of cDNA was added to capillary tubes containing 7.5 μL of reaction mixture, 

which consisted of SYBR Green PCR master Mix Reagent (containing HotStarTaq 

DNA polymerase, dNTPs and SYBR Green I dye) and gene specific primers. The 

PCR reaction was carried out in the Roter Gene 3000 real-time cycler, where the 

cycling conditions were 15 min at 95 °C (enzyme activation) followed by 35-60 

cycles of 20 s at 94 °C (denaturation step), 20 s at either 60 °C (18S and Bim) or 55 

°C (Col I, α-SMA, CD45, GILZ) (annealing step) and 20 s at 72 °C (extension step).  

During the extension step, DNA-bound SYBR Green was excited at 470 nm and 

fluorescence emission was detected at 510 nm. The data were analysed by 

Rotor-Gene 6000 Series Software (version 1.7). mRNA expression was quantified and 

normalised to 18S ribosomal RNA expression by the ΔΔCt method  using the 

equation 2
-ΔΔCt 

. ΔCt for each sample is the difference between the threshold cycle of 

the target gene and the threshold cycle of 18S [ΔCt = Ct (target) - Ct (18S)]. ΔΔCt is 

the difference between the average ΔCt of a treated sample and the average ΔCt of the 

untreated control [Average ΔCt (treatment) -  Average ΔCt (untreated)]. Melting 

curve analysis was carried out to ensure the presence of one specific PCR product. 
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2.2.6 Statistical analysis 

Data are presented as median with interquartile range. Statistical analysis was carried 

out using the GraphPad Prism v.5 software package (GraphPad Prism Software Inc, 

San Diego, CA, USA). The Wilcoxon matched pairs test is used to compare two 

related samples. For ≥ two treatments, results were analysed using the Friedman test 

for intra-group comparisons, followed by Dunn’s post-hoc test to determine 

differences between the control group and each treatment group. The differences 

between two disease groups were determined by Mann-Whitney test. The differences 

amongst ≥ three disease groups were determined by Kruskal-Wallis test, followed by 

Dunn’s post-hoc test. Correlations between parameters were determined by 

Spearman’s rank correlation. For comparisons, a p value < 0.05 was considered as 

statistically significant.  
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Chapter 3: Proliferation, myofibroblastic differentiation 

and CC chemokine receptor 7 expression of fibrocytes 

from severe asthma 

3.1 Background 

Airway remodelling is a key factor of asthma pathogenesis and involves epithelial 

detachment, goblet cell and submucosal gland proliferation, increased airway smooth 

muscle (ASM) mass and subepithelial fibrosis (Davies, Wicks et al. 2003). ASM layer 

thickening and subepithelial fibrosis in asthma develop, at least partly, as a result of 

airway smooth muscle cell (ASMC) hyperplasia and hypertrophy (Woodruff, 

Dolganov et al. 2004, James, Elliot et al. 2012), and an increased presence of 

myofibroblasts (Brewster, Howarth et al. 1990) in the airway wall. The airways of 

patients with severe asthma show more prominent subepithelial fibrosis and ASM 

thickening compared to the airways of patients with non-severe asthma. This suggests 

that these patients show more profound airway remodelling despite taking high doses 

of inhaled, and often systemic corticosteroids (CS)  (Levi-Montalcini 1998, 

Benayoun, Druilhe et al. 2003, Bumbacea, Campbell et al. 2004). A better 

understanding of the mechanisms driving airway remodelling in severe asthma is thus 

crucial in order to improve current asthma treatments. 
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Fibrocytes are thought to play a key role in the development of asthmatic airway 

remodelling, as they migrate from the circulation to the lung in response to 

inflammation, and home to the airway wall where they differentiate into 

myofibroblasts (Gomperts and Strieter 2007). The CC chemokine receptor (CCR) 7 is 

an important mediator of fibrocyte migration (Gomperts and Strieter 2007). CC 

chemokine ligand (CCL) 19/macrophage inflammatory protein-3-β (MIP-3-β), a 

ligand of CCR7, is increased in the airways of patients with asthma (Kaur, Saunders 

et al. 2006). Moreover, increased recruitment of fibrocytes to the ASM compartment 

has been shown in patients with asthma, whilst the number of fibrocytes in the 

bronchial biopsies of mild asthmatic patients correlates with the extent of 

subepithelial fibrosis (Nihlberg, Larsen et al. 2006, Saunders, Siddiqui et al. 2009). 

Intriguingly, fibrocytes isolated from patients with asthma, demonstrating chronic 

airflow obstruction, showed a greater capacity to differentiate into myofibroblasts in 

vitro, in response to treatment with the patient’s own serum (Wang, Huang et al. 

2008). Therefore, the increased recruitment of fibrocytes to the ASM compartment 

and their differentiation into myofibroblasts may contribute to asthmatic airway 

remodelling and airflow obstruction.  
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A recent study by Saunders et al. demonstrates increased localisation of 

fibrocytes in the ASM compartment and the lamina propria of patients with severe 

refractory asthma, suggesting an important role for these cells in the development of 

airway remodelling in these patients (Saunders, Siddiqui et al. 2009). However, the 

mechanism leading to the accumulation of fibrocytes in the airways of these patients 

is unclear and, therefore, needs further investigation. 

The isolation of fibrocytes from peripheral blood is extensively described in the 

literature. There are three main methods. The first and most widely used method 

entails generation of fibrocytes by culture of the adherent fraction of peripheral blood 

mononuclear cells (PBMC) for a period of 5 days to 6 weeks (Bucala, Spiegel et al. 

1994). The second method involves the differentiation of fibrocytes from cultured 

CD14
+
 monocytes (Yang, Scott et al. 2002). Growth of fibrocytes using the above two 

methods has been reported both under foetal bovine serum (FBS)-free and 

FBS-dependent conditions. The above two methods primarily examine fibrocytes 

derived from the one of a number of cell types that can differentiate from monocyte 

fraction in PBMC, including dendritic cells, macrophages and osteoclasts (Geissmann, 

Auffray et al. 2008), and the CD14+ monocyte method avoids the interference of T 

cells before the initial replacement of media. The third method involves the culture of 
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the non-adherent fraction of PBMC, after depletion of T cells, in the presence of 

serum for 7 days (Wang, Huang et al. 2008). 

In this chapter, I describe the optimisation of the isolation and culture of 

fibrocytes from the non-adherent non-T (NANT) cell fraction of PBMC and 

compared the number of circulating fibrocytes (collagen I (Col I)+/CD45+ cells) and 

differentiating fibrocytes (α–smooth muscle actin (SMA)+ cells) as well as the 

expression of CCR7 in fibrocytes from healthy subjects and patients with non-severe 

or severe asthma. In addition, I optimised the isolation of fibrocytes from the adherent 

fraction of PBMC from a small number of patients in order to compare the responses 

of fibrocytes isolated from the different PBMC fractions. 
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3.2 Results 

3.2.1 Isolation of fibrocytes from non-adherent non-T cells 

3.2.1.1 Optimisation of method for T cell depletion. 

In order to determine the most efficient method to deplete T cells from the NANT cell 

fraction, I compared two widely used methods. The first method involved incubation 

of cells with sheep red blood cells (RBC), leading to the formation of E-rosette 

complexes with T cells which were then removed by Ficoll centrifugation (Wang, 

Huang et al. 2008). The second method involved the use of anti-CD3 antibodies 

conjugated to magnetic beads (CD3 MicroBeads). In order to compare the efficiency 

of the two methods, I determined the total number of NANT cells and the percentage 

of CD3-positive cells by flow cytometry, after T cell depletion. Before T cell 

depletion, the percentage of CD3+ T cells in non-adherent PBMC was 75.5% (Figure 

3.1B). The percentage of residual CD3+ cells in NANT cells was 6.6% after using the 

sheep RBC method (Figure 3.1C) and 3.1% after using the CD3 MicroBeads method 

(Figure 3.1D). The CD3 MicroBeads method was more reproducible and resulted in 

less NANT cell loss compared to the sheep RBC method (data not shown). Therefore, 

the CD3 MicroBeads method was used in all subsequent experiments. 
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Figure 3.1: Comparison of the efficiency of T cell depletion methods. The 

non-adherent fraction of PBMC was depleted of T cells using sheep RBC or CD3 

MicroBeads. CD3-positive cells were identified by staining with a phycoerythrin (PE)- 

conjugated anti-CD3 antibody followed by flow cytometric analysis. (A) The negative 

threshold for CD3 expression was set by incubating cells with a PE-labelled isotype 

control.  (B-D) The CD3-positive population was identified in all viable cells before T cell 

depletion (B) and following T cell depletion using sheep RBC (C) and CD3 MicroBeads 

(D). Data are representative of one experiment. 
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3.2.2 Determination the number of fibrocytes and 

differentiating fibrocytes in cultured non-adherent non-T cells 

in the presence or absence of foetal bovine serum  

Fibrocytes are known to differentiate from PBMC in culture both under 

FBS-dependent and FBS-free conditions. The resulting fibrocytes, however, show 

distinct phenotypes (Curnow, Fairclough et al. 2010). I therefore placed NANT cells 

(10
6
 cells/well) for 3, 7 or 14 days in culture, and then determined the number of 

fibrocytes by staining for Col I and CD45 expression and differentiating fibrocytes by 

staining for α-SMA. I employed single α-SMA staining to identify differentiating 

fibrocytes, having previously determined that the majority of cells in the NANT cell 

population expressing α-SMA are fibrocytes. This was done by identifying the 

percentage of CD45+/Col I+/α-SMA+ cells in the NANT cells of a healthy subject 

after 3 days in culture (Figure 3.2). Fully differentiated fibrocytes were identified by 

light microscopy, as adherent, “spindle-shaped” cells (Figure 3.3E). 

Under FBS-free conditions the percentage of fibrocytes and differentiating 

fibrocytes in cultured NANT cells increased in a time-dependent manner reaching 

~20% after 7 days in culture (Figure 3.3A and C). However, the absolute numbers of 

fibrocytes and differentiating fibrocytes did not change significantly after culture 



120 

 

(Figure 3.3B and D). Furthermore, very few spindled-shaped cells were observed 

suggesting that fibrocytes may not fully differentiate into myofibroblasts under these 

conditions (Figure 3.3E). 

 

  

A 

C 

B 

69.9% 

9.0% 16.4% 

4.7% 

D 

0.4% 74.2% 

17.6% 7.8% 

Figure 3.2: The expression of collagen I and CD45 on α–smooth muscle actin+ 

cells. NANT cells from one healthy subject were harvested after 3 days in culture and stained 

with antibodies for Col I, α-SMA and CD45 or their respective IgG isotype controls (A and C). 

The percentage of Col I+/α-SMA+ (B) and CD45+/ α-SMA+ cells (D) was determined by flow 

cytometry. 
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Figure 3.3: Number of fibrocytes and differentiating fibrocytes in non-adherent 

non-T cells cultured under foetal bovine serum-free conditions. NANT cells isolated 

from healthy subjects were placed in culture for a 14-day period in FBS-free medium. (A-D) Cultured 

NANT cells were then harvested and counted at 3, 7 and 14 days. The cells were then analysed by flow 

cytometry. Fibrocytes were identified by staining for Col I and CD45 (A, B). Fibrocyte differentiation 

was determined by staining for α-SMA (C, D). Bars represent median with interquartile range of 4-5 

healthy subjects under FBS-free conditions. The percentage and number of cells at different time points 

were compared by Friedman test, followed by Dunn’s post-hoc test. * p < 0.05 compared to day 0. 

Spindle-shaped cells were identified by light microscopy and photographs were taken after 3, 7, 10 and 

14 days. Photographs are representative of one experiment (E).  

0 3 7 14
0

20

40

60

A

*

Time (days)

%
 C

o
l 
I+

/C
D

4
5
+

 c
e
lls

0 3 7 14
0

5

10

15

*

B

Time (days)

C
o

l 
I+

/C
D

4
5
+

 c
e
ll

 n
u

m
b

e
r 

( 
1
0

4
)

0 3 7 14
0

10

20

30

40

50
C

*

Time (days)

%


-S
M

A
+

 c
e
ll
s

0 3 7 14
0

5

10

15

20
D

Time (days)


-S

M
A

+
 c

e
ll

 n
u

m
b

e
r 

( 
1
0

4
)

E Day 3 Day 7 Day 14 Day 10 



122 

 

Under FBS-containing conditions, the percentage of fibrocytes and 

differentiating fibrocytes in NANT cells of healthy subjects increased in a 

time-dependent manner reaching ~50% of the total cell population after 7 days in 

culture and declining 14 days post-culture (Figure 3.4A and C). As a result, the 

absolute number of fibrocytes and differentiating fibrocytes also increased and peaked 

3 days post-culture (Figure 3.4 B and D). The increase in differentiating fibrocytes 

was accompanied by the appearance of adherent “spindle-shaped” cells after 7 days, 

peaking after 10 days in culture, suggesting that fibrocytes can fully differentiate into 

myofibroblast-like cells in the presence of FBS (Figure 3.4E). These data suggest that 

in the presence of FBS, cultured fibrocytes show prolonged survival and the ability to 

differentiate more readily into myofibroblasts. Thus, all subsequent experiments were 

carried out in the presence of FBS. 
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Figure 3.4: Number of fibrocytes and differentiating fibrocytes in non-adherent 

non-T cells cultured under foetal bovine-containing conditions. NANT cells isolated 

from healthy subjects were placed in culture for a 14 day period in FBS-containing medium. (A-D) 

Cultured NANT cells were then harvested and counted at 3, 7 and 14 days. The cells were then analysed 

by flow cytometry. Fibrocytes were identified by staining for CD45 and collagen I (A, B). Fibrocyte 

differentiation was determined by staining for α-SMA (C, D). Bars represent median with interquartile 

range of 4-17 healthy subjects under FBS-free conditions. The percentage and number of cells at different 

time points were compared by Friedman test, followed by Dunn’s post-hoc test. * p < 0.05, ** p < 0.01, 

*** p < 0.001 compared to day 0. Spindle-shaped cells were identified by light microscopy and 

photographs were taken after 3, 7, 10 and 14 days. Photographs are representative of one experiment (E). 
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In order to determine whether the observed increase in the percentage of 

fibrocytes in cultured NANT cells is as a result of fibrocyte proliferation or 

differentiation of NANT cells into fibrocytes, I determined the rate of 

deoxyribonucleic acid (DNA) synthesis by measuring 5-ethynyl-2'-deoxyuridine 

(EdU) incorporation in fibrocytes and the expression of Col I, CD45 and α-SMA 

messenger ribonucleic acid (mRNA) in NANT cells after culture for different times. 

The proportion of proliferating fibrocytes, identified as EdU+ fibrocytes (Col 

I+/CD45+/EdU+ cells) increased in a time-dependent manner peaking after 96 hours 

in culture (Figure 3.5A), indicating that fibrocytes can proliferate in culture. On the 

other hand, CD45 mRNA remained unchanged whilst Col I mRNA was reduced after 

12 hr in culture suggesting that there is possibly no differentiation of other NANT 

cells into fibrocytes (Figure 3.5B). However, the expression of α-SMA mRNA was 

increased after 12-48 hr in culture, confirming my previous findings, showing 

myofibroblastic differentiation of fibrocytes in culture (Figure 3.5B). 

 

 



125 

 

0 12 24 48 96 168
0

20

40

60

80

100
A

Time (hr)

%
 C

o
l 

I+
/C

D
4

5
+

/E
d

U
+

 c
e

ll
s

Figure 3.5: Percentage of proliferating fibrocytes and collagen I, CD45 and 

α-smooth muscle actin messenger ribonucleic acid expression in non-adherent 

non-T cells cultured in foetal bovine serum-containing medium. (A) NANT cells were 

placed in culture in the presence of FBS for 12-168 hr and then incubated with EdU for 1 hr. The 

percentage of EdU+ fibrocytes (Col I+/CD45+/EdU+ cells) within the NANT cell population was 

identified by flow cytometry. Symbols are median with bars representing interquartile range of 3 

healthy subjects. (B) NANT cells were placed in culture in the presence of FBS for 12-48 hr and Col 

I, CD45 and α-SMA mRNA was determined by real-time PCR. Bars represent median of 2 healthy 

subjects. 

0 12 24 48
0.0

0.5

1.0

1.5

2.0
CD45

Col I

a-SMA

B

Time (hr)

F
o

ld
-c

h
a

n
g

e
 i

n
 m

R
N

A
/1

8
S



126 

 

3.2.3 Comparison of the number of circulating fibrocytes in 

non-adherent non-T cells from healthy subjects and patients 

with non-severe or severe asthma 

Having optimised the conditions for isolation and culture of fibrocytes from NANT 

cells, I compared the number of fibrocytes in the NANT cells of healthy subjects and 

patients with non-severe or severe asthma immediately after isolation and also after 

culture. 

3.2.3.1 Determination of circulating fibrocyte numbers in healthy 

subjects and patients with non-severe or severe asthma 

NANT cells were isolated from the peripheral blood of healthy subjects and patients 

with non-severe or severe asthma, and the percentage of fibrocytes (Col I+/CD45+ 

cells) was determined by flow cytometry. There was no significant difference between 

the number of NANT cells per mL of blood from healthy subjects and patients with 

non-severe or severe asthma (Figure 3.6A). However, the NANT cells of patients with 

severe asthma contained a higher percentage of fibrocytes compared to that of healthy 

subjects (p < 0.001) and patients with non-severe asthma (p < 0.01; Figure 3.6B). 

These differences were thus reflected in the absolute number of fibrocytes per mL of 

blood, which was increased in patients with severe asthma compared to patients with 
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non-severe asthma (p < 0.01) and healthy subjects (p < 0.001), and also in patients 

with non-severe asthma compared to healthy subjects (p < 0.05; Figure 3.6C).  

Furthermore, I studied the relationship between the number of fibrocytes and the 

lung function of the subjects in my cohort. The absolute counts of fibrocytes per mL 

of blood inversely correlated with the pre-bronchodilator forced expiratory volume in 

1 s (FEV1) of predicted value of the patients (p < 0.01, Figure 3.7A) and FEV1/ forced 

vital capacity (FVC) ratio (p < 0.01, Figure 3.7B), suggesting that the number of 

circulating fibrocytes is associated with airway obstruction. 
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Figure 3.6: Number of circulating fibrocytes in freshly isolated non-adherent 

non-T cells from healthy subjects and patients with non-severe or severe 

asthma. NANT cells were isolated from peripheral blood of healthy subjects (H, n = 18) and 

patients with non-severe (NSA, n = 18) or severe asthma (SA, n = 38). The number of viable 

NANT cells was determined by Trypan blue staining and haemocytometer counting (A). The 

percentage of fibrocyte (Col I+/CD45+ cells) was determined by flow cytometry (B). The 

number of fibrocytes per mL of blood was deduced from the percentage of fibrocytes and the 

total number of NANT cells (C). Horizontal lines represent the median values for each group. 

The differences between disease groups were determined by Kruskal-Wallis test, followed by 

Dunn’s post-hoc test. * p < 0.05, ** p < 0.01, *** p < 0.001. 
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Figure 3.7: Relationship between circulating fibrocytes and lung function. NANT cells 

were freshly isolated from peripheral blood of healthy subjects (n = 18) and patients with non-severe (n 

= 18) or severe asthma (n = 38). The percentage of fibrocytes (Col I+/CD45+ cells) in NANT cells was 

determined by flow cytometry and the number of fibrocytes per mL of blood was deduced. The 

correlation of fibrocyte number with FEV1 % predicted (A) and FEV1/FVC (B) was determined using 

Spearman’s rank correlation. Rs: Spearman’s rank correlation. 
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3.2.3.2 Comparison of the number of fibrocytes and differentiating 

fibrocytes in non-adherent non-T cells from healthy subjects and 

patients with non-severe or severe asthma after culture 

NANT cells from healthy subjects and patients with non-severe or severe asthma were 

cultured in FBS-containing culture medium. After 3, 7 and 14 days in culture, cells 

were collected and analysed for fibrocyte numbers by staining for Col I and CD45 

expression and for myofibroblastic differentiation by staining for α-SMA.  

In line with my findings in the healthy subjects, there was an increase in the 

number of fibrocytes in the NANT cells of patients with non-severe asthma peaking 

after 3 days in culture, returning back to baseline after 14 days in culture (Figure 

3.8A). In contrast, although the number of fibrocytes in the NANT cells of patients 

with severe asthma were higher immediately after isolation (day 0) their number did 

not increase further after 3 days in culture, reducing after 7-14 days in culture (Figure 

3.8A). There was no significant difference in the number of fibrocytes in cultured 

NANT cells across the three groups.  

There was an increase in the number of differentiating fibrocytes in the NANT 

cells of patients with non-severe or severe asthma after 3 days in culture, reducing 

after 14 days in culture in agreement with my findings in NANT cells from healthy 
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subjects (Figure 3.8B). However, the number of differentiating fibrocytes in the 

NANT cells of patients with severe asthma after 3 days in culture was significantly 

higher compared to healthy subjects (p < 0.001) and patients with non-severe asthma 

(p < 0.001; Figure 3.8B). 

Therefore, there are more differentiating fibrocytes suggesting that fibrocytes 

from patients with severe asthma may have a greater capacity to differentiate to 

myofibroblasts. 
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Figure 3.8: Number of fibrocytes and differentiating fibrocytes in cultured 

non-adherent non-T cells from healthy subjects and patients with non-severe or 

severe asthma. The number of fibrocytes (Col I+/CD45+ cells; A) and differentiated fibrocytes 

(α-SMA+ cells; B) were determined in NANT cells isolated from healthy subjects (■, n = 5-18) and 

patients with non-severe (■, n = 4-18) or severe asthma (■, n = 5-38) by flow cytometry, after 3-14 

days in culture. Bars represent median with interquartile range under FBS-containing conditions. The 

numbers of cells at different time points in each disease group were compared by Friedman test, 

followed by Dunn’s post-hoc test. The differences between disease groups were determined by 

Kruskal-Wallis test, followed by Dunn’s post-hoc test. * p < 0.05, *** p < 0.001. 
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3.2.3.3 Comparison of CC chemokine receptor 7-expressing fibrocytes in 

non-adherent non-T cells from healthy subjects and patients with 

non-severe or severe asthma after culture 

As CCR7 is an important mediator of fibrocyte migration to the airways (Phillips, 

Burdick et al. 2004, Sakai, Wada et al. 2006), I compared the expression of CCR7 in 

fibrocytes from healthy subjects and patients with non-severe or severe asthma. The 

intensity of CCR7 expression in CCR7+ fibrocytes was quantified by the CCR7 

median fluorescence intensity (MFI) ratio (background fluorescence of isotype 

control was subtracted from the MFI of the sample). No significant difference was 

observed between healthy subjects and patients with non-severe or severe asthma in 

terms of the proportion of CCR7+ fibrocytes (% Col I+/CD45+/CCR7+ cells) and 

CCR7 MFI ratio immediately after isolation or after culture for 3 or 7 days (Figure 

3.9A-B). Thus, it is unlikely that the increased migration of fibrocytes to the airway 

wall of patients with severe asthma is due to increased expression of CCR7. 
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Figure 3.9: CC chemokine receptor 7 expression in non-adherent non-T 

cells-derived fibrocytes from healthy subjects and patients with non-severe or 

severe asthma. The percentage of CCR7+ fibrocytes (Col I+/CD45+/CCR7+ cells) (A) and 

the corresponding MFI ratio (B) were determined in NANT cells from healthy subjects (■, n = 

7) and patients with non-severe (■, n = 10) or severe asthma (■, n = 12) by flow cytometry, 

immediately after isolation or after 3-7 days in culture. Bars represent median with interquartile 

range. The expression of CCR7 at different time points was compared by Friedman test. The 

expression of CCR7 in cells from different disease groups were determined by Kruskal-Wallis 

test. 
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3.2.4 Isolation of fibrocytes from the adherent fraction of 

peripheral blood mononuclear cells 

To obtain a more complete picture of the responses of fibrocytes from patients with 

severe asthma, I also isolated fibrocytes from adherent PBMC and compared their 

response to fibrocytes isolated from NANT cells. There are a number of different 

protocols for isolating fibrocytes from adherent PBMC in the literature, differing in 

the length of incubation, the composition of the cell culture medium and the 

concentration of fibronectin used to pre-coat the cell culture plates. I therefore 

determined the optimum conditions for isolating fibrocytes from adherent PBMC. 

3.2.4.1 Determination of optimum incubation time  

PBMC (4×10
6
 cells/well) from healthy subjects were seeded in 6-well tissue culture 

plates (growth surface area 9.6cm
2
/well) pre-coated with fibronectin (25 μg/mL, or 2.6 

μg/cm
2
). FBS-containing medium was replaced every 3 days. The number of adherent 

PBMC and percentage of fibrocytes and differentiating fibrocytes was determined 

after 3, 6, 10 or 14 days. 

There was a time-dependent increase in the percentage of fibrocytes in the 

adherent PBMC population which peaked after 10 days in culture, reaching 73% of 
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the total number of cells (day 3, p < 0.05; day 6-14, p < 0.001; Figure 3.10A). Due to 

the reduction in total adherent PBMC number related to media changing, the absolute 

number of fibrocytes (day 0, 14.1×10
4
) was not significantly different after 3-6 days 

in culture (day 3, 14.9×10
4
, p = 0.8125; day 6, 15.8×10

4
, p = 0.6125), whilst it 

decreased after 10-14 days (day 10, 10.6×10
4
, p = 0.3125; day 14, 7.4×10

4
, p = 

0.1875; Figure 3.10B). At the same time, there was an increase in the percentage of 

differentiating fibrocytes which was maximal after 10 days (67%, p < 0.001; Figure 

3.10C). The absolute number of differentiating fibrocytes was also increased, peaking 

after 6-10 days in culture (~9.5×10
4
, p < 0.05, Figure 3.10D). The increase in 

differentiating fibrocytes was accompanied by an accumulation of spindle-shaped, 

myofibroblast-like cells which also peaked after 6 days in culture (Figure 3.10G-J). In 

contrast, the percentage of CCR7-positive fibrocytes in the adherent PBMC did not 

change over time (Figure 3.10E-F). 

Therefore, there is an increase in the percentage of fibrocytes and differentiating 

fibrocytes in the adherent fraction of PBMC after culture, which is maximal after 6 

days. Thus, for all subsequent experiments the effects of the different treatment on 

fibrocytes in adherent PBMC were studied over a 6-day period. 
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Figure 3.10: The number, myofibroblastic differentiation and CC chemokine receptor 7 

expression of fibrocytes derived from adherent peripheral blood mononuclear cells. PBMC 

from 5 healthy subjects were seeded on plates pre-coated with fibronectin (25μg/mL). FBS-containing medium 

were changed every 3 days. Adherent PBMC were harvested after 3, 6, 10 and 14 days in culture. Fibrocytes 

(Col I+/CD45+ cells) (A-B) and differentiating fibrocytes (α-SMA+ cells) (C-D) as well as the percentage of 

CCR7+ fibrocytes (% Col I+/CD45+/CCR7+ cells) (E) and CCR7 MFI ratio (F) were determined by flow 

cytometry. Bars represent median with interquartile range. The percentage, number and CCR7 expression of 

cells at different time points were compared by Friedman test, followed by Dunn’s post-hoc test. * p < 0.05, ** 

p < 0.01, *** p < 0.001 compared to day 0. Spindle-shaped cells were identified by light microscopy and 

photographs were taken after 3, 6, 10 and 14 days (G-J). Photographs are representative of one experiment.  
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3.2.4.2 Determination the number of fibrocytes and differentiating 

fibrocytes in cultured adherent peripheral blood mononuclear cells in 

the presence or absence of foetal bovine serum 

PBMC from healthy subjects suspended in either FBS-containing medium or 

FBS-free medium were seeded in 6-well tissue culture plates pre-coated with 

fibronectin (25 μg/mL). Non-adherent cells were removed and media were 

replenished on day 3. Adherent cells were harvested on day 6. Fibrocytes and 

differentiating fibrocytes were identified by flow cytometry. 

There were more adherent PBMC (p < 0.05), as well as fibrocytes (p < 0.001) 

and differentiating fibrocytes (p < 0.05), in the presence of FBS (Figure 3.11A-C) 

Under microscopy, more spindle-shaped cells were observed in FBS-containing 

media (Figure 3.11D-E). 
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Figure 3.11: Comparison of fibrocytes derived from adherent peripheral blood 

mononuclear cells in the presence or absence of foetal bovine serum. PBMC from 6 

healthy subjects were cultured in plates pre-coated with fibronectin (25 μg/mL) in the presence or 

absence of FBS. Medium was changed after 3 days in culture. Adherent cells were harvested and 

counted after 6 days in culture (A) and the number of fibrocytes (B; Col I+/CD45+ cells) and 

differentiating fibrocytes (C; α-SMA+ cells) within the adherent cell population was determined 

using flow cytometry. Bars represent median with interquartile range. The differences were 

determined by Wilcoxon matched pairs test. * p < 0.05, ** p < 0.01 compared to FBS-containing 

group. Spindle-shaped cells were identified by light microscopy and photographs were taken after 6 

days (D-E). Photographs are representative of one experiment.  
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3.2.4.3 Determination of optimum fibronectin concentration 

To determine the optimum concentration of fibronectin required, 6-well tissue culture 

plates were coated with different concentrations of fibronectin (0 – 25 μg/mL) for 60 

minutes prior to plating the PBMC. PBMC from healthy subjects were incubated in 

FBS-containing medium, which was replenished on day 3. Adherent PBMC were 

harvested and counted on day 6. The percentage of fibrocytes and differentiating 

fibrocytes was determined by flow cytometry. Also, spindle-shaped, 

myofibroblast-like cells were identified by light microscopy. 

Coating the wells with fibronectin led to an increase in the number of adherent 

PBMC (Figure 3.12A), but did not significantly affect the percentage of fibrocytes 

and differentiating fibrocytes in adherent PBMC (Figure 3.12B and D). The number 

of fibrocytes in the adherent PBMC was also increased by all concentrations of 

fibronectin (Figure 3.12C), whilst an increase in differentiating fibrocytes was more 

pronounced in the presence of 25 μg/mL of fibronectin (Figure 3.12E). In line with 

the α-SMA staining data, the number of spindle-shaped cells increased in the 

fibronectin-coated wells after 6 days in culture and was more pronounced (Figure 

3.12F-H). Pre-coating with fibronectin led to higher number of adherent PBMC and 



141 

 

fibrocytes, which can more readily differentiate into myofibroblasts. Thus, in all 

subsequent experiments I used fibronectin at 25 μg/mL. 
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Figure 3.12: The effect of fibronectin on fibrocytes derived from adherent peripheral 

blood mononuclear cells. PBMC from healthy subjects were seeded in 6-well tissue culture plates 

pre-coated with fibronectin at the concentration of 0 μg/mL (0 μg/cm
2

, n = 2), 10 μg/mL (1.0 μg/cm
2

, n = 

1) or 25 μg/mL (2.6 μg/cm
2
, n = 5) in FBS-containing medium. Medium was changed on day 3 and 

adherent cells were harvested and counted (A) after 6 days in culture. Fibrocytes (Col I+/CD45+ cells) 

(B-C) and differentiating fibrocytes (α-SMA+ cells) (D-E) were also determined by flow cytometry. 

Spindle-shaped cells were identified by light microscopy and photographs were taken after 6 days (F-H). 

Photographs are representative of one experiment. Bars represent median with interquartile range. 
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3.2.5 Comparison of the number of cultured fibrocytes derived 

from adherent peripheral blood mononuclear cells from healthy 

subjects and patients with non-severe or severe asthma 

PBMC from healthy subjects and patients with non-severe or severe asthma were 

seeded in plates pre-coated with fibronectin, in the presence of FBS. The number of 

adherent PBMC and percentage of fibrocytes and differentiating fibrocytes was 

determined after 6 days. 

The percentage of fibrocytes (~70%) and differentiating fibrocytes (~65%) in 

cultured adherent PBMC were similar (Figure 3.13B and D). However, there was a 

trend towards that patients with asthma, especially non-severe asthma, having more 

cells adhered on the plates (Figure 3.13A), including fibrocytes and differentiating 

fibrocytes (Figure 3.13C and E). Morphologically, more spindle-shaped cells 

appeared in plates with PBMC from patients with asthma, especially non-severe 

asthma than from healthy subjects (Figure 3.13F-H). 

Amongst these three groups, the expression of CCR7 were also similar (% Col 

I+/CD45+/CCR7+ cell 62.0% - 67.6%, p = 0.85; CCR MFI ratio 2.7-3.3, p = 0.61) 

(Figure 3.14A-B). 
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Figure 3.13: Comparison of adherent peripheral blood mononuclear cell-derived 

fibrocytes from healthy subjects and patients with non-severe and severe asthma. PBMC 

from healthy subjects (n = 9) and patients with non-severe (n = 6) or severe asthma (n = 6) were placed in 

plates pre-coated with fibronectin, in the presence of FBS. Adherent cells were harvested and counted (A) 

after 6 in culture. Fibrocytes (Col I+/CD45+ cells) (B, C) and differentiating fibrocytes (α-SMA+ cells) 

(D, E) were determined by flow cytometry. Bars represent median with interquartile range. The 

differences between disease groups were determined by Kruskal-Wallis test. Spindle-shaped cells were 

identified by light microscopy and photographs of fibrocytes from a healthy subject (F), a non-severe 

asthmatic patient (G) and a severe asthmatic patient (H) were taken after 6 days. 

   

F Healthy Subject G Non-severe Asthmatic H Severe Asthmatic 
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Figure 3.14: CC chemokine receptor 7 expression in fibrocytes from healthy 

subjects and patients with non-severe or severe asthma. PBMC isolated from healthy 

subjects (H, n = 9) and patients with non-severe (NSA, n = 6) or severe asthma (SA, n = 6) were 

placed in plates pre-coated with fibronectin, in the presence of FBS. Adherent cells were 

harvested after 6 days in culture. (A) The percentage of CCR7+ fibrocytes (Col 

I+/CD45+/CCR7+ cells) and (B) the CCR7 MFI ratio was determined by flow cytometry. Bars 

represent median with interquartile range. The differences between disease groups were 

determined by Kruskal-Wallis test. 
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3.3 Discussion 

In this chapter I determined the optimal conditions for isolating and detecting 

fibrocytes from the NANT cell fraction of PBMC. I showed that, when placed in 

culture, fibrocytes can undergo proliferation whilst at the same time increase their 

α-SMA expression suggesting that they undergo myofibroblastic differentiation. This 

was confirmed by the appearance of spindle-shaped, myofibroblast-like cells. Patients 

with severe asthma were found to have a higher number of fibrocytes in their NANT 

cells compared to healthy subjects and patients with non-severe asthma, immediately 

after isolation. The number of circulating fibrocytes inversely correlated with the lung 

function of the subjects in my cohort. Furthermore, the fibrocytes in the NANT cells 

from patients with severe asthma also had a greater capacity to differentiate into 

myofibroblasts in culture. I also optimised the isolation of fibrocytes from adherent 

PBMC in order to compare the responses of the fibrocytes in the different fractions. 

However, I observed no differences in the number or differentiation capacity of 

fibrocytes, in the adherent fraction of PBMC, between healthy subjects and patients 

with non-severe or severe asthma. Although Saunders et al. reported patients with 

severe asthma have more fibroytes in peripheral blood and bronchial biopsies 

(Saunders, Siddiqui et al. 2009), currently no other group has compared the number or 
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myofibroblastic differentiation of cultured fibrocytes amongst healthy subjects and 

patients with non-severe or severe asthma. 

Although there is a plethora of publications demonstrating the isolation of 

fibrocytes from peripheral blood, there is a disparity in the methods used. There are 

three methods reported in the literature. The most widely used method involves 

generating fibrocytes by differentiation from the adherent fraction of PBMC (Bucala, 

Spiegel et al. 1994) or CD14+ monocytes (Yang, Scott et al. 2002). The main part of 

my study was carried out on fibrocytes isolated from the NANT cell fraction of 

PBMC, as shown by Wang et al. (Wang, Huang et al. 2008). This study demonstrated 

that fibrocytes are more abundant in the NANT cell fraction of PBMC and that NANT 

cells represent more than 80% of the fibrocyte population (Wang, Huang et al. 2008). 

Moreover, as other progenitor cells with similar phenotype such as endothelial 

progenitor cells are present in the adherent fraction of PBMC, using the non-adherent 

fraction possibly results in less contaminating cells (Rehman, Li et al. 2003). As 

fibrocytes comprise just a small proportion of total circulating leukocytes, removal of 

T cells augments the percentage of target cells in the total cell population, improving 

the specificity of flow cytometry. T cells were depleted using anti-CD3 
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labelled-magnetic beads. This method was selected over the sheep RBCs method, 

used by Wang et al., as it was found to be more efficient and specific. 

In the literature, fibrocytes are defined and quantified by either their morphology 

or cell markers. Pilling et al. identified fibrocytes as spindle-shaped cells with oval 

nucleus in adherent PBMC (Shao, Suresh et al. 2008, Pilling, Vakil et al. 2009). 

However, the number of fibrocytes could be over-estimated since some other cells 

such as endothelial progenitor cells may also develop similar elongated shape 

(Asahara, Murohara et al. 1997). This method also neglects the floating fibrocytes 

which have not attached to the tissue culture plates. Pilling et al. found fibrocytes are 

the only cells which express the combination of CD45RO, 25F9, and S100A8/A9, but 

not PM-2K (macrophages have CD45RO, 25F9, S100A8/A9 and PM-2K) (Pilling, 

Fan et al. 2009), but this definition has not been widely accepted. More commonly, 

fibrocytes are defined by a combination of Col I+, CD45+ and/or CD34+. In studies 

which quantify fibrocytes count by flow cytometry, fibrocytes are identified as Col I+ 

cells (Yang, Scott et al. 2002), Col I+/CD34+ cells (Chesney, Bacher et al. 1997), Col 

I+/CD45+ cells (Moeller, Gilpin et al. 2009) or Col I+/CD34+/CD45+cells (Wang, 

Huang et al. 2008) in PBMC. Since fibrocytes quickly lose the CD34 expression 

during differentiation (Schmidt, Sun et al. 2003), inclusion of CD34 in the criteria 
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may under-estimate the count of differentiating/differentiated fibrocytes. CXCR4 is 

occasionally adopted as one of the criteria (Garcia-de-Alba, Becerril et al. 2010), but 

only 83% of Col I+/CD45+ fibrocytes express CXCR4 (Wang, Huang et al. 2008). 

Therefore, I defined fibrocytes as Col I+/CD45+ PBMC in this project. 

In this project, α-SMA+ cells in NANT cells are regarded as differentiating 

fibrocytes. Sometimes these α–SMA+ NANT cells are regarded as myofibroblasts 

(Wang, Huang et al. 2008, Wang, Huang et al. 2012, Weng, Chen et al. 2013). 

Although bone-marrow derived smooth muscle progenitor cells also are present in 

PBMC (Simper, Stalboerger et al. 2002), I confirmed that most of the α-SMA+ cells 

in NANT cells are also positive for fibrocyte markers, i.e. Col I and CD45. 

There is conflicting evidence in the literature concerning the use of FBS for 

fibrocyte culture. FBS-containing and FBS-free conditions may represent different 

phases of the inflammation and remodelling process (Curnow, Fairclough et al. 2010). 

Due to the change of endothelial permeability and tissue integrity, the concentration 

of serum-derived proteins in the diseased site is initially high but falls gradually due 

to the repair process. Fibrocytes cultured in FBS-containing and FBS-free conditions 

may activate different gene pathways in terms of inflammatory and immune processes, 

lipid metabolism, chemotaxis and RNA processing (Curnow, Fairclough et al. 2010). 
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Fibrocytes cultured in FBS-containing medium had up-regulated toll-like receptor 

(TLR)-4, IL-1β, chemokines CCL2/monocyte chemotactic protein 1 (MCP1), 

CCL3/macrophage inflammatory protein 1α (MIP-1-α), CCL7/monocyte-specific 

chemokine 3 (MCP3), CCL22/macrophage-derived chemokine (MDC), and the C5a 

complement receptor in comparison to fibrocytes cultured in FBS-free medium 

(Curnow, Fairclough et al. 2010). Therefore, I studied the responses of cultured 

fibrocytes in the presence and absence of serum. My data showed that the presence of 

FBS leads to an increase in the number of viable fibrocytes in both NANT cells and in 

adherent PBMC, accompanied by an increase in rate of DNA synthesis demonstrated 

by EdU proliferation assay, suggesting that fibrocytes proliferate in culture. Increased 

numbers of differentiating fibrocytes are also accompanied by α-SMA mRNA 

up-regulation, indicating cultured fibrocytes were actively transforming into 

myofibroblasts. In contrast, the number of fibrocytes and differentiating fibrocytes in 

either NANT cells or adherent PBMC was fewer in the absence of FBS, which might 

suggest less proliferation, less differentiation or more cell death. As a result, I 

observed fibrocytes in both NANT cells and adherent PBMC in FBS-containing 

media in the subsequent experiments. 
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Having identified the optimum conditions for fibrocyte isolation and culture, I 

compared the responses of fibrocytes from healthy subjects and patients with 

non-severe or severe asthma. Increased circulating fibrocytes has also been found in 

patients in healing/repairing process or with other fibrotic diseases, such as burn 

wound (Yang, Scott et al. 2002), scleroderma with interstitial lung disease (Mathai, 

Gulati et al. 2010) and idiopathic pulmonary fibrosis (Moeller, Gilpin et al. 2009). My 

data showed an increase in the number of fibrocytes in freshly isolated NANT cells 

from patients with severe asthma compared to healthy subjects and patients with 

non-severe asthma. Thus, fibrocytes appear to be more abundant in the circulation of 

patients with severe asthma. The number of circulating fibrocytes was inversely 

correlated with lung function suggesting a role of fibrocytes in the development of 

airway obstruction. Indeed, Wang et al. had reported that the percentage of fibrocytes 

in NANT from patients with chronic obstructive asthma is higher than that in 

asthmatic patients with normal lung function and healthy subjects, and is correlated 

with the annual decline rate of FEV1 (Wang, Huang et al. 2008). 

I proposed that increased circulating fibrocytes in the NANT cells from patients 

with severe asthma might result from rising bone marrow activity, heightened 

chemotaxis and exaggerated proliferation. It is possible that the bone marrows of 
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patients with severe asthma have an increased ability to produce or release circulating 

fibrocytes. It is worth noting that the age of patients with severe asthma recruited to 

this project is generally older compared to healthy subjects. More fibrocytes were 

observed in the peripheral blood of aged but otherwise healthy subjects (Mathai, 

Gulati et al. 2010), and ageing is associated with increased fibrocytes in bone marrow 

in an experimental mouse model (Sueblinvong, Neveu et al. 2014). Besides, increased 

fibrocytes in severe asthma may be related to escalated chemotaxis. Patients with 

severe asthma have more fibrocytes and higher level of CCL5/regulated on activation, 

normal T cell expressed and secreted (RANTES; ligand of CCR1, CCR3 and CCR5), 

CCL11/eotaxin-1 (ligand for CCR3, CCR5 and CXCR3) and CCL24/eotaxin-2 

(ligand for CCR3) in their sputa, as well as increased expression of CCR3 and CCR5 

in their fibrocytes (Isgro, Bianchetti et al. 2013). Additionally, fibrocytes from 

patients with severe asthma may have greater capacity to multiply in blood. 

Compared to asthmatic patients with normal lung function, patients with chronic 

obstructive asthma have more fibrocytes in their peripheral blood, with greater 

expression of epidermal growth factor receptors (EGFR) in these fibrocytes. EGFR 

inhibition prevents the proliferation and differentiation of fibrocytes (Wang, Huang et 

al. 2012). EGFR expression is increased in the airways of patients with severe asthma, 
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which is associated with more significant subepithelial fibrosis despite use of CS 

treatment (Puddicombe, Polosa et al. 2000, Hamilton, Torres-Lozano et al. 2003). It is 

possible that the expression of EGFR in fibrocytes from patients with severe asthma is 

also up-regulated. Further investigation regarding the expression of EGFR in 

fibrocytes from healthy subjects and patients with non-severe or severe asthma is 

indicated. 

Although there was no difference amongst the three groups in terms of the 

number of Col I+/CD45+ fibrocytes in cultured NANT cells over time, there was an 

increase in the number of α-SMA+ differentiating fibrocytes from patients with severe 

asthma indicating an increased capacity of severe asthmatic fibrocytes to undergo 

myofibroblastic differentiation. The result is similar to an earlier report showing an 

increase in α-SMA+ cells in NANT from patients with chronic obstructive asthma, 

compared to healthy subjects and asthmatic patients with normal lung function 

(Wang, Huang et al. 2008). The increased number of differentiating fibrocytes in 

cultured NANT cells from patients with severe asthma may be a result of the higher 

proportion of fibrocytes in these patients’ NANT cells. Nonetheless, it is also possible 

that this may occur due to an inherent difference in the signalling mechanisms of 

these cells in response to the mediators in the foetal bovine serum, or the effects of 
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autocrine or paracrine mediated by growth factors released from fibrocytes or other 

NANT cells (e.g. B cells, NK cells, etc.). 

Apart from higher number of circulating fibrocytes in peripheral blood, an 

increased accumulation of fibrocytes in severe asthmatic airways may be related to 

exaggerated chemotaxis (Saunders, Siddiqui et al. 2009). Several chemokine receptors, 

including CCR7 (Sakai, Wada et al. 2006) and CXCR4 (Phillips, Burdick et al. 2004), 

mediate the homing of circulating fibrocytes to sites of disease. Blocking 

CCR7/CCL21-SLC axis reduces fibrocyte infiltration in mouse kidneys with 

unilateral ureter ligation and therefore attenuate renal fibrosis (Sakai, Wada et al. 

2006). My data demonstrates that fibrocytes express CCR7, although CCR7 

expression in fibrocytes from healthy subjects and asthmatic patients was not 

significantly different. The result is compatible with Kaur et al.’s report that airway 

fibroblasts, ASMC and myofibroblasts express CCR7 in human airways, but the 

proportion of CCR7+ cells was not different in healthy and asthmatic groups (Kaur, 

Saunders et al. 2006). Interestingly, CCR7 expression in human CD4+ T lymphocytes 

was even down-regulated in both CS-sensitive and CS-resistant asthmatic patients, 

compared to non-asthmatic non-atopic subjects (Syed, Blakemore et al. 1999). CCL19, 

the ligand of CCR7, is highly expressed by ASMC from asthmatic patients with 
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severe disease, and mast cells and vessels in asthmatic patients of all severities (Kaur, 

Saunders et al. 2006). It seems the increased recruitment of fibrocytes in asthmatic 

airways can be related to the higher level of CCL19/MIP-3-β expression in airways, 

rather than increased CCR7 expression in circulating fibrocytes. 

In the subsequent chapters, I will investigate the effect of pro-inflammatory 

mediators and asthma medications on the number, myofibroblastic differentiation and 

CCR7 expression of fibrocytes derived from NANT cells, and also show their effects 

on fibrocytes derived from adherent PBMC (Bucala, Spiegel et al. 1994, Yang, Scott 

et al. 2002, Shao, Suresh et al. 2008). Many fibrocytes in adherent PBMC should be 

derived from CD14+ monocytes, since a large proportion of adherent PBMC are 

monocytes. Besides, fibrocytes in adherent PBMC may have been affected by 

TGF-β1-releasing T cells, before removal of non-adherent fraction of PBMC (Yang, 

Scott et al. 2002). On the other hand, fibrocytes in NANT cells are less likely to be 

derived from monocytes and less affected by T cells, since these cells have been 

removed in the first place (Wang, Huang et al. 2008). It is possible that fibrocytes in 

adherent PBMC and NANT cells have different properties. To the best of my 

knowledge, no published study has compared the responses of fibrocytes in these two 

fractions of PBMC. I, therefore, optimised the isolation of fibrocytes from adherent 
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PBMC in order to compare their responses to NANT cell-derived fibrocytes. 

There are a number of different protocols for isolating fibrocytes in adherent 

PBMC in the literature (Bucala, Spiegel et al. 1994, Pilling, Vakil et al. 2009, Curnow, 

Fairclough et al. 2010). However, technical details varied hugely amongst the 

different groups. Thus, I examined the effect of time in culture, as well as the use of 

FBS and fibronectin, on fibrocytes derived from adherent PBMC. The number of 

fibrocytes declined on day 10, while the number of differentiating fibrocytes peaked 

on day 6. Higher number of fibrocytes and differentiating fibrocytes were observed in 

PBMC in the presence of FBS, compared to the number of cells in the absence of FBS. 

Therefore, I picked day 6 as the time point to observe fibrocytes in adherent PBMC, 

and use FBS-containing media to support the growth of fibrocytes. I also confirmed 

that fibronectin increases the number of adherent PBMC, including fibrocytes and 

differentiating fibrocytes. Fibronectin, a glycoprotein existing in the ECM and plasma 

(Magnusson and Mosher 1998), has been used to support fibrocyte culture in some 

studies although the details were not mentioned (Hong, Belperio et al. 2007). 

Fibronectin is a product of most mesenchymal and epithelial cells. The functions of 

fibronectin include promoting cellular migration during wound healing and 

development, regulation of cell growth and differentiation and 
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thrombosis/haemostasis (Hocking 2002). Circulating endothelial progenitor cells 

within PBMC seeded on fibronectin appear earlier compared to those cells seeded on 

collagen (Colombo, Calcaterra et al. 2013). Since there is an increased deposition of 

ECM proteins, including fibronectin, in asthmatic airways, it may also be one of the 

possible mechanisms by which more fibrocytes are recruited in asthmatic airways 

than in healthy airways (Saunders, Siddiqui et al. 2009). 

The number of differentiating fibrocytes in adherent PBMC from patients with 

severe asthma was not significantly higher than those from patients with non-severe 

asthma after 6 days in culture. The results seemed different from the observation in 

NANT cell model after 3 days in culture. Since the fibrocytes were derived from 

different fraction of PBMC, they might behave differently. Besides, the number of 

differentiating fibrocytes in NANT cells from patients with severe asthma was not 

significantly higher than those from patients with non-severe asthma on day 7 either. 

All surviving fibrocytes from patients with non-severe or severe asthma eventually 

acquire myofibroblastic phenotype in the long run. A larger population size will be 

needed to clarify this issue. 

The airways of patients with severe asthma display more prominent airway 

remodelling (Macedo, Hew et al. 2009). Compared to healthy subjects and patients 
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with non-severe asthma, patients with severe asthma recruited to my project have 

more circulating fibrocytes which potentially migrate to their airway walls. Their 

fibrocytes also exert a greater capacity to differentiate into myofibroblasts, produce 

extracellular matrices and even modulate resident fibroblasts (Peng and Herzog 2012), 

contributing to extensive remodelling processes in severe asthma. The number of 

circulating fibrocytes is correlated with airflow limitation, similar to the observation 

in patients with chronic obstructive asthma (Wang, Huang et al. 2008). Increased 

number of α-SMA+ fibrocytes have been shown in bronchial lamina propria in severe 

asthma (Saunders, Siddiqui et al. 2009), whilst the number of recruited fibrocytes 

correlates with the thickness of reticular basement membrane (Nihlberg, Larsen et al. 

2006). Therefore, fibrocytes may play an important role in the progress of airway 

remodelling in severe asthma. 
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Chapter 4: Effect of pro-fibrotic mediators on fibrocytes 

4.1 Background 

The inflammatory response in asthmatic patients is accompanied by an increased 

release of a range of inflammatory cytokines and growth factors that mediate the 

development of airway remodelling (Ohno, Nitta et al. 1996, Virchow, Julius et al. 

1998, Chakir, Shannon et al. 2003). Specifically, the TH2 cytokine interleukin (IL)-13 

is increased (but IL-4 is reduced) in the airways of patients with severe asthma (Ohno, 

Nitta et al. 1996, Naseer, Minshall et al. 1997, Shannon, Ernst et al. 2008). Serum 

levels of neurotrophins, nerve growth factor (NGF) and brain-derived neurotrophic 

factor (BDNF), are associated with severity of allergic asthma and childhood asthma, 

respectively (Bonini, Lambiase et al. 1996, Muller, Pitrez et al. 2010). Therefore, 

these mediators provide interesting therapeutic targets for attenuating airway 

remodelling in asthmatic patients. 

IL-4 and IL-13 are released by TH2 cells, group 2 innate lymphoid cells (ILC2s), 

eosinophils, basophils, mast cells and airway smooth muscle cells (ASMC) (Oliphant, 

Barlow et al. 2011). IL-4 and IL-13 induce subepithelial fibrosis and ASMC layer 

thickening in the remodelling airways (Takayama, Arima et al. 2006, Doherty and 

Broide 2007). In fibroblasts, IL-4 and IL-13 induce proliferation (Lewis, Sutherland et 
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al. 2003), myofibroblastic differentiation (Hashimoto, Gon et al. 2001) and production 

of CC chemokine ligand (CCL) 11/eotaxin (Richter, Puddicombe et al. 2001). IL-4 

and IL-13 accelerate the differentiation of fibrocytes in healthy subjects (Shao, Suresh 

et al. 2008), and the production of collagen (type I, III, V) and cytokines (IL-6, IL-11, 

leukaemia inhibitory factor) in fibrocytes from patients with non-severe asthma 

(Bellini, Marini et al. 2012). The effect of TH2 cytokines on fibrocytes from patients 

with severe asthma is currently unknown. 

Neurotrophins are mainly produced by epithelial cells in inflamed lungs (Hahn, 

Islamian et al. 2006), and are also generated by nerves, endothelial cells, fibroblasts, 

ASMC, T cells, B cells, eosinophils, mast cells, monocytes and macrophages 

(Prakash, Thompson et al. 2010). Neurotrophins are increased in bronchoalveolar 

lavage fluid from patients with allergic asthma after allergen challenge (Virchow, 

Julius et al. 1998). Serum levels of neurotrophins, such as NGF and BDNF, are higher 

in patients with asthma (Bonini, Lambiase et al. 1996, Lommatzsch, Schloetcke et al. 

2005). NGF and BDNF are implicated in airway remodelling (Renz and Kilic 2012, 

Prakash and Martin 2014). NGF is associated with collagen deposition and 

subepithelial fibrosis in animal models (Kilic, Sonar et al. 2011). NGF increases the 

migration, and myofibroblastic differentiation of pulmonary fibroblasts (Micera, 
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Vigneti et al. 2001), whilst BDNF enhances the proliferation of ASMC (Aravamudan, 

Thompson et al. 2012). Currently, there is no literature describing the effect of 

neurotrophins on fibrocyte behaviour. 

TH2 cytokines and neurotrophins could be important mediators of aberrant 

fibrocyte function in patients with severe asthma. In this chapter I investigated the 

impacts of IL-4, IL-13, NGF and BDNF on fibrocytes from healthy subjects and 

patients with asthma, which will clarify the significance of the pro-inflammatory 

mediators in fibrocyte-mediated airway remodelling in severe asthma, and may be 

useful to evaluate the effects of future anti-cytokine therapy.  
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4.2 Results 

4.2.1 Effect of TH2 cytokines on the number and differentiation 

of fibrocytes in non-adherent non-T cells from healthy subjects 

and patients with non-severe or severe asthma 

To explore the effect of TH2 cytokines on the number and myofibroblastic 

differentiation status of fibrocytes, non-adherent non-T (NANT) cells isolated from 

healthy subjects and patients with asthma were cultured in foetal bovine serum 

(FBS)-containing medium, as described in Chapter 3.2.2, and treated with IL-4 

(0.1-10 ng/mL) or IL-13 (0.1-10 ng/mL). The concentrations of IL-4 and IL-13 used 

for treatment of fibrocytes were selected from previously published studies (Shao, 

Suresh et al. 2008, Bellini, Marini et al. 2012). NANT cells were recovered after 3 or 

7 days in culture and the number of fibrocytes (Col I+/CD45+ cells), differentiating 

fibrocytes (α-SMA+ cells) and CCR7-expressing fibrocytes were determined by flow 

cytometry. 

IL-4 increased the number of fibrocytes in cultured NANT cells from healthy 

subjects in a concentration-dependent manner, peaking after 3 days in culture 

(1.9-fold increase, p < 0.01, 1 ng/mL). IL-4 also increased the number of fibrocytes 

from patients with non-severe asthma but this effect reached a maximum of 1.5-fold 
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after 7 days (p < 0.01, 10 ng/mL). Conversely, the number of fibrocytes from patients 

with severe asthma did not change in response to IL-4 stimulation (Figure 4.1A-B). 

IL-4 also increased the number of differentiating fibrocytes from healthy subjects 

(1.6-fold, p < 0.05, 1 ng/mL) and patients with non-severe asthma (1.3-fold, p < 0.05, 

1 ng/mL) after 7 days in culture. The number of differentiating fibrocytes in the 

NANT cells of patients with severe asthma were also unaffected by IL-4 (Figure 

4.1C-D). Under FBS-free conditions, there was also a trend towards IL-4 increasing 

fibrocytes and differentiating fibrocytes within NANT cells from healthy subjects 

(Figure 4.2). 

IL-4 did not affect the expression of CC chemokine receptor (CCR) 7 in 

fibrocytes (Figure 4.3). 
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Figure 4.1: The effect of interleukin-4 on the number of fibrocytes and differentiating 

fibrocytes derived from non-adherent non-T cells. NANT cells from healthy subjects (■, n = 

6) and patients with non-severe (■, n = 6) or severe asthma (■, n = 7) were treated with IL-4 (0.1-10 

ng/mL) on day 0. Cells were harvested after 3 or 7 days in culture and the number of fibrocytes (A-B; 

Col I+/CD45+ cells) and differentiating fibrocytes (B-D; α-SMA+ cells) within the NANT cell 

population was determined by flow cytometry. Bars represent median with interquartile range. Data are 

expressed as fold-change with respect to untreated controls. The differences between the untreated 

control group and each treatment group were determined by Friedman test, followed by Dunn’s post-hoc 

test. * p < 0.05, ** p < 0.01, *** p < 0.001 compared to untreated controls. 
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Figure 4.2: Effect of interleukin-4 on the number of fibrocytes and differentiating 

fibrocytes derived from non-adherent non-T cells under foetal bovine serum-free 

condition. NANT cells from healthy subjects (n = 2) were treated with IL-4 (0.1-10 ng/mL) on 

day 0. Cells were harvested after 3 or 7 days in culture and the number of fibrocytes (A-B; Col 

I+/CD45+ cells) and differentiating fibrocytes (C-D; α-SMA+ cells) within the NANT cell 

population was determined using flow cytometry. Data are expressed as fold-change with respect 

to untreated controls. Bars represent median values. 
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Figure 4.3: The effect of interleukin-4 on CC chemokine receptor 7 expression in 

fibrocytes derived from non-adherent non-T cells. NANT cells from healthy subjects (■, n = 

6) and patients with non-severe (■, n = 6) or severe asthma (■, n = 7) were treated with IL-4 (0.1-10 

ng/mL) on day 0. Cells were harvested after 3 or 7 days in culture and the percentage of CCR7+ 

fibrocytes within the NANT cell population (A-B; % Col I+/CD45+/CCR7+ cells) and CCR7 MFI 

(C-D) was determined by flow cytometry. Bars represent median with interquartile range. MFI data are 

expressed as fold-change with respect to untreated controls. The differences between the untreated 

control group and each treatment group were determined by Friedman test. 
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Treatment with IL-13 (10 ng/mL) increased the number of fibrocytes in the 

NANT cells from healthy subjects (1.8-fold, p < 0.01) and patients with non-severe 

asthma (1.6-fold, p < 0.05) in a concentration-dependent manner after 7 days in 

culture (Figure 4.4B). IL-13 also increased the number of differentiating fibrocytes 

from healthy subjects (1.3-fold, p < 0.05, 1 ng/mL) and patients with non-severe 

asthma (1.6-fold, p < 0.05, 10 ng/mL) after 7 days (Figure 4.4D). IL-13 (e.g. 10 

ng/mL) did not affect the number of fibrocytes (day 3, p = 0.81; day 7, p = 0.06) and 

differentiating fibrocytes (day 3, p = 0.63; day 7, p = 0.31) in the NANT cells of 

patients with severe asthma.  

IL-13 did not affect the expression of CCR7 in fibrocytes (Figure 4.5). 
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Figure 4.4: The effect of interleukin-13 on the number of fibrocyte and differentiating 

fibrocytes derived from non-adherent non-T cells. NANT cells from healthy subjects (■, n = 

6) and patients with non-severe (■, n = 6) or severe asthma (■, n = 5) were treated with IL-13 (0.1-10 

ng/mL) on day 0. Cells were harvested after 3 or 7 days in culture and the number of fibrocytes (A-B; 

Col I+/CD45+ cells) and differentiating fibrocytes (C-D; α-SMA+ cells) within the NANT cell 

population was determined by flow cytometry. Bars represent median with interquartile range. Data are 

expressed as fold-change with respect to untreated controls. The differences between the untreated 

control group and each treatment group were determined by Friedman test, followed by Dunn’s post-hoc 

test. * p < 0.05, ** p < 0.01 compared to untreated controls. 
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Figure 4.5: The effect of interleukin-13 on CC chemokine receptor 7 expression in 

fibrocytes derived from non-adherent non-T cells. NANT cells from healthy subjects (■, n = 

6) and patients with non-severe (■, n = 6) or severe asthma (■, n = 5) were treated with IL-13 (0.1-10 

ng/mL) on day 0. Cells were harvested after 3 or 7 days in culture and the percentage of CCR7+ 

fibrocytes within the NANT cell population (A-B; % Col I+/CD45+/CCR7+ cells) and CCR7 MFI 

(C-D) was determined by flow cytometry. Bars represent median with interquartile range. MFI data are 

expressed as fold-change with respect to untreated controls. The differences between the untreated 

control group and each treatment group were determined by Friedman test. 
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4.2.2 Effect of neurotrophins on the number and differentiation 

of fibrocytes in non-adherent non-T cells from healthy subjects 

and patients with non-severe or severe asthma 

To explore the effect of neurotrophins on the number and myofibroblastic 

differentiation of fibrocytes, NANT cells isolated from healthy subjects and patients 

with asthma were cultured in FBS-containing medium, as described in Chapter 3.2.2, 

and treated with NGF (10-1000 ng/mL) or BDNF(10-100 ng/mL). The concentrations 

of NGF and BDNF used for treatment of fibrocytes were selected from previously 

published studies (Micera, Vigneti et al. 2001, Aravamudan, Thompson et al. 

2012) .Cells were recovered after 3 or 7 days in culture and the number of fibrocytes 

and differentiating fibrocytes and CCR7-expressing fibrocytes were determined by 

flow cytometry. 

Treatment with NGF modestly increased the number of fibrocytes from healthy 

subjects (300 ng/mL, 1.3-fold, p < 0.05 at 3 days; 30 ng/mL 1.2-fold, p < 0.05 at 7 

days) and patients with non-severe (100 ng/mL, 1.5-fold, p < 0.05 at 3 days and 7 

days) or severe asthma (300 ng/mL, 1.3-fold, p < 0.05 at 7 days; Figures 4.6A-B). 

NGF also increased the number of differentiating fibrocytes in the NANT cells from 

patients with non-severe asthma, reaching a maximum of approx. 1.7-fold after 3 days 
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in culture (100 ng/mL, p < 0.05), whilst it had less effect on fibrocytes from healthy 

subjects (1.3-fold, p < 0.05, 100 ng/mL at 3 days and 1.2-fold, p < 0.05, 300 ng/mL at 

7 days) and patients with severe asthma (1.2-fold, p < 0.05, 1000 ng/mL at 7 days; 

Figure 4.6C-D).  

Treatment with BDNF did not affect the number of fibrocytes and differentiating 

fibrocytes from healthy subjects or patients with asthma (Figure 4.8).  

The expression of CCR7 in fibrocytes was not affected by NGF (Figure 4.7) and 

BDNF (Figure 4.9). 
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Figure 4.6: The effect of nerve growth factor on the number of fibrocyte and 

differentiating fibrocytes derived from non-adherent non-T cells. NANT cells from 

healthy subjects (■, n = 8) and patients with non-severe (■, n = 7) or severe asthma (■, n = 7) were 

treated with NGF (10-1000 ng/mL) on day 0. Cells were harvested after 3 or 7 days in culture and the 

number of fibrocytes (A-B; Col I+/CD45+ cells) and differentiating fibrocytes (B-D; α-SMA+ cells) 

within the NANT cell population was determined by flow cytometry. Bars represent median with 

interquartile range. Data are expressed as fold-change with respect to untreated controls. The 

differences between the untreated control group and each treatment group were determined by 

Friedman test, followed by Dunn’s post-hoc test. * p < 0.05, ** p < 0.01 compared to untreated 

controls. 
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Figure 4.7: The effect of nerve growth factor on CC chemokine receptor 7 

expression in fibrocytes derived from non-adherent non-T cells. NANT cells from 

healthy subjects (■, n = 8) and patients with non-severe (■, n = 7) or severe asthma (■, n = 7) were 

treated with NGF (10-1000 ng/mL) on day 0. Cells were harvested after 3 or 7 days in culture and the 

percentage of CCR7+ fibrocytes within the NANT cell population (A-B; % Col I+/CD45+/CCR7+ 

cells) and CCR7 MFI (C-D) was determined by flow cytometry. Bars represent median with 

interquartile range. MFI data are expressed as fold-change with respect to untreated controls. The 

differences between the untreated control group and each treatment group were determined by 

Friedman test. 
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Figure 4.8: The effect of brain-derived neurotrophic factor on the number of fibrocyte 

and differentiating fibrocytes derived from non-adherent non-T cells. NANT cells from 

healthy subjects (■, n = 6) and patients with non-severe (■, n = 5) or severe asthma (■, n = 5) were 

treated with BDNF (10-100 ng/mL) on day 0. Cells were harvested after 3 or 7 days in culture and the 

number of fibrocytes (A-B; Col I+/CD45+ cells) and differentiating fibrocytes (B-D; α-SMA+ cells) 

within the NANT cell population was determined by flow cytometry. Bars represent median with 

interquartile range. Data are expressed as fold-change with respect to untreated controls. The 

differences between the untreated control group and each treatment group were determined by Friedman 

test. 
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Figure 4.9: The effect of brain-derived neurotrophic factor on CC chemokine 

receptor 7 expression in fibrocytes derived from non-adherent non-T cells. NANT 

cells from healthy subjects (■, n = 6) and patients with non-severe (■, n = 5) or severe asthma (■, 

n = 5) were treated with BDNF (10-100 ng/mL) on day 0. Cells were harvested after 3 or 7 days in 

culture and the percentage of CCR7+ fibrocytes (A-B; % Col I+/CD45+/CCR7+ cells) within the 

NANT cell population and CCR7 MFI (C-D) was determined by flow cytometry. Bars represent 

median with interquartile range. MFI data are expressed as fold-change with respect to untreated 

controls. The differences between the untreated control group and each treatment group were 

determined by Friedman test. 
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4.2.3 The effect TH2 cytokines and neurotrophins on 

non-adherent non-T cell death, differentiation and collagen 

I+/CD45+ fibrocyte proliferation 

I investigated whether TH2 cytokines and neurotrophins increased the number of 

fibrocytes through their anti-apoptotic, pro-myofibroblastic differentiation, or 

pro-proliferative effects on fibrocytes. NANT cells from healthy subjects were 

cultured in FBS-containing media. Annexin V/propidium iodide apoptosis assay 

(Chapter 2.2.4.4) was performed after 72 hr in culture. Annexin V
-
/propidium iodide

-
 

were considered as live cells, Annexin V
+
/propidium iodide

-
 as apoptotic and annexin 

V
+
/propidium iodide

+
 as late apoptotic cells. IL-4 (p < 0.05) and IL-13 (p < 0.05) 

reduced the apoptosis in NANT cells, but there was a trend towards NGF increasing 

the apoptosis in NANT cells (Figure 4.10A-B). There was also a trend towards an 

increase in the expression of α-SMA mRNA by IL-4, IL-13 and NGF, suggesting 

myofibroblastic differentiation was induced by these mediators (Figure 4.10C). DNA 

synthesis, accessed by Click-iT® EdU cell proliferation assays, was increased by 

IL-13 and NGF after 24 hr in culture in one healthy subject (Figure 4.10D), 

suggesting these two mediators may promote cell proliferation. 
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Figure 4.10: The effect of interleukin-4, interleukin-13 and nerve growth factor on 

apoptosis and α–smooth muscle actin expression in non-adherent non-T cells and 

proliferation of fibrocytes. NANT cells isolated from healthy subjects were incubated with IL-4 (10 

ng/mL), IL-13 (10 ng/mL) or NGF (1000 ng/mL) in FBS-containing medium. The percentage of live (■, 

annexin V
-
/propidium iodide

-
), and early (▓, annexin V

+
/propidium iodide

-
) and late apoptotic NANT 

cells (▓, annexin V
+
/propidium iodide

+
) were accessed using annexin V/propidium iodide assay at 72 hr 

using flow cytometry (A, n = 4; B, n = 2). Bars represent median with interquartile range. Data are 

expressed as proportion in NANT cells. The differences between the untreated (Ut) control group and 

each treatment group were determined by Friedman test, followed by Dunn’s post-hoc test. * p < 0.05 

compared to Ut controls. Myofibroblastic differentiation of NANT cells was determined by the 

messenger RNA expression of α–SMA at 24 hr in culture (C, n = 2) Cell proliferation was determined by 

Click-iT® EdU cell proliferation assays at 24 hr in culture (D, n = 2). Bars represent median. 
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4.2.4 Effect of TH2 cytokines and neurotrophins on fibrocytes 

derived from adherent peripheral blood mononuclear cells 

I further investigated whether the effects of pro-inflammatory mediators on fibrocytes 

derived from adherent peripheral blood mononuclear cells (PBMC) were similar to 

their effects on fibrocytes derived from NANT cells. PBMC from healthy subjects 

were incubated in the presence of FBS in plates pre-coated with fibronectin. IL-4 (10 

ng/mL), IL-13 (10 ng/mL), NGF (1000 ng/mL) or BDNF (100 ng/mL) was added on 

day 3 after changing culture media. Fibrocytes and differentiating fibrocytes in 

adherent cells were determined on day 6 days using flow cytometry. 

IL-4 and IL-13 increased the number of fibrocytes (~1.5-fold, p < 0.05) and 

differentiating fibrocytes (~1.7-fold, p < 0.05) in cultured adherent PBMC (Figure 

4.11A-B). NGF and BDNF did not affect the number of fibrocytes or differentiating 

fibrocytes in adherent cells. The results are compatible with the photos taken under 

light microscopy (Figure 4.11C-G). 

The effect of these mediators in the absence of non-adherent PBMC (most T 

cells were removed; stimulated for 3 days in the presence of FBS; Figure 4.12A-B) 

and in the absence of FBS (stimulated for 6 days in the absence of FBS; Figure 

4.12C-D) were similar but less significant. 
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Figure 4.11: The effect of TH2 cytokines and neurotrophins on fibrocytes derived from 

adherent peripheral blood mononuclear cells (stimulated on day 3 after removal of 

adherent cells). PBMC from 6 healthy subjects were seeded in plates pre-coated with fibronectin in 

the presence of FBS. IL-4 (10 ng/mL), IL-13 (10 ng/mL), NGF (1000 ng/mL) or BDNF (100 ng/mL) 

was added after changing medium on day 3. Adherent cells were harvested and counted after 6 days in 

culture. Fibrocytes (Col I+/CD45+ cells; A) and differentiating fibrocytes (α-SMA+ cells; B) were 

determined by flow cytometry. Bars represent median with interquartile range. Data of mediator effects 

were presented as fold-change in cell number with respect to untreated (Ut) controls. The differences 

between the untreated control group and each treatment group were determined by Friedman test, 

followed by Dunn’s post-hoc test. * p < 0.05 compared to untreated controls. Photos of cells from a 

healthy subject treated with IL-4 (D), IL-13 (E), NGF (F) or BDNF (G) were taken at day 6. 
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Figure 4.12: Effect of TH2 cytokines and neurotrophins on fibrocytes derived from 

adherent peripheral blood mononuclear cells (stimulated on day 0 in the presence 

of adherent cells). PBMC from 6 healthy subjects were incubated with IL-4 (10 ng/mL), IL-13 

(10 ng/mL), NGF (1000 ng/mL) or BDNF (100 ng/mL) in plates pre-coated with fibronectin under 

FBS-free (■, A-B) or FBS-containing (■, C-D) condition. Medium was not changed before 

adherent cells were harvested on day 6. Fibrocytes (A, C Col I+/CD45+ cells) and differentiating 

fibrocytes (B, D α-SMA+ cells) were determined by flow cytometry. Data are presented as 

fold-change in cell number with respect to untreated controls. Bars represent median with 

interquartile range. The differences between the untreated control group and each treatment group 

were determined by Friedman test.* p < 0.05. Ut: untreated; IL-4: interleukin-4; IL-13: 

interleukin-13; NGF: nerve growth factor; BDNF: brain-derived neurotrophic factor. 
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4.3 Discussion 

In this chapter, responsiveness of fibrocytes to TH2 cytokines and neurotrophins in 

patients with severe asthma was compared to that in patients with non-severe asthma 

and healthy subjects. I showed that the number of fibrocytes and differentiating 

fibrocytes in NANT cells from healthy subjects and patients with non-severe asthma 

was increased by IL-4, IL-13 and NGF. These mediators had a similar effect on 

fibrocytes in adherent PBMC, and did not increase the expression of CCR7. BDNF 

did not affect fibrocyte function in all three groups. Unexpectedly, the number of 

fibrocytes from patients with severe asthma was neither affected by IL-4 and IL-13, 

nor more significantly increased by NGF. 

IL-4 and IL-13 are implicated in increased extracellular matrix deposition and 

increased ASMC layer thickness in the remodelling of asthmatic airways (Takayama, 

Arima et al. 2006, Doherty and Broide 2007). These two TH2 cytokines increase the 

number of spindle-shaped fibrocytes in cultured PBMC from healthy subjects (Shao, 

Suresh et al. 2008), and the collagen production in fibrocytes from patients with 

non-severe asthma (Bellini, Marini et al. 2012). Therefore, I investigated whether 

fibrocytes from patients with severe asthma are more responsive to IL-4 and IL-13. 

My data showed that IL-4 and IL-13 increased the number of fibrocytes and 
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differentiating fibrocytes from healthy subjects and patients with non-severe asthma. 

IL-4 and IL-13 reduced the apoptosis in NANT cells from healthy subjects. It has 

been reported that IL-4 and IL-13 have anti-apoptotic effects on human conjunctival 

fibroblasts through the phosphoinositide 3-kinase (PI3K) pathway (Fujitsu, Fukuda et 

al. 2005). IL-4 and IL-13 increased α–SMA expression in NANT cells. The 

production of α-SMA is increased by IL-4 and IL-13 in fibroblasts from lung (via 

c-Jun N-terminal kinase (Hashimoto, Gon et al. 2001)) and by IL-4 in fibroblasts from 

liver (Pissaia, Aoudjehane et al. 2010). My data also showed that IL-13 increased the 

proliferation of fibrocytes, although the size of patient population was small. 

Intriguingly, my data showed that IL-4 and IL-13 did not increase the number of 

fibrocytes and differentiating fibrocytes in severe asthma. I propose two possible 

reasons. Firstly, the unstimulated NANT cells from patients with severe asthma are 

more resistant to apoptosis (Chapter 5.2.3) and more ready to differentiate into 

myofibroblasts than NANT cells from patients with non-severe asthma and healthy 

subjects (Chapter 3.2). IL-4 and IL-13 could hardly further prolong their survival or 

promote their differentiation. Besides, the expression of IL-4 receptor-α chain 

(IL-4Rα), shared by the receptors of IL-4 and/or IL-13 (IL-4Rα/IL-13Rα1, 

IL-4Rα/IL-4Rγ and IL-4Rα/IL-13Rα2), may have been altered in fibrocytes from 
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patients with severe asthma (Chiaramonte, Mentink-Kane et al. 2003, Gibejova, 

Mrazek et al. 2003). Patients with severe asthma are on high dose inhaled CS, 

sometimes systemic CS as well. Up-regulation of IL-4Rα induced by 

polyinosinic:polycytidylic acid in epithelial cells and by phorbol myristate acetate in 

PBMC is inhibited by dexamethasone (Mozo, Gayo et al. 1998, Tsuji, Yamamoto et 

al. 2005). Although asthma is commonly known as a TH2 cytokine disease, interferon 

(IFN)-γ is increased and IL-4 is decreased in severe asthmatic airways (Shannon, 

Ernst et al. 2008). IL-4Rα is up-regulated by IL-4 and down-regulated by IFN-γ (So, 

Park et al. 2000, Bonder, Davies et al. 2002). Circulating fibrocytes might have been 

exposed to higher levels of CS and IFN-γ and lower level of IL-4 before being 

isolated from patients with severe asthma, leading to a lower expression of IL-4Rα. 

Further comparison of the expression of IL-4 and IL-13 receptors in fibrocytes from 

different asthmatic severity groups is warranted. 

NGF and BDNF have been implicated in airway remodelling (Renz and Kilic 

2012, Prakash and Martin 2014). The effect of neurotrophins on fibrocytes has not 

been reported. I investigated whether fibrocytes from patients with severe asthma are 

more responsive to NGF and BDNF. My data showed that NGF increases the number 

of fibrocytes and differentiating fibrocytes from both healthy subjects and patients 
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with non-severe or severe asthma. Furthermore, NGF increases proliferation in 

fibrocytes and facilitates α-SMA expression in NANT cells from healthy subjects. It 

has been reported that NGF increases the production of α-SMA in human dermal and 

pulmonary fibroblasts (Micera, Vigneti et al. 2001) and the proliferation of human 

dermal microvascular endothelial cells (Raychaudhuri, Raychaudhuri et al. 2001). In 

contrast to IL-4 and IL-13, there was a trend towards NGF inducing apoptosis in 

NANT cells. NGF differentially affects cell death in different cells: withdrawal of 

NGF induces apoptosis in rat-1 fibroblast via p38 pathway (Kummer, Rao et al. 

1997), whilst NGF is pro-apoptotic for myofibroblasts from rodent fibrotic liver 

(Kendall, Hennedige et al. 2009) and human conjunctiva (Micera, Puxeddu et al. 

2012). The lower affinity p75 neurotrophin receptor (p75NTR) promotes survival 

through interactions with the high affinity tropomyosin-receptor-kinase (Trk) 

receptors, and promotes apoptosis through association with sortilin death signalling 

complex (Kaplan and Miller 2004, Kraemer, Yoon et al. 2014). NGF had a greater 

pro-mitotic effect compared to its pro-apoptotic effect in NANT cells. On the other 

hand, BDNF did not affect the number of fibrocytes and differentiating fibrocytes. It 

is not known whether fibrocytes express TrkA and TrkB receptors, which 

preferentially bind to NGF and BDNF, respectively. 

http://en.wikipedia.org/wiki/Tropomyosin
http://en.wikipedia.org/wiki/Receptor_(biochemistry)
http://en.wikipedia.org/wiki/Kinase
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My data did not show that NGF increases fibrocytes in severe asthma more 

significantly than in non-severe asthma. It is possible that at baseline fibrocytes from 

patients with severe asthma were already more differentiated, so NGF could not 

further increase their proliferation and differentiation. Furthermore, severe asthmatic 

fibrocytes may have been exposed to higher dose of CS in vivo. It has been reported 

that CS reduce the expression of TrkA and p75NTR in medullar thymic epithelial 

cells (Perez-Pinera, Garcia-Suarez et al. 2006). It is also possible that previous 

exposure to CS down-regulates the expression of TrkA in fibrocytes from patients 

with severe asthma, leading to less response to NGF. Further measurement of the 

expression of p75NTR or TrkA in fibrocytes from asthmatic patients with different 

severity is of interest. 

Although it has been reported that IL-4 increases CCR7 expression in human 

CD8+ lymphocytes (Seneviratne, Black et al. 2007), IL-4, IL-13, NGF and BDNF did 

not up-regulate the expression of CCR7 in fibrocytes. IL-4 and IL-13 prime the 

migration of haematopoietic progenitor cells to CXCL12/stromal cell-derived factor 1 

(SDF-1) by enhancing CXCR4 incorporation into lipid rafts (Punia, Smith et al. 

2012). Investigating whether these mediators promote fibrocyte migration via other 

chemokine receptors/chemokine axes, such as CXCR4/CXCL12-SDF-1 is warranted. 
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TH2 cytokines and neurotrophins exert similar effects on fibrocytes in both the 

adherent fraction and the NANT fraction of PBMC from healthy subjects recruited to 

my study. It has been reported that IL-4 and IL-13 increase spindle-shaped fibrocytes 

derived from PBMC in the presence of non-adherent fraction (e.g. T cells) under 

FBS-free medium conditions (Shao, Suresh et al. 2008). I showed a similar trend 

towards IL-4, IL-13 and NGF increasing the number of fibrocytes in adherent cells 

using the same model, and the effect of these mediators was even more potentiated in 

the presence of FBS. However, the addition of TH2 cytokines and neurotrophins to the 

whole PBMC population might induce the release of mediators from coexisting 

non-adherent PBMC (mainly T cells), and indirectly affect the fibrocytes in adherent 

PBMC in a paracrine manner. Although it has been reported the non-monocyte 

fraction of PBMC, mainly T cells, increases the differentiation of co-cultured 

adherent fibrocytes via the release of TGF-β, I demonstrated that IL-4, IL-13 and 

NGF increased the number of fibrocytes and differentiating fibrocytes derived from 

both adherent fraction and NANT fraction of PBMC even in the absence of T cells. 

In summary, IL-4, IL-13 and NGF increase the number of fibrocytes more 

significantly in non-severe asthmatic patients than in severe asthmatic patients in vitro. 

Although the existence of pro-fibrotic mediators in bronchial biopsies or 
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broncho-alveolar lavage samples was not determined in my project, increased airway 

remodelling in severe asthma may not be the result of a heightened responsiveness to 

pro-fibrotic IL-4, IL-13, NGF or BDNF in severe asthmatic fibrocytes. Increasing the 

patient population is required to further clarify whether these mediators increase 

fibrocytes by affecting apoptosis, differentiation and proliferation. This will aid 

understanding of how these mediators manipulate signalling pathways in fibrocytes. 
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Chapter 5: Do fibrocytes from patients with severe 

asthma display corticosteroid insensitivity? 

5.1 Background 

Patients with severe asthma respond poorly to asthma therapy which mainly consists 

of corticosteroids (CS) and long acting-β2 agonists (LABA). Although inflammation 

may be partly resolved by medication, airway remodelling has been shown not to be 

reversed by treatment. The molecular and cellular mechanisms behind CS 

insensitivity are unclear. 

Immune and structural cells isolated from patients with severe asthma have been 

reported to show relative CS insensitivity. CS are less effective in suppressing the 

release of pro-inflammatory cytokines and/or chemokines from peripheral blood 

mononuclear cells (PBMC) (Hew, Bhavsar et al. 2006), alveolar macrophages 

(Bhavsar, Hew et al. 2008) and airway smooth muscle cells (ASMC) (Chang, Bhavsar 

et al. 2012) from patients with severe asthma than cells from patients with non-severe 

asthma and healthy subjects, which might be secondary to heightened p38 

mitogen-activated protein kinase (MAPK) activation. Furthermore, ASMC from 

asthmatic patients are resistant to the anti-proliferative effect of CS (Roth, Johnson et 

al. 2004). Several molecular mechanisms have been reported to mediate CS 
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insensitivity in cells from patients with severe asthma. For example, activation of 

MAPK pathways and reduced nuclear translocation in PBMC (Takayama, Arima et 

al. 2006), up-regulation of glucocorticoid receptor (GR)-β subunit in PBMC, airway T 

cells and skin cells (Hamid, Wenzel et al. 1999, Sousa, Lane et al. 2000) and 

decreased histone deacetylase activity in PBMC (Hew, Bhavsar et al. 2006) are 

postulated to be involved in mechanisms leading to CS insensitivity in severe asthma. 

Furthermore, reduced total GR (majorly GR-α) expression has been found in PBMC 

from CS-insensitive nephritis and systemic lupus erythematosus patients (Du, Li et al. 

2009, Hammad, Yahia et al. 2013). 

In the previous chapter, I demonstrated that patients with severe asthma have a 

higher number of circulating fibrocytes which have a greater capacity to differentiate 

in vitro (Chapter 3.2.3). However, the effect of CS on the function of fibrocytes from 

asthmatic patients and whether fibrocytes isolated from patients with severe asthma 

display CS insensitivity is currently unknown. 

In this chapter I will investigate the effect of CS on fibrocyte survival, gene 

expression, and the expression of the CC chemokine receptor (CCR) 7 which is 

known to be involved in the recruitment of fibrocytes (Sakai, Wada et al. 2006). I will 

also determine GR expression both at baseline and in response to CS treatment, 
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inflammatory cytokines and antioxidant. Finally, I investigated the effect of MAPK 

inhibition on CS function. 
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5.2 Results 

5.2.1 Effect of systemic corticosteroids on circulating fibrocytes 

from patients with severe asthma 

I investigated whether systemic CS treatment affects the numbers of circulating 

fibrocytes. To this end, I divided patients with severe asthma into two subgroups: 

severe asthmatic patients on inhaled CS alone and severe asthmatic patients on 

inhaled CS and oral CS. Collagen I (Col I)+/CD45+ fibrocytes in freshly isolated 

non-adherent non-T (NANT) cells from patients with severe asthma were determined 

by flow cytometry. Patients with severe asthma on oral CS treatment did not have 

more, or fewer circulating fibrocytes compared to patients with severe asthma who 

were on inhaled CS alone (p = 0.44, Figure 5.1), suggesting that systemic CS therapy 

may not affect the number of circulating fibrocytes. 
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Figure 5.1: Effect of systemic corticosteroids on circulating fibrocytes from patients 

with severe asthma. The number of fibrocytes (Col I+/CD45+ cells) in freshly isolated NANT cells 

from patients with severe asthma (SA) on oral CS (▼, n = 26) or not (▲, n = 12) was determined by 

flow cytometry. Horizontal lines represent the median values for each group. Results were analysed 

using Mann-Whitney test. 
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5.2.2 Effect of dexamethasone on the number of fibrocytes and 

differentiating fibrocytes within non-adherent non-T cells from 

healthy subjects and patients with non-severe or severe asthma 

To explore the effect of CS on the number and myofibroblastic differentiation of 

fibrocytes, NANT cells isolated from healthy subjects and asthmatic patients were 

cultured in foetal bovine serum (FBS)-containing medium, as previously described 

(Chapter 2.2.2 and Chapter 3.2.2), and treated with dexamethasone (10
-8

 - 10
-5

 M). 

Cells were recovered after 3 days and the number of fibrocytes and α-smooth muscle 

actin (α-SMA)+ differentiating fibrocytes were determined by flow cytometry. 

Dexamethasone had an inhibitory effect on the number of fibrocytes (p < 0.01, 

10
-7

 M) and differentiating fibrocytes (p < 0.01, 10
-7

 M) from healthy subjects, as well 

as the number of fibrocytes (p < 0.01, 10
-7

 M) and differentiating fibrocytes (p < 

0.001, 10
-8

 M) from patients with non-severe asthma (Figure 5.2A-B). 

Dexamethasone also reduced the total number of NANT cells in healthy subjects (p < 

0.01, 10
-7

 M) and patients with non-severe asthma (p < 0.05, 10
-8

 M; Figure 5.2C), 

suggesting the effect of dexamethasone was not specific to fibrocytes but also to other 

non-fibrocytes NANT cells from healthy subjects and patients with non-severe 

asthma. 
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In severe asthma, dexamethasone only reduced fibrocyte number at a very high 

concentration of 10
-5

M (p < 0.05; Figure 5.2A) and did not affect the number of 

differentiating fibrocytes (p = 0.25) and NANT cells (p = 0.08; Figure 5.2B-C).  
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Figure 5.2: Effect of dexamethasone on the number of fibrocytes derived from 

non-adherent non-T cells. NANT cells from healthy subjects (●, n = 9) and patients with non-severe 

(■, n = 10) or severe asthma (▲, n = 12) were cultured for 3 days in the presence of dexamethasone (10
-8

 - 

10
-5 

M). The number of NANT cells were counted (C) and fibrocytes (Col I+/CD45+ cells) (A) and 

differentiating fibrocytes (α-SMA+ cells) (B) were determined by flow cytometry. Data are expressed as 

fold-change compared to untreated controls (Ut). Data points represent median with interquartile range. The 

differences between control group and each treatment group were determined by Friedman test, followed by 

Dunn’s post-hoc test. The differences between disease groups were determined by Kruskal-Wallis test, 

followed by Dunn’s post-hoc test. * p < 0.05, ** p < 0.01, *** p < 0.001 vs Ut for each group. # p < 0.05, 

## p < 0.01 vs healthy subjects, $ p < 0.05,  $$ p < 0.01 vs patients with non-severe asthma. 
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5.2.3 Effect of dexamethasone on the number of fibrocytes and 

differentiating fibrocytes within adherent fraction of peripheral 

blood mononuclear cells from healthy subjects and patients 

with non-severe or severe asthma 

I also looked at the effect of dexamethasone on fibrocytes derived from adherent 

PBMC. PBMC were placed in plates pre-coated with fibronectin in the presence of 

FBS. Media were changed and dexamethasone (10
-7 

M) was added on day 3. The 

number of adherent cells and percentage of fibrocytes and differentiating fibrocytes 

were determined by flow cytometry on day 6. 

As shown in the NANT cell model, the number of fibrocytes and differentiating 

fibrocytes were reduced by dexamethasone in healthy subjects and patients with 

non-severe asthma (p < 0.05), but not in patients with severe asthma (Figure 5.3A-B). 

Morphologically, dexamethasone significantly reduced the number of spindle-shaped 

cells in adherent PBMC from healthy subjects and patients with non-severe asthma, 

but not spindle-shaped cells in adherent PBMC from patients with severe asthma 

(Figure 5.3C-H). 
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Figure 5.3: Effect of dexamethasone on the number of fibrocytes derived from adherent 

peripheral blood mononuclear cells. Adherent PBMC from healthy subjects (■, n = 6) and 

patients with non-severe (■, n = 6) or severe asthma (■, n = 6) were cultured in plates pre-coated with 

fibronectin for 3 days followed by incubation with dexamethasone (Dex, 10
-7

M) for a further 3 days. The 

number of fibrocytes (Col I+/CD45+ cells; A) and differentiating fibrocytes (α-SMA+ cells; B) were 

determined by flow cytometry. Data are presented as fold-change in fibrocyte and differentiating fibrocyte 

numbers with respect to untreated controls. Bars represent median with interquartile range. Photos of cells 

from healthy subjects (C, F) and patients with non-severe (D, G) or severe asthma (E, H) were taken after 

6 days in culture in the absence (C-E) and presence (F-H) of dexamethasone treatment. The differences 

between the control group and each treatment group were determined by Friedman test, followed by 

Dunn’s post-hoc test. * p < 0.05 vs untreated for each group. 
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5.2.4. Effect of dexamethasone on non-adherent non-T cell 

apoptosis 

I determined the proportion of apoptotic cells in NANT cells in freshly isolated, and 

dexamethasone-treated, NANT cells by the annexin V/propidium iodide assay 

(chapter 2.2.4.4). Annexin V
-
/propidium iodide

-
 were considered live cells, Annexin 

V
+
/propidium iodide

-
 as apoptotic and annexin V

+
/propidium iodide

+
 as late apoptotic 

cells. Immediately after isolation, the percentage of apoptotic cells was similar in all 

groups (28.5-30.17%, including 0.2-0.95% in late apoptotic stage; Figure 5.4A). After 

72 hr in culture, untreated NANT cells from patients with severe asthma had a higher 

percentage of live cells (p < 0.01) and a lower percentage of early apoptotic cells (p < 

0.05) compared to NANT cells from healthy subjects (Figure 5.4B), suggesting 

increased survival of severe asthmatic NANT cells. Dexamethasone (10
-7

 M) 

treatment further increased late apoptotic NANT cells in the healthy subjects group (p 

< 0.05) and early apoptotic NANT cells in the non-severe asthmatic group (p < 0.05), 

and reduced the live cells in both group (p < 0.05; Figure 5.4C-D). The percentage of 

live cells (p = 0.31), early (p = 0.69) and late apoptotic cells (p = 0.07) were not 

significantly affected by dexamethasone in NANT cells from patients with severe 

asthma (Figure 5.4E). Thus, NANT cells, including fibrocytes, from patients with 
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severe asthma showed increased survival and were resistant to the pro-apoptotic effect 

of dexamethasone. 
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Figure 5.4: Effect of dexamethasone on non-adherent non-T cell apoptosis in 

healthy subjects and patients with non-severe or severe asthma. The percentage of live (

▓, annexin V
-
/propidium iodide

-
), and early (▓, annexin V

+
/propidium iodide

-
) and late apoptotic 

NANT cells (▓, annexin V
+
/propidium iodide

+
) from healthy subjects (H, n = 4 on day 0, n = 6 on 

day 3) and patients with non-severe (NSA, n = 2 on day 0, n = 6 on day 3) or severe asthma (SA, n = 

4 on day 0, n = 6 on day 3) was determined by flow cytometry immediately after isolation (A) or after 

3 days in culture in the absence (B) or presence of dexamethasone (Dex, 10
-7

 M, C-E). Bars represent 

median with interquartile range. The differences amongst disease groups were determined by 

Kruskal-Wallis test, followed by Dunn’s post-hoc test. The differences between the untreated control 

groups and treatment groups were determined by Wilcoxon matched pairs test. 
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5.2.5 Effect of dexamethasone on the gene expression of 

fibrocyte markers 

NANT cells from healthy subjects and patients with severe asthma were cultured in 

the presence of FBS. Dexamethasone (10
-7

 M) was added at either the beginning 

(treated for 24 hr) or at the 20 hr time point (treated for 4 hr). The expression of Col I, 

CD45 and α–SMA mRNAs in NANT cells was determined after 24 hr. 

Treatment with dexamethasone for 4 hr (p < 0.05) and 24 hr (p < 0.01) reduced 

CD45 mRNA expression in NANT cells from healthy subjects (Figure 5.5B). There 

was also a trend towards dexamethasone reducing Col I and α-SMA mRNA 

expression in healthy subjects (Figure 5.5 A and C, respectively). However, the 

expression of these genes was not affected by dexamethasone in NANT cells from 

patients with severe asthma. 

5.2.6 Effect of dexamethasone on the expression of 

pro-apoptotic and anti-inflammatory genes 

NANT cells from healthy subjects and patients with severe asthma were cultured in 

the presence of FBS. Dexamethasone (10
-7

 M) was added at either the beginning 

(treated for 24 hr) or at the 20 hr time point (treated for 4 hr). The expression of 
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mRNAs of two CS-inducible genes, B-cell lymphoma 2 interacting mediator of cell 

death-extra long (BimEL) and glucocorticoid-induced leucine zipper (GILZ), in NANT 

cells was determined after 24 hr. 

Treatment with dexamethasone for 4 hr increased the expression of BimEL 

mRNA in NANT cells from patients with severe asthma (p < 0.05; Figure 5.6A), and 

the expression of GILZ mRNA in NANT cells from healthy subjects (p < 0.05) and 

patients with severe asthma (p < 0.05; Figure 5.6B). Treatment with dexamethasone 

for 4 hr induced more GILZ mRNA expression in healthy subjects than in patients 

with severe asthma (p = 0.08). However, dexamethasone effect on BimEL mRNA 

expression was not different between healthy subjects and patients with severe asthma 

(p = 0.65).  
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Figure 5.5: Expression of fibrocyte markers in dexamethasone-treated non-adherent 

non-T cells from healthy subjects and patients with severe asthma. NANT cells isolated 

from healthy subjects (■, n = 6) and patients with severe asthma (■, n = 3) were incubated for 24 hr. 

Dexamethasone (10
-7

 M) was added at either the beginning (treated for 24 hr) or at the 20 hr time 

point (treated for 4 hr). Data are expressed as fold-change in mRNA of Col I (A), CD45 (B) and 

α-SMA (C) normalized to 18S mRNA, with respect to untreated controls (Ut). Bars represent median 

with interquartile range. The differences between the untreated control group and each treatment 

group were determined by Friedman test, followed by Dunn’s post-hoc test. The differences between 

healthy subject group and severe asthmatic group were determined by Mann-Whitney test. 
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Figure 5.6: Expression of corticosteroid-inducible genes in dexamethasone-treated 

non-adherent non-T cells from healthy subjects and patients with severe asthma. NANT 

cells isolated from healthy subjects (■, n = 4) and patients with severe asthma (■, n = 3) were 

incubated for 24 hr. Dexamethasone (10
-7

 M) was added at either the beginning (treated for 24 hr) or at 

the 20 hr time point (treated for 4 hr). Data are expressed as fold-change in mRNA of BimEL (A) and 

GILZ (B) normalized to 18S mRNA, with respected to untreated controls (Ut). Bars represent median 

with interquartile range. The differences between the untreated control group and each treatment group 

were determined by Friedman test, followed by Dunn’s post-hoc test. The differences between healthy 

subject group and severe asthmatic group were determined by Mann-Whitney test. * p < 0.05 compared 

to Ut control.  
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5.2.7 Role of the glucocorticoid receptor in corticosteroid action 

To confirm that CS act on fibrocytes and NANT cells through the glucocorticoid 

receptor (GR), NANT cells isolated from healthy subjects were cultured in 

FBS-containing medium, as described before. NANT cells were pre-treated with the 

GR antagonist RU486 (mifepristone, 10
-6

 - 10
-5

 M) 1 hr prior to addition of 

dexamethasone (10
-7

 M). Cells were recovered and counted after 3 days and 

fibrocytes and differentiating fibrocytes were determined by flow cytometry. 

In terms of the number of NANT cells, fibrocytes and differentiating fibrocytes, 

the effect of dexamethasone was completely blocked by RU486 (Figure 5.7). RU486 

itself did not affect the number of NANT cells, including fibrocytes and 

differentiating fibrocytes, from healthy subjects at the concentration of 10
-6

 - 10
-5

M. 
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Figure 5.7: Effect of glucocorticoid receptor antagonism on 

dexamethasone-induced reduction in the number of fibrocytes derived from 

non-adherent non-T cells. NANT cells from healthy subjects (n = 6) were incubated with 

either vehicle (Veh; DMSO) or the GR antagonist RU486 (10
-6

 - 10
-5

 M) 1 hr prior to 

dexamethasone (10
-7

 M). The number of NANT cells was counted and fibrocytes (Col I+/CD45+ 

cells) and differentiating fibrocytes (α-SMA+ cells) were determined by flow cytometry after 3 

days. Data were presented as either total cell number for NANT cells (A) or fold-change in the 

number of fibrocytes (B) and differentiating fibrocytes (C) compared to vehicle-treated controls. 

Bars represent median ± interquartile range. The differences between the vehicle-treated control 

group and each treatment group were determined by Friedman test, followed by Dunn’s post-hoc 

test. * p < 0.05 compared to Veh-treated controls. 
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I subsequently looked at the effect of RU486 on dexamethasone-treated 

fibrocytes in adherent PBMC model. The effect of dexamethasone (10
-7

 M) on the 

number of adherent PBMC, including fibrocytes and differentiating fibrocytes, was 

also inhibited by RU486 (10
-6

 M) in healthy subjects (Figure 5.8A-C). 

Morphologically, the reduction of spindle-shaped cells caused by dexamethasone was 

restored by RU486 (Figure 5.8D-H). 
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Figure 5.8: Effect of glucocorticoid receptor antagonism on dexamethasone-induced 

reduction in the number of fibrocytes derived from adherent peripheral blood 

mononuclear cells. PBMC from healthy subjects (n = 6) were cultured for 3 days, followed by 

incubation with the GR antagonist RU486 (10
-6 

M) or vehicle (Veh; DMSO) 1 hour prior to 

dexamethasone (Dex; 10
-7

 M) for a further 3-day period. The number of adherent PBMC were 

counted (A) and fibrocytes (Col I+/CD45+ cells; B) and differentiating fibrocytes (α-SMA+ cells; C) 

were determined by flow cytometry. Data are presented as either total cell number for adherent 

PBMC or fold-change in the number of fibrocytes and differentiating fibrocytes compared to 

vehicle-treated controls. Bars represent median with interquartile range. The differences between the 

vehicle-treated control group and each treatment group were determined by Friedman test, followed 

by Dunn’s post-hoc test. * p < 0.05 compared to vehicle-treated cells. Photos were taken after 6 days 

in culture with vehicle (D), dexamethasone (E), RU486 (F), dexamethasone plus RU486 (G). 
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5.2.8 The expression of glucocorticoid receptor in fibrocytes 

isolated from healthy subjects and patients with non-severe or 

severe asthma 

To investigate a mechanism for reduced CS responsiveness in fibrocytes from patients 

with severe asthma, the GR expression in fibrocytes in freshly isolated NANT cells 

from healthy subjects and patients with non-severe or severe asthma were determined 

by flow cytometry. Compared to healthy subjects and non-severe asthmatics, both the 

proportion of GR+ fibrocytes (% Col I+/CD45+/GR+ cell; Figure 5.9B) and median 

fluorescence intensity (MFI) ratio (background fluorescence of isotype control was 

subtracted from the MFI of the sample, representing the intensity of GR expression; 

Figure 5.9C) were significantly lower in patients with severe asthma (all p < 0.01). 

The proportion of GR+ NANT cells (Figure 5.9 D) and the GR MFI ratio (Figure 5.9 

E) were also reduced in the whole NANT cell isolated from patients with severe 

asthma compared to healthy subjects (p < 0.001 and p < 0.05) and patients with 

non-severe asthma (p < 0.05 and p < 0.05). 

 



210 

 

  

H NSA SA
0

20

40

60

80

100

**
**

B

%
 C

o
l 
I+

/C
D

4
5
+

/G
R

+
 c

e
ll
s

H NSA SA
0

3

6

9

12

15

**

**
C

G
R

 M
F

I 
ra

ti
o

 o
f

C
o

l 
 I
+

/C
D

4
5

+
/G

R
+

 c
e

ll
s

H NSA SA
0

20

40

60

80

100

***

*

D

%
 G

R
+

 N
A

N
T

 c
e

ll
s

H NSA SA
0

3

6

9

12

15

*

*
E

G
R

 M
F

I 
ra

ti
o

 o
f 

N
A

N
T

 c
e

ll
s

 Healthy Non-severe asthma  Severe asthma  A

Figure 5.9: Glucocorticoid receptor expression in fibrocytes from healthy subjects and 

patients with non-severe or severe asthma. Freshly isolated NANT cells from healthy subjects 

(H, ●, n = 10) and patients with non-severe (NSA, ■, n = 8) or severe asthma (SA, ▲, n = 7) were 

analysed for the expression of GR. Representative flow cytometric scatter plots from one experiments per 

group are shown (A). The percentage (B) and MFI ratio of GR+ fibrocytes (Col I+/CD45+/GR+ cells; 

C), and the percentage (D) and MFI ratio of GR+ NANT cells (E) were determined. The differences 

between disease groups were determined by Kruskal-Wallis test, followed by Dunn’s post-hoc test. The 

horizontal lines indicate median values. * p < 0.05, ** p < 0.01, *** p < 0.001. 
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5.2.9 Effect of TH2 cytokines, corticosteroids, β2-adrenoceptor 

agonist and antioxidant on glucocorticoid receptor expression 

To determine whether reduced GR expression in severe asthma is a result of an 

exposure to pro-inflammatory mediators or asthma medications, NANT cells were 

incubated with either interleukin(IL)-4 (10 ng/mL), IL-13 (10 ng/mL), dexamethasone 

(10
-7

 M) and/or salmeterol (10
-8

 M), tiotropium (10
-6

 M) or N-acetylcysteine (10
-2

 M) 

in FBS-containing medium for a 3-day period. The concentrations of these stimuli 

used for treatment of fibrocytes were selected from previously published studies 

(Linden 1992, Micera, Vigneti et al. 2001, Baouz, Giron-Michel et al. 2005, Pieper, 

Chaudhary et al. 2007, Shao, Suresh et al. 2008, Aravamudan, Thompson et al. 2012, 

Bellini, Marini et al. 2012). The expression of GR in fibrocytes was quantified by 

flow cytometry. 

The proportion of GR+ fibrocytes and GR MFI ratio were not affected by IL-4 

and IL-13 in healthy subjects (Figure 5.10A-B) and by dexamethasone and/or 

salmeterol and tiotropium in healthy subjects and patients with non-severe or severe 

asthma (Figure 5.10C-F). Interestingly, N-acetylcysteine increased the proportion of 

GR+ fibrocytes (% Col I+/CD45+/GR+ cell) and the GR MFI ratio in patients with 
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severe asthma (p < 0.05), but not in healthy subjects and patients with non-severe 

asthma (Figure 5.10G-H).  
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Figure 5.10: Effect of TH2 cytokines, asthma medications and anti-oxidant on the 

expression of glucocorticoid receptor in fibrocytes. NANT cells were incubated with IL-4 

(10 ng/mL), IL-13 (10 ng/mL) (A-B), dexamethasone (Dex; 10
-7

 M) and/or salmeterol (Sal; 10
-8

 M) 

(C-D), tiotropium (Tio; 10
-6

 M; E-F) and N-acetylcysteine (Nac; 10
-4

 M; G-H). The proportion of 

GR+ fibrocytes within the NANT cell population (% Col I+/CD45+/GR+ cells) and MFI ratio was 

determined by flow cytometry after 3 days. Bars represent median with interquartile range. For 

intra-group comparison, results were analysed using the Friedman test, followed by Dunn’s post-hoc 

test (A-D), or Wilcoxon matched pairs test (E-H). H: healthy subjects, NSA: non-severe asthmatics, 

SA: severe asthmatics, Veh: vehicle (DMSO), * p < 0.05. 
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5.2.10 Effect of dexamethasone on CC chemokine receptor 7 

expression in fibrocytes isolated from healthy subjects and 

patients with non-severe or severe asthma 

As CCR7 mediates the chemotaxis of fibrocytes to diseased sites (Sakai, Wada et al. 

2006), I therefore investigated whether CS treatment affects CCR7 expression in 

fibrocytes of asthma. NANT cells from patients with non-severe or severe asthma 

were treated with dexamethasone (10
-8

 - 10
-5

 M) in FBS-containing medium. The 

expression of CCR7 in fibrocytes was determined by flow cytometry after 3 days in 

culture (Figure 5.11A-C). Dexamethasone reduced the proportion of CCR7+ 

fibrocytes (p < 0.05, 10
-7

 M) and CCR7 MFI ratio (p < 0.05, 10
-7

 M) in non-severe 

asthma in a concentration-dependent manner, but not in severe asthma, suggesting the 

expression of CCR7 in fibrocytes is less sensitive to CS inhibition in severe asthma. 
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A 

Figure 5.11: Effect of dexamethasone on CC chemokine receptor 7 expression in 

fibrocytes from patients with non-severe or severe asthma. Cultured NANT cells isolated from 

patients with non-severe (■, n = 8) or severe asthma (▲, n = 9) were treated with dexamethasone (10
-8

 

-10
-5

 M) for a 3-day period. (A) Representative flow cytometric scatter plots from one experiment per 

group are shown. Percentage of CCR7+ fibrocytes within the NANT cell population (% Col 

I+/CD45+/CCR7+ cells; B) and fold-change in MFI (C) after dexamethasone treatment was determined on 

NANT cells from the same patients. Data points represent median with interquartile range. The differences 

between the untreated control group and each treatment group were determined by Friedman test, followed 

by Dunn’s post-hoc test. The differences between non-severe asthmatic and severe asthmatic patients were 

determined by Mann-Whitney test. * p < 0.05, ** p < 0.01 vs untreated (Ut) control. # p < 0.05 vs patients 

with non-severe asthma. 
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5.2.11 Role of kinases on fibrocytes and their corticosteroid 

responsiveness 

The phosphorylation status of GR is associated with less CS inhibition of induced 

pro-inflammatory mediators in alveolar macrophages, PBMC, ASMC in severe 

asthma (Hew, Bhavsar et al. 2006, Bhavsar, Hew et al. 2008, Chang, Bhavsar et al. 

2012). Here I investigated the role of three MAPKs: p38 MAPK, c-jun N-terminal 

kinase (JNK) and extracellular signal-regulated kinase (ERK) as well as 

phosphatidylinositol 3'-kinase (PI3K) in CS-induced fibrocyte reduction in in severe 

asthma. 

NANT cells from patients with non-severe or severe asthma were incubated with 

dexamethasone (10
-7

 M) and/or kinase inhibitors (p38 MAPK inhibitor SB202190 at 

10
-6

 M; JNK inhibitor SP600125 at 10
-6

 M; ERK inhibitor U0126 at 10
-6

 M; PI3K 

inhibitor LY294002 at 10
-5

 M; or vehicle DMSO) in the presence of FBS for a 3-day 

period. Fibrocytes and differentiating fibrocytes were identified by flow cytometry.  

5.2.11.1 p38 mitogen-activated protein kinase 

Dexamethasone reduced the number of fibrocytes and differentiating fibrocytes from 

patients with non-severe asthma (Figure 5.12A, C) but not the number of these cells 

from patients with severe asthma (Figure 5.12B, D). SB202190 alone did not affect 
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the number of these cells from patients with either non-severe or severe asthma 

(Figure 5.12A-D). In the presence of SB202190, dexamethasone did not reduce the 

number of fibrocytes (p = 0.31; Figure 5.12B) and differentiating fibrocytes (p = 0.38; 

Figure 5.12D) from patients with severe asthma. 
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Figure 5.12: Effect of p38 mitogen-activated protein kinase inhibitor on 

corticosteroid sensitivity of fibrocytes in non-adherent non-T cells from 

patients with asthma. Cultured NANT cells, isolated from patients with non-severe (A, 

C, ■, n = 6) or severe asthma (B, D, ■, n = 7), were treated with p38 MAPK inhibitor 

SB202190 (10
-6

 M) ± dexamethasone (10
-7

 M) for a 3-day period. Fibrocytes (Col I+/CD45+ 

cells; A-B) and differentiating fibrocytes (α-SMA+ cells; C-D) were determined by flow 

cytometry. Data are expressed as fold-change in cell number with respect to vehicle-treated 

controls. Bars represent median with interquartile range. The differences between the 

vehicle-treated control group and each treatment group were determined by Friedman test, 

followed by Dunn’s post-hoc test. * p < 0.05. 
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5.2.11.2 c-Jun N-terminal kinase 

Dexamethasone reduced the number of fibrocytes and differentiating fibrocytes from 

patients with non-severe asthma (Figure 5.13A, C) but not the number of these cells 

from patients with severe asthma (Figure 5.13B, D). SP600125 alone reduced the 

number of differentiating fibrocytes (p < 0.05; Figure 5.13C), but not fibrocytes (p = 

0.09; Figure 5.13A) from patients with non-severe asthma. SP600125 did not affect 

the number of cells from patients with severe asthma (Figure 5.13D). In the presence 

of SP600125, dexamethasone significantly reduced the numbers of fibrocytes (p < 

0.05; Figure 5.13B), but not differentiating fibrocytes (p = 0.58, Figure 5.13D), from 

patients with severe asthma.  
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Figure 5.13: Effect of c-jun N-terminal kinase inhibitor on corticosteroid 

sensitivity of fibrocytes in non-adherent non-T cells from patients with 

asthma. Cultured NANT cells, isolated from patients with non-severe (A, C, ■, n = 6) or 

severe asthma (B, D, ■, n = 7), were treated with JNK inhibitor SP600125 (10
-6

 M) ± 

dexamethasone (10
-7

 M) for a 3-day period. Fibrocytes (Col I+/CD45+ cells; A-B) and 

differentiating fibrocytes (α-SMA+ cells; C-D) were determined by flow cytometry. Data are 

expressed as fold-change in cell number with respect to vehicle-treated controls. Bars 

represent median with interquartile range. The differences between the vehicle-treated 

control group and each treatment group were determined by Friedman test, followed by 

Dunn’s post-hoc test. * p < 0.05. 

  

0.0

0.5

1.0

1.5

- + - +Dex (10-7M)

Vehicle

SP600125 10
-6

M

*
A * *

p = 0.0938

F
o

ld
-c

h
a

n
g

e
 i
n

C
o

l 
I+

/C
D

4
5

+
 c

e
ll
 n

u
m

b
e

r

0.0

0.5

1.0

1.5

Vehicle

SP600125 10
-6

M

*

- + - +Dex (10-7M)

B
*

*

F
o

ld
-c

h
a

n
g

e
 i
n

C
o

l 
I+

/C
D

4
5

+
 c

e
ll
 n

u
m

b
e

r

0.0

0.5

1.0

1.5

- + - +Dex (10-7M)

*
*C

*

F
o

ld
-c

h
a

n
g

e
 i
n


-S

M
A

+
 c

e
ll

 n
u

m
b

e
r

0.0

0.5

1.0

1.5

- + - +Dex (10-7M)

*
*D p = 0.5781

F
o

ld
-c

h
a

n
g

e
 i
n


-S

M
A

+
 c

e
ll

 n
u

m
b

e
r



221 

 

5.2.11.3 Extracellular signal-regulated kinase 

Dexamethasone reduced the number of fibrocytes and differentiating fibrocytes from 

patients with non-severe asthma (Figure 5.14A, C) but not the number of these cells 

from patients with severe asthma (Figure 5.14B, D). U0126 alone reduced the number 

of fibrocytes from patients with non-severe (p < 0.01; Figure 5.14A) and severe 

asthma (p < 0.05; Figure 5.14B), and differentiating fibrocytes from non-severe (p < 

0.01; Figure 5.14C); however its effect on the number of differentiating fibrocytes 

from patients with severe asthma was less significant (p = 0.13; Figure 5.14D). In the 

presence of U0126, dexamethasone did not affect the numbers of fibrocytes (p = 0.94; 

Figure 5.14B) and differentiating fibrocytes (p = 0.47; Figure 5.14D) from patients 

with severe asthma. 
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Figure 5.14: Effect of extracellular signal-regulated kinase inhibitor on 

corticosteroid sensitivity of fibrocytes in non-adherent non-T cells from 

patients with asthma. Cultured NANT cells, isolated from patients with non-severe (A, 

C, ■, n = 7) or severe asthma (B, D, ■, n = 7), were treated with ERK inhibitor U0126 (10
-6 

M) ± dexamethasone (10
-7

 M) for a 3-day period. Fibrocytes (Col I+/CD45+ cells; A-B) and 

differentiating fibrocytes (α-SMA+ cells; C-D) were determined by flow cytometry. Data are 

expressed as fold-change in cell number with respect to vehicle-stimulated controls. Bars 

represent median with interquartile range. The differences between the vehicle-treated 

control group and each treatment group were determined by Friedman test, followed by 

Dunn’s post-hoc test. * p < 0.05, ** p < 0.01. 
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5.2.11.4 Phosphatidylinositol 3'-kinase 

Dexamethasone reduced the number of fibrocytes and differentiating fibrocytes from 

patients with non-severe asthma (Figure 5.15A, C) but not the number of these cells 

from patients with severe asthma (Figure 5.15B, D). LY294002 alone reduced the 

number of fibrocytes from patients with non-severe (p < 0.05; Figure 5.15A) or severe 

asthma (p < 0.01; Figure 5.15B), and differentiating fibrocytes from patients with 

non-severe (p < 0.05; Figure 5.15C) or severe asthma (p < 0.01; Figure 5.15D). In the 

presence of LY294002, dexamethasone did not affect the numbers of fibrocytes (p = 

1.00; Figure 5.15B) and differentiating fibrocytes (p = 0.69; Figure 5.15D) from 

patients with severe asthma. 
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Figure 5.15: Effect of phosphoinositide 3-kinases inhibitor on corticosteroid 

sensitivity of fibrocytes in non-adherent non-T cells from patients with 

asthma. Cultured NANT cells, isolated from patients with non-severe (A, C, ■, n = 6) or 

severe asthma (B, D, ■, n = 6), were treated with PI3K inhibitor LY294002 (10
-5

 M) ± 

dexamethasone (10
-7

 M) for a 3-day period. Fibrocytes (Col I+/CD45+ cells; A-B) and 

differentiating fibrocytes (α-SMA+ cells; C-D) were determined by flow cytometry. Data are 

expressed as fold-change in cell number with respect to vehicle-treated controls. Bars 

represent median with interquartile range. The differences between the vehicle-treated 

control group and each treatment group were determined by Friedman test, followed by 

Dunn’s post-hoc test. * p < 0.05, ** p < 0.01. 
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5.3 Discussion 

The results of this chapter showed that dexamethasone induced the apoptosis in 

NANT cells, including fibrocytes and differentiating fibrocytes, from healthy subjects 

and patients with non-severe asthma, as well as the expression of CCR7 in fibrocytes 

from patients with non-severe asthma. However, dexamethasone did not either induce 

cell apoptosis or reduce CCR7 expression in fibrocytes from patients with severe 

asthma. GR mediates the effect of dexamethasone on fibrocytes; GR expression was 

lower in fibrocytes from patients with severe asthma but was increased in the 

presence of antioxidant N-acetylcysteine. JNK inhibition restored the suppressive 

effect of dexamethasone in terms of reducing fibrocyte number, in severe asthma. 

In asthma, CS are prescribed as controller medications which reduce asthmatic 

symptoms, exacerbations and mortality, and thus improve lung function and quality of 

life (Bateman, Hurd et al. 2008). CS attenuate airway inflammation by reducing 

pro-inflammatory cells and mediators, and increasing anti-inflammatory mediators 

(Chung and Barnes 1999); these effects are mediated by the nuclear translocation of 

cytoplasmic liganded GR (Barnes 2010). The role of CS in asthmatic airway 

remodelling is unclear (van Essen-Zandvliet, Hughes et al. 1994, Hoshino 2004, Ward 

and Walters 2005). Circulating fibrocytes invade the airways, transform into 
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myofibroblasts, and therefore play a role in airway remodelling (Schmidt, Sun et al. 

2003, Saunders, Siddiqui et al. 2009). It has been reported that dexamethasone 

reduces the proliferation, α-SMA expression, and release of mediators (IL-13, IL-6, 

IL-10) in fibrocytes from healthy subjects (Hayashi, Kawakita et al. 2013, Hayashi, 

Kawakita et al. 2014). Nonetheless, the effect of CS on fibrocytes from patients with 

non-severe or severe asthma has not been previously reported. 

I showed that dexamethasone can induce apoptosis in NANT cells, including 

fibrocytes and differentiating fibrocytes, which is consistent with the literature 

showing CS-induced apoptosis in T lymphocytes (Brunetti, Martelli et al. 1995), 

monocytes (Schmidt, Lugering et al. 2001) and basophils (Yoshimura, Miyamasu et 

al. 2001). Apoptosis, also referred to as programmed cell death, is a result of the 

activation of the caspase cascade through signalling of either the extrinsic pathway or 

the intrinsic pathway. The extrinsic pathway involves membrane-bound “death 

signal” receptors. The intrinsic pathway, leading to increased permeability of 

mitochondria, induces the release of cytochrome c and other proteins which neutralise 

the endogenous inhibitors of apoptosis (Figure 5.16). CS initiate apoptosis via the 

intrinsic pathway in most cell types (Schlossmacher, Stevens et al. 2011). In some 

cases, activated GR may also induce apoptosis through rapid activation of protein 
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kinases such as MAPK, PI3K, protein kinase B (AkT), which, in turn, activate 

endothelial nitric oxide synthase (Limbourg and Liao 2003).  
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Figure 5.16: Corticosteroid-induced apoptosis. CS exert their effects either genomically or 

non-genomically. It is proposed that CS act via the intrinsic pathway, which tips the balance from 

anti-apoptotic to pro-apoptotic Bcl-2 family, to cause the release of cytochrome c from 

mitochondria and the subsequent caspase activation. CS: corticosteroid; GR: glucocorticoid 

receptor; PI3K: phosphoinositide 3-kinase; Akt: protein kinase B; Bcl-2: B cell lymphoma 2; 

Bcl-XL: B cell lymphoma extra large; Bad: Bcl-2-associated death promoter; Bim: B-cell lymphoma 

2 interacting mediator of cell death; Bid: BH3-interacting-domain death agonist; Bax: 

Bcl-2-associated X protein; Bak: Bcl-2 antagonist/killer-1. Modified from Schlossmacher et al., 

Journal of Endocrinology 2011; 211:17. 

http://en.wikipedia.org/wiki/Phosphoinositide_3-kinase
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Activated GR induces the expression of a variety of pro-apoptotic genes 

(Distelhorst 2002, Schlossmacher, Stevens et al. 2011), such as BimEL in the 

dexamethasone-treated NANT cells shown in this chapter. The apoptotic 

mitochondrial events are regulated by the balance of pro-apoptotic and anti-apoptotic 

members of the B cell lymphoma 2 (Bcl-2) family (Bcl-2 rheostat) (Ploner, Rainer et 

al. 2008). The anti-apoptotic members (e.g. Bcl-2 and Bcl-extra large (Bcl-xL)) 

conserve three or four characteristic regions of Bcl-2 homology (BH) 1-4 domains. 

The pro-apoptotic Bcl-2 family members are further divided into two subgroups: 

those with two or three BH domains (e.g. Bcl-2-associated X protein (Bax), Bcl-2 

antagonist/killer-1 (Bak)), and those with only the BH3 domain (BH3-only proteins, 

e.g. Bim/Bcl-2-related ovarian death (Bod), Bcl-2-associated death promoter (Bad), 

BH3-interacting-domain death agonist (Bid)) (Huang and Strasser 2000). BH3-only 

proteins are activated by stimuli such as drugs (e.g. CS), radiation, toxins, hypoxia, 

hyperthermia, or deprivation of growth factors, cytokines and hormones which 

maintain the survival of the cells. BH3-only proteins in turn activate Bax and Bak, 

which dimerise, insert into the mitochondrial membrane, and form channels resulting 

leakage of cytochrome c and other mitochondrial proteins into the cytoplasm. When 

cells are exposed to growth factors and survival signals, anti-apoptotic Bcl-2 and 
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Bcl-xL are synthesized to antagonise Bax and Bak and limit the leakage from 

mitochondria. BimEL, one of three isoforms of Bim, contains additional regulatory 

regions that interact with the dynein light chain LC8, which modulates their 

pro-apoptotic activity (Puthalakath, Huang et al. 1999). In this study I found BimEL 

was up-regulated by CS in NANT cells, although its expression was not significantly 

different in healthy subjects and patients with severe asthma after treatment at the 4-hr 

or 24-hr time points. Dexamethasone treatment induces Bim expression in biopsies 

from children with CS-sensitive acute lymphoblastic leukemia (ALL) but not in 

biopsies from children with CS-resistant ALL (Bachmann, Gorman et al. 2005). Lack 

of Bim induction in these CS-resistant biopsies is accompanied by maintenance of 

mitochondrial transmembrane potential and failure to activate effector caspases. 

However, GR expression and nuclear translocation in response to dexamethasone was 

not correlated with CS sensitivity in these biopsies; in contrast to the present study, 

expression of GR was generally lower in NANT cells, including fibrocytes, from the 

relative CS-insensitive severe asthmatic subjects, suggesting different mechanisms 

form the basis for CS insensitivity in different cell types. Furthermore, as Bim is not 

the only Bcl-2 gene that is differentially regulated between CS-sensitive and 
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CS-insensitive cells, a comparison of the expression of other Bcl-2 family proteins in 

NANT cells from CS-sensitive and CS-resistant patients may be of interest. 

Dexamethasone also up-regulates the expression of the GILZ gene in the NANT 

cells. GILZ induces CD4+/CD8+ thymocyte apoptosis (Delfino, Agostini et al. 2004); 

down-regulation of GR-α inhibits dexamethasone-induced GILZ transactivation 

(Vazquez-Tello, Halwani et al. 2013). Here I also demonstrated a trend showing a 

smaller extent of dexamethasone-induced GILZ expression in NANT cells from 

patients with severe asthma, which may be associated with lesser CS-induced 

apoptosis in NANT cells from severe asthmatic patients compared to that in NANT 

cells from healthy subjects. 

I showed dexamethasone reduced the mRNA expression of CD45 (and Col I and 

α-SMA mRNA to a lesser extent) in healthy subjects. Some studies demonstrated 

inhaled CS reduce collagen deposition and myofibroblastic differentiation of 

fibroblasts in the airways (Olivieri, Chetta et al. 1997, Hoshino, Nakamura et al. 

1998), whilst others failed to show these effects (Jeffery, Godfrey et al. 1992). To 

suppress gene expression, liganded GR interacts with coactivators and recruits 

co-repressors (e.g. histone deacetylase 2) to the activated transcription complex, 

leading to reduction of histone acetylation, chromatin remodelling and polymerase 2 
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action (trans-repression). Less frequently, activated GR binds to the negative 

glucocorticoid response element in the promoters to repress gene expression 

(cis-repression) (Barnes 2010). Decreased mRNA of fibrocyte markers in the NANT 

cells may either reflect the transrepression or cis-repression induced by 

dexamethasone, or simply be due to the reduction in the number of total cells. 

Nevertheless, the mRNA expression of these genes was not decreased by 

dexamethasone in the NANT cells from patients with severe asthma. 

It has previously been shown that PBMC (Hew, Bhavsar et al. 2006), alveolar 

macrophages (Bhavsar, Hew et al. 2008) and ASMC (Chang, Bhavsar et al. 2012) 

from patients with severe asthma display relative CS insensitivity in terms of reduced 

suppression of induced cytokine release, and here I report fibrocytes from patients 

with severe asthma also responded differentially to dexamethasone. Several 

mechanisms are implicated in the reduction of CS responsiveness in severe asthma: 

altered nuclear translocation of GR (Takayama, Arima et al. 2006), increased GR-β 

expression (Hamid, Wenzel et al. 1999, Sousa, Lane et al. 2000) and defective histone 

acetylation (Hew, Bhavsar et al. 2006). I propose lower expression of (total) GR may 

play a role in CS insensitivity in circulating fibrocytes from patients with severe 

asthma. Lower expression of total GR in CD3+ and CD14+ cells has been described 
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in CS-resistant nephrotic syndrome children (Hammad, Yahia et al. 2013) and 

systemic lupus erythematosus adults (Du, Li et al. 2009). CS-induced apoptosis of 

thymocytes is increased in transgenic mice with over-expression of GR (Reichardt, 

Umland et al. 2000) and decreased in transgenic mice with lower GR expression 

(Pazirandeh, Xue et al. 2002). It has been reported that the expression of GR-β is 

significantly increased in PBMC from CS-resistant asthmatic patients (Goleva, 

Jackson et al. 2012). In my study I could only detect total GR because commercial 

antibodies specific for GR-α for flow cytometry are currently unavailable. Further 

investigation of the ratio of GR-β/GR-α in circulating fibrocyte may be indicated. 

I showed dexamethasone reduced CCR7 expression in fibrocytes from patients 

with non-severe asthma. Dexamethasone reduces the expression of CCR7 and the 

homing to drainage lymph nodes in mouse dendritic cells; the effect can be abolished 

by the GR antagonist RU486 (Xing, ML et al. 2002, Vizzardelli, Pavelka et al. 2006, 

Larange, Antonios et al. 2012). CC chemokine ligand 21-secondary lymphoid-tissue 

chemokine (SLC)/CCR7 signalling mediates the infiltration of fibrocytes in skin and 

fibrotic kidneys in mouse models (Abe, Donnelly et al. 2001, Sakai, Wada et al. 

2006). Since dexamethasone reduced the expression of CCR7 in fibrocytes from 

patients with non-severe asthma in vitro, CS may also help to decrease the airway 
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remodelling induced by circulating fibrocytes. However, severe asthmatic fibrocytes 

also showed resistance to dexamethasone-induced inhibition of CCR7 expression. 

Failure of CS to down-regulate CCR7 expression in fibrocytes may allow for their 

accumulation and migration into the airways of patients with severe asthma despite 

being under treatment with CS, thus leading to greater degree of airway wall 

remodelling. 

Since the expression of GR in fibrocytes from patients with severe asthma was 

lower, I screened for mediators and medications which might affect the expression of 

GR. It is known that patients with severe asthma have a higher level of IL-13 in their 

airways compared to patients with non-severe asthma (Naseer, Minshall et al. 1997, 

Saha, Berry et al. 2008, Macedo, Hew et al. 2009). IL-2 and IL-4 exposure reduces 

GR-α expression in PBMC (Vazquez-Tello, Halwani et al. 2013). CS, β2-agonists and 

muscarinic antagonists are frequently prescribed in asthma; the expression of GR was 

down-regulated by CS in leukaemia cells (Kfir, Sionov et al. 2007). However, my 

data showed neither TH2 cytokines (e.g. IL-4, IL-13) nor asthma medications (e.g. 

dexamethasone, salmeterol, tiotropium) altered the expression of GR in circulating 

fibrocytes. However, anti-oxidative N-acetylcysteine increased the expression of GR 

in fibrocytes from patients with severe asthma. Asthmatic patients have increased 
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reactive nitrogen species and reactive oxygen species released by inflammatory cells 

in their airways (Chung and Marwick 2010). An oxidant-antioxidant imbalance may 

be involved in many fibrotic diseases, including idiopathic pulmonary fibrosis, 

alcoholic hepatitis and asthmatic airway remodelling. It has been shown that hydrogen 

peroxide increases the number and myofibroblastic differentiation of fibrocytes via 

up-regulation of epidermal growth factor receptor, and these effects can be abolished 

by N-acetylcysteine (Wang, Huang et al. 2012). The addition of N-acetylcysteine to 

prednisolone provides better outcomes for patients with idiopathic pulmonary fibrosis 

or acute alcoholic hepatitis, compared to standard regimens without N-acetylcysteine 

(Demedts, Behr et al. 2005, Nguyen-Khac, Thevenot et al. 2011). Oxidative stress 

reduces CS sensitivity in patients with chronic obstructive pulmonary disease (COPD) 

or severe asthma and asthmatic smokers; the known mechanisms include histone 

deacetylase 2 inhibition or GR-α phosphorylation (Barnes and Adcock 2009). Since 

N-acetylcysteine increases the expression of GR in severe asthmatic fibrocytes, it is 

worth exploring whether down-regulation of GR is also one of the mechanisms 

involving oxidative stress-induced CS insensitivity. 

Many external inflammatory signals in asthma (e.g. such as pathogens, allergens, 

cytokines, growth factors, oxidative stress, etc.) activate intracellular kinase cascades 
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to modulate the proliferation, differentiation, gene expression, migration and survival 

of cells (Adcock, Chung et al. 2006). MAPK family proteins (p38MAPK, JNK, ERK) 

and PI3K regulate airway inflammation through activation of pro-inflammatory 

transcriptional factors or modulation of mRNA half-life (Haluzikova, Dostalova et al. 

2009). These kinases display heightened activity in asthma; therefore targeting 

MAPKs and PI3K might potentially allow for selective treatment of inflammation and 

remodelling in asthmatic airways (Liu, Liang et al. 2008, Takeda, Ito et al. 2010). It 

has been reported that the inhibition of p38 MAPK (Kokubo, Sakai et al. 2012), JNK 

(Hong, Belperio et al. 2007), ERK (Nikam, Wecker et al. 2011) and PI3K (Mehrad, 

Burdick et al. 2009) down-regulates the expression of pro-collagen I, α-SMA, 

integrins and CXCR4 in fibrocytes respectively. In patients with non-severe asthma 

recruited to my project, the number of fibrocytes was reduced by inhibition of ERK 

and PI3K and differentiating fibrocytes were reduced by inhibition of JNK, ERK and 

PI3K. It has been demonstrated that TGF-β1 induces α-SMA expression in fibrocytes 

through the stress-activated protein kinases/JNK pathway (Hong, Belperio et al. 

2007). Whilst there is little in the literature regarding whether inhibition of ERK and 

PI3K affects the proliferation and myofibroblastic differentiation of fibrocytes, some 

studies have shown that these kinase inhibitors reduce the number and α–SMA 
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expression of other cell types. For example, ERK inhibition induces cell apoptosis in 

PBMC (Blank, Burger et al. 2002) and reduces endothelin-1/TGF-β1-induced collagen 

production in pulmonary arterial smooth muscle cells (Lambers, Roth et al. 2013) and 

skin fibroblasts from patients with scleroderma (Chen, Leask et al. 2008). Inhibition 

of PI3K (p100γ and p100α isoforms) attenuates TGF-β-induced proliferation and 

α-SMA expression in pulmonary fibroblasts (Conte, Fruciano et al. 2011). 

Intriguingly, only PI3K inhibition, but not JNK or ERK inhibition, reduced the 

number of fibrocytes and differentiating fibrocytes from patients with severe asthma. 

Further comparison about the phosphorylation status of these kinases in fibrocytes 

from asthmatic patients with different severity may help to find out the mechanism 

leading to more cultured cells in patients with severe asthma at day 3. 

Post-translational modification of GR, such as phosphorylation, nitrosylation and 

ubiquitination, reduce nuclear translocation and transactivational activity of GR 

(Barnes 2010). The alteration in phosphorylation status of GR is related to CS 

insensitivity in severe asthma (Adcock and Lane 2003). However, whether these 

kinases affect CS insensitivity in fibrocytes has not been investigated. I showed JNK 

inhibition improved the suppressive effect of dexamethasone on fibrocytes in severe 

asthma. It has also been shown that toxic shock toxin-1 reduces the inhibitory effect 
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of prednisolone on the proliferation of PBMC, which can be restored by JNK 

inhibition (Fukushima, Hirano et al. 2007). Although the inhibition of p38MAPK 

(Bhavsar, Hew et al. 2008, Chang, Bhavsar et al. 2012, Mercado, Hakim et al. 2012) 

and PI3K (Rossios, To et al. 2012) has been reported to reverse CS insensitivity in 

severe asthma, inhibition of these two kinases or ERK did not improve CS sensitivity 

in fibrocytes from patients with severe asthma recruited to my project. The 

discrepancy might come from different parameters used to evaluate the inhibitory 

effect of CS: I observed “the reduction in the number of fibrocytes and differentiating 

fibrocytes induced by dexamethasone”, whilst others evaluated “suppression of 

cytokine/chemokine release”. I propose that “impaired CS suppression of release 

function” is more related to p38 MAPK-phosphorylated GR in PBMC, alveolar 

macrophages and ASMC, whilst “failure to induce cell apoptosis by CS” may be more 

related to lower GR expression in fibrocytes. 

Fibrocytes from patients with severe asthma are less sensitive to CS-induced 

apoptosis and CS-inhibition of CCR7 expression, which may contribute to increased 

recruitment of fibrocytes and more remarkable airway remodelling in severe 

asthmatic airways despite high dose CS treatment (Saunders, Siddiqui et al. 2009). CS 

insensitivity in fibrocytes from patients with severe asthma may be related to lower 
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GR expression, which could be reversed by antioxidants, or heightened JNK activity. 

Since CS could not provide satisfactory inhibition on fibrocytes in severe asthma, it is 

worth investigating the effect of other classes of anti-asthmatic medications, such 

bronchodilators, on fibrocyte function. 
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Chapter 6: The effect of bronchodilators on fibrocyte 

function 

6.1 Background 

Bronchodilators are widely used in asthma. Apart from the relief of bronchospasm, 

bronchodilators also provide anti-inflammatory effects (Remington and Digiovine 

2005, Meurs, Dekkers et al. 2013). Two classes of inhaled bronchodilators are 

frequently prescribed: β2-adrenoreceptor (β2-AR) agonists (or β2-agonists) and 

muscarinic antagonists. 

β2-AR agonists act on β2-AR, which are widely expressed in the airways. 

Activation of β2-AR results in increased intracellular 3’,5’-cyclic adenosine 

monophosphate (cAMP), leading to relaxation of airway smooth muscles (ASM). 

Salmeterol xinafoate, a long-acting β2-AR agonists (LABA), inhibits the proliferation 

of ASM cells (ASMC) and peripheral blood mononuclear cells (PBMC) (Young, 

Skinner et al. 1995, Oddera, Silvestri et al. 1997) and the expression of α–smooth 

muscle actin (α–SMA) in lung fibroblasts (Baouz, Giron-Michel et al. 2005), 

suggesting LABAs may have the ability to reduce airway remodelling. The addition 

of LABA to inhaled corticosteroids (CS) improves the symptom control and lung 
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function and reduces the need of high dose inhaled CS (Greening, Ind et al. 1994). 

LABAs have been shown to induce glucocorticoid receptor (GR) nuclear 

translocation in ASMC and fibroblasts (Eickelberg, Roth et al. 1999) and enhance CS 

actions in vitro and in vivo (Pang and Knox 2000, Roth, Johnson et al. 2002, Usmani, 

Ito et al. 2005). CS insensitivity seen in the peripheral blood mononuclear cells 

(PBMC) from patients with severe asthma is associated with reduced GR nuclear 

translocation and with hyperphosphorylation of GR, which are reversed by LABA 

through p38 mitogen-activated protein kinase (MAPK)-γ inhibition (Mercado, To et 

al. 2011). 

Muscarinic antagonists prevent cholinergic nerve-induced bronchospasms and 

mucus hypersecretion and are sometimes prescribed with short-acting β2-adrenoceptor 

agonist (SABA) as an add-on bronchodilator in acute exacerbation of asthma (Gross 

2006) or as an alternative reliever for SABA-intolerant asthmatic patients (Bateman, 

Hurd et al. 2008). Acetylcholine signals the muscarinic receptors expressed in 

respiratory organs through both parasympathetic nerves (Gosens, Zaagsma et al. 

2006) and non-neuronal cells (Wessler and Kirkpatrick 2001). Non-neuronal cells 

such as epithelial cells, fibroblasts and macrophages also express muscarinic receptors 

(Meurs, Dekkers et al. 2013). M2 receptor, the predominant subtype of muscarinic 
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receptors in lung tissues such as fibroblasts, couples preferentially to inhibition of 

adenylyl cyclase (Racke, Haag et al. 2008). In terms of airway remodelling, 

tiotropium bromide, a long-acting muscarinic antagonist (LAMA), attenuates 

hypertrophy of ASMC and mucus glands in ovalbumin-challenged experimental 

guinea pigs (Gosens, Bos et al. 2005, Bos, Gosens et al. 2007). Muscarinic 

antagonists block muscarinic receptor-induced proliferation (Matthiesen, Bahulayan 

et al. 2007), collagen I (Col I) production (Haag, Matthiesen et al. 2008) and α-SMA 

expression (Milara, Serrano et al. 2012) in lung fibroblasts . 

In this chapter I will explore the impact of salmeterol and tiotropium on in vitro 

cultured fibrocytes, which have not been previously reported in the literature. As I 

have previously showed that CS cannot reduce the number of fibrocytes (Col 

I+/CD45+ cells) and differentiating fibrocytes (α-SMA+ cells) from patients with 

severe asthma (Chapter 5), I will further investigate whether these bronchodilators 

affect fibrocyte survival. 
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6.2 Results 

6.2.1 Effect of β2-adrenoceptor agonist on fibrocytes 

6.2.1.1 Effect of salmeterol on fibrocytes derived from non-adherent 

non-T cells 

To explore the effect of LABA on the number and myofibroblastic differentiation 

status of fibrocytes, non-adherent non-T cells (NANT cells; 10
6
 cells/well) isolated 

from healthy subjects and patients with asthma were cultured in foetal bovine serum 

(FBS)-containing medium, as previously described (chapter 2.2.2), and treated with 

either vehicle (dimethyl sulfoxide; DMSO) or salmeterol (10
-9

-10
-7

 M). The 

concentrations of salmeterol used for treatment of fibrocytes were selected from 

previously published studies (Linden 1992, Baouz, Giron-Michel et al. 2005). The 

number of fibrocytes and differentiating fibrocytes, and CC chemokine receptor 

(CCR) 7 expression, were determined by flow cytometry on day 3. 

Salmeterol decreased the number of fibrocytes from healthy subjects (p < 0.01, 

10
-9

 M) and patients with non-severe asthma (p < 0.05, 10
-9 

M), but not the number of 

fibrocytes from patients with severe asthma (Figure 6.1A). Salmeterol also reduced 

the number of differentiating fibrocytes from healthy subjects (p < 0.01, 10
-9 

M) and 

patients with non-severe asthma (p < 0.05, 10
-9

 M; Figure 6.1B). 
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Figure 6.1: Effect of salmeterol on fibrocytes derived from non-adherent non-T cells. 

NANT cells from healthy subjects (■, n = 9) and patients with non-severe (■, n = 7) or severe asthma 

(■, n = 8) were treated with salmeterol (10
-9

- 10
-7

 M) on day 0. Cells were harvested after 3 days in 

culture and the number of fibrocytes (A; Col I+/CD45+ cells) and differentiating fibrocytes (B; 

α-SMA+ cells) within the NANT cell population, as well as the percentage of CCR7+ fibrocytes within 

fibrocytes (C) and CCR7 MFI (D) was determined by flow cytometry. Bars represent median with 

interquartile range. (A, B, D) Data are expressed as fold-change with respect to vehicle (Veh, 

DMSO)-treated controls. The differences between the Veh-treated control group and each treatment 

group were determined by Friedman test, followed by Dunn’s post-hoc test. * p < 0.05, ** p < 0.01, *** 

p < 0.001 compared to Veh-treated cells for each group. 
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Salmeterol reduced the proportion of Col I+/CD45+/CCR7+ cells in Col 

I+/CD45+ cells (% Col I+/CD45+/CCR7+ cells) from healthy subjects and patients 

with non-severe or severe asthma (all p < 0.05, 10
-9

 M; Figure 6.1C). Salmeterol also 

reduced CCR7 expression in CCR7+ fibrocytes (CCR7 median fluorescence intensity 

(MFI), Chapter 2.2.3) from healthy subjects (p < 0.05, 10
-9

 M) and patients with 

non-severe asthma (p < 0.05, 10
-8

 M) but not from patients with severe asthma 

(Figure 6.1D). 
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6.2.1.2 Effect of salmeterol and/or dexamethasone on fibrocytes 

derived from non-adherent non-T cells 

To investigate the effect of the combination of CS and LABA on fibrocytes, I treated 

NANT cells from healthy subjects and patients with asthma with a submaximal dose 

of salmeterol (10
-8

 M) and/or dexamethasone (10
-7

 M) for a 3-day period. As 

previously mentioned, treatment with either salmeterol or dexamethasone only had an 

inhibitory effect on the number of fibrocytes and differentiating fibrocytes from 

healthy subjects and patients with non-severe asthma (Figure 6.2A-B). The 

combination of salmeterol and dexamethasone did not show a further inhibitory effect 

on the number of cells from healthy subjects and patients with non-severe asthma. 

The combination had no effect on the number of fibrocytes (p = 0.17) and 

differentiating fibrocytes (p = 0.14) from severe asthmatic patients compared to 

vehicle treatment, but reduced more fibrocytes compared to dexamethasone alone (p = 

0.0568), and more differentiating fibrocytes compared to salmeterol alone (p < 0.01). 

Although salmeterol did reduce the proportion of CCR7+ fibrocytes in both 

healthy subjects and asthmatic patients (p < 0.05), the combination of salmeterol and 

dexamethasone did not significantly affect the proportion of CCR7+ fibrocytes (p = 
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0.91) or CCR7 MFI (p = 0.47) in fibrocytes from patients with severe asthma (Figure 

6.2C-D). 

 

 

 

 

  

Figure 6.2: Effect of salmeterol ± dexamethasone on fibrocytes derived from 

non-adherent non-T cells. NANT cells from healthy subjects (■, n = 9) and patients with 

non-severe (■, n = 7) or severe asthma (■, n = 7) were treated with salmeterol (Sal; 10
-9

- 10
-7

 M) 

or/and dexamethasone (Dex; 10
-7

M) on day 0. Cells were harvested after 3 days in culture and the 

number of fibrocytes (A; Col I+/CD45+ cells) and differentiating fibrocytes (B; α-SMA+ cells) within 

the NANT cell population, as well as the percentage of CCR7+ fibrocytes within fibrocytes (C) and 

CCR7 MFI (D) was determined by flow cytometry. Bars represent median with interquartile range. (A, 

B, D) Data are expressed as fold-change with respect to vehicle (Veh, DMSO)-treated controls. The 

differences between the Veh-treated control group and each treatment group were determined by 

Friedman test, followed by Dunn’s post-hoc test. * p < 0.05, ** p < 0.01, *** p < 0.001 compared to 

Veh-treated cells for each group. 
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6.2.1.3 Effect of salmeterol and/or dexamethasone on non-adherent 

non-T cell apoptosis 

Annexin V/propidium iodide staining (Chapter 2.2.4.4) was performed to 

determine whether salmeterol induced apoptosis in NANT cells in the presence or 

absence of dexamethasone (Figure 6.3). Annexin V
-
/propidium iodide

-
 were 

considered as live cells, Annexin V
+
/propidium iodide

-
 as apoptotic and annexin 

V
+
/propidium iodide

+
 as late apoptotic cells. After 3 days of incubation in the 

presence of dexamethasone, the proportion of apoptotic cells increased in NANT cells 

from healthy subjects and patients with non-severe asthma (Chapter 5.2.3). Salmeterol 

neither increased apoptosis in NANT cells, nor augmented the 

dexamethasone-induced apoptosis in NANT cells from healthy subjects and patients 

with non-severe or severe asthma, suggesting that salmeterol reduced fibrocyte 

numbers through either the inhibition of the proliferation of fibrocytes or 

differentiation of fibrocytes from NANT cells, rather than induction of apoptosis. 

 

  



249 

 

 

Figure 6.3: Effect of salmeterol ± dexamethasone on non-adherent non-T cell 

apoptosis in healthy subjects and patients with non-severe or severe asthma. The 

percentage of live (▓, annexin V
-
/propidium iodide

-
), and early (▓, annexin V

+
/propidium iodide

-
) and 

late apoptotic NANT cells (▓, annexin V
+
/propidium iodide

+
) from healthy subjects (A; n = 6) and 

patients with non-severe (B; n = 6) or severe asthma (C; n = 6) was determined by flow cytometry after 

3 days in culture in the presence of dexamethasone (Dex; 10
-7

M) and/or salmeterol (Sal; 10
-8

 M). Bars 

represent median with interquartile range. The differences between the untreated control group and each 

treatment group were determined by Wilcoxon matched pairs test. * p < 0.05 compared to vehicle (Veh: 

vehicle; DMSO)-treated cells for each group. 
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6.2.1.4 Effect of salmeterol and/or dexamethasone on fibrocytes 

derived from the adherent fraction of peripheral blood mononuclear 

cells 

PBMC from healthy subjects and patients with asthma were incubated in the presence 

of FBS in plates pre-coated with fibronectin. Salmeterol (10
-8

 M) ± dexamethasone 

(10
-7

 M) was added on day 3 after changing culture medium. The number of 

fibrocytes and differentiating fibrocytes in adherent cells and CCR7 expression were 

determined on day 6 days by flow cytometry (Figure 6.4). 

As described in chapter 5.2.2, treatment with dexamethasone alone reduced the 

number of fibrocytes and differentiating fibrocytes in adherent PBMC from healthy 

subjects, and differentiating fibrocytes in adherent PBMC from patients with 

non-severe asthma (Figure 6.4A-B). Treatment with salmeterol also reduced the 

number of fibrocytes from healthy subjects (p < 0.05), and differentiating fibrocytes 

from healthy subjects (p < 0.05) and patients with non-severe asthma (p < 0.05), but 

did not affect the number of fibrocytes from patients with non-severe (p = 0.57) or 

severe asthma (p = 0.69) and differentiating fibrocytes (p = 0.44) from patient with 

severe asthma. Salmeterol in combination with dexamethasone did not provide an 

additional effect on the number of cells from healthy subjects and patients non-severe 
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asthma. In severe asthma, the combination of drugs did not reduce the number of 

fibrocytes (p = 0.22) but reduced the number of differentiating fibrocytes (p < 0.05). 

The results are similar to that observed with the NANT cell model. 

The effect of either salmeterol or dexamethasone on CCR7 expression in 

fibrocytes from healthy subjects and patients with non-severe asthma in adherent 

PBMC model was not as significant as that seen in fibrocytes in NANT cell model 

(Figure 6.4 C-D). 

Morphologically (Figure 6.4E-H), both dexamethasone and salmeterol 

significantly reduced the number of spindle-shaped cells derived in adherent PBMC 

from healthy subjects after 6 days in culture. The combination of drugs did not 

demonstrate an additional effect.
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Figure 6.4: Effect of salmeterol ± dexamethasone on fibrocytes derived from adherent 

peripheral blood mononuclear cells. PBMC from healthy subjects (■, n = 5) and patients with 

non-severe (■, n = 5) or severe asthma (■, n = 6) were stimulated with vehicle (Veh; DMSO), salmeterol 

(Sal; 10
-8

 M) and/or dexamethasone (Dex; 10
-7

 M) after changing medium on day 3. Adherent cells were 

harvested for flow cytometry after a further 3 days in culture. The number of fibrocytes (A; Col I+/CD45+ 

cells) and differentiating fibrocytes (B; α-SMA+ cells), as well as the percentage of CCR7+ fibrocytes 

within fibrocytes (C) and fold-change in CCR7 MFI (D) was determined by flow cytometry. Bars represent 

median with interquartile range. (A, B, D) Data are expressed as fold-change with respect to vehicle (Veh, 

DMSO)-treated controls. The differences between the Veh-treated control group and each treatment group 

were determined by Friedman test, followed by Dunn’s post-hoc test.* p < 0.05, ** p < 0.01, *** p < 0.001 

compared to Veh-treated cells for each group. Photos of cells from a healthy subject with Veh (E), Sal (F), 

Dex (G), Sal + Dex (H) treatment were taken on day 6. 
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6.2.2 Effect of muscarinic antagonist on fibrocytes 

6.2.2.1 Effect of acetylcholine on fibrocytes derived from non-adherent 

non-T cells 

To explore the effect of acetylcholine on fibrocytes in vitro, NANT cells isolated from 

healthy subjects and patients with asthma were cultured in FBS-containing medium, 

as previously described, and treated with acetylcholine (10
-9

 - 10
-7

 M). The 

concentrations of tiotropium used for treatment of fibrocytes were selected from 

previously published studies (Pieper, Chaudhary et al. 2007). Cells were recovered 

after 3 days in culture. The numbers of fibrocytes and differentiating fibrocytes was 

determined by flow cytometry (Figure 6.5). 

Acetylcholine (10
-9

 M) increased the number of fibrocytes (p < 0.05, Figure 

6.5A) and also slightly increased the number of differentiating fibrocytes (p = 0.09; 

Figure 6.5B; although the change did not reach significance) from patients with 

non-severe asthma. The effect of acetylcholine on the number of fibrocytes and 

differentiating fibrocytes from healthy subjects and patients with severe asthma was 

not significant. 
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Figure 6.5: Effect of acetylcholine on fibrocytes derived from non-adherent non-T 

cells. NANT cells from healthy subjects (■, n = 6) and patients with non-severe (■, n = 4) or severe 

asthma (■, n = 6) were treated with acetylcholine (10
-9

- 10
-7

 M) on day 0. Cells were harvested after 3 

days in culture and the number of fibrocytes (A; Col I+/CD45+ cells) and differentiating fibrocytes (B; 

α-SMA+ cells) within the NANT cell population was determined using flow cytometry. Bars represent 

median with interquartile range. Data expressed as fold-change with respect to untreated (Ut) controls.  

The differences between the Ut control group and each treatment group were determined by Friedman 

test, followed by Dunn’s post-hoc test. * p < 0.05 compared to Ut cells for each group. 

Ut -9 -8 -7
0.0

0.5

1.0

1.5

2.0

A

*
*

Acetylcholine [Log M]

F
o

ld
-c

h
a
n

g
e

 i
n

C
o

l 
I+

/C
D

4
5
+

 c
e

ll
 n

u
m

b
e

r

Ut -9 -8 -7
0.0

0.5

1.0

1.5

2.0

B

Acetylcholine [Log M]

F
o

ld
-c

h
a
n

g
e

 i
n


-S

M
A

+
 c

e
ll

 n
u

m
b

e
r



255 

 

6.2.2.2 Effect of tiotropium on fibrocytes derived from non-adherent 

non-T cells 

To explore the effect of muscarinic antagonists on fibrocytes in vitro, NANT cells 

isolated from healthy subjects and patients with asthma were cultured in 

FBS-containing medium, as previously described, and treated with tiotropium (10
-8

 - 

10
-6

 M). The concentrations of tiotropium used for treatment of fibrocytes were 

selected from a previously published study (Pieper, Chaudhary et al. 2007). Cells 

were recovered after 3 days in culture and the numbers of fibrocytes and 

differentiating fibrocytes and CCR7 expression were determined by flow cytometry 

(Figure 6.6). 

Tiotropium reduced the number of fibrocytes and differentiating fibrocytes from 

healthy subjects (p < 0.05, 10
-8

 M) and patients with non-severe (p < 0.05, 10
-6

 M) or 

severe asthma (p < 0.05, 10
-8

 M; Figure 6.6A-B). Tiotropium did not change either 

the proportion of CCR7+ fibrocytes within fibrocytes or the CCR7 MFI of CCR7+ 

fibrocytes (Figure 6.6C-D). 

6.2.2.3 Effect of tiotropium on non-adherent non-T cell apoptosis 
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Cell death was analysed by annexin V/propidium iodide apoptosis assay (Figure 6.7). 

Tiotropium did not affect the apoptosis in NANT cells from healthy subjects and 

patients with non-severe or severe asthma. 
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Figure 6.6: Effect of tiotropium on fibrocytes derived from non-adherent non-T cells. 

NANT cells from healthy subjects (■, n = 6) and patients with non-severe (■, n = 6) or severe asthma 

(■, n = 7) were treated with tiotropium (10
-8

- 10
-6

 M) on day 0. Cells were harvested after 3 days in 

culture and the number of fibrocytes (A; Col I+/CD45+ cells) and differentiating fibrocytes (B; 

α-SMA+ cells) within the NANT cell population, as well as the percentage of CCR7+ fibrocytes within 

fibrocytes (C) and CCR7 median fluorescence intensity (MFI; D) was determined using flow 

cytometry. Bars represent median with interquartile range. (A, B, D) Data are expressed as fold-change 

with respect to vehicle (Veh, DMSO)-treated controls. The differences between the Veh-treated control 

group and each treatment group were determined by Friedman test, followed by Dunn’s post-hoc test * 

p < 0.05 compared to Veh-treated cells for each group. 
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Figure 6.7: Effect of tiotropium on non-adherent non-T cell apoptosis in 

healthy subjects and patients with non-severe or severe asthma. The percentage of 

live (▓, annexin V
-
/propidium iodide

-
), and early (▓, annexin V

+
/propidium iodide

-
) and late 

apoptotic NANT cells (▓, annexin V
+
/propidium iodide

+
) from healthy subjects (A; n = 3) and 

patients with non-severe (B; n = 6) or severe asthma (C; n = 3) was determined using flow 

cytometry after 3 days in culture in the presence of tiotropium (10
-6

 M). Bars represent median 

with interquartile range. The differences between the untreated control group and each treatment 

group were determined by Wilcoxon matched pairs test. 
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6.2.2.4 Effect of tiotropium on fibrocytes derived from the adherent 

fraction of peripheral blood mononuclear cells 

PBMC from healthy subjects and patients with asthma were incubated in the presence 

of FBS in plates pre-coated with fibronectin. Tiotropium (10
-6

 M) was added on day 3 

after changing culture medium. The number of fibrocytes and differentiating 

fibrocytes in adherent cells and CCR7 expression were determined on day 6 days by 

flow cytometry (Figure 6.8). 

Tiotropium reduced the number of fibrocytes (Figure 6.8A) derived from 

adherent PBMC from healthy subjects (p < 0.05). There was also a trend towards 

tiotropium reducing differentiating fibrocytes from healthy subjects (p = 0.07), 

although the reduction did not reach significance (Figure 6.8B). Tiotropium did not 

affect the number of fibrocytes and differentiating fibrocytes derived from patients 

with non-severe or severe asthma; this may be a result of the study being under 

powered if at all. 

Although CCR7 on fibrocytes in NANT cells was not affected by tiotropium, 

tiotropium reduced the proportion of CCR7+ fibrocytes (p < 0.05) and CCR7 

expression in CCR7+ fibrocytes (p < 0.05) derived from adherent PBMC from 

healthy subjects (Figure 6.8C-D). 
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Morphologically, tiotropium significantly reduced the number of spindle-shaped 

cells derived from healthy subjects’ adherent PBMC (Figure 6.8E-F). 
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Figure 6.8: Effect of tiotropium on fibrocytes derived from adherent peripheral blood 

mononuclear cells. PBMC from healthy subjects (■, n = 6) and patients with non-severe (■, n = 4) or 

severe asthma (■, n = 2) were stimulated with vehicle (DMSO) or tiotropium (10
-6

 M) after changing 

medium on day 3. Adherent cells were harvested after a further 3 days in culture. The number of fibrocytes 

(A; Col I+/CD45+ cells) and differentiating fibrocytes (B; α-SMA+ cells), as well as the percentage of 

CCR7+ fibrocytes within fibrocytes (C) and CCR7 MFI (D) was determined using flow cytometry. Bars 

represent median with interquartile range. (A, B, D) Data are expressed as fold-change with respect to 

vehicle (Veh, DMSO)-treated controls. The differences between the vehicle-treated control group and each 

treatment group were determined by Friedman test, followed by Dunn’s post-hoc test. * p < 0.05 compared 

to vehicle-treated cells for each group. Photos of cells from a healthy subject with vehicle (E) or tiotropium 

(F) treatment were taken on day 6. 
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6.2.3 The role of 3’,5’-cyclic adenosine monophosphate on 

fibrocytes derived from non-adherent non-T cells 

Adenylyl cyclase, which catalyses the conversion of adenosine triphosphate to cAMP, 

is activated by β2-AR and inhibited by M2 receptor (Racke, Haag et al. 2008). To 

investigate whether cAMP acts on fibrocytes, NANT cells isolated from healthy 

subjects and patients with severe asthma were cultured in the presence of rolipram 

(10
-6 

-10
-5 

M), which blocks the degradative action of phosphodiesterase type IV 

(PDE4) on cAMP, or the cAMP analogue 8-bromoadenosine 3',5'-cyclic 

monophosphate (8-Br-cAMP; 10
-4

 - 10
-3

M). The concentrations of rolipram and 

8-Br-cAMP used for treatment of fibrocytes were selected from previously published 

studies (Wang and Adjaye 2011, Michalski, Kanaji et al. 2012). The number of 

fibrocytes and differentiating fibrocytes were determined by flow cytometry on day 3. 

Rolipram (10
-6

 M; Figure 6.9A-B) reduced the number of fibrocytes from 

healthy subjects (p < 0.05) and severe asthmatic patients (p < 0.05), and 

differentiating fibrocytes from healthy subjects (p < 0.01) and severe asthmatic 

patients (p < 0.05). 8-Br-cAMP (10
-4

 M; Figure 6-9C-D) reduced the number of 

fibrocytes from healthy subjects (p < 0.01) and severe asthmatic patients (p < 0.05), 

http://en.wikipedia.org/wiki/Phosphodiesterase_4
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and the number of differentiating fibrocytes from healthy subjects (p < 0.01) and 

patients with severe asthma (p < 0.05).  
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Figure 6.9: The effect of rolipram and 8-bromoadenosine 3',5'-cyclic 

monophosphate on fibrocytes derived from non-adherent non-T cells. NANT cells 

from healthy subjects (■, n = 7 for rolipram, n = 4 for 8-Br-cAMP) and patients with severe 

asthma (■, n = 6 for rolipram, n = 4 for 8-Br-cAMP) were treated with phosphodiesterase type 

IV inhibitor rolipram (10
-6

 - 10
-5

 M) or cyclic adenosine monophosphate analogue 8-BR-cAMP 

(10
-4

- 10
-3

 M) on day 0. Cells were harvested for flow cytometry after 3 days in culture. The 

number of fibrocytes (A, C; Col I+/CD45+ cells) and differentiating fibrocytes (B, D; α-SMA+ 

cells) after rolipram or 8-Br-cAMP treatment was determined on NANT cells from the same 

patients. Bars represent median with interquartile range. Data are expressed as fold-change with 

respect to vehicle (Veh)-treated (A-B) or untreated (Ut) controls (C-D). The differences between 

the control group and each treatment group were determined by Friedman test, followed by 

Dunn’s post-hoc test. * p < 0.05, ** p < 0.01, *** p < 0.001 compared to Veh-treated (A-B) or 

Ut (C-D) cells for each group. 

 

Ut -4 -3
0.0

0.5

1.0

1.5

8-Br-cAMP [log M]

C

*

***
**

***F
o

ld
-c

h
a

n
g

e
 i

n

C
o

l 
I+

/C
D

4
5

+
 c

e
ll

 n
u

m
b

e
r

Ut -4 -3
0.0

0.5

1.0

1.5

8-Br-cAMP [log M]

D

*

**** ***

F
o

ld
-c

h
a

n
g

e
 i

n


-S

M
A

+
 c

e
ll

 n
u

m
b

e
r



265 

 

6.3 Discussion 

In this chapter the effect of two long-acting bronchodilators, salmeterol and 

tiotropium, was examined on in vitro cultured fibrocytes from healthy subjects and 

patients with asthma. Both salmeterol and tiotropium reduced the number of 

fibrocytes and differentiating fibrocytes from healthy subjects and patients with 

non-severe asthma. The numbers of fibrocytes from patients with severe asthma were 

only reduced by tiotropium, but not salmeterol. The expression of CCR7 in fibrocytes 

derived from non-adherent non-T cells was reduced by salmeterol, but not by 

tiotropium. 

Salmeterol and tiotropium might reduce the number of cultured fibrocytes and 

differentiating fibrocytes through several possible mechanisms: i) inhibiting the 

proliferation of fibrocytes; ii) inducing apoptosis or reducing the survival of 

fibrocytes; and iii) decreasing NANT cell-to-fibrocyte differentiation (reducing the 

production of Col I in NANT cells). Salmeterol does not reduce collagen deposition in 

airways (Roberts, Bradding et al. 1999, Vanacker, Palmans et al. 2002), but reduces 

α-SMA production in myofibroblasts (Baouz, Giron-Michel et al. 2005), inhibits the 

proliferation of PBMC (Oddera, Silvestri et al. 1997), myoblasts and myotubes 

(Duranti, La Rosa et al. 2011), and ASMC (Young, Skinner et al. 1995) and induce 
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apoptosis in myoblasts and myotubes (Duranti, La Rosa et al. 2011). Tiotropium 

attenuates ASM remodelling in animal model of allergic asthma (Gosens, Bos et al. 

2005). Muscarinic antagonists block the proliferation (Matthiesen, Bahulayan et al. 

2007, Pieper, Chaudhary et al. 2007) and the production of collagen and α-SMA in 

pulmonary fibroblasts (Milara, Serrano et al. 2012), and induce CD8+ T cell apoptosis 

(Profita, Riccobono et al. 2012). Currently, little is known about the effect of 

bronchodilators on fibrocytes. Unlike the dexamethasone induced apoptosis of NANT 

cells, including fibrocytes in healthy subjects and non-severe asthmatics, my data 

showed neither salmeterol nor tiotropium can induce NANT cell apoptosis. Future 

studies could focus on the effect of bronchodilators on i) the expression of mRNA 

expression of Col I in NANT cells, which reflects NANT cell-to-fibrocyte 

differentiation, and ii) fibrocyte proliferation using 5-ethynyl-2’-deoxyuridine cell 

proliferation assay (Chapter 2.2.4.5). 

I also described that the number of fibrocytes from patients with severe asthma 

was less affected by treatment with salmeterol. Cells from patients with severe asthma 

were more resistant to apoptosis, as described in chapter 5.2.4. However, salmeterol 

did not induce NANT cell apoptosis. A PDE4 inhibitor (rolipram) and a cAMP 

analogue (8-Br-cAMP) could reduce the number of fibrocytes and differentiating 
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fibrocytes from patients with severe asthma. It seems that the downstream signalling 

of adenylyl cyclase in these patients was not altered. The clinical responses to β2-AR 

agonists can be affected by the β2-AR polymorphisms (ADRB2). In retrospective and 

prospective studies in patients with asthma not taking inhaled CS, regular use of 

SABA, such as salbutamol (albuterol), was associated with lower lung function in 

individuals homozygous for arginine at the 16th amino acid position (B16 Arg/Arg) 

than in individuals homozygous for glycine at that position (B16 Gly/Gly) (Israel, 

Drazen et al. 2000, Israel, Chinchilli et al. 2004). B16 Arg/Arg polymorphism was not 

determined in my cohort of patients with severe asthma. Future studies could 

determine whether these patients with severe asthma have β2-AR B16 Arg/Arg 

polymorphisms, lower β2-AR expression or altered β2-AR function. 

My data did not support the hypothesis that salmeterol provides an additional 

effect when used with dexamethasone to restore CS sensitivity in fibrocytes from 

patients with severe asthma. The combination of LABA and low dose inhaled CS 

achieves better asthma control than single drug treatment or higher-dose inhaled CS 

alone (Reynolds, Lyseng-Williamson et al. 2005). The combination of CS and LABA 

leads to a reduction of constitutive and transforming growth factor-β-induced 

expression of α-SMA and an inhibition of fibroblast-to-myofibroblast differentiation 
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(Baouz, Giron-Michel et al. 2005). Mercado et al. reported that in PBMC from 

patients with severe asthma, LABAs (formoterol and salmeterol) can restore the 

inhibitory effect of CS on tumour necrosis factor-α-induced CXCL8/interleukin (IL)-8 

production, reverse reduced GR nuclear translocation and p38 MAPK-γ-associated 

hyperphosphorylation of GR (Mercado, To et al. 2011). The experimental cell model 

used by Mercado and colleagues differs from the fibrocytes in the NANT cell fraction 

in PBMC used in my study. In addition, there are other differences between my 

experiments and those from Mercado and colleagues. Firstly, I focused on the 

suppressive effect of CS on the number of fibrocytes and differentiating fibrocytes 

from NANT fraction of PBMC, not cytokine released from the total PBMC 

population. Secondly, I detected lower GR expression in the fibrocytes from patients 

with severe asthma (Chapter 5.2.8), but the expression of GR-α and GR-β was not 

significantly different amongst three groups in Mercado’s study. Thirdly, p38 MAPK 

inhibition did not improve CS sensitivity in fibrocytes from patients with severe 

asthma (Chapter 5.2.11). 

β2-AR and muscarinic M2 receptors are linked by guanosine nucleotide-binding 

proteins (G proteins), to adenylyl cyclases, which catalyse the conversion of 

adenosine triphosphate to cAMP, and pyrophosphate, in a stimulatory and inhibitory 



269 

 

manner, respectively (Racke, Haag et al. 2008) (Figure 6.10). Increase in cAMP 

signalling exerts an anti-fibrotic effect by inhibiting of the formation and action of 

pro-fibrotic mediators, such as connective tissue growth factor, reducing proliferation, 

myofibroblastic differentiation and motility of fibroblasts, promoting cell death of 

fibroblasts, and decreasing the synthesis, release and function of extracellular matrix 

components (Insel, Murray et al. 2012). Intracellular cAMP can be raised by cAMP 

analogues, agonists/antagonists of G-protein coupled receptors and activation of 

adenylyl cyclases. The downstream effects of cAMP include activation of protein 

kinase A and exchange protein activated by cAMP (Epac). In human fibroblasts, 

selective cAMP analogue studies demonstrated proliferation can be blocked by the 

Epac inhibitor 8-pCPT-2′-O-Me-cAMP (Haag, Warnken et al. 2008) and collagen 

synthesis can be suppressed by protein kinase A inhibitor 6-Bnz-cAMP (Huang, 

Wettlaufer et al. 2007). PDE4 is responsible for the hydrolysis of intracellular cAMP 

(Burnouf and Pruniaux 2002). PDE4 inhibitors, such as roflumilast and rolipram, are 

also capable of preventing fibrotic and vascular remodelling in the lung, as shown in 

clinical trials and animal studies (Rabe, Bateman et al. 2005, Shepherd 2006, Cortijo, 

Iranzo et al. 2009). More specifically, knockdown of PDE4 isoform PDE4A and 

PDE4B attenuates fibroblast proliferation induced by the combination of basic 
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fibroblast growth factor and IL-1β, whilst knockdown of PDE4B and PDE4D inhibits 

fibroblast-to-myofibroblast differentiation induced by TGF-β (Selige, Hatzelmann et 

al. 2011). It has been reported that rolipram overcomes β2-AR desensitisation in 

ASMC (Hu, Nino et al. 2008). Moreover, rolipram increases GR-α expression and 

inhibits GR-β expression in human pulmonary artery endothelial cells and attenuates 

CS insensitivity induced by cigarette smoke extract (Ortiz, Milara et al. 2013). Further 

investigation regarding the effect of PDE4 inhibitors combined with LABA or CS on 

LABA-insensitive and CS-insensitive fibrocytes is indicated. 
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Figure 6.10: Possible effect of β2-adrenoceptor agonist, muscarinic antagonist, 

phosphodiesterase inhibitor and cyclic adenosine monophosphate analogue on 

fibrocyte function.  Salmeterol stimulates adenylyl cyclase (AC) whilst tiotropium attenuates the 

inhibition of AC. Rolipram inhibits the degradative action of phosphodiesterase type IV (PDE4) on 

3’,5’-cyclic adenosine monophosphate (cAMP). 8-bromoadenosine 3',5'-cyclic monophosphate 

(8-Br-cAMP) is a non-selective cAMP analogue. These drugs increase intracellular cAMP 

accumulation, leading to activation of downstream exchange protein activated by cAMP (Epac), which 

reduces cell proliferation, and protein kinase A (PKA), which suppresses the production of α–smooth 

muscle actin (α-SMA) and collagen. cAMP also reduces the expression of CC chemokine receptor 7 

(CCR7). Tiotropium may also inhibit cell proliferation via mitogen-activated protein kinase activating 

enzyme (MEK)/ extracellular signal-regulated kinase (ERK) pathway. 
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I found acetylcholine only slightly increased the number of fibrocytes and 

differentiating fibrocytes in healthy subjects and patients with severe asthma. In 

contrast, tiotropium reduced the number of fibrocytes and differentiating fibrocytes in 

all three groups. It has been reported that acetylcholine increases fibroblast and 

myofibroblast number in FBS-free medium and the effect is abolished by tiotropium 

(Pieper, Chaudhary et al. 2007). Since my culture medium contained 30% FBS, it is 

possible that either certain muscarinic receptor agonists were present in FBS which 

overwhelmed the effect of acetylcholine treatment, or cholinesterases in FBS 

degraded acetylcholine. Future studies could replace acetylcholine by carbachol, a 

cholinomimetic drug targeting both muscarinic and nicotinic receptors. As carbachol 

cannot be hydrolysed by acetylcholinesterase, this leads to a longer duration of action 

compared to acetylcholine (Nathanson, Klein et al. 1978). A quantification of the 

level of cholinesterase and acetylcholine could help to explain why fibrocyte number 

was not significantly affected by acetylcholine whilst it was reduced by tiotropium. 

In this study, the number of fibrocytes from patients with severe asthma was 

reduced by tiotropium, but not by salmeterol. There is a growing interest in the use of 

anti-muscarinic agents in selected patients with poorly controlled asthma already 

receiving combination high-dose inhaled CS and LABA therapy. Patients with 

http://en.wikipedia.org/wiki/Drug
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polymorphisms of β2-AR (ADRB2 16Arg/Arg and 16 Arg/Gly) and with a 

predominance of sputum neutrophils particularly benefit from tiotropium treatment 

(Bollmeier and Lee 2013). As mentioned earlier, activation of muscarinic receptors 

inhibits to adenylyl cyclases. Inactivation of Gi/o proteins on muscarinic receptors 

reduces the degradation of the intracellular cAMP level and prevents the proliferation 

of human pulmonary fibroblasts (Matthiesen, Bahulayan et al. 2006). Apart from this, 

muscarinic receptors also mediate Col I synthesis and proliferation of fibroblasts 

through ERK/MAPK pathway, which can be blocked by PD98059, an inhibitor of 

MAPK-activating enzyme (Matthiesen, Bahulayan et al. 2007). Although tiotropium 

is known to have a relatively short M2 dissociation time, it still inhibits collagen 

synthesis and proliferation of lung fibroblasts, which are known to be 

M2-predominant (Matthiesen, Bahulayan et al. 2007, Haag, Matthiesen et al. 2008). 

My future studies could investigate the expression of M1, M2 and M3 receptors on 

fibrocytes. 

I found CCR7 expression on fibrocytes is down-regulated by salmeterol, but not 

by tiotropium. To the best of my knowledge, studies investigate the effect of 

bronchodilators on CCR7 expression are limited. Activation of β2-AR in bacterial 

toll-like receptor agonist-treated dendritic cells leads to down-regulation of IL-12 and 
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up-regulation of IL-10, with subsequent inhibition of CCR7 expression and dendritic 

cell migration (Maestroni 2006). Although nicotine up-regulates CCR7 expression in 

dendritic cells (Vassallo, Tamada et al. 2005), there is no evidence that muscarinic 

receptors are involved in CCR7 expression. It seems that cAMP activation inhibits 

CCR7 expression. Intriguingly, Giordano et al. demonstrated that cAMP analogues 

8-Br-cAMP hampered LPS-induced expression of CCR7 on dendritic cells and the 

migration of dendritic cells toward CC chemokine ligand 19/macrophage 

inflammatory protein-3-β (MIP-3-β) (Giordano, Magaletti et al. 2003). Further study 

into signalling pathways involved in CCR7 production will help to clarify the 

mechanism. 

To summarise, bronchodilators are important components in anti-asthmatic 

regimens, and I show that bronchodilators reduce the number of fibrocytes. However, 

the possibility of salmeterol and tiotropium-induced NANT cell apoptosis has been 

excluded by the annexin V/propidium iodide apoptosis assay. It is still not clear 

whether the cell reduction effect of these two bronchodilators is through inhibition of 

proliferation and/or NANT cell-to-fibrocyte differentiation. EdU proliferative assay 

and Col I and α–SMA mRNA detection may provide direction for further 

investigation about the mechanisms of action of these drugs on fibrocytes. β2-AR 
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detection on fibrocytes and β2-AR polymorphism studies for patients with severe 

asthma may help to explain why fibrocytes from patients with severe asthma only 

responded to tiotropium. PDE4 inhibitors and cAMP analogues may bypass the 

problems caused by β2-AR polymorphisms and be the solution of fibrocytes-related 

airway remodelling in severe asthma. 
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Chapter 7: Conclusion 

7.1 Findings of study and contribution to the field  

Asthmatic airways are characterised by subepithelial fibrosis and airway smooth 

muscle thickening, characteristics of airway remodelling, which is even more 

pronounced in patients with severe asthma (Macedo, Hew et al. 2009) and may be 

associated with airflow limitation and airway hyperresponsiveness (Tsurikisawa, 

Oshikata et al. 2010). The role of fibroblasts, myofibroblasts and airway smooth 

muscle cells (ASMC) in airway remodelling has been extensively studied 

(Al-Muhsen, Johnson et al. 2011). Circulating fibrocytes are progenitor cells of 

fibroblasts and myofibroblasts (Grieb and Bucala 2012). Since the identification of 

fibrocytes as a sub-population of leukocytes in 1994, there is a growing research 

interest in their participation in the repair and the fibrotic process, including airway 

remodelling (Bucala, Spiegel et al. 1994). Circulating fibrocytes are recruited to the 

airways upon allergen exposure (Schmidt, Sun et al. 2003). Elevated concentrations of 

chemokines in the airways, higher expression of the respective chemokine receptors 

in fibrocytes (Isgro, Bianchetti et al. 2013) and increased number of fibrocytes in 

peripheral blood and bronchial biopsies (Saunders, Siddiqui et al. 2009) have been 

observed in severe asthma. 
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In this project, I have demonstrated that patients with severe asthma have a 

greater pool of circulating fibrocytes which can readily undergo differentiation 

(Chapter 3.2.3) and exert an inherent resistance to apoptosis (Chapter 5.2.4), thus 

contributing to the increased number of myofibroblasts and consequently the 

augmented subepithelial fibrosis and ASM thickness observed in the airways of these 

patients. Furthermore, I found that severe asthmatic fibrocytes were relatively 

insensitive to the inhibitory effect of corticosteroids (CS) on the expression of CC 

chemokine receptor (CCR) 7 (Chapter 5.2.10), a key mediator of their migration, as 

well as the induction of apoptosis (Chapter 5.2.2-4). This suggests that despite the use 

of high doses of inhaled and sometimes oral CS, patients with severe asthma have a 

high numbers of circulating fibrocytes that can migrate to the airways. Intriguingly, 

these cells were also resistant to the suppressive effect of long-acting β2-adrenoceptor 

(β2-AR) agonists (LABAs, Chapter 6.2.1). Therefore, it is not surprising that there is 

a higher number of infiltrating fibrocytes and differentiating fibrocytes in the airways 

of severe asthma patients despite the use of high dose CS and LABAs (Saunders, 

Siddiqui et al. 2009). However, severe asthmatic fibrocytes were sensitive to 

long-acting muscarinic antagonists (LAMA, Chapter 6.2.2), which are widely used 

amongst patients with chronic obstructive pulmonary disease but are currently not 
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used as a mainstay treatment for asthma. My study not only highlights fibrocytes as 

an important therapeutic target to control airway remodelling, but also provides a 

model to investigate other CS-insensitive fibrotic diseases associated with the activity 

of fibrocytes. 

One way of targeting fibrocytes would be to reduce their numbers in the 

circulation. Angiotensin II receptor antagonists, such as valsartan, have been shown to 

reduce the number of fibrocytes in the bone marrow of a mice model of renal fibrosis 

and the production of collagen and transforming growth factor (TGF)-β in human 

fibrocytes (Sakai, Wada et al. 2008). Moreover, targeting chemokine receptors such 

as CCR7, CCR3, CCR5 and CXCR4 or their ligands using monoclonal antibodies 

would be a way of reducing fibrocyte numbers in the airway tissue by blocking their 

migration. Interestingly, sirolimus (rapamycin), which inhibits mammalian target of 

rapamycin (mTOR) has been shown to down-regulate CXCR4 expression on 

fibrocytes in animal models of pulmonary fibrosis (Mehrad, Burdick et al. 2009).  

Having shown that fibrocytes from patients with severe asthma show an inherent 

resistance to apoptosis, specifically inducing fibrocyte apoptosis could be another way 

of reducing their numbers. Comparison of the differential expression of the 

pro-apoptotic and anti-apoptotic members of B cell lymphoma 2 (bcl-2) family genes 
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in fibrocytes from patients with non-severe or severe asthma by microarrays might 

provide candidates for further gene therapy; e.g. overexpressing the pro-apoptotic 

genes or interfering the anti-apoptotic genes by inhaled liposomal vectors. 

Phosphatidylinositol 3’-kinase (PI3K) inhibition reduced the number of fibrocytes and 

differentiating fibrocytes even in severe asthma (Chapter 5.2.11). Further 

determination of isoforms (PI3K α, β, δ or γ) involving the proliferation, 

differentiation and survival of fibrocytes will help to select specific PI3K inhibitor to 

prevent fibrocyte-mediated airway remodelling in severe asthma. Although TH2 

cytokines and neurotrophins did not show significant effect on severe asthmatic 

fibrocytes in this project (Chapter 4.2.1-2), oxidative stress, transforming-growth 

factor-β (TGF-β), endothelin-1 and epidermal growth factor (EGF) are associated 

with increased proliferation and myofibroblastic differentiation of fibrocytes in 

chronic obstructive asthma (Wang, Huang et al. 2008, Wang, Huang et al. 2012, 

Weng, Chen et al. 2013). Moreover, N-acetylcysteine decreases the expression of 

epidermal growth factor receptor and the number and myofibroblastic differentiation 

of fibrocytes from asthmatic patients with chronic obstruction (Wang, Huang et al. 

2012), suggesting that targeting reactive oxygen species using antioxidants could 

reduce fibrocyte proliferation. Leukotriene modifiers, such as montelukast, inhibited 
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the expression of TGF-β and collagen deposition in the airways of an asthmatic 

mouse model (Ochkur, Protheroe et al. 2013). Leukotriene modifiers also enhance the 

activity of fibrocytes’ pro-matrix metalloproteinase-9 (Hayashi, Kawakita et al. 2014), 

which represses subepithelial fibrosis through degradation of collagen in remodelled 

airways (Mattos, Lim et al. 2002). Therefore, the effect of N-acetylcysteine, 

leukotriene modifiers, endothelin receptor antagonists (such as bosentan, used in 

idiopathic pulmonary fibrosis) on fibrocyte-mediated airway remodelling would be 

worth investigating. 

Overcoming the relative CS insensitivity observed in fibrocytes from severe 

asthma patients could also lead to reduction in fibrocytes and thus improvement of 

airway remodelling. N-acetylcysteine, which up-regulates the expression of 

glucocorticoid receptor (GR) in severe asthmatic fibrocytes (Chapter 5.2.9), may 

reverse CS insensitivity, although signs of anaphylaxis, such as bronchospasm, should 

be cautioned (Rogers 2007). Besides, c-jun N-terminal kinase (JNK) inhibition also 

restores the suppressive effect of CS on the number of fibrocytes in severe asthma 

(Chapter 5.2.11). Several JNK inhibitors (CC-401, for rheumatoid arthritis) or p38 

mitogen-activated protein kinase/JNK inhibitors (CNI-149, for Crohn’s disease) have 
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been investigated in clinical trials (Adcock, Chung et al. 2006). These agents may also 

overcome CS insensitivity in fibrocytes in severe asthma. 

In contrast to dexamethasone and salmeterol, the muscarinic antagonist 

tiotropium, led to a reduction in the number of fibrocytes in vitro. Thus, LAMAs in 

combination with inhaled CS and LABAs could be beneficial to patients with severe 

asthma with evidence of fibrocyte-mediated airway remodelling. The effect of 

tiotropium on fibrocytes could be, at least partly, through an increase in 3’,5’-cyclic 

adenosine monophosphate (cAMP) levels. Indeed, I have shown that both cAMP 

analogues and phosphodiesterase (PDE) type IV inhibitor exert suppressive effects on 

severe asthmatic fibrocytes (Chapter 6.2.3). Hence, compounds that elevate cAMP 

could reduce fibrocyte numbers. Apart from theophylline (non-selective PDE 

inhibitor) and roflumilast (PDE4 inhibitor), a couple of agents, such as RPL554 

(PDE3/4 inhibitor) and CHF6001 (PDE4 inhbitor), are under clinical trial for asthma 

treatment. Downstream effectors of cAMP, such as exchange protein directly 

activated by cAMP and protein kinase A (Epac), could also be targets of new drug 

development for the prevention of fibrocyte-mediated airway remodelling in severe 

asthma. 
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The drawback of all the above treatments is that they lack specificity for 

fibrocytes as they can act on other cell types. Fibrocyte-targeted gene therapy, by 

delivering DNA constructs directly to fibrocytes or using a fibrocyte-specific 

promoter, could be an appealing way of specifically modulating fibrocyte function. 

However, more work into identifying fibrocyte-specific target genes and promoters is 

required before these treatments can be developed. 

7.2 Advantages and Limitations of study and future work 

A limitation of my study is that the recruitment of fibrocytes in bronchial biopsies 

from patients with severe asthma was not determined by immunohistochemical 

staining; however, this has been demonstrated previously by other groups (Saunders, 

Siddiqui et al. 2009). Given that only 0.5% of leukocytes in peripheral blood are 

fibrocytes (although cultured CD14+ cells acquire fibrocyte phenotype characterised 

by collagen expression) (Grieb and Bucala 2012), the clinical significance of 

fibrocytes in the development airway remodelling in severe asthmatic patients is open 

to debate. However, allergen exposure induces the recruitment of fibrocytes into the 

bronchial tissue in allergic asthmatic patients and also in a mouse model of allergic 

asthma (Schmidt, Sun et al. 2003). The migration of fibrocytes towards CC 

chemokine ligand (CCL) 19/macrophage inflammatory protein-3-β (MIP-3-β) and 



283 

 

CXC chemokine ligand (CXCL) 12/stromal cell-derived factor 1 (SDF-1) in vitro has 

recently been reported (Wang et al. J Allergy Clin Immunol 2014, in press). Blocking 

the chemotaxis of fibrocytes prevents fibrosis in the lungs (CXCL12/ CXCR4), 

peritoneum (CCL2-monocyte chemotactic protein-1 (MCP-1)/ CCR2) and kidneys 

(CCL21-secondary lymphoid-tissue chemokine (SLC)/CCR7) in animal models 

(Sakai, Wada et al. 2006, Mehrad, Burdick et al. 2009, Kokubo, Sakai et al. 2012). A 

severe asthma model has been established using animals sensitised to house dust mite 

mixed with complete Freund’s adjuvant which involves recruitment of 

steroid-insensitive neutrophils and eosinophils to the lung (Nakada, Shan et al. 2014). 

Further observation of the impact of anti-chemokine antibodies or anti-chemokine 

receptor antibodies on the accumulation of fibrocytes, and the subsequent collagen 

(Col) I deposition, and ASM thickness in the airways of an animal model of severe 

asthma will be of interest. 

My experimental model is based on the flow cytometric analysis of Col 

I+/CD45+ fibrocytes and α-smooth muscle actin (α-SMA)+ differentiating fibrocytes 

within non-adherent non-T (NANT) fraction of peripheral blood mononuclear cells 

(PBMC). Since the fibrocytes observed in adherent PBMC or CD14+ cell models are 

usually recovered and purified after a prolonged period of culture (5-14 days), the 
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NANT cell model has several advantages. Firstly, the effect of treatment on fibrocytes 

can be observed at an earlier stage of differentiation (day 3) when the functional 

properties of fibrocytes are probably more similar to those in peripheral blood. 

Secondly, flow cytometry requires a relatively smaller number of cells compared to 

other methods (e.g. Western blotting), and quantifies fibrocytes with a higher 

specificity compared to counting under microscope according to morphology.  

The major limitation is that neither NANT cells nor adherent PBMC represent a 

homogenous fibrocyte population. The subpopulations in NANT cells and adherent 

PBMC have not been identified. The major components of PBMC include monocytes 

(10%), lymphocytes (70-85%), B cells (10-15%) NK cells (10%), natural killer T 

cells (10%) (Abbas and Lichtman 2003). Isolation of human monocytes by the 

adherence method usually provides a purity of the monocyte population of > 90%, 

with 60% - 90% recovery (Hashimoto, Gon et al. 2001). Since the monocytes and T 

cells have been largely removed by attachment and CD3+ MicroBeads T cell 

depletion respectively, the NANT cell fraction of PBMC should consist of B cells, 

NK cells, very few non-adherent monocytes and some unclassified progenitor cells 

apart from fibrocytes (Wang, Hsieh et al. 1999). Therefore, studying changes in the 

function of fibrocytes cannot be specifically evaluated. It is still feasible to block 
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certain pathways by chemically inhibiting or transfecting the whole NANT cell 

population, followed by identifying fibrocytes within NANT cells by flow cytometry. 

However, we could still not rule out the possibility that non-fibrocyte NANT cells 

interfere with fibrocyte function in a paracrine manner. A similar problem cannot be 

avoided with the adherent PBMC model if cells are stimulated before purification of 

fibrocytes on day 5-14 in culture. The function of fibrocytes isolated from the NANT 

fraction and the adherent fraction of PBMC has not been previously compared. In this 

study, I have, for the first time, shown that fibrocytes derived from both fractions of 

PBMC had similar responses to pro-inflammatory mediators and asthma medications, 

which means that data generated from NANT cell model should be reproducible in 

the adherent cell model.  

The ideal method to conduct fibrocyte studies would be to obtain purified Col 

I+/CD45+ fibrocytes immediately after isolation of PBMC. I propose to develop two 

novel methods for isolating fibrocytes from peripheral blood: the first requires a 

customised magnetic beads-conjugated anti-Col I antibody, which is not currently 

available, combined with an anti-CD45 (or anti-CD34) MicroBeads (Miltenyl Biotec). 

Fibrocytes labelled by these two antibodies could be purified from freshly isolated 

PBMC using a magnetic separator and magnetic columns. The alternative method 
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requires sorting Col I+/CD45+ cells by a fluorescence-activated cell sorting machine. 

It is worth noting that Col I is usually stained with antibody after permeabilisation, a 

process which may be detrimental to the survival of fibrocytes (Wang, Huang et al. 

2008, Moeller, Gilpin et al. 2009, Bellini, Marini et al. 2012). 

To the best of my knowledge, this project is the first one to investigate i) the 

effect of neurotrophins, β2-AR agonist, muscarinic antagonist and PDE4 inhibitor on 

fibrocytes from healthy subjects and asthmatic patients, ii) the effect of CS on 

fibrocytes from asthmatic patients, and iii) the effect of TH2 cytokines on fibrocytes 

from severe asthmatic patients. To further investigate the mechanisms involved 

during the change in fibrocyte number upon treatment, future work should include:  

i) Determine why fibrocytes from patients with severe asthma have more 

circulating fibrocytes with a greater capacity to differentiate. The number 

of fibrocytes in peripheral blood could be related to their abundance in the 

bone marrow, chemotaxis, proliferation and cell survival. The fibrocytes in 

the bone marrow could be determined in a severe asthma animal model. 

The level of mediators that are known to mediate fibrocyte proliferation 

and differentiation such as EGF, TGF-β, endothelin-1, connective tissue 

growth factor (CTGF) and chemokines (CCL19/MIP-3-β, CCL21/SLC, 
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CXCL12/SDF-1, CCL5/regulated on activation, normal T cell expressed 

and secreted (RANTES), CCL11/eotaxin, CCL24/eotaxin-2) could be 

measured in sera and in the airways, whilst the expression of their 

respective receptors would be determined on fibrocytes from healthy 

subjects and patients with non-severe or severe asthma. The proliferation 

of fibrocytes, using 5-ethynyl-2'-deoxyuridine incorporation assay 

(Chapter 2.2.4.5), could be compared amongst the three patient groups.  

ii) Determine the molecular mechanisms behind CS insensitivity. Severe 

asthmatic fibrocytes show reduced GR expression. It is worth investigating 

whether overexpressing GR restores CS sensitivity. Also, if a pure 

fibrocyte population is available, JNK activity and the phosphorylation 

status and nuclear translocation of GR, could also be compared amongst 

healthy subjects and patients with non-severe or severe asthma. Other 

mechanisms related to CS responsiveness, such as histone deacetylase 

activity and histone acetylation, could also be explored.  

iii) Elucidate the mechanisms behind the resistance to salmeterol. Compare 

the expression of β2-adrenoceptor (β2-AR) and its activity by determining 
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cAMP production, in fibrocytes from healthy subjects and patients with 

non-severe or severe asthma. 
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