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Strut and tie models have been developed for external beam±column joints with and without joint stirrups. The

modelling is fraught with difficulties that include determining forces at joint boundaries and strut dimensions. In

view of these difficulties, it was found necessary to define strut widths empirically. Test data were used to show that

stirrups can increase joint shear strength by less than their yield capacity. The model accounts for this by using a

stiffness analysis to determine the proportion of joint shear force resisted by the stirrups at failure. The resulting

model predicts joint shear strength more realistically than existing non-finite-element methods and some finite-

element techniques. It is necessarily complex but capable of incorporation in spreadsheet-based design techniques.

The authors believe that the behaviour of beam±column joints is too complex to be modelled realistically with

simple strut and tie models. If a simple design method is required, the authors recommend their simplified empirical

method.

Notation

Asj effective area of joint stirrups

bc, bb member width (c, column; b, beam)

be effective joint width

C constant defining width of direct strut in

stiffness analysis

Cce, Cci concrete force in column at joint boundary

(e, external column face; i, internal column

face)

Cse, Csi compressive force in column bars assuming

plane sections remain plane (e, external col-

umn face; i, internal column face; �, actual

or adjusted force)

D strength of direct strut in beam±column joint

d effective depth (c, column)

d9 distance to centroid of reinforcement from

adjacent concrete face

eb, et eccentricity of Fv at bottom node and top

node, respectively

edb, edt eccentricity of Fvd at bottom node and top

node, respectively

e9b eccentricity of Fv ÿ Fvit at bottom node

eib, eit eccentricity of Fvib, Fvit at nodes

Fv resultant vertical joint shear force

Fvib, Fvit vertical component of force resisted by

lower and upper indirect struts, respec-

tively

f strain-softened concrete strength (d, direct

strut; ib, lower indirect strut; it, upper indir-

ect strut)

f 9c concrete cylinder strength

f y stirrup yield strength

f yb yield strength of beam flexural reinforce-

ment

hb, hc member depth (b, beam; c, column)

K multiplication factor for Tsi

N , Ncrit column load (crit, column load at which

predicted joint strength is maximum)

P beam load (pred, predicted failure load; test,

actual failure load)

S I stirrup index (min, stirrup index at which

predicted strength with stirrups � predicted

strength without stirrups) (a different model

is used for each analysis)

Tse, Tsi tensile force in column bars assuming plane

sections remain plane (�, actual or adjusted

force)

Vc joint shear strength without stirrups

Vj joint shear strength
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w strut width normal to its centre line (d,

direct; i, indirect; t, top node; b, bottom

node; �, effective width used in stiffness

analysis)

x depth of compressive stress block at joint

boundary (t, top node in column; b, bottom

node in column)

Y position of centroid of effective joint stir-

rups below centre line of beam tensile rein-

forcement

á, â efficiency factors

å1, å2 principal strains

å9c strain at peak concrete stress

åd axial strain in direct strut

åt stirrup strain

è angle of centre line of top indirect strut to

horizontal

rb beam reinforcement index As=bbd

ó� resultant stress in column at junction with

node

öb, öt angle of centre line of indirect strut to hor-

izontal (b, bottom; t, top)

Introduction

Strut and tie modelling is widely advocated
1±6

as an

alternative to either finite-element modelling or empiri-

cal methods for the design of structures such as deep

beams, corbels, squat shear walls and beam±column

joints. It is relatively straightforward to develop strut

and tie models if the node dimensions can be related to

the widths of supports and positions of reinforcement

(e.g. deep beams). This is not the case for beam±

column joints (see Fig. 1), where node dimensions are

not easily defined. This can be seen by considering the

development of the strut and tie model shown in Fig. 2,

which is summarized below:

(a) determine forces in the reinforcement and con-

crete at the joint boundaries

(b) determine the centre line of the inclined strut in

terms of the positions of the centroids of the

resultant forces at the joint boundaries

(c) determine node dimensions

(d ) determine failure load in terms of the strength of

the inclined strut.

Stages (a) and (c) present difficulties. The first diffi-

culty is that the column bar forces are not readily

established at the joint boundaries, because plane sec-
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Fig. 1. External beam±column joint

Fig. 2. Strut and tie model of beam±column joint without

stirrups: (a) boundary forces; (b) geometry
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tions do not remain plane. The first author
5

has estab-

lished this by comparing column bar forces predicted

assuming plane sections remain plane with forces de-

rived from strains measured by Ortiz
6

and Scott.
7

In

most cases, the column bar forces were more tensile

than predicted at the joint boundaries. The greatest

differences between the predicted and measured forces

were found at the top of the joint, where the tensile

force in the inner column bars T�si was considerably

greater than the predicted value Tsi and the compres-

sive force in the external column bars C�se was signifi-

cantly less than predicted value Cse, even zero. This

seems reasonable since bond conditions are more

severe for the external column bars than for the internal

column bars. Therefore, T�si=Tsi increases to maintain

moment equilibrium as C�se=Cse reduces owing to loss

of bond towards failure. Stage (c) presents difficulties

because neither the height nor the width of a node is

clearly defined. For example, the width of a node is

dependent on the widths of the concrete stress blocks

in the upper and lower columns, which in turn depend

on the forces in the column bars, which are unknown.

To complicate matters further, the stress distribution in

the struts is non-uniform because force is introduced

into the nodes from the main column reinforcement in

addition to compression in the concrete. Furthermore,

strain measurements in column bars within beam±

column joints
6,7

indicate that force is transferred be-

tween the steel and concrete throughout the depth of

the joint rather than at nodes as assumed. In view of all

this complexity, the authors do not consider it feasible

to develop a realistic strut and tie model for beam±

column joints without recourse to test data. Therefore,

the authors have used a semi-empirical approach to

develop an essentially descriptive strut and tie model

for joints with and without stirrups.

Strut and tie model for beam±column

joint without stirrups

A previous analysis
5,8

of all known test data
6,7,9±17

showed that joint shear strength

(a) is sensibly independent of column axial load un-

less a hinge forms in the upper column

(b) is proportional to
p

f 9c for joints without stirrups

(c) reduces with increasing joint aspect ratio hb=hc.

Test data are limited (see Fig. 3) but there is

some evidence
8

that joint shear strength reduces

by about 35%, almost linearly, as hb=hc is in-

creased from 1 to 2. (Recent tests by Scott and

Hamil confirm that joint shear strength reduces

with increasing hb=hc (personal communication,

1999)).

The strut and tie model shown in Fig. 2 was cali-

brated to predict that joint shear strength varies as

described above by choosing appropriate functions for

the concrete strength f d and strut width wt. Full details

of the model are given elsewhere
5

and only key details

are described here. The strain-softening model of Col-

lins et al.
1

is used to calculate the concrete strength in

the joint. The strain-softened concrete strength is

f � f c

0:8� 170å1

, f 9c (1)

where å1 is the principal tensile strain. Equation (1) is

based on the assumption that the maximum compres-

sive stress is reached at a strain å9c of ÿ0:002. If the

compressive strain in the inclined strut is ÿ0:002 at

failure, a Mohr circle shows that the principal tensile

strain å1 is given by

å1 � åt � (åt � 0:002)cot2 è (2)
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Fig. 3. Influence of aspect ratio on the joint shear strength of beam±column joints

Strut and tie models of external beam±column joints
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where è is the angle between the directions of the

principal compressive stress and the transverse (stirrup)

strain åt. The concrete compressive stress is given by

ó � [2(å2=å9c)ÿ (å2=å9c)2] f (3)

where å2 is the principal compressive strain. Tests
6,7,9±13

show that joint shear strength can be signifi-

cantly increased by the provision of joint stirrups but is

much less dependent on the strain in the main column

and beam reinforcement. This indicates that the con-

crete strength in the strut is principally related to stir-

rup strain and that å1 should be taken as the mean

stirrup strain. This approach is not valid if joint stirrups

are not provided. In the case of joints without stirrups,

åt is assumed to be 0´003 at failure (corresponding to a

typical yield strain of high-yield reinforcement) and

equation (1) is modified as follows to make the pre-

dicted joint shear strength proportional to
p

f 9c as ob-

served:

f � 5:92 f 9c
0:5

0:8� 170å1

, f 9c (4)

The forces acting at the joint boundaries are shown

in Fig. 2. The centre line of the strut is defined by the

intersection of the lines of action of the horizontal and

vertical joint shear forces at each node (see Fig. 2).

The node dimensions are defined in terms of the widths

of rectangular concrete stress blocks in the upper and

lower columns, which in turn are related to the column

bar forces. The width of the strut at the top node is

taken as

wt � 2(x t ÿ et)sin è (5)

where x t is the width of the concrete stress block in the

column at the top node and et is the eccentricity of the

resultant vertical joint shear force Fv (see Fig. 2). Both

x t and et depend on the column bar forces and can be

established from equilibrium. A similar definition of

strut width is adopted for the bottom node.

It is assumed, on the basis of crack patterns at fail-

ure,
5,6

that joint shear failure originates near the top

node. Therefore, the joint shear strength is taken as

Vj � bewt f d cos è (6)

where fd is the concrete strength in the strut and the

effective joint width be is the lesser of 0:5(bb � bc) and

bb � 0:5hc if bb , bc, and the lesser of bc � 0:5hc and

bb if bb . bc.

The following procedure is used to determine the

failure load.

(a) Assume the column load to be zero.

(b) Calculate the forces in the concrete and reinfor-

cement at the joint boundaries assuming plane

sections remain plane (the rectangular±parabolic

stress block of Eurocode 2
18

is used with a maxi-

mum stress of 0:85 f 9c(1ÿ f 9c=250)).

(c) Multiply the tensile force Tsi in the inner column

bar by K (. 1) to account for redistribution.

Make no adjustments to the forces in the other

column bars or beam reinforcement. (The con-

crete stress block is modified to maintain equili-

brium when the column bar forces are adjusted.)

(d ) Establish the position of the centre line of the

strut at the top and bottom nodes, the width of

the stress blocks in the column, the strut width

and, hence, the failure load.

The strut width was found by calibrating the model

for the beam±column joint specimens of Ortiz
6

without

stirrups (see Table 1) by adjusting K in step (c). In-

creasing K increases the predicted failure load since it

increases the strut width at the top node (see equation

(6)) owing to the increase in width of the stress block

in the upper column. The resulting strut width is

w � 0:4hc=sinè (7)

where the function hc=sinè was chosen to make the

predicted joint shear strength reduce with joint aspect

ratio as observed. The strut width needs to be increased

above 0:4hc=sinè to maintain a constant joint shear

strength at column loads greater than zero. The pro-

posed solution procedure avoids this problem by as-

suming that there is no load in the upper column. This

is justified by the experimental observation that joint

shear strength is sensibly independent of column load

unless a hinge forms in the upper column. The analysis

needs to be modified if the inner column bars yield in

stage (c) when K is increased to increase the strut

width to 0:4hc=sin è. In this case, the column load is

taken as the minimum of the actual column load and

that at which the column bars yield when the strut

width equals 0:4hc=sin è. In the solution procedure,

only the tensile force in the inner column bar is ad-

justed. In practice, the forces in all the column bars are

more tensile than is predicted when assuming plane

sections remain plane.

The sensitivity of the predicted failure load to varia-

tions in the column bar forces for a strut width of

0:4hc=sin è was investigated
5

and found to be small.

This is demonstrated in Fig. 3, which shows the influ-

ence on the predicted failure load of adjusting the

forces in the column bars (from forces calculated as-

suming plane sections remain plane) as follows.

(a) Method 1. Take strut width as 0:4hc=sin è with

no adjustment to column bar forces.

(b) Method 2. Increase the tensile force in the inner

column bars to make the strut width 0:4hc=sin è
at the top node.

(c) Method 3. Increase the tensile force in the inner

and outer column bars to make the strut width

0:4hc=sin è at the top and bottom nodes.

Method 2 was adopted because (a) it is simple and (b)

it takes into account the observed tensile shift in the

Vollum and Newman
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Table 1. Summary of data for beam±column joints with L bars (see Fig. 1 for notation)

Test Test number Hc: mm L: mm hc: mm dc: mm bc: mm hb: mm db: mm bb: mm rb f 9c:

Mpa

fyb:

Mpa

Asje fy=be hc f 0:5
c :

Mpa0:5

N : kN P: kN P=Ptest

strut and

tie

P=Ptest

Vollum

simple
8

Ortiz
6

BCJ1 2000 1050 300 267 200 400 367 200 0´011 34 720 0 0 118 1´00 0´95

BCJ2 2000 1100 300 267 200 400 367 200 0´011 38 720 0´16 0 125 0´96 0´91

BCJ3 2000 1100 300 267 200 400 367 200 0´011 33 720 0 0 118 0´94 0´89

BCJ4 2000 1100 300 267 200 400 367 200 0´011 34 720 0´33 0 130 1´00 0´95

BCJ5 2000 1100 300 267 200 400 367 200 0´011 38 720 0 300 115 1´03 0´99

BCJ6 2000 1100 300 267 200 400 367 200 0´011 35 720 0 300 115 0´98 0´95

BCJ7 2000 1100 300 267 200 400 367 200 0´011 35 720 0´74 300 170 1´00 1´00

Kordina
13

RE2 3000 1000 200 167 200 400 365 200 0´009 25 420 0 240 67 0´72 0´68

RE3 3000 1000 200 167 200 300 265 200 0´018 40 420 0´26 400 80 0´84 0´72

RE4 3000 1000 200 167 200 300 265 200 0´012 32 420 0´19 51 51 0´88 0´90

RE6 3000 1000 200 167 200 300 265 200 0´012 32 463 0´38 213 66 0´91 0´84

RE7 3000 975 250 217 230 350 315 230 0´013 26 448 0´43 650 117 0´91 0´83

Taylor
11

P1/41/24 1290 470 140 110 140 200 170 100 0´024 33 500 0´30 240 35 1´05 0´86

P2/41/24 1290 470 140 110 140 200 170 100 0´024 29 500 0´33 240 35 0´99 0´80

P2/41/24A 1290 470 140 110 140 200 170 100 0´024 47 500 0´26 240 47 0´98 0´73

A3/41/24 1290 470 140 110 140 200 170 100 0´024 27 500 0´34 240 35 0´95 0´78

D3/41/24 1290 470 140 110 140 200 170 100 0´024 53 500 0´24 60 50 0´96 0´73

B3/41/24 1290 470 140 110 140 200 170 100 0´024 22 500 0´75 240 30 1´04 1´04

Scott
7

C1AL 1700 750 150 117 150 210 179 110 0´011 33 540 0´23 50 22 1´05 1´01

C4 1700 750 150 117 150 210 177 110 0´021 41 540 0´20 275 30 0´98 0´78

C4A 1700 750 150 117 150 210 177 110 0´021 44 540 0´20 275 32 0´96 0´76

C4AL 1700 750 150 117 150 210 177 110 0´021 36 540 0´22 50 28 0´88 0´77

C7 1700 750 150 117 150 300 267 110 0´014 35 540 0´22 275 32 1´00 0´85

Scott and Hamil
12

C4ALN0 1700 750 150 117 150 210 177 110 0´021 42 522 0 50 27 0´89 0´89

C4ALN1 1700 750 150 117 150 210 177 110 0´021 46 522 0´20 50 34 0´84 0´73

C4ALN3 1700 750 150 117 150 210 177 110 0´021 42 522 0´43 50 35 0´99 0´83

C4ALN5 1700 750 150 117 150 210 177 110 0´021 50 522 0´63 50 40 0´99 0´99

C4ALH0 1700 750 150 117 150 210 177 110 0´021 104 522 0 100 43 0´89 0´95

Wilson
14

J1 3000 850 300 269 154 300 257 154 0´017 32 520 0 450 76 1´01 1´03

Parker and Bullman
15

6a 2000 850 250 300 300 300 263 1200 0´009 44 535 0 600 253 1´05 1´03

(slab edge-column) 6b 2000 850 250 300 300 275 238 1200 0´010 45 535 0 300 242 0´98 0´98

6c 2000 850 250 300 300 250 213 1200 0´012 46 535 0 0 193 0´99 0´99

6d 2000 850 250 300 300 225 188 1200 0´013 40 535 0 600 216 0´85 0´82

6e 2000 850 250 300 300 200 163 1200 0´015 44 535 0 300 182 0´90 0´86

6f 2000 850 250 300 300 175 138 1200 0´018 42 535 0 0 150 0´87 0´82

Mean ì 0´95 0´87

Standard deviation ó 0´07 0´10

ó=ì 0´08 0´12
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force in the inner column reinforcement, which can

lead to premature hinging of the upper column.

Comparison with other test results

The model has been used to predict the joint shear

strength of specimens without joint stirrups tested by

Scott and Hamil,
12

Kordina,
13

Wilson
14

and Parker and

Bullman
15

(slab edge±column specimens). Data from

slab edge±column tests by Parker and Bullman
15

(see

Table 1) and others
16±17

(see Vollum and Newman
8

for

details) are included because data are not available for

beam±column joints with hb=hc below 1. The slab

edge±column tests give lower bounds to the joint shear

strength because (a) Parker and Bullman's tests were

stopped before failure and (b) in the other tests, failure

was attributed to moment transfer or punching shear.

Details of the specimens and the results of the analysis

are given in Table 1. Fig. 3 compares the predicted

influence of joint aspect ratio hb=hc on the joint shear

strength of a specimen similar to Ortiz's specimen

BCJ6 with test data. The joint aspect ratio was varied

between 0´6 and 2 in the analysis by adjusting the

column depth while maintaining the area of longitudi-

nal reinforcement in the column at 3% of its cross-

sectional area. Fig. 3 shows that (a) the model gives

good estimates of joint shear strength and (b) the influ-

ence of joint aspect ratio on joint shear strength is

predicted safely.

Strut and tie model for beam±column

joints with stirrups

The first author has carried out an extensive

survey
5,8

of test data
6,7,9±13

to determine the influence

of stirrups on joint shear strength. Joint stirrups were

found to be effective if placed between the underside of

the main reinforcement and the top of the compressive

stress block in the beam (assumed to be of depth

0:375hb). The results are given in Fig. 4, which shows

that joint shear strength is increased by joint stirrups

but the increase in strength can be less than the yield

capacity of the effective joint stirrups, as is commonly

assumed.
6,9,10

The evidence is even more convincing

for beam±column joints with U bars in the beam.
8

Fig. 4 indicates that the joint shear strength is given by

the greater of Vc and

Vj � (Vc ÿ ábe hc

p
f 9c)� Asj f y (8)

where Vc is the joint shear strength without stirrups,

Asj is the effective area of joint stirrups, f y is the yield

strength of the stirrups and á is an efficiency factor

which depends on factors including the column load,

the concrete strength, Asj fy, the position of the stirrups

and the joint aspect ratio. Analysis of test data suggests

that a reasonable estimate for á is 0´2 rather than 0 as

is commonly assumed
6,9,10

(see Fig. 4).

The first author
5,8,19

has previously demonstrated the

shortcomings of existing methods for determining the

design joint stirrup force and proposed
8,19

a novel strut

and tie model for external beam±column joints with

stirrups which incorporates a stiffness analysis. This

paper extends the brief outline of the method given

previously.
19

The model is an improvement on existing

methods since it automatically takes into account the

variation in the efficiency factor á (see equation (8))

by using a stiffness analysis to find the shear force

resisted by the direct strut. Joint failure is assumed to

occur because of either yielding of stirrups or concrete

failure prior to yielding of stirrups. The layout of the

model is shown in Figs 5 and 6. The centre line of the

struts is defined at each node by the intersection of

the lines of action of the appropriate components of the

joint shear force (see Fig. 5). The horizontal eccentri-

city of the indirect struts at the nodes is dependent on

the stress distribution assumed in the columns. For

example, the horizontal eccentricity eib of the indirect

strut at the bottom node (see Fig. 5) is given by

eib � xb ÿ 0:5xib (9)

where Fvib is the vertical component of the force in the

lower indirect strut, xb is the width of the stress block

in the lower column (see Fig. 5) and
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xib � Fvib=beó
� (10)

where ó� depends on the stress distribution assumed in

the column; ó� is taken as

ó� � 0:5(Fv ÿ Fvit)=be(xb ÿ e9b) (11)

where Fvit is the vertical component of the force in the

upper indirect strut and e9b is the eccentricity of

(Fv ÿ Fvit) (see Fig. 6) at the bottom node. Equation

(11) is based on the assumption that the resultant force

in the column reinforcement is shared between the

direct and indirect struts. The alternative assumption of

using a stepped stress block is considered unnecessarily

complex. A similar approach is used to derive the

eccentricity of the upper indirect strut eit. The main

difference is that the stress in each strut is assumed to

be equal at the top node. Therefore, the node bound-

aries are orthogonal to the centre lines of the struts.

The member forces (in terms of the stirrup force x)

and lengths adopted in the stiffness analysis are given

in Table 2, which should be read in conjunction with

Fig. 6. The model is calibrated by assuming effective

strut widths at the nodes. The effective strut widths

depend on the assumed concrete strength and are as-

sumed to vary linearly between the ends of the struts.

In reality, the concrete strength varies along each strut

owing to variations in the multiaxial stress state but, to

simplify matters, a notional concrete strength is

adopted for each strut (i.e. f d, f it, f ib) on the basis of

the inclination of its centre line and the mean stirrup

strain. As previously discussed, the strut widths depend

on the widths of the stress blocks at the joint bound-

aries (see Fig. 5), which in turn depend on the column

eit
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Tbeam
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Fig. 5. Strut and tie model for beam±column joint with stirrups
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bar forces, which are indeterminate. To simplify mat-

ters, the column bar forces are not adjusted to match

the widths of the concrete stress blocks at the joint

boundaries to the assumed effective strut widths, as

shown in Fig. 5. This has been justified by Vollum,
5

who showed that the predicted joint strength is rela-

tively insensitive to adjustments to the column bar

forces. The strain in the direct and indirect struts is

assumed to be ÿ0:002 at the top node at joint failure,

on the basis that the concrete fails. This is achieved by

selected effective strut widths (at the top node) to make

the stresses in both struts equal the notional concrete

strength in the direct strut f d. The strain in the indirect

struts is taken as ÿ0:002 if the stress is greater than its

notional concrete strength, f it or f ib as appropriate. The

effective width of the direct strut at the bottom node is

taken as

w�db � Chc=sin è (12)

where the coefficient C is derived from analysis of test

data. The effective width of the indirect strut (normal

to its axis) at the bottom node w�ib is taken as the

greater of wib and

w�ib � wib(w�db=wdb) (13)

where wdb and wib are related to the widths of the

concrete stress blocks in the beam and the lower col-

umn as shown in Fig. 5. The effective width of

the indirect struts at the intersection with the column

bars is taken as the lesser of 2Y cosö and

2(dbÿXbeam ÿ Y )cosö.

The stirrup force is calculated by virtual work in an

analysis that considers deformations within the joint.

The extension of each strut is found by dividing it into

ten elements of equal length and summing the exten-

sions of each element. The extensions are calculated in

terms of the strain at the centre of each element, which

is derived from the appropriate stress using equation

(3). The force in the direct strut is limited to

D � 1:01bew�db f d (14)

It is assumed that increments in shear force are

resisted by the indirect struts if the force in the direct

strut equals D. Shear force is transferred to the indirect

struts by increasing the strain in the direct strut by

increasing n in equation (15) if ó i= f d . 1:

ådi � ÿ0:002(ó i= f d)n (15)

where n > 1, ådi is the strain in element i of the direct

strut and ó i is the stress in element i of the direct strut.

Theoretically, the maximum possible joint shear

strength corresponds to the development of a uniform

inclined stress field and (assuming the effective depth

for shear is 0:9dc) is given by

Vjmax � 0:9bedc fd sin è cos è (16)

Analysis
5,8

of test data
6,7,9±13

indicates that equation

(16) progressively overestimates the joint shear strength

as f 9c increases, and that a better estimate of the maxi-

mum possible joint shear strength is given by

Vj , 0:97be hc

p
f 9c[1� 0:555(2ÿ hb=hc)]

, 1:33be hc

p
f 9c (17)

The reduction in maximum joint shear strength with

joint aspect ratio is speculative.

Application of model to test data

The following assumptions are made in the analysis.

(a) Stirrups are considered effective if placed within

the top five-eighths of the beam depth below the

main beam reinforcement.

(b) The stirrup force is assumed to act at the cen-

troid of the effective stirrups.

(c) T�si is taken as 1:15Tsi unless flexural failure of

the upper column is imminent. In this case, the

multiplication factor K is taken as the greater of

1´15 and the factor required to reduce the stress

at the top node to f d.

(d ) The failure load is calculated at either Ncrit

(where Ncrit is the column load at which the

predicted joint shear strength is a maximum) or

the actual column load if this is less than Ncrit.

(e) Failure is assumed to occur owing to either yield-

ing of the stirrups or concrete failure prior to

yielding of stirrups. If the stirrups yield, the fail-

ure load is maximized by varying the strain in

the stirrups. Equation (17) is used to calculate

the maximum possible joint shear strength. If the

`stirrup index' Asj f y=(be hc

p
f 9c) is less than

S Imin (where S Imin is typically less than 0´2), the

resulting failure load is less than that predicted

neglecting the joint stirrups (using the model for

joints without stirrups). In this case, the joint

strength is not increased by the stirrups and the

failure load is taken as that without stirrups.

S Imin corresponds to á in equation (8) and de-

pends on factors including joint aspect ratio, con-

crete strength and column load.

The model was calibrated for Ortiz's specimens, with

C � 0:349 in equation (12). Various parametric studies

Table 2. Member lengths and forces (see Fig. 6 for notation)

Member Length Resultant force Force due to unit

biaction at ends

of member 4

1 dbeam ÿ Y Tse 0

2 Y Tse ÿ X tanöb ÿtanöb

3 (Zbeami ÿ Y )=sinöb ÿX=cosöb ÿ1=cosöb

4 hc ÿ 2d9 X 1

5 Y=sinöt ÿX=cosöt ÿ1=cosöt

6 Zbeamd=sinè (ÿVj � X )=cosè 1=cos è
7 Y T�si 0

8 Zbeamd ÿ Y T�si ÿ X tanöt ÿtanöt
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were then carried out. The predicted joint shear

strength was found to increase as the column load was

increased from zero to a critical value Ncrit. The in-

crease in joint strength ranges from less than 3% for

hb=hc � 1 to about 15% for hb=hc � 2. The predicted

increase in joint strength is small enough to be consis-

tent with the earlier conclusion that joint strength is

reasonably independent of column load unless a hinge

forms in the upper column. The predicted joint strength

reduces if N is increased above Ncrit because the width

of the direct strut is limited by equation (12). In prac-

tice, the test data provide no evidence that joint

strength reduces as the column load is increased. This

implies that the width of the direct strut increases as N

is increased above Ncrit. The solution procedure avoids

this difficulty by calculating the failure load at Ncrit if

N is greater.

The model has been used to predict the failure load

of specimens, including those in Table 1, with

C � 0:349. Results are given in Table 1, the ratio of

the predicted and actual failure loads Ppred=Ptest is

plotted against the stirrup index Asj f y=(be hc

p
f 9c) in

Fig. 7 and statistics of the analysis are given in Table 1.

Comparison with other design methods

Previously, the authors have proposed a simple meth-

od for the design of beam±column joints based on

equation (8).
8

Elsewhere, it has been shown
5,8

that the

authors' simple design method
8

gives more realistic

estimates of joint strength than other methods,
6,9,10,20

including codes.
21,22

The authors8 take joint shear

strength as the lesser of Vc and Vj given by equation

(8), where á is conservatively taken as 0´2 and Vc is

the joint shear strength without stirrups, which is taken

as

Vc � 0:642â[1� 0:555(2ÿ hb=hc)]be hc

p
f c (18)

where â � 1:0 for connections with L bars and 0´9 for

connections with U bars.

Equation (18) was calibrated using joint shear forces

calculated assuming that the shear force in the beam is

transferred directly into the centroid of the outer layer

of column bars (see Fig. 2). The rectangular±parabolic

stress block
19

of Eurocode 2 was used in the section

analysis, with a maximum possible concrete stress of

f 9c. The maximum joint shear strength was limited by

equation (17). Failure loads have been calculated for

the specimens in Table 1 using the authors'
5,8

simple

design method. Results are given in Table 1 and the

ratio Ppred=Ptest is plotted against the stirrup index

Asj f y=(be hc

p
f 9c) in Fig. 8. Comparison of Figs 7 and 8

shows that the strut and tie model is more accurate than

the simplified method owing to reduced scatter. This is

confirmed by the statistics in Table 1. The reason for

the improved accuracy of the strut and tie model is that

it takes into account the variation in á (see equation

(7)) with the joint aspect ratio, the column axial load,

Asj f y, the stirrup position and the concrete strength.

Conclusions

Strut and tie modelling is widely advocated for the

design of non-uniform regions such as short-span

beams and beam-column joints. The analysis and de-

sign of beam±column joints with strut and tie models

are complex owing to difficulties in determining node

dimensions and the proportion of joint shear force

resisted by the stirrups. In the current work, strut

dimensions have been established empirically from a

back analysis of selected test results and the validity of

the resulting model has been demonstrated by analysing

other test data. Models have been developed for joints

with and without stirrups. Test data have been used to

show that it is unsafe to assume that the increase in

joint strength provided by stirrup equals their yield

capacity. Therefore, a stiffness-based approach is re-

quired to determine the shear force resisted by the

direct strut if joint stirrups are provided. The resulting

strut and tie model predicts joint shear strength more

1.2

1.0

0.8

0.6

0.4

0.2

0

P
pr

ed
/P

te
st

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Stirrup index Asje fy/behcfc0.5: MPa0.5

Ortiz

Kordina

Taylor

Scott

Scott and Hamil

Fig. 7. Influence of stirrup index on Ppred=Ptest for strut and tie model

Strut and tie models of external beam±column joints

Magazine of Concrete Research, 1999, 51, No. 6 423



reliably than existing non-finite-element methods (of

which the authors' simplified method
8

is considered the

most realistic) and some finite-element techniques.
5

The strut and tie model is necessarily complex but can

be incorporated into spreadsheet-based design techni-

ques. In the light of this work, the authors believe that

the behaviour of beam±column joints is too complex to

be adequately represented by simple strut and tie mod-

els based on plasticity theory. Furthermore, the authors

believe that this conclusion can be extended to other

structures such as deep beams, corbels and shear walls

when shear transfer is by way of a direct strut and

indirect struts that are equilibrated by stirrups. Assum-

ing the stirrups yield, the main difficulty is to estimate

the contribution of the direct strut since it is statically

indeterminate. It is clearly simplest (and permissable in

terms of the lower-bound theorem of plasticity), but in

general unrealistic, to neglect the contribution of either

the direct strut or the stirrups. Other approaches to this

problem, and their shortcomings, have been discussed

by the first author.
19

The difficulties faced in determin-

ing the contribution of the direct strut are of signifi-

cance since strut and tie modelling is claimed
1±4

to

provide a simple, logical and realistic approach to the

design of complex structures. Despite this, the authors

believe that classical strut and tie modelling based on

plasticity theory
3

is a useful design tool. If a simple

design method is required for external beam±column

joints, the authors recommend their simplified

method.
8
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