Elucidating the spatial organization and control
of information processing in cell signalling
networks: from network and enzymatic building
blocks to concrete systems

A thesis presented for the degree of
Doctor of Philosophy of the University of London
and the
Diploma of Imperial College
by

Aiman Alam Nazki

Department of Chemical Engineering
Imperial College
180 Queen’s Gate, London SW7 2AZ

FEBRUARY 20, 2015



I certify that this thesis, and the research to which it refers, are the product of my own work,
and that any ideas or quotations from the work of other people, published or otherwise, are

fully acknowledged in accordance with the standard referencing practices of the discipline.

Signed:



Copyright

Copyright in text of this thesis rests with the Author. Copies (by any process) either in full,
or of extracts, may be made only in accordance with instructions given by the Author and
lodged in the doctorate thesis archive of the college central library. Details may be obtained
from the Librarian. This page must form part of any such copies made. Further copies (by
any process) of copies made in accordance with such instructions may not be made without
the permission (in writing) of the Author.

The ownership of any intellectual property rights which may be described in this thesis
is vested in Imperial College, subject to any prior agreement to the contrary, and may not
be made available for use by third parties without the written permission of the University,
which will prescribe the terms and conditions of any such agreement. Further information
on the conditions under which disclosures and exploitation may take place is available from

the Imperial College registry.



Abstract

Cells function and survive by making decisions in response to dynamic environments. The
core controllers of decision-making are highly complex intracellular networks of proteins
and genes, which harbour sophisticated information processing capabilities. The effect
of spatial organization and control of signaling networks is typically ignored. However,
the role of space in signalling networks is being increasingly recognized. While there are
some experimental and modelling efforts that incorporate spatial aspects in specific cellular
contexts, the role of spatial regulation of signalling across different cell networks remains
largely unexplored.

In this thesis, we utilize a combination of mathematical modeling, systems engineering
and in silico synthetic approaches to understand the spatial organization and control of sig-
naling networks at multiple levels. We examine spatial effects in representative networks
and enzymatic building blocks, including typical network modules, covalent modification
cycles and enzymatic modification cascades and pathways. We complement these studies
by dissecting the role of spatial regulation in the concrete context of the Caulobacter cell
cycle, which involves specific combinations of these building blocks. In another investi-
gation, we examine the organization of spatially regulated signaling networks underlying
chemotaxis.

We explicitly examine the effects of diffusion and its interplay with spatially varying
signals and localization/compartmentalization of signalling entities and gain key insights
into the interplay of these factors. At the network level, examining typical network mod-
ules reveals how introduction of diffusion/global entities may significantly distort temporal
characteristics and introduce new types of signal transduction characteristics. At the enzy-
matic level, dissecting spatial regulation in enzymatic modules highlights the subtle effect
and new facets that arise due to the interweaving of cycle kinetics and diffusion. The var-
ious ways in which spatial compartmentalization affects pathway behaviour is revealed in
the study of various types of signaling pathways. The study of spatial regulation of these
enzymatic/network building blocks provides a systematic basis for understanding how spa-
tial control can affect the spatiotemporal interactions driving Caulobacter cell cycle and
we use an in-silico synthetic approach to create a platform for further understanding the
functioning of the networks controlling this process. In a different study, we use a design
approach to shed light on different signalling configurations of chemotactic networks that
allow cells to exhibit both attractive and repulsive behaviour, in light of known signalling



characteristics seen in cells.

Our results uncover the various capabilities, constraints and trade-offs associated with
the spatial control of information processing in signalling networks, which come to the sur-
face only if spatial factors are explicitly considered. Overall, using a focused multipronged
approach reveals different facets of spatial regulation of signalling at multiple levels and in
different contexts. Combining mathematical modelling, systems engineering and synthetic
design approaches creates a powerful framework, which may be used to elucidate spatial
control of information processing in multiple contexts and design synthetic systems that
could fruitfully exploit spatial organization and regulation.
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Chapter 1
Introduction

The survival of an organism is dictated by the behaviour of its cells. Cellular behaviour is
driven by a multitude of cellular processes that are governed by a tightly orchestrated web
of interacting biochemical/biomolecular networks. Some examples of fundamental cellular
responses or processes are cell division, proliferation and growth. When networks malfunc-
tion, processes encounter problems, which may lead to the improper functioning of cells
or even a diseased state for the organism. Hence understanding the structure and dynamics
of biological networks is a vital area of research in biology and biological engineering and
has wide ranging applications in therapeutics, health care and biotechnology.

The sheer number of entities interacting in any given biological network and the highly
interconnected nature between different networks makes them extremely complex to dis-
cern as a whole. The interactions between entities are intricate, non-linear, may harbour
stochastic characteristics and are spatially distributed. Unlike man-made networks, biolog-
ical networks are a product of evolution; and the logic underlying their organization may
not be easy to understand. Furthermore, these networks also have the ability to continually
evolve (Purnick and Weiss|, 2009). However given the important role of these networks, un-
derstanding how they are organized and function is an important goal in biological research
(Marks et al., [2009).

Networks may be classified at different levels in the organism (at the level of cells,
multi-cells, tissues, organs, etc.) but here our main focus is on intra-cellular networks. A
key feature of cellular networks is that they integrate signals from the cells environment (or
from within the cell) and process them to give the appropriate response- this is known as

signal transduction. Understanding how cellular network interactions are organized gives
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key insights into how information is processed from various signals and decisions are made.
Signals maybe of various forms, for example chemical, electrical and mechanical. Chemo-
taxis is an example of a process where a cell makes a decision to migrate either towards
or away from a chemical signal. The underlying chemotactic networks receive the signal,
process the ’information’ and enable the cell to respond accordingly. This may result in,
for example, the cell moving away from a toxin or towards a food source, depending on the
signal(s) encountered (Eisenbach et al., 2004).

The fibroblast growth factor (FGF) signalling network is an example where a multitude
of outcomes are possible once signal information is received and processed (Turner and
Grosel 2010). FGF signals are known to induce cell proliferation, migration or even atten-
uate the cell cycle. There may be a number of factors that determine the kind of response
achieved, such as, the nature of the signal and the states of the external and internal environ-
ments of the cell. Furthermore, this signalling network interacts with multiple downstream
signalling networks and these in turn may regulate different gene regulatory networks. This
example illustrates that information processing that leads to decision making is dependent
on a variety of factors and maybe controlled by a highly interconnected web of complex
networks, which are organized at multiple levels within the cell.

Unraveling the complexity of cellular networks and the functioning of cellular pro-
cesses is the main goal of the interdisciplinary field of research known as Systems Biol-
ogy. The research arises through a combination of experiments and mathematical mod-
elling/computational studies and associated theoretical work. The collaborative efforts of
experimentalists and engineers/mathematicians/physicists/computational scientists are also
an important aspect of how research is conducted in systems biology. The emphasis here is
on developing models to predict behaviour and working in an iterative fashion with experi-
mentalists to refine the model. Various theoretical methodologies and tools are used in this
discipline, ranging from dynamical systems theory, systems engineering, control engineer-
ing and information theory, to biophysical approaches and stochastic analysis (and associ-
ated computational methodologies). Complementary approaches associated with bioinfor-
matics utilize other computational tools to identify and screen for genes from large sets of
experimental data (Klipp et al., [2013).

The mathematical models used are classified along different axes- for example networks
may be modelled qualitatively or quantitatively; deterministically or by using a stochastic
description and maybe treated as discrete or continuous. It is important to understand that

a process or a network maybe described by more than one type of model and the choice



Chapter 1. Introduction 18

of model depends on the nature of the investigation and questions of interest. Different
techniques are used in modelling signal transduction in networks; for example, if a de-
terministic approach is used then differential equations such as ODEs are employed and
tools from dynamical systems may be used to analyse non-linear behaviour in the resulting
model. Increasingly, a number of studies focus on stochastic descriptions (where the state
of a variable is given in terms of probability distributions) to study signalling and gene
regulatory networks.

These approaches are typically used to describe the properties of networks with respect
to changes in time only (Tyson et al., 2003} [Tyson and Novak, 2010). However the de-
pendence on space, a variable equally important to time, is often ignored. Cells are often
assumed to be well-stirred reactors or spatially homogenous and thus the spatial dimen-
sion of information processing in signal transduction is wiped out from the description of
the network in the model. However, an inspection of the intracellular organization of cells
immediately reveals that this is simply not the case.

A look at the signalling landscape reveals the myriad processes where the spatial di-
mension to information processing plays an important role. These processes are vitally
important for cell function. At the level of cells, networks underlying processes such as
chemotaxis, cytokinesis, calcium signalling, pole to pole communication in bacteria, shut-
tling of proteins and trafficking are all spatially organized (Berridge et al., 2000; Eisenbach
et al., 2004; Nelson, |2003; [Rappaport, 1971} Shapiro et al., 2009). Spatial architecture and
landmarks play an important role in the functioning of networks underlying processes such
as cell division, growth and cell polarity. At the level of tissues or multi-cellular level, the
positions of neighbouring cells are important for correct cell to cell communication. Inter-
estingly even in bacteria, which were effectively assumed to be well stirred vessels, a highly
intricate spatial organization is present at the subcellular level (Goley, 2013), which plays
an important role in various regulatory processes in bacteria. An example seen across dif-
ferent bacterial systems such as E. coli and C. crescentus is polar localization of signalling
entities (Laloux and Jacobs-Wagner, 2014; Rudner and Losick, 2010). Spatiotemporal phe-
nomena such as waves have also been observed in different bacterial systems (Loose et al.,
2008; |Shapiro et al., 2009).

These are only a few examples of how spatial organization of signal transduction plays
a fundamental role in different processes. If its role is left unaccounted for, there will re-
main a significant gap in our fundamental understanding of these processes. In recent years,

the importance of spatial organization and regulation of cellular processes is increasingly
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being recognized in the signalling and related communities (Hurtley, 2009; |[Kholodenko,
20065 Kholodenko et al., [2010; Schwarz-Romond and Gorski, 2010). Understanding the
spatial dimension to signalling is not without its challenges. Firstly, spatial signalling is
a part of numerous processes in different biological systems with distinct biochemical de-
tails. Second, the quality of spatially resolved data does not match that of the available
temporal data. However recently there has been a surge in the development and refinement
of experimental techniques and tools and much progress is ongoing to increase the spa-
tiotemporal resolution of these tools (Etoc et al., 2013} Lasker and Shapiro, 2014)). Third,
from a modelling/systems/theoretical point of view, considering the effects of space adds
yet another layer of complexity to the analysis of network behaviour.

In addition to mechanistically investigating specific concrete cellular processes in de-
tail, a broader framework, to understand spatial regulation in signalling is necessary. This
would be relevant to different systems and processes and would aid in understanding fun-
damental aspects of spatial signalling as well. It would also be useful for synthetically
engineering spatially organized networks.

In this thesis, we develop a multipronged approach through which we combine studies
of spatial regulation and control of representative networks and concrete signalling net-
works. Through this multifaceted approach, we aim to illuminate the various roles of space
in information processing in cellular networks.

Our initial study focuses on the spatial organization of signalling networks underlying
chemotaxis, and later evolves to studying spatial organization in signalling networks in a
broader context. Chemotaxis is an important process found in a wide range of systems from
bacteria (e.g. E. coli) to eukaryotes (for e.g. mammalian white blood cells) and is an inte-
gral part of important phenomena such as tumour metastasis, development of the nervous
system and the immune response. The study of chemotaxis is highly relevant for a number
of applications including nerve regeneration after injury, development of therapeutics and
understanding mechanisms of diseases like cancer (Eisenbach et al., 2004).

Chemoattraction is the focus of many experimental and modelling studies while chemore-
pulsion, where cells move away from stimuli, has been largely left unexplored. During our
investigation of chemorepulsion, in an earlier study (Alam-Nazki and Krishnan, 2010), a
survey of the literature showed that cell movement both, towards and away from the same
or different signals had been repeatedly observed in experimental studies in various biolog-
ical systems (for e.g. neurons and E. coli bacteria). However, there was no study dedicated

to understanding how the underlying chemotactic networks are naturally organized to give
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rise to both responses, in light of the known properties of signalling.

In Chapter [2] we develop an engineering design approach to understand how the un-
derlying chemical networks are wired to give rise to opposite migratory decisions. This
approach complements mechanistic modelling of signalling networks in individual cells
types. Our aim is to isolate what type of network configurations may or may not allow for
both attractive and repulsive behaviours. We also aim to gain insight into how signalling
networks are naturally designed to give rise to such responses. The approach we employ
acts a basis for developing synthetic engineering approaches to manipulate chemotactic
behaviour in cells and furthermore our findings act as a platform to understand, in detail,
chemotactic signalling networks in concrete systems.

Chemotaxis is known to involve spatially distributed signalling and typically modelling
and experimental studies explicitly take this into consideration. However, this is not the
case in most processes where spatial organization and control of signalling is naturally
present. A survey of the literature reveals that a systematic multipronged approach to in-
vestigating patterns of spatial signalling across different kinds of networks and cell types is
needed. In the studies discussed in Chapters 3] 4} [5|and [6] we examine the spatial organiza-
tion and regulation of signalling at multiple levels- both at network and enzymatic levels.
Spatial organization maybe present in a number of guises in signalling and spatial effects
may arise through localization of network entities, via transport and due to the presence of
graded signals.

In Chapter (3, we discuss the study in which we examine a series of widely recurring
network modules; these are typically examined through ODEs. Our aim is to shed light
on how spatial organization affects temporal information processing in these representative
signalling networks. We examine the effect of spatially varying signals in combination with
the effect of diffusive transport of network species to gain an understanding of the role of
diffusion in different kinds of signalling networks.

In Chapter[d] a basic enzymatic building block known as the covalent modification cycle
is examined through the spatial prism. Covalent modification cycles are basic building
blocks of posttranslational modification of proteins (for example a protein may be modified
via the addition of a chemical group such as a phosphate or an acyl group). In this part of
the study, our aim is to gain insight into the interplay of spatial effects and kinetics at
the level of a single modification cycle. We also dissect the role of diffusional transport
of enzymes, substrates and complexes and study the effects on information processing in

this basic module. Covalent modification cycles are building blocks of different kinds of
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modification cascades with multiple levels.

Thus, our study naturally progresses from studying one enzymatic building block to the
study of signalling cascades (Chapter [5)). Different types of cascades are a common feature
of cellular signalling networks and are paradigms for how information is processed during
signalling. We systematically disentangle the effects of space in a variety of signalling
cascades by examining the effects of localization or compartmentalization and diffusion of
enzymes and substrates, in multiple variants of chemical modification cascades.

In our final study, we elucidate how spatial organization and control is integrated into
signalling networks underlying the cell cycle in the bacterium Caulobacter crescentus
(Chapter [6). Various spatial and temporal control mechanisms coordinate the signalling
interactions and events in the cell cycle. Modification cycles with bifunctional and mono-
functional enzymes are the basic building blocks of these networks. Using a systems ap-
proach, we first dissect the spatial regulation in these building blocks and then build on the
insights obtained to investigate the spatiotemporal control of concrete signalling networks
in the cell cycle. The spatial features we study here: dynamic localization, gradient forma-
tion and localization of entities and their interplay with diffusion are recurrently observed
in signalling networks of different bacterial and eukaryotic organisms. Hence, the insights
pertaining to these features have a broader relevance.

To summarize, we develop and utilize multipronged approaches in our investigations-
starting with the concrete process of chemotaxis, and then moving on to studying net-
works, enzymatic building blocks, signalling cascades and finally network modules in the
concrete context of Caulobacter. Such multipronged approaches provide an avenue for the
systematic exploration of different facets of spatial organization in information processing
in a broader context as well as for understanding spatial control of signalling networks in

different types of cells.
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Chapter 2

An investigation of design principles
underlying repulsive and attractive

gradient sensing and their switching

2.1 Introduction

Chemotaxis, the directed migration of cells in response to chemicals, is a fundamental cel-
lular process with manifold applications ranging from wound healing, tumour metastasis
to immune system function (Eisenbach et al., 2004). In these systems the external environ-
ment is sensed by the ligand binding to specific receptors on the cell surface. The sensing
stage leads to the biasing or guiding of cell motility in appropriate directions. In bacterial
cells like E.coli, the temporal sensing of the ligand leads to the regulation of the tumbling
frequency of the flagellum. In the case of eukaryotic cells, the sensing typically leads to the
intermediate step of polarization, the persistent localization of key signalling components
to opposite ends of the cell leading to the establishment of an axis, which aids persistent
movement.

Chemotaxis is of two types, attractive and repulsive. Chemoattraction has been inten-
sively studied experimentally in bacteria, especially in E.coli, and also in eukaryotes such
as Dictyostelium, neutrophils, fibroblasts to name a few. These studies have focussed not
only on the qualitative aspects of migration, but also on the underlying signal transduction
processes connecting receptor-ligand binding to motility. Some experimental studies have

investigated chemorepulsion in systems such as E.Coli, Dictyostelium, neutrophils and T-
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cells. Most of these studies have focussed on demonstrating the fact that cells are capable of
chemorepulsion, and are not focussed in detail on the signal transduction (Keizer-Gunnink
et al., 2007; [Tharp et al., 2006). From the modelling perspective, a series of modelling
efforts have been aimed at understanding signal transduction in chemoattraction in E.coli
as well as eukaryotes (for example see (Iglesias and Devreotes, 2008}; Tindall et al., 2008])
for surveys of the relevant efforts). A mechanistic modelling study of chemorepulsive sens-
ing in Dictyostelium was performed by us in a previous work (Alam-Nazki and Krishnan,
2010).

While different cells may exhibit chemoattraction or chemorepulsion, our focus will be
on cells (primarily eukaryotic cells) which exhibit both chemoattraction and chemorepul-
sion. There are a number of examples of such cases: Dictyostelium (under similar con-
ditions) exhibits chemoattraction to cAMP and chemorepulsion to 8CPT-cAMP (Keizer-
Gunnink et al., |2007)); growth cones can exhibit chemoattraction and chemorepulsion to
the same chemical stimulus depending on other factors present in the external medium, or
its internal state (Mueller, |1999; Song et al., [1998)); leukocytes can exhibit chemoattrac-
tion and chemorepulsion to Interleukin-8 depending on the strength of the stimulus(Tharp
et al., 2006). In this chapter we present a framework to examine the possible design prin-
ciples and features in the underlying signalling networks which allow them to exhibit both
chemoattraction and chemorepulsion.

In all these eukaryotic cells (and bacteria) it is expected that the main difference be-
tween chemoattraction and chemorepulsion lies in the sensory transduction stage. In gen-
eral the chemoattractant and the chemorepellent may be different chemicals, and their re-
ceptors can be different. However the mechanism of motility in response to both these
chemicals is expected to be the same. This involves the regulation of the actin cytoskele-
ton, by key proteins in the polarization process such as Rac, Rho and (where applicable)
Cdc42. There are many natural questions which arise in trying to understand chemoattrac-
tive and chemorepulsive signalling in these systems. Is there a common upstream entity
whose regulation acts as the key connection between attractive and repulsive sensing? Is
the nature of signalling in these systems local or adaptive? Is an underlying spontaneous
symmetry breaking mechanism (spontaneous rearrangement of signalling entities at the
front and rear ends of the cell in the absence of pre-established asymmetric cues or uniform
signals) involved? How does this affect the cell’s capacity to exhibit both attractive and
repulsive sensing?

Different aspects of attractive and repulsive signal transduction have been discussed in
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the literature. In particular, experimental studies in Dictyostelium in chemorepulsion have
led to a network model postulated. In this model, the experimentally observed opposite
regulation of the enzyme PLC (a regulator of phosphoinositide lipids) by chemoattractant
and chemorepellent respectively is postulated to be the key connection between chemoat-
traction and chemorepulsion from the perspective of signal transduction. Thus PLC is
postulated to be a “polarity switch” in this system (Keizer-Gunnink et al., 2007). The no-
tion of a “polarity switch” has been discussed elsewhere in the literature too (Huttenlocher
and Poznanskyl, |2008). In systems like growth cones and T-cells, the fact that competing
pathways are involved in the gradient sensing have been demonstrated experimentally. In
this study, we will focus on primarily these two design aspects, how they could work to
give attractive and repulsive migration in eukaryotic systems, and how this might depend
on the qualitative aspects of signal transduction. In this manner we aim to develop a frame-
work to examine and elucidate various issues regarding attractive and repulsive sensing
and their transition. In particular an implicit focus is on the underlying design principles
and network regulation which allow the network controlling attractive migration to be ex-
ploited/regulated/modified to give rise to repulsive migration in the same cell. We believe
that these are natural issues to examine as a first step towards a detailed mechanistic under-
standing of attractive and repulsive migration in these systems.

At the outset we recognize that the details of signalling in different cells will be differ-
ent. This is because of both differences in biochemical network details, as well as basic
qualitative differences in the nature of cellular signal processing. In order to address these
classes of questions, we will work with representative modules of signalling. These mod-
ules, taken from the literature, represent different essential characteristics observed. While
these modules naturally do not capture all the biochemical signal transduction complexity,
they provide key insights regarding sensing capabilities. These modules must be seen as be-
ing building blocks or representing individual pathways in the overall signal transduction.
The detailed biochemical understanding of chemotactic response in these various systems
needs the integration of various pathway behaviour, as well as qualitative understanding of
the nature of signal processing. In these cases it is vital to obtain insights to the questions
above to guide the building of detailed models. The nature of the analysis in this work is
such that it is likely to be useful for a wide range of systems.

Attractive and repulsive migratory behaviour has been observed in different systems as
mentioned. While the mechanistic understanding of signal transduction in these systems is

far from complete, many important qualitative aspects of the behaviour in chemoattractive
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signalling have been investigated. This aspect underlies our approach in this work: we aim
to exploit these aspects along with the experimental studies on chemorepulsion to postu-
late and examine some key questions about how attractive and repulsive signalling occurs,
which would provide useful insights as well as testable predictions. We believe that the use
of qualitatively simplified models is much more appropriate in this context, as it allows us
to focus on some key qualitative aspects and obtain transparent insights, without being dis-
tracted by the different mechanistic details and gaps to contend with in individual systems.
In the building of detailed mechanistic models, one would have to deal with many unknown
details which are somewhat tangential to the issue at hand and in many ways obscure the
main points; further, one would have to then check what aspects of the detailed models
gave rise to the relevant insights, and if this would still hold good if different biochemical
variants were employed. Finally for the issue under consideration, any mechanistic model
would necessarily incorporate some phenomenological descriptions. Overall our models
incorporate succinctly and transparently certain hypotheses whose consequences can then
be understood more easily. The investigations of this work should be seen as a first step
in mechanistically investigating such issues in individual systems using a combination of
modelling and focussed experiments.

This chapter is organized as follows. In the next section we present the representative
modules we employ for our analysis. We then examine different network designs (upstream
switch, competing effects) which can give rise to both attractive and repulsive biasing, and
examine what the consequence of each possibility is, in light of different signal transduction
scenarios. We then conclude with a synthesis of our results and a discussion of how the

analysis might be applied and extended to other systems.

2.2 Models and Methods

We will examine different ways in which sensing occurs, and how the sensed signal may
be propagated downstream. In this section we discuss the modules describing how the
sensed signals are propagated. Our modules are intended to be compact representations
of different characteristic signal transduction observed in different systems. For the most
part we will be concerned with spatial signalling mechanisms. However purely temporal
signalling mechanisms are also contained in two of the models (discussed later). In general,
for the modules we consider, chemical signalling occurs through receptor-ligand binding

where the receptors could be evenly distributed along the membrane, or localized in some
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sub-region. For simplicity, all these modules are formulated on a 1-D spatial domain with
periodic boundary conditions, representing the boundary of a cell. The main insights are
unchanged by a change of domain or boundary conditions. Schematic diagrams of the
three modules which we discuss are shown in Fig. 2.1} Our qualitatively simplified models
are intended to capture key aspects of how sensed signals are connected to downstream
components which regulate F-actin. Thus the output may be regarded as a representative
biochemical “frontness” component or component which biases pseudopod extension (eg.
PIP; or Rac).

A B C
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Figure 2.1: Schematic diagrams of Local, Adaptive and Spontaneous Polarization modules. (A). The
local module contains an input signal labelled S that regulates the response R*. R* is capable of diffusing.
(B). The adaptive module consists of an input signal that regulates an activator A and an inhibitor I which in
turn regulate the response element R*. A and I may or may not diffuse. (C). In the spontaneous polarization
module the input signal S regulates two activators us and uz. These activators inhibit one another and
upregulate the production of an inhibitor w;. w; inhibits both us and u3 and diffuses as well (see text for
details).

The first model involves a simple description of local regulation. Local regulation/biasing
is the basis for description of migration in certain cell types (Arrieumerlou and Meyer,
2005), and can be expected to be important in cells which are already polarized with an
existing pseudopod/front, driving the migration. In this model, a signal S regulates the
production of an active form of a response element R* from an inactive form R. The

equations governing the response are given by
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In the above equations k; and k, denote the rate constants for the constitutive conversion

between inactive and active forms. k is the rate constant involved in the signal mediated
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conversion of inactive to active forms. Finally £, is the diffusion coefficient of the active
and inactive forms (assumed equal for simplicity). The equations are written in dimension-

less form, with R + R* = 1 initially. By adding the above two equations we see that

IR+ R*) O*(R* + R)
_— = ky——= 2.2
dt 002 2.2)
so that if R + R* = 1 initially, this condition holds for all time and so we can write

R =1 — R*. Note that the signal affects the forward reaction here. An exact analogue
involves the signal causing the degradation of R* rather than the production. This results
in

oOR* O’ R*
= k(1—-R")— (k. +k +k

(2.3)

where the above conservation condition is explicitly incorporated. Note that in the above
equation, restricting the signal to be homogeneous (or as occurring through localized re-
ceptors) and setting k; = 0, we have a model of local temporal sensing.

The second model which we consider includes adaptation as an important ingredient
of sensing. This is motivated by the demonstrated presence of adaptive signal transduction
to different pathways such as PI3K and PTEN in Dictyostelium. It should be noted that
the temporal adaptive behaviour is combined with a non-trivial spatial gradient sensing
response. The essential ingredient for this to occur is some regulatory pathway which is not
purely local, and could for instance be a highly diffusible element (Iglesias and Devreotes,
2008; Levchenko and Iglesias, [2002). Other ways of giving rise to similar effects through
cytosolic pools is discussed in (Skupsky et al., 2005). For our purposes we will employ
a compact model which gives rise to adaptive signalling and spatial responses. Since, we
will be considering both attractive and repulsive responses, we choose a generalization of
the local excitation global inhibition model developed previously (Krishnan, 2009). This
involves a response element 12* to be regulated by an activator and inhibitor both of which
may be diffusible. For simplicity, we will assume the response element to be non-diffusible.
Again, similar to the above, a conservation condition holds good between the inactive and

active forms of the response element. Incorporating this, the governing equations for this
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model are
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Here A and I denote the concentrations of activator and inhibitor respectively, while R* de-
notes the concentration of the response element. Here k, and k_, denote the activation and
deactivation rate constants for the activating enzyme, while k; and k_; denote the activation
and deactivation rate constants of the inhibiting enzyme. The activating and deactivating
rate constants of the response element are denoted by £, and £, respectively. The diffusion
coefficients of the activator and inhibitor are denoted by k4, and k4 respectively. In this
case when S is spatially homogeneous, the response 2* is independent of S, as it depends
on the ratio of A and I, both of which are proportional to S. Note that here too, by setting
kqo = kq¢; = 0 and restricting the signal to be independent of space (or as occurring through
localized reception) we have a case of purely temporal sensing with adaptation.

The third model embodies another characteristically different form of signal transduc-
tion which is observed in certain eukaryotic systems like leukocytes: spontaneous polariza-
tion. The model we employ for this purpose is based on the work of Narang (Narang, [2006)
(which in turn in based conceptually on (Xu et al.,[2003)), and involves spatial sensing with
the special feature of spontaneous polarization induced by spatially homogeneous signals.
In this model, the addition of a spatially homogeneous stimulus leads to symmetry break-
ing via a Turing instability, leading to a well defined front and back. For our purposes, the
main features of interest in this model are that it leads to spontaneous symmetry breaking
and also that the frontness and backness signals are present in an explicit manner. The fact
that the symmetry breaks via a Turing instability is of much less relevance.

This model involves 3 components u; (the cytosolic inhibitor, also modelled in 1-D for
simplicity), the frontness component u, (representative of Rac/Cdc42) and the backness
component ug (representative of Rho). This model is based on the mutual inhibition of
frontness and backness components both directly and through the upregulation of the in-

termediate cytosolic component u;. The receptor signal upregulates both the frontness and
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backness components. The model equations are
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In the above equation, the regulation of cytosolic component u; by the frontness and back-
ness components is described by the rate constants a5 and a3 respectively; the first term on
the right hand side of the first equation describes the constitutive degradation of this cytoso-
lic component, while D, describes its diffusion coefficient. In the second equation as; and
a9g are rate constants which depict the inhibitory effects of the cytosolic inhibitor and the
backness component on the frontness component. The frontness component is regulated
by the signal, but also involves constitutive degradation (associated with the term ass). Do
is the diffusion coefficient of the frontness component. The terms in the third equation
are described in an exactly analogous fashion. p, and p3 are scaling constants which arise
when the equation is non-dimensionalized. Further details are given in (Narang, [2006).
In the above equation, typically wu, is highly diffusible. Note that the cytosolic pool u; is
produced by both uy and w3 and plays a role in inhibiting each of these components (see
Fig. for a schematic). A degradation of each component uq, us which is quadratic
is assumed. The essential aspect of the interaction of uy and ug is similar to the Lotka-
Volterra equation. The difference in diffusivities of the species plays a crucial role in the
Turing mechanism. Analytical results demonstrating the presence of the instability, and
dependence on parameters are presented in (Narang, [2006). While this model was origi-
nally formulated with Neumann boundary conditions, we will employ periodic boundary
conditions. This introduces no qualitative difference.

The above models are analyzed both analytically and numerically: simulations are per-
formed by discretizing space, and solving the resulting equations in MATLAB using the
ODE solver odel5s. Sample parameter values are employed. In the case of both the adap-
tive and the Narang module, some comments must be made about the choice of parameters.
In the adaptive module, a response whose gradient response parallels the upstream signal
is achieved when k4, /k_, < kq;/k_; and a repulsive response is observed in the oppo-

site case. For specificity we choose parameter values which lie in the parameter region
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kaa/k—oa < kq;/k_;. Our main conclusions, being qualitative in nature, do not depend on
the particular choice of parameters. In the Narang module, we employ a basal set of pa-
rameters taken from (Narang, |2006). In this module, under basal conditions, the spatially
homogeneous state is stable, but may be destabilized (leading to an inhomogeneous state)
when the signal level crosses a particular threshold. The resulting patterned state is remi-
niscent of a polarized cell, and depending on the choice of parameters in the module, the
resulting state (just above the instability threshold) may be either representative of an at-
tractive response (i.e. frontness component highest near maximum of signal) or that of a
repulsive response (i.e. frontness component highest near minimum of signal). Again for
specificity we choose parameters so that the attractive response is obtained. We will com-
ment in detail on the role of the parameters in this system in the context of specific results

(parameter values for the relevant figures are in Appendix [A).

2.3 Results and Discussion

In this section, we present various results related to the ways in which repulsive and at-
tractive response may be obtained in the same cellular system. In order to do this, we
examine two basic mechanisms postulated and partly studied in the literature: one which
postulated that chemorepulsive signalling is related to chemoattractive signalling, via the
opposite regulation of a key upstream component, which is referred to as a polarity switch.
The second scenario is one where upstream competing pathways play a crucial role in the
cell exhibiting chemorepulsion and chemoattraction. This is based on such pathways be-
ing observed in growth cones, and similar effects being observed in neutrophils. However
in no case has either scenario been examined carefully and systematically in light of the
possible signal transduction which might occur. We will examine both scenarios, and pay
particular attention to how these might work in different cells which have very different
signal transduction characteristics. In order to do this, we examine how each of the scenar-
10s described above would work to propagate signals downstream. This involves ing each
of these scenarios upstream of each kind of signal propagation module. Analyzing each of
these settings allows us to make robust conclusions regarding the roles of polarity switches
and competing effects in spatial gradient sensing and chemotactic signalling. The compu-
tational results presented here are complemented by analytical work, which was presented
in (Krishnan and Alam-Nazki, 2011) and is reproduced in this section.

Before we examine this, we first briefly analyze the different basic modules embodying
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local/simple feedforward regulation, adaptive signal transduction and spontaneous polar-

ization.

2.3.1 Response of signal propagation modules

We first investigate the simple local model (see Fig. [2.2A). The imposition of a linear
gradient (S = a + bcosf in terms of the angular co-ordinate) results in a response which
essentially mirrors the input. This is the simplest kind of module. There are a few points
to be noted even in this simple module. Firstly, the response is essentially proportional to
the input when this module is far from saturation. Secondly, the basal reaction rate con-
stants determine the range over which the response can vary at steady state. In general,
if the relevant basal reaction rate constant (forward for attractive biasing, backward for
repulsive biasing) is small relative to the basal reaction rate constant of the opposite reac-
tion, then practically the entire range of response element concentrations can be exploited.
Thirdly while the regulating reaction is assumed to follow mass-action kinetics, alternate
mechanisms such as Michaelis-Menten kinetics can lead to a non-linear distortion of the
input signal. Finally any threshold mechanism downstream can also lead to a sharpening
or simple amplification of the response.

Very similar insights apply to a local module of repulsive sensing. Here again the pres-
ence of a basal backward reaction rate can restrict the range over which the response may
vary in response to the signal. Here, the presence of a threshold mechanism downstream
could lead to a sharp falling off of net output as a function of signal concentration. In both
these cases the effect of increasing the diffusion coefficient of the response element is to
reduce the amplitude of variation of the response. As this diffusion coefficient is made
larger the gradient information is gradually lost.

We now turn to the adaptive module (Fig. [2.2B)). Again as before, we investigate the
case of a linear gradient. In the first case, we use parameters such that kq, /k_o < kq;/k_;.
The simulations performed revealed an attractive biasing with a response maximum coinci-
dent with the input signal maximum. In general increasing the gradient strength increases
the amplitude of the response, while a homogeneous signal of any magnitude keeps the
response fixed. Further by varying the parameters, we see that the smaller the difference
kai/k—_; — kaa/k_, for a fixed input signal, the weaker the steady state gradient response.
The presence of a downstream amplifying element allows for an amplification of this signal

in such a way that the adaptation property is preserved (assuming this amplifying mech-
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(A)
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Figure 2.2: Response of local and adaptive modules. (A) For the local module, an attractive response
(solid line) is seen when the external signal upregulates the response and repulsive (solid line with circles),
when it is downregulated by the external signal. Here and in other diagrams, unless mentioned, the signal
is S = 1 4 0.4cosf, with a maximum at § = 0. (B) The adaptive module response is attractive (solid line)
when kg;/k_; — kqa/k—, is positive. A repulsive response (solid line with circles) is achieved when this
quantity is negative. For the repulsive response in the adaptive module, diffusivities of activator and inhibitor
are interchanged.
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anism is via a monostable threshold mechanism). For completeness we investigate the
behaviour of the module in response to a signal when kg, /k_, > kg;/k_;. In this case the
response of the module is to produce a repulsive biasing. The same conclusions regarding
the positive biasing case above hold good here.

Finally we investigate the Narang module, when subject to a gradient (see Fig. [2.3).
For the parameters employed, a clear polarized response representative of chemoattraction
is obtained. When the gradient is relatively weak, both the frontness signal u, and the
backness signal u3 display localized responses. When the gradient is substantially strong
we clearly see that the frontness signal u, and backness signal ug also develop localized
profiles in response to the gradient, though the effect of the gradient leads to the frontness
signal being sharply localized and the backness component displaying a weakly bi-modal
response. The basis of the underlying mechanism of this module is spontaneous symmetry
breaking, leading to polarized profiles (Narang, 2006). A similar simulation of this module
with different parameter values and the same input signals, reveals polarized profiles for
the frontness and backness components u, and wug respectively, which are representative
of a chemorepulsive response. In this case, for strong gradients, the backness signal is
more sharply localized. Further, this chemorepulsive response also involves a spontaneous
symmetry breaking mechanism. Thus this module, for different choices of parameters
can result in either a chemoattractive or a chemorepulsive mechanism with spontaneous
symmetry breaking in homogeneous stimulation.

These three modules act as representative modules of signal propagation, embodying
very different behaviour, but still producing/propagating attractive or repulsive biasing. It
is worth pointing out, incidentally, that both the adaptive as well as the Narang models can
exhibit both repulsive as well as attractive biasing simply by changing parameters. We will

return to this point later in the chapter.

2.3.2 A polarity switch

In general it is worth noting that chemoattraction and chemorepulsion typically involve
different chemical signals, and perhaps different receptors too. Therefore it is possible
that chemoattractive behaviour and chemorepulsive behaviour could occur through very
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