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Abstract 

The interaction between a human’s genes and their environment is dynamic, producing phenotypes 

that are subject to variance among individuals and across time.  Metabolic interpretation of 

phenotypes, including the elucidation of underlying biochemical causes and effects for physiological or 

pathological processes, allows for the potential discovery of biomarkers and diagnostics which are 

important in understanding human health and disease.  The study of large cohorts has been pursued in 

hopes of gaining sufficient statistical power to observe subtle biochemical processes relevant to human 

phenotypes.  In order to minimise the effects of analytical variance in metabolic profiling and maximise 

extractable information, it is necessary to develop a refined analytical approach to large scale metabolic 

profiling that allows for efficient and high quality collection of data, facilitating analysis on a scale 

appropriate for molecular epidemiology applications.  The analytical methods used for the 

multidimensional separation and detection of metabolic content from complex biofluids must be made 

fit for this purpose, deriving data with unprecedented reproducibility for direct comparison of 

metabolic profiles across thousands of individuals.  Furthermore, computational methods must be 

established for collating this data into a form that is suitable for analysis and interpretation without 

compromising the quality achieved in the raw data.  These developments together constitute a pipeline 

for large scale analysis, the components of which are explored and refined herein with a common 

thread of improving laboratory efficiency and measurement precision.  Complimentary 

chromatographic methods are developed and implemented in the separation of human urine samples, 

and further mated to separation and detection by mass spectrometry to provide information rich 

metabolic maps.  This system is optimised to derive precision from sustained analysis, with emphasis 

on minimisation of sample batching thereby allowing the development of metabolite collation tools 

that leverage the chromatographic reproducibility.  Finally, the challenge of metabolite identification in 

molecular profiling is conceptually addressed in a manner that does not preclude the further 

reinvention of the analytical approaches established within this thesis.  In summary, the thesis offers a 

novel and practical analytical pipeline suitable for achieving high quality population phenotyping and 

metabolome wide association studies.         
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General Introduction 

The work in this thesis addresses the optimisation of ultra performance liquid chromatography mass 

spectrometry (UPLC-MS) systems and methods as well as the development of data processing and 

metabolite identificaion workflows required by the scope and scale imposed by recent initiatives in 

screening of large populations.  For a general introduction to liquid chromatography, as an 

underpinning of all chapters contained herein, the reader is directed to the excellent work of Snyder, 

Kirkland, and Dolan: Introduction to Modern Liquid Chromatography, Third Edition (Snyder et al., 

2010).    

This research is dedicated to facilitating the molecular profiling of human urine samples with the goal 

of developing a comprehensive image of a wide range of human phenotypes.  The chemical density and 

rich diversity of urine as a key human biofluid provides an analytical and informatics challenge which 

must be met in the context of modern high throughput analysis in order to realize the goal of 

population screening of hundreds and thousands of individuals.  Such a project requires a dedicated 

and fit-for-purpose pipeline for sample analysis and data processing.  To construct this pipeline, high 

performing analytical methods are advantageously deployed across a large instrument resource to 

support the volume of analysis demanded by molecular epidemiology, to harness the power of large 

population studies, and to support metabolome-wide association studies.  The efficient operation of 

such a platform is critical to maximise both the volume and quality of output.  For this reason, much of 

the focus herein is on constraint-guided development, whereby the laboratory working environment is 

considered alongside sample integrity and analytical performance in order to produce a holistic 

approach to population phenotyping.  The datasets generated are consequentially characterised by high 

precision despite the large-scale of application, yet remain simple to execute, rapid to collect, and 

efficient.   

Furthermore, the development of data processing strategies that work in conjunction with high 

throughput analysis play a large part in supporting the overall efficiency achieved within the laboratory.  

The scale of the data produced by high resolution profiling can be staggering, often precluding rapid 

assessment of a large dataset post-acquisition.  However, the development of real time pre-processing 
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of complex profiling data described herein lays a foundation for real-time multivariate analysis, which 

could in turn be utilised in monitoring of data quality, control of data acquisition, and in targeting 

signals of potential interest for advanced analysis as they appear.  The desire for these abilities and 

improvements to molecular profiling warrants steadfast effort at the development of underlying and 

enabling methodology.    

Objectives 

The overall aim of the work comprising this thesis is to deliver an advanced analytical UPLC-MS and 

informatics platform capable of supporting the phenotypic characterisation of large populations and 

sample banks in order to extract metabolically relevant information relating to disease risk and 

prevalence. 

The specific objectives of this project are: 

• To develop advanced methods for molecular profiling of human urine by UPLC-MS which are 

fit for the purpose of application to large population cohorts 

• To characterise the analytical variance and molecular coverage of those methods 

• To demonstrate the performance and applicability of those methods in the context of human 

phenotype analysis. 

• To develop and implement a method of feature grouping across samples that accommodates 

the observed analytical variance in large sample set profiling, and is suitable for real-time 

application. 

• To demonstrate an approach to confident metabolite identification by multiplexing reference 

materials in complex mixtures that are deconvolved on a per-experiment basis to form de novo 

databases.    
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Thesis Structure 
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•Introduction to metabonomics, applications in population phenotyping, and 
urinalysis.

Chapter 2

•Analytical stratagies including liquid chromatography mated to mass 
spectrometry (LC-MS) and LC-MS data processing.
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•Development and application of LC-MS methods for large scale phenotyping
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MS system optomisation to enable long term continuous analysis, and 
optimisation of sample batch size for maximal efficiency. 

Chapter 4

•Development and implementation of a LC-MS feature grouping method 
suitable for application to large scale phenotyping in real time.

Chapter 5

•Development and implementation of in solution databases to facilitate 
metabolite identification in molecular profiling studies.

Chapter 6

•Final discussion, conclusions, and future work
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Chapter 1: Introduction 

1.1 Metabonomics and applications in population phenotyping  

The field of measuring small molecules in biofluids and tissues with respect to disease or treatment 

states, commonly known as metabonomics, is a modern approach to biochemical assessment of human 

health and metabolic status.  Definitively summarised as “the quantitative measurement of the dynamic 

multiparametric metabolic response of living systems to pathophysiological stimuli or genetic 

modification” (Nicholson et al., 1999), metabonomics is a concept underpinned by the analytical 

technology and data processing methods required to both capture and interpret detailed information 

across complex systems (Lindon et al., 2004, Patti et al., 2012b, Kaddurah-Daouk et al., 2008).  The 

analytical challenge of the metabonomic approach is to produce measurements with both appropriately 

broad coverage and sufficient resolution for differentiating hundreds or thousands of individual 

metabolites.  Biofluids such as urine, blood, and faecal water are rich with chemical imprint of 

metabolism, as are solid tissues and tissue extracts (Coen et al., 2008, Beckonert et al., 2010, Want et al., 

2010, Monleon et al., 2009, Waldram et al., 2009, Keun and Athersuch, 2011).  The challenges of 

deconvolving the chemical complexity of these common matrices and biologically meaningful 

interpretation of the resulting data continue to drive the development of advanced instrumentation, 

analytical methodologies, and automated data processing workflows.         

Metabolite profiling analyses, unlike conventional clinical assays (e.g. for blood creatinine or urinary 

glucose), are not intended to be selective and are therefore applicable in the simultaneous measurement 

of both expected and unexpected metabolites that are not precluded by the choice of instrumentation 

or analytical method utilized (Lindon and Nicholson, 2008).  This emphasis on inclusion makes 

profiling approaches essential in the pursuit of achieving comprehensive analytical coverage of the 

human metabolic phenome, encompassing supraorganismal metabolites from human and associated 

microbial action on environmental substrates, xenobiotics, and environmental contaminants.  

Metabolic profiles are therefore a key reflection of human individuality (Assfalg et al., 2008, Bernini et 

al., 2009), and have been shown to be highly variable as a consequence of the complex interactions of a 
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person’s genetically coded metabolic machinery with their environment (Krug et al., 2012, Dallmann et 

al., 2012).  However, the resulting phenotypes may appear more homogeneous among groups of people 

with similar genetics and/or environment than among those with differing background or exposures 

(Holmes et al., 2008, Yousri et al., 2014).   

In recent years, the search for phenotypic relationships among groups of individuals has taken the form 

of molecular epidemiology, whereby subtle metabolic effects may be observed thanks to the statistical 

power afforded by population-level sample collection and analysis (Menni et al., 2013, Nicholson et al., 

2011).  When paired with broad metabolite profiling analytical chemistry, these large-scale analyses are 

able to generate unprecedented power in metabonomic comparisons and ultimately phenotype 

elucidation (Tzoulaki et al., 2014).  The demand for metabolic profiling of biofluids from large subject 

cohorts is therefore increasing as epidemiologists turn to metabonomics as a maturing science capable 

of providing broad phenotypic insight with metabolome-wide association studies (MWAS) providing a 

channel for placing the analogous genome-wide association studies (GWAS) in context.   

To meet this need, there exists a more fundamental requirement for high quality analytical data 

(Bictash et al., 2010).  Nuclear magnetic resonance (NMR) spectroscopy has long been a favoured 

analytical platform for the generation of metabolic profiles with high precision, facilitating 

comparisons among individuals or groups of individuals within populations (Larive et al., 2014, Dona 

et al., 2014, Nicholson et al., 1984).  However the technique is limited in terms of its ability to discern 

individual molecules from complex mixtures with high sensitivity and chemical specificity, driving the 

development and application of complementary instrument platforms.  Liquid chromatography mated 

to mass spectrometry (LC-MS) has since emerged as a viable alternative approach for biofluid analysis, 

boasting high resolution multi-dimensional separations and sensitive detection across a broad range of 

chemical species (Want et al., 2010, Dunn et al., 2011).  Yet, the LC-MS platform is not renowned for 

absolute precision, owing in part to the complexity of the hyphenated system involving the distinct 

processes of high pressure liquid separation followed by analyte desorption and finally mass 

spectrometric manipulation and detection.  High coefficients of variation from LC-MS measurements 

have been reported when attempting analysis of samples from cohorts over 1000 patients (Swann et al., 
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2013), indicating the difficulty in achieving stable metabolic signatures in large-scale analysis with this 

otherwise powerful platform.  Yet, the allure of epidemiological-scale datasets that are high quality and  

comprehensive continues to drive the development of LC-MS approaches for large-scale biofluid 

characterisation (Zelena et al., 2009, Broeckling et al., 2013) as well as the development of informatics 

approaches required to combat seemingly inevitable analytical imprecision (e.g. sample batch effects) 

(Wang et al., 2013, Vaughan et al., 2012, Nezami Ranjbar et al., 2013).  This is the state-of-the-art which 

must be advanced for the successful realisation of population phenotyping. 

1.2 Urinalaysis 

Within this thesis, urine is used exclusively as a representative biofluid for the design and testing of 

analytical and data processing methods.  Its selection is both practical and strategic, as urine is rich with 

information related to human phenotypes as well as being non-invasively collected and therefore 

commonly available in molecular epidemiology studies.  Urinalaysis for the assessment of health and 

detection of disease is a long established if not ancient practice (Bolodeoku and Donaldson, 1996, 

Ahmed, 2002) with the diagnosis of diabetes cited as the first of all laboratory tests (Haber, 1988).  Sir 

Archibald Garrod aptly demonstrated the value of metabolic information captured in the urine in his 

landmark descriptions of alkaptonuria (Garrod, 1902) and later of cystinuria and pentosuria (Garrod, 

1909, Garrod, 1923), founding the idea of chemical individuality and historically linking metabolic 

disorders to heredity.  While basic urinalysis continues to play an important role in clinical diagnosis of 

disease, the application of advanced analytical technologies capable of profile analysis have breathed 

new life into this otherwise established science (Law et al., 2014, Morell-Garcia et al., 2014, Ng et al., 

2012).  Application of these technologies to larger sample sets can facilitate the exploration of a wide 

variety of human phenotypes without necessitating a priori hypothesis, although prior knowledge can 

be used to optimise the analysis.  These approaches are being successfully applied to develop a deeper 

metabolic, diagnostic, and prognostic understanding of many diseases (Zhang et al., 2013, Maitre et al., 

2014, Luan et al., 2014, Austdal et al., 2014).  

Yet, global urinalysis by modern means remains an analytical challenge.  Human blood is kept 

homeostatic at the expense of the urine, which exists to accept and rid the body of the undesirable 



 1.2 Urinalaysis  
 

 28 

products of metabolic flux.  The endogenous contents of urine are therefore subject to large changes in 

concentration, as well as the variable presence or absence of exogenous substances through the 

interaction of the subject with his or her environment.  The result is an ever changing chemical matrix 

which we are virtually assured an incomplete knowledge of, despite centuries of characterisation as well 

as recent intensive efforts (Bouatra et al., 2013).  Broad scope molecular profiling methods are therefore 

critical to urinary analysis in population scale research where a large number of phenotypes are 

represented but may be partly obscured by a high degree of human individuality resulting from varied 

genetic and environmental exposure.  The methods applied must be highly precise to avoid 

confounding the metabolic patterns associated with these phenotypes even further due to analytical 

variance, and to allow direct comparison of data obtained from hundreds or thousands of individuals.  

To achieve this, the challenges associated with sensitive and specific detection of the components of 

such a complex mixture, spanning multiple orders of magnitude in concentration and potentially laced 

with unknown substances, must be addressed.  Furthermore, successful molecular profiling of human 

urine therefore requires multiple coordinated analytical methods which are high performing in their 

own right, as the chemical diversity of urine prohibits any one method from successfully achieving 

comprehensive metabolite coverage.  The collation of such methods, together with fit-for-purpose data 

processing tools, is pursued here for the efficient analysis of urine to facilitate deeper understanding of 

human phenotypes.       
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Chapter 2: Analytical strategies  

2.1 Introduction 

Any instrument capable of measuring fundamental physical and/or chemical properties of small 

molecules is eligible for use in urinalysis.   As chemical mixtures grow in complexity, the specificity 

required of the instrument increases commensurately.  Sensitivity is a fundamental criterion as many 

important small molecules such as hormones are present in biofluids in very small quantities.  

Furthermore, a large dynamic range is desired for accurate quantification of metabolites across a wide 

physiological range (Lentner, 1981).  Few analytical detection platforms perform with sufficient 

specificity, sensitivity, and range to be useful in metabonomic studies.  Of these qualifying platforms, 

nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) have emerged as the top 

performing candidates (Lindon and Nicholson, 2008) as evidenced by their ubiquitous application in 

the field (Coen et al., 2008, Nevedomskaya et al., 2011, Lenz and Wilson, 2007, Skogerson et al., 2009, 

Athersuch et al., 2010).  Although no single technique is without limitation, the molecular coverage and 

specificity, as well as excellent dynamic range in measurement, propels these tools forward in 

metabonomic application on the basis that they are unmatched in their ability to deconvolve hundreds 

or thousands of signals from complex biological matrices (Fernie et al., 2004, Lu et al., 2010, Buscher et 

al., 2009).  Mass spectrometry, when coupled to a liquid chromatographic system, is particularly apt in 

the deconvolution and measurement of complex molecular mixtures (Buscher et al., 2009), and is 

increasingly relied upon in metabonomic research and population screening (Swann et al., 2013, Maitre 

et al., 2014, Wang et al., 2011).  Development and application of the combined (or “hyphenated”) LC-

MS system is therefore the central focus of the work presented herein.  However, in order to provide an 

appropriate foundation and context for the development of the system as a whole as well as the 

methods for extracting the data produced, an introduction of each component technique is warranted. 
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2.2 Fundamental principles of column-based liquid chromatography 

Liquid chromatography, while unable to directly detect the presence and quantity of metabolites, is an 

important tool for the separation of complex molecular mixtures over time.  This distribution of 

metabolite content can make downstream detection and measurement more sensitive, more specific, 

and more accurate, thereby contributing to the fundamental tenets of metabonomic measurement.  

The chromatographic environment generally consists of two distinct but contacting phases; one of 

which is immobile (the stationary phase) and the other being mobile (mobile phase).  Chemical solutes 

introduced to this environment will have a differential affinity for each phase depending on the 

chemical composition of the system.  Some analytes may preferentially interact with the stationary 

phase and therefore be immobilised or retained, while others may preferentially interact with the 

mobile phase and be carried through the system, or eluted.  For any given analyte species, the ratio of its 

distribution between stationary and mobile phases is defined as its retention factor.   

Column chromatography is a common format for the application of this principle, whereby an empty 

cylinder is filled with particles (typically composed of silica or polymer) which act as the stationary 

phase, and a liquid solvent acting as the mobile phase is passed through it.  A liquid sample may be 

directly injected to the pre-column flow of mobile phase creating a band of solutes that is carried 

through the column for separation (Figure 2-1).  Thus, the system is particularly well suited for the 

separation of the non-volatile molecular species that compose the majority of human biofluids.  The 

chemical selectivity of each phase determines the extent and selectivity of the retention and separation 

of molecular species as the individual component species travel through and eventually emerge from 

the column as peaks.  The distribution, width, and shape of these chromatographic peaks are related to 

the performance of the chromatographic separation. 
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Figure 2-1.  A cartoon depiction of chromatography.  Sample is injected into a flow path of mobile 
phase creating a band which is separated into its components according to their differential 
interactions with the column.  The components are eluted as peaks and passed onward for 
detection. 

Chromatographic separation performance is largely dependent on the efficiency achieved by the 

chromatographic column used.  Column efficiency is characterised by the presence of theoretical plates 

which are a concept originally used to describe stages of contact between the vapour and liquid phases 

in distillation columns.  Theoretical plates were first adapted for use in describing the theory of 

chromatographic separations by Martin and Synge (Martin and Synge, 1941), and characterise a 

column’s efficiency in terms of its plate count (N) whereby greater efficiency separations result from 

higher values of N.  Plate count itself is a function of the plate height (H, also defined at the height 

equivalent to one theoretical plate or HETP) and the column length (L), meaning greater separation 

efficiencies are achieved by columns that are longer (for a given value of H) and/or more plate-dense 

(for a given length).  Defined mathematically, we arrive at equation 2.1.         

 ܰ =  (2.1) ܪܮ
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Plate height is antagonised by the diffusion of solutes in a liquid, and thus broadening of a sample 

band’s constituent analyte peaks reduces the effective separation efficiency.  This blurring of the 

separation otherwise produced limits the quality of results obtained from column chromatography.  

The extent of the overall diffusion is partly dependent on the time allowed for the process to occur, 

whether it precedes the column (extra-column band broadening), comes after the column (extra-

column peak broadening), or occurs while in the column by a process known as longitudinal diffusion.  

In each of these cases, performing faster separations reduces the amount of time available for diffusion, 

producing narrower chromatographic peaks by minimising the processes of longitudinal diffusion and 

peak/band broadening.  One common approach to producing faster separations is increasing the linear 

velocity of the mobile phase (i.e. the speed at which the solvent front travels the length of the packed 

column) by increasing the flow rate.  However, the gains in peak sharpness produced by increasing the 

linear velocity of a separation (thereby limiting longitudinal diffusion) are antagonised by a second type 

of diffusion caused by resistance to mass transfer in both the stationary and mobile phases.  As the 

stationary phase particles used in column chromatography are generally semi- or entirely porous 

(increasing the available surface area for mobile phase and sample contact), analytes may migrate 

through them at different rates.  Molecules of a given species that migrate further into the pores of a 

particle have a slower overall forward progress through the column when compared with molecules 

that do not penetrate the particle pores as deeply, resulting in peak broadening.  Furthermore, analytes 

in the centre of mobile phase streams in and around particles will be carried with higher velocity than 

those closer to the surrounding surfaces.  At faster flowrates, the effects of resistance to mass transfer 

are exacerbated.  Because of this interplay between longitudinal diffusion and mass transfer, a tuneable 

flow rate is required to achieve an optimum of narrow peak shape (and therefore high chromatographic 

resolution) in minimal time.   

Not all diffusion is so largely influenced by mobile phase flow, however.  Eddy diffusion occurs when 

the molecular contents of the sample travel different paths through the particle bed of the stationary 

phase, experiencing varying constriction and thus achieving different relative migration speeds.  This 

type of diffusion can occur with approximate independence from the absolute rate of mobile phase 
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flow, and can therefore be thought of as a characteristic of a given column.  Columns that are well 

packed, utilising smaller and more uniformly sized particles, will suffer less eddy diffusion according to 

the relationship shown in Equation 2.2, where λ is the packing factor (a measure of the flow inequality 

in a packed column, and therefore reflective of the quality of packing) and dp is the particle size 

diameter. 

ܪ  =  ௣ (2.2)݀ߣ2

Unless otherwise specified, all chromatographic separations conducted within this thesis utilise 

columns packed with the smallest commercially available class of stationary phase particles (less than 2 

micrometres in diameter), thereby limiting the contribution of eddy diffusion to band broadening and 

increased values of H.  Additionally, columns with a narrow inner diameter yield less independent 

paths of travel for eluting molecules, further reducing the contribution of eddy diffusion to increased 

H.  Therefore, unless otherwise specified, all chromatographic separations conducted within this thesis 

utilise columns of relatively small (2.1 mm) inner diameter.     

Together, these three means for chromatographic peak dispersion (eddy diffusion = A term; 

longitudinal diffusion = B term; mass transfer = C term) are captured in the well-known equation 

derived from the work of van Deemter (van Deemter et al., 1956) which relates the velocity of mobile 

phase (v) to the achieved chromatographic efficiency (for a given column length) in terms of the 

empirical quantity H where lower values indicate higher resolution separations (Carr and Sun, 1998).   

ܪ  = ܣ + ݒܤ +  (2.3) ݒܥ

Although subsequent derivative works (most notably that of Knox (Bristow and Knox, 1977) which 

makes the A term weakly dependent on mobile phase velocity) further refine the relationships between 

peak dispersion and mobile phase linear velocity, the more simple expression above is sufficiently 
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descriptive for the intended purpose of illustrating the basic relationships among terms.  This 

information is represented visually by the composite curve shown in Figure 2-2.       

 

Figure 2-2.  Chromatographic dispersion illustrated in a van Deemter plot.  A curve of theoretical 
plate height (HETP) values achieved for a continuum of mobile phase velocities (v), constrained 
by the three types of diffusion captured in the van Deemter equation: eddy diffusion (A), 
longitudinal diffusion (B) and resistance to mass transfer (C). 

A range of linear velocities therefore exist whereby the collective effects of peak broadening are 

minimised, achieving optimal efficiency for a given chromatographic system configuration.  This range 

may be extended in the beneficial direction of faster mobile phase velocity (thereby enabling faster 

analyses) by reducing the contribution of the mass transfer term (C), which in turn is related to the size 

of the stationary phase particles.  The use of small particles reduces both the mass transfer term and, as 

previously mentioned, the eddy diffusion term (A) allowing for both wider ranges of optimal mobile 

phase velocity and lower overall values of H.  These combined effects allow high performance 

separations to be conducted in a reduced amount of time thanks to the use of faster mobile phase flow 

rates without sacrificing chromatographic efficiency (Mazzeo et al., 2005).  However, as the particle size 

decreases, and/or as the mobile phase linear velocity increases, the force required to move the mobile 

phase increases.  Together, these phenomena impose a practical limit on the performance achievable by 

a chromatographic system which is dependent on its ability to apply force.   
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In cases where the particle size is relatively large and the rate of solvent flow is not required to be high, 

the force of gravity is sufficient to move the mobile phase vertically through a column (gravity 

chromatography).  However, as the particle size shrinks, and/or as higher linear velocities are desired, 

liquid pumping systems are commonly applied to generate the requisite force.  Ultimately the amount 

of force required to move the mobile phase is dependent on parameters including the desired speed of 

the separation, the particle size of the stationary phase material contained within the column, the 

dimensions of the column, and the viscosity of the mobile phase.  As higher linear velocities and 

therefore greater force (perceived by the pump system as back pressure) are able to produce higher 

performance results characterised by better resolved peaks in shorter periods of time, this approach to 

column chromatography is known as high performance liquid chromatography (HPLC) or less 

frequently as high pressure liquid chromatography, underscoring the interdependency of pressure and 

performance.  A model system is illustrated in Figure 2-3.  The pump systems used in HPLC are 

capable of sustaining constant liquid flow at pressures approaching 6000 psi (approximately 400 times 

the atmospheric pressure at sea level).  Advanced pump systems capable of delivering constant liquid 

flow at pressures 2-3 times greater than the traditional limit of HPLC are generally used in conjunction 

with very small particle sizes (less than 2μm in diameter), generating very high separation efficiencies.  

This approach is therefore known as ultra-performance liquid chromatography (UPLC) (Plumb et al., 

2004).  It is used exclusively as the platform for LC separations throughout this thesis.      

 

Figure 2-3.  A U/HPLC pump system for column chromatography.   
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U/HPLC systems are capable of pumping either a single mobile phase solvent or mixing multiple 

solvents, giving rise to two types of chromatographic elution.  The first, called isocratic elution, is 

performed when the mobile phase composition is homogenous for the duration of the separation, and 

is best applied to the separation of a few selected targets for which a mobile/stationary phase pair can be 

specifically formulated for optimal results.  The second, called gradient elution, is performed by 

changing the mobile phase composition by mixing solvents in various proportions over the course of 

the separation in order to affect the retention factor of solutes.  Modulation of this additional parameter 

contributes versatility to the system, increasing the range of chemical diversity over which a single 

stationary phase can be utilised for chromatographic separation.  This principle is particularly favoured 

in molecular profiling of biological fluids where the solute diversity (e.g. range of polarity) is great.  

Finally, the composition of mobile phase solvents, as well as the composition of the stationary phase, 

affects the chemical selectivity of the separation.  However these parameters can be constrained by the 

choice of detector, and therefore will be discussed in a subsequent section.      

2.3 Methods for assessing chromatographic performance 

Assessing the performance of a chromatographic separation is important for both the development and 

application of chromatographic methods.  By reviewing the data generated as eluted peaks observed by 

the detector, an analyst may compare the relative capabilities of multiple methods, or evaluate the 

effects of a host of possible changes to the system such as mobile phase composition and velocity, 

stationary phase composition, and column dimensions.  The following sections provide a foundation 

for the types of performance assessment used later in this thesis.      

2.3.1 Defining chromatographic peak width  

Baseline peak width (Wb) is measured as the distance between the baseline intersection points of 

tangents drawn through the peak inflection points as illustrated in Figure 2-4, method A.  In practice, 

measurement of the full peak width at half of the maximum peak height (Wh) is more convenient and 

more precise as it does not require linear extrapolation from the points of inflection and mitigates the 

effects of peak distortions near the peak base (e.g. tailing).  Measurement of Wh is illustrated in Figure 

2-4, method B. 
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Figure 2-4.  Measurement of peak width at the peak base (A) and at half of the peak height (B). 

As a rule of thumb, values of peak width (W) may be estimated from measured Wh values using the 

conversion shown below  (Snyder et al., 2010).  The values of W reported herein are calculated in this 

manner.   

 ܹ ≡ ௛ܹ0.588 ൎ ௕ܹ (2.4) 

2.3.2 Measurement of chromatographic efficiency  

Under isocratic separation conditions, the efficiency of a column is reported in terms of its number of 

theoretical plates (N).  As illustrated in Equation 2.1, this value is equal to the quotient of column 

length (L) divided by H (the empirical value determined by the mobile phase velocity and the effects of 

dispersion previously discussed).  H is therefore a measure of efficiency per unit length, while N 

describes the efficiency achievable with a given column.	N may be determined empirically for a target 

analyte using the following equation, where tR is the retention time of an example analyte and W is its 

peak width.   
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 ܰ = 16൬ݐோܹ൰ଶ (2.5) 

Accounting for the equality between estimates of W from observed Wh values (Wh ≡ 0.588W), Wh can 

be directly utilised with the modified equation below.  Chromatographic efficiency is calculated in this 

manner within this thesis.   

 ܰ = 5.54 ൬  ோܹ௛൰ଶ (2.6)ݐ

2.3.3 Measurement of chromatographic resolution and peak capacity  

Chromatographic resolution, or the ability of a separation to distinguish independent solutes, is 

calculated as the difference in retention time values between two peaks (t1 and t2) divided by the 

average peak width, as illustrated in Figure 2-5 and the following equation.     

 ܴௌ = ଶݐ − )ଵݐ ଶܹ + ଵܹ)/2 (2.7) 

 

Figure 2-5.  Measurements required for the calculation of chromatographic resolution.  

The theoretical maximum number of peaks which may be resolved (with RS =1) in a given separation is 

known as the peak capacity (PC).  Therefore peak capacity is a measure of the potential ability of a 

chromatographic separation to resolve solutes, assuming that they are evenly distributed with elution 
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time.  It is most often applied for the assessment of gradient separations.  This ideal spacing of 

chromatographic peaks is illustrated in Figure 2-6.   

 

Figure 2-6.  Ideal distribution of chromatographic peaks illustrating the maximum number of 
peaks that can be fitted into a chromatogram with a resolution of one.  

A separation’s PC may be measured by addition of all resolution values between peak pairs in a 

sequential series spanning the duration of the gradient, starting with the injection peak (0) and ending 

with the last peak (l) as follows (Neue, 2008):    

 ஼ܲ = 1 +	ܴௌ(0,1) + ܴௌ(1,2) + ܴௌ(2,3) + ⋯+ ܴௌ(݈ − 1, ݈) (2.8) 

The peak capacity of any gradient segment may be calculated by addition of all resolution values 

between the first (f) and last peaks that flank that segment, yielding a value known as the sample peak 

capacity (PC**) (Neue, 2008, Dolan et al., 1999):  

 ஼ܲ∗∗ = ܴௌ(݂, ݂ + 1) + ܴௌ(݂ + 1, ݂ + 2) + ܴௌ(݂ + 2, ݂ + 3) + ⋯+ ܴௌ(݈ − 1, ݈) (2.9) 

By carefully selecting the area of a gradient for inclusion, a more representative value of capacity may 

be obtained where the separation span of the matrix of interest is well defined.       

Where peak width is approximately constant across the gradient, the measurement of sample peak 

capacity may be simplified by dividing the difference in retention time between the first and last peaks 

by the average peak width (Wave) of those peaks and all between them.      
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 ஼ܲ∗∗ = ൬ݐ௟ − ௙௔ܹ௩௘ݐ ൰ (2.10) 

Greater peak capacities are characteristic of methods that have the potential to resolve more solutes, 

and are preferred in human biofluid molecular profiling applications where high sample complexity 

ensures a high density of analytes.   

2.4 LC detection by mass spectrometry 

Analytes eluting from a column require measurement by a detector.  Spectroscopic detectors are well 

suited to this purpose as they are able to measure the content of a liquid flow, most commonly by 

measurement of the associated absorption or emission spectra (e.g. ultraviolet-visible spectroscopy or 

fluorescence spectroscopy, respectively).  Such spectral data serve as both quantitative signals 

proportional to the concentration of the solute present and characteristic indicators of chemical 

composition.  However these techniques tend to be selective in the chemicals they are able to detect 

(e.g. only those chemicals with chromophores or flurophores) and are therefore inherently limited in 

their capability to broadly capture data from chemically diverse mixtures.  Furthermore, the chemical 

specificity afforded by spectroscopic analysis of complex mixtures can be lacking with many techniques 

as the presence of shared functional groups may confound the interpretation of spectral data.  

Therefore a more characteristic and descriptive property of molecular identity is desired for application 

to human biofluid screening.      

Mass spectrometry (MS), the gas phase separation and detection of molecular ions (carrying an electric 

charge) by their mass and charge, is therefore an attractive alternate means for the specific detection of 

diverse chemicals.  The wide natural distribution of mass among physiological metabolites (illustrated 

in Figure 2-7) inherently benefits the application of MS to complex biofluids such as human urine.  

Furthermore, pico- and femtogram sensitivity for many ionisable molecular species and an increasingly 

wide dynamic range make MS well paired to the analytical challenges faced in metabonomic 

applications.  Indeed, chromatographic separation coupled to mass spectrometric detection is one of 

the staple platforms of metabonomic research (Want et al., 2010, Lenz and Wilson, 2007, Bajad et al., 

2006, Rainville et al., 2007).  
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Figure 2-7.  Histogram (1 Da. bins) of compounds in the Human Metabolome Database v2.5 
(Wishart et al., 2009) with the mass range 1-1200 Da.   

2.4.1 Ionisation 

Application of MS to chromatographic eluate detection is only limited by the requirement to ionise the 

eluting chemicals of interest and ensure their gas phase availability for mass analysis.  MS has therefore 

proven a popular detection system for biofluid separations by gas chromatography systems where 

separations also occur in the gas phase (Kuhara, 2005, Dettmer et al., 2007).  However mating MS to LC 

requires both ionisation and desolvation (removal of the eluent from the effluent), producing gas phase 

ions for mass analysis.  From the wide range of ionisation techniques that exist, only a select few are 

applicable for mating LC to MS (e.g. electrospray ionisation, atmospheric pressure chemical ionisation, 

and atmospheric pressure photoionisation).  The most popular of these is electrospray ionisation (ESI) 

(Want et al., 2005), whereby the dispersion of liquid is accomplished by applying a voltage to a 

conductive tube channelling the chromatographic effluent creating a Taylor cone from which a fine jet 

of liquid is emitted.  As the droplets produced desolvate (commonly assisted by application of heated 

gas such as diatomic nitrogen), the charge density on the surface of the droplets approaches a 

theoretical limit of space-charge density known as the Raleigh limit, and the droplet dissociates in a 

process called Coloumbic fission.  This process creates smaller droplets which continue the cycle of 

desolvation and coloumbic fission until only ions in the gas phase remain.  While the exact nature of 
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the final ionisation of analytes is still a topic of discussion and research (Wilm, 2011), electrospray has 

become a de facto standard in untargeted molecular profiling due to its ability to ubiquitously ionise 

biochemicals.  The utility of ESI is also a result of its “soft” nature, producing molecular ions without 

introducing a high degree of molecular fragmentation which is characteristic of other common 

ionisation techniques such as electron ionisation.      

However, ESI is a competitive event, meaning that analytes and additives present in the mobile phase 

can potentially compete for available charge.  In many cases, strongly ionising species can reduce the 

apparent intensity of species that are ionised with less efficiency, thus confounding interpretation of 

otherwise quantitative detection.  In other cases, and to a similar effect, the presence of some chemicals 

may enhance the ionisation and therefore artificially increase the observed intensity of analytes.  These 

effects are mitigated by the introduction of fewer chemical species at any given time, leading to 

additional gains in apparent sensitivity (Buhrman et al., 1996).  High resolution chromatographic 

separation is therefore beneficial in LC-MS applications utilising competitive ionisation processes such 

as ESI, providing as close to a sequential stream of isolated molecular species as practically achievable 

for a given sample matrix.   

2.4.2 Mass spectrometry for LC-based molecular profiling 

Once molecular ions are formed, they are guided by ion optics into a mass analyser where they may be 

differentiated by their mass-to-charge number ratios (m/z).  While the numerator is a physical property 

of the molecule, the denominator reflects the potentially variable number of charges adopted by the 

ion.  Molecular species with greater relative mass (e.g. those originating from peptides and proteins) 

commonly take multiple charges during ionisation while most small molecule metabolites (less than 

approximately 1500 Da.) will typically adopt a single charge (Hoffmann and Stroobant, 2007).  This 

simplifies the interpreteation of metabolite mass spectra, relating m/z most often to mass alone.      

Separation of these ionic species is achieved when they are introduced into the mass analysers electric 

and magnetic fields.  Multiple mass analyser configurations exist, however all are underpinned by the 

physical laws defined by Lorentz (Lorentz force) and Newton (Newton’s second law of motion).  
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Together they equate the force of a particle (F) to its mass (m) and acceleration (a) as well as to its 

charge (q, distinct from the number of charges z) and velocity (v) when in an applied electric (E) and/or 

magnetic (B) field, forming the fundamental relationship governing motion of charged particles. 

ܨ  = ݉a (2.11) 

ܨ  = ܧ)ݍ + (ܤݒ (2.12)

a(ݍ/݉)  = ܧ + ܤݒ (2.13)

Mass analyzers therefore leverage this relationship to separate charged particles of differing mass-to-

charge number ratios by separately modulating, holding constant, or measuring the acceleration, 

velocity, and trajectory of a particle via modulation of applied electric and magnetic fields.  Although 

different mass analysers utilise different approaches to effectively solve this differential equation, all are 

fundamentally rooted in the same principal.     

Of the many mass analysers available, untargeted molecular profiling applications generally require the 

use of mass spectrometers that are capable of rapid acquisition of a broad m/z range of metabolites at 

high resolution and high accuracy.  The first of these four criteria is critical for any LC detector (mass 

spectrometer or other), as accurate quantitation of a chromatographic peak requires at least 10 

sampling points as a rule of thumb (Fillatre et al., 2010), and UPLC separations can produce peaks on 

the order of W = 1 second (Li et al., 2008).  The second criterion is intrinsically satisfied by mass 

analysers that evaluate large spectral ranges simultaneously.  This precludes the use of popular mass 

analysers such as the quadrupole mass filter which analyse m/z values nominally by individual selection 

over a small window (typically not smaller than 0.5 Da.).  In order to measure m/z values across a wide 

range with a Q mass filter, this window must be swept or “scanned” across the range in order to 

assemble a complete spectrum from each low resolution measurement, requiring time and therefore 

antagonising the first criterion, which is not ideal for detection.   
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The third criterion of high mass resolution is beneficial to the deconvolution of complex mixtures such 

as human biofluids which contain hundreds or thousands of distinct small molecule species of similar 

mass.  Mass spectrometric resolution (R), commonly expressed as the full width of a spectral peak at 

half of its maximum intensity (FWHM), is mathematically defined as the quotient of a given mass (mx) 

and the smallest mass difference resolvable (resolving power) at the given mass.   

 ܴ = ݉௫ห݉௫ − ݉௬ห (2.14) 

High resolution separations confer a high degree of specificity to the analysis, and when combined with 

the ability to accurately measure m/z (the fourth criterion), the number of molecular formula 

potentially responsible for a spectral signal is greatly limited, aiding efforts at mass-based metabolite 

identification.  The accuracy of a mass measurement is expressed as percentage error of the known 

theoretical mass.  This error is calculated by dividing the difference between the measured (observed) 

and theoretical (calculated) mass values by the theoretical value.  Given the high relative accuracy of 

some mass spectrometric instrumentation, a constant multiplier of 1,000,000 is applied to the 

percentage error, providing a more convenient integer or single decimal value to report.  Mass accuracy 

is therefore reported in units of parts per million (ppm).   

݉݌݌  = ൬݉݁ܽ݀݁ݎݑݏ − ݈ܽܿ݅ݐ݁ݎ݋ℎ݁ݐ݈ܽܿ݅ݐ݁ݎ݋ℎ݁ݐ ൰ 10଺ (2.15) 

Two types of mass analyser are used almost exclusively for routine nontargeted metabolite profiling, 

satisfying the four aforementioned criteria and also demonstrating other characteristics of an able 

detector such as measurement sensitivity and precision.  They are the time-of-flight (ToF) and 

relatively newer Orbitrap mass analysers.  The latter is primarily commended for its ability to achieve 

very high m/z resolution.  However as a trapping instrument (which collects and holds ions for analyses 

over a period of time), this requires taking the instrument momentarily “offline” to perform the 

measurement, as the resolution generated and data acquisition speed are inversely proportional.  While 

commercial ToF instruments also achieve high resolution measurements, they currently fail to surpass 
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the resolution produced by Orbitrap instruments.  However, ToF resolution and data acquisition rate 

are independent, and therefore the rate of data acquisition (scan speed) required to adequately detect 

UPLC peaks must be considered when comparing the effective resolution of ToF and Orbitrap 

instruments.  Subject to the data acquisition parameters used and exact type of analysis required, ToF 

instruments have been shown to outperform their Orbitrap counterparts based on achieving superior 

data acquisition rate and higher sensitivity (Rousu et al., 2010).  Furthermore, ToF instruments have 

been noted to have superior ability to accurately establish isotopic abundance patterns (Prof. Zoltan 

Takats, personal communication, October 2014) which can greatly contribute to molecular annotation 

efforts (Kind and Fiehn, 2006).  However, as both technologies remain in development, the analyst may 

expect a tendency toward homogenisation of their future capabilities in profiling applications.  

Therefore, for the studies presented herein, all work was performed using ToF mass analysis for no 

better reason than the availability of the instrumentation.    

ToF mass analysers operate by separating ions following acceleration in an electric field of known 

strength towards a detector (Stephens, 1946).  The resulting differential velocity is related to the m/z 

value of the ion, and therefore the time between acceleration and detection can be converted into an 

m/z value, where heaver mass ions require more time than lighter mass ions.  Depending on the mass 

range the analyst wishes to observe, this process can be repeated tens-of-thousands of times per second.   

A unit of acquired data is therefore a timed accumulation of acceleration and detection events.  This 

near-constant and simultaneous observation of an m/z range sufficiently wide to capture small 

molecules makes the ToF mass spectrometer a highly applicable detector for UPLC-MS profiling.   

However, mass analysers are not necessarily mutually exclusive within a single instrument where the 

path of ions is not terminated by detection or other means.  A versatile configuration of both 

quadrupole (Q) and ToF mass analysers (called a Q-ToF) is commonly used in place of ToF analysis, 

conferring the benefits of both analyser types to one instrument.  In this configuration, the quadrupole 

precedes the ToF, separated by a collision cell capable of performing molecular fragmentation.  A 

common method for fragmenting molecules involves the use of collision induced dissociation (CID) 

whereby a molecule’s kinetic energy is converted to internal energy when collided with neutral atoms 
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such as argon, helium, or diatomic nitrogen in the collision cell.  The internal energy can in turn result 

in the cleavage of covalent bonds and the resulting production of characteristic molecular fragments in 

a reproducible manner.  The quadrupole (optionally) provides pre-selection of molecular targets of 

interest to pass on for fragmentation analysis, and the full fragmentation spectrum is then captured at 

high resolution with high sensitivity by the ToF mass analyser.  The process of using two mass 

analysers in concert is known as tandem mass spectrometry, or MS/MS, and can be useful in structure-

based elucidation efforts at metabolite identification as evidenced by the increasing amount of MS/MS 

data available in LC-MS databases (Smith et al., 2005, Horai et al., 2010, Wishart et al., 2007). 

Alternatively, the quadrupole and collision cell can also be selectively disabled, simply passing ion 

content through to the ToF mass analyser.  The latter approach was used herein for routine profiling 

applications; however the quadrupole was used where necessary to generate CID fragmentation spectra 

for reference chemicals and metabolite targets of interest.  

2.4.3 Orthogonal separations in LC-MS applications 

While the combination of LC and MS creates a powerful system for the multidimensional separation 

and detection of analytes from complex biofluids, the use of MS as a detection system for LC 

separations also imposes constraints on the types of chromatography that are appropriate for use.  

Specifically, the composition of the mobile phase (and therefore the effluent) must be compatible with 

the ionisation source interface.  For this reason, volatile additives such as formic acid, acetic acid, 

ammonium formate, ammonium acetate, and ammonium bicarbonate are heavily favoured in LC-MS 

applications for the control of pH and ionic strength over other classical chromatographic mobile 

phase additives, making some chromatographic methods such as ion exchange limited in applicability.  

Furthermore, the electrospray ionisation from LC effluent greatly benefits from the (minor) presence of 

water, again restricting the use of wholly-organic solvent containing methods such as normal phase 

chromatography.  Because of these restrictions, only two types of chromatography have been widely 

adopted in LC-MS applications to small molecule research.   

The first of these is reversed-phase chromatography (RPC), whereby a sample in predominantly 

aqueous solution is typically applied to a hydrophobic column in predominantly aqueous conditions.  
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The retained solutes are then eluted with a gradient of increasing organic solvent, eventually removing 

the increasingly non-polar and hydrophobic content from the stationary phase.  In this manner, RPC is 

the “reverse” of normal phase chromatography whereby the stationary phase is hydrophilic and the 

mobile phase hydrophobic.  The stationary phase particles used in RPC are typically bound with alkyl 

hydrocarbons, with the most common being octadecyl (C18).  This stationary phase is adequate for the 

retention of nonpolar and mildly polar analytes, but fails to retain many of the small polar analytes that 

constitute aqueous human biofluids such as urine.  Specialised RPC C18 stationary phases such as the 

high strength silica (HSS) T3 column (Waters Corp., Milford MA, USA) have been shown to enable the 

improved retention of small polar analytes (New and Chan, 2008), and are therefore a preferred 

candidate for application to the study of human urine (Want et al., 2010).  RPC mobile phase solvents 

are commonly modified by the addition of MS compatible volatile acids such as formic or acetic in 

relatively low (0.1%) concentration.  The resulting separations are characterised by uniform peak shape 

and robust reproducible performance, making their use predominant in LC-MS applications. 

The second common LC-MS chemistry is hydrophilic interaction liquid chromatography (HILIC).  

HILIC may be considered a variant of normal-phase chromatography in that it utilises a hydrophilic 

stationary phase (usually unbonded silica or particles bonded with charged functional groups) and 

elution of increasingly hydrophilic solutes is performed by increasing the polarity of the eluent (Alpert, 

1990).  However, unlike normal-phase chromatography, RPC solvents are used but in the reverse order.  

Typically a sample in mixed aqueous/organic solvent is introduced to the column which has been 

equilibrated with a high concentration of an aprotic organic solvent (often acetonitrile) and a small 

amount of dissolved water.  The water is thought to form a semi-immobile pseudo-layer around the 

hydrophilic stationary phase, and therefore the retention of polar analytes is achieved by a combination 

of partitioning into this layer (and further into the stationary phase) as well as a number of 

intermolecular forces including weak-electrostatic mechanisms and hydrogen bonding (Alpert, 1990).  

While the prevailing mechanisms for analyte retention may not yet be fully elucidated (Buszewski and 

Noga, 2012), the retention of polar analytes makes HILIC an important approach to biofluid profiling 

as its selectivity is largely complimentary to that obtained by RPC.  The elution of the majority of 
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analytes at higher organic concentrations also benefits the sensitivity of HILIC-MS assays, enhancing 

the efficiency of ESI.  However, the separations can be more troublesome than those obtained by RPC, 

with poor retention reproducibility, poor peak shape, and long equilibration times reported in the 

literature (Tang et al., 2014, Gray et al., 2013).  

2.6 Data review and pre-processing 

2.6.1 Manual data review and illustrations 

When combined, LC and MS instrumentation produce three dimensional datasets that describe three 

fundamental measurements about the analytes separated and detected by the hyphenated system.  The 

first is the measured m/z value for an ion, or rather the m/z distribution for many ions of the same 

species, creating a spectral peak.  The second is the intensity of that spectral peak as observed by the 

detector, which is (under normal circumstances within the linear range of the detector) proportional to 

the number of ions present in the group detected.  Finally, as mass spectra are recorded over 

chromatographic retention time, each analyte species has a measured retention time, or (again) rather a 

retention time distribution for many ions of the same species, creating a chromatographic peak.  This 

three-dimensional data is presented in a number of different forms throughout this thesis, and 

therefore a brief description of these illustrations is presented here using the data obtained from a 

single UPLC-MS analysis of a human urine sample. 

The most fully descriptive method for visualising data is in an interactive two-dimensional projection 

of all three dimensions.  One such projection, generated with LCMS3D v0.14 (Waters Corp., Milford 

MA, USA) is shown in Figure 2-8.   
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Figure 2-8.  A two-dimensional screen capture of interactive three-dimensional data obtained by 
LC-MS analysis of a single urine sample.  Peaks occupy a footprint in both the m/z and 
retention time (RT) dimensions, and extend upward with increasing intensity.      

However, lacking the ability to move and interact with the plot, a two-dimensional map, looking down 

from the top of the intensity axis, may be more informative for visualisation on paper.  An example of 

such a map illustrating LC-MS peak intensity (color) in the retention time and m/z dimensions (x and 

y axes, respectively) is shown in Figure 2-9.  The map was produced using MassLynx v4.1 software 

(Waters Corp., Milford MA, USA),     
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Figure 2-9.  A two-dimensional projection of three-dimensional data obtained by UPLC-MS 
analysis of a single urine sample.  Chromatographic retention time and m/z are set as the x and 
y axes, respectivly.  UPLC-MS peak intensity is shown using a color gradient, however much of 
this information is lost when peaks are viewed in an overview of the entire high resolution 
analysis, as it is presented here.       

These types of visualisations can be complex to interpret, however, and therefore more tailored 

visualisations are often used by analysts for specific purposes.  In order to evaluate the 

chromatographic aspects of the data, the m/z domain is often collapsed by summation of the intensities 

of all spectral peaks present in a given MS scan.  The resulting total ion chromatogram (TIC, more 

formally called total ion current) illustrates the sum of all detected signals (plotted on the y axis) for 

each moment in time (plotted on the x axis).  A TIC plot for the urine sample is shown in Figure 2-10.  

This figure and all similar data visualisations introduced herein were produced using MassLynx v4.1 

software. 
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Figure 2-10.  TIC visualisation of a human urine sample analysed by UPLC-MS.  Chromatographic 
retention time (minutes) and total ion current (intensity normalised to the most intense peak) 
are plotted on the x and y axes respectively.      

Spectral noise can potentially obscure peaks in TIC representations where many small noise-derived 

signals can overwhelm a single large analyte-derived signal.  For this reason, the chromatogram is 

sometimes constructed using the intensity of the most intense peak from every MS measurement in the 

analysis.  This kind of representation is called a base peak intensity chromatogram (BPI).  A 

comparison between TIC (red) and BPI (green) plots for the urine sample is shown in Figure 2-11.   
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Figure 2-11.  Comparison between TIC and BPI visualisations for the same human urine sample 
analysed by UPLC-MS.  The TIC trace is shown in red, while the BPI trace is shown in green.  
Chromatographic retention time and intensity are plotted on the x and y axes respectively.      

Finally, if the chromatogram of a single analyte of interest is desired, that chromatogram can be 

generated by extracting the intensity signal derived only for the m/z value corresponding to the analyte 

of interest.  This type of chromatogram is called an extracted ion chromatogram (EIC).  An example 

EIC is illustrated in Figure 2-12 for the expected negative ion mass of hippuric acid (a common urinary 

component) with an m/z value of 178.0504 +/- 0.1 Da.  The inverse transformation of collapsing the 

retention time domain into a single mass spectrum of summed intensity is rarely performed.  However, 

the mass spectrum obtained at any given point in time can be selected from the series and evaluated for 

relationships among observed spectral peaks such as the presence of isotope peaks (from ions 

containing heavy isotopes such as carbon-13), non-proton adducts (ions produced by addition of alkali 

metal ions), multimers (clusters of ions), or fragments (e.g. by CID or in-source fragmentation).  A 

mass spectrum from the apex of each of the two clearly visible peaks in the EIC is illustrated in Figure 

2-12.  From these spectra, it can be observed that a mass (m/z) of 178.0542 is responsible for the peak at 

2.8 minutes, while a mass of 178.0506 is responsible for the peak at 3.24.  Utilising the calculation of 
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mass accuracy presented in Section 2.4.2, it can be determined that the second peak (RT = 3.24 min) is 

most likely hippuric acid, as the recorded mass values is within 1.2 ppm of the expected value for 

hippuric acid as opposed to the first peak with a measured mass that is within 21.4 ppm of the expected 

value.      

 

 

Figure 2-12.  EIC of a selected m/z, with inset mass spectra.  The calculated deprotonated mass of 
hippuric acid (178.0504 +/- 0.1 Da) was extracted from the dataset produced by a LC-MS analysis 
of human urine.  A single mass spectrum from the apex of each chromatographic peak is shown.                  

2.6.2 Automated pre-processing of LC-MS data 

In order to compare many LC-MS datasets collected in the course of a multi-sample experiment, the 

distinct signals captured (herein referred to as features, each with a descriptive m/z, retention time, and 

intensity) must be detected, extracted, and collated.  The goal of these procedures is to accurately 

represent the analyte-derived information captured by LC-MS analysis in a single matrix, free of LC-

MS system noise and processing artefacts, in order to facilitate further analysis (discussed 

subsequently) and interpretation of the results.  The size and complexity of molecular profiling datasets 

precludes a manual approach to pre-processing, and automated tools that leverage computational 

resources are instead required.  A number of software packages have been developed for the pre-
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processing of LC-MS datasets, both commercially and freely available (Katajamaa and Oresic, 2007).  

To the extent that LC-MS raw data in vendor-specific formats can be converted into an open-source 

format, the open source software packages have been ubiquitously utilised in the field due to their 

flexibility, modular design, community-driven evolution, and open-source mechanism of data 

treatment (Coble and Fraga, 2014).   

XCMS (Smith et al., 2006) was selected for use in the pre-processing of LC-MS data presented 

throughout this thesis because of its modular design containing methods that have been developed for 

application to high resolution profiling.  Within XCMS (operated in the R software environment (R 

Core Team, 2014) ), the centWave method of peak detection was used for the detection, extraction, and 

integration (intensity measurement based on the calculated area of EIC peaks) of features from each 

dataset (Tautenhahn et al., 2008).    The centWave method assesses the LC-MS data for regions of 

interest (mass traces with sufficient m/z precision to suggest that a true signal has emerged from 

random noise) and applies a continuous wavelet transformation in the chromatographic domain to 

establish detected peaks.  The centWave method requires each MS spectral peak to be collapsed into a 

single line (or centroid peak) representing the mass and intensity of the full spectral (continuum) peak.  

LC-MS data are commonly collected in a so-called “centroid mode” in which continuum spectra are 

converted to centroid spectra on a scan-by-scan basis during acquisition.  In instances where data has 

been collected in continuum mode with full spectral peak shape detail, the datafiles can be converted to 

centroid-spectrum files post-acquisition using conversion tools.  High resolution continuum data 

acquired on Waters brand ToF MS systems is conveniently converted to centroid format appropriate 

for centWave using the AutoAFAMM function of MassLynx 4.1.  Provision is also made for the 

requisite conversion of centroid data files into open source formats appropriate for input to XCMS.  

The DataBridge executable function (Waters Corp., Milford MA, USA) was used to convert all 

proprietary format (Waters) data files to the open format named NetCDF prior to XCMS import and 

analysis.   

Use of centWave on centroid mode data requires the user to define a small number of parameters to 

guide the criteria by which features are discerned from noise.  Estimates for these parameters are 



 2.6 Data review and pre-processing  
 

 55 

generally obtained by evaluation of the raw data in relation to the width of chromatographic peaks, and 

the mass error observed among sequential MS scans across a chromatographic peak.  Guidelines for 

what intensity of signal a user considers to be noise may be specified, as well as the number of 

sequential scans required above a given signal intensity threshold to consider signal a true feature.  The 

relevant parameters that require consideration and adjustment are listed in Table 2-1 with brief 

descriptions.  Specific values used vary throughout the work contained herein and are therefore 

reported on a case-by-case basis.     

Parameter Description Example values 

ppm Maximum allowed m/z deviation in consecutive 

scans 

30 

peakwidth Range of expected chromatographic peak widths (in 

seconds) 

1 to 8 

snthresh Signal to noise threshold, calculated as the 

maximum peak intensity minus the baseline value 

divided by the standard deviation of the local 

chromatographic noise 

10 

noise An absolute filter that removes all spectral features 

of intensity less than the specified value 

500 

prefilter Peaks are only considered for extraction if they 

contain at least x scans of intensity y or greater     

x = 6 

y = 5000 

 

Table 2-1.  User defined parameters for LC-MS feature extraction using centWave in XCMS. 

Once features have been detected among all samples in an experiment, features derived from the same 

chemical species must be grouped across samples into a single table before broad comparative analyses 

can be performed.  Unless specified otherwise, this was accomplished using the group function within 

XCMS, relying on the density method of grouping which utilises a user-defined window of mass error 
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and a chromatographic density profile (effectively a smoothed histogram of peak retention time values) 

to match features.  Grouping is optionally augmented by rounds of alignment to correct for global 

shifts in chromatographic retention of analytes among samples.  However, unless otherwise specified, 

retention time alignment was not utilised in the subsequent studies due to the close matching retention 

time across samples produced by UPLC analysis, which is believed (herein) to be compensated for by 

grouping alone.   

The product of the feature extraction and grouping procedures is a matrix of integrated peak areas 

(intensity values) for every sample (one row per sample) and every feature group (one column per 

group).  Feature groups are described by the median m/z and retention time values of each individual 

feature within that group.  An example matrix of feature intensities is shown in Table 2-2.  Missing 

values, arising where a feature was detected within the experimental dataset but not in every sample 

(resulting in an integrated area of zero for those samples) are replaced with non-zero values by 

integrating the EIC area (representing noise) where a peak would be expected in those samples using 

the fillPeaks function within XCMS.   

Feature 
1 

Feature 
2 

Feature 
3 

Feature 
4 

Feature 
5 

Feature 
6 

median m/z 68.9943 86.0759 88.0919 88.092 88.0921 90.5414 
median RT 25.19 89.732 513.348 486.752 521.6 535.134 
Sample 01 8358.68 52405.2 10797.7 6530.27 35580.6 3519.25 
Sample 02 7245.5 16150.2 10882 16409.7 13401.1 3394.77 
Sample 03 7127.96 51931.5 8206.4 9243.43 18160 3432.88 
Sample 04 8210.97 51027 12222.3 7661.1 5998.86 3814.35 
Sample 05 7391.57 49323.9 7582.45 8561.09 12670.1 3276.64 
Sample 06 7564.92 52503.2 7338.85 7748.79 7171.07 3394.79 
Sample 07 8760.62 52018.3 11696.8 7298.02 12893.5 3458.68 
Sample 08 8645.15 51778.2 11008.9 7922.45 13339.7 3664.05 
Sample 09 7179.3 50977.4 8376.49 7165.67 13037.2 3568.88 

 

Table 2-2.  The data matrix product of feature extraction and grouping, showing the feature 
intensity for six distinct features across nine hypothetical samples.   
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2.7 Multivariate data analysis 

The overall purpose of molecular profiling is to evaluate the metabolic signatures related to known 

phenotypes (e.g. disease states), clinical measures (e.g. blood pressure or BMI) or other known 

metadata (e.g. age or gender).  In order to do so, the data obtained by LC-MS measurements are 

evaluated and interpreted in the context of the study design.  However, the data matrices produced by 

profiling of complex biofluids such as human urine can be extremely large, containing thousands of 

features which represent a consensus average metabolome subset (as captured by the LC-MS system).  

When hundreds or thousands of samples are analysed in the context of large population screening, the 

matrices produced are enormous, potentially containing millions of individual feature intensities.  

Comparison of the intensities of all feature groups (called variables in subsequent analysis) among all 

samples (called observations) with respect to the study design using classical univariate statistical 

approaches (e.g. Student’s t-test and typical 95% confidence threshold (Student, 1908)) is likely to 

produce many false positives, given the large number of comparisons.  While multiple testing 

correction approaches have been utilised to surmount this issue (Broadhurst and Kell, 2006), 

multivariate approaches to data analysis and interpretation are generally favoured within the 

metabonomics field (Liland, 2011, Want and Masson, 2011).  Such approaches reduce the risk of 

producing false positive associations with respect to the study design, and furthermore are excellent at 

detecting patterns of correlation among metabolites (potentially indicating the presence of biochemical 

pathway associations or co-regulation in biochemical networks).      

A number of methods exist for the multivariate analysis of profiling data matrices.  Of these, principal 

components analysis (PCA: (Pearson, 1901, Hotelling, 1933)), partial least squares (PLS: (Wold et al., 

2001)) analysis and orthogonal projection to latent structures (OPLS: (Trygg and Wold, 2002)) are 

staple methods applied to metabolite profiling experiments.  Use of these methods allows the 

investigator to explore the sources of variance within complex multi-dimensional datasets in either a 

top-down approach (unsupervised analysis using PCA) or in a targeted manner with respect to known 

variables (supervised analysis using PLS or OPLS).  In both cases, the complex dataset is simplified, 
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highlighting the major sources of variation or sources of variation with known relevance to the study 

design.  

2.7.1 Principal components analysis (PCA)   

 As an unsupervised technique, PCA does not require any input related to the study design (known 

metadata or phenotypic information).  Rather, the technique is used to project the dataset in a manner 

that highlights the maximum sources of variance present using a minimal number of orthogonal planes 

called principal components (PCs).  Each individual PC is a linear combination of variables describing a 

latent (i.e. hidden or inferred) variable which in turn describes variability within the dataset and is 

independent from all other PCs.  PCs are generated in order of the amount of variance they explain, 

aiding in data-reduction.  In this manner, PCA produces a summary of the data which is useful for 

detecting trends, correlated variables, and outlying observations (samples).  The results of PCA may be 

visualised by either a scores plot or a loadings plot, illustrating the relation of observations (samples) or 

variables (feature groups) respectively.  Scores plots are used exclusively within this thesis as 

illustrations for PCA.  All scores plots contained herein were generated using SIMCA-P+ software 

(Umetrics, Umeå Sweden).  Mean-centering is applied by default, whereby the mean of each variable is 

subtracted from the data, producing a plot oriented around the intersection of the x and y axes.  

Furthermore, SIMCA utilises the non-linear iterative partial least squares (NIPALS) algorithm for 

computing principal components which does not normalise the scales (coordinates in scores space) on 

the x and y axes.  Therefore, although the scales are directly related to the variance explained by each 

component, it is convenient (for intuitive interpretation of the data) to additionally report the percent 

of total variance explained by each component.  An example is shown in Figure 2-13 for a set of 23 

replicate UPLC-MS analyses of a single urine sample, followed by a single analysis of a serum sample 

(not shown) and 23 subsequent analyses of the original urine sample.  In this example, the first and 

second PCs are shown on the x and y axes, representing 34 percent and 19 percent of the dataset 

variance, respectively.  The PCA scores plot clearly illustrates the perturbation to the precision 

otherwise observed in replicate urine analyses, as well as a tendency of the metabolic profiles in the 

post-serum analyses toward returning to the pre-serum injection state.  
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Figure 2-13.  PCA scores plot of an analytical reproducibility intervention study.  The precision of 
the UPLC-MS measurement is tested on an unchanging urine sample before (pre) and after 
(post) the injection of a single serum sample.  PCA illustrates that the urine analyses immediately 
following the serum analysis yield profiles that are different from the otherwise reproducible 
urine analyses, but tend toward homogenisation and a return to initial conditions as the urine 
sample is repeatedly analysed. 
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2.7.2 Partial least squares (PLS) and orthogonal projection to latent structures (OPLS) 

analyses  

Often epidemiological studies are searching for subtle phenotypic effects among large populations (e.g. 

metabolic correlation with increased risk of heart disease or type 2 diabetes), and therefore PCA is 

rarely sufficient for the elucidation of features correlated to the study design due to the presence of 

greater confounding variation.  For these purposes, supervised methods of multivariate analysis exist 

whereby a model of the data is built using additional information beyond the previously discussed 

matrix of observations and measured variables.  The first of these, PLS, models the relationship 

between the profiling data matrix and additional data (e.g. retrospective patient outcome with respect 

to developing a disease) to discover the maximum covariance between them, described by PLS 

components.  In this manner, PLS may be regarded as a specialised extension of PCA which is targeted 

to the study design or specific relationship of interest.   

In PLS, as with PCA, the maximum (co)variance between the profiling data matrix and a single Y 

variable of additional data should be represented by the first component.  However, systematic 

variation in the profiling data matrix that is independent of Y can confound the interpretation of the 

resulting model, as PLS must model this variation together with the variation of interest.  As a result, 

the variation of interest can become distributed across multiple PLS components.  In order to remove 

the confounding variation in these instances, OPLS has been developed as an extension of PLS.  Using 

OPLS, confounding variation in the profiling dataset is modelled and removed, allowing PLS to 

generate the maximum covariance between the corrected dataset and Y with the fewest (usually one) 

components.  This in turn allows for a more convenient interpretation of results and elucidation of the 

relevant covarying LC-MS features.   

In PLS and OPLS, the scores and especially the cross-validated scores are used to estimate the impact of 

the experimental design on the data and to identify potential confounding factors and outliers.  The 

relevant statistical values R2
Y and Q2

Y are also important to consider when evaluating a PLS or OPLS 

model.  The first (R2
Y) represents the proportion of Y explained by the profiling data matrix.  This 

parameter is considered in the context of the second value (Q2
Y) which is the proportion of Y predicted 



 2.7 Multivariate data analysis  
 

 61 

by the profiling data matrix through a cross-validation process.  A higher Q2
Y value is indicative of a 

more reliable PLS model.  However, the difference between the R2
Y and Q2

Y values is also important, as 

a greater difference may indicate the influence of over-fitting on the model produced by noise in the 

data.  Over-fitting must be minimized as much as possible to allow reliable interpretation of the PLS 

and OPLS models.  Once the PLS and OPLS models are validated, loadings plots are often used to 

highlight the underlying features responsible for the desired covariance.  In a biochemical context, 

these patterns of metabolites may represent biomarkers which indicate biological processes, pathogenic 

processes, or pharmacologic responses to therapeutic interventions, depending on the design of the 

study (Biomarkers Definitions Working Group, 2001).  However O/PLS loadings plots can equally be 

used to highlight the LC-MS features driving analytical variance.  An example of a specialised loadings 

plot called an “S-plot” (Wiklund et al., 2008) is shown in Figure 2-14A for the OPLS discriminant 

analysis (OPLS-DA, meaning comparison between distinct classes) of the urine sample analyses 

described above and illustrated in Figure 2-13.  The S-plot juxtaposes covariance with its reliability 

(correlation), sending the most discriminant features to the extremes of each axis.  The intensities of 

the red and blue highlighted features are shown for each pre and post-serum injection in Figure 2-14B, 

illustrating the opposing patterns with respect to the binary study design.    
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Figure 2-14.  OPLS-DA loadings “S-plot” (A) and variable line plots of selected features (B).  
Features observed in the repeated UPLC-MS analysis of a human urine sample before and after 
the single injection of a serum sample are plotted above with respect to their covariance and 
correlation, while the intensities of selected red and blue highlighted features are shown for each 
pre and post-serum injection illustrating the opposing patterns.   
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2.8 Metabolite identification 

Once features of interest have been selected using multivariate analysis, their interpretation in a 

biological context is limited only by the extent to which their chemical identities are known.  A single 

analyte can produce a number of features, any of which may not be intuitive to relate back to the 

expected monoisotopic mass of the molecule.  For this reason, metabolite assignment and identification 

of selected features among the thousands monitored by LC-MS analysis remains a challenge within the 

field (Wishart, 2011).  It is important to draw a distinction between assignment and identification, as 

the former is an annotation of a feature based on measured properties and the latter is claimed after 

verification by comparison to an authentic standard (Salek et al., 2013, Sumner et al., 2007).   

In order to properly assign features with a chemical name to benefit biological interpretation, the 

analyst must first interpret his or her chromatographic and spectral data.  Determination of the true 

monoisotopic parent in a cluster of masses detected at a given retention time and all potentially derived 

from the same molecular species is not always trivial or even possible.  Many molecular species simply 

are not observed as simple [M+H]+ or [M-H]- protonated or deprotonated ions, but rather as adducts, 

multimers, or fragments, even when fragmentation is not purposefully induced.  Therefore, even a 

spectrum of a known chemical can require significant interpretation.  The inverse approach of 

constructing formulae and molecular structures from spectral information, especially that confounded 

by the presence of multiple molecular species, can be prohibitively challenging.  Yet, some 

understanding of a mass spectrum and its relation to the suspected molecule is generally required for 

subsequent steps in the identification process.   

2.8.1 The elemental composition approach to elucidating a molecular formula 

The most rudimentary approach to molecular assignment is the mathematical combination and 

permutation of atoms (selected by the analyst based on their assumptions of the molecular 

composition) until molecular solutions are found with the same mass as the observed feature (+/- some 

set window of error).  More liberal estimation of the component atoms can result in greatly amplified 

numbers of potential matching formula.  One effective filter applied to reduce erroneous matches is 

derived from the similarity of the observed isotopic pattern to each theoretical pattern, a property that 
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is accurately calculable if the molecular species is natural in origin (and therefore the population of 

product ions conforms to the expected natural distribution of isotopes).  While popular for its ease of 

automation across many masses of interest, the results of the “elemental composition” approach are 

often not definitive at routinely achievable mass accuracy (approximately 1ppm).  In the best case, a 

molecular formula can be determined; however the molecular structure remains unsolved.        

2.8.2 Use of mass and spectral databases for metabolite/biomarker assignment 

Where a monoisotopic value can be derived from the spectral data, that mass may be searched against a 

number of freely available databases (Williams, 2008, Smith et al., 2005, Horai et al., 2010, Wang et al., 

2012, Wishart et al., 2009).  Some databases such as HMDB are restricted to known chemicals relevant 

to the human metabolome.  Other databases such as ChemSpider or PubChem contain a far greater 

wealth of chemical structures, but may return assignments that are biologically redundant or irrelevant 

to the system being studied.  The number of potential assignments returned from a database search of a 

mass therefore depends on the size and structure of that database, as well as the mass error used in the 

search (and therefore the mass error inherent to the MS instrumentation).  In recent years, efforts have 

been increased to include additional spectral information beyond that of parent mass and molecular 

structure.  The inclusion of CID MS/MS reference spectra and spectral searching in freely available 

databases such as METLIN and MassBank has simultaneously reduced the need for spectral pre-

interpretation and increased the confidence in proper formula and structure matching. 

2.8.3 Validation to authentic standards for metabolite identification  

Despite the growing utility of database searching and the popularity of automated elemental 

composition calculations, the assignments gathered from these approaches must be considered 

tentative.  Validation of retention time, mass, isotope distribution, and (if available) fragmentation 

pattern between the candidate compound and an authentic standard remains the gold standard 

required for absolute assignment in the LC-MS-based metabonomic field (Kind and Fiehn, 2010, 

Sumner et al., 2007).  Standards are therefore run by the original analytical method, often at a later date 

following the original analysis, along with one or more representative samples from the original 

experiment in order to assess the chromatographic and spectral similarity.  On well characterized and 
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reproducible instrumentation, LC retention time results similar to those obtained in the original 

experiment can be expected.  However, the variance between separate experiments is generally greater 

than that experienced within any one experiment, where the solvents are of an identical batch and 

preparation and the stationary phase is at a certain point of use and conditioning.  At times, returning 

to the process of molecular identification after the data from the original experiment has been collected 

and analysed can be confounded by slight differences between experimental conditions.  To avoid this, 

if the user has an idea of which molecules they expect to be of interest at the conclusion of an 

experiment, they can prepare and analyse those individual standards within the original sample set, 

therefore obtaining maximally comparable retention time data.  Where this approach is not possible, 

an idealised approach might be to run a full complement of thousands of individual standards to serve 

as authentic references within each profiling experiment in the event that some may be discriminating 

features of interest requiring subsequent identification.  This approach is not practical on a per-

experiment basis, given that the time to collect the standards data could equal or outweigh the time 

required to analyse the biological samples in many large profiling experiments.   

2.8.4 Method-specific LC-MS retention time databases   

Where individual chemical standards have been obtained and analysed in the course of newly sought 

absolute identifications, their retention times and spectra can be recorded.  Indeed, many metabonomic 

research laboratories maintain in-house LC-MS libraries with the retention time of authentic standards 

run by their established chromatographic methods.  These data can be referenced in later experiments 

to generate tentative molecular assignments (absolute assignments are still made by direct comparison 

to the authentic standard).  This approach requires that the reproducibility of the method is robust to 

changes in the condition of stationary phase, variance in mobile phase batch quality and preparation, 

and the physical configuration of the instrument.  Furthermore, such a database requires that the 

method not be tailored, improved, or otherwise changed.  The approach is therefore valuable but strict, 

and has the potential to limit the speed and quality of future analyses.  The methods may not be 

accurately implemented in other labs with slightly differing instrument configurations, and therefore 
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are of limited use across the greater field.  A potential alternative to method-specific databases is the 

conceptual focus of Chapter 5.             
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Chapter 3: Development of coupled liquid chromatography and 

mass spectrometric methods for the profiling of human urine from 

large patient cohorts. 

3.1 Introduction  

The goal of metabolic profiling is to maximise the range of molecular species measured in complex 

sample matrices while achieving a high degree of specificity and sensitivity.  These traits are inherent 

strengths of the multidimensional separation and sensitive detection provided by high resolution 

hyphenated LC and MS technologies, and as a consequence, UPLC-MS has found widespread 

application in the profiling field.  This chapter explores the development and application of 

complementary chromatographic methods with special emphasis on addressing the challenges of large-

scale deployment in the context of molecular epidemiology studies.   

Unlike clinical chemistry approaches, whereby a small number of molecular targets are analysed (by 

LC-MS or other means) in a quantitative manner that allows direct comparison to established reference 

values, the broad scope of profiling and the lack of commensurate quantitative benchmarking limit LC-

MS profiling studies to relative comparisons among samples or sample sets.  This requires each study to 

contain multiple samples or sample subsets which span a physiological range of interest or adequately 

represent phenotypes (often simply “control” and “diseased”) for direct comparison.  The data 

generated among samples within a study must also be captured with sufficient precision to facilitate 

cross-sample comparison.  Unfortunately, both LC and MS face inherent challenges to precision due to 

the direct interaction of the sample and requisite carriers (e.g. LC mobile phase components) with the 

analytical system, resulting in gradual changes in the measurements produced.   

When analysing many samples in sequence, the dynamics of the UPLC-MS system manifest collectively 

as the so-called “run-order effect”.  This phenomenon reflects the combined changes in UPLC, ion 

source, and MS hardware performance that ultimately cause time-dependent deviation in the analytical 

measurements taken and reduce the overall performance of the analysis.  Perhaps the most striking 

component of the run order effect is the commonly observed decrease in sensitivity across continuous 
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sample measurement, originating from contamination of the ion source and initial ion optics (resulting 

in reduced formation and transmission of ions) and/or longitudinal fatigue of the ion detection system.  

Additional run order effect components are common such as the chromatographic migration of 

molecular species and changes in peak shape.  Both the UPLC and MS systems, as well as the ionisation 

interface between them, are therefore dynamic, and should each be the subject of scrutiny when 

assessing the precision of UPLC-MS analyses.     

It is commonly understood that UPLC-MS instrumentation is most dynamic when all components are 

clean and new, as made evident by numerous publications citing specific efforts at conditioning a 

“fresh” LC-MS system (clean ion source and new chromatographic column) through repeated exposure 

to representative sample material (Want et al., 2010, Spagou et al., 2011, Gika et al., 2007, Sangster et 

al., 2006).  Such conditioning efforts are aimed at equilibration of the analytical system, thereby 

increasing the precision of subsequent analyses.  This process is considered to be largely finite and 

compensated for by a short if-not-arbitrary number of conditioning injections (e.g. five to ten (Zelena 

et al., 2009, Want et al., 2010)).   

Somewhat contrary to the practice of conditioning is the practice of performing LC-MS analyses in 

distinct sets of continuous sample analyses (commonly, “batches”) interrupted for cleaning and 

maintenance of the LC-MS system components intended to restore the initial state of performance 

(herein referred to as an “analytical batch”).  This interruption of continuity is often considered 

necessary to prevent excessive decline in LC-MS platform performance which would severely 

compromise the molecular coverage and measurement precision if left unattended (Zelena et al., 2009).  

This is most commonly performed to restore the MS instrument’s original sensitivity, and involves 

disassembly and cleaning of the ion source components and adjacent ion optics.  Batches may also be 

defined by the replacement of chromatographic stationary or mobile phases as well as ancillary 

hardware such as components of the sample injection system.   

While the run order effect is gradual, batch effects are sudden deviations in measurement whereby the 

chromatographic retention, mass measurement, and intensity are subject to change in a global or 



 3.1 Introduction  
 

 69 

metabolite-specific manner.  These deviations complicate downstream data processing, requiring 

sophisticated alignment tools, normalisation strategies, and more recently dedicated batch correction 

efforts (Vaughan et al., 2012, Dunn et al., 2011, Draisma et al., 2010, Wagner et al., 2007) all of which 

risk introducing error and artefacts (e.g. over-correction) to the dataset.  Furthermore, additional 

conditioning of the system may be necessary at the commencement of each batch to ensure that the 

system is again equilibrated, reducing the efficiency of the overall workflow.  Minimising the number of 

analytical batches required for sample set analysis and ensuring continuous operation of the LC-MS 

platform is therefore of specific interest, especially as sample sets are driven to be larger in scale to 

accommodate the desire for enhanced statistical power for identification of candidate biomarkers of 

disease.   

Continuous operation of the system requires an uninterrupted supply of samples for analysis, which 

creates the potential for a second type of batch based on the schedule of sample preparation and the 

stability of each sample’s molecular content.  Modern commercial LC-MS instrument packages include 

a dedicated sample handling device capable of introducing limited numbers of samples to the 

instrument in an autonomous manner.  However, as the capacity of such systems is indeed limited, 

samples are generally prepared in discrete batches (herein referred to as “preparation batches”) by 

laboratory personnel or centralised robotics instrumentation and then transferred to the LC-MS 

sample handling device for storage prior to analysis.  The preparation schedule must therefore be 

achievable within a typical laboratory working environment, periodic to ensure ease of management, 

and frequent to limit the amount of time a prepared sample ages between preparation and analysis.  

While the first two requirements are functional and related to efficiency, the last requirement relates to 

data quality, reducing the time allowed for metabolite reaction or degradation, and potentially 

improving the total number of metabolites accurately measured.  The need to establish a schedule and 

number of sample preparation batches is magnified when analysing vast numbers of samples per study, 

such as in typical epidemiology studies of biobank-derived sample cohorts.           

The size of the preparation batch is dependent on the capacity of the sample preparation laboratory as 

well as the quality requirements and duration of the analysis.  For example, in targeted applications, the 
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stability of target molecules ageing while queued for analysis is commonly evaluated in method 

validation, and an appropriate batch size (or compound-stabilising preparation procedure) may be 

tailored accordingly to uphold a predetermined standard of measurement precision.  However, in 

profiling studies of complex human biofluids, the wide range of detectable molecular species virtually 

assures that some of the observed content will be highly unstable, to an extent that may not be practical 

to address through an intensive sample preparation schedule.  The stability of molecules therefore 

ultimately impacts the molecular coverage observed in profiling studies.  As the wide breadth of 

molecular coverage is a fundamental tenet of molecular profiling, this too deserves special emphasis in 

workflow development.   

A template for large-scale analysis is therefore proposed in Figure 3-1, wherein a single profiling 

experiment is composed of one or more analytical batches (x), and each analytical batch is composed of 

one or more sample preparation batches (y).  In turn, each sample preparation batch is comprised of 

one or more groups of assay samples (z).  Although it will be discussed subsequently, it is worth noting 

here that the 96-well plate is an established standard utilised in many high throughput/high volume 

processes including cell screening, PCR amplification, and immunoassays (i.e. ELISA) and is therefore 

an appropriate building block for preparation batches in high throughput metabolic profiling 

applications.   

 

Figure 3-1.  A schematic of the basic structure of large-scale UPLC-MS profiling analysis 
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In order to successfully conduct large-scale experiments and generate high quality profiling data for 

comparative analysis, the values for x and y and z must be carefully considered and optimised in a 

holistic manner that is reasonable within the constraints of the laboratory environment.  The analytical 

methods and LC-MS system configuration should be harmonised to sustain uninterrupted analysis for 

as long as possible to minimise or preclude batching effects, facilitating downstream data handling and 

conserving the statistical power which is expected of large studies.  To allow for potential data fusion 

and meta-analysis among distinct large populations, an additional emphasis is placed on minimising 

inter-experimental variance and establishing quality criteria. Working these improvements into LC-MS 

methodology will positively impact the applicability of LC-MS in mating broad screening to large 

populations for unparalleled insight to human metabolism.   

To realize the benefits of LC-MS analysis in this context, the development of high-metabolite coverage 

methods must be undertaken with emphasis on reproducibility, efficiency, and throughput.  These 

aspects should be developed without conceding the principles of high molecular coverage, sensitivity, 

and specificity which propel LC-MS forward as a leading profiling technology (Gika et al., 2014).  As 

application of profiling to epidemiological sample cohorts means studying an array of phenotypes, 

sample preparation techniques should be minimally selective.  The chromatographic methods must 

therefore be robust and capable of handling crude biological samples with minimal manipulation, 

additionally benefitting the working laboratory by being more convenient, more rapid, and less error 

prone than more complex processing strategies.  To avoid undermining the ability to complete large 

experiments, these aims need to be prioritised without significantly impacting the overall speed of 

analysis achieved using modern rapid methods.   

This chapter is therefore organised in three main components of development: 

1. Adaptation of two complementary chromatographic assays (RPC and HILIC) to improve 

information density and maximise molecular coverage with high precision. 

2. LC-MS system optimisation and characterisation of the variance underlying analytical batch 

size. 
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3. Defining optimal preparation batch size for limiting sample age within a practical working 

environment. 

Here it is hypothesised that the conventional method of acquiring LC-MS data in small batches is 

detrimental to the overall precision of a large-scale assay.  Moreover, run order effects are easier to 

correct for than batch effects because of their systematic nature, which is subject to modelling (a 

concept which is further developed in the subsequent chapter).  The overarching goal of this chapter is 

therefore to maximise the coverage of the metabolome by developing complementary RPC and HILIC 

assays while ensuring adequate precision, both in the chromatographic technique and system 

performance to preclude the need for acquiring large-scale projects in multiple small batches. 

3.2 Specific Objectives  

• Generate standard materials for use in both method development and routine application to 

large cohort analyses. 

• Develop high capacity chromatographic methods with complementary metabolite coverage 

that are fit-for-purpose in human urine LC-MS profiling studies.     

• Define a system configuration using cutting edge analytical instrumentation that maximises the 

analytical batch size, optimising the balance between system sensitivity and longitudinal 

precision of measurements.  

• Establish an optimum sample preparation and analysis schedule that is fit for the purpose of 

molecular profiling, demonstrating adequate throughput, minimal sample age, and maximal 

laboratory efficiency. 

3.3 Reagents and biofluids for method development and system 

optimisation. 

Throughout this chapter, two main sources of metabolite content are used for the development of 

chromatographic methods and assessment of their performance.  The first is a urine sample generated 

from a pool of 76 freshly voided samples, donated by willing volunteers with approved informed 

consent, for use as a long term reference (LTR) material across multiple urine profiling studies.  This 
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pool is used herein as a representative matrix for both RPC and HILIC method development.  The 

second source of metabolites is a pair of synthetic mixtures of chemical reference standards, each 

formulated for a single chromatographic assay (RPC and HILIC).  Given the ubiquitous use of these 

materials throughout this chapter, a brief description of their development is warranted. 

3.3.1 Development of a pooled urine sample for use as a representative matrix 

In order to create a single representative urine matrix for the standardisation of ongoing research and 

analysis within the MRC-NIHR National Phenome Centre, a large pool of urine was created and 

aliquoted.  Approximately 20 litres of urine were pooled from fresh voids of 78 individual participants 

in a single day of collection according to the standard operating procedure included in Appendix 1 

(PCSOP.036 revision 7: Generation of Urine Long Term Reference (LTR), Matthew R. Lewis, 2013).  

Briefly, urine was voided directly into 500 mL Corning centrifuge tubes which were stored at 4° C 

overnight.  A single mL of each sample was reserved for NMR analysis to ensure that polyethylene 

glycol (PEG), a common contaminant observed in collected human urine specimens, was not present 

in appreciable quantity.  Two samples were removed as a result of this analysis.  The day after 

collection, the remaining 76 samples were centrifuged at 4° C and the supernatants were combined in a 

single Nalgene 20L polypropylene carboy and homogenised at 4° C by stirring using a Teflon-coated 

stir-bar and magnetic stir-plate.  The homogenised urine was aliquoted into 15 mL Corning centrifuge 

tubes and stored at -80° C.  This urine LTR was used regularly for the development and illustration of 

methods within this chapter.                    

3.3.2 Development of chemical reference mixtures  

To augment the use of urine LTR in LC-MS method development and assessment, synthetic mixtures 

of chemical reference materials were created, with a subsequent intended use of application in pre-

experiment hardware suitability testing (evaluation of the UPLC-MS system for performance within 

predetermined boundaries), within-run targeted quality control (QC) evaluation, and retention locking 

for LC-MS data fusion (e.g. of new data to a database of annotated molecules).  Purposeful metabolite 

selection is required to ensure mixtures are economical and fit-for-purpose, providing specific targets 

that sparsely represent the molecular diversity observed in human biofluids.  The Division of 
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Computational Systems Medicine at Imperial College London houses a large library of metabolically 

relevant small molecule reference standards which served as the pool for further selection and testing 

via the algorithm illustrated in Figure 3-2.     

 

Figure 3-2: Strategy for selection of chemical standards for reference testing 

By considering the empirically observed water solubility, commercial availability, and potential 

biological significance of each metabolite, the total library of over 1800 available reference materials 

was reduced to the 57 high priority standards listed in Table 3-1.  Special care was taken to ensure the 

collection was appropriately diverse in relation to the observed contents of human urine and not 

entirely composed of a single molecular class (e.g. amino acids) that may fail to broadly represent the 

analytical behaviour of urinary metabolites.  Specific inclusion was granted to chemical standards with 

a record of prior use in a standards mixture from published literature (Evans et al., 2009, Zelena et al., 

2009) or publically available standard operating procedure (HUSERMET, 2008).  
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Ref. Nominal Name 
2-Deoxyguanosine 
2'-Deoxyyadenosine 
2-Fluoro-DL-alpha-phenylglycine 
3-Hydroxybutyric acid 
3-Hydroxytyramine 
4-guanidinobutyric acid 
5-Hydroxytryptamine 
Adenine 
Adenosine 

H, H2 Alanine 
Arginine  

H Benzoic acid 
Benzyltrimethylammonium 
bromide 
Betaine 
Carnitine 

H, H2 Citric Acid 
Citrulline 
Creatine 
Creatinine 
Cyclohexylacetic Acid 
Cytidine  
Cytidine 5'-monophosphate 

M Dioctyl phthalate 
Folic acid 

H Fructose 
M Glucose  

H2 Glutamic acid  
Glutamine 

H2 Uridine 
 

Ref. Nominal Name (continued) 
Glutathione (reduced) 

H, H2 Glycine 
M, H2 Hippuric Acid 

Inosine 
Isoleucine 

M, H2 Leucine 
H Lysine 
H Malonic Acid 

M Methionine 
N-acetyl-glycine 
N-Acetyl-L-aspartic acid 
N-acetyl-L-cysteine  
N-acetyl-L-glutamine 
Nicotinamide 

M, H Octanoic acid 
M, H2 Phenylalanine 

M Progesterone 
Proline 
Riboflavin 

H Stearic acid 
H Succinic acid 

Taurine 
Threonine 
Trigonelline hydrochloride 
Trimethylamine-N-oxide 

M, H, 
H2 Tryptophan 
M Tyrosine 

Uracil 
H2 Uridine 

 

Table 3-1. List of 57 high priority standards assessed for inclusion in the development of RPC and 
HILIC test mixtures.  Molecules appearing in previously published literature are indicated in 
blue (HUSERMET), orange (Metabolon) and green (both).  For specific reference, H = 
HUSERMET (HUSERMET, 2008), H2 = HUSERMET (Zelena et al., 2009), and M = Metabolon 
(Evans et al., 2009).   

Chemical reference solutions were made in a qualitative manner by aliquoting a small scoop (for solids) 

or drop (for liquids) of the chemical to a clean storage tube and diluting with 5 mL of ultrapure water. 

The approach resulted in concentrated solutions for water soluble chemicals.  Incomplete solubility was 
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observed for some chemical preparations despite vortexing and sonication at room temperature (for a 

maximum of 30 minutes), however in most cases a sufficient amount of material had dissolved to 

produce a signal by UPLC-MS analysis.  Therefore, regardless of the visible outcome, these stock 

materials were used as the basis for subsequent analysis, as this development was not dependent on 

specific concentrations of metabolites.  Each solution or suspension was pipetted into an individual 

well of a 96-well deep well plate.  The plate was centrifuged to separate soluble and insoluble materials.  

The supernatant was decanted to a 96-well microplate, and carried through three rounds of 1:10 

(volume in total volume) serial dilution, with the aim of at least one concentration being appropriate 

for LC-MS analysis (neither too dilute to be detected nor too concentrated to saturate the 

chromatographic loading).  Plates of 1:1 (stock), 1:10, 1:100, and 1:1000 diluted reference materials 

were frozen at -80° C until required for analysis. 

Each 1:100 dilution reference material plate was thawed and prepared for UPLC-MS analysis by further 

dilution with either water or acetonitrile (3 volumes to 1 of sample) for RPC and HILIC analyses 

respectively.  RPC and HILIC reference methods (Want et al., 2010, Spagou et al., 2011) were used to 

determine the nominal retention and MS signal response in both positive and negative ion modes by 

electrospray ionisation.  A Xevo TQ-S (Waters Corp., Manchester UK) tandem quadrupole mass 

spectrometer was selected for use in rapid screening because of its fast polarity switching and high 

dynamic range, the former allowing for interleaved near-simultaneous detection in both ion modes and 

the latter creating a broad target for reference material concentration to fall within.  Full scan mass 

analysis and detection was utilised across the range of 50 to 1200 Daltons.  Where chromatographic 

overloading was observed, the 1:1000 dilution plate was thawed and used for reanalysis to obtain a 

more accurate chromatographic retention time.  In the event that a chemical was not observed in either 

positive or negative ionisation mode, 1:10 or 1:1 dilution plates were used for reanalysis.  If a signal was 

not observed at stock concentration (1:1), the compound was considered not suitable for MS detection.      

Metabolite species spanning the gradient elution portions relevant to the separation of urine by HILIC 

and RPC methods (and therefore spanning the relevant ranges of polarity) were determined to be 

method candidates, provided they were also detected in both ionisation modes.  The method candidate 
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list underwent further refinement to ensure adequate retention coverage of standards that were 

preferentially inexpensive, and for which stable labelled isotope versions were commercially available at 

a reasonable cost (stable isotope label variants of the mixture were intended for application in QC and 

retention alignment of study data).  Molecular diversity of the final candidates was considered, as was 

the short term stability of the mixture as assessed by both UPLC-MS and NMR spectroscopy.  With the 

knowledge that chemical reaction did not pose a short term risk to the stability of either mixture, a final 

recipe was crafted for each method.   

Two versions of each recipe were made.  The first is an un-labelled mixture of the compounds listed in 

Table 3-2, and is referred to as a system suitability test mixture (SSTM).  The second contains stable 

isotope labelled versions of all chemicals, made to the same recipe without two chemicals (hippuric acid 

and phenylalanine) which are instead added to all samples as internal standards.  This latter material is 

referred to as the method reference (MR).  The SSTM is used routinely in the NPC to qualify 

instruments as performing adequately for use prior to initiating an experiment, while the latter is used 

in NPC research as a sample dopant for real-time and post-acquisition QC assessment and retention 

time marking.  Within this chapter, the RPC and HILIC SSTMs are exclusively used for 

chromatographic method development.       

RPC SSTM HILIC SSTM
L-Glutamine L-Phenylalanine

L-Glutamic Acid Hippuric Acid
Creatinine Adenosine
Cytidine Adenine

Citric Acid Taurine
L-Isoleucine Creatine

L-Leucine L-Arginine
L-Phenylalanine L-Tryptophan

L-Tryptophan Uracil
Hippuric Acid
Benzoic Acid

Octanoic Acid
 

Table 3-2. Chemical reference standards composition of the RPC SSTM and HILIC SSTM.   
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The overlap of these reference mixtures with the published reference mixture content used by 

Metabolon (Evans et al., 2009) and the HUSERMET consortium (Zelena et al., 2009) (including 

unpublished SOP HU0005) is illustrated below in Figure 3-3.   

 

Figure 3-3.  Venn diagram illustrating overlap of chemicals used in standardising LC-MS 
instrument and chromatographic performance across three research groups.  RPC and HILIC 
mixtures from NPC are shown separately.  Graphic generated using Venny (Oliveros, 2007). 

3.4 Adaptation of chromatographic separations  

A molecular profiling system should be well suited to the partitioning of the chemical composition of 

the biological matrix, yielding specificity and sensitivity by minimising chemical interference.  

However, all applicable technologies impose a degree of selectivity that is counterproductive to 

achieving global coverage.  Perhaps the greatest source of unwanted selectivity in LC-MS analyses is 

imposed by the finite ability of any single chromatographic system to retain and separate the vast 

diversity of chemical species present in human biofluids.  Given the wide range of hydrophobicity and 

chemical structure (e.g. from urea to bile salts) potentially present in the small molecule content of 

human urine, no single chromatographic approach is suitable for achieving comprehensive coverage.  

Therefore, two or more assays with orthogonal selectivity may be used in sequence or in parallel, 

depending on the configuration of the instrumentation platform, to maximise the molecular class 
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coverage.  It is the aim of this section to develop these two chromatographic systems for continuous 

analysis, maximising the coverage of each individual assay. 

3.4.1 Urine analyte hydrophobicity and retention in a reversed-phase system 

Reversed-phase chromatography is highly regarded for its broad range of retention, high quality and 

uniform peak shape, fast equilibration, and excellent precision.  Urine nevertheless poses a challenge in 

RPC retention, as the hydrophilicity of many analytes exceeds that which is retainable by a reversed-

phase system.    Stationary phases with low ligand density have been engineered to be compatible with 

completely aqueous sample loading environments (a low ligand density allows for greater interaction of 

the stationary phase particle material and prevents phase collapse), enhancing the retention of small 

polar analytes to obtain greater coverage.  The method of Want and colleagues (Want et al., 2010) 

utilises such a stationary phase, and was therefore selected for application to large-scale profiling.  This 

method is referred to hereafter as the “reference method”.      

An initial goal was to investigate the retention and separation of early eluting molecular species.  

Analyses were conducted on a representative pooled urine sample using the reference method.  The 

chromatographic details have been explained in the publication by Want et. al., but to summarise, a 2.1 

x 100mm Acquity HSS T3 (trifunctional C18 alkyl phase bonded to high strength silica with 

proprietary endcapping in a 1.8 μm particle size) column (Waters Corp., Milford MA, USA) was held at 

40° C and used together with a combination of mobile phases (A = 0.1% formic acid in water; B = 0.1% 

formic acid in acetonitrile).  The separation was performed using the programmed mobile phase 

compositions and gradients listed below in Table 3-3.  The flow rate was held at 0.5 ml/min for the 

duration of the analysis, and the chromatographic eluate was directed to a mass spectrometer operated 

arbitrarily in the negative mode (unless indicated otherwise) by electrospray ionisation.  Throughout 

this chapter, all MS detection is made using a Xevo G2-S Q-ToF mass spectrometer (Waters Corp., 

Manchester UK).  Furthermore, due to the improved sensitivity of this instrument model over older 

generations of ToF mass spectrometers, 2 μl injections of prepared sample were made to the system 

rather than the 5 μl injections specified by the reference method.   This was accomplished in all cases by 

loading 10 μl of sample onto a 2 μl fixed-volume loop, with the excess draining off as waste.     
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Time (minutes) A (%) B (%) 

0 99 1 

1 99 1 

3 85 15 

6 50 50 

9 5 95 

10 5 95 

10.1 99 1 

12 99 1 
 

Table 3-3.  Chromatographic gradient of the reference method showing the duration and mobile 
phase composition of each step.  A = H2O + 0.1% formic acid; B = acetonitrile + 0.1% formic 
acid.    

An analysis by the above method is illustrated in Figure 3-4 (purple trace), overlaid with an isocratic 

separation of the same sample at the initial conditions (green trace).  The metabolite-dense region of 

the chromatogram was estimated to be between 0.4 and 8 minutes.  Comparison of their TIC traces 

demonstrates that the first 20% of the elution profile (from 0.4 to 2 minutes) from both separations is 

virtually identical, indicating the large contribution of isocratic separation to the overall method.   

 

Figure 3-4. TIC traces of a representative urine separation by the method of Want and colleagues 
(purple trace) and by isocratic elution at initial conditions (green trace). 
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This initial portion of the chromatogram was observed to be highly metabolite dense.  To further 

elucidate the feature density of the reversed-phase urine separation, feature extraction was performed 

on the gradient separation data file shown in Figure 3-4 using the centWave algorithm of the XCMS 

package (described in Section 2.6.2).  While conventional feature extraction relies on the response of 

features across multiple samples within an experiment to differentiate true signals from noise, such a 

method was not applicable for use on a single sample.  Therefore, high noise thresholds were utilised to 

preclude the incorporation of noise signals as features.  Those thresholds along with other relevant 

centWave parameters are listed in Table 3-4.   

The density of the number of detected features (regardless of their intensity) versus their 

chromatographic retention time were plotted in R, and illustrated in Figure 3-5.  While this simple 

analysis does not preclude the possibility that noise distribution is also higher in the earlier part of the 

chromatogram, it is a fair indication together with the TIC trace that the feature density is highest in 

the initial part of the chromatogram.  This observation warrants exploration of increasing the initial 

separation efficiency and distributing the metabolic content more evenly across the chromatogram. 

parameter value 

ppm 30 

peakwidth 1 to 8 

snthresh 50 

noise 1000 

prefilter x = 6 

y = 5000 

 

Table 3-4. CentWave parameters used for feature extraction within XCMS. 
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Retention time (minutes) 

Figure 3-5.  Distribution (smoothed count) of chromatographic peaks detected (N = 5103) using 
the centWave method in XCMS. 

The goal of method enhancement is to maximise the density of feature information while improving 

the overall distribution, as well as to improve chromatographic resolution where possible given the 

constraints on handling liquid flow imposed by the ESI interface and MS system.  As the most 

information-dense portion of the separation was shown to be obtained by isocratic elution, initial 

efforts were focused specifically on this region.  As separation efficiency under isocratic conditions is 

directly proportional to column length (as described in Section 2.3.2), a longer column of the same 

stationary phase (and therefore same plate height) should increase the chromatographic efficiency (and 

therefore resolution) in the early region of the chromatogram.  

To test this, the reversed-phase standards mixture was injected 3 times (sequentially) on three 150mm 

length columns and three 100mm length columns.  The columns were of the same stationary phase 

type (Acquity HSS T3), and the same inner diameter (2.1mm), but from three different manufacturer 
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batches to incorporate the real-world effects of column batch variation into the measurement.  All 

injections were performed on the same UPLC-MS system, and columns were tested in order of 

alternating length.  Isocratic separations were performed at the initial conditions of the reference 

method (99% water, 1% acetonitrile plus 0.1% formic acid) at a flow rate of 0.5 mL/min.  The scan rate 

of mass spectrometric detection was increased to 20 scans per second ensuring accurate definition of 

peak shape.  Three iterations spanning six scans of Savitzky Golay smoothing (Savitzky and Golay, 

1964)  were applied to all chromatographic peaks prior to measurement of peak width in order to 

minimise the contribution of detection noise.  All peak width measurements were performed by 

manual evaluation in MassLynx software. 

Chromatographic efficiency (N) was calculated on two pairs of early eluting species from the RPC 

standards mixture; glutamine/glutamic acid and isoleucine/leucine.  The glutamine/glutamic acid pair 

represents very early elution near the injection peak (0.46 and 0.48 minutes, respectively, in a 

representative analysis using the reference method, compared to an injection peak at 0.37 minutes), 

while the isoleucine/leucine peak pair elute toward the end of the isocratic elution period (1.46 and 1.58 

minutes, respectively, in a representative analysis using the reference method).  The resolution of each 

pair, based on the average peak widths and retention times across triplicate injections for each of three 

unique columns, was also calculated to provide a representative estimate of the ability of each method 

to resolve early eluting species.  The mass of the [M-H]- ion was used to extract the chromatographic 

trace of each standard (glutamine = 145.0613; glutamic acid = 146.0453; isoleucine & leucine = 

130.0680).  Feature extraction and peak width measurements were performed in MassLynx 4.1 

software.  The retention time of the leading and tailing peak slopes were recorded at half peak height.  

The difference between the two measurements was recorded as the peak width (Wh).  The leading value 

plus half of the width was calculated as the peak retention time.  

As expected, use of the 150mm column (50% longer than the 100mm column) yielded proportional 

increases in observed column efficiency for the isoleucine (51%) and leucine (47%) chemical standards 

in the reference mixture as illustrated in Figure 3-6.  Greater increases in column efficiency were 

observed for for the glutamine (98%) and glutamic acid (88%) chemical standards, seemingly due to 
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their closer proximity to the injection peak.  The resolution of the glutamine/glutamic acid separation 

achieved by the 150mm column was increased by 40% over that value achieved by the 100mm column.  

The resolution of the isoleucine/leucine acid separation achieved by the 150mm column was increased 

by 25% over that value achieved by the 100mm column.  Greater variation was observed in the peak 

widths of the later eluting isoleucine and leucine peaks, yielding a greater variance in the calculated 

efficiency values.  This is likely the result of substantial peak broadening and consequential distortion 

observed in the later part of the isocratic elution.     

 

Figure 3-6.  Column efficiency calculated using the average values of three replicate injections of 
the standards mixture, run on three independent columns of each length (100mm and 
150mm). 

The observed peak broadening of isoleucine and leucine indicated that the isocratic “hold” at initial 

conditions was excessive in length, contributing to distorted peak shape and low feature density 

(observable near the two minute retention time mark in Figure 3-5) within the affected 

chromatographic area.  In order to more evenly distribute the metabolic content as well as limit the 

effects of band broadening observed late in the isocratic portion of the elution, the initial hold was 

shortened from one minute to 0.1 minute.  This change reduced the chromatographic area of purely 
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isocratic behaviour to approximately the first minute of elution following the injection peak.  

Subsequent peak elution was uniformly sharp, and the metabolic content was more evenly distributed.  

These effects are illustrated in the overlaid chromatogram TIC traces from a purely isocratic separation 

at initial conditions (black), the gradient of Want and colleagues (green) and the same separation with 

a shortened initial hold (red) shown in Figure 3-7.  Collapsing the latter isocratic region also served to 

shorten the method by nearly one minute, allowing for either a shorter method or a longer gradient 

separation within the original method duration.      

 

Figure 3-7.  Chromatographic separation of the urine LTR using a 2.1 x 150mm Acquity HSS T3 
reversed-phase column and three distinct methods.  The separation using the reference method 
is shown in green, with an isocratic separation at initial conditions shown in black.  Finally, an 
adaptation of the reference method with a shortened initial hold is shown in red, contributing to 
more uniform peak shape and feature density across the first three minutes of elution.   

3.4.2 Optimisation of reversed-phase gradient elution conditions 

With the initial retention and requisite isocratic separation optimised, the focus of method 

development was turned to the subsequent gradient elution and the remainder of the chromatogram.  

Where the sample matrix is complex and the molecular content is well distributed across the 

chromatogram, a linear gradient is a prudent choice resulting in even and predictable performance 

across the analysis.  Whereas the reference method’s gradient separation was segmented into three 

independently linear stages, a single linear gradient covering the majority of molecular content was 

desired for the adapted version on the grounds of simplicity and robustness.  It was hoped that this 

decision would translate to increased assay precision, as well as potentially simplifying future retention 
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time correction, retention time prediction, and potential method transfer efforts (e.g. to smaller inner 

diameter columns, requiring re-mapping of annotated molecules).  

The first linear gradient segment from the reference method (ΔB = 7% per minute) was extended to 

completion (1% to 100% B in 14.14 minutes) in order to elucidate the entire RPC urine chromatogram 

in linear form (Figure 3-8).  Visual evaluation of feature density with respect to chromatographic 

retention time was used to determine a practical gradient endpoint for the analysis, therefore setting 

the gradient duration.  Both positive and negative mode MS detection were utilised to ensure the total 

detectable feature density was represented as accurately as possible.  In both modes of detection, 

virtually all of the observable molecular content was eluted before the eight minute mark, 

corresponding to a solvent composition of 56.3% B (acetonitrile + 0.1% formic acid).  This composition 

was therefore chosen as the end of the analytical gradient segment.      
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Figure 3-8.  Assessment of feature density within a linear separation of the urine LTR.  TIC traces 
are shown for positive (green) and negative (red) MS detection which closely overlap in the data 
rich region.  Finally, the chromatographic linear gradient expressed in %B (acetonitrile + 0.1% 
formic acid) from 1% to 100% is overlaid in purple.   

It is important to note that the contents of urine can vary widely among samples, and therefore 

development of analytical conditions conducted on a single sample may not be sufficiently 

representative of the matrix for all steps of development.  In the course of evaluating the analytical 

gradient endpoint, many observations were made of urine specimens donated from individual 

volunteers, both male and female and of various ages.  However, the urine LTR was found to be 

sufficiently representative of normal healthy urine (perhaps unsurprisingly as it is a combination of 76 

unique samples) in this instance and is therefore used herein for illustration.  It is also noteworthy that 

the gradient endpoint chosen based on healthy urine may not be appropriate for all urine samples, as 
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some pathological conditions are known to result in the “spilling” of more hydrophobic molecular 

species into the urine.  For example, patients with cholestasis will have an abnormally large quantity of 

bile acids in their urine, many of which elute beyond the bounds of the linear separation presented here 

(Bove et al., 2004).  For this reason, a second “gradient wash” step was introduced to rapidly raise the 

concentration of organic solvent to 100%, preventing the accumulation of potential hydrophobic 

species.  This gradient was set to approximately 10x the slope of the analytical gradient (rising to 100% 

B in 0.7 minutes), resulting in rapid elution.  Consequentially, chromatographic peaks observed in this 

area will be composed of less scans than those eluted within the analytical gradient, and some 

quantitative accuracy may be compromised.  However, where the data are sufficiently indicative of the 

presence of more hydrophobic species, additional investigation by specialised analyses (ie. bile acid 

profiling) may be warranted for those samples (Muto et al., 2012). 

Within the boundaries of the separation defined, the raw performance of the gradient separation may 

be addressed.  The ultimate consideration in the development of a gradient separation of a complex 

biofluid is the maximisation of the theoretical number of peaks that could be fitted into a given 

chromatographic space with a resolution of one, also known as the peak capacity.  While the Knox 

equation and van Deemter plots have traditionally been used to identify the optimum flow rate for 

maximal peak capacity (simultaneously limiting the peak broadening effects of Eddy-diffusion, 

longitudinal diffusion, and mass transfer) in liquid chromatography, a recent investigation has 

demonstrated that flow rates far in excess of the theoretical optimum value continue to provide 

performance gains with small particle size columns (Petersson et al., 2008).  Therefore, efforts were 

undertaken to increase the mobile phase flow rate, requiring specific consideration of the potential 

limitations of system pressure tolerance and the desolvation capability of the downstream LC-MS 

interface.   

System pressure tolerance is ultimately limited by the specification of the LC pumps at a given flow 

rate.  Fortunately, UPLC pump hardware has been specifically designed to withstand high system 

pressures.  The Acquity UPLC (Waters Corp., Milford MA, USA) model utilised for all work within 

this thesis has a maximum recommended operating pressure of 15,000 psi at the flow rates considered 
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herein.  The pressure experienced by the pumps is related to the viscosity of the solvent(s) used, which 

is in turn a function of their composition and their temperature.  To minimise system pressure, low 

viscosity solvents that form low viscosity mixtures are preferentially used.  Water and acetonitrile are 

well suited to this task, yielding a maximum system pressure at approximately 75/25 water/acetonitrile 

which is only slightly higher than the pressure produced by water alone.  This is in contrast to other 

common solvent combinations for reversed-phase LC-MS such as water and methanol that reach a 

higher relative maximum pressure when mixed, which limits their use in high flow rate separations.   

The viscosity of all LC-MS solvents is reduced at the point of greatest restriction by applying heat to the 

chromatographic column and column inlet, allowing for increased flow rates to be achieved at a given 

system pressure.  However, increased column temperature can have negative effects on the stability of 

the stationary phase and therefore the longevity of the column and precision of retention data across an 

experiment.  The retention of early eluting species will also be improved at lower temperatures, 

benefitting the coverage of the assay.  Finally, temperature sensitivity of the analytes in a complex 

matrix is a concern, as some labile molecular species have been observed to yield lower signals of 

detection at higher column temperatures (e.g. trichloroacetic acid).  However, the relationship between 

the use of higher flow rates at increased temperatures and the consequential faster elution means that 

the analytes are exposed to higher temperature for less time, confounding the outcome.  While 

optimisation for a set of target compounds is possible based on empirical observation, application in 

profiling studies where discovery is often the goal generally adopt a more conservative nature.  

Therefore, the column temperature was increased 12.5% from the reference method’s specification of 

40° C to 45° C, which is the manufacturer’s maximum suggested operating limit for the stationary 

phase material.   

At this temperature, the maximum pressure endured by the system when performing the water to 

acetonitrile gradient described above (ΔB = 7% per minute) was recorded for 10 replicate analyses at 

four distinct flowrates (0.4, 0.5, 0.6, and 0.7 mL/minute).  The observed data were extrapolated to 

determine the flow rate achievable at the maximum system pressure (15,000 psi) recommended by the 

instrument manufacturer, circumventing the need to physically assess this upper limit and avoiding 
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risking damage to the pump components (eg. seals), as illustrated in Figure 3-9.  Using this approach 

with lightly used columns (<200 injections), flow rates of up to 0.77 mL/min are estimated to be 

possible.  However, it is prudent to allow some working room to ensure the assay will be robust to 

variations in system pressure within and among experiments.  Doing so helps to buffer against 

variation in system pressure arising from either upward drift in pressure caused by blockage via 

particulate matter and small amounts of protein precipitated on-column by the strong eluent, or as a 

consequence of variation in stationary phase manufacturing batches, which produce particles of 

variable size that contribute to variance in system pressure exerted by each unique column.  For these 

reasons, it is a common rule of thumb to routinely operate at 80% of the maximum tolerable system 

pressure (12,000 psi) (Petersson et al., 2008).  The maximum pressure produced with a flowrate of 0.6 

mL/minute fits well with this guidance.     

 

Figure 3-9. The relationship between UPLC system pressure and mobile phase flow rate.  Each black 
dot represents the average of 10 measurements of the maximum system pressure observed during 
a linear A (water + 0.1% formic acid) to B (acetonitrile + 0.1% formic acid) gradient at 7% per 
minute for flow rates of 0.4, 0.5, 0.6, and 0.7 mL/minute.  Extrapolation of the system pressure as 
a function of the mobile phase flowrate (black line) shows the maximum tolerated system 
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pressure (15,000 psi, red line) achieved at approximately 0.77 mL/minute.  A flowrate of 0.6 
mL/minute is very near 80% of the maximum tolerated system pressure. 

However, before making a final determination regarding LC flowrate in a hyphenated system, the 

capability of the downstream components must also be considered.  In the case of LC-MS, the 

(electrospray) ionisation interface has a finite ability to ionise and desolvate LC effluent.  Greater flow 

can reduce the ionisation and desolvation efficiency resulting in an apparent decrease in detected signal 

for a given chemical quantity.  This effect was illustrated by repeated analysis of the RPC SSTM at the 

flowrates of 0.4 to 0.7 mL/minute as tested above, and the integrated areas of selected reference 

standards eluting at various mobile phase compositions are illustrated in Figure 3-10.  Selection of 

flowrate in such a hyphenated system is therefore a compromise between separation performance and 

sensitivity (and therefore molecular coverage).  For all LC-MS development presented herein, a 

maximum flow rate of 0.6 mL/min was chosen as desolvation appeared complete in the source (with 

aggressive desolvation settings of 600° C and 1000 L/hr nitrogen flow), leaving no residual liquid at 

mobile phase conditions from 100% aqueous to 100% organic.  Flow rates greater than 0.6 ml/min of 

mostly aqueous LC effluent were found to be incompatible with lockspray hardware (specific to Waters 

MS instruments), resulting in the rapid accumulation of liquid on the lockspray baffle.  During longer 

periods of blocking the mobile phase spray, such as during the automatic tuning of the detector gain 

between analyses, this accumulation was occasionally accompanied by suction of droplets into the 

source cone, disrupting the data from subsequent analyses.  The resulting 20% increase in mobile phase 

flow rate (and 12.5% higher column temperature) resulted in earlier solute elution across the gradient.  

Therefore the gradient slope was made slightly shallower to compensate (6.667% B per minute instead 

of 7%, equalling 1% per 9 seconds) and the analytical gradient endpoint was rounded down to 55%.   
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Figure 3-10. Chromatographic peak area of selected SSTM reference standards decreases with 
respect to increased mobile phase flow rate.    

Finally, prior to the calculation of peak capacity achieved by the modified method, all washing and 

equilibration steps were carefully optimised to maximise the volume of solvent delivered (column 

volumes) in a given amount of time without exceeding the system pressure limits imposed by the 

UPLC pumps.  Chromatographic column volume (VM) was estimated by calculating the volume of the 

column as an empty cylinder and assuming that 40% of that space is occupied by the stationary phase 

material.  The remaining 60% around and within the porous particles may therefore be occupied by 

mobile phase.  The equation used herein for VM is illustrated below, where r is the cylinder’s inner 

radius and h is its height (i.e. column length).    
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By this estimate, the 100mm and 150mm columns have column volumes of 0.21 and 0.31 mL, 

respectively.  The gradient flow rates were tuned to achieve a high and nearly constant pressure as the 

solvent composition (and therefore viscosity) changed from completing the gradient, through the high 

organic wash, return to initial conditions, and equilibration at initial conditions.  A comparison of the 

system pressure traces generated by the optimised and reference methods is illustrated in Figure 3-11.  

 

 

Figure 3-11. System pressure traces of the optimised (green) and reference (red) methods.  The trace 
of the optimised method illustrates the efficient utilisation of available system pressure to enable 
faster column washing and equilibration to compensate for its greater length and therefore 
increased volume. 

In this manner, the number of column volumes applied to the column for washing and equilibration 

steps were held similar to those used in the reference method (Table 3-5).  This was achieved within the 

same overall gradient time despite the use of a 50% longer column.   
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Chromatographic 
method

Reference 
method

New 
method  

Column length 100 mm 150mm  
initial hold 2.41 0.19

Column 
volumes 

gradient 19.25 15.59
gradient wash n/a 1.24

high organic wash 2.41 1.76
return to initial 0.24 0.32

equilibration 4.57 5.03
 

Table 3-5. Comparison of the chromatographic column volumes used in the reference and 
optimised RPC methods. 

Following careful real-time evaluation of the change in system pressure (Δ = psi/minute) during the 

column equilibration step, it was concluded that, as an independent measure, an additional half minute 

of equilibration at a flowrate of 0.6 mL/min (0.96 column volumes) should be added to the method.  

Doing so consistently produced a lower Δ value, indicating a more complete equilibration of the 

column in 99% aqueous conditions.  Functionally this would be expected to manifest in greater and 

more precise retention of solutes, and therefore an assessment was attempted using the SSTM, 

randomly varying column equilibration times among values of 10, 5, 2.5, 1.25, 0.625, 0.3125 and 

0.15626 minutes.  A tendency for all analytes to elute slightly earlier with each subsequent injection 

(regardless of the equilibration time applied) was observed, requiring a linear correction to compensate 

for this run order effect.  Once the correction was applied, the chromatographic retention of all species 

were observed to rapidly decline when equilibration was conducted for less than two minutes.  The data 

suggest a trajectory of equilibration whereby increasing time yields improved analyte retention, but 

with diminishing returns.  This result is illustrated in Figure 3-12 using cytidine (RT ≈ 0.88 min) as a 

representative example.  The total column volumes for equilibration were therefore set at 3.6, and the 

overall method length set at 12.5 minutes.  The final method is described in Table 3-6.       
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Figure 3-12. Cytidine retention as a function of column equilibration time at initial 
chromatographic conditions (99:1 water-to- acetonitrile with  0.1% formic acid added).   
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Time (minutes) Flow Rate A (%) B (%) purpose 
0.00 0.60 99 1  
0.10 0.60 99 1 initial hold 
8.20 0.60 45 55 gradient 
8.35 0.61 35 65 gradient wash 
8.50 0.63 25 75 gradient wash 
8.65 0.67 15 85 gradient wash 
8.80 0.75 5 95 gradient wash 
8.90 0.80 0 100 high organic wash 
9.20 1.00 0 100 high organic wash 
9.40 1.00 0 100 high organic wash 
9.50 1.00 99 1 return to initial 
9.55 0.90 99 1 equilibration 
9.65 0.80 99 1 equilibration 
9.75 0.70 99 1 equilibration 
9.85 0.65 99 1 equilibration 
9.95 0.61 99 1 equilibration 

10.00 0.60 99 1 equilibration 
12.50 0.60 99 1 equilibration 

 

Table 3-6. Chromatographic gradient of the optimised RPC method, showing the programmed 
gradient times and mobile phase composition (A = H2O + 0.1% formic acid; B = acetonitrile 
+ 0.1% formic acid).   

3.4.3 Assessment of reversed-phase peak capacity 

The peak capacity of the optimised method was calculated and compared to that of the reference 

method.  For additional comparison, the optimised chromatographic separation was also applied to the 

100mm column.  Capacity was calculated using the reversed-phase reference mixture and the same 

columns and approach implemented in the measurement of chromatographic efficiency (Section 2.3.3), 

with two notable exceptions.  First, the reversed-phase standards mixture was injected ten times 

(instead of three) on each column in order to more precisely assess retention and peak width.  The first 

three (of ten) injections were used as conditioning injections, and the last seven used in peak capacity 

calculations.  Second, while three iterations of Savitzky Golay smoothing were again used, the span for 

each round of smoothing was reduced from six to two scans, as the peak shapes were sharper than 

those observed in the isocratic separations.  All peak width measurements were again performed by 

manual evaluation in MassLynx software.  Glutamine, isoleucine, tryptophan, hippuric acid, benzoic 
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acid and octanoic acid were selected from the reversed-phase standards mixture for the calculation of 

peak capacity due to their even spacing across the chromatogram, defining five discrete 

chromatographic segments.  Peak capacity was calculated and reported using the sum of each segment 

resolution as described in Section 2.3.3.    The overlaid EIC’s for each marker in both the reference 

method (top) and optimised method (bottom) along with the gradient of each expressed in %B are 

illustrated in Figure 3-13.    
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Figure 3-13.  Selected SSTM reference standards were extracted from a single analysis by the 
reference method (top) and optimised method (bottom).  In order of elution, the chemicals 
are: glutamine (green), isoleucine (purple, first of two closely eluting peaks), tryptophan (black), 
hippuric acid (brown), benzoic acid (red) and octanoic acid (green, first of two closely eluting 
peaks – the second is an unknown contaminant).  The gradient for each method (shown as %B) 
is overlaid in red.   

Ten injections of urine LTR were also made on each column in order to assess the feature distribution 

of urinary metabolites using each method.  Feature extraction was performed on injections 4-10 for 

each batch using XCMS and the parameters listed in Table 3-7.  
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parameter RPC-MS 

ppm 20 

peakwidth 1 to 8 

snthresh 50 

noise 1000 

prefilter x = 6 

y = 5000 

 

Table 3-7. XCMS parameters for the extraction of features from urine LTR analyses using both the 
reference and optimised chromatographic RPC methods. 

Taken as a whole, the optimised method produces 21% more peak capacity (using Equation 2.9, or 24% 

using the average method of calculating peak capacity shown in Equation 2.10) over the course of the 

analysis than the reference method between the first and last retention time markers glutamine and 

octanoic acid.  Interestingly, those gains were not evenly distributed across the analysis.  The optimised 

method was found to have increased peak capacity in the first, third, fourth, and fifth segments by an 

average of 29%, 24%, 27%, and 37% respectively.  A 13% decrease in peak capacity was observed in 

segment two was a consequence of closing the gap in feature density at two minutes which represents 

an area of unusable capacity.  These values are illustrated for each chromatographic segment in Figure 

3-14 as projected onto a feature density map from one representative set of urine analyses using the 

reference method.   
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Figure 3-14. Density of detected features in relation to chromatographic retention time using the 
reference method.  The colour represents the percent gain (or loss) in peak capacity achieved by 
the optimised method versus the reference method as measured between retention time markers 
from the RPC SSTM. 

The gap in feature density was closed by the shortening of the one minute isocratic hold at initial 

conditions.  As stated previously, this precludes peak distortion from excess isocratic elution, allowing 

for more uniform peak shape and distribution in the early-to-mid portion of the chromatogram.  This 

is clearly illustrated by extraction of a selected metabolite cluster spanning the relevant area of 

chromatographic retention such as the EIC (m/z=153.058 +/- 0.1 Da) shown in Figure 3-15, generated 

from representative analyses of the urine LTR using the reference (top, red) and optimised (bottom, 

black) methods.  The observed decrease in peak capacity is therefore largely an artefact based on the 

insertion of an area of distorted peak elution, violating the assumption in calculating capacity that peak 

shape is approximately uniform throughout the area of measurement. 
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Figure 3-15. EIC of a metabolite cluster (m/z=153.058 +/- 0.1 Da) spanning the area of 
chromatographic distortion caused by one minute of isocratic elution at initial conditions.  
Distorted peaks produced by the reference method (top) are shown against the same peaks,  
eluting earlier and with more uniform shape, produced by the optimised method (bottom).   

The start and end retention time bounds of the analyte content distributed across the analysis remained 

largely static despite the change in column length and gradient, but with a different distribution of 

features throughout each elution.  These gains in capacity were therefore made within the same 

approximate chromatographic “footprint”, and not due to simple elongation of method.  To illustrate 

this, the feature density from two representative urine analysis sets (reference method = grey; optimised 

method = blue) are shown below in Figure 3-16. 
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Figure 3-16. Overlay of the feature density distribution between the reference method (grey) and 
optimised method (blue), illustrating the approximately equivalent footprint of 
chromatographic elution between the reference and optimised methods.   

In order to assess more directly the effect of the 150mm column length versus the changes made to the 

elution method, the capacity achieved by the optimised method was also assessed using the 100mm 

column.  The overall gain in peak capacity across the entire analysis (from glutamine to octanoic acid) 

was more marginal at 11%.  However, the majority of that improvement was observed within the first 

segment (21%) as expected from the outcome of the efficiency and resolution testing under isocratic 

conditions. 

3.4.4 Adaptation of HILIC for complementary retention and separation of small polar analytes 

in urine 

Despite the emphasis on polar metabolite retention in the selection and refinement of the reversed-

phase chromatographic separation, the technique is inherently limited in what it can achieve as it is 

ultimately dependent on solute interaction with a hydrophobic medium.  As a consequence, many 

molecular species still escape its grasp, warranting the development and implementation of a 
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complementary approach for metabolite retention and detection.  HILIC is a strong candidate for this, 

as its mechanisms of metabolite retention allow for the elution of solutes in order of increasing polarity 

(Tang et al., 2014).  Using a polar stationary phase, the sample matrix is loaded onto the column in the 

presence of an organic solvent (typically aprotic, such as acetonitrile) with a small amount of water.  It 

is commonly believed that the water forms a pseudo-layer on the polar stationary phase, and therefore 

analyte retention is largely based on liquid-liquid partitioning between the organic and aqueous 

components of the mobile phase.  Use of reversed-phase solvents makes the application of HILIC to 

LC-MS an attractive alternative to other separations aimed at polar analyte separation, and similarly 

make it an attractive solution for application here, as much of the development in Sections 3.4.1 and 

3.4.2 can be applied in a similar manner to yield increased performance.  The HILIC method of Want 

et. al. (Want et al., 2010) again serves as an appropriate reference method for adaptation, as it has since 

been successfully applied in the analysis of urine (Spagou et al., 2011).  The gradient program is shown 

in Table 3-8.    

Time (minutes) A (%) B (%) 

0 99 1 

1 99 1 

12 0 100 

12.1 99 1 

15 99 1 
 

Table 3-8.  Chromatographic gradient of the HILIC reference method showing the duration and 
mobile phase composition of each step.  A = 95% acetonitrile and 5% ammonium acetate; B = 
50% acetonitrile and 50% ammonium acetate.  The final concentration of ammonium acetate in 
both mobile phases is 10mM.      

Experience among colleagues within CSM indicates that the successful preparation of HILIC solvents 

as described is not straightforward, owing to the low solubility of the volatile buffer salts (eg. 

ammonium acetate or ammonium formate, required for adequate peak shape) in a 95:5 mixture of 

acetonitrile and water.  Their solubility may be encouraged by sonication or direct heating of the 

solvent, yet it is often observed that the aqueous buffer salt separates after preparation as the solvent 
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cools, appearing first as a visible haze (emulsion) and finally coalescing as droplets of immiscible liquid 

at the bottom of the solvent.  Furthermore, a volumetric preparation of 95:5 organic solvent-to-water 

ratio in bulk quantity (e.g. 1L) is not convenient to produce with commonly sized volumetric flasks.  As 

any small error in the percentage of water present in the initial separation can have dramatic effects on 

analyte retention (Gray et al., 2013), the precision of solvent preparation is of the utmost importance in 

HILIC separations.  Therefore, it was rationalised that greater consistency in solvent composition could 

be achieved by simplifying the solvent B to a completely aqueous salt buffer, and solvent A to a 

completely organic (acetonitrile) solvent.  The UPLC instrument is then used to mix A and B in a 

precise and reproducible manner, achieving 95:5 initial conditions.      

As a consequence of this design, the HILIC separation became both a gradient separation in terms of 

aqueous content as well as buffer concentration, as only one mobile phase component contained the 

salt buffer.  For this reason, the buffer type and concentration was briefly assessed.  Whereas the 

reference method as implemented by Spagou et. al. contains both ammonium acetate and formic acid, 

potentially facilitating the creation of both formate and acetate adducts in negative mode ionisation, 

ammonium formate and formic acid were used, simplifying the anions present in solution.  It was 

reasoned that a 20mM preparation in water (mobile phase B) would provide an amount of ammonium 

formate commonly used in LC-MS separations across the range of HILIC elution, from 1mM at initial 

conditions (5% A) to 10mm at final conditions (50% A).  In this manner, the amount of buffer salt 

required to be solubilised by the 95:5 acetonitrile and water mixture was reduced 10-fold to 1mM at 

initial conditions.  Finally, both A and B solvents were doped with 0.1% formic acid as used in the 

reference method.  The final solvent compositions were therefore: A = acetonitrile + 0.1% formic acid; 

B = 20mM ammonium formate + 0.1% formic acid.   

With the chemistry adapted for increased reproducibility of solvent preparation and mixing over the 

reference method, the focus was turned to adaptation of the gradient for improved performance.  As 

with the RPC separation, the amount of available system pressure represents an opportunity for 

performance enhancement.  As the elution gradient in HILIC is essentially the reverse of a reversed-

phase system, with high organic initial conditions and increasing the aqueous component as the strong 
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eluent, it can be expected that the pattern of system pressure is reversed as well, but otherwise similar.  

However, when utilising acetonitrile and water as the mobile phase components, the maximum 

pressure produced in HILIC applications is less than that produced in RPC applications as the amount 

of water required to cleanly elute all solutes generally does not surpass 50%, and therefore the 

maximum pressure-producing ratio of approximately 75:25 water:acetonitrile is not reached.  For this 

reason, the potential exists to use mobile phase flowrates in HILIC separations that are higher than 

those used under similar conditions for RPC.  Furthermore, the higher proportion of organic solvent 

makes the eluent easier to desolvate and yields excellent signal intensity.   

Given the availability of system pressure, and following the principles demonstrated in the RPC 

development, the 100mm length column was exchanged for one of 150mm length.  Furthermore, the 

flowrate was increased by 50%, from 0.4mL/minute in the reference method to 0.6 mL/minute.  The 

availability of system pressure at the start of the method allows for flowrates in excess of 1mL/minute, 

which were utilised in the equilibration phase which is reported to be critical for general 

chromatographic reproducibility in HILIC (Gray et al., 2013).  The one minute isocratic hold was again 

shortened to 0.1 minute in order to achieve more uniform peak shape and even the solute distribution 

in the eluate.  The overall method duration was standardised to 12.5 minutes in order to match the 

cycle time of the RPC method, allowing a pair of instruments to analyse samples simultaneously using 

both methods, and on the same sample preparation schedule.  These changes culminated in the 

chromatographic method listed in Table 3-9, applying the column volumes listed in Table 3-10 in a 

manner that is 16.6% shorter than the reference method.   
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Time (minutes) Flow Rate A 
(%) 

B 
(%) 

purpose 

0.00 0.60 5 95
0.10 0.60 5 95 initial hold 
6.85 0.60 50 50 gradient 
8.00 0.60 50 50 high aqueous wash 
8.10 0.605 5 95 return to initial 
8.20 0.61 5 95 equilibration 
8.30 0.62 5 95 equilibration 
8.40 0.65 5 95 equilibration 
8.50 0.70 5 95 equilibration 
8.60 0.80 5 95 equilibration 
8.70 0.90 5 95 equilibration 
8.80 0.90 5 95 equilibration 

10.80 1.00 5 95 equilibration 
11.00 0.60 5 95 equilibration 
12.50 0.60 5 95 equilibration 

 

Table 3-9: Chromatographic gradient of the optimised HILIC method, showing the programmed 
gradient times and mobile phase composition.  A = 20mM ammonium formate + 0.1% formic 
acid; B = acetonitrile + 0.1% formic acid.     

Chromatographic 
method

Reference 
method

New 
method  

Column length 100 mm 150mm  
initial hold 1.92 0.19

Column 
volumes 

gradient 21.17 12.99
high aqueous wash n/a 2.21

return to initial 0.19 0.19
equilibration 5.58 11.11

 

Table 3-10: Comparison of chromatographic column volumes used in the reference and optimised 
HILIC methods. 

With respect to sample preparation, the reference method uses entirely aqueous sample (dilute urine).  

However, it is well known that approximating the sample solvent to the initial mobile phase conditions 

of any chromatographic separation will lead to improved analyte retention and chromatographic 

performance.  Therefore, the addition of three volumes of acetonitrile to the sample was tested, and 
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observed to dramatically improve chromatographic peak shape.  In order to accurately target the 

available dynamic range of the Xevo G2-S Q-ToF, human urine samples required dilution with an 

equal volume of water prior to preparation with acetonitrile.  In the final method, a 2 μl injection of the 

8x diluted urine is used for each analysis.   

HILIC SSTM was analysed by the optimised method utilising the sample preparation procedure 

described above.  The plot of combined EIC’s in Figure 3-17 illustrates the distribution of the diverse 

molecular content, further highlighting the method’s applicability to urinary solutes.  The peak capacity 

achieved by both methods was compared among five replicate analyses of the SSTM using the manual 

assessment approach described for RPC peak capacity analysis in Section 3.4.3, with the exception that 

the average peak width was used to calculate the average peak capacity (Equation 2.10) rather than 

summation of the segments between reference standards.  This was necessary due to an observed 

change in the elution order of some analytes.  Using this approach, the peak capacity of the optimised 

method was calculated to be 90% greater than that of the reference method (44.4 for the optimised 

method vs. 23.4 for the reference method).  This improvement was achieved in 16.6% shorter analysis 

time, compared to the reference method (12.5 minutes vs. 15 minutes).   

Finally, it was observed during initial tests with urine samples that negative mode ionisation and 

detection yielded very few features when paired with the separation conditions described.  An 

analogous separation was attempted using ammonium bicarbonate and an amide-bound stationary 

phase (Acquity BEH Amide).  However when applied to the separation of human urine the results were 

not encouraging in relation to observed feature distribution across the gradient elution, and the 

development was suspended.  Therefore, the optimised method is only used with ESI+ detection.     
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Figure 3-17.  HILIC separation of the HILIC SSTM.  The SSTM is observed to cover the 
chromatographic space of the developed assay, providing points of retention reference 
throughout.   

3.4.5 Assessment of separation complementarity  

In order to maximise the amount of urinary metabolite species measured in a set of assays, the 

individual methods must be shown to be complementary in nature, with each elucidating unique 

matrix content.  Specifically, between the RPC and HILIC assays developed here, each should be able to 

demonstrate complementary retention for the content of a representative urine sample.  However, a 

purely global comparison is not practical given the complexity of the matrix as demonstrated by visual 

comparison of the LTR urine analysed by both RPC-MS and HILIC-MS (in positive ionisation mode) 

shown in Figure 3-18.    
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Figure 3-18: Two-dimensional plots of orthogonal LC-MS urine separations.  Both RPC (A) and 
HILIC (B) separations are complex and feature-rich, making direct comparison of the 
complementarity of retention and chromatographic elution an impractical task that requires 
simplification.   
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While an evaluation of the standards mixture developed in Section 3.3.2 may provide insight to the 

specific molecules contained within, its complexity does not adequately represent that of a urine matrix 

to a sufficient degree required for assessing overall complementarity.  Therefore, a compromise was 

sought in order to evaluate the complementarity of the RPC and HILIC methods whereby the urine 

sample, representing all species likely to be present, was fractionated into a series of more simple 

mixtures of endogenous content for use in direct comparison of the methods.   

Briefly, LTR urine was concentrated by overnight freeze drying of 20 mL in a 50 mL Florence flask.  

The dried urine was solubilised by addition of 2 mL LTR urine followed by brief vortexing, creating an 

11x concentrated solution.  LTR urine was used for solute dissolution rather than water in an effort to 

replace any metabolite species lost in the process of freeze drying (albeit at a 1x concentration).  

Fractionation by reversed-phase chromatography was performed using a column similar to that used in 

the analytical separation described above, except that the particle size was larger (by approximately 

67%) and the column inner diameter larger (by approximately 120%) to accommodate greater sample 

loading and therefore the separation of more biomass per injection.  For this, a 4.6 x 150 mm Atlantis 

T3 column with 3μm particle size  (Waters Corp., Milford MA, USA) was held at 25° C during the 

separation, and a gradient elution performed with water+ 0.1% formic acid (A) and methanol + 0/.1% 

formic acid (B) at a constant flowrate of 1mL/minute and the program shown in Table 3-11.  Methanol 

was selected as the strong eluent to give a degree of elution complementarity to the analytical method 

described above which instead utilises acetonitrile.  Twenty microliter (full loop) injections of the 11x 

urine preparation were made for each separation.   
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Time (minutes) A (%) B (%) 

0 100 0 

1 100 0 

16 5 95 

20 5 95 

21 100 0 

25 100 0 
 

Table 3-11: Chromatographic method used for fractionation of the concentrated urine LTR 
sample.  Programmed gradient times and mobile phase composition (A = H2O + 0.1% formic 
acid; B = methanol + 0.1% formic acid) are shown.   

Initial injections were observed by MS detection using a Xevo TQ-S tandem quadrupole mass 

spectrometer operating in scanning mode, and the method was found to produce baseline peakwidths 

of approximately 6 seconds.  Fractions were therefore collected at a closely matching rate of 9 seconds 

per fraction, allowing the collection of 120 fractions from the start of analysis to halfway through the 

high organic washing step (0 to 18 minutes).  In order to accumulate sufficient biomass for further 

analysis, each injection and separations cycle was repeated for 44 consecutive rounds, yielding a total of 

880ul fractionated 11x concentrated urine.  Fractions from all separations were collected into a single 

set of 120 10mL polystyrene culture tubes using a Waters Fraction Collector III (Waters Corp., Milford 

MA, USA).  The eluate content of each tube was evaporated under nitrogen (10psi) in a 37° C water 

bath using a TurboVap LV nitrogen dryer.  Drying time was variable, usually between 5 and 16 hours, 

depending on the eluent composition (more aqueous or more methanol), and also on the specific 

desolved solutes.  Once dry, all fractions were solubilised by vortexing and sonication in a volume of 

ultrapure water sufficient for multiple subsequent analyses (1.76mL).  The final concentration of an 

analyte in a fraction was estimated to be between 2.75 and 5.5 times the native concentration (in the 

original urine sample), depending on the distribution of an analyte peak across adjacent fractions (best 

case in a single fraction, worst case split evenly between two).  Each solution was transferred to a well of 

a 96-well plate for convenient aliquoting for further analyses and stored at -80° C until required.        
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All fractions were analysed by the RPC and HILIC UPLC-MS analyses described above, with 

interleaving analysis of the original LTR pooled urine sample.  The overlaid chromatograms of fraction 

14 (green trace) and the adjacently analysed LTR (red trace) are shown in Figure 3-19, with RPC 

analysis shown at the top, and HILIC analysis shown at the bottom.  This selected example of a single 

fraction illustrates the complementarity of the two chromatographic approaches, showing molecular 

content eluting near the injection peak in the RPC system well distributed across the HILIC separation.      

 

 

 

Figure 3-19: Illustration of a selected fraction (fraction 14, shown in green) analysed by RPC (top) 
and HILIC (bottom) chromatography.  Adjacent urine LTR analysis is shown overlaid (in red) 
to provide context for the urine separation for each method.  Fraction 14 is representative of 
other early fractions which are poorly retained by RPC but well retained and distributed by 
HILIC.    
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In order to more globally assess the complementarity of the two separation techniques, the density of 

feature distribution for each fraction analysed by each chromatographic method was assessed.  Feature 

extraction using the centWave algorithm of XCMS was performed on each data file individually as 

previously described.  The settings for peak detection varied slightly between methods, as the peak 

shape in HILIC is more variable and potentially wider than that observed in RPC due to the more 

diverse mechanisms present in HILIC for solute retention and separation.  The centWave parameters 

used for feature extraction of each dataset are summarised in Table 3-12.  

parameter RPC-MS HILIC-MS 

ppm 20 20 

peakwidth 1 to 8 2 to 30 

snthresh 50 50 

noise 1000 1000 

prefilter x = 6 

y = 5000 

x = 6 

y = 5000 

 

Table 3-12: XCMS parameters for the extraction of features from urine fractions analysed by both 
RPC and HILIC methods.   

Features detected in each data file (from each fraction for each chromatographic method) were 

collected into retention time groups of 15 seconds.  Feature density was then calculated as the number 

of detected features per retention time group.  The collated results are presented in the heat maps in 

Figure 3-20.  A high and constant background of detected features was observed in the second 

retention time bin of all fractions in the HILIC dataset including the earliest “blank” fractions.  This 

was determined to correspond to chemical noise at the injection peak, and therefore the values in that 

single retention bin were substituted with zero values in order to avoid artificially biasing the plot scale 

and obscuring the density of observed features in the remainder of the plot.       
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Figure 3-20. Heat map representation of the density of detected features in 0.25 minute retention 
time bins (x-axis) for each fraction (y-axis) by both RPC and HILIC optimised methods.    
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As expected, the distribution of detected features in the RPC analysis across increasing retention time is 

observed to correlate with increasing fraction number (Figure 3-20, left panel), as the fractionation 

itself was performed by RPC on a larger scale.  However, the  correlation between retention time and 

fraction number is less than perfect due to the use of methanol instead of acetonitrile as the strong 

eluent in the separation.  The difference between the selectivity of the preparative separation (using 

methanol) and analytical separation (using acetonitrile) can be observed in many fractions where 

individual molecular species clearly differentiate in retention from the bulk of the eluted material.  An 

example of this is illustrated in fraction 17 (Figure 3-21, top), where the majority of the molecular 

content elutes in the narrow band between 0.4 and 0.9 minutes, except for two clearly deviating peaks 

at 1.94 and 2.47 minutes.  The latter was tentatively identified as 5′-Deoxy-5′-(methylthio)adenosine by 

targeted MS/MS-derived fragmentation pattern match to reference spectra.  The contents of some later 

fractions show a wide retention time distribution in the analytical method, as illustrated by the 

chromatogram of fraction 49 (Figure 3-21, bottom).     
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Figure 3-21: The molecular contents of representative fractions 17 (top) and 49 (bottom) derived 
from HPLC RPC separation of LTR urine using methanol as the strong eluent are mildly 
dispersed by the analytical RPC method utilising acetonitrile.  This is due to the difference in 
selectivity between the two non-polar solvents when used in combination with the same 
stationary phase chemistry. 

The HILIC separation, on the other hand, demonstrates no visible correlation with the fraction order, 

indicating orthogonally and good complementarity to RPC.  Specifically, early-fraction molecular 

content not well retained by RPC is observed to be well retained and chromatographically distributed 

by HILIC.  This analysis therefore explicitly demonstrates, in the context of a complex biofluid made 

interpretable by fractionation, that the methods adapted herein contribute a more complete coverage of 

the urine metabolome than either method used alone.   
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3.5 Maximisation of analytical batch size through optimisation of the LC-MS 

platform.   

The adaptations of existing chromatographic approaches made in section 3.4 were intended to render 

the chromatographic methods fit for long term use with excellent long term precision and, for HILIC 

separations, ease of solvent batch preparation.  With these refined and complementary 

chromatographic methodologies in place to provide broad urinary metabolome coverage, the focus of 

enhancing the precision of measurements in large studies turned to the downstream components of the 

analytical system.  In order to ensure that the LC-MS platform yields maximally reproducible results 

over a long duration, the impact of the analysis on the instrumentation must be minimised, allowing 

the extension of analytical batch size and the reduction of distinct batches that need to be corrected for 

post-acquisition.      

As the sample matrix itself interacts with all components of the analytical system, influencing their 

performance over time, it is logical to attempt to reduce the amount of sample used for analysis.  In this 

manner, the major sources of drift in chromatographic retention, ionisation, and detection efficiency 

caused by repeated analysis may be minimised.  Although migration to micro or nano-scale LC is an 

increasingly attractive means for scaling down, it often comes at the expense of assay robustness (Noga 

et al., 2007), making such approaches less attractive for deployment on large-scale.  As the aim of this 

thesis is to optimise traditional UPLC, those options will not be explored.  Rather, a reduction in the 

requisite materials will be developed within the constraints of the UPLC methods developed in the 

previous section.   

3.5.1 MS sensitivity as a currency for longitudinal precision  

The selection and use of highly sensitive instrumentation is key in achieving large-scale analysis, as it 

provides both improved metabolic coverage and acts as a currency to be traded for gains in 

longitudinal precision.  The relatively wide pore in the sampling cone of the Xevo G2-S Q-ToF 

combined with the high ion transmission efficiency of the stepwave ion guide make the instrument 

highly sensitive, allowing for smaller volumes of more dilute sample to be assayed, in turn minimising 

the impact of the sample on the chromatographic and ion source components.  Ideally the ToF mass 
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spectrometer should be designed such that the whole population of ions available are utilised, further 

maximising sensitivity.  However, sensitivity and mass resolution are inherently at odds with each 

other in a ToF mass analyser, as a narrower ion beam with controlled energy spread will produce a 

higher resolution m/z measurement.  Commercial constraints placed upon instrument manufacturers 

to meet or exceed a specified resolution value result in common tuning configurations that which 

narrow the ion beam through use of ion optical elements and slits (e.g. an aperture plate).  By shaping 

the ion beam, very high mass resolution values can be achieved at great expense to sensitivity and 

dynamic range, as less of the full beam is passed on to the detector.   

The philosophy adopted herein is that the importance of instrument sensitivity and dynamic range are 

prioritised above that of mass resolution in UPLC-MS profiling applications where the 

chromatographic separation greatly reduces the incidence of mass interference from co-eluting species.  

Custom tuning of the mass spectrometer’s optics is therefore warranted to maximise sensitivity at the 

reasonable expense of resolution.  To achieve this routinely, voltages on the ion optics affecting the 

focus of the ion beam onto the entrance slit prior to the pusher region of the ToF assembly 

(acceleration lens and aperture) were tuned for maximum signal of the monoisotopic peak of cytidine 

(m/z = 244.0933) from infusion of the RPC SSTM.  The voltage across the top and bottom half plates of 

the steering lens (steering) were adjusted for symmetrical peak shape, while the pusher offset  (voltage 

applied to the pusher with respect to the entrance voltage) and reflectron grid voltage were tuned for 

best peak shape and resolution without sacrificing the intensity gains.  The resolution values produced 

by the Xevo G2-S Q-ToF mass spectrometer tuned as specified here are generally between 14,000 and 

17,000 FWHM.    

3.5.2 Source optimisation for sensitivity and minimal impact of sample on MS inlet  

When the HILIC and RPC methods described are mated to the Q-ToF instruments configured as 

outlined above, the amount of sample required for analysis may be reduced to better fit the instruments 

sensitivity and linear range of detection.  The consequence of this is less biomass accumulation in the 

source area, reducing the need to stop analysis and clean the instrument, thus introducing a new batch.  

Both methods described here utilise a 2 μl injection of dilute urine.  Urine for RPC is diluted with an 
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equal volume of water, and therefore each analysis only introduces 1 μl of urine to the instrument.  

Urine for HILIC is diluted even further, owing to the increased sensitivity achieved under HILIC 

conditions, with only 12.5% of the 2 μl (0.25 μl per injection) being urine.          

Furthermore, because of the efficiency of ion intake and transmission to the mass analyser, the 

electrospray position may be taken further away from the source inlet than experience with older 

generation Q-ToFs would allow, again keeping the source cone from accumulating biomass for longer 

periods of analysis (see Figure 3-22 for a visualisation of the source cone and probe angle).  Greater 

liquid flow rates utilised in both the HILIC and RPC methods (as compared to the flow rates in the 

reference methods) inherently necessitate a greater distance between the electrospray capillary and MS 

inlet orifice, as the electrospray droplets produced are larger and require more time for gas phase ion 

generation from a greater number of coulombic fission events.  The effect of probe position (in terms of 

adjustable probe angle relative to the cone) on observed signal intensity was therefore assessed using 

the RPC SSTM and RPC separation method previously developed.  Analysis was repeated across the 

range of probe positioning (positions 4 to 10 in intervals of 1).  Maximum values for signal intensity 

were obtained at intermediate settings for most chemical reference standards, being both far enough 

from the cone to facilitate more complete desolvation of the LC eluent, and close enough for efficient 

ion intake (for example, tryptophan and hippuric acid, bottom panel of Figure 3-23).  However, other 

molecular species showed clear preferences for more direct spray into the cone (creatinine) while 

others showed the opposite preference, gaining signal intensity as the distance between the spray and 

cone was increased (phenylalanine).  The observed variation likely reflects complex arrangements 

among molecular species within charged droplets formed by electrospray.   A probe position of seven 

was chosen as an intermediate value providing excellent signal intensity across the board, but 

distancing the spray sufficiently from the cone to allow for minimal accumulation of biomass on the 

cone surface.   In this manner, the sensitivity gained by the use of sensitive instrumentation and fit-for-

purpose ToF tuning allows for more conservative approach to sample volumes and probe positioning, 

minimising the impact of repeated sample analysis on the UPLC and ionisation source.       
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Figure 3-22: Illustration of an electrospray probe angle in relation to the MS inlet cone.  The 
photograph on the left shows an aggressive probe position (lower values, closer to 4) while the 
photograph on the right shows a more conservative angle (higher values, closer to 10).  Note that 
these photos were obtained on a Xevo TQ-S for clarity, as the lockspray assembly present on a 
Xevo G2-S Q-ToF obscures the view of the spray and cone during operation.  The source designs 
are otherwise the same for the purposes of this illustration. 

.   

Figure 3-23: Normalised observed signal (integrated peak area) of selected reference chemicals 
from the RPC SSTM analysed by RPC using electrospray ionisation with varying probe angle 
relative to the MS source cone.  The experiment was repeated on two different Xevo G2-S Q-
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ToF instruments (red and blue lines) to ensure the results observed were not unique to a single 
system.    

3.5.3 Testing the limits of UPLC-MS system stability for an optimised configuration  

The RPC chromatographic method was chosen to test the performance boundaries of the overall 

system including the ionisation interface and MS, and a test set of human urine samples was designed 

specifically for this purpose.  The sample set was engineered from a set of individual urine voids 

acquired from four volunteers.  Portions of each sample were used to generate six 1:1 (v/v) pairwise 

mixtures.  A bulk pooled sample (equal parts of all 4 original urine samples) was generated to serve as a 

study reference (SR).  Each sample type was diluted 1:1 with ultrapure water (Fisher Optima LC-MS 

grade) and homogenized prior to aliquoting to a 96 well plate (2 mL deep-well) for analysis, 

minimizing any potential difference among technical replicates of the same sample. The four original 

and six pair-mixed assay samples (10 in total) were respectively aliquoted to cells within columns 1-10 

of the plate such that each column contained replicates of a biofluid of distinct but interrelated 

composition.  The pooled sample was aliquoted to cells within columns 11 and 12, such that each plate 

row contained samples 1-10 and two pooled study reference samples.  The sample combination scheme 

and plate layout are summarized in Table 3-13.  The contents of the 2 mL deep well plate were then 

further sub-aliquoted to 9 analytical plates (350 μl per well), with 200 μl in each well.     

Sample ID 96 well 
plate 

column # 

Composition 
(in equal 

parts) 
1 1 1 
2 2 2 
3 3 3
4 4 4 
5 5 1+2 
6 6 1+3 
7 7 1+4 
8 8 2+3 
9 9 2+4 

10 10 3+4 
SR 11, 12 1+2+3+4 

 

Table 3-13: Sample composition and distribution within the 96-well format.   
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UPLC-MS profiling was carried out using the RPC analytical method described above.  The column 

(Waters Acquity HSS T3 2.1 x 150mm) was new and not conditioned as described previously (Want et 

al., 2010).  The source parts of the Xevo G2-S Q-ToFMS including the electrospray probe, MS inlet 

cone (and cone guard) and source enclosure were newly cleaned.  These measures were taken to allow 

observation of the total precision of the system from the first introduction of mobile phase and sample 

to the conclusion of the experiment.  The 10 assay samples from a given plate row were injected in a 

randomized order, with the study reference samples in wells 11 and 12 injected after the first and 

second set of five assay samples, respectively.  A study reference sample was thus assayed every 6th 

sample for the duration of the experiment.  In the following analysis of the sample set, only the study 

reference samples are considered, providing a frequent and consistent reference for assessing method 

and system performance.       

MS data were collected in continuum mode.  Data conversion to continuum spectra and reformatting 

to NetCDF of all study reference samples were accomplished using the AutoAFAMM function of 

MassLynx 4.1 and Databridge executable function, respectively.  All definable parameters for feature 

extraction using the centWave method within XCMS were set to values determined to be appropriate 

based on manual review of the raw data files, listed in Table 3-14.  Peak integration was performed on 

the raw data rather than the fitted peaks (integrate=2) to reflect the original measurements as closely as 

possible.   
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parameter value 

ppm 30 

peakwidth 1 to 8 

snthresh 50 

noise 300 

prefilter x = 6 

y = 5000 

Table 3-14: XCMS parameters for the extraction of features from urine analysed by LC-MS using 
the optimised RPC method.     

Density-based feature grouping was performed in XCMS using a bandwidth (smoothing kernel 

adjustment) of 1 and an m/z grouping window (mzwid) of 0.01.  A lower threshold of absolute noise 

was used in peak detection for more thorough peak picking, balanced by the use of a simple noise 

filtration scheme by which groups containing features detected in less than 50% of the SR samples in a 

single plate were discarded.  Feature intensities were not normalized, as doing so could potentially 

obscure the true variation yielded by the analytical system and method. 

Analysis of the feature detection results was performed using R software.  Figure 3-24 illustrates the 

comparison of the total number of features detected in each plate, revealing a surprising level of 

consistency among all but the first plate.  The lack of a severe decline in the number of detected features 

over the duration of the analysis indicates that the UPLC-MS system has been optimized for maximum 

longitudinal performance.    
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Figure 3-24: The total number of features detected in the 16 SR samples of each plate of 96 sample 
analyses, across 9 sequential plates in total. 

Similarly, a surprising amount of precision was observed across all plates, with only the first plate 

having a median coefficient of variation (CV) across SR-derived features in excess of 15%.  The median 

values from plates 3-9 were between 5 and 7% demonstrating the excellent overall precision achieved 

by the chromatographic method.  The distribution of SR-derived feature intensity CV from each plate 

is collated in a box-and-whisker plot shown in Figure 3-25.   The decline and stabilization of feature CV 

distribution across the first three plates reflects the conditioning of the UPLC-MS system.     
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Figure 3-25: The plate-wise distribution of CV observed for featured extracted from each plate’s 16 
SR samples. 

To investigate the data as a unified set, individual feature sets extracted from each plate were grouped 

together using the same density-based method and parameters as used for each individual plate.  The 

minimum fraction filter was again used, this time excluding feature groups that contained features not 

found in at least 50% of the SR samples present in any one plate.   

Additional noise filtration was implemented by utilizing the SR dilution series appended to the end of 

the sample analysis.  The Spearman’s rank correlation coefficient was calculated for each feature in the 

dilution series, correlating the linear dilution to the intensity response of the average value of three 

replicate measurements for each of 5 dilutions.  Features with a correlation of 0.8 or more were retained 

for further analysis, yielding a final of 4391 features from 6560 originally detected.    
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Principal Components Analysis (PCA) of the un-normalized SR sample dataset was conducted using 

the SIMCA-P+ v. 13.0.2 software (Umetrics, Umeå Sweden).  Unit variance scaling was applied to the 

dataset, and a scores plot was generated to illustrate the majority of variance within the dataset as 

illustrated in Figure 3-26.   

 

 

Figure 3-26: PCA scores plot showing the distribution of SR samples (coloured by plate number) 
across principal components 1 and 2, accounting for 69.1% and 6.4% of the total dataset 
variance, respectively.    

The scatter of SR samples from plates one and two across PC1 (accounting for 69.1% of the total dataset 

variance) reflects the conditioning required by the LC-MS system to achieve a state of equilibrium.  The 

16 SR samples from the first plate represent 96 total sample injections, suggesting a conditioning period 

that is far greater than previously reported.  However it must be noted that the analysis was started 

without any preliminary washing of the column or equilibration at initial conditions, potentially 
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contributing to this difference.  The low amount of variance explained by PC2 (6.4%) and all 

subsequent PC’s indicates a high degree of homogeneity within the dataset once equilibrium is 

achieved.   

Detailed examination of the features most responsible for the distribution across PC1 reveal an 

underlying combination of conditioning effects.  First, many chemical species demonstrate a higher 

loss of sensitivity across the first 2 plates than is observed in the remaining seven plates.  The intensity 

of an exemplary feature (m/z = 460.285, RT = 3.8 min) as detected across all SR samples is illustrated in 

Figure 3-27A (top).  This effect is attributed to loss of instrument sensitivity due to initial soiling of the 

source with sample residue, and/or initial conditioning of the MS detector.  The second (and less 

prevalent) intensity behaviour responsible for sample scatter in PC1 is a fast rise in signal intensity 

from near zero (baseline noise) in plate one to a steady value in plates three to nine.  The intensity of a 

representative feature (m/z = 358.259, RT = 6.4 min) as detected across all SR samples is illustrated in 

Figure 3-27B (bottom).  This effect is attributed to the detection of peaks found within plate three to 

nine  analyses that are not present at the expected retention time in earlier plates due to retention time 

migration.  As the chromatographic peaks migrate into the area of integration defined by the consistent 

position in SR analyses from later plates, the integrated intensity increases to eventually reach the 

maximum value representing the entire peak.   
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Figure 3-27. Variable line plots illustrating the intensity of two selected features as measured across 
all SR samples in each of 9 plates, shown in ascending order (left to right).  These features 
were selected because they are exemplary of the two patterns of feature intensity observed to be 
responsible for scatter of samples across PC1, and each represent a unique manner of instrument 
conditioning as described in the text.  The intensity pattern observed in panel A (top) is a 
consequence of MS conditioning, whereas the pattern observed in panel B (bottom) is a 
consequence of chromatographic conditioning. 

To explicitly illustrate that this effect is due to feature migration, chromatograms of the feature plotted 

in Figure 3-27B were extracted from the first SR samples analysed in plates one through four.  The 

results, shown in Figure 3-28, indicate that the peak is present in the earlier analyses (bottom), but 

eluting later than the 6.4 minute retention time that characterizes the peak group.  Therefore, the 

baseline area is integrated, giving rise to the pattern observed in Figure 3-27B.  Taken together, these 

results indicate that achieving system equilibrium requires independent conditioning of the LC and MS 

analytical subunits.   
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Figure 3-28. EICs of feature m/z = 358.259 @ 6.4 min from the first SR samples analysed in plates 1 
through 4 (bottom to top).  The peak group is defined at 6.4 minutes, representing the 
equilibrium position of the peak (observed here in plate 4, top).  However, as the peak’s initial 
retention time was 6.49 minutes in the first SR analysis in plate 1, its intensity was not recorded 
accurately as belonging to the 6.4 minute peak group.    

3.6 Optimisation of sample preparation batch size.   

Although the methodology and instrument platform have been shown to be stable for nearly 1000 

sequential analyses following a period of initial conditioning, it is doubtful that a prepared complex 

biofluid sample would be stable for an equivalent amount of time.  While it is true that samples can be 

processed to be compatible with analytical technologies and methods (eg. via derivatisation to enhance 

stability over time or amenability to a particular type of chromatographic separation), the molecular 

profiling approach tends towards the reverse implementation, instead utilising methods that are robust 

to minimally prepared samples.  LC-MS is inherently well suited to the analysis of aqueous biofluids 

such as urine which, under normal healthy conditions, is sterile and free from excessive protein which 

is not compatible with LC-MS solvents.  Small debris including any cellular material from the urinary 
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tract as well as cryoprecipitate and urinary sediment is easily removed from the sample by 

centrifugation or filtration, rendering the sample nominally ready for LC-MS analysis.    

The methods utilised above require only dilution and centrifugation of a human urine sample, with 

water for RPC and acetonitrile for HILIC, making for a convenient and efficient workflow. The 

minimal preparation approach reduces or precludes the introduction of error and unwanted selectivity, 

facilitating robustness and benefitting both the research laboratory (in terms of time and cost) and the 

quality of data produced.  The final consideration for achieving large-scale analysis is therefore the 

impact of sample age and molecular stability on the coverage achieved, warranting detailed 

consideration of the sample stability, preparation batch size, and frequency of sample preparation.      

3.6.1 Assessment of urine stability 

In the absence of automated online sample preparation, samples are thawed and prepared in batches 

which are stored in an autosampler (usually operated at reduced temperature) for an interim period 

during the batch analysis.  This elapsed time is defined herein as the sample age, as opposed to the 

elapsed time between sample collection and analysis which is rarely within the analyst’s control for 

human-derived specimen.  As the prepared sample ages, components of its molecular content may 

undergo chemical cross reaction, reaction upon prolonged exposure to air, precipitation, or selective 

sequestering by adsorption to the sample container.  These changes, broadly characterised as molecular 

instability, may modulate observed signals and potentially confound both qualitative detection 

(number of molecular species detected) and quantification.   

As a sub-aim of the previously described experiment, the effect of sample ageing on the stability of the 

molecular content was investigated.  All nine plates were frozen at -80° C and thawed once between 

preparation and analysis, but five of the nine were thawed immediately prior to analysis, while the 

remaining four were thawed at the start of the analysis despite not being needed immediately.  The 

latter group were aged at 4° C until they were analysed in an alternating order with control (freshly 

thawed) plates.  Interleaving of plates was necessary to deconvolute the effects of sample age and run 
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order, each of which was expected to potentially cause a decrease in the observed intensity of a given 

molecular species.   

No obvious differentiation between control and aged plates was observed in PCA of the dataset, or in 

the number and precision of metabolites detected, indicating that the instability of the matrix overall is 

minor in comparison to the analytical variance.  In order to elucidate the differences in metabolite 

composition between aged and control plates, OPLS-DA analysis was conducted on plates six (aged) 

and nine (control).  To minimise the confounding effect of run order on the gain or loss of molecular 

species, the correlation coefficient scaled loadings (p(corr)) loadings from the OPLS-DA model for 

plates six vs. nine were plotted against the same loadings from an OPLS-DA of plates four vs. eight 

(both aged).  The R2Y and Q2 values obtained with a single calculated component were 0.72 and 0.70 

for the plate six vs. plate nine OPLS model, and 0.84 and 0.80 for the four vs. eight OPLS model, 

indicating that the discriminant analyses are valid.  Features oriented in the resulting plot (illustrated in 

Figure 3-29, panel C) correlate either negatively or positively with run order (panels A and E, 

respectively) or negatively or positively with sample age (panels D and B, respectively).  In this 

illustration it is easily discerned that the majority of features detected associate with a slight decrease in 

intensity with relation to analysis order, while very few associate with differences due to sample storage 

and age alone.     

 

(See figure on next page) 

Figure 3-29: Illustration of feature behaviour related to run order and sample age.  Features that 
decrease and increase with respect to run order are shown in the upper left and lower right areas 
of the loadings scatter plot (C).  Features that decrease and increase with respect to sample age 
are shown in the lower left and upper right areas of the loadings scatter plot.  For extreme 
features of each behaviour, the intensity across all SR samples of is plotted in panels A, B, D, and 
E.   
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Given that the vast majority of analytes were robust to ageing effects, it is not necessary to make great 

compromises to the ease and efficiency of sample preparation to achieve greater molecular stability.  

However, as profiling studies are often utilised for biomarker discovery and thus complete knowledge 

of the content of a given sample is never assumed, limiting the sample age to the greatest extent 

practical is a prudent measure which should be considered in the development of a workflow for large-

scale analysis.  

3.6.2 Simulation of analytical cycles in a large profiling experiment conducted within a model 

working environment 

In the course of this analysis, it was noted that in order to ensure control plates were thawed 

immediately prior to their scheduled analysis, manual removal from -80° C storage and loading into 

the sample manager were necessary at odd and inconvenient working hours.  While this was conducted 

for the experiment described above, it was found to be unsustainable for routine application.  To 

address this, plates of samples could have been analysed discontinuously, loading each subsequent plate 

as early as possible the next day after a completed analysis, however this approach would have 

introduced batch effects and reduced the number of analyses achievable, eroding platform precision 

and efficiency and countering the aims of the development in this chapter.  Alternatively, sample plates 

could have been thawed and loaded in reasonable advance of when they were required (eg. at the end of 

the working day), but doing so would have compromised the accuracy of the aging results.  Therefore, 

maintenance of a practical working environment necessary for industrialised analysis of large sample 

cohorts and standardisation of sample age appear to be at odds with one another. To address this, an 

optimal solution was sought to allow for a standard maximum sample age, limited to the greatest extent 

possible within a practical working environment.  Doing so is the last step to achieving large-scale 

analysis, as well as ensuring quality results in data generation.     

In order to determine practical bounds for the preparation and loading of samples, the constraints of 

the working day must be defined.  The calculations in this section assume that the sample preparation 

and analytical systems are not fully integrated and automated, requiring intervention by an operator 

during or between preparation and analysis (ie. racking prepared plates in their pre-analysis storage 
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compartment).  Defining an example laboratory work schedule requires adherence to generally 

adopted practices if the model is to be widely applicable.  The following assumptions regarding sample 

preparation and the working day are estimated to be commensurate with the work required and in line 

with common practices.        

• The working day starts at 9:00. 

• Sample preparation requires three hours, making 12:00 the earliest time at which freshly 

prepared samples may be added to the queue for analysis. 

• The working day ends at 18:00, after which no more samples may be added to the queue until 

the following day. 

This definition of the working day is illustrated in Figure 3-30.   

 

Figure 3-30: A graphical illustration of a 24 hour period (00:00 to 24:00) annotated with the 
assumed components of the working day.  Each hour is represented by a single blue square.  
The working day is defined as 9:00 to 18:00, with three hours set aside for sample preparation 
allowing the remaining 6 for loading samples to the analytical instrument.   

In order to calculate optimal schedules of sample preparation, both the demand of the system and the 

preparation batch size must also be known.  To this end, the size of a batch has been standardised via 

the use of 96-well plates as reasoned previously, leaving only the rate of sample analysis (the amount of 

time elapsed between injections during continuous analysis, herein defined as the “cycle time”) as a 

variable in order to seek periodicity while limiting sample age.   
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A script was written and implemented in the R software environment to establish, for a range of cycle 

times, the minimal batch duration that allows for continuous sample analysis in compliance with the 

laboratory working environment previously defined.  The script was extended to simulate, for all 

analytical periods tested, the continuous analysis of twenty 96-well plates (1920 individual samples in 

total) and to calculate the maximum requisite sample age.  Twenty plates was chosen as an optimistic 

upper limit for the number of plates comprising an analytical batch, limited only by the finite lifetime 

of a chromatographic column (commonly assumed to be approximately 2000 injections).  The script 

may be found in Appendix 2.   

Utilising this script, a simulation was performed for analytical method durations between 2 and 32 

minutes (in steps of 0.05 minutes) to determine the number of plates per batch required to produce a 

batch analysis duration spanning from the start of analysis (set to 15:00 which represents the middle of 

the sample reload time) to or beyond the following day’s minimum reload time of 12:00.  The resulting 

plate-per-batch values and total batch durations are illustrated in Figure 3-31.  Where the analytical 

method duration is equal to or greater than 13.15 minutes, analysis of the batch completes after the 

minimum reload time (12:00) at which additional samples can be loaded to the instrument, ensuring 

continuity.  Where the analytical method duration is less than 13.15 minutes, analysis of a single plate 

would end before additional samples can be prepared and appended, breaking the continuity, and 

therefore at least one additional plate must be included in the sample preparation batch to extend the 

batch duration and regain continuity.   
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Figure 3-31: Illustration of sample batch reload times, assuming analysis is initiated at 3pm for 
analytical cycle times between 2 and 32 minutes.  Red and blue dashed lines indicate important 
time intervals of the next two following days.  Where a reload is required before another batch 
can be prepared and submitted (12pm the next day, noted as the first dashed red line), an 
additional plate is prepared within the batch to extend the duration so that another plate may be 
appended the following day.  The number of plates per batch is denoted by the dot colour. 

Figure 3-31 illustrates the substantial impact of additional plates per batch on the batch duration.  As 

the batch duration increases, so does the maximum sample age, and in this manner, small changes in 

analytical method duration that push reload times past working day thresholds can potentially cause 

large changes in the maximum age of a sample between preparation and analysis.   

Utilising the same script, a simulation of continuous analysis of twenty 96-well sample plates was 

performed to determine the maximum age experienced by samples for each method duration tested 

(again, 2 to 32 minutes in steps of 0.05 minutes).  The simulated experiment was set to initiate analysis 

in the middle of the sample reload day (15:00).  On each day, the smallest number of plates were 

prepared that allowed the analysis duration to reach the minimum reload time (12:00) of the 

subsequent day.  Where a new batch was scheduled to start after 12:00 but before the end of the 

working day (18:00), the new batch preparation was assumed to conclude exactly when the samples 

were needed for appending to the sequence, minimising sample age.  Where a new batch was required 

to start between the end of the working day (18:00) and the earliest reload time of the following day 
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(12:00), the new batch preparation was assumed to conclude at the latest possible time (18:00), again 

minimising sample age. 

The results of the simulation are illustrated in Figure 3-32, where the maximum sample age has been 

plotted for each method duration tested.  Close inspection of these data shows that maximum sample 

age is minimised when batch duration cycle times are regular (or approximately regular).  In such a 

scenario where plate batches are prepared once per day, an analytical method duration of 

approximately 15 minutes (1 plate of 96 samples per day) produces the lowest maximum sample age of 

any method duration above approximately 7.5 minutes (2 plates of 96 samples per day). The inability of 

other cycle times to establish a regular period eventually requires that one or more additional plates be 

appended to a batch in order to bridging what otherwise would be a gap in analysis, increasing the 

overall maximum sample age by over 24 hours in most cases.     

 

Figure 3-32: Simulation revealing the maximum age accumulated by a sample during the 
continuous analysis of 20 96-well plates for analytical cycle times between 2 and 32 minutes.   

Additional regular cycles are possible as indicated in Figure 31.  For example, a 30 minute analysis time 

yields a repeating 48 hour cycle per plate (96 analyses * 0.5 hours per analysis = 48 hours).  A 10 minute 
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analysis also fits in a 48 hour cycle, with 3 plates being analysable in 48 hours (3*96*(1/6) hours = 48 

hours).  Very fast methods of 7.5 and 5 minutes achieve 2 and 3 plates (respectively) with regularity 

every 24 hour period, offering substantial throughput.  However, for the subsequent development in 

this chapter the method duration of 15 minutes was selected as an optimal value, allowing the maximal 

method duration to develop high performance results while minimising the greatest sample age per 

plate to 24 hours.  The resulting 24-hour per-plate cycle provides the opportunity for daily intervention 

at regular intervals, and analysis time is easy to quantise and manage.  Finally, the ease of instrument 

scheduling facilitates maximal utilisation, promoting whole laboratory efficiency.  The theoretical 

maximum number of analyses possible in one year by a single LC-MS system is therefore 

approximately 35,000. 

It is acknowledged that the calculation may be reversed in laboratory environments where stringently 

defined requirements on sample throughput require a set method duration.  In those instances the 

batch size may be modulated to achieve the same outcome.  However, doing so may require specialised 

preparation instrumentation, or may result in reduced laboratory efficiency.   

3.7 Method finalisation  

Determination of a 15 minute cycle time as optimal for large-scale continuous analysis required the 

lengthening of both developed chromatographic methods.  The time required between analyses for the 

loading of each subsequent sample and initiation of data acquisition was calculated to be 0.35 minutes 

(21 seconds).  The duration of the programmable chromatographic method was therefore standardised 

to 14.65 minutes, together creating a 15 minute analysis cycle.  The additional time was allocated to key 

areas throughout each method.  For the RPC method, the majority of the available time was allocated 

to lengthening the linear gradient duration, extending it by 22.2%.  Lengthening the gradient separation 

while holding all other parameters constant (e.g. column length, flowrate, etc.) theoretically produces 

improved peak resolution and therefore peak capacity, although the gains are not proportional to the 

contribution of increased time-dependent band broadening from longitudinal diffusion.  The wash at 

high organic concentration wash was also extended by 0.35 minutes (175%) to ensure complete 
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removal of hydrophobic any species encountered, pre-empting their accumulation on the column.  The 

finalised method is outlined in detail in Table 14 (left).   

The HILIC method was modified more substantially, primarily due to the extra analytical time 

available from the standardisation to 15 minutes, but secondarily due to the feasibility of doubling 

sample throughput by utilising a column switching approach with a single detector.  Given that HILIC 

chromatography requires such extensive equilibration, it was recognised that the original method was 

nearly half cleaning and equilibration.  If modified such that the gradient area rich in metabolic content 

was half (or slightly less) of the overall cycle time, two chromatographic systems could be mated to a 

single MS using a valve to switch between eluates, economically doubling throughput.  Although such a 

system was not used in application, the method was consequently modified to render it eligible for 

column switching applications, perhaps as such systems become more commonplace commercially.   

To accomplish this, the latest eluting metabolites intended for measurement should be cleared from the 

column in advance of approximately 7 minutes to allow a small amount of time for the hypothetical 

valve changeover and initiation of a new MS acquisition.  The latest eluting peak shapes suffered from 

substantial peak tailing, however, making clean elution challenging.  A feature of m/z = 170.093 was 

identified as the last eluting molecular species present in the urine LTR sample as illustrated in Figure 

3-33.  Investigation of the peak(s) from data-dependent targeted MS/MS generated on the LTR urine 

fractions produced in section 3.4.3 revealed fragmentation patterns consistent with 3-methylhistidine 

(the main peak apex near 5.25 minutes) and 1-methylhistidine (the shoulder peak at 6.5 minutes) when 

compared to those on file with the Human Metabolome Database (HMDB00479 and HMDB00001, 

respectively).   
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Figure 3-33: Within the HILIC analysis of LTR urine (TIC shown in red, top), m/z=170.093 (EIC 
shown in purple, bottom) is the latest eluting species observed.    

The elution of broad chromatographic peaks after approximately 4.5 minutes was compressed by 

breaking the linear gradient into two independently linear portions; a shallower early portion and a 

steeper latter portion, simultaneously improving the separation of early eluting species while ensuring 

the clean elution of 1-methylhistidine in advance of 7 minutes.  This had the desirable side effect of 

making the peak shapes more uniform across the entire elution.  The remaining time was logically 

allocated to the equilibration step, completing the method modification.  The finalised method is 

outlined in detail in Table 3-15 (right).     
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RPC 

Time 
(minutes) 

Flow 
Rate 

A (%) B (%)

0.00 0.60 99 1
0.10 0.60 99 1

10.00 0.60 45 55
10.15 0.61 35 65
10.30 0.63 25 75
10.45 0.67 15 85
10.60 0.75 5 95
10.70 0.80 0 100
11.00 1.00 0 100
11.55 1.00 0 100
11.65 1.00 99 1
11.70 0.90 99 1
11.80 0.80 99 1
11.90 0.70 99 1
12.00 0.65 99 1
12.10 0.61 99 1
12.15 0.60 99 1
14.65 0.60 99 1

 

HILIC 

Time 
(minutes) 

Flow 
Rate 

A (%) B (%)

0.00 0.60 5 95
0.10 0.60 5 95
4.60 0.60 20 80
5.50 0.60 50 50
7.00 0.60 50 50
7.10 0.605 95 5 
7.20 0.61 5 95
7.30 0.62 5 95
7.40 0.65 5 95
7.50 0.70 5 95
7.60 0.80 5 95
7.70 0.90 5 95
7.80 1.00 5 95

12.50 1.00 5 95
13.50 0.60 5 95
14.65 0.60 5 95

 

 

Table 3-15: Finalised RPC (left) and HILIC (right) chromatographic methods after extending to 
14.65 minutes (for a 15 minute injection-to-injection cycle with 0.35 minute inter-analysis 
delay) and distribution of excess time to key method steps.     

3.8 Application to large-scale molecular profiling   

The finalised RPC and HILIC methods were applied to a set of 2035 unique urine specimens in the 

course of ongoing work at the MRC-NIHR National Phenome Centre.  All samples were prepared as 

previously described, by dilution with an equal volume of water followed by either centrifugation and 

analysis of the supernatant (RPC) or by further dilution with 3 volumes of acetonitrile to 1 volume of 

diluted urine, centrifugation, and analysis of the supernatant (HILIC).  Batches of 80 urine samples 

were prepared together with 16 QC samples, together comprising a single 96 well plate of urine 

samples.   Eight of the QC samples were aliquoted from a study reference (SR) urine pool generated by 

combining a small volume of all study samples in equal parts.  The SR is therefore representative of the 

total study matrix.  The other eight QC samples were aliquoted from freshly thawed LTR urine, 
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representing an external reference for the urine matrix.  Sample plates were prepared daily except for 

those analysed on weekends which were, by necessity, prepared on the Friday prior to analysis.   

Reversed-phase analysis was conducted on two Xevo G2-S Q-ToF instruments, one running in positive 

ion detection mode and the other in negative ion detection mode (herein referred to as RPC+ and 

RPC-).  HILIC analysis was conducted on a single Xevo G2-S Q-ToF instrument running in positive 

ion detection mode (HILIC+).  Alternating SR and LTR urine samples were analysed every 5 study 

samples.  Prior to starting the experiment, an automated detector gain test was performed on each Q-

ToF, whereby the signal obtained from a constant infusion of leucine enkephalin was assessed to 

determine the optimal voltage to be applied to the detector in order to generate approximately 90% of 

the possible signal intensity.  This ensures that the signal obtained is nearly maximised, but does not 

risk applying too great a detector voltage whereby the detector would age more rapidly with no benefit 

to observed signal.  The ToF mass analyser was calibrated with reference peaks generated by infusion of 

sodium formate solution.  Finally, the system, complete with a new column (2.1 x 150mm HSS T3 and 

2.1 x 150 mm BEH HILIC columns for RPC and HILIC chromatography, respectively) was conditioned 

with approximately one plate’s worth of SR sample injections based on the data obtained in Section 

3.5.3  

The experiment of 2035 study samples (approximately 2400 injections, including the QC samples) was 

deliberately broken into two analytical batches near the midpoint of the analysis representing a slight 

extension in batch size based on the previous successful analysis of nine sample plates.  The ionisation 

source was evaluated between analytical batches with the intention of cleaning all relevant components 

(e.g. the inlet cone and cone guard as well as the capillary and probe assembly).  However, all 

components were observed to be in good condition, relatively unsoiled, and were therefore not 

serviced.  Therefore, only the detector gain test was performed between batches.  The batch 1 and batch 

2 gain settings are listed in Table 3-16, indicating a substantial decrease in gain between batches in each 

analysis.  No other intervention was performed.  A single column per method was used for the duration 

of the experiment. 
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Instrument Batch 1 Batch 2

ToF 1 (RPC+) 2602 2702

ToF 2 (RPC-) 2813 2988

ToF 3 (HILIC+) 2600 2750

 

Table 3-16: Detector gain voltages applied during the first and second batches of data acquisition 
for each instrument and method type. 

3.8.1 Chromatographic precision 

The chromatographic precision produced by all methods was observed to be excellent when used 

across thousands of sample injections.  For the HILIC analyses, the variance observed in the retention 

times of peaks was minimal despite multiple preparations of mobile phase made and used throughout 

the analysis.  The TIC traces from the first and last LTR urine analysis are illustrated in Figure 3-34 (top 

and bottom, respectively).  This result is indicative of the success of both the method development and 

the efforts toward making solvent preparation more reproducible.  In addition, no significant 

degradation in peak shape was observed, despite the use of only a single column for all 2400 analyses.  

The TIC traces from the first available and last LTR urine analysis are illustrated in Figures 3-35 and 3-

36 (top and bottom, respectively) for RPC+ and RPC- analyses.    

Unfortunately, both the RPC positive and negative mode acquisitions were plagued by corruption of 

data files that were later traced to a hardware incompatibility within the data acquisition computer.  

The result is an incomplete dataset for both of these analyses, necessitating a second round of analysis 

at a later date to recapture the corrupted files.  For this reason, the largest continuous subset of data 

acquisition was selected for illustration of system and method performance. 
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Figure 3-34: TIC traces from the first (top) and last (200th, bottom) HILIC+ urine LTR analyses in 
the set of 25 randomised 96-well plates, approximately 2400 injections apart, showing 
similarity. 

Time
0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00

%

0

100

0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00

%

0

100

GRAPHIC_HPOS_TOF07_P21W11_LTR 1: TOF MS ES+ 
TIC

2.02e7
0.74

329.1927

0.67
415.2255

0.44
354.1119

2.14
287.1024

1.26
153.0669

1.21
170.0622

1.16
118.0663

1.45
151.0627

1.84
185.1292

4.94
144.1050

4.71
160.0989

3.95
302.23292.60

350.0844

2.36
313.0847

3.44
226.9522

2.76
167.0940

3.64
138.0567

4.51
232.1562

5.81
229.1578

5.19
162.1161

5.68
229.1559

5.99
170.0936

6.10
189.1617

GRAPHIC_HPOS_TOF07_P16W95_LTR 1: TOF MS ES+ 
TIC

1.32e7
2.15

287.1018

1.22
170.06190.74

329.1841

0.68
415.2137

0.96
181.0731

1.27
153.0663

1.32
191.0701

1.83
185.1286

1.47
305.0859

4.93
144.10424.71

160.0984

4.04
174.1242

2.56
289.0468

3.48
226.9520

2.69
350.0840

2.93
148.1119

3.12
144.9828

3.56
402.2327

3.92
94.0661

4.30
286.2030

5.85
229.1566

5.18
204.1250

5.49
162.1148

6.06
170.0940

6.20
189.1608

6.56
144.9839



 3.8 Application to large-scale molecular profiling  
 

 145 

 

Figure 3-35: TIC traces from the 33rd (top) and last (200th, bottom) RPC+ urine LTR analyses in 
the set of 25 randomised 96-well plates, approximately 2016 injections apart, showing 
remarkable similarity.  Analyses on plates 1-4 suffered from a small leak at the UPLC solvent 
mixer, and required reanalysis at a later date. 
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Figure 3-36: TIC traces from the 8th (top) and last (200th, bottom) RPC- urine LTR analyses in the 
set of 25 randomised 96-well plates, approximately 2300 injections apart, showing 
remarkable similarity.  LTR analyses 1-7 on the first plate required reanalysis due to corrupted 
data files.   
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3.8.2 Intensity precision 

The decline in observed signal intensity with respect to run order was greater in the application 

described here than observed in the nine-plate analysis described in Section 3.5.  However, 

optimisation of the detector voltage at the mid-point of the analysis was observed to fully restore the 

signal, indicating the losses were rooted in loss of gain at the detector, and not due to contamination of 

the source.  The exact reasons for the observed decline in detector performance within this experiment 

are not known, however it should be noted that the instrument manufacturer has introduced a function 

to assess and fine tune the voltage on the detector prior to each analysis in an effort to compensate for 

sensitivity lost throughout continuous analysis.  Yet, initial testing of this automatic tuning function 

caused undesirable side effects such as the accumulation of LC eluent on the lockspray baffle which is 

used to block the analyte probe while gain analysis is performed using the lockspray probe.  This 

accumulation occasionally led to the suction of liquid into the MS source when the automatic tuning 

step lasted for more than 30 seconds.  The tuning step was also observed to last for a variable duration 

depending on the results and therefore could potentially cause variance in the amount of column 

equilibration experienced prior to each analysis.  For these reasons, the function was determined to be 

unsuitable for use in the application described here.   

As noted previously, a number of modern informatics solutions exist for the adjustment of signal loss 

observed across the analysis.  Both the internal standards in the method reference (added to the LTR) 

as well as the full chromatographic data obtained from the LTR itself may be used as points of reference 

for such data correction.  However, their application is beyond the scope of this chapter, as the aim is to 

generate high data precision from the analytical system itself, minimising the need for such informatics 

solutions.  Therefore discussions are ongoing with the instrument manufacturer to design an improved 

method of detector voltage tuning that is more suitable for routine LC-MS analysis applications.  

Further work will be focused on this theme, creating software that is able to measure background 

chemical noise produced during chromatographic equilibration and utilise that to ensure the detector 

gain is adjusted prior to each injection, producing a consistent signal output and further contributing 

to the overall stability of the LC-MS platform.       
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3.9 Conclusions  

The efforts presented within this chapter are not intended to produce chromatographic methods that 

are incrementally better performing than their predecessors, but rather to make methods that are fit for 

a purpose.  Here, that purpose is the industrialised application of UPLC-MS profiling to large sample 

cohorts, which heavily weights the practical and operational aspects of analysis as well as the quality of 

the data produced.  It is clear in retrospect, having learned from the process of development described 

in the preceding sections, that the most appropriate model for developing profiling methods for 

industrialised application suitable for population phenotyping is one where the practical constraints of 

the working laboratory are considered from the outset.  These constraints then define the boundaries in 

which the analyst may subsequently work to optimise analytical performance.   

In this case, the establishment of a regular 24h cycle for each batch of prepared samples allows for 

continuous analysis on a predictable, easy to manage, and efficient schedule.  The cycle simultaneously 

limits the maximum age of a sample to an extent that is otherwise unachievable for sustained analyses 

within a common laboratory working environment as previously described (Figure 3-30). Limiting 

sample age increases the molecular coverage achievable by the assay as feature degradation is 

minimised during the analysis of each batch of prepared samples. 

Of the method durations that achieve a 24 hour cycle (where 96-well plates are used as the fundamental 

unit of sample preparation) the longest (15 minutes) was chosen for the molecular profiling 

applications developed herein.  This choice allows for a moderately high throughput (96 samples per 

day, per instrument) while leaving a suitable amount of time for the development of highly retentive, 

high capacity separations with adequate column cleaning and equilibration which are well matched to 

the performance capabilities of modern separations hardware.  The cycle time calculations also indicate 

logical targets for future method development, with 7.5 and 5 minute analysis durations allowing for 2 

and 3 plates to be analysed within the same 24h period.    

Within the 15 minute time allotment, methods were created which generate high performance results 

with respect to overall peak capacity, peak distribution, and resolution of early eluting peaks, thereby 
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maximising the molecular coverage of each method.  Longer column lengths were used to dramatically 

improve the resolution of early eluting species, particularly in RPC analysis where a large amount of 

urine metabolite content is early eluting.  Variable mobile phase flow rates were used in order to 

increase the number of column volumes available for tasks of specific importance to each method.  By 

selectively using 1mL/minute flow rates at high organic mobile phase concentrations, column cleaning 

was improved for the RPC separation, while column equilibration was improved for the HILIC 

separation.  Furthermore, in an effort to combat the reputation of HILIC analysis for being unstable, 

the mobile phase preparation steps required by the analyst were simplified for the HILIC separation, 

relying more heavily instead on the UPLC device for accurate proportioning and mixing of solvents at 

very skewed distributions (e.g. 95:5 A:B).   

These enhancements to the chromatographic methodology were supported by MS source and ToF 

tuning procedures designed to generate and trade sensitivity in exchange for precision during 

continuous analysis.  By simply injecting less sample material (2μl of prepared dilute sample) and using 

source geometry that favoured the maintenance of clean source components over ultimate sensitivity, a 

high degree of chromatographic and intensity measurement precision was achieved in controlled 

testing.  While that chromatographic precision was maintained in the large-scale application to 

population phenotyping (Section 3.8), the precision in measured feature intensity suffered specifically 

because of loss of gain at the ToF detector over the course of the analysis.  This phenomenon appears to 

be under reported in the literature, perhaps because the effect is confused with a loss of sensitivity 

originating from the soiling of the ionisation source, or because analysis batch sizes are typically 

smaller than those achieved here (e.g (Zelena et al., 2009)).  As a consequence, this observation lays the 

foundation for further work in the stabilisation of the ion detector system which is currently ongoing.   

Notwithstanding this, sufficient precision has been demonstrated to allow for accurate comparative 

analysis across thousands of samples.  While it is impractical to directly compare the long-term 

precision of the newly adapted methods vs. the reference methods at large-scale, their current 

implementation has been more successful at achieving measurement precision during large-scale 

continuous analysis than previous attempts with identical UPLC instrumentation utilising the RPC 
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reference method and similar bench top ToF instrumentation (Swann et al., 2013).  In addition, the 

quality of LC-MS results can now be better tracked thanks to the development of QC reference 

materials such as the LTR urine and mixtures of chemical reference standards discussed previously.  

Both materials may be used for retrospective data correction (e.g. retention time alignment).  While the 

LTR represents the complete matrix and may be used to bridge the complex profiles arising across 

many independent studies, the synthetic mixtures provide specific targets more suitable for prospective 

hardware suitability testing and real time assessment of method performance and quality control.   

Finally, the complementarity of HILIC and RPC methods as configured herein has been successfully 

demonstrated in direct application to human urine, thereby ensuring the use of two chromatographic 

approaches for molecular profiling is warranted and efficient.  While all technologies impose a degree 

of selectivity, the combination of these approaches provides broad coverage of diverse metabolite 

classes as illustrated by the excellent orthogonal peak distribution of the RPC and HILIC SSTM 

contents.  The urine fractions generated are of potential future benefit, as the coordination of results 

from advanced analyses such as MS/MS, ion mobility, or NMR across the simplified urine fractions 

may assist in the rapid annotation of unknown compounds from subsequent studies.  
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Chapter 4: LC-MS feature grouping suitable for real-time 

application in large-scale profiling 

4.1 Introduction 

Achieving broad coverage in the measurement of chemical species is the crux of the metabolic profiling 

workflow.  While the previous chapter focuses on expanding metabolite coverage in LC-MS data 

acquisition and improving the precision of measurement for application over large studies, this 

chapter’s focus is on maintaining those qualities in the data processing steps which prepare a dataset for 

analysis.  Before the acquired data can be collectively modelled or interrogated, the measurements from 

each individual sample must be collated to a single unified dataset.  Such a dataset generally takes the 

form of a matrix of measured intensities for all observed chemical species (rows) across all samples 

(columns).  To produce this matrix, each detected chemical species must first be differentiated from all 

other species present in the sample, as well as chemical and electronic noise, and then measured for 

intensity.  This process is repeated for each sample in the study generating a series of independent 

datasets, each containing thousands of extracted chemical species representing the metabolic content of 

the sample.  Identical species must then be grouped across all samples within the study to allow 

comparison of their measured intensities among individual samples or subset groups of samples as 

desired.     

Individual chemical species are defined by their measured properties.  The most fundamental of these 

in LC-MS datasets are the mass-to-charge (m/z) ratio and the chromatographic retention time.  The 

use of high resolution mass spectrometric and chromatographic technologies (e.g. time of flight mass 

analysis and ultra-performance liquid chromatography) as well as high performance separations such 

as those described in the previous chapter greatly benefit the differentiation of features observed in 

complex biofluids.  Yet, high resolution alone does not necessarily ensure accurate grouping of features 

across samples, as the independent quality of precision is also required to accurately group features 

across samples in an experiment.  Feature grouping is therefore confounded by variance in the 

measurements used to assign identity to features.   
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Both chromatographic and mass spectrometric instrumentation measurements are susceptible to 

systematic and unsystematic variation (Lange et al., 2008) referred to herein as measurement drift and 

error respectively.  Error is the product of random deviation in measurement, whereas drift is a 

consequence of environmental and system changes over the course of the analysis, and is therefore 

time-dependent.  Drift in mass measurement, for example, may occur when changes in air temperature 

surrounding the time of flight tube of a ToF instrument affect its length, causing a change in ion flight 

time and therefore the measured m/z ratio (Chernushevich et al., 2001).  Fortunately, strategies that 

mitigate this effect have been routinely implemented in commercial mass spectrometric 

instrumentation for many years, such as hardware to allow selected sampling of a known reference 

mass for linear and global measurement adjustment (Wolff et al., 2001).  However, no such strategies 

exist for the on-instrument correction of chromatographic retention drift which can be more dynamic, 

more selective, and non-linear in nature.  As a consequence, the problem of drifting retention times is 

typically overcome post-acquisition using feature alignment and grouping software solutions.       

The most relevant and widely used of the freely available software packages for feature grouping are 

discussed in detail in a subsequent section.  However, all methods share two possible modes of failure 

when grouping features from multiple samples (Lange et al., 2008, Pluskal et al., 2010).  The first mode 

of potential failure exists when features from identical chemicals across samples are not grouped 

together, likely resulting from analytical variance in the observed m/z and retention time 

measurements.  The second potential failure is the erroneous grouping of features from distinct 

chemicals resulting from the inability of the grouping method to distinguish features with similar m/z 

and retention time characteristics.  In both of these cases, feature grouping errors negatively impact 

upon the quality of the unified dataset.  Furthermore, the potential occurrence of these grouping errors 

is exacerbated in high density datasets such as those produced by molecular profiling of human 

biofluids (Johnson et al., 2003, Lommen, 2009).   

Fortunately, the resolution, scan to scan precision and overall accuracy of m/z measurements achieved 

by modern mass spectrometric instrumentation continues to improve as advances are made in 

commercial hardware.  These benefits enable more stringent parameters to be set in the m/z dimension 
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when defining groups of features across samples, simplifying the exercise and improving the quality of 

the outcome.  The performance of LC too has improved, specifically with the advent of commercial 

UPLC in 2004 making higher resolution separations possible in shorter times (Plumb et al., 2004).  

Furthermore, throughout Chapter 3, efforts were made to enhance the resolution (peak capacity) and 

precision of fast LC separations for application to large studies.  The results of these efforts should 

likewise benefit feature grouping, producing more accurate experiment datasets.  However the 

common tools in use for the extraction and grouping of LC-MS features were neither developed (Smith 

et al., 2006) nor benchmarked (Lange et al., 2008, Pluskal et al., 2010) using UPLC-MS data, and 

therefore may not be fit for purpose when applied to such datasets.   

However, it is true that, when applied to large numbers of samples requiring days or weeks of 

acquisition time and potentially spanning multiple batches of chromatographic reagents, the 

cumulative analytical drift can become substantial across the duration of the experiment.  Large 

profiling datasets are therefore especially at risk for loss of valuable molecular coverage and accurate 

feature intensity information.  For these reasons, feature grouping remains a critical and delicate 

intermediate step between data collection from individual samples and analysis of the unified dataset.  

Fortunately, the chromatographic drift processes observed in modern UPLC applications are generally 

slow and non-Markovian, and are therefore embedded in the order of analysis (Eilers, 2004).  Yet, no 

mainstream software package explicitly leverages the analysis order (also referred to as the 

“multisample advantage” by Tengstrand et. al. in their recent publication (Tengstrand et al., 2014)) 

when performing feature alignment and grouping.  It is therefore a hypothesis within this chapter that 

the consideration of analysis run order in data processing will yield greater accuracy in feature 

grouping and produce datasets which better represent the breadth and quality of chemical 

measurement originally present in the raw data.   

Finally, to support the holistic goal of high throughput analysis, the speed of feature extraction and 

grouping must be considered as well as the speed at which the data are generated.  Under ideal 

circumstances a dataset for further analysis would be produced as soon as possible following data 

acquisition, allowing further dedicated investigation (e.g. targeted MS/MS or ion mobility 
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measurements) of features of interest elucidated by statistical modelling (e.g. regression of known 

metadata to the profiling  dataset).    However, recent experience with the feature extraction and 

grouping of profiling datasets in excess of 2000 samples has proven arduous, requiring an amount of 

time approximately equal to that required for data acquisition (with a high rate of complete failure as 

some software simply cannot achieve such large volume analysis).  A conceptual fix would therefore be 

to allow the data analysis to run in parallel with data acquisition.  Yet, while the advent of high 

throughput metabonomics has helped prioritise the efficiency and processing speed of feature 

alignment and grouping algorithms (Lange et al., 2008), none are so far implemented as the data are 

generated (herein nominally referred to as “real-time”).      

The opportunity therefore exists to develop and implement a fit-for-purpose method of feature 

matching that is appropriate for applications in large-scale profiling.  Such a method should be adapted 

for the types of retention time variance observed in state of the art UPLC-MS analyses, including 

invulnerability to the time dependent drift produced by run order effect across large sample set.  

Furthermore the method should be suitable for implementation during data acquisition to support 

holistic high-throughput analysis.  Such advancements are of fundamental importance and immense 

practical benefit to large profiling studies.  The aim of this chapter is therefore to investigate the types 

of variation observed in large UPLC-MS datasets, and to leverage this knowledge in the creation and 

implementation of a novel iterative pairwise feature matching mechanism capable of realtime 

deployment and suitable for application to large-scale study.  

4.2 Specific Objectives of Method Development  

• Characterise the types of systematic retention migration observed in continuous profiling 

analyses. 

• Develop and implement an algorithm that links features detected in subsequent samples which 

is appropriate for use in real time as data are generated.  

• Demonstrate feasibility of the method in comparison to popular open source grouping 

methods using a synthetic dataset for performance assessment. 
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4.3 Existing tools and strategies for feature alignment and grouping 

Prior to the development of advanced automated feature extraction methods, chromatographic data 

were preferentially aligned for peak grouping by warping of raw data rather than by detection and 

integration of peaks (Nielsen et al., 1998).  While this technique, when applied to the TIC trace itself, 

was suitable for matching well resolved chromatographic features among samples, all techniques 

operating in a single dimension naturally struggle to cope with complex chromatograms and high peak 

density observed in human biofluid analysis (Christin et al., 2010).   The development of Component 

Detection Algorithm (CODA) later allowed the extraction and selection of high quality single mass 

chromatograms, and COW was applied to each, leveraging the MS separation provided by LC-MS 

measurements (Christin et al., 2008).  However, these and similar techniques perform alignment and 

grouping by warping the raw data (either the TIC or selected ion chromatograms), and are therefore 

capable of distorting chromatographic peak shape and introducing associated artefacts (Chae et al., 

2008).     

Advances in feature detection and extraction offer an orthogonal approach whereby features are 

distinguished within complex LC-MS datasets and integrated prior to alignment and grouping efforts.  

Grouping is then a matter of collation of a reduced dataset (de-noised, to the extent that feature 

extraction is selective for features of given intensity, signal to noise threshold, etc.) rather than 

manipulation of raw data (Robinson et al., 2007).  This approach is commonly applied throughout 

modern LC-MS processing software packages which in turn provide a complete solution for feature 

extraction, integration, and multi-sample alignment and grouping.  Of those that are freely available for 

use (not commercially produced and restricted to proprietary data formats and means of operation), 

the most widely used of these software packages determined by number of citations at the time this 

chapter was prepared (Coble and Fraga, 2014) include XCMS (Smith et al., 2006) and MZmine 

(Katajamaa et al., 2006), although new software packages continue to emerge (Tengstrand et al., 2014).  

The former two have also been shown to be the highest performing amongst their peers (Lange et al., 

2008).  Each of these established packages has been developed as a modular collection of individual 

procedures which perform distinct processes including feature detection and grouping.  The feature 
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grouping approaches of these most pervasive approaches are reviewed here to provide a context for the 

subsequent developments within this chapter. 

XCMS, the most highly cited of all related open source LC-MS data pre-processing software (Coble and 

Fraga, 2014), was first introduced in 2006 and has undergone various updates in implementation since 

that time (Tautenhahn et al., 2012, Gowda et al., 2014).  One such update was the addition of the 

popular centWave peak detection algorithm, appropriate for high resolution MS data (Tautenhahn et 

al., 2008).  The original grouping algorithm, still commonly used within Computational Systems 

Medicine because of its convenience and speed, considers the spatial density of extracted features of 

similar mass throughout the entire dataset (consisting of all samples), evaluating their distribution 

using a Gaussian-smoothed histogram assessment tool (kernel density estimator) to define boundaries 

of peak groups.  While the method is indeed fast, the application of a feature-density based grouping 

scheme applied to high feature-density datasets (such as the fast profiling of human urine) creates a 

logical challenge.  As the method considers all of the data at once, variance in peak position across the 

sample analyses contributes to a widening of the calculated density for a given feature which can 

sometimes lead to the erroneous grouping of two or more distinct features of similar mass and 

retention time within the same sample, where the analytical variance is on the same order as the 

distance between the peaks.  This problem is compounded by difficulty in estimating the appropriate 

smoothing parameter (bandwidth) to apply within a given dataset, in turn determining the effective 

resolution at which feature density across the dataset is calculated.  Despite the existence of published 

guidelines for general application for density grouping to UPLC-MS data (Patti et al., 2012a), this 

parameter remains unintuitive to adjust for a given separation, as it bears no direct relevance to the 

observable retention time variance (i.e. it is not a window of estimated retention time variance).  

Notwithstanding these difficulties, the grouping method is optionally augmented by iterative rounds of 

non-linear chromatographic alignment and re-grouping, however such alignment is limited to 

correcting for global shifts in chromatographic retention and is not feature specific. 

The original implementation of MZmine (published a year earlier in 2005) utilises a feature alignment 

and grouping method referred to as the “join aligner” whereby detected features from a given sample 
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are matched to those in a master feature list by scoring their closeness in observed m/z and retention 

time (Katajamaa et al., 2006).  With each new round of matching, the m/z and retention time values 

that represent each group in the master list are updated to reflect the average values from of all features 

within that group.  User-set windows of m/z and retention time are centred on those master list average 

values, defining the new bounds for subsequent feature matching.   

Despite this approach being released in advance of XCMS, it proved so popular that it served as the 

inspiration for an updated XCMS grouping method called “nearest” which works in the same manner 

but is augmented by XCMS’s inbuilt optional non-linear chromatographic alignment option.  MZmine, 

lacking this, recognised the join aligner method as not suitable for grouping peaks with non-linear  

deviation in chromatographic retention and released MZmine 2 in 2010 (Pluskal et al., 2010) adding 

the capability for non-linear correction of the chromatographic space between two samples.  In this 

manner, the alignment and grouping methods of the two approaches have largely homogenised.  This 

is convenient for the work presented herein, as we are able to use XCMS to test both the “density” and 

“nearest” methods (the latter representing the join-aligner method of MZmine) on a single featureset 

without breaking the embedded multi-step processing pipeline to feed the output of one method (e.g. 

feature detection) into another  (e.g. grouping) (Robinson et al., 2007). 

4.4 Definitions 

In order to clearly present the intended workflow and pre-requisite procedures, a number of terms 

used throughout this chapter must first be defined. Those terms are listed here in an order that allows 

more complex terms to build on those previously defined:   

• Sample set:  A set of samples (either an entire experiment, or a batch) analysed in a continuous 

sequential manner.   

• Run order:  The order of samples sequentially analysed. 

• Feature:  A distinct detected signal with measured mass (m/z), retention time, and intensity 

(also characteristic peak shape parameters, if measured).  Note that a single molecular species 
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will frequently be detected as multiple features due to the presence of isotopes, fragments, and 

adducts which are all separable by mass.   

• Feature set:  The complete set of all extracted features from a single raw data file (from a single 

sample).   

• Cluster:  A subset of features, extracted from a single raw data file (single sample), that are 

within close m/z and retention proximity.  Clustered features are identified by matching the 

feature set against itself using 2x the window of retention time error used for matching features 

between samples.     

• Independent feature:  a feature extracted from a single raw data file (single sample) that is not 

in close m/z and retention proximity of other features in the set, and therefore not a member of 

a cluster. 

• Independent feature match:  A match between two independent features.   

• Community:  one or more cluster where at least one feature is matched to an independent 

feature or cluster of features in the paired feature set.   

• Link:  A pair of matched features from two samples in sequential run order. 

• Chain: a continuous series of links across multiple samples of sequential run order 

• Ledger: A matrix containing all features detected across all samples in the sample set.  Each 

column represents a single sample, and contains all features extracted from that sample.  Each 

row represents a unique feature within the full dataset, containing the individual entries, links, 

or chains of matched features.    

4.5 Experimental LC-MS dataset 

4.5.1 LC-MS data acquisition 

In order to assess the variation in real LC-MS measurements, as well as provide an example dataset for 

the testing of multiple grouping strategies, a test set of human urine samples was designed and analysed 

as described previously in Section 3.5.3 (Testing the limits of UPLC-MS system stability for an 

optimised configuration).  Feature extraction was performed on subsets of this dataset (specifically 

defined in the following sections) using the centWave method within XCMS and the controlling 
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parameters described in Table 4-1.  The signal-to-noise threshold and prefilter intensity were set to 

lower values than those used throughout Chapter 3 in an effort to extract the maximum available 

feature information.   

parameter value 

ppm 30 

peakwidth 1 to 8 

snthresh 10 

noise 1000 

prefilter x = 8 

y = 2000 

 

Table 4-1.  XCMS parameters for the extraction of features from urine analyses by LC-MS using the 
optimised RPC method developed in Chapter 3.       

4.5.2 Expected and observed patterns chromatographic retention deviation 

The chromatographic retention of any given molecular species is subject to variance over the course of 

sequential analyses.  While measurement error contributes to this variance, systematic drift within or 

among sample analyses is more generally problematic to downstream feature grouping.  As much of 

the development in the previously discussed feature alignment and grouping methods has focused on 

the correction of nonlinear retention time warping in chromatographic space among samples, the 

model dataset was first explored for signs of such perturbations.   

To accomplish this, all sample injections from the first plate of the test analysis were assessed for 

perceived nonlinear chromatographic drift using the retention time correction provided by XCMS.  

Using all of the samples rather than just the SR urine replicate injections ensured that any non-linearity 

due to differences in sample composition would be represented in the data subset.  Features were 

grouped using the “nearest” grouping method with retention time and mass error windows of 6 
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seconds and 0.1 m/z respectively.  Of those groups, 633 were defined as “well behaved” (each 

containing exactly 1 feature per sample) and therefore suitable for use in determining the global 

chromatographic retention time correction required for each sample to better align the feature content 

among samples and enhance subsequent grouping.  These “de-warping” curves were generated for each 

sample by applying locally weighted polynomial regression (LOESS) across the retention time 

deviations observed in the features of the 633 correction groups.  A span of 0.2 was used to control the 

degree of LOESS smoothing.  The results of this non-linear alignment are shown in the output 

produced by XCMS, illustrated in Figure 4-1.  The correction curve for each sample is shown as a single 

line, coloured (using a red-to-violet “rainbow” gradient) corresponding to the order in which they were 

analysed.          

 

Figure 4-1.  LOESS retention time deviation curves for 96 sequential urine analyses from plate 1 of 
the test sample set.  The curve for each sample is coloured according to the order in which the 
sample was analysed, revealing a run order associated progression of features between 200 and 
500 seconds in an otherwise stable chromatographic environment.  The sample analysis order is 
coded in the rainbow-styled color of the correction curves, with red curves indicating earlier 
samples in run order and violet indicate later samples in run order.     
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The LOESS smoothed retention time deviation curves show a slight tendency for features from well 

behaved peak groups between 200 and 500 seconds to migrate in a nonlinear manner with respect to 

the remainder of the gradient portion of the chromatogram (to approximately 600 seconds) which is 

otherwise very stable.  The observed overall deviation is not substantial, however, and would be 

expected to be easily subsumed by a small retention time error window in feature grouping.  For any 

individual features strongly contributing to this trend (perhaps with deviations in excess of that shown 

illustrated by the LOESS smoothed retention time correction curve), it is furthermore important to 

note that the deviation itself appears to be dynamic and correlated with analysis order.  This indicates 

that even where features deviate in retention time among chromatograms, they do so in a gradual time-

dependent manner.       

With this in mind, the dataset was further explored for evidence of retention time drift across multiple 

samples.  Such changes are expected to be gradual in nature (barring acute system failure) and, if 

tracked for a given analyte species, are expected to follow one of a few indicative patterns recognisable 

to an experienced chromatographer.  Some retention deviations are the consequence of a developing 

hardware malfunction such as the development of a leak in the solvent delivery system.  In these 

scenarios, as the problem worsens, the change in retention time increases with each subsequent 

analysis.  An illustration of such retention drift patterns is shown in Figure 4-2A.  Such drift tends not 

to be selective, instead affecting entire portions of the chromatographic space.  Conversely, where the 

deviation is the result of system exposure to mobile phase or sample matrix, the changes tend to 

become less severe with each subsequent analysis as the system reaches equilibrium.  An illustration of 

equilibrium-derived retention drift patterns is shown in Figure 4-2B.  Such drift tends to be chemically 

selective, with different species exhibiting different behaviour over time, resulting in the mixing of 

molecular content in the chromatographic space.    
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Figure 4-2.  Panel A illustrates two possible patterns of analyte retention drift due to system 
instability.  Developing system problems such as leaks in the pumps or fluid delivery path may 
cause increased (yellow) or decreased (blue) retention of an analyte species across repeated 
analyses.  Panel B illustrates three possible patterns of analyte retention drift due to system 
equilibration, whereby analyte retention may increase (yellow) or decrease (blue) before 
stabilising, or remain constant (green) across all repeated analyses.      

As the LC-MS analysis of the test set was completed without hardware errors, the drift illustrated in 

Figure 4-2A was not observed in the dataset.  However, evaluation of the raw data produced by the 

profiling experiment reveals the presence of complex and selective equilibration drift throughout the 

dataset.  To best illustrate this, an example was chosen whereby features with all three retention 

migration behaviours (outlined in Figure 4-2B) are observed in a single small chromatographic space.  

Figure 4-3 illustrates three sets of EICs generated from even numbered SR analyses 2-18 (stacked top to 

bottom according to run order).  Panel A shows a cluster of features (m/z = 302.196) which elute earlier 

as the analysis order increases, while C (m/z = 295.008) shows a distinct feature that elutes later with 

increasing run order.  A feature of intermediate mass (m/z = 297.156) is shown in panel B at a static 

retention time (red dotted line) as it does not migrate.  Note that the feature shown in panel C changes 

elution order with the feature in panel B, violating the assumption of traditional feature grouping 

methods that elution order remains constant.     
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Figure 4-3.  Heterogeneity in chromatographic feature drift.  Extracted ion chromatograms of three 
m/z values (A = 302.196; B = 297.156; C = 295.008) eluting between 2.8 and 3 minutes in a series 
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of LC-MS analyses of a SR urine sample.  Nine analyses are shown representing every other SR 
sample from the first 18 SR analyses of the experiment.  Chromatographic drift to both earlier 
(A) and later (C) retention times are observed with increasing run order in comparison to a 
feature that is not observed to drift (B).  

4.5.3 Feature clusters and cluster migration 

Despite the efforts presented in Chapter 3 at increasing chromatographic peak capacity, clusters of 

poorly resolved features may readily be observed in complex biofluids such as human urine.  The 

components of these clusters are often related in chemical composition and structure making them 

difficult to separate by LC, and sometimes impossible to differentiate by accurate mass measurement 

(e.g. isobars such as leucine and isoleucine).  A representative feature cluster (m/z = 310.2015 +/- 

0.0025) from the test set SR urine analyses is shown in Figure 4-4.  Fortunately, the prerequisite peak 

detection algorithms such as XCMS’s centWave are well suited to differentiating closely eluting 

features, even where baseline chromatographic separation is not achieved.  A high degree of accuracy 

can be seen in the 2D plot of features detected in centWave when compared to the complex EIC 

immediately above.  This complex cluster of features will be used later in this chapter as an example to 

illustrate the performance of feature alignment and grouping between sample pairs. 
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Figure 4-4.  A representative feature cluster (m/z = 310.2015 +/- 0.0025) from the test set SR urine 
analyses shown as an EIC and as featured detected by XCMS centWave. 

Clustered features are subject to the same measurement error and systematic variance that potentially 

affect all features, but their close proximity compounds the challenge of accurate feature grouping, 

warranting special consideration in the design and performance testing of a grouping algorithm 

(Tengstrand et al., 2014).  Furthermore, as noted in the literature (Chae et al., 2008), it is known to 

chromatographers that features within such clusters often display similar chromatographic behavior.  

An example of this from the test set SR analyses is illustrated in Figure 4-5 (panel A), with a distinct yet 

simultaneously eluting feature shown for reference (panel B) demonstrating that the migration 

observed is specific to the features within the cluster and not due to generic chromatogram warping (as 

the reported retention time deviation curves reported in Figure 4-1 would otherwise suggest for 

features eluting near 380 seconds).  While this “whole cluster migration” may be visually intuitive to 

deconvolve when run order is considered (i.e. the plotting order in Figure 4-5), feature grouping 

methods that consider the entire dataset and discard analysis order are easily confounded by cluster 

migration, as peaks of near identical mass migrate into retention spaces previously occupied by 

log(intensity) 
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adjacent peaks within the same cluster.  It is therefore difficult, with no knowledge of the sample 

analysis order, to determine how to set and adjust bounds for accurate feature grouping.  

 

Figure 4-5.  A cluster of features (m/z = 314.23) exhibiting the same retention migration behavior 
(A) with respect to increasing run order.  A static feature (m/z = 478.208) within the same 
chromatographic elution window is shown to provide a reference ensuring the drift observed is 
not due to generic warping.   
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Simple and fast grouping methods that consider the entire dataset such as simple binning (Gurdeniz et 

al., 2012) (illustrated in Figure 4-6, panel B) and feature density calculation therefore risk the erroneous 

inclusion of nearby peaks of similar mass and retention time in the formation of groups.  A solution is 

needed which is sensitive and adaptive to the migration of features from sample to sample (Figure 4-6, 

panel C), and is able to leverage this knowledge to perform more accurate and specific feature 

grouping, yielding higher quality datasets which better represent the underlying raw data.   
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Figure 4-6.  A cluster (m/z = 314.23) exhibiting retention migration behavior with respect to 
increasing run order is illustrated (A) along with cartoon representations of feature density 
and binning approaches to feature grouping (B) and the proposed pairwise approach to 
grouping in run order (C).   
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4.5.4 Pairwise comparison 

A key observation in the test dataset is that the chromatographic variance of peaks between sequential 

analyses tends to be small in comparison to the variance observed over an entire analysis, especially on 

a population screening scale.  This phenomenon is illustrated in Figure 4-7, which shows the exemplar 

m/z = 310.2015 cluster in sequential pairs of SR analyses (each 5 sample injections apart) from the start, 

middle, and end of the 864 sample test analysis.  Pairwise comparison may therefore be made between 

features detected in sequential analyses using minute windows of retention error.  It is this observation, 

applicable to both feature clusters and independent features, that guided the conceptual foundation for 

the grouping algorithm presented here.  By connecting features between samples through a process of 

iterative pairwise matching using small windows of retention error, the reproducibility of LC-MS 

across short analytical durations can be exploited for improved grouping across the entire dataset, 

regardless of the size or duration of collection.   
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Figure 4-7.  Pairwise agreement in feature retention between sequential quality control samples 
from the early, mid, and late portions of the 864-sample analysis.  EIC’s are shown for the m/z 
= 310.2015 (+/- 0.01 Da.) feature cluster.  While there is a substantial difference in the retention 
times among each set, the pairwise retention times are virtually identical for each pair.   

4.6 Implementation of pairwise feature set matching across replicate quality 

control samples (ROgroup) 

Code for iterative pairwise feature matching was developed and implemented within the R software 

environment, and may be found in Appendix 3.  The script, referred to as the “ROgroup” method, is 

engineered to be compliant with a modular framework whereby any data preprocessing and feature 
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detection algorithm can be utilized, provided that it is capable of generating a table of m/z, retention 

time, and intensity values for features on a sample-by-sample basis.  The first and second samples in 

the analysis order are imported to XCMS for independent feature extraction using the centWave 

algorithm to generate feature sets.  The feature set generated from sample n is designated as the 

template, while the feature set from sample n+1 is designated as the candidate.  The feature matching 

procedure is then implemented between the template and candidate feature sets as described in the 

following sections, using the algorithm illustrated in Figure 4-8.  The matching process is iterated for 

each sample pair within the sample set, with the candidate set from the previous round of pairwise 

matching becoming the template set in the next round.  All detected features within a sample set, as 

well as any links established among them through matching, are collated in a link ledger.  

Of all measurements potentially associated with a feature (e.g. chromatographic peak shape, signal to 

noise, etc.), only the observed m/z ratio and chromatographic retention time are used to determine 

feature matches (except in special cases of complete ambiguity, detailed below).  Furthermore, in all 

cases, matching is performed by setting a window of retention time and m/z error, centered on the 

target value, to create “intelligent bins”.  This simple approach was chosen to highlight the efficacy of 

the concept of pairwise matching in run order, and the overall algorithm, rather than rely on the 

complexity of the matching method itself.   
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Figure 4-8.  For a set of samples, iterative rounds of pairwise matching (purple) are conducted 
between feature sets from sequential sample analyses.  Data acquisition and feature extraction 
(grey) are prerequisites for pairwise matching between template and candidate sets.  The 
matching and reporting workflow steps and procedures (red) are detailed in the following 
sections.  

4.6.1 Intra-sample matching to define feature clusters 

As discussed in Section 4.5.3, clusters of features are likely to produce ambiguous pairwise matches 

where more than one feature matches a single feature in the opposing dataset.  Therefore, early 

detection of feature clusters can help to shunt those features into a specialised matching scheme, 
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avoiding the occurrence of ambiguous matching in the rest of the dataset.  Features that are very close 

in both m/z and retention are therefore identified and marked as clusters in a process of intra-sample 

matching whereby the feature set is matched against itself.  To achieve this, intelligent bins are built for 

every feature in the set.  The feature set is then matched against its own feature-derived bins, with 

matches indicating the presence of closely related features in the set.  Together, these matched features 

are determined to be clusters, and are designated with a unique cluster identification number.  Features 

with no intra-sample matches are considered to be “independent”.   A single feature cluster as detected 

by the software is illustrated in Figure 4-9.  It is important to note that individual features in a cluster 

may be relatively distant from one another in either m/z and/or retention time, as long as they are 

indirectly connected through other features present in the cluster.  This process is conducted for both 

the template and candidate feature sets, defining both clusters and independent features in each.   
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Figure 4-9.  A single feature cluster detected in a representative sample of human urine.  The top 
panel shows the cluster EIC (mean m/z = 314.2324 +/- 30ppm).  All detected features are 
indicated with vertical lines, with solid blue lines indicating inclusion in the cluster, and dotted-
red lines indicating exclusion from the cluster based on retention time, mass, or both.  The 
bottom panel shows the same detected features in both m/z and retention time dimensions.  In 
both panels, the blue shaded area indicates the boundaries of the cluster for retention time (top) 
and both retention time and m/z (bottom).  

To illustrate the procedure’s outcome on a representative example, feature clustering was performed on 

human urine sample p5-SR8, analyzed at the mid-point of the 9-plate reversed-phase LC-MS test 
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analysis.  Of the 10,280 features extracted from the template data file, 6451 (63%) were found to be 

independent, while the remaining 3829 (37%) were associated in clusters.  Figure 4-10 illustrates all 

10,280 features extracted from the template data file, each colored by the size of its associated cluster 

(independent features are shown in black with 90% transparency).  Colocation of the largest feature 

clusters is observed in areas that are inherently noise-prone, such as the signals from solvent 

contaminants at the end of the chromatogram, and during the post-gradient equilibration period (after 

600 seconds).  

 

Figure 4-10.  Spatial orientation of large clusters in a representative reversed-phase LC-MS dataset.  
Independent features are shown in black, with a transparency of 90% in an effort to minimize the 
over plotting effect observed with the given information density.  Clustered features are shown in 
color, with the color and transparency set relative to the log of the cluster size in order to 
highlight the location of clusters of greater size. 

The extent to which noise data were detected as features by the detection software was an unexpected 

result.  In this example, 10.9% of all features in the dataset belong to clusters with sizes of 10 or greater 

(38 clusters in total).  EIC plots of those clusters were automatically generated for manual evaluation, 
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and three such clusters are illustrated in Figure 4-11.  It is clear that erroneous feature detection within 

constant signals such as those originating from mobile phase contaminants produces features of near-

identical mass with high retention time density, and that these are in turn likely to generate large 

feature clusters.  Evaluation of features on a per-cluster basis is an efficient form of data review, as 

10.9% of the dataset (1,120 features) were verified as fit for omission in less than one minute of manual 

review.  While within this example it must be acknowledged that the most severe source of solvent-

derived noise in the dataset could be avoided by truncating the feature detection scan range to a more 

limited subset within the raw data file, more severely contaminated datasets may still benefit from such 

an approach to de-noising.   
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Figure 4-11.  Representative large clusters of 10 or more features from early, mid, and late 
retention times (top to bottom, respectively.)   
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4.6.2 Inter-sample matching  

Having identified feature clusters in the template and candidate datasets, the next step is to identify 

matching features between them.  Inter-sample feature matches are established in the same manner 

used for intra-sample matching whereby intelligent bins are constructed in one feature set (in this case, 

the template) and features from the opposing set (candidate set) are matched against them.  Bins are 

again built by applying a tolerance window to both the m/z and retention time values of each template 

feature.  However, the tolerance windows used are not equal to those used in intra-sample matching.  

Use of equal tolerances would allow for fringe cases where two features in the candidate set do not 

match each other, but both match a feature oriented perfectly between them (in retention time) from 

the template set, and thus an ambiguous match is made from three independent features (as illustrated 

in Figure 4-12, left).  In order to avoid creating a separate resolution pipeline for these special cases, the 

values used for inter-sample matching are set to 50% of those used in intra-sample matching, thereby 

ensuring that ambiguous matches only occur where feature clusters are involved (Figure 4-12, right).   

 

Figure 4-12.  Tolerance windows for inter (blue) and intra (green) sample feature matching.  Red 
dotted lines denote matches.  To avoid the scenario whereby a single template bin may match 
two independent candidate features (left), the intra-sample matching tolerance is set to double 
the value of the inter-sample matching tolerance.  Thus, ambiguous matches always involve 
clusters, allowing for a single scheme of ambiguity resolution.      
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Matching produces three outcomes:   

1. Candidate features with no matching template feature are designated as unique, and are 

appended as new entries to the link ledger.   

2. Independent (unclustered) candidate features matching a single independent template feature 

are designated as mutual.   

3. Any match involving a feature cluster, whether it be in the candidate or template feature sets, is 

designated as a community, containing an ambiguous match requiring conflict resolution 

(discussed in the subsequent section).             

To demonstrate intra-sample matching in the context of the test dataset, detected features from 

samples p5-SR8 (as template) and p5-SR9 (as candidate) were matched.  The majority of candidate 

features (58%) had only a single match in the template feature set.  Of the remaining candidate features, 

15% matched multiple template features, and 27% were unique, having no template matches.  The 

majority of single matches (92%) were mutual, being reciprocated as single matches in the reverse 

direction (template to candidate matching).  The remainders were ambiguous matches in the reverse 

direction.  At this stage, mutual matches may be reported to the link ledger as links, and unique 

features may be appended as new entries.     

4.6.3 Feature communities and resolution of ambiguous matching 

Match ambiguity can give rise to networks whereby independent or clustered candidate features match 

independent or clustered template features, which may in turn match other candidate features, and so 

on.  Where such networks exist, the resolution of a single ambiguous match may have knock-on effects 

that influence the resolution of other matches.  For example, choosing which match to resolve first may 

influence the outcome for the entire network where a cascade of incorrect matching is initiated by the 

consumption of a single key feature in an erroneous initial match.  Resolution of ambiguous matching 

is therefore a process which benefits from complete prior knowledge of the network (or “community” 

as defined herein), and a method of resolution that provides the best matching scheme for the 

community as a whole, rather than for any one pair of features.   



 4.6 Implementation of pairwise feature set matching across replicate quality control samples 
(ROgroup)  
 

 180 

Feature communities are built by an iterative process of collating all connecting clustered and matched 

features within and between the candidate and template feature sets.  A cartoon illustration of this 

procedure is shown in Figure 4-13.  Step 1 starts with the selection of a single arbitrary feature (blue), 

and seeks to include any clustered features (solid red lines) in the growing community.  In step 2, inter-

sample matches for all clustered features (dotted red line) are included in the community.  All features 

which cluster with those newly found are included (step 3), and matches back to features in the original 

dataset are sought (step 4).  The processes repeat until the community no longer grows (as shown in 

steps 5 and 6) indicating the successful definition of the community boundary where neither additional 

pairwise matching nor additional intra-sample interference is observed in either sample.  Each 

community receives a unique ID number which is shared for all community features in both template 

and candidate datasets.       

 

Figure 4-13.  Community boundary definition by iterative collation of clustered and matching 
features.  In this simplified illustration, the linear spatial closeness of features (dots) is a 
simplified surrogate for combined m/z and RT similarity, whereby features close to each other 
match (cluster), and features distant from each other do not.  

Once a distinct feature community has been defined, the ambiguous matches contained within are 

resolved in a manner determined by the best matching scheme for the community as a whole.  To 

illustrate the community resolution workflow, a challenging example was sought whereby a complex 
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cluster was found to migrate by a relatively large degree between template and candidate samples.  The 

first and last SR analyses from the 1st plate in the test set were chosen as the template and candidate 

datasets for this purpose, and the m/z = 310.2015 cluster illustrated previously (Figure 4-4) was 

specifically observed.  EICs (m/z = 310.2015 +/- 0.01Da) from both analyses are shown in Figure 4-14 

(top) illustrating the shift in cluster retention time and resulting overlap of disparate features.  The 11 

features of the m/z = 310.2015 cluster were detected in both samples and collated as community 

number 627 as illustrated in Figure 4-14 (bottom).  
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Figure 4-14.  Feature community #627, illustrated as EIC peaks and as detected features.  EICs of 
m/z = 310.2015 +/- 0.01Da in the first (red) and last (green) SR analyses from plate 1 of the test 
set, representing the template and candidate for matching, respectively (top).  The centWave-
extracted features from these two clusters were collected by the ROgroup script into a single 
community, and are shown in the two-dimensional plot below (bottom).  Extracted features are 
annotated according to their origin from either the template (T) or candidate (C) feature set, as 
well as their individual feature ID number.  For visual clarity, features are both sized and colored 
according to the log value of their intensity. 
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Following on from the assumption that clustered features of similar mass and retention time will 

experience similar drift in retention time across repeated analyses, pattern matching between the 

candidate and template community features is attempted.  This is accomplished by applying a 

systematic linear shift in retention time to all candidate features while leaving the retention times of the 

template features unchanged.  The shift that produces the best overall match for the community is 

determined by summation of the difference between the retention time of each candidate and its closest 

match among the template features.  For example, the residual values between all candidate and 

template features are calculated and illustrated in the heatmap matrix shown in Figure 4-15.  The 

community match score is the sum of the smallest residual in each (candidate) row.     

 

Figure 4-15.  A heatmap of the retention time differences (in seconds) among all candidate and 
template features in community #627.  Candidate features are listed along the y axis, while 
template features are listed along the x axis.  Closest matches are shown in a yellow.    
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The retention times of all candidate features are then changed in increments of 0.1 seconds, and the 

community match score is recalculated for each iteration.  This is repeated across a fixed window which 

is based on the intra-sample clustering retention time window (in this case, +/- 6 seconds).  The 

community match scores are collated to find the minimum overall value (+2.6 seconds, in this 

example) as illustrated in Figure 4-16.   

 

Figure 4-16.  Pattern matching of feature clusters within community #627.  The optimal set of 
matches is determined by shifting one cluster relative to the other in a linear manner, and 
calculating the sum of lowest retention time differences across all candidate features.    

The matrix of retention time differences with the optimal correction (the retention time shift value that 

produces the lowest minimum residual sum for the whole feature community) applied to the candidate 

features is shown in Figure 4-17, clearly a change of individual matches driven by a global metric of 

best fit for the community.   
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Figure 4-17.  A heatmap of the community-optimised retention time differences (in seconds) 
among all candidate and template features in community #627.  Candidate features are listed 
along the y axis, while template features are listed along the x axis.  Closest matches are shown in 
a yellow.    

Prior to reporting the optimized matches as linked features, a check is performed which ensures that 

each individual match refined in this process was originally defined as a potential match by inter-

sample matching, This is visually represented in Figure 4-18 as a superimposed mask on the heatmap 

from Figure 4-17 where original inter-sample non-matches are represented by white cells (NA = not 

originally a match).  This action is performed to prohibit the creation of new matches simply because 

they are the closest (but still distant) option presented.  This is consistent with the goal of resolving 

ambiguity rather than creating entirely new matching schemes.   
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Figure 4-18.  A masked heatmap of the community-optimised retention time differences (in 
seconds) among all candidate and template features in community #627.  Masking (white cell 
with value = NA) indicates that the candidate/template feature pair was not initially matched 
prior to alignment. 

Finally, individual matches are reported as links between features.  This process starts by finding the 

lowest residual value in the masked matrix (e.g. 0.03,  in Figure 4-18, rounded for visual calrity), and 

reporting the corresponding row and column as linked candidate and template features.  The row and 

column are then removed from the matrix, and the process is repeated.  This continues until all rows 

and columns with potential matches are depleted.  In rare cases, retention time alignment alone is 

unable to unambiguously resolve all potential matches within a community.  In these cases, the mass 

difference is used to resolve the ambiguity.  However, it should be noted that while comparison of 

observed m/z values between features may produce accurate matches where all other match 

possibilities have a relatively large mass difference (e.g. in the matching of candidate feature 7394 to 

template feature 13032 illustrated in Figure 4-19), once the competing mass differences are within the 

analytical error of the MS instrument, m/z comparison alone loses virtually all of its ability to produce 

accurate matches.  This is illustrated by the presence of many mediocre matches between features in 
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Figure 19, colored in orange and purple, with no clear pattern of optimal matches (yellow cells) unlike 

the pattern clearly obtained by retention time matching (Figure 17).      

 

Figure 4-19.  A heatmap of the m/z value differences among all candidate and template features in 
community #627.  Candidate features are listed along the y axis, while template features are 
listed along the x axis.  Closest matches are shown in a yellow.    

4.6.4 Reporting links between features 

The process of matching features to discover links is repeated for each sequential pair of samples in the 

dataset, with each candidate sample becoming the new template in the next round of matching.  As the 

process continues, links between features among all samples are accumulated, requiring a set of 

repositories for the identifying data (eg. unique feature numbers) as well as the measured data 

associated with each feature (m/z, retention time, and intensity).  Each of these sets of data are stored 

and organized in a link ledger which resembles a traditional matrix of extracted LC-MS data whereby 

each sample is represented by a single column, and each grouped set of features across the total dataset 

is represented by an individual row.  As the process of iterative pairwise matching proceeds, the link 

ledger is grown in the following manner, as illustrated in Table 1.  
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Experiment 

Feature ID 
Sample 1 Sample 2 Sample 3 

1 1 1563 256

2 2 57 NA

3 3 425 4861 
4  4 NA 24

5 5 426 1159 
6 6 2128 NA

7 7 3581 658

… … … …

4527 4527 NA 2897 
4528 NA 3578 NA

4529 NA 3579 545

4530 NA 3582 NA

… … … …

7894 NA 6144 3487 
7895 NA NA 4456 
7896 NA NA 4457 
7897 NA NA 4458 

… … … …

9214 NA NA 6247 
 

Table 4-2:  The feature matching (link) ledger, abbreviated, for hypothetical feature sets from three 
samples.   

First, the identities of all features extracted from the first sample of the experiment are stored as a 

column of sequential unique numbers (orange cells).  In this example, 4527 features were extracted 

from the first sample.  These feature numbers are then used, in the broader context of the experiment, 

to describe any subsequently associated (linked) feature, and therefore are set as “Experiment Feature 

ID’s” (black cells).  Features from the second sample are then linked to those from the first sample by 

the matching algorithm described above.  These features are reported in an adjacent column (green) 

using their numerical identifying number from the second sample feature set.  In the example shown, 
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feature 1563 from sample two was positively matched to feature one of sample one, and therefore is 

captured in the same row, denoted overall as experiment feature 1.  Where no feature from sample two 

could be matched into an existing row, an NA is entered (eg. in row 4).  Conversely, where features 

from sample two have no match in the sample one featureset, they are appended to the bottom of the 

link ledger as new rows.  In the example shown, the ledger is extended by 3367 new rows to create 7894 

in total.  Values of “NA” are retroactively assigned to those rows in columns from all earlier samples, 

explicitly stating the absence of a matching feature (grey cells).  The process is repeated for all new 

samples (sample three shown in blue), reporting feature links, NA values, and appending new rows to 

the ledger.  Separate matrices are generated in an identical manner for the storage of feature m/z, 

retention time, and intensity information.  By referring to an Experiment Feature ID across these 

coordinated matrices, one can evaluate the measured properties of all linked features across the 

experiment.   

A visual example of such evaluation is plotted in Figure 4-20, whereby the average m/z, average RT, 

and average intensity was plotted for each group made using the ROgroup approach on plate 1 SR 

urine sample feature sets (16 in total).   Each feature is colored by the number of linked features in the 

group (i.e. the chain length), with blue dots indicating complete chains and yellow dots indicating 

chains composed of only a few linked features.  In this example it can be observed that low chain length 

co-localizes with areas of noise within the chromatogram (e.g. m/z streaks from background 

contamination and the swell of background noise between 550 and 600s corresponding to the high 

percentage organic washing phase).  Medium chain lengths (orange) are observed within the first 

approximate minute of the chromatogram, potentially indicating a higher variance in retention time 

than observed throughout the remainder of the chromatogram.    
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Figure 4-20.  Two dimensional plot of feature groups created using the ROgroup method on the 
first 16 SR urine analyses from the test dataset.  The mean m/z and RT values for each group 
are plotted as a single dot per group, sized by the mean of the group intensity, and colored by the 
number of features that compose the group (chain).  Groups of low chain length (yellow) are 
observed to co-localise with areas of expected chemical noise, including the organic solvent wash 
and equilibration steps in the latter half of the analysis.   

4.7 Comparison to existing techniques 

4.7.1 Creation of a synthetic dataset 

In order to benchmark the performance of the grouping approach detailed above (hereafter referred to 

as the ROgroup method) in the context of other methods, the results of matching must be compared to 

a known true answer (or “ground truth”) so that performance can be quantified (Lange et al., 2008).  

However, it is not straightforward to deduce ground truth for a real profiling dataset with thousands of 

features per sample.  Some public proteomic and metabolomic datasets do exist where supplemental 
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analysis and feature identification have provided some knowledge of which peaks across samples share 

the same identity (Lange et al., 2008).  However, the small molecule datasets are based on analysis of 

plant extracts using larger particle size columns and longer analyses (HPLC separation), and therefore 

are not representative of the data produced by high throughput UPLC-MS profiling of biofluids from 

molecular epidemiology sample sets.  Furthermore, the feature selection process used in the creation of 

the datasets was specifically inclusive to features that showed limited deviation.  Taken together, it is 

clear that these datasets are neither representative of the challenge at hand with the separation of 

human biofluids nor do they reflect the state-of-the art with respect to UPLC-MS profiling.  A more 

appropriate benchmarking solution is therefore needed.    

Computational synthesis of a dataset has a number of advantages over the use of organically created 

data.  First, establishing ground truth is applicable to all features, precluding selection bias, and is 

guaranteed to be accurate.  Second, the types of retention time drift observed and reported in Sections 

4.5.2 and 4.5.3 can be separately implemented in multiple iterations of the synthetic dataset in order to 

independently test the effects of random and systematic retention time noise on the accuracy of 

grouping methods.  Finally, the confounding variable of feature extraction (“peak picking”) 

performance across samples may be eliminated.  Finally, when seeded with an extracted feature table 

from a real representative sample, the synthetic dataset remains representative of the biochemical 

diversity found in human urine.   

To accomplish this, a representative urine sample (the 16th SR urine sample from plate 1 of the test set) 

was extracted using centWave as described above to produce a feature list.  The resulting feature list 

was replicated 99 times to create a dataset of 100 identical feature sets.  Random noise (normal 

distribution with a standard deviation of 0.001 m/z) was applied to all m/z values in order to mimic the 

variance observed in ToF measurements.  From this dataset, four derivative datasets were constructed 

to represent four types of retention time variance among features: 
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A. No noise applied (no RT variance) 

B. Random noise applied to 100% of features (normal distribution, SD = 0.1 second) 

C. Run-order correlated logarithmic retention time drift applied to approximately 20% of features 

a. Approximately 10% elute increasingly earlier with run order 

b. Approximately 10% elute increasingly later with run order 

D. Both random noise (100% of features) AND run-order correlated RT drift (20% of features) 

applied 

To mimic the retention time drift observed in the test dataset, the natural log was taken of the series of 

numbers from 1 to 100, producing a maximum drift of 4.61 seconds.  The pattern was then added to or 

subtracted from the retention times of all features in a selected feature group to produce features that 

migrate (earlier or later in retention time) with increasing run order.  The retention times of a single 

selected feature with both run-order correlated drift and random noise applied across all 100 samples 

are shown in Figure 4-21.  Twenty percent of independent feature groups were selected for the 

application of run order noise.  To mimic the observed migration of feature clusters, group clusters 

were defined and twenty percent were selected for the application of run order noise.  These clusters 

were defined using the “kde2d” function of the MASS package in R (Venables et al., 2002) in an effort 

to orthogonalise the clustering process to the approach used in the ROgroup algorithm.  Two-

dimensional kernel density estimation (RT bandwidth = 10, m/z bandwidth = 0.5) was applied to locate 

areas of high feature density within the dataset, and a threshold of 1e-5 was used to define cluster-

containing regions.  Assignment of drift direction (earlier or later elution with run order) was random 

among the independent features and clusters selected for application of drift noise.   
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Figure 4-21.  The programmed logarithmic drift in retention time for a given feature as a function 
of run order was applied to a feature from the dataset, along with random noise, to produce a 
realistic retention profile across the sample set.    

No global shifts in feature retention time, linear or otherwise, were added to the data, precluding the 

need for non-linear dewarping of each chromatogram and allowing a direct comparison of grouping 

methods only.  All other descriptive data produced for features detected by centwave (e.g. peak shape 

information) were nullified by setting all values in the dataset equal to the total median value observed.  

In this manner, the ability of each method to group features was based solely on performance using the 

basic parameters.  Furthermore, the highly controlled nature of the experiment precludes intensity 

variance (biologically or analytically derived) that can manifest as a difference in the presence or 

absence of a given feature, and also precludes variance or artefacts introduced by the peakpicker itself 

(erroneously failing to detect a feature that is present in the raw data).  As a result, the grouping 

methods only have to overcome the various types of retention time variance introduced. 
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4.7.2 Means of assessing grouping method performance.  

The grouping of features from the synthetic dataset described above was evaluated using the “density” 

and “nearest” methods within XCMS and the ROgroup method developed herein.  In each case, the 

user-specified m/z error window was set to the commonly used value of  0.01 m/z  (Liu et al., 2012, 

Vaughan et al., 2012), which is only slightly smaller than the value suggested by Patti et. al. for UPLC-

ToF data (Patti et al., 2012a) and more appropriate for the amount of noise introduced here.  Given 

that the maximum drift in retention time for any given feature within the dataset was made to be 4.61 

seconds +/- the random noise, a threshold of 6 seconds (0.1 minutes) was chosen for the retention time 

grouping in the nearest and ROgroup approaches.  As the density method requires a bandwidth setting 

in place of a window, the recommended value for UPLC-ToF data was used (bw = 2) (Patti et al., 

2012a).       

The resulting feature groups (observed groups) were classified using two distinct criteria.  The first 

criterion is the completeness of a group, referring to the number of features grouped across the dataset.  

If a group contains one feature for every sample, that group is said to be complete.  If less than 1 feature 

per sample are grouped, the observed group is incomplete.  Within either of those group types, if the 

identities are all grouped features are matching, the observed group is said to be homogeneous, and 

therefore accurate grouping has occurred.  However, if the identities are mixed, indicating the 

erroneous matching of features, they are said to be heterogeneous.  These observed group types may be 

summarised as follows: 

1. Homogeneous complete 

2. Homogeneous incomplete 

3. Heterogeneous complete 

4. Heterogeneous incomplete 

One approach to summarising these data, and therefore the performance of each grouping method 

tested, is by calculation of precision and recall as adapted for the assessment of feature grouping 

outcome by Lange and colleagues (Lange et al., 2008).  Precision, when used in this context, is an 
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assessment of the quality of the composition of observed groups, and is penalised by heterogeneity 

within groups across the dataset.  Recall, when used in this context, is an assessment of the erroneous 

splitting of features belonging to a single true group across multiple observed groups, and is penalised 

where more than one observed group contains a given feature.  Perfect precision and recall (a value 

equal to one for each) is achieved when all groups are homogenious complete, and the number of 

observed groups equals the expected number of true groups.  The calculation of the precision and recall 

metrics for the assessment of grouping method performance as applied to the grouping outputs of the 

derivative datasets (introduced in Section 4.7.1) is described in the subsequent pseudo-code.  As each 

dataset is composed of 100 samples, and each sample composed of the same compliment of 12756 

features, a total of 12756 homogeneous complete true groups is the expected result of perfect grouping.  

Because of this design, a given feature and the true group to which that feature belongs are both 

referred to as x (i.e. feature 18 in each sample belongs to true group 18).   

• For every true group (for each x in 12756), determine which observed groups contain at least 

one instance of feature x.  Store the identity of these groups as A. 

o Determine the total number of features (number of non-NA values) in all observed 

groups in A.  Store this value as B.   

 For each x, append values of B to create vector C. 

o Determine the ratio of true groups containing at least once entry of feature x (1) to the 

number of observed groups containing at least one entry of feature x.  Store this value 

as D.     

 For each x, append values of D to create vector E. 

• Calculate precision and recall as follows: 

o Precision = sum(100/C)/12756  

o Recall = sum(E)/12756 

Precision is therefore the mean of each ratio between the expected number of features per group (100, 

from 100 samples) and the observed number of features that constitute all observed groups containing 
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feature x, for each true group x.  Recall is the mean of the ratios of the number of true groups (1) to the 

number of observed groups (1 or more) for each  feature x.     

The density grouping method has the unique ability (of the three methods tested: density, nearest, and 

ROgroup, and representative of any global binning-based approach) to further complicate this scheme, 

as it can erroneously combine multiple features from the same sample within a feature group (herein 

referred to as overgrouping).  As a result, it is possible for this method to produce a lower number of 

observed groups than true groups.  Because of this substantial difference in output, precision and recall 

was not calculated for the output of density method, but the number of groups containing more 

features than there are samples is reported as an independent value in addition to the reporting of 

complete/incomplete homogeneous/heterogeneous groups.   

4.7.3 Results 

The results of applying three grouping methods (density, nearest, and ROgroup) to the four datasets 

previously generated (A-D, described in Section 4.7.1) have been tabulated in the series of tables below.  

The first of these, shown as Table 4-3, reports the total number of feature groups produced by each 

method relative to the expected “true” number of groups (12,756).  For example, grouping of dataset A 

(no retention time noise or drift applied) yields a dataset that is nominally 100% the expected number 

of groups when using the nearest and ROgroup methods.  However, the density method produces a 

smaller number of groups than expected (84%), regardless of the dataset used, indicating overgrouping.  

The nearest method, when applied to dataset D (retention time noise and run order drift applied) 

returns datasets with 125% and 131% the number of expected groups, depending on the order of 

analysis.  The ROgroup method under the same circumstances returns a number of groups which is 

closer to the true value, at 101% for run order analysis and 106% for random order analysis.  
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dataset density 
nearest 

(run) 
nearest 

(random) 
ROgroup 

(run) 
ROgroup 
(random) 

A 84 101 101 100 100 
B 84 103 103 100 100 
C 84 118 125 100 105 
D 84 125 131 101 106 

 

Table 4-3.  Volume of feature groups produced by each grouping method on each dataset (A-D) 
expressed in terms of percentage of the true number of groups (12,756).       

The composition of these groups is presented in Table 4-4, stratified into the four classes of group type 

introduced in Section 4.7.2 and a separate overgrouped classification unique to the density method.  It 

is immediately clear that the density method fails in its ability to form homogenous complete groups in 

comparison to the other methods.  This is in part due to the presence of overgrouping creating groups 

with more features than samples.  The focus of group quality is therefore split between the nearest and 

ROgroup methods.   Both achieve similar results with the simplest dataset (A).  However, as the 

datasets become more complicated with the introduction of random retention noise (B) and run order 

drift (C), or both (D), characteristic behaviour is observed.  The nearest method tends to produce a 

larger number of incomplete groups (both homogenous and heterogenous) than the ROgroup method, 

while the ROgroup method tends to produce more groups that are complete but heterogenous.  The 

ROgroup method outperforms both the nearest and density methods in terms of its ability to produce 

homogenous complete groups.        
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Group Type Dataset Density
Nearest 
(run) 

Nearest 
(random) 

ROgroup 
(run) 

ROgroup 
(random) 

Homogeneous  A 7391 12738 12738 12738 12738
(complete) B 7381 12680 12681 12647 12650

  C 7297 11834 11267 12621 12210
  D 7297 11429 10998 11907 11565

Homogeneous  A 1007 17 15 0 0
(incomplete) B 1004 100 98 0 0

  C 1095 2233 2946 3 443
  D 1093 1909 2231 51 444

Heterogenous A 0 0 0 18 18
 (complete) B 0 0 0 109 106

  C 1 60 27 134 335
  D 3 24 17 809 904

Heterogenous  A 399 117 120 0 0
(incomplete) B 405 318 319 0 0

  C 399 945 1754 0 382
  D 402 2640 3411 62 581

Overgrouped A 1896      
  B 1896      
  C 1961      
  D 1964      

 

Table 4-4.  Tabulation of observed feature groups (of 12756 true groups) created by applying three 
feature grouping methods to four synthetic datasets.  Each dataset is characterised by distinct 
retention time variance (A = no noise or drift applied; B = normally distributed noise; C = run 
order drift; D = both normally distributed noise and run order drift).  Nearest and ROgroup 
methods were run in either the same order as the data files were acquired (run) or in random 
order (random).  As the density method can only analyse datasets as a whole, the order of 
analysis is not relevant.  Overgrouping occurs where there are more features per group than 
samples, and is only possible with the density method.   

To assist in the interpretation of grouping quality and therefore method performance, the accepted 

metrics of performance and recall were calculated for each method/dataset pair.  The results are shown 

in Table 4-5. While both methods perform with high scores (likely a symptom of the highly controlled 

conditions present within the datasets), the ROgroup method outperforms the nearest method when 

analysed in run order on the most complex and therefore representative dataset.  For both methods, 

analysis in run order improves the precision and recall scores obtained on datasets C and D but not A 
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and B, indicating the generality of performance enhancement when considering run order where 

retention drift is present.         

Group 
Type dataset 

nearest 
(run) 

nearest 
(random) 

ROgroup 
(run) 

ROgroup 
(random) 

precision A 0.999 0.999 0.999 0.999
  B 0.998 0.998 0.996 0.996
  C 0.980 0.963 0.995 0.978
  D 0.964 0.950 0.965 0.947

recall A 0.999 0.999 0.999 0.999
  B 0.995 0.995 0.996 0.996
  C 0.949 0.919 0.995 0.973
  D 0.923 0.898 0.964 0.941

 

Table 4-5.  Precision and recall values for the nearest and ROgroup methods of feature grouping 
across datasets A-D.  The maximum values per dataset are highlighted in green.   

4.8 Discussion and conclusions 

4.8.1 Chromatographic retention time variance and grouping method performance 

The overall goal of alignment and feature grouping is to overcome variations within a set of raw data to 

produce an accurate collated dataset for further analysis.  The challenge in doing so is in maintaining 

the excellent chemical specificity produced by high resolution UPLC-ToF MS despite confounding 

imprecision in measurement.  While the methods developed in Chapter 3 aim to maximise 

chromatographic precision among sequential analyses, a degree of both random and systematic 

variance is still observed.  Careful evaluation of the variance in retention time of features across the test 

dataset has revealed the feature-specific nature of retention time deviation and furthermore 

demonstrated that such migration (where present) is encoded in the run order of the analysis.  The 

global deviations that developers of alignment and grouping algorithms sought to correct with whole-

chromatogram de-warping methods are simply not a substantial source of variance in high precision 

UPLC-MS analysis.  In addition to the overall improvements in chromatographic reproducibility, this 

is perhaps due to the pace at which UPLC analyses are able to be conducted.  Whereas fluxuations in 

the chromatographic system and laboratory environment over the course of an hour may have yielded 
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nonlinear and nonspecific perturbations in the chromatographic retention of features across a single 1 

hour HPLC chromatogram, the same deviation would be spread across four 15 minute UPLC 

chromatograms and therefore encoded in the analysis order. 

These results warranted the construction of a synthetic dataset whereby the feature content of a single 

representative urine sample was replicated to create an experiment of 100 synthetic samples by 

introducing mass error, retention time error, and run order retention drift among those features.  Of 

the datasets created, dataset D is the most representative of the observed data and therefore the most 

useful in assessing the potential performance of grouping methods on a real dataset obtained during 

large-scale phenotyping analysis.  Leveraging this knowledge and performing grouping analysis in the 

same order as the synthesized run order improves both the precision and the recall of the nearest and 

ROgroup methods in the datasets with retention drifting features (datasets C and D).  However it is the 

ROgroup method which yields the most accurate dataset in terms of overall size (101% for dataset D by 

ROgroup in run order) precision (0.965), and recall (0.964).  These results suggest that the matching 

approach utilising feature clustering and ambiguous match resolution by whole-community alignment 

is a viable if not superior grouping strategy.  Meanwhile the density method, as a representative of all 

grouping methods which consider the entire dataset at once and perform grouping by cross-sectioning 

the dataset, fails to accurately group the complex profiling data even in the most simple case where no 

RT noise or drift is applied (dataset A).   

4.8.2 Potential for application in real-time 

Application in real time is important for a true high throughput system, as existing methods of data 

pre-processing can in some cases rival the amount of time required to acquire the raw data.  The 

ROgroup script is intended to be run iteratively following the completion of each new sample analysis.  

In the first instance, the time required for this procedure is slightly longer than in subsequent iterations 

as both the first and the second sample datafiles must be peakpicked prior to feature matching.  

However in subsequent rounds, the candidate feature set is repurposed as the new template feature set 

and only the newly acquired sample is peakpicked for pairwise matching.  It should be noted that any 

method which is capable of analysing samples in the order in which they were analysed may be applied 
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in a real time manner.  While this excludes approaches such as the density method or methods that 

suggest retrospective selection of a reference chromatogram (Chae et al., 2008), it does not necessarily 

exclude the join aligner/nearedt method tested here.  This approach could be modified for application 

in real time where the first sample analysed seeds the master template, and all subsequent samples are 

matched in to the master averaged feature list.  However it is important that the speed at which the 

method performs grouping across the entire analysis is less than the data acquisition time.   

While both the nearest grouping method and the ROgroup method are capable of matching features 

between two samples in fewer than 15 minutes, the manner in which the time required for matching  

increases with repeated analyses must be considered.  With each new set of features grouped using the 

join-aligner/nearest method, unmatched features are appended to the bottom of the master feature list.  

As this list grows longer, more time is required for each subsequent match.  The rate of appending 

unmatched features is related to the prevalence of noise in the extracted feature set, as random noise 

would not be expected to match into existing groups.  Therefore, with no inbuilt noise detection 

capabilities at the grouping stage, these noise-derived features accumulate in the master list.  When 

applied across thousands of samples, the time required for data acquisition may rapidly outpace the 

time required to match in new features into an unwieldy master list.  The use of true pairwise matching 

(between two samples, rather than one sample and a master list) ensures a more constant processing 

time, as approximately the same number of features are matched (assuming reasonable biofluid 

homogeneity) in each iteration.  The master list in the ROgroup method is simply a repository for 

matched data, and does not participate in matching itself.  This allows the process to scale linearly, and 

therefore does not impose a practical limit on the number of sequential analyses that can be performed 

and processed.   

It is worth noting that the length of the total repository may also be kept in check by the ROgroup 

method on a sample-by-sample basis when recognizing and eliminating feature clusters of excessive 

size, indicating the presence of features derived from constant background signals.  In this manner, the 

grouping process becomes an active noise removal step rather than a passive collation or process by 
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which noise is specifically introduced (e.g the 25% erroneous excess of feature groups produced by the 

nearest method operating in run order on dataset D).        

4.8.3 Application to datasets with increased biological variance   

The approach outlined herein was tested on replicate injections of a pooled reference (SR) sample and 

on synthetic data created by modulating the measurements of features from a single sample.  However, 

to be of use in the large-scale screening of biofluid samples from human populations, the performance 

of such an approach must be considered in the context of a variable sample matrix.  A weakness of the 

“true” pairwise approach is evident when considering that a complete feature group across 1000 

samples is only achieved when the matching process completes successfully 999 times without error.  

Should a feature fail to be detected in the peak picking process, either erroneously or because it is below 

the limit of detection in the raw data of a single sample, its absence will inevitably break the chain, 

disjoining the growing feature group.  This is a consequence of having no means by which features in 

the following samples can be connected to past chains, as would be possible using an iteratively 

updated master template.  In this manner, a single dilute sample of urine could potentially break all 

feature chains, disrupting the coherency of the dataset on a broad scale. 

Future work therefore includes the creation of a post-acquisition phase of feature grouping which 

connects broken feature chains.  This task will greatly benefit from the longitudinal observations in m/z 

and retention time variation captured in chain fragments, as these may provide guidance for seeking 

matching features or other chain fragments that are from samples farther downstream in the analysis 

run order.  A proposed mechanism is one where the longest incomplete chain in the dataset is analysed 

to determine m/z and retention time error boundaries (e.g. based on standard deviations of variance 

within the observed data) as well as model any systematic retention time trajectory into the preceding 

or subsequent samples.  Armed with this knowledge, an area of high probability for finding a match 

can be extrapolated into neighbouring samples subsuming features with matching values.  The 

calculation could be iterative to reduce the “distance” of extrapolation required.  The entire process 

could be repeated, targeting the next longest incomplete feature chain and so on until the dataset has 

been depleted of chainable features.  Such a mechanism would maximally leverage the value captured 
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in the known trends and distributions of formed chains to efficiently deplete the residual dataset.  The 

remainder could be either discarded, or further grouped by a method suitable for application in a 

sparse dataset (e.g. the density grouping method).  For very rare signals (e.g. some xenobiotics), a 

targeted approach to exploration of profiling datasets for these chemicals may be the best course of 

action.  Finally, while this step is intended to occur after acquisition, it is hoped that such a solution 

could be coded efficiently to “clean” the data without adding substantial processing time and 

compromising the desired benefits of real time analysis.      
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Chapter 5: In-solution databases to facilitate rapid metabolite 

identification in metabolic profiling studies 

Objectives 

1. To construct a large scale mixture of chemical reference compounds to use as a potential 

surrogate for pure reference materials in the identification of metabolites.  

2. To develop and implement a scripted method for the automatic deconvolution of a known 

complex mixture of chemical standards using tandem mass spectrometry.  

3. To demonstrate the feasibility of prospective metabolite identification in an example metabolite 

profiling application. 

5.1 Introduction 

Chapter 3 describes the development and application of LC-MS methods that have been optimised for 

the purpose of large-scale profiling.  It is hoped that the quality produced by these methods and the 

efficiency their use confers to the laboratory facilitate their establishment as standard approaches, 

warranting intensive characterisation to support rapid molecular assignment of the data produced.  

Broad annotation of these methods with individual chemical reference standards would further 

increase their value, but would require a substantial investment in both cost and time.  If such an 

investment were to be made, it would create an energy barrier to the pursuit of incremental 

methodological performance gains achieved by introducing subtle changes in the chromatographic 

separation requiring the repetition of these laborious processes.  To overcome this barrier, 

advancements to methodology should yield substantial savings in time and/or cost that are greater than 

the value of the investment in method characterisation.  This scenario is inevitable, as technologies are 

constantly being developed to facilitate chromatographic separations with higher performance and 

higher efficiency.  The advents of sub-2 micron stationary phase particles and ultra-high performance 

chromatographic systems, core shell columns, nano-scale chromatography, and novel mobile phase 

dopants (e.g. (Yanes et al., 2011)) have all challenged previously established methods.  Looking forward, 

it is therefore prudent to address the inevitability of change by proposing a strategy for quickly 



 5.1 Introduction  
 

 205 

annotating the signals produced by UPLC-MS methods, enabling the further development of such 

methodology.   

Early in the development of the chemical reference mixtures described in Chapter 3, it became 

apparent that unambiguous deconvolution of a mixture of known composition is possible using the 

mass spectrometric data of accurate mass, provided that the mixtures did not contain multiple isobaric 

species.  It is expected that the use of molecular fragmentation by CID would further extend the ability 

to deconvolve a known mixture.  The approach of spectral matching is certainly not novel, as one need 

not look further than the popular AMDIS software (Stein, 1999) from the National Institute of 

Standards and Technology (NIST, Gaithersburg, Maryland, USA) for GC-MS analysis.  However, its 

application has been largely limited to spectra obtained by fragmentation-intensive ionisation (e.g. 

electron ionisation) and in practice appears to be limited to the annotation of unknown features in a 

sample matrix.  As the content of complex biofluid matrices is variable, annotations by this method are 

always tentative and require comparison to a chemical reference standard for authentication (Sumner 

et al., 2007).   

However, it is hypothesised that if such an approach were applied to the unambiguous deconvolution 

of a finite mixture of known composition, those synthetic mixtures could be then be efficiently used in 

place of individual reference standards in facilitating metabolite identification.  Using this approach, it 

should be possible to build chemical libraries in solution and rapidly convert them to de novo databases 

with inherently accurate retention time.  By broadly capturing a large number of reference materials at 

the time of the original profiling analysis, the data required for metabolite identification could be 

captured prospectively, precluding the need to return to the instrument at a later date and attempt to 

match the original system conditions to perform metabolite identification work.  It is therefore of 

interest to determine the extent to which chemical reference standards can be combined, 

unambiguously deconvolved, and applied to metabolite identification in profiling studies.    In addition 

to application in routine analysis, the envisioned approach should serve to lower the barrier to method 

characterisation, facilitating and potentially directly contributing to method development (the latter 

being true if the level of success in generating a de novo database from an in-solution library was used 
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as a metric to assess changes in chromatographic conditions).  The envisioned workflow for both of 

these potential applications is outlined in Figure 5-1.  

 

Figure 5-1.  Envisioned workflow for the use of an in-solution database (mixed standards) and 
known physical properties (e.g mass spectra) of the mixture components (physical properties 
database) for the de novo generation of an empirical database.  The empirical database can 
then be used as a profile of known reference material to facilitate metabolite identification of 
unknown features in a sample matrix derived from a biological study, generating an ID table.  
Alternatively, the extent of success in building the empirical database can be used as a metric for 
UPLC-MS method development, effecting changes in LC or MS conditions that produce better 
profiling of the standards contained in the mixture.      
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5.2 Methods 

All work contained herein was performed concurrently with the method development documented in 

Chapter 3, and therefore all UPLC-MS analyses have been performd using the established method of 

Want et. al (Want et al., 2010) rather than by the method optimised for large scale analysis.  However, 

as the approach aims to create de novo databases for any given chromatographic method, the results 

obtained are representative and easily extendable.       

5.2.1 Preparation of individual chemical standards and standards mixtures 

A “shotgun” approach for the creation of standards mixtures was adopted by selecting approximately 

400 reference chemicals at random from the library of chemical reference materials maintained by the 

Division of Computational Systems Medicine.  These materials were prepared as described in Chapter 

3 (Section 3.3.2).  Briefly, individual chemical reference solutions were made in a qualitative manner by 

aliquoting a small spatula scoop (for solids) or drop (for liquids) of the chemical (of reasonable purity, 

generally exceeding 95%) to a clean storage tube and diluting with 5mL of ultrapure water. The 

approach resulted in concentrated solutions for water soluble chemicals.  Incomplete solubility was 

observed for some chemical preparations despite vortexing and sonication at room temperature (for a 

maximum of 30 minutes).  Regardless, each solution or suspension was pipetted into an individual well 

of a 96-well deep well plate.  This process was repeated until four plates were produced.  Plate-wise 

mixtures were then prepared by combining all individual solutions from a single 96 well plate in equal 

parts to yield four distinct mixtures (each containing a maximum of 96 standards).  Those mixtures 

were then combined in equal parts to make a master mixture.  All individual standards and standard 

mixtures were frozen at -80° C.     

5.2.2 Acquisition of reference spectra  

Frozen plates of solubilised reference standards were transported on dry ice to Waters Corporation 

small molecule profiling laboratory (Milford, MA, USA) for characterisation using their in-house 

instrumentation.  Prior to the analysis of each individual plate, the standards were thawed, transferred 

to new 96 well plates and diluted 1:100 (v/v) with water.  The diluted standards plate was held at 4° C 

for the duration of the analysis.  Using an Acquity UPLC system (Waters Corp., Milford MA, USA), a 
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flow injection approach was initially attempted in order to present each standard for multiple mass 

spectrometric measurements over a prolonged period of time (20 to 30 seconds).  However it was 

observed that sample desalting by slight retention in a reversed-phase system was beneficial for the 

separation of sodium and other adduct-forming cations found in many standards from the analyte of 

interest.  Therefore, brief separations were performed using an Acquity 2.1 x 50 mm HSS T3 column 

held at 30° C.  Five microliter injections were made for the analysis of each standard.  Solvents used for 

the separation were water + 0.05% formic acid (A) and acetonitrile + 0.05% formic acid (B).  A rapid 

loading and elution program (Table 5-1) was designed to retain analytes briefly and elute them in 

broad peaks to facilitate the collection of many targeted mass spectrometric measurements.     

Time 
(minutes) 

Flow Rate 
(ul/min) 

% Solvent B 

Initial 200 0 
.5 200 0 
1.5 500 100 
2.5 500 100 
2.6 500 0 
3.0 200 0 
3.5 200 0 

Table 5-1.  A rapid elution program for the high throughput generation of reference spectra from 
chemical standards. 

Eluate was directed to a Synapt G2 Q-ToF HDMS mass spectrometer by means of an electrospray 

ionization interface operating in either the positive or negative ion mode.  Full scan MS data were 

acquired for the mass range between 30 and 1200 m/z.  Four additional interleaved channels of data 

were simultaneously acquired using the instrument’s data dependent analysis (DDA) function whereby 

the most intense feature(s) in an MS scan are automatically targeted for MS/MS analysis.  In this 

manner, analyte-derived features could be conveniently targeted for MS/MS analysis with no prior 

knowledge or assumptions of the spectra generated by each reference material.  Feature targeting in 

DDA was triggered by the intensity of a given spectral signal exceeding 1000 counts and continued for 

five scans before a new target mass was selected.  During CID fragmentation of selected targets, a ramp 

of collision energy from 10 V to 50 V was applied per scan ensuring a broad representation of 
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fragmentation spectra from both labile and collision resistant molecular species.  Data were acquired in 

continuum mode at approximately 18,000 resolution (FWHM), and with approximately 1 ppm mass 

accuracy following calibration with a sodium formate solution.  A solution of leucine enkephalin was 

infused via a secondary orthogonal electrospray probe to provide a known mass value for adjustment of 

the calibration over time (known as the lock mass).       

5.2.3 Generation and interpretation of a spectral library 

Spectral data from a subset of the total number of reference standards, drawn from a single plate, were 

manually interpreted and peaks related to each known standard were recorded in database format 

(Appendix 4).  Briefly, a monoisotopic mass [M] was calculated from each molecular formula, ignoring 

the contribution of salts and water molecules in hydrates, using ChemFolder v 12.0 software 

(ACDlabs).  This mass was then adjusted to reflect the theoretical gain or loss of a proton resulting in 

positive [M+H]+ and negative [M-H]- ionization, respectively.  The expected ion mass was then 

extracted from the corresponding standard’s total ion intensity chromatogram (TIC).  Where the 

expected peak was observed, the intensity-DDA functions were opened for inspection.  In most cases, 

the ion mass was present with sufficient intensity to trigger quadrupole selection and CID 

fragmentation yielding a fragmentation spectrum.  These spectral data were combined for the duration 

of the targeted aquisition, mass corrected to the LockMass signal using the "Automatic Peak Detection" 

setting in the MassLynx software, and deisotoped using the "ToF Transform" function with the mass 

range set to 30-1200 and a maximum charge state equal to one.  Both absolute and relative intensity 

thresholds were applied to the resulting spectrum such that the lowest included intensities were greater 

than 200 counts (for the combined scans) and greater than 5% of the most intense peak present.  The 

resulting spectral masses were recorded in the database as CID fragments of the targeted molecular 

parent.          

Data obtained from selected CID fragmentation of non-parent ion masses were extracted in the same 

manner and subjected to interpretation before inclusion in the database.  MS features that match the 

expected ionised mass of the reference chemical were classified as parent ions.  Fragments specifically 

originating from MS/MS of parent ions were classified as fragment ions.  Where an ion species with 
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mass greater than that of the standard was found to fragment to the original standard ion mass, the 

targeted mass was recorded as an adduct.  Fragments of adduct masses that were greater than the 

original parent mass, or less than the parent mass but not observed to be fragments of the original 

parent mass, were recorded separately as adduct fragments.  In the event that a distinct 

chromatographic peak was detected but the masses not immediately relatable to the expected parent 

mass or a common adduct (ie. [M+Na]+), the data were not included for further consideration.  The 

spectral library produced is hereafter referred to as the physical properties database. 

5.2.4 Development and implementation of a deconvolution script for the assignment of mixed 

standards 

A simple script for the deconvolution of standard mixtures and de novo generation of mass and 

retention time-containing databases was coded in the R programming language for the freely available 

R software environment.  The script is intended to match data from a paired physical properties 

database and standards mixture, generating a chromatographic method-specific empirical database, 

complete with theoretical mass spectra and empirical retention times.  A visual algorithm summarizing 

the method is represented in Figure 5-2, and the full script is available in Appendix 5.  Briefly, the script 

seeks matches between the recorded m/z values in the physical properties database and those observed 

in the XCMS-generated peak list from the UPLC-MS analysis of the reference mixture using a user-

selectable window of m/z error (set generously here as 100 ppm).  Despite the potential for multiple 

features in the empirical dataset to match any one reference standard m/z value in the database, a 

consensus (or best) match is established when all (or the majority) of the matched features share the 

same retention time.  Where a consensus or best match can be determined, the standard is reported to 

an empirical database, combining the recorded spectrum from the physical properties database with the 

observed retention time from the UPLC-MS peak list. 

In order to test the automated deconvolution script, UPLC-MS was used to profilg the master mixture, 

the subset mixture, and all individual components of the subset mixture using the chromatographic 

method described by Want et. al. (Want et al., 2010) on an Acquity UPLC mated to a Q-ToF Premier 

(Micromass/Waters Corp., Manchester UK) and electrospray interface operating in the negative 
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ionization mode, which was shown to yield more peaks than initial screening with positive mode 

detection.  The standards mixtures were profiled using a low-to-high CID collision energy ramp (20 to 

40 eV / scan) to obtain both parent and fragment information in each MS scan.  MS data was collected 

across the range of 40 to 1000 m/z.         
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5.2.5 UPLC-MS profiling of human urine from a bariatric surgery subject cohort and standards 

mixtures   

Paired urine samples were collected from 57 patients immediately before and approximately 2 months 

after receiving bariatric surgery (114 samples total).  A composite urine sample (QC) was prepared for 

column conditioning and quality control as described by Want et. al. (Want et al., 2010).  In addition, a 

QC dilution series (dQC) was created by serial dilution of the QC sample (in steps of 1:1 volume-to-

volume dilution with water) for the purpose of data filtration as suggested by Cloarec et. al. 

(Croixmarie et al., 2009).  Extrapolating from this concept, group-specific composite samples (gQCs) 

were prepared for the separate pre- and post-surgery groups, allowing cross dilution of potential 

biomarkers and facilitating molecular assignment by signal intensity-directed targeted MS/MS (data 

dependent analysis, or DDA), ensuring a higher concentration of group-specific biomarkers (i.e. 

metabolites that are significantly up or down-regulated are easier to identify from the pooled sample 

where all samples are exhibiting higher concentration).  Cross dilution of the gQCs was performed by 

mixing them in the following ratios: 0:100, 1:9, 2:8, 3:7, 4:6, 5:5, 6:4, 7:3, 8:2, 9:1, 100:0.  These are 

collectively referred to as xQC samples.  All samples (including the various QC samples except for the 

highest concentration dQC) were diluted with water 1:1 (volume-to-volume) and centrifuged to 

remove particulate matter prior to analysis.  Profiling was conducted using the RPC UPLC conditions 

described previously (Want et al., 2010), with an Acquity UPLC mated to a Q-ToF Premier 

(Micromass/Waters Corp., Manchester UK) and electrospray interface operating in either the positive 

or negative ionization mode.  Dynamic range extension was utilised, expanding the linear range of the 

detector by collecting and combining both full strength and attenuated strength signals (a correction 

factor was automatically applied by the instrument software to the latter) to allow for accurate intensity 

measurements of otherwise saturated peaks.  Data was collected across the 40 to 1000 m/z range with a 

scan rate of 0.2s/scan and a minimum (0.02s) interscan delay.  The ESI source capillary and sampling 

cone voltages were 3000 and 30 volts, respectivly for positive mode inoisation and 2500 and 25 volts 

respectivly for negative mode inoisation.  A source temperature of 120 °C was used, along with a 

desolvation flow of nitrogen gas at 800L/h and 400 °C.           
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For each analysis, four blank samples were analysed to establish the background signal of the UPLC-

MS system, followed by 10 injection of system conditioning using the QC sample (these were excluded 

from subsequent data processing).  This was followed by two QC injections marking the start of the 

analysis (and therefore included in data prosessing), followed by the randomised analysis of all study 

samples with a single QC injection interleaved every 11th injection.  The final QC injection was followed 

by the analysis of all 11 xQC samples and DDA of the gQCs (for the non-specific capture of MS/MS 

information to facilitate metabolite ID).  Next, the standards mixtures were profiled using a low-to-

high collision energy ramp (20 to 40 eV CID) for each scan to obtain both parent and fragment 

information.  Finally, the 12 dQC samples were analysed, followed by two QC injections and a single 

blank sample.          

5.2.6 Pre-processing, multivariate statistical analysis, and biomarker discovery  

Data extraction via feature detection, alignment, grouping, and integration was performed on each 

dataset (positive and negative inoisation mode) using XCMS as described in Chapter 2.  The processing 

variables used for centWave feature detection are reported in Table 5-2.  The grouping function was 

performed using the nearest method with retention time and mass axis grouping boundaries of 12 

seconds and 0.07 Da., respectively.  Only feature groups demonstrating a correlated response to the 

dilution series (dQCs) of 0.8 or greater were passed on to the final data matrix.  Finally, to account for 

the observed variable dilution of urinary contents, median fold change mornalisation was applied to 

the filtered dataset using the approach of Veselkov et. al. (Veselkov et al., 2011).  The resulting matrix 

of feature intensities across all samples and feature groups was imported to SIMCA-P+ v. 12.0.1 

(Umetrics, Umeå Sweden) for principal component and orthogonal projection to latent structure 

discriminant analyses (PCA and OPLS-DA).  Pareto scaling was applied to the dataset within Simca.     
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parameter RPC-MS 

ppm 30 

peakwidth 2 to 10 

snthresh 10 

noise (default) 

prefilter (default) 

Table 5-2. XCMS centWave parameters for feature detection.   

5.3 Results 

5.3.1 Collection of reference spectra for a physical properties database 

The use of a short chromatographic separation, rather than the originally planned flow injection 

approach, aided in the DDA acquisition of intensity-triggered targeted MS/MS spectra by separating 

high intensity chemical noise from the reference-chemical derived features.  This was most often the 

case for reference standards obtained as sodium salts, where the sodium cation was observed to form 

complexes with the formic acid solvent additive, yielding a strong sodium formate signal eluting 

immediately in the injection peak (Figure 5-3).  Brief retention and prolonged elution of analyte species 

(e.g. cytidine 5'-monophosphate shown below) were sufficient to remove most analytes from the 

injection peak, allowing DDA and acquisition of spectral information related to the analyte including 

lower intensity multimers and adducts.  The information from these analyses were manually 

interpreted as described in the methods (Section 5.2.3).  An example of this process is illustrated in 

Figure 5-4, using the reference standard cytidine 5'-monophosphate.       
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Figure 5-3.  Chromatographic separation of a representative standard from potentially obscuring 
salt.  Sodium in the sample (left panel, chromatographic peak A) presents in the mass 
spectrometer as a sodium formate mass envelope (upper right panel, spectrum A) via in-source 
combination with the formic acid solvent modifier.  It is chromatographically separated from 
standard analyte cytidine 5'-monophosphate (left panel, chromatographic peak B), resulting in 
clean MS and MS/MS reference spectra (lower right panel, spectrum B).    
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Figure 5-4. Interpretation of spectral data from four interleaved DDA MS/MS acquisitions for the 
UPLC-MS analysis of cytidine 5'-monophosphate.  Species matching the mass of the expected 
monoisotopic ion for deprotonated cytidine 5'-monophosphate ([M-H]- = 322.0440 m/z) are 
highlighted in red.  The products of targeted fragmentation of the [M-H]- species are classified as 
fragments and highlighted in green.  Species greater in mass than [M-H]- which fragment to [M-
H]-  were classified as adducts, highlighted in blue.  The products of adduct fragmentation which 
have not been independently validated as adducts themselves, as well as those smaller than [M-
H]- which have not been independently found to be fragments of the parent mass, were classified 
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as adduct fragments (highlighted in light blue).  Mass values not indicated by color are redundant 
with those defined elsewhere in the figure.         

Due to the labour intensive nature of this manual characterisation, the DDA MS/MS data were 

manually interpreted for a subset of 77 standards analysed in negative ionisation mode from a single 

plate as a test application.  Nineteen standards failed to ionize in negative mode when introduced 

individually via electrospray at high concentration.  Those 19, as well as three additional standards with 

spectra not clearly related to their expected masses, were withheld from the physical properties 

database and excluded from subsequent analysis.  A summary of the spectral information obtained and 

interpreted for the remaining 55 standards is summarized in Table 5-3.  The resulting subset database 

is included in Appendix 4.      

 Monoisotopic 
parent 

One or more 
fragments 

One or more 
adducts 

One or more 
adduct fragments 

# of standards 54 33 44 27 
% total (n=55) 98% 60% 80% 49% 

 

Table 5-3.  Number of standards (from 55 total) with observed monoisotopic parent mass, 
fragment mass(es), adduct mass(es), and adduct fragment mass(es). 
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5.3.2 Implementation and testing of automated mixture deconvolution and annotation  

The script developed for the deconvolution of known chemical mixtures and generation of an 

empirical database was implemented using the UPLC-MS analysis of the 77 standards subset mixture.  

Selected results from the matching procedure are shown, illustrating the possible outcomes of 

empirically assigning retention times from the UPLC-MS data to the reference materials with their 

known spectra in the physical properties database (Figure 5-5).  In the case of danylsarcosine (A), a 

consensus retention time of approximately 6.2 minutes was achieved by the unambiguous matching of 

the expected parent (red) as well as expected adducts (blue) and fragments (green).  In the case of 3-

hydroxybutyric acid (B), multiple chromatographic peaks were obtained from the standard with similar 

mass profiles (perhaps indicating an origin of the material from poly[(R)-3-hydroxybutyric acid]).  

This was therefore an unusual challenge for the matching script, as each chemical was expected to yield 

a single chromatographic peak.  However, as the greatest number of matching features shared the 

retention time of approximately 4.5 minutes, that group of features was chosen as the best match.  

Finally, in a minority of cases, a determination of a consensus or best match was not possible due to 

complete ambiguity such as that seen in the matching of (S)-2-hydroxybutyric acid, where multiple 

matches are found for the parent mass and an adduct, producing three equally plausible retention times 

that match both the parent and adduct m/z values.       

  



 5.3 Results  
 

 220 

Figure 5-5.  Selected results from the feature 
matching procedure between expected spectral 
features from the physical properties database 
and the UPLC-MS data acquired by profiling of 
the subset standards mixture.  The matching of 
danylsarcosine (A), 3-hydroxybutyric acid (B), 
and (S)-2-hydroxybutyric acid (C) are shown. 
Dashed lines are shown for the m/z values 
representing the spectra of each reference 
chemical, colored according to their classification 
in the database (red = parent, green = fragment, 
blue = adduct, and light blue = adduct fragment).  
All features detected in the analysis of the 
reference mixture are shown as grey circles 
except for features that match database spectral 
values shown in black.  The consensus or best 
match retention time is shown as a black vertical 
dashed line in A and B.  The absence of a line in 
C indicates that no concensus or best match was 
chosen.      
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To validate the automated annotations, reference retention times were obtained for all but four of the 

55 ionisable and interpretable standards by UPLC-MS analysis of the individual standards.  

Interestingly, multiple chromatographic peaks were observed for nine standards, indicating chemical 

impurity, the presence of polymerisation (as previously discussed) or an inherent tendency towards the 

formation heterogeneous structures prior to chromatographic separation.  An example of the latter is 

shown in Figure 5-6 for the reference chemical N-acetyl-cysteine.    

 
 

Figure 5-6.  Retention reference of N-acetyl-cysteine.  N-acetyl-cysteine (top) elutes in two distinct 
chromatographic peaks, likely dependent on oxidation state.  The early eluting peak at 2.3 min 
is interpreted as the reduced monomer, as monomer adduct ions such as [2M-2H+Na]- (middle) 
are favoured at that retention time.  The expected disulphide mass is dominant in the later 
eluting peak (bottom).  The two distinct chromatographic peaks indicate that the two species 
exist prior to chromatographic separation.  The presence of each mass signal at both retention 
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times indicates some interconversion after chromatographic separation, likely occurring in the 
electrospray process.       

 

Of the 51 molecular standards represented in the physical properties database with reference 

empirically derived retention times, 38 were annotated with a new empirical retention time from the 

subset mixture.  The given retention time was found to match the reference value in 35 of the 38 

annotations giving 6% false annotations. Twenty-five percent of the standards remained undetected or 

not annotated.  Annotation of the same 51 standards was attempted in the peaklist generated from the 

profiling of the master mixture, and retention times were again accurately assigned to 35 of the 

standards.  One additional false annotation was made from a previously un-annotated standard.  

Together, these results indicate that the additional feature complexity did not confound the annotation.   

5.3.3 Evaluation of the master standards mixture in comparison to a biological sample 

The base peak intensity (BPI) chromatogram (with detection in the negative ionization mode) for the 

master mixture of chemicals is shown in Figure 5-7 (top).  The BPI chromatogram of the composite 

urine sample is shown in Figure 5-7 (bottom) for visual reference to demonstrate the general 

similarities in complexity and intensity, as well as the superficial similarity in composition. 
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Figure 5-7.  Base-peak intensity (BPI) chromatograms of a synthetic standards mixture (top) and a 
composite sample of human urine (bottom) from a pre vs. post bariatric surgery study.  Each 
sample is shown separated by reversed-phase chromatography with detection (arbitrarily) in 
negative ionization mode.   

5.3.4 Use of a standards mixture for molecular identification in UPLC-MS profiling 

Variance in the positive mode profiling dataset is illustrated in a PCA scores plot (Figure 5-8).  A slight 

discrimination between urine samples from patients before and after surgery is observed in both PC1 

(representing 8.3% of the total dataset variance) and PC2 (representing 5.9% of the total dataset 
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variance), highlighted by the diagonal orientation of the cross-diluted group QC samples (xQCs, shown 

in green) which sits atop the complete pooled QC sample cluster (orange).  These groups were further 

resolved by orthogonal projection to latent structure discriminant analysis (OPLS-DA).  The R2Y and 

Q2 values obtained with a single calculated component were 0.59 and 0.44, indicating that the 

discriminant analyses are valid.  The features most responsible for the discrimination of pre- and post-

surgery urine samples were observed using a loadings S-plot of correlation vs. covariance (Figure 5-

9A).  Discriminant features with differing mass but nearly identical retention time were suspected to be 

related to a common molecular species (or “component”), and therefore manually collated using 

common mathematical relationships in mass.  Among the most discriminant features, eight 

(highlighted with red boxes in Figure 5-9A) were found to share a common retention time, and were 

therefore selected as collectively representing a potential candidate biomarker which is significantly 

elevated in post-surgery patient samples.  These were interpreted as the monoisotopic ion, multimers of 

that ion, and a fragment of that ion representing the neutral loss of water (Figure 5-9B).  
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Figure 5-8.  A PCA scores plot of principal components 1 vs. 2 of urine samples from a cohort of 
subjects before and after surgical intervention.   Data from the positive ionisation mode 
analysis is shown.  A general trend towards separation of urine samples collected before surgery 
(pink) and after surgery (blue) is observed across both visualized components.  The xQC samples 
are shown in green.  Replicate injections of the QC sample throughout the analysis are shown in 
orange, demonstrating a high degree of analytical reproducibility with respect to the observed 
biological variance.  PC1 (x axis) is responsible for 8.3% of the total dataset variance, while PC2 
(y axis) is responsible for 5.9% of the total dataset variance.     
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Retention time (min) m/z Component interpretation 
3.859 247.1068 [M-H2O+H]+ 
3.859 248.092 Isotope of 247 
3.859 249.0974 Isotope of 247 
3.859 265.118 [M+H]+ 
3.859 266.1228 Isotope of 266 
3.859 529.2295 [2M+H]+ 
3.859 530.2344 Isotope of 529 
3.859 793.3427 [3M+H]+ 

 

Figure 5-9. OPLS-DA loadings plot of the feature-set from pre- and post-bariatric surgery subjects, 
and manual interpretation of selected features elevated in post-surgery patient samples.  The 
individual features responsible for this discrimination are illustrated in an OPLS “S” plot where 
features responsible for the suggested class differentiation are displayed at the upper and lower 
bounds of the Y axis (A).  Features of greater average magnitude are found towards the extremes 
of the X axis.  The discriminative feature cluster indicated by red squares is manually interpreted 
by common adduct and neutral loss calculations (B).    
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In an effort to identify the discriminant analyte of interest using the in solutio database, EICs of the 

[M+H]+ ion mass (m/z=265.118 +/- 20ppm) were generated from both the composite QC sample and 

standards mixture analyses, revealing the presence of a peak of the same mass and retention time 

(Figure 5-10). The spectral patterns of both the full scan and DDA MS/MS analyses of the candidate 

biomarker match the spectrum obtained by ramped collision energy CID MS/MS in the standards 

mixture (Figure 5-11).     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-10.  Comparison of extracted ion chromatograms (EIC m/z = 265.118 at 20ppm) between 
a urine QC sample analysis (top) and the standards mixture analysis (bottom).  A 
chromatographic peak of m/z = 265.118 and matching retention is observed in both the urine 
QC sample and standards mixture, indicating the presence of the unknown discriminant 
metabolite in the standards library.  An additional chromatographic peak of matching mass is 
observed at 0.58 min in the standards mixture, making assignment of either peak ambiguous if 
based on mass alone. 
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Figure 5-11:  Comparison of summed MS and MS/MS spectra from the chromatographic peak at 
3.86 minutes in the QC urine sample (top and middle, respectively) and the standards 
mixture (bottom).  Matching spectral adducts, fragments, and the parent mass are indicated 
with blue, green, and red respectively.   
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In order to claim an accurate identification of the unknown analyte in urine, the matching standard 

reference chemical present in the mixture must be unambiguously annotated.  Alpha-N-Phenylacetyl-

L-glutamine (C13H16N2O4) is the only standard present in the mixture matching the expected [M+H]+ 

ion mass (m/z=265.118) at 20ppm mass accuracy.  However, the presence of a second chromatographic 

peak with the same mass (at 0.58 minutes, visible in Figure 5-10) indicates the presence of ambiguity 

and precludes the assignment of alpha-N-phenylacetyl-L-glutamine based on mass alone.  However, by 

comparing the fragmentation patterns of the peaks from the standards mixture to those contained 

within the physical properties database, it became clear by full mass-spectral match that the peak at 3.86 

minutes was accurately assigned as alpha-N-phenylacetyl-L-glutamine.  With the standard 

unambiguously located within the mixture, the mixture could therefore be used to accurately identify 

the unknown biomarker as alpha-N-phenylacetyl-L-glutamine with high confidence.   

It should be noted that of the other discriminant features highlighted by the OPLS-DA analysis of the 

positive mode data, only alpha-N-phenylacetyl-L-glutamine was matched to the empirical database.  

The process was repeated for the negative mode analysis yielding additional biomarkers of interest, 

including a number of features determined by analysis of the DDA-derived MS/MS spectra to be both 

free and glucuronic acid conjugated hydroxylated saturated fatty acids.  However, no molecules of this 

type were included in the standards mixture.  Together, these results suggest a need for more 

comprehensive mixtures.           
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5.4 Discussion 

The principal goal of this work is to demonstrate the potential for a workflow whereby confident 

feature identification may be made in profiling studies using only prospective data.  By combining 

reference chemicals into mixtures and applying a basic spectral deconvolution script, annotation of 

those mixtures was demonstrated in a manner that suggests their utility in place of individual reference 

chemicals.  The time savings produced by theis method of multiplexing have the potential to make the 

large scale screening of chemical standards in routine analysis practical.  However, for such mixtures to 

be truly useful in profiling studies, they should be as large as possible, allowing the construction of large 

empirical databases with minimal number of mixture injections.  It is envisioned that a reasonable 

number of mixtures of reasonable complexity (i.e. perhaps 10 mixtures of 100 chemical reference 

standards each to avoid severe ionisation suppression effects) could be analysed at the start or end of a 

profiling analysis of biological samples, providing the data to allow an empirical database of 1000 

metabolites to be built with minimal consumption of analytical resource.  This database would be 

complete with method-specific accurate retention time and empirical spectral intensity measurements 

(including isotopic ratios) that reflect the exact state of the system used for the profiling analysis.  

When combined with prospective modes of MS/MS data capture on QC samples such as DDA or MSe 

(Bateman et al., 2002), it is conceivable that confident metabolite identification of unknown features 

could be performed by retrospective review of data captured during the initial profiling experiment, 

precluding the need to return to the instrument at a later date to attempt MS/MS work.  By potentially 

eliminating the need for post-analysis assessment and confirmation of molecular species identity, the 

approach is targeted to impact a major bottleneck of mass spectrometry-based metabonomic research.  

Such an approach is equally targeted to the rapid and comprehensive development of chromatographic 

methods and mass spectrometric detection parameters.  Annotated analysis of hundreds of molecular 

species in a single injection has the potential to catalyse the testing of novel stationary phase 

chemistries and mobile phase modifiers as well as the more subtle effects of MS source and ion optic 

voltages on the selectivity and sensitivity of the profiles produced.     
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The efficacy of such an approach is limited only by (a) the ability to combine many chemical reference 

standards and (b) the ability to unambiguously deconvolve them.  The former would likely be limited 

by the chemical stability of the mixture, which was not tested in the study presented here, but remains a 

serious concern for further investigation.  The latter is more conceptually open ended, as increasingly 

complex mixtures can be unambiguously assigned as long as all of the components are unique in at 

least one manner that is a measureable physical property.  This could be achieved both by the conscious 

design of mixtures only containing metabolites with disparate physical properties (rather than the 

random combinations made here in the interest of time) as well as the collection of additional data 

which is descriptive of the metabolites.  For example, a mixture of two chemicals with known disparate 

accurate mass values, no potential for shared molecular sub-structure (and therefore shared fragments), 

and no potential for adduction to make one chemical the exact same mass as the other, can be 

unambiguously deconvolved simply by knowing the accurate minoisotopic mass of each.  However, 

pushing the limits of mixture complexity will require expansion of the physical properties database, 

potentially including the use of ion mobility measurements of molecular collisional cross section 

(Wickramasekara et al., 2013) to bolster the specificity and accuracy of annotations.  Ion mobility data 

was collected during the analysis of the standards, but has yet to be extracted and integrated into a 

database format and remains planned further work. 

The successful creation of a standards mixture which resembles the complexity of a human biofluid 

such as urine when profiled by UPLC-MS is therefore a step in what is planned to be an iterative 

process of refinement of the databases, deconvolution algorithm, and mixtures themselves.  The 

successful application of such a standards mixture to the prospective metabolite identification of alpha-

N-phenylacetyl-L-glutamine, a urinary biomarker that discriminates pre- and post-bariatric surgery 

patient cohorts, serves to demonstrate the potential applicability of the approach to routine analysis 

and is consistent with published data showing increased excretion of alpha-N-phenylacetyl-L-

glutamine post-bariatric surgery in rat models associated with a shift in the gut bacteria responsible for 

the conversion of phenylalanine to phenylacetate in the colon (Li et al., 2011).     
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Chapter 6: General discussion and future work 

Within this thesis, an advanced molecular profiling pipeline for human population screening has been 

developed and tested.  This pipeline is composed of: 

1. Fit-for-purpose and complimentary chromatographic methods facilitating broad molecular 

coverage with a high degree of analytical precision and laboratory efficiency. 

2. A robust UPLC-MS system configuration that permits sustained analysis of large sample sets, 

reducing the need for analytical sample batching and associated batch correction.   

3. A method of UPLC-MS feature extraction and grouping suitable for real time application to 

sustained analysis. 

4. A concept for prospective biomarker identification using in-solution databases to generate 

empirical UPLC-MS method-specific and experiment-specific databases.      

Parts of the pipeline deviate from conventional wisdom surrounding molecular profiling (e.g. the 

generation of high quality datasets by dramatically extending analytical batch sizes) while others are 

incremental but logical and impactful changes to established practices (e.g. considering the analysis 

order of samples in their pre-processing).  Still others remain largely conceptual (e.g. in-solution 

databases), requiring further development in application to realise their full potential.  Taken together, 

these approaches enable efficient and quality data capture in large scale application.  However, they 

have also uncovered areas where further work is now needed to materialise greater gains.    

Achieving large scale continuous analysis has allowed the observation of strong decay in the signal 

obtained from ToF detectors, which now appears to be the limiting factor in continuous analysis of 

large sample sets.  This phenomenon has not yet received mainstream attention in the literature, and 

consequentially may not be a priority target of ongoing hardware improvement (e.g. increasing 

detector speed, dynamic range, and total lifetime).  To combat this with the existing hardware, we (in 

conjunction with the instrument manufacturer Waters Corp.) are co-developing a rapid pre-analysis 

measurement scheme whereby the detector gain (and therefore signal output) is stabilised across each 
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individual analysis.  Knock-on effects to detector linearity require testing, but early prototype 

implementations of the stabilising method are yielding promising results.   

Additionally, the data presented herein demonstrate that chromatographic conditioning to a state of 

equilibrium is not general and finite, but rather analyte specific and potentially persisting for the 

duration of the analysis.  On one hand, lengthy conditioning may be performed (e.g. a single plate of 96 

QC samples) in an attempt to absorb the most severe effects of UPLC-MS system conditioning.  Such 

an approach is not necessarily impractical, as the relative duration of pre-experiment procedures 

lessens at larger scale.  However, performing feature extraction and pairwise matching in analysis order 

confers the ability to track molecules as they move, lessening the overall requirement for 

chromatographic equilibrium.  By optomising the profiling methods and UPLC-MS configuration to 

sustain large batch analysis with high precision, analytical variance is coded in the run order rather 

than in a series of disparate batches.  Complimenting this data with a run-order based grouping 

mechanism ensures that analytes can be tracked from the start of the analysis to the end with high 

precision and recall without a need for complex batch correction.  The results of testing show that the 

algorithm produces a dataset with more true-feature groups and resists the bloating of the overall size 

of the dataset.  However, further work in the implementation of this approach to real datasets is 

required to realise its full potential, including real-time application.   

One specific area of interest is in the replacement of user-defined grouping thresholds with metric-

driven automatoically determined thresholds for m/z and retention time error.  Early efforts show that 

sensible values can be achieved through the automated testing of matching tolerance windows, 

expanding in both m/z and retention time dimensions with each subsequent round, until the number 

of unambiguous matches across all features between two datasets has been maximised (i.e. windows 

that are too small will match fe features, but windows that are too large will produce match ambiguity, 

creating a metric-based optimum).  This approach will require additional computational time and 

resource, however if performed in the context of real-time feature extraction and grouping, the rate of 

data acquisition creates a buffer thought to be ample for these calculations.   
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The current and planed future approaches to real-time feature grouping and run-order analysis pave 

the way for the development of real-time QA monitoring procedures for high throughput metabolic 

profiling.  For example, the m/z and retention windows automatically optimised in the proposed future 

approach may be monitored for significant deviation between sample pairs indicating an acute change 

in UPLC-MS conditions warranting investigation by an analyst.  More simply, the overall 

chromatographic and MS signal intensity among replicate QC samples may be tracked by looking for a 

zero-difference in feature intensity between adjacent QC samples.  Real time tracking of the number of 

accurately matched feature pairs between QCs can also help identify when chromatographic drift has 

accelerated outside of what the grouping algorithm is able to correct.  This information may be fed 

back to the analyst in real time, sparing both precious biofluid sample and acquisition time.  All of 

these systems are currently being developed in an effort to further develop the pipeline for efficient 

large scale analysis.     

Significant challenges in feature annotation and identification are also addressed, using mixtures of 

known reference chemicals in place of pure reference standards to assist in the prospective 

identification of unknown biomarkers.  One practical implementation of this concept would be the 

creation of bio-panels of analytes thought to be relevant to the biological system and study design, or 

suggested as potentially relevant by earlier analyses (e.g. NMR).  In this manner, the chances of 

capturing the data required for confident metabolite identification would be improved within the 

original profiling experiment, aiding in overall efficiency of the high throughput large scale 

phenotyping laboratory.   

Finally, it is noteworthy that while large-scale analysis provides unique challenges to the analyst, other 

practical aspects become easier as experiments grow larger.  All operations performed prior to each 

experiment (e.g. cleaning, calibration, and conditioning) require less time relative to the analysis as the 

experiments grow larger.  Furthermore, labs which focus on very large-scale work may be more able to 

dedicate instruments to specific methodology and biofluid types, reducing the incidence of system 

contamination (eg. lipid contamination from the analysis of human blood products prior to analysis of 

human urine) and hardware fatigue introduced by constant instrument reconfiguration.  When 
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individual experiments are large enough, the complete replacement of consumables (eg. the column) 

and non-consumable parts alike (eg. sample injection syringe, loop, and peak tubing) becomes 

increasingly economical, further reducing the incidence of contamination and fatigue per project.  In 

this manner, natural benefits exist to compliment the challenges of population phenotyping addressed 

within this thesis, further enabling the continued growth of UPLC-MS application to large scale 

analysis.      

The ultimate goal of these efforts is to be able to generate metabolic data related to human phenotypes 

with sufficient efficiency and precision to allow for multi-centre participation in human phenotyping 

and cross comparison of acquired data.  In this manner, the scope of phenotyping can be greater than 

the capabilities of any one laboratory, amassing unprecedented statistical power for meta-analyses of 

profiling data.  It is hoped that this pipeline is a foundation on which future developments facilitate 

harmonisation of platforms and databases across multiple laboratories.  Extension of this would 

include translation to other commonly collected biofluids and sample types such as blood product 

samples (serum and plasma) in order to capture unparalleled insight into human phenotypes.      
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Appendices 

Appendix 1 

PCSOP.036 

MRC-NIHR Phenome Centre 

Document: PCSOP.036 
Revision: 7 

Author: Matthew R. Lewis 
Effective: Sep 17, 2013 13:38  

Generation of Urine Long Term Reference (LTR)  

1. Purpose 
The purpose of this standard operating procedure (SOP) is to provide step-by-step instructions for 
the creation and aliquoting of a Long Term Reference (LTR) sample of human urine for use in 
UPLC-MS and NMR assays. 

2. Scope 
Human urine is a potentially infectious (Class 2) biofluid commonly handled for study within the 
Phenome Centre.  Standardized procedure for handling of unscreened human urine and its use in 
the creation of a homogenous LTR is required for the safety of laboratory personnel, assurance of 
data quality, and interpretability. 

3. Definition 
The Long Term Reference (LTR) is a study-independent biofluid pool which is analyzed regularly 
across all experiments performed within the Phenome Centre to provide a biologically relevant 
quality control reference.  

4. Required Materials  
1. Collection and pooled sample materials  

1. Ultrapure water (Milli-Q or equivalent) for rinsing collection tubes 
2. Nalgene 20 L polypropylene carboy with spigot 
3. Large stir plate with large stir bar 
4. 3x cases of 500mL PP Centrifuge Tubes with Plug Seal Cap, Sterile, 6/Pack, 

36/Case (Corning product #431123) 
2. Centrifugation materials  

1. Eppendorf 5810R centrifuge and S-4-104 rotor  
2. 4x swing-bucket inserts (Eppendorf cat #5825 745.000) 

3. Dispensing materials  
1. 2x Eppendorf 5-25 mL Varispenser Plus (Eppendorf cat #4961000047) 
2. 2x 1 L bottles to fit Varispenser 
3. 2x small stir plates (for 500mL bottle) 
4. 2x small stir bars (for 500mL bottle) 
5. ~2200x 15 mL Corning CentriStar polypropylene centrifuge tubes (Corning product 

#430791) 
6. Sequential unique barcodes (-80C appropriate) for 15 mL Corning centrifuge tubes 

5. Procedure  
1. Specimen collection  
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1. 500mL Corning centrifuge tubes are pre rinsed with ultrapure water (Milli-Q or 
equivalent). 

2. Individual urine specimens are obtained in pre-rinsed 500mL Corning centrifuge 
tube from volunteers who have completed the donor consent form (PCDOC.009).  

1. Specimen volume in excess of 500 mL is decanted to the toilet by the 
specimen provider. 

3. The sample is labeled with sequential number  
4. 1mL of sample is removed for UPLC-MS to a 1.7mL eppendorf tube and 

transported to IRDB for analysis (and labeled with appropriate number).  
5. 1mL of sample is removed for NMR to a 1.7mL eppendorf tube (and labeled with 

appropriate number).  
6. The bulk 500mL specimen is transported to IRDB building and stored at 4C. 

2. Specimen testing  
1. Individual specimen are analyzed overnight by NMR and UPLC-MS to ensure no 

PEG contamination or other cause for exclusion from the pooled reference. 
3. Pooled sample homogenization   

1. The following morning, post analysis, outlying samples are disposed of according 
to (SOP.XXX) 

2. The remaining specimen are balanced according to volume and centrifuged at 4C 
for 15 min at max speed (3,171 x g as limited by Eppendorf swing bucket/insert 
type 5825745.000). 

3. Supernatant is carefully decanted by pouring into a pre-rinsed Nalgene 20 L 
polypropylene carboy with spigot, held in a refrigerator at 4C.  This is the pooled 
sample.  

1. The total number of combined specimens is recorded: ________________. 
4. When 20 L pooled sample has been accumulated, a large stirbar is added to the 

carboy, and the carboy is loosely capped (not air-tight). 
5. The carboy is placed on a large stir plate and supported such that it is stable while 

stirring. 
6. The pooled sample is stirred with sufficient speed for sample homogenization for 5 

minutes. 
4. Pooled sample dispensing (NMR)  

1. While stirring, 1 L of pooled sample is dispensed to a clean 1L pyrex bottle with stir 
bar. 

2. The bottle is capped with an Eppendorf Varispenser. 
3. With gentle stirring, the pooled sample is dispensed from the container to 

sequentially barcoded Corning 15mL centrifuge tubes using a 5-25mL Eppendorf 
varispenser plus in set volumes of 7.8 mL  

1. NMR requirements have been calculated as follows:  
1. 1 LTR per plate 
2. 13 plates / 1000 assay samples 
3. 13 LTR samples total * 600ul = 7.8 mL (per study) 

4. Any aliquots less than 7.8 mL (ie those dispensed at the end of the batch) are 
disposed of according to the Biological Waste Disposal SOP (SOP_TBD) 

5. All tubes are tightly capped, racked in barcoded containers, and stored at -80C in 
the space designated for LTR storage.   

5. Pooled sample dispensing (MS)  
1. While stirring, 1 L of pooled sample is dispensed to a clean 1L pyrex bottle with stir 

bar. 
2. The bottle is capped with an Eppendorf Varispenser. 
3. With gentle stirring, the pooled sample is dispensed from the container to 

sequentially barcoded Corning 15mL centrifuge tubes using a 5-25mL Eppendorf 
varispenser plus in set volumes of 11.5 mL  

1. MS requirements have been calculated as follows:  
1.  8 LTR per plate 
2. 13 plates / 1000 assay samples 
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3. 104 LTR samples total * 110ul = 11.5 mL (per assay, per study) 
4. Any aliquots less than 11.5 mL (ie those dispensed at the end of the batch) are 

disposed of according to the Biological Waste Disposal SOP (SOP_TBD) 
5. All tubes are tightly capped, racked in barcoded containers, and stored at -80C in 

the space designated for LTR storage.   
6. Repeated centrifugation and dispensing for NMR and MS*  

1. Step 5.e (MS) is repeated 3x 
2. Step 5.d (NMR) is repeated 1x, followed by 4x repeats of step 5.d (MS) until the 

pooled sample has been entirely aliquoted. 
3. *Note: Because 4x MS assays are expected per every 1x NMR assay (per sample, 

per experiment), the steps above are repeated to generate 4x the MS aliquots but 
not to bias either LTR to the first or last batches. 

6. Related Documents  

Document Number Title 

    

7.  
 
#Revision History 

Version Date Author Comment 

7 Sep 17, 2013 13:38 Lewis, Matthew R Migrated to Confluence 5.3 

6 Sep 17, 2013 13:38 Lewis, Matthew R Migrated to Confluence 4.0 

5 Sep 17, 2013 13:38 Lewis, Matthew R 

4 Sep 17, 2013 13:36 Lewis, Matthew R minor edits 

3 Aug 30, 2013 13:27 Lewis, Matthew R 

2 Jul 31, 2013 20:28 Lewis, Matthew R minor edit 

1 Jul 31, 2013 20:12 Lewis, Matthew R 
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Appendix 2 
R script for determining the maximum age of a sample during a continuous 20 plate analysis.   

library(reshape2) 
library(ggplot2) 
 
  day.minutes<-60*24                    # definition of a day 
  work.start<-9*60                      # ASSUMES WORK STARTS AT 9AM 
  reload.start<-work.start+(3*60)       # ASSUMES 3H PREP TIME REQUIRED FOR PLATE BATCH, regardless 
of size  
  reload.end<-18*60                     # ASSUMES DAY ENDS AT 6PM 
  reload.mid<-(reload.start+((reload.end-reload.start)/2)) 
  plates<-20                            # total number of plates to be analysed continuously 
  batch<-96                             # sample batch size 
  run.time<-seq(2.2, 31, by = .05)      # run times to assess 
    run.time<-round(run.time, 2)        # fixes floating point errors 
  duration<-(run.time*batch)            # calculates the duration of analysis, given a batch size. 
  tally.duration<-0                     # dummy variable for later use 
  tally.plates<-0                       # dummy variable for later use   
   
# sets starting time for analysis of the first plate   
# ASSUMES START TIME IS IN THE MIDDLE OF THE RELOAD LENGTH - IE 3:00.  Rationale is that it gives 
the most room for drift in method time, either up or down in time 
  time.started<-rep.int(reload.mid, length(run.time)) 
 
 
# NOTE: to obtain "minimisation of batch duration plot", run above code and code within this repeat 
ONCE (do not allow repeat) 
repeat{   
   
#  if the run duration doesn't last until reload.start time next day, more plates are needed in the 
batch   
  more.plates<-as.vector(rep(1,length(run.time))) 
  batch.duration<-duration   
   
# add more plates to a batch to get short analyses over one night.   
  repeat{   
   
  # tests if the run goes into the next reload day (T) or falls short (F)    
    day.lapse<-(batch.duration+time.started)>1440+reload.start 
     
  # stops the loop when all runs at least go into the next reload day      
    if (length(day.lapse)==sum(day.lapse)) break   
   
  # adds a plate to each method where the batch does not lapse into the next day's reload time.   
    more.plates[which(day.lapse==F)]<-((more.plates[which(day.lapse==F)])+1) 
     
  # updates the time finished   
    batch.duration<-more.plates*duration 
 
  } 
   
  #limits number of plates to the number specified in the cycles.   
    more.plates[which((tally.plates+more.plates)>plates)]<-plates-
(tally.plates[which((tally.plates+more.plates)>plates)]) 
  # updates batch duration post limiting     
    batch.duration<-more.plates*duration 
     
  # plates that can be reloaded during the working day are done so immediatly before analysis.   
  # batches that start after the working day are prepared at end of working day and must age extra, 
beyond their duration.    
  # however, batches must only wait since reload.end of the previous day, regardless of how many 
days lapsed in batch 
    # dummy string 
    wait.time<-rep.int(0, length(run.time)) 
    # adds rest of night plus morning hours to those reloading before 720 min 
    wait.time[which(time.started<reload.start)]<-
time.started[which(time.started<reload.start)]+(1440-reload.end) 
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    wait.time[which(time.started>reload.end)]<-time.started[which(time.started>reload.end)]-
reload.end 
 
    # calculates the max sample age as the duration of the batch analysis + the wait time between 
prep and start 
    plate.age<-batch.duration+wait.time 
   
   
    #tally.duration<-cbind(tally.duration, batch.duration) 
    tally.duration<-cbind(tally.duration, plate.age) 
    tally.plates<-(tally.plates+more.plates) 
     
    hours.plot<-batch.duration/60 
    schedule<-as.data.frame(cbind(hours.plot, run.time, more.plates)) 
    ggplot(schedule, aes(hours.plot, run.time)) + 
    geom_vline(xintercept = c(24, 48), colour = "blue", size = .5, linetype = "longdash") + 
    geom_vline(xintercept = c(21, 45), colour = "red", size = .5, linetype = "longdash") + 
    geom_vline(xintercept = c(27, 51), colour = "red", size = .5, linetype = "longdash") + 
    geom_point(aes(colour = factor(more.plates))) + 
    scale_colour_discrete(name = "Plates per batch") + 
    scale_y_continuous(expand=c(0,0)) +  # eliminates margin on y axis 
    xlab("batch duration (hours)") + 
    ylab("analytical method duration (minutes)") + 
    labs(title="Minimisation of batch duration") + 
    theme_bw()  
   
  # calculates the time of day the analysis will finish 
    time.finished<-(batch.duration+time.started)-((floor((batch.duration+time.started)/1440)*1440)) 
       
  # adjust the new start time. 
    time.started<-time.finished   
     
 
 if (sum(tally.plates<plates)==0) break 
 
} 
# NOTE: to obtain "continuous analysis of twenty 96-well plates" plot, run all code above, 
including the repeat, and code below   
 
# removes seed column 
  tally.duration<-tally.duration[,-1] 
  max.age<-(apply(tally.duration, 1, max)) 
  #max.age<-rowMeans(tally.duration) 
  max.age<-max.age/1440 
  schedule<-as.data.frame(cbind(max.age, run.time)) 
   
   
  ggplot(schedule, aes(max.age, run.time)) + 
  #geom_vline(xintercept = 1, colour = "darkgrey", size = .5) + 
  #geom_vline(xintercept = 2, colour = "darkgrey", size = .5) + 
  #geom_vline(xintercept = 3, colour = "darkgrey", size = .5) + 
  geom_point(colour = "blue", alpha = 0.5, shape = 16) + 
  #geom_hline(yintercept = 12, colour = "red", size = .5, linetype = "longdash") + 
  #scale_x_continuous(expand=c(0,0)) +  # eliminates margin on x axis 
  scale_y_continuous(expand=c(0,0)) +  # eliminates margin on y axis 
  xlab("maximum sample age from preparation to analysis (days)") + 
  ylab("analytical method duration (minutes)") + 
  labs(title="Continuous analysis of twenty 96-well plates") + 
  theme_bw()  
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Appendix 3 

R script for pairwise feature matching (ROgroup).   

# ROgroup 
# Version 30 
# Matthew R. Lewis 
 
######################################################################################## 
######################################################################################## 
################################----1ST TIME LOADING----################################  
 
# sets working directory   
  #myDir = "C:/Users/Matthew R. Lewis/Dropbox/1_Phenome Center/Research and 
Development/RunOrderExtraction/NetCDF"       
  myDir = "D:/NPC Research/Urine Phase 1 Validation/ToF05Centroids.PRO/NetCDF" 
  setwd(myDir) 
  (WD <- getwd()) 
 
# loads required packages 
  library(xcms) 
  library(ggplot2) 
  library(reshape2) 
  library(pheatmap) 
  library(gridExtra) 
   
# load run order 
  run.order <- read.csv("AnalysisOrder.csv", header = F)   
 
# load initial template sample for feature detection and grouping 
  first.sample<-xcmsRaw(as.character(run.order[1,1]))     # use this to start at the beginning 
  #first.sample<-xcmsRaw(as.character(run.order[72,1]))   # project mid point is plate 5, samples 
48 and 59.  select this to start at 48.   
 
# sets the initial sample 
  sample.count<-1                                          # use this when starting from the 
beginning 
  #sample.count <- 72                                      # use this when starting from the mid 
point 
 
 detailed.plotting <- F 
 
######################################################################################## 
######################################################################################## 
####################----detect features, build template----#################### 
 
# perform centWave-based feature detection 
# note: keep noise thresholds low - as the entire signal response drops, so will the noise level, 
and real signals.   
  peakpick <- function(sample.x){  
    peaks<-findPeaks.centWave(sample.x, 
      ppm=30,                             # maxmial tolerated m/z deviation in consecutive scans, 
in ppm (parts per million)  
      peakwidth=c(1,8),                   # Chromatographic peak width, given as range (min,max) in 
seconds 
      snthresh = 10,                      # Signal/Noise ratio: ([maximum peak intensity] - 
[estimated baseline value]) / standard deviation of local chromatographic noise 
      noise=1000,                         # centroids with intensity < noise are omitted from ROI 
detection 
      prefilter=c(8, 2000),               # Mass traces are only retained if they contain at least 
x scans with intensity y 
      mzCenterFun="wMean",                # m/z centre of feature (wMean=intensity weighted mean of 
the feature m/z values) 
      integrate=2,                        # integration type (1=on bounds decided by waves, 2=on 
raw data) 
      verbose.columns=T)                  # provides additional peak metadata 
      #sleep=.01, 
      #scanrange=c(314,315) 
      #nSlaves=6,                         # number of core processors 
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    return(peaks) 
  } 
   
  template<-peakpick(first.sample)              
   
  # centWave very annoyingly returns duplicate features.  Sometime ALL measurements are duplicated, 
sometimes just the m/z, RT, and into.   
  # template<-unique(template) on the whole dataset works only where all measurements are 
duplicated.  
  # therefore, the dataset is stripped back to only what is used in matching, and unique entries 
are retained. 
  # also, presumably because of floating point errors... numbers require rounding too, before they 
can be ID'd as uique. 
   
  template <- cbind(round(template[,"mz"], digits=4), round(template[,"rt"], digits=3), 
round(template[,"into"], digits=3)) 
  colnames(template) <- c("mz","rt","into")   
  template<-unique(template)              # duplicate features (identical rows) are removed  
 
######################################################################################## 
######################################################################################## 
####################----MATCHING PARAMETERS----####################  
 
  half.mz.win<-0.002  # 1/2 error window (Daltons).  This should be the same value as that used in 
peakpicking (ie. 30ppm) 
  half.rt.win<-3      # 1/2 error window (seconds)  
  #half.it.win<-30    # 1/2 error window (percent for log transformed it) 
   
######################################################################################## 
######################################################################################## 
####################----RESERVE master matrices----####################  
  
 master.ID<-(1:(nrow(template)))          # creates a matrix for storing matched feature IDs  
 master.MZ<-(template[,"mz"])             # creates a matrix for storing matched feature m/z values  
 master.RT<-(template[,"rt"])             # creates a matrix for storing matched feature RTs  
 master.IT<-(template[,"into"])           # creates a matrix for storing matched feature ITs  
 
######################################################################################## 
######################################################################################## 
####################----REPEAT FROM HERE----#################### 
 
repeat { 
 
# load next candidate sample file.   
  new.sample<-xcmsRaw(as.character(run.order[(sample.count+1),1]))   # chooses next sample in run 
order 
  #new.sample<-xcmsRaw("UrineVal1_p1control_RPOS_ToF05_SR96_AFAMM01.CDF")      # only used for 
illustration where the candidate sample is specifically chosen. 
 
# peakpick new sample file 
  candidate<-peakpick(new.sample) 
   
  candidate <- cbind(round(candidate[,"mz"], digits=4), round(candidate[,"rt"], digits=3), 
round(candidate[,"into"], digits=3)) 
  colnames(candidate) <- c("mz","rt","into")  
   
  candidate<-unique(candidate)            # centWave seems to produce a small number of duplicate 
features (identical rows).  This removes them.  
 
 
######################################################################################## 
######################################################################################## 
####################----set boundaries and create double-width bins for self-matching----
####################  
 
# calculates upper and lower limits for self-matching (uses 2x windows to ensure all ambiguous 
matches are clusters). 
   
  upper.mz.t.dbl<-(template[,"mz"])+(half.mz.win*2)     
  lower.mz.t.dbl<-(template[,"mz"])-(half.mz.win*2)      
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  upper.rt.t.dbl<-(template[,"rt"])+(half.rt.win*2)     
  lower.rt.t.dbl<-(template[,"rt"])-(half.rt.win*2)     
 
  upper.mz.c.dbl<-(candidate[,"mz"])+(half.mz.win*2)     
  lower.mz.c.dbl<-(candidate[,"mz"])-(half.mz.win*2)      
   
  upper.rt.c.dbl<-(candidate[,"rt"])+(half.rt.win*2)     
  lower.rt.c.dbl<-(candidate[,"rt"])-(half.rt.win*2)     
   
######################################################################################## 
######################################################################################## 
####################----INTRA-sample matching (clustering)----####################   
 
  # herds are groups of features that match other features within the same dataset  
  # note that mass error values should be in absolute terms, otherwise features may fall into more 
than 1 herd as the absolute inclusion parameters shift.  ????   
 
  herder <- function(dataset, lowerbounds.mz, upperbounds.mz, lowerbounds.rt, upperbounds.rt){ 
   
    herd.ID<-rep(NA, nrow(dataset))                                 # creates a reporting vector 
where the position relates to the dataset ID and the value is unique to the herd 
    herd.val<-1                                                     # makes designation for first 
herd value   
   
    for (i in 1:length(herd.ID)){ 
          if (is.na(herd.ID[i])==F) next                            # only runs calculation on 
values that have no herd designation from inclusion in earlier loops 
           
          matches<-which(                                           # performs mz and rt matching.   
            dataset[i,"mz"]>lowerbounds.mz & dataset[i,"mz"]<upperbounds.mz & 
            dataset[i,"rt"]>lowerbounds.rt & dataset[i,"rt"]<upperbounds.rt  
          )   
            
          if (length(matches)>1) {                                  # seeks boundaries of a herd 
only if a match is not unique         
            old.matches<-0                                          # primes the subsequent while 
condition to run (via TRUE), as matches can not = 0 
            loop.start<-1                                           # creates a val that can be 
updated, avoiding the need to re-match values as matches grows 
            while (length(matches)!=length(old.matches)){           # loops as long as new matches 
are being added on. 
              old.matches<-matches                                  # after above test, matches 
becomes the old.matches, as matches is updated subsequently 
               
              for (j in loop.start:length(matches)){                # start with 1, unless updated 
(see below) - avoids re-match values as matches grows    
                matches<-append(matches,(which(                     # performs self-matching using 
mz and rt on newly associated features to grow herd 
                  dataset[matches[j],"mz"]>lowerbounds.mz & dataset[matches[j],"mz"]<upperbounds.mz 
& 
                  dataset[matches[j],"rt"]>lowerbounds.rt & dataset[matches[j],"rt"]<upperbounds.rt  
                )))   
                loop.start<-loop.start+1                            # updates starting value in for 
loop with each value matched                            
              }                 
              matches<-matches[!duplicated(matches)]                # updates "matches" by removing 
duplicate values   
            } 
          } else herd.ID[i]<-0                                      # enters a 0 value as herd.ID 
for things that are unique within the dataset 
           
          if (length(matches)==1) next                              # skips rest of loop if dataset 
feature was self-unique.        
          herd.ID[matches]<-herd.val                                # enters a unique herd.ID 
number for all associated features 
          herd.val<-herd.val+1                                      # goes to the next herd.val   
    }       
     
    return(herd.ID) 
  } 
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  candidate.herd.ID<-herder(candidate, lower.mz.c.dbl, upper.mz.c.dbl, lower.rt.c.dbl, 
upper.rt.c.dbl) 
  template.herd.ID<-herder(template, lower.mz.t.dbl, upper.mz.t.dbl, lower.rt.t.dbl, 
upper.rt.t.dbl) 
          
### Plot template features after self-matching 
     
    cluster.count <- table(template.herd.ID)[-1]                    # Stores the number of features 
in each cluster (except for cluster = 0) as a table. 
 
  ### only TEMPLATE features which are in clusters.  colored (and alpha) by size of cluster (number 
of participants). 
    
    plot.x <- template[(which(template.herd.ID!=0)),"rt"] 
    plot.y <-template[(which(template.herd.ID!=0)),"mz"]   
    plot.z <- as.numeric(cluster.count[template.herd.ID])           # reports the cluster size for 
each clustered feature in the template dataset.    
    plot.a <-template[(which(template.herd.ID!=0)),"into"]   
       
    plot.df<-as.data.frame(cbind(plot.x, plot.y, plot.z, plot.a)) 
     
  ### only TEMPLATE features which are NOT in clusters.     
     
    plot2.x <- template[(which(template.herd.ID==0)),"rt"] 
    plot2.y <-template[(which(template.herd.ID==0)),"mz"]   
    plot2.a <-template[(which(template.herd.ID==0)),"into"]   
       
    plot2.df<-as.data.frame(cbind(plot2.x, plot2.y, plot2.a)) 
   
  ### create scatter plot 
     
     p <- ggplot(plot.df, aes(plot.x, plot.y, label=NULL)) +       
              geom_point(data=plot2.df, aes(plot2.x, plot2.y, alpha=.5)) +     #  plots template 
features NOT in clusters (on bottom layer) 
              #geom_point(aes(alpha=plot.z, colour = log(plot.z))) +             # alpha related to 
cluster size, highlighting larger clusters more 
              geom_point(aes(alpha=.5, colour = log(plot.z))) +             # plots template 
features in clusters (on top layer).  Note the log of the  
              scale_colour_gradientn(colours = c("yellow","orange","blue"), name = "log(cluster 
size)") + 
              #scale_x_continuous(limits=c(5, 5.8), breaks=seq(5, 5.8, .2)) +     
              #scale_y_continuous(limits=c(310.199, 310.203), breaks=seq(310.199, 310.203, 0.001)) 
+ 
              labs(y = "m/z", x = "retention time (seconds)", title = "Template feature clusters") 
+ 
              theme_bw() 
               
     ggsave(p,filename=as.character(paste(as.character(run.order[sample.count,]), 
"TemplateFeatClusters.pdf", sep = "_")), width = 14, height = 9, units = "in") # ID will be the 
unique identifier. and change the extension from .png to whatever you like (eps, pdf etc). 
           
    
   
    
    
if (detailed.plotting==T) { 
    
    
   clusters.per.cluster.size <- NULL 
   features.per.cluster.size <- NULL 
    
   for (i in 1:(max(cluster.count))){ 
    features.per.cluster.size <- 
append(features.per.cluster.size,(sum(as.numeric(cluster.count[template.herd.ID])==i))) 
    clusters.per.cluster.size <- append(clusters.per.cluster.size, (sum(cluster.count==i))) 
    
   } 
    
   cluster.tally <- as.data.frame(cbind((1:(max(cluster.count))), (clusters.per.cluster.size), 
(features.per.cluster.size))) 
   colnames(cluster.tally) <- c("size","clusters","features") 
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   ggplot(cluster.tally) +  
    #geom_bar(stat="identity", aes(x=size, y=clusters)) +  
    geom_bar(stat="identity", aes(x=size, y=features)) + 
    theme_bw() 
    
  # percentage of dataset features that are in clusters of 10 or more.   
  (sum(cluster.tally[(10:(nrow(cluster.tally))),"features"]) )/(nrow(template))*100 
  # cluster numbers of clusters with 10 or more features 
  as.numeric(which(cluster.count>=10)) 
    

 
### EIC and scatter plotting for all template clusters 
 
  # controls the EIC window of m/z variance for plotting only 
    ppm <- 60                                                       # m/z window oriented around 
each feature in the cluster.  this should reflect the value used in centWave peak picking 
      ppm.error <- ((ppm/1000000)*(template[,"mz"])) 
      upper.mz.t.ppm<-(template[,"mz"])+(ppm.error/2) 
      lower.mz.t.ppm<-(template[,"mz"])-(ppm.error/2) 
     
  # controls the window of RT variance for plotting only   
    RT.window <- 60                                                 # RT window oriented around 
each feature in the cluster 
      upper.rt.display <- (template[,"rt"])+(RT.window/2) 
      lower.rt.display <- (template[,"rt"])-(RT.window/2) 
 
   
  for (i in 1:length(cluster.count)){                               # for every cluster 
  #for (i in (as.numeric(which(cluster.count>=10)))){               # for clusters of size >= 10 
   
       
    # actual feature values in the cluster 
    mz.cluster.val <- template[(which(template.herd.ID==i)),"mz"]   # m/z values from all features 
in cluster i  
    rt.cluster.val <- template[(which(template.herd.ID==i)),"rt"]   # RT values from all features 
in cluster i 
    it.cluster.val <- template[(which(template.herd.ID==i)),"into"] # IT values from all features 
in cluster i 
     
     
    # cluster bounds (derived from the original matching error window) 
    mz.cluster.min <- lower.mz.t.dbl[which(template.herd.ID==i)]    # lower m/z bounds, defined in 
self-matching, of all features in cluster i 
    mz.cluster.max <- upper.mz.t.dbl[which(template.herd.ID==i)]    # upper m/z bounds, defined in 
self-matching, of all features in cluster i     
    rt.cluster.min <- lower.rt.t.dbl[which(template.herd.ID==i)]    # lower m/z bounds, defined in 
self-matching, of all features in cluster i 
    rt.cluster.max <- upper.rt.t.dbl[which(template.herd.ID==i)]    # upper m/z bounds, defined in 
self-matching, of all features in cluster i 
     
    # display bounds (derived from the stated ppm/RT error window for visualisation) 
    mz.display.min <- lower.mz.t.ppm[which(template.herd.ID==i)]    # lower m/z bounds with centre-
oriented 30ppm window of all features in cluster i 
    mz.display.max <- upper.mz.t.ppm[which(template.herd.ID==i)]    # upper m/z bounds with centre-
oriented 30ppm window of all features in cluster i  
    rt.display.min <- lower.rt.display[which(template.herd.ID==i)]  # lower m/z bounds with centre-
oriented 30ppm window of all features in cluster i 
    rt.display.max <- upper.rt.display[which(template.herd.ID==i)]  # upper m/z bounds with centre-
oriented 30ppm window of all features in cluster i      
 
    # cluster limits based on feature bounds 
    cluster.bounds.mz.high <- max(mz.cluster.max)    
    cluster.bounds.mz.low <- min(mz.cluster.min) 
    cluster.bounds.rt.high <- max(rt.cluster.max) 
    cluster.bounds.rt.low <- min(rt.cluster.min) 
     
    # display limits based on feature bounds 
    display.bounds.mz.high <- max(mz.display.max)    
    display.bounds.mz.low <- min(mz.display.min) 
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    display.bounds.rt.high <- max(rt.display.max) 
    display.bounds.rt.low <- min(rt.display.min) 
 
    # create EICs for each feature in cluster i 
      eics <- NULL                                                  # place holder for reporting 
eic intensity values (1 row = 1 feature's eic intensity values)    
      for (j in 1:cluster.count[i]){                                # for every feature in cluster 
i... 
        eic <- rawEIC(first.sample,mz=c(mz.display.min[j], mz.display.max[j]))    # extracts eic 
for feature j in cluster i using the display window for EIC 
        eics<-rbind(eics, eic$intensity)                            # appends intensity values as 
new row to eics. 
      }  
      eics.m <- melt(eics)                                          # reshapes the matrix to be 
ggplot2 friendly 
      colnames(eics.m) <- c("feature", "scan", "intensity")         # renames columns to 
appropriate meaning  
      r.time <-first.sample@scantime[eics.m[,"scan"]]               # creates scan-to-time 
conversion  
      eics.m <- cbind(eics.m, r.time)                               # appends scan-to-time 
conversion to eics data-frame   
     
    # finds the maximum EIC intensity value in the display area 
      max.win.it <- max(eics.m[(which(((eics.m[,"r.time"])>cluster.bounds.rt.low) & 
((eics.m[,"r.time"])<(cluster.bounds.rt.high)))),"intensity"])   
   
    # extracts the RT of all features that are within the display RT window and within the selected 
m/z range  
      foo <- which((template[,"rt"]>(display.bounds.rt.low)) & 
(template[,"rt"]<(display.bounds.rt.high)) & ((template[,"mz"]>(display.bounds.mz.low))) & 
((template[,"mz"]<(display.bounds.mz.high))))  
      others.rts <- template[(foo),"rt"] 
      others.mzs <- template[(foo),"mz"] 
      others.its <- template[(foo),"into"] 
 
     
    # EIC (template) 
     
     cluster.eic <- ggplot(eics.m, aes(r.time, intensity, color=feature)) + 
                      annotate("rect", xmin = cluster.bounds.rt.low, xmax = cluster.bounds.rt.high, 
ymin=-Inf, ymax=Inf, alpha = 0.05, fill = "blue") +     # blocks out cluster RT bounds 
                      geom_line() +          
                      scale_colour_gradient(low="orange", high="black") +           
                      geom_vline(xintercept = c(others.rts), alpha=.5, colour="red", linetype = 
"longdash") + # displays all features detected in plotting view 
                      geom_vline(xintercept = c(rt.cluster.val), alpha=1, colour="blue", linetype = 
"solid") + # places a sold line over dashed ones for clustered features 
                      
scale_x_continuous(limits=c((display.bounds.rt.low),(display.bounds.rt.high))) + 
                      scale_y_continuous(limits=c(0, max.win.it)) + 
                      labs(y = "Intensity", x = "Retention Time (seconds)", title = 
as.character(paste("Reconstructed-ion chromatogram of all features in cluster",i, "\n mean cluster 
m/z =", (round(mean(mz.cluster.val),4)), sep=" "))) + 
                      theme_bw() 
     cluster.eic 
   
     ggsave(cluster.eic,filename=as.character(paste("Cluster", i, "EIC.pdf", sep = "_")), width = 
14, height = 9, units = "in") # ID will be the unique identifier. and change the extension from 
.png to whatever you like (eps, pdf etc). 
   
 
  ### create scatter plot     
     cluster.plot <- as.data.frame(cbind(mz.cluster.val, rt.cluster.val, it.cluster.val))  
     display.plot <- as.data.frame(cbind(others.mzs, others.rts, others.its))  
    
     cluster.scatter <- ggplot(cluster.plot, aes(rt.cluster.val, mz.cluster.val, label=NULL)) + 
                          geom_rect(xmin = cluster.bounds.rt.low, xmax = cluster.bounds.rt.high, 
ymin = cluster.bounds.mz.low, ymax = cluster.bounds.mz.high, alpha = 0.05, fill = "blue") +     # 
blocks out cluster RT bounds 
                          #annotate("rect", xmin = cluster.bounds.rt.low, xmax = 
cluster.bounds.rt.high, ymin = 229.1540, ymax= 229.1604, alpha = 0.05, fill = "blue") +  
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                          geom_point(data = display.plot, aes(others.rts, others.mzs, alpha = 1 
),colour = "red") +  
                          geom_point(aes(alpha = 1),colour = "blue") +             # plots template 
features in clusters (on top layer).  Note the log of the  
                          
scale_x_continuous(limits=c((display.bounds.rt.low),(display.bounds.rt.high))) + 
                          scale_y_continuous(limits=c(display.bounds.mz.low, 
display.bounds.mz.high)) + 
                          labs(y = "m/z", x = "Retention time (seconds)", title = 
as.character(paste("2D scatter plot of all features in cluster",i, sep=" "))) + 
                          theme_bw() 
     cluster.scatter 
 
     ggsave(cluster.scatter,filename=as.character(paste("Cluster", i, "Scatter.pdf", sep = "_")), 
width = 14, height = 3, units = "in") # ID will be the unique identifier. and change the extension 
from .png to whatever you like (eps, pdf etc). 
  } 
   
  } else NULL 
 
  #first.sample@env$profile 
 
######################################################################################## 
######################################################################################## 
#######----set boundaries and create template bins for inter-sample matching----########  
 
# calculates upper and lower limits for cross-matching  
   
  upper.mz<-(template[,"mz"])+half.mz.win     
  lower.mz<-(template[,"mz"])-half.mz.win    
   
  upper.rt<-(template[,"rt"])+half.rt.win     
  lower.rt<-(template[,"rt"])-half.rt.win     
   
######################################################################################## 
######################################################################################## 
####################----INTER-sample matching----####################  
 
# Match candidates to bins, creating pairwise connections.   
 
# input = template, candidate, lower.mz, upper.mz, lower.rt, upper.rt 
 
  matchcount<-rep(NA, nrow(candidate))                              # seeds a vector containing the 
# of template bins matched by the candidate 
  bins.matched<-vector("list", nrow(candidate))                     # list of lists, each 
containing the ID's of template bins matched by the candidate 
   
  bincount<-rep(NA, nrow(template))     
  bins<-vector("list", nrow(template))                              # creates bins (lists) into 
which candidate matches may be collected 
   
  for (i in 1:nrow(candidate)){                                     # for every candidate 
feature... 
       
      #i=1570 # no matches 
      #i=255  # 1 match only 
      #i=1901 # multiple matches 
         
        # matches candidates, one by one, into all bins. 
          matches<-which(                                                   # "matches" are 
template bin #s.  (i is the candidate feature #)    
            candidate[i,"mz"]>lower.mz & candidate[i,"mz"]<upper.mz &       # candidate feature 
must fall within mz bin 
            candidate[i,"rt"]>lower.rt & candidate[i,"rt"]<upper.rt         # candidate feature 
must ALSO fall within RT bin 
          ) 

         
        # record info on # and ID of template bins matched by the candidate 
          # matchcount: 0  = no matches in the template; 1 = unique match to template bin; >1= 
multiple bins matched 
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          matchcount[i]<-length(matches)             # # of template bins that do contain the 
candidate feature 
          bins.matched[[i]]<-matches                 # stores ID's of all template bins that the 
candidate feature fall into 
           
        if (length(matches)==0) next else NULL       # if there are no matches, then skip to next 
candidate.  Nothing to place in bins.   
         
        # record info on how many/which candidates are falling into each bins     
          for (m in 1:length(matches)){              # for every match (template bin) listed... 
            bins[[matches[m]]]<-append(bins[[matches[m]]], i)        # append (to not overwrite) 
candidate IDs (i) into all matched bins.     
          } 
  } 
   
  # if candidate falls into  0 template bins, it is unmatched and will need to be appended to the 
master.ID list as a new entry. 
    #orphans<-which(matchcount==0)       # candidate ID's that do not match any template bins 
     
  # counts number of candidate features in each bin 
    for (i in 1:length(bins)){ 
        bincount[i]<-length(bins[[i]]) 
    } 
     
### PLOTTING 
 
#Candidate matches to template bins 
 
matchcount.type <- matchcount 
matchcount.type[which(matchcount==0)] <- "No matches"   
matchcount.type[which(matchcount==1)] <- "Single match"   
matchcount.type[which(matchcount>1)] <- "Multiple matches"   
 
matchcount.df <-as.data.frame(cbind(matchcount, matchcount.type)) 
 
p <- ggplot(data = matchcount.df, aes(factor(matchcount.type))) +  
      geom_bar(width=.8, fill="#707070") +  
      #coord_polar(theta="y") + 
      coord_flip() + 
      #ggtitle("Template bins matched by candidate features") + 
      theme(panel.grid.major.y = element_blank(),  
          panel.grid.minor.y = element_blank(),  
          panel.grid.major.x = element_line(colour="#909090"), 
          panel.grid.minor.x = element_line(colour="#909090", linetype = "dotted"), 
          panel.background = element_rect(fill = "white"), 
          axis.ticks = element_blank(),  
          axis.title.x = element_blank(),  
          axis.title.y = element_blank(), 
          axis.text.y = element_text(size=14)) 
       
ggsave(p,filename=as.character(paste(as.character(run.order[sample.count,]), 
"CandidateFeatureMatches.pdf", sep = "_")), width = 7, height = 2, units = "in") 
                                                          
#Template matches to candidate features 
 
bincount.type <- bincount 
bincount.type[which(bincount==0)] <- "No matches"   
bincount.type[which(bincount==1)] <- "Single match"   
bincount.type[which(bincount>1)] <- "Multiple matches"   
 
bincount.df <-as.data.frame(cbind(bincount, bincount.type)) 
 
p <- ggplot(data = bincount.df, aes(factor(bincount.type))) +  
      geom_bar(width=.8, fill="#707070") +  
      #coord_polar(theta="y") + 
      coord_flip() + 
      #ggtitle("Template bins matched by candidate features") + 
      theme(panel.grid.major.y = element_blank(),  
          panel.grid.minor.y = element_blank(),  
          panel.grid.major.x = element_line(colour="#909090"), 
          panel.grid.minor.x = element_line(colour="#909090", linetype = "dotted"), 
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          panel.background = element_rect(fill = "white"), 
          axis.ticks = element_blank(),  
          axis.title.x = element_blank(),  
          axis.title.y = element_blank(), 
          axis.text.y = element_text(size=14)) 
       
ggsave(p,filename=as.character(paste(as.character(run.order[sample.count,]), 
"TemplateFeatureMatches.pdf", sep = "_")), width = 7, height = 2, units = "in") 
 
 
 
matchcount.return <- NULL 
 
for (i in 1:length(matchcount)){ 
  if (matchcount[i]==1) { 
    matchcount.return <- append(matchcount.return, (bincount[bins.matched[[i]]])) 
  } else NULL 
} 
 
(sum(matchcount.return==1)/length(matchcount.return))*100 # number of single matches that are 
returned as signle matches (mutual) 
          
 
######################################################################################## 
######################################################################################## 
#############################----DEFINE COMMUNITIES...----##############################    
 
### COMMUNITY FUNCTIONS 
#1 
# takes a set of features (ie. candidate), pulls their herd designations, and appends other 
(candidate) features from those herds. 
extend.features <- function(herd.ID, features){ 
  #herd.ID = candidate.herd.ID 
  #features = compile.candidates 
   
  bar<-herd.ID[features]                       # returns the (ie. CANDIDATE) herd id's of matched 
(ie. candidate) features   
  bar<-bar[!duplicated(bar)]                   # removes redundancy from the candidate herd list    
  bar<-bar[which(bar>0)]                       # removes herd=0 herds 
   
  if (length(bar)==0) (extended.features<-features) else NULL   # if bar is zero, the candidates 
must be of herd=0.  Therefore, there is no extension by herd, and extended.candidates is just the 
compiled candidates list as before 
     
  if (length(bar)==1) (extended.features<-which(herd.ID==bar)) else NULL # if all candidates are of 
a single herd, then find all candidates from that herd only. 
   
  if (length(bar)>1) extended.features<-NULL else NULL 
  if (length(bar)>1) (for (r in 1:length(bar)){                          # if candidates are of 
multiple herds, compile each herd's features iterativly.  excludes herd=0 
     (extended.features<-append(extended.features, which(herd.ID==bar[r])))      # redundancy is 
solved in a following step below 
  }) else NULL 
   
  # in any case where bar!=0, the original compile.candidates list is appended to the extended list 
in case herd=0 candidates were removed. 
  if (length(bar)!=0) (extended.features<-append(extended.features, features)) else NULL   
  if (length(bar)!=0) (extended.features<-extended.features[!duplicated(extended.features)]) else 
NULL        #  List redundancy is again reduced (also important for step above). 
   
  return(extended.features) 
} 
 
#2 
# gathers all features matched to the feature subset (ie. returns candidate features matching 
template feature input)  
compile.features <- function(feature.subset, match.list){ 
 
  #foo =  feature.subset 
  #bins = matchlist 
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  reporter<-0                                            # seeds reporting vector for appending 
results 
  for (f in 1:length(feature.subset)){                   # repeat for every template ID belonging 
to the selected TEMPLATE herd.   
      reporter<-append(reporter, match.list[[feature.subset[f]]])   # compile all candidate matches 
belonging to all template bins in the selected TEMPLATE herd 
  }  
  reporter<-reporter[-1]                                 # unseeds vector 
  reporter<-reporter[!duplicated(reporter)]              #remove redundant candidates from compiled 
list 
   
  #compile.candidates = reporter 
  return(reporter) 
} 
 
###/ COMMUNITY FUNCTIONS 
 
# assign a community ID to all associated features in both template and candidate lists.  community 
ID is shared between datasets.   
  template.community.ID<-rep(NA, nrow(template))         # creates reporting vector (position = 
template feature) for communiy groups 
  candidate.community.ID<-rep(NA, nrow(candidate))       # creates reporting vector (position = 
candidate feature) for communiy groups 
 
  community.val<-1                                       # sets the first community value to 1.  
updated at end of the following for loop.                   
 
  for (i in 1:max(template.herd.ID)){                    # loop sequentially for each herd, 
starting at 1 so no need to worry about 0 herd val.              
      #i=1 # all bins contain 0 matches 
      #i=10 # bins all contain unique matches.                     
      #i=1940 #  herd has 44 template members  
      #i= XXXX mixed herd (including 0) example needed 
     
    # skip herd if already assigned to a community. 
    if ((length(na.omit(template.community.ID[which(template.herd.ID==i)]))!=0) & 
((sum(is.na(template.community.ID[which(template.herd.ID==i)]))>0))) print("WARNING") else NULL 
    if (length(na.omit(template.community.ID[which(template.herd.ID==i)]))!=0) next else NULL 
      
    feature.subset<-which(template.herd.ID==i)         # gives template ID's that belong to the 
selected TEMPLATE herd 
     
    # 1) finds all candidates which match all feature.subset template bins. 
    # 2) extends candidates to all those in herds of bin-matched candidates from #1.   
    # 3) finds all template bins which match all candidates from #2 
    # 4) extends template bins to all those in herds of candidate-matched bins from #3 (necessary 
to extend here because each loop starts with a single template herd) 
    # 5) tests to see if # of template bins has grown in the last 4 steps.  If not, breaks loop.  
If so, repeats from 1 after updating feature.subset.    
    repeat{                                                                
      compiled.candidates<-compile.features(feature.subset, bins)         # returns all candidate 
features matching all template bins in template herd i 
      if (length(compiled.candidates)==0) break else NULL                 # if all template bins in 
the template herd are matchless, break the repeat 
       
      # extends the candidate feature subset to all those associated with a herd of the 
compile.candidates set. 
      extended.candidates<-extend.features(candidate.herd.ID, compiled.candidates)   
       
      #candidate[extended.candidates,] 
       
      compiled.bins<-compile.features(extended.candidates, bins.matched)  # returns all template 
bins matching all candidate features across involved candidate herds (above) 
       
      compiled.bins<-(append(feature.subset, compiled.bins))              # in case any original 
template features were lost from the new list.  not sure this is necessary. 
      compiled.bins<-compiled.bins[!duplicated(compiled.bins)]            #remove redundancy 
       
      extended.bins<-extend.features(template.herd.ID, compiled.bins)     # extends the template 
bins to all those associated with the herd(s) of the compile.bins set. 
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      # update plot as features are added???   
       
      # if extended bin list has the same # of bins as the original feature subset, it is not 
growing.  Repeat can be broken.  If it grows, update feature.subset and repeat.  
      if (length(feature.subset)==length(extended.bins)) break else (feature.subset<-extended.bins) 
    } 
     
    if (length(compiled.candidates)==0) next else NULL                   # if all template bins in 
the template herd are matchless, skip to next herd (continued from above) 
     
    # checks that all features values are the same.  This should always be true - havn't found a 
counter example yet.   
    if (sum((sort(feature.subset, decreasing = FALSE))==(sort(extended.bins, decreasing = 
FALSE)))!=length(feature.subset)) print("mismatch in features....") else NULL  
     
     
    if ((sum(na.omit(template.community.ID[extended.bins])))!=0) print("overwriting") else NULL  # 
checks the candidate.community.ID slots to ensure they're empty... 
    template.community.ID[extended.bins]<-community.val                   # stores community ID in 
template community list 
    if ((sum(na.omit(candidate.community.ID[extended.candidates])))!=0) print("overwriting") else 
NULL  # checks the template.community.ID slots to ensure they're empty... 
    candidate.community.ID[extended.candidates]<-community.val            # stores community ID in 
candidate community list 
    community.val<-community.val+1                                        # update community.val 
     
  } 
 
  # basic check to make sure that max number of community values reported to candidate and template 
match 
    if (max(na.omit(template.community.ID))==max(na.omit(candidate.community.ID))) NULL else 
print("WARNING: max community values mismatch") 
 
  # output = template.community.ID and candidate.community.ID 
 
######################################################################################## 
######################################################################################## 
##############----resolving free herds from the candidate list----###################### 
 
# herd=0 template bins may still match candidate features with herd designations.  Those candidates 
may in turn match template features, but those must (?) also be herd=0 or the community would have 
been picked up in the first place.  Such "closed systems" go undetected by the method above.  Needs 
to be fixed.   
 
# all herds (template or candidate) with at least one cross match (to template/candidate) need to 
be counted as a community. 
# thus a communty is defined as a series of features with at least one self match (in EITHER 
template/candidate datasets) and at least one cross match.   
# all template herds have been taken care of above, in order.  
# here, the remaining candidate herds not assigned to communities are inspected for potential 
community building in a process that is the mirror image to above.   
 
# to inspect candidate herds NOT a part of any community:  
  
# candidates with a herd designation ==1 
#as.numeric(candidate.herd.ID!=0) 
# candidates withOUT a community designation = 1 
#as.numeric(is.na(candidate.community.ID)) 
 
#((as.numeric(candidate.herd.ID!=0))+(as.numeric(is.na(candidate.community.ID)))) 
 
#0 = herd=0, but with community.  Must have been a dead-end match to a herded template feature. 
#1= herd=0, without community OR with herd, with community.  Independent or community-based.   
#2 = with herd, without community. This is what we want to investigate. 
   #Only OK if all features in the herd have 0 matches to template features. 
   wHwoC.can<-
which((((as.numeric(candidate.herd.ID!=0))+(as.numeric(is.na(candidate.community.ID)))))==2)  # 
candidate features that have a herd but no community. 
    
   free.herds.can<-candidate.herd.ID[wHwoC.can]                           # candidate herds which 
have NO community associated.   
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   # candidate.community.ID[lost.can]                                     # just checking that the 
above line is true... 
   free.herds.can<-free.herds.can[!duplicated(free.herds.can)]            # removes duplicates 
called by multiple candidate features in the same herd.  
    
   # note that community.val is already primed from the previous step.   
    
   for (i in 1:length(free.herds.can)){             # for each herd in the free herds list.  Note 
that from the implementation above, "i" becomes "free.herds.can[i]" 
 
     
    # skip herd if already assigned to a community. 
    if ((length(na.omit(candidate.community.ID[which(candidate.herd.ID==free.herds.can[i])]))!=0) & 
((sum(is.na(candidate.community.ID[which(candidate.herd.ID==free.herds.can[i])]))>0))) 
print("WARNING") else NULL 
    if (length(na.omit(candidate.community.ID[which(candidate.herd.ID==free.herds.can[i])]))!=0) 
next else NULL 
      
    feature.subset<-which(candidate.herd.ID==free.herds.can[i])         # gives candidate ID's that 
belong to the selected CANDIDATE herd 
     
    # 1) finds all template features which match all feature.subset candidate features 
    # 2) extends template features to all those in herds of candidate-matched template features 
from #1.   
    # 3) finds all candidate features which match all template features from #2 
    # 4) extends candidate features to all those in herds of template-matched features from #3 
(necessary to extend here because each loop starts with a single candidate herd) 
    # 5) tests to see if # of candidate features has grown in the last 4 steps.  If not, breaks 
loop.  If so, repeats from 1 after updating feature.subset.    
    repeat{                                                                
      compiled.templates<-compile.features(feature.subset, bins.matched)         # returns all 
template features matching all candidate features in candidate herd free.herds.can[i] 
      if (length(compiled.templates)==0) break else NULL                 # if all template bins in 
the template herd are matchless, break the repeat 
       
      # extends the template feature subset to all those associated with a herd of the 
compile.templates set. 
      extended.templates<-extend.features(template.herd.ID, compiled.templates)   
       
      #candidate[extended.candidates,] 
       
      compiled.cans<-compile.features(extended.templates, bins)  # returns all template bins 
matching all candidate features across involved candidate herds (above) 
       
      compiled.cans<-(append(feature.subset, compiled.cans))               
      compiled.cans<-compiled.cans[!duplicated(compiled.cans)]             
       
      extended.cans<-extend.features(candidate.herd.ID, compiled.cans)     # extends the candidate 
features to all those associated with the herd(s) of the compile.cans set. 
 
      # update plot as features are added???   
       
      # if extended candidate list has the same # of candidates as the original feature subset, it 
is not growing.  Repeat can be broken.  If it grows, update feature.subset and repeat.  
      if (length(feature.subset)==length(extended.cans)) break else (feature.subset<-extended.cans) 
    } 
     
    if (length(compiled.templates)==0) next else NULL                   # if all candidate features 
in the candidate herd are matchless, skip to next herd (continued from above) 
     
    # checks that all features values are the same.  This should always be true - havn't found a 
counter example yet.   
    if (sum((sort(feature.subset, decreasing = FALSE))==(sort(extended.cans, decreasing = 
FALSE)))!=length(feature.subset)) print("mismatch in features....") else NULL  
     
    if ((sum(na.omit(candidate.community.ID[extended.cans])))!=0) print("overwriting") else NULL  # 
checks the candidate.community.ID slots to ensure they're empty... 
    candidate.community.ID[extended.cans]<-community.val                   # stores community ID in 
candidate community list 
    if ((sum(na.omit(template.community.ID[extended.templates])))!=0) print("overwriting") else 
NULL  # checks the template.community.ID slots to ensure they're empty... 
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    template.community.ID[extended.templates]<-community.val            # stores community ID in 
template community list 
    community.val<-community.val+1                                        # update community.val 
     
  } 
 
  # basic check to make sure that max number of community values reported to candidate and template 
match 
    if (max(na.omit(template.community.ID))==max(na.omit(candidate.community.ID))) NULL else 
print("WARNING: max community values mismatch") 
    
######################################################################################## 
######################################################################################## 
################################----PLOTTING BREAK!----#################################    
 
# for plotting, find feature cluster of interest (m/z = 310.202) 
 
foo<-as.data.frame(cbind((candidate[(which(candidate[,"mz"]>310.19 & 
candidate[,"mz"]<310.21)),"mz"]), 
      (candidate[(which(candidate[,"mz"]>310.19 & candidate[,"mz"]<310.21)),"rt"]/60), 
      ((candidate[(which(candidate[,"mz"]>310.19 & candidate[,"mz"]<310.21)),"into"])), 
      (candidate.community.ID[which(candidate[,"mz"]>310.19 & candidate[,"mz"]<310.21)]), 
      (which(candidate[,"mz"]>310.19 & candidate[,"mz"]<310.21)))) 
 
foo[(which(is.na(foo[,4]))),4]<-0 # sets NAs as 0's in community column to avoid problems with 
plotting 
 
foo<-(cbind(foo,(rep("C",nrow(foo))))) 
colnames(foo)<-c("mz","rt","intensity","community","featureID", "origin") 
 
bar<-as.data.frame(cbind((template[(which(template[,"mz"]>310.19 & template[,"mz"]<310.21)),"mz"]), 
      (template[(which(template[,"mz"]>310.19 & template[,"mz"]<310.21)),"rt"]/60), 
      ((template[(which(template[,"mz"]>310.19 & template[,"mz"]<310.21)),"into"])), 
      (template.community.ID[which(template[,"mz"]>310.19 & template[,"mz"]<310.21)]), 
      (which(template[,"mz"]>310.19 & template[,"mz"]<310.21)))) 
 
bar[(which(is.na(bar[,4]))),4]<-0 # sets NAs as 0's in community column to avoid problems with 
plotting 
 
bar<-(cbind(bar,(rep("T",nrow(bar))))) 
colnames(bar)<-c("mz","rt","intensity","community","featureID", "origin") 
 
pair<-rbind(foo, bar) 
plot.annotation<-paste(pair[,"origin"],"(",pair[,"featureID"],")", sep="") 
pair<-cbind(pair,plot.annotation)  
 
  p1 <- ggplot(pair, aes(rt, mz, label=plot.annotation)) 
  #p1 <- ggplot(pair, aes(rt, mz, label=community)) 
     
  p1<- p1 +  
    geom_point(aes(size = log(intensity), alpha=.1, colour = log(intensity)), xlim = c(5, 5.8), 
ylim = c(310, 311)) + 
    scale_colour_gradientn(colours = c("yellow","orange","blue")) + 
    geom_text(size=3.5, hjust=.5, vjust=1.7) + 
    #geom_text(size=3.5, hjust=-0.2, vjust=.3) + 
    scale_x_continuous(limits=c(5, 5.8), breaks=seq(5, 5.8, .2)) +     
    scale_y_continuous(limits=c(310.199, 310.203), breaks=seq(310.199, 310.203, 0.001)) + 
    labs(x = "Retention time (minutes)", y = "m/z") + 
    theme_bw() 
   
  ggsave(p1,filename="selectCommunity.pdf", width = 9, height = 4.5, units = "in") # ID will be the 
unique identifier. and change the extension from .png to whatever you like (eps, pdf etc).   
     
    # overlay EIC???? 
 
 
 
######################################################################################## 
######################################################################################## 
#######----community match scoring and linear micro-alignment----###########    
 



 Appendix 3  
 

 263 

template.matches<-rep(NA, nrow(template))       # creates a reporting vector for matches emerging 
from this loop.  Gets filled with candidate ID values. 
candidate.matches<-rep(NA, nrow(candidate))     # creates a reporting vector for matches emerging 
from this loop.  Gets filled with template ID values. 
 
match.tally.t<-NULL        # starts a tally of template features which have been definitivly 
matched (successfully or otherwise) 
match.tally.c<-NULL        # starts a tally of candidate features which have been definitivly 
matched (successfully or otherwise) 
 
for (g in 1:max(na.omit(c(candidate.community.ID, template.community.ID)))){   # loop for every 
community ID  
 
  # g=800     (SR 1 and 2)  
  # g=627  (SR 1 and 16... first and last from plate 1) 
 
  candidate.community<-which(candidate.community.ID==g)      # returns all candidates feature ID's 
that match the given community number 
  template.community<-which(template.community.ID==g)        # returns all template feature ID's 
that match the given community number 
   
  match.tally.t<-append(match.tally.t, template.community)   # notes that the template features in 
this community underwent a round of matching and are "spent" 
  match.tally.c<-append(match.tally.c, candidate.community)  # notes that the candidate features in 
this community underwent a round of matching and are "spent" 
 
  # returns the matching status of all features in the community, in matrix form (1=match, NA= no 
match) 
    match.matrix<-matrix(nrow=length(candidate.community), ncol=length(template.community))     # 
creates a matrix of NAs for palceholders.   
    for (i in 1:length(candidate.community)){ 
        match.matrix[i,(match(bins.matched[[candidate.community[i]]], template.community))]<-1  # 
places a 1 where a candidate feature matches a bin.  0 where it does not. 
    } 
    match.matrix 
 
 
  # function to calculate residual values between all candidate and template features in the 
community 
    get.residuals<- function(candidate.community, template.community, candidate.vals, data.type){ 
      scores<-matrix(nrow=length(candidate.community), ncol=length(template.community)) 
      for (i in 1:length(template.community)){                              # for each bin... 
          scores[,i]<-(template[template.community[i],data.type])-candidate.vals      # one 
template bin minus all candidates 
      } 
      scores<-abs(scores) 
      scores 
      return(scores) 
    } 
     
if (detailed.plotting==T){      
  # PLOTTING ONLY 
  # plotting of RT differences w/o alignment 
   
      foo.rt.scores<-get.residuals(candidate.community,                     # computes RT residuals 
for modulated candidate RT vals (against template vals)   
      template.community,  
      candidate.vals=(candidate[candidate.community,"rt"]),                 # original vals are 
explicitly called here      
      data.type="rt")   
       
      ### non-corrected RT scores 
      rt.scores.plot <- foo.rt.scores+0.0000001 # adding a small value avoids the occurance of -Inf 
return from log transformation of a zero residual 
      rownames(rt.scores.plot) <-candidate.community  
      colnames(rt.scores.plot) <-template.community   
     
      pheat.col <- colorRampPalette(c("white","yellow", "orange", "purple"))(100) 
      log.seq<-rev(1 * 1.1^(0:100)) 
      pheat.breaks<-(max(rt.scores.plot)/log.seq) 
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      pheatmap((rt.scores.plot),  
        color=pheat.col, 
        breaks=pheat.breaks, 
        cluster_rows=F,  
        cluster_cols=F,  
        scale="none",  
        show_rownames=T,  
        show_colnames=T,  
        main="Residual RT",  
        display_numbers=T, 
        fontsize=16, 
        number_format="%.2f")  
} else NULL         
   
     
 
  # COMMUNITY-BASED MICRO-ALIGNMENT 
  # This approach evaluates the total* RT residual for all candidates in the community (* total = 
sum of minimum values for each candidate) 
  # Move all candidate RT's by a set fraction of the original RT window 
  # Find new minima (minima may change as new features match better) 
  # Sum all new minima 
  # Iterate this process for each modulation of the RT values, and look for a minimum value in the 
sum of each, indicating best overall fit for the community     
  if (length(candidate.community)>1 & length(template.community)>1) {       # miro-align only if 
there are >1 template and candidate features in the community. 
   
    #modulation<-seq(from = -(half.rt.win), to = half.rt.win, by =.1)        # calls on original rt 
error wondow to define bounds, and sets steps for modulation of RTs   ORIGINAL VALUE 
    modulation<-seq(from = -(2*half.rt.win), to = 2*half.rt.win, by =.1)        # calls on original 
rt error wondow to define bounds, and sets steps for modulation of RTs   THESIS VISUALISATION 
    min.val.sum<-NULL                                                       # creates reporting 
vector 
    min.bin.matrix<-NULL                                                    # creates reporting 
vector 
     
    for (i in 1:length(modulation)){                                        # for every set step in 
modulating candidate RT's... 
     
      mod.rt.vals<-(candidate[candidate.community,"rt"])+modulation[i]      # ... modulates 
candidate RT values 
       
      mod.rt.scores<-get.residuals(candidate.community,                     # computes RT residuals 
for modulated candidate RT vals (against template vals)   
      template.community,  
      candidate.vals=mod.rt.vals,                                           # modulated vals are 
explicitly called here      
      data.type="rt")   
       
    # computes the minimum residual value for each candidate (each matrix row)   
      min.val<-NULL                                                         # creates reporting 
vector for all candidate minimum values 
      min.bin<-NULL                                                         # creates reporting 
vector for template bins corresponding to minimum values 
      for (s in 1:nrow(mod.rt.scores)){                                     # For every candidate 
(matrix row)... 
        min.val<-append(min.val, min(mod.rt.scores[s,]))                    # ...report the minimum 
residual value... 
        min.bin<-append(min.bin, which.min(mod.rt.scores[s,]) )             # ... and the template 
bin corresponding to that minimimum value. 
      }  
     
      min.val.sum<-append(min.val.sum, sum(min.val))                        # sums the minimum 
values of all candidates, and appends it to this vector.   
      min.bin.matrix<-rbind(min.bin.matrix, min.bin)                        # corresponding 
candidate to template matching patterns that produced the above min.val.sum minima. 
    } 
     
    rownames(min.bin.matrix) <- modulation                                  # renames the 
min.bin.matrix rows with the values used in RT modulation 
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    if (detailed.plotting==T){   
      # plots the modulation value (added to candidate RT) vs. the sum of all minimum residuals 
across all candidates   
      
        modulation.plot.vals <- as.data.frame(cbind(modulation, min.val.sum)) 
        modulation.plot <- ggplot(modulation.plot.vals, aes(x=modulation, y=min.val.sum)) +  
                             geom_point() +  
                             geom_line() +  
                             scale_x_continuous(breaks=seq((min(modulation)), (max(modulation)), 
0.5)) + 
                             labs(x = "Candidate cluster adjustment (seconds)", y = "Sum of minimum 
residuals (seconds) ") + 
                             theme_bw() 
           
        ggsave(modulation.plot,filename=as.character(paste("Community", g, "alignment.pdf", sep = 
"_")), width = 14, height = 9, units = "in")  
         
        #  plot template community eic in blue, corrected eic in black, and uncorrected eic in 
transparent grey.  
       
    } else NULL   
     
    # if there are two or more minima, choose the one originating from the least modulation to the 
candidate dataset.  
    if (length(modulation[which.min(min.val.sum)])>1) print("two minimum values in candidate RT 
modulation.") else NULL 
    # min(abs(modulation[which.min(min.val.sum)])) #this picks the right one, but looses the sign.  
have to fix this.... 
     
    rt.correction<-modulation[which.min(min.val.sum)]                       # reports the 
correction value that was added to all community candidate rt's to achieve optimal RT match.  
       
    best.community.match<-min.bin.matrix[(which.min(min.val.sum)),]         # reports the matching 
structure (position=candate, value = template) that produced the optimal RT match.   
     
  } else NULL 
   
  # if either candidate or template have only 1 feature... 
  if (length(candidate.community)==1 | length(template.community)==1) {      
   
    # runs function to return residual values for the candidate/template feature matrix.   
    rt.scores<-get.residuals(candidate.community,  
      template.community,  
      candidate.vals=(candidate[candidate.community,"rt"]),                 # specifies the 
candidate values to be matched (explicit so they can be later modulated)      
      data.type="rt")                                                       # sets the data type in 
the template that candidate.vals are up against       
   
  } else NULL 
 
  # if both candidate and template have more than 1 feature... 
  if (length(candidate.community)>1 & length(template.community)>1) {        
    # FROM ABOVE: RE-runs RT scoring function with aligned retention time..   
    rt.scores<-get.residuals(candidate.community,  
      template.community,  
      candidate.vals=((candidate[candidate.community,"rt"])+rt.correction), # note that these are 
modified as determined to be optimal above in alignment.    
      #candidate.vals=(candidate[candidate.community,"rt"]),                # use this instead to 
see unaligned results. ie. for dev comparison, plotting, etc.   
      data.type="rt")    
       
  } else NULL 
 
  # mz scores must be kept because in rare cases, it is used to resolve best matches where both rt 
and it are identical 
  # runs function to return residual values for the candidate/template feature matrix.   
  mz.scores<-get.residuals(candidate.community,  
    template.community,  
    candidate.vals=(candidate[candidate.community,"mz"]),                   # specifies the 
candidate values to be matched (explicit so they can be later modulated)      
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    data.type="mz")                                                         # sets the data type in 
the template that candidate.vals are up against  
 
  # IT (log) residuals  
  it.scores<-matrix(nrow=length(candidate.community), ncol=length(template.community)) 
  for (i in 1:length(template.community)){               # for each bin... 
      it.scores[,i]<-(log(template[template.community[i],"into"]))-
(log(candidate[candidate.community,"into"]))      # one template bin minus all candidates 
  } 
  it.scores<-abs(it.scores) 
 
if (detailed.plotting==T){   
  ### PLOTTING (requires "pheatmap" package) 
    # original matches  
   
      match.matrix.plot<-match.matrix 
      match.matrix.plot[is.na(match.matrix.plot)]<-0 
        rownames(match.matrix.plot) <-candidate.community  
        colnames(match.matrix.plot) <-template.community  
       
       pheatmap(match.matrix.plot,  
        cluster_rows=F,  
        cluster_cols=F,  
        scale="none",  
        show_rownames=T,  
        show_colnames=T,  
        main="Inter-sample matches",  
        display_numbers=F, 
        fontsize=16, 
        color = c("grey","white"))  
        #filename = "Matches.matrix.pdf") 
 
    # corrected RT scores 
      rt.scores.plot <- rt.scores+0.0000001 # adding a small value avoids the occurance of -Inf 
return from log transformation of a zero residual 
        rownames(rt.scores.plot) <-candidate.community  
        colnames(rt.scores.plot) <-template.community   
         
        pheat.col <- colorRampPalette(c("white","yellow", "orange", "purple"))(100) 
        log.seq<-rev(1 * 1.1^(0:100)) 
        pheat.breaks<-(max(rt.scores.plot)/log.seq) 
     
        pheatmap((rt.scores.plot),  
          color=pheat.col, 
          breaks=pheat.breaks, 
          cluster_rows=F,  
          cluster_cols=F,  
          scale="none",  
          show_rownames=T,  
          show_colnames=T,  
          main="Residual RT (post-alignment)",  
          display_numbers=T, 
          fontsize=16, 
          number_format="%.2f")  
       
    # corrected masked RT scores 
      rt.scores.plot <- rt.scores+0.0000001 # adding a small value avoids the occurance of -Inf 
return from log transformation of a zero residual 
        rownames(rt.scores.plot) <-candidate.community  
        colnames(rt.scores.plot) <-template.community   
         
        pheat.col <- colorRampPalette(c("white","yellow", "orange", "purple"))(100) 
        log.seq<-rev(1 * 1.1^(0:100)) 
        pheat.breaks<-(max(rt.scores.plot)/log.seq) 
         
        rt.scores.plot[is.na(match.matrix)]<-NA 
     
        pheatmap((rt.scores.plot),  
          color=pheat.col, 
          breaks=pheat.breaks, 
          cluster_rows=F,  
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          cluster_cols=F,  
          scale="none",  
          show_rownames=T,  
          show_colnames=T,  
          main="Residual RT (post-alignment, inter-match masked)",  
          display_numbers=T, 
          fontsize=16, 
          number_format="%.2f")      
   
 
    # corrected MZ scores 
      mz.scores.plot <- mz.scores+0.000005 # adding a small value avoids the occurance of -Inf 
return from log transformation of a zero residual 
        rownames(mz.scores.plot) <-candidate.community  
        colnames(mz.scores.plot) <-template.community  
       
        pheat.col <- colorRampPalette(c("white","yellow", "orange", "purple"))(100) 
        log.seq<-rev(1 * 1.1^(0:100)) 
        pheat.breaks<-(max(mz.scores.plot)/log.seq) 
       
        pheatmap((mz.scores.plot),  
          color=pheat.col, 
          breaks=pheat.breaks, 
          cluster_rows=F,  
          cluster_cols=F,  
          scale="none",  
          show_rownames=T,  
          show_colnames=T,  
          main="Residual m/z",  
          display_numbers=T, 
          fontsize=16, 
          number_format="%.4f") 
 
    # corrected IT scores 
      it.scores.plot <- it.scores+0.0000001  
        rownames(it.scores.plot) <-candidate.community  
        colnames(it.scores.plot) <-template.community  
       
        pheat.col <- colorRampPalette(c("white","yellow", "orange", "purple"))(100) 
        log.seq<-rev(1 * 1.1^(0:100)) 
        pheat.breaks<-(max(it.scores.plot)/log.seq) 
      
        pheatmap((it.scores.plot),  
          color=pheat.col, 
          breaks=pheat.breaks, 
          cluster_rows=F,  
          cluster_cols=F,  
          scale="none",  
          show_rownames=T,  
          show_colnames=T,  
          main="Residual intensity",  
          fontsize=16, 
          display_numbers=T)   
 
} else NULL 
 
  ### Combining RT/mz/IT differences for further resolution of ambiguity unresolvable by RT alone 
   
    # # combination by multiplication - advised by Olivier 
    #  
    #   combined.scores.1 <- (rt.scores+0.0001)*(mz.scores+0.0001) 
    #   combined.scores.2 <- (rt.scores+0.0001)*(mz.scores+0.0001)*(it.scores+0.0001) 
         
      # scaling of rt and mz matching scores: makes their maximumm contribution equal so they can 
be combined with equal weight.  
        # Note - if all scores are 0, don't scale (dividing by zero can introduce errors) 
        if (sum(rt.scores)>0) (rt.scores.scaled<-rt.scores/sum(rt.scores)) else (rt.scores.scaled 
<- rt.scores) 
        if (sum(mz.scores)>0) (mz.scores.scaled<-mz.scores/sum(mz.scores)) else (mz.scores.scaled 
<- mz.scores) 
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        if (sum(it.scores)>0) (it.scores.scaled<-it.scores/sum(it.scores)) else (it.scores.scaled 
<- it.scores) 
         
      # generates combined scores options, in the event that rt.scores (and combined.scores.1) 
doesn't resolve ambiguity  
        combined.scores.1 <- rt.scores.scaled+mz.scores.scaled 
        combined.scores.2 <- combined.scores.1+it.scores.scaled         
      
      if (detailed.plotting==T){   
      ### PLOTTING (requires "pheatmap" package) 
      ### combined scaled scores  
     
      ### combined1 
      combined.scores1.plot <- combined.scores.1+0.00001 
        rownames(combined.scores1.plot) <-candidate.community  
        colnames(combined.scores1.plot) <-template.community  
         
        pheat.col <- colorRampPalette(c("white","yellow", "orange", "purple"))(100) 
        log.seq<-rev(1 * 1.1^(0:100)) 
        pheat.breaks<-(max(combined.scores1.plot)/log.seq) 
       
        pheatmap((combined.scores1.plot),  
          color=pheat.col, 
          breaks=pheat.breaks, 
          cluster_rows=F,  
          cluster_cols=F,  
          scale="none",  
          show_rownames=T,  
          show_colnames=T,  
          main="Residual RT (post-alignment)",  
          display_numbers=T, 
          fontsize=16, 
          number_format="%.4f")  
     
      ### combined2 
      combined.scores2.plot <- combined.scores.2 
        rownames(combined.scores2.plot) <-candidate.community  
        colnames(combined.scores2.plot) <-template.community  
         
        pheat.col <- colorRampPalette(c("white","yellow", "orange", "purple"))(100) 
        log.seq<-rev(1 * 1.1^(0:100)) 
        pheat.breaks<-(max(combined.scores2.plot)/log.seq) 
       
        pheatmap((combined.scores2.plot),  
          color=pheat.col, 
          breaks=pheat.breaks, 
          cluster_rows=F,  
          cluster_cols=F,  
          scale="none",  
          show_rownames=T,  
          show_colnames=T,  
          main="Residual RT (post-alignment)",  
          display_numbers=T, 
          fontsize=16, 
          number_format="%.4f")  
     
      } else NULL 
 
  ### MASKING SCORES by what was originally a match in inter-sample matching    
    # differences between features not originally matched are removed across all matrices and 
replaced with "NA".   
    # this stops the forced linking of poor matches, just because they're the least bad.  This is a 
decision making step, not match-determining.     
       
      rt.scores.scaled <- rt.scores.scaled*match.matrix 
      mz.scores.scaled <- mz.scores.scaled*match.matrix 
      it.scores.scaled <- it.scores.scaled*match.matrix 
      combined.scores.1 <- combined.scores.1*match.matrix 
      combined.scores.2 <- combined.scores.2*match.matrix 
 
  ### FINAL RESOLUTION OF MATRIX MATCHES 
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    # where the matrix is 1 row or column, choosing the best match is easy - it's just the lowest 
number present 
      # 1 candidate feature 
      if (length(candidate.community)==1) {  
        best.bin<-(which(rt.scores.scaled==min(na.omit(rt.scores.scaled[1,]))))                 # 
pulls minimum value as best bin for the candidate 
         
        if (length(best.bin)>1) (best.bin<-
(which(combined.scores.1==min(na.omit(combined.scores.1[1,])))) ) else NULL 
        if (length(best.bin)>1) (best.bin<-
(which(combined.scores.2==min(na.omit(combined.scores.2[1,])))) ) else NULL  
        if (length(best.bin)>1) (print(paste("Error 01: sample", sample.count, "community", g, 
sep=" "))) else NULL 
         
        template.matches[template.community[best.bin]]<-candidate.community                     # 
connects the candidate ID with the template feature in the reporting vector  
        candidate.matches[candidate.community]<-template.community[best.bin]    
      } else NULL 
       
      # 1 template bin 
      if (length(template.community)==1) {  
        best.can<-(which(rt.scores.scaled==min(na.omit(rt.scores.scaled[,1]))))                 # 
pulls minimum value as best bin for the candidate 
         
        if (length(best.can)>1) (best.can<-
(which(combined.scores.1==min(na.omit(combined.scores.1[,1])))) ) else NULL  # uses combined.scores 
1 (rt/mz) if rt alone can't resolve  
        if (length(best.can)>1) (best.can<-
(which(combined.scores.2==min(na.omit(combined.scores.2[,1])))) ) else NULL  # uses combined.scores 
2 (rt/mz/it) if rt alone can't resolve 
        if (length(best.can)>1) (print(paste("Error 02: sample", sample.count, "community", g, 
sep=" "))) else NULL 
         
        template.matches[template.community]<-candidate.community[best.can]                     # 
connects the candidate ID with the template feature in the reporting vector   
        candidate.matches[candidate.community[best.can]]<-template.community    
      } else NULL 
     
### where matrix is more than 2x2, a slightly more complex approach is needed: 
  # micro-alignment maximises the effect of rt.scores   
   
  # rely on the best.community.match obtained in the earlier micro-alignment.   
  if (length(candidate.community)>1 & length(template.community)>1) {   
   
   
    repeat {                                                                    # this bit picks 
the lowest residual, calls that a definitive match, and removes its column and row from the matrix.  
then repeats 
      # test if matrix is empty (T = break cycle) 
        if (sum(is.na(rt.scores.scaled))==(length(template.community)*length(candidate.community))) 
break else NULL 
       
      # find the lowest residual 
        lowest<-which(rt.scores.scaled == min(rt.scores.scaled, na.rm = TRUE), arr.ind = TRUE) 
         
        # if there are multiple lowest scores... 
        if (length(lowest)>2){     
         
           # first, see if the multiple lowest scores are in conflict.              
           # if not.... pass all onward... 
            if ((length(lowest[,"row"])==length(unique(lowest[,"row"]))) & 
(length(lowest[,"col"])==length(unique(lowest[,"col"])))) {          
                      # report it as a definitive match 
                        template.matches[template.community[lowest[,"col"]]]<-
candidate.community[lowest[,"row"]] 
                        candidate.matches[candidate.community[lowest[,"row"]]]<-
template.community[lowest[,"col"]]       
                      # remove it and others from both the row and column 
                        rt.scores.scaled[,lowest[,"col"]]<-NA 
                        rt.scores.scaled[lowest[,"row"],]<-NA         
                      # do the same to combined.scores.1/2 in the event that they are required   
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                        combined.scores.1[,lowest[,"col"]]<-NA 
                        combined.scores.1[lowest[,"row"],]<-NA 
                        combined.scores.2[,lowest[,"col"]]<-NA 
                        combined.scores.2[lowest[,"row"],]<-NA   
            } else NULL   
             
           # ... and move on to the next   
            if ((length(lowest[,"row"])==length(unique(lowest[,"row"]))) & 
(length(lowest[,"col"])==length(unique(lowest[,"col"])))) next else NULL 
                   
           # if so (ELSE...), reserve those which require additional parameters to resolve, and 
report the rest (if any).    
    
            lowest.reserve <- lowest[which(duplicated(lowest[,"row"], fromLast=T) | 
duplicated(lowest[,"row"], fromLast=F) | duplicated(lowest[,"col"], fromLast=T) | 
duplicated(lowest[,"col"], fromLast=F)),]  # reserves all duplicated values   
            # lowest.reserve will have multiple entries by nature, which are naturally stored as a 
matrix. - no need to fix formatting 
            lowest <- lowest[which(!duplicated(lowest[,"row"], fromLast=T) & 
!duplicated(lowest[,"row"], fromLast=F) & !duplicated(lowest[,"col"], fromLast=T) & 
!duplicated(lowest[,"col"], fromLast=F)),]      # only non-duplicated values 
            if (length(lowest)==2) (lowest <- t(lowest)) else NULL              # if there is only 
one lowest entry, it's returned as an interger that needs to be made into a matrix for the 
following step 
 
                      # report it as a definitive match 
                        template.matches[template.community[lowest[,"col"]]]<-
candidate.community[lowest[,"row"]] 
                        candidate.matches[candidate.community[lowest[,"row"]]]<-
template.community[lowest[,"col"]]       
                      # remove it and others from both the row and column 
                        rt.scores.scaled[,lowest[,"col"]]<-NA 
                        rt.scores.scaled[lowest[,"row"],]<-NA         
                      # do the same to combined.scores.1/2 in the event that they are required   
                        combined.scores.1[,lowest[,"col"]]<-NA 
                        combined.scores.1[lowest[,"row"],]<-NA 
                        combined.scores.2[,lowest[,"col"]]<-NA 
                        combined.scores.2[lowest[,"row"],]<-NA             
 
           # then go on to resolution.   
              lowest.again <- NULL 
              for (i in 1:nrow(lowest.reserve)) { 
                  lowest.again<-append(lowest.again, combined.scores.1[lowest.reserve[i,1], 
lowest.reserve[i,2]]) 
              }     
                  
              lowest.sorted <- sort(lowest.again, decreasing=FALSE, na.last=NA) 
               
              if (lowest.sorted[1]==lowest.sorted[2]) {            
               
                lowest.again <- NULL 
                for (i in 1:nrow(lowest.reserve)) { 
                    lowest.again<-append(lowest.again, combined.scores.2[lowest.reserve[i,1], 
lowest.reserve[i,2]]) 
                } 
              }    
               
              # this should really be done per conflicting subset, as lowest.reserve may actually 
be 2 sets of independently conflicting vals.  However, this will get us there, just less 
efficiently. 
                lowest <- 
t(as.matrix(lowest.reserve[(which(lowest.again==min(lowest.again))),1:2]))     # the good lowest is 
the row that gives the lowest val.           
            
              # again, see if the multiple lowest scores are in conflict.              
              # if not.... pass all onward... 
                if ((length(lowest[,"row"])==length(unique(lowest[,"row"]))) & 
(length(lowest[,"col"])==length(unique(lowest[,"col"])))) {          
                      # report it as a definitive match 
                        template.matches[template.community[lowest[,"col"]]]<-
candidate.community[lowest[,"row"]] 
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                        candidate.matches[candidate.community[lowest[,"row"]]]<-
template.community[lowest[,"col"]]       
                      # remove it and others from both the row and column 
                        rt.scores.scaled[,lowest[,"col"]]<-NA 
                        rt.scores.scaled[lowest[,"row"],]<-NA         
                      # do the same to combined.scores.1/2 in the event that they are required   
                        combined.scores.1[,lowest[,"col"]]<-NA 
                        combined.scores.1[lowest[,"row"],]<-NA 
                        combined.scores.2[,lowest[,"col"]]<-NA 
                        combined.scores.2[lowest[,"row"],]<-NA   
                } else print("Error!!!!")            
            
        } 
         
         
         
        if (length(lowest)==2){  
          
                      # report it as a definitive match 
                        template.matches[template.community[lowest[,"col"]]]<-
candidate.community[lowest[,"row"]] 
                        candidate.matches[candidate.community[lowest[,"row"]]]<-
template.community[lowest[,"col"]]       
                      # remove it and others from both the row and column 
                        rt.scores.scaled[,lowest[,"col"]]<-NA 
                        rt.scores.scaled[lowest[,"row"],]<-NA         
                      # do the same to combined.scores.1/2 in the event that they are required   
                        combined.scores.1[,lowest[,"col"]]<-NA 
                        combined.scores.1[lowest[,"row"],]<-NA 
                        combined.scores.2[,lowest[,"col"]]<-NA 
                        combined.scores.2[lowest[,"row"],]<-NA 
        } 
    }    
  } 
} # ALIGNMENT LOOP ENDS HERE   
 
# plots the intensity correlation between matched template and candidate features 
plot(log(template[(which(is.na(template.matches)==F)),"into"]),log(candidate[(na.omit(template.matc
hes)),"into"])) 
cor(log(template[(which(is.na(template.matches)==F)),"into"]),log(candidate[(na.omit(template.match
es)),"into"])) 
 
# plots the rt vs. mz of matched features (from the candidate data set's perspective) 
plot(candidate[na.omit(template.matches),"rt"], candidate[na.omit(template.matches),"mz"]) 
 
######################################################################################## 
######################################################################################## 
#########----report failed attempts at community matching as no matches----#############  
 
  match.cleanup <- function(match.list, tally){  
    # list of unmatched template bins 
    unmatched<-which(is.na(match.list))  # ID= template bins without matches 
     
    # removes failed matches  
    failed<-NULL 
    for (i in 1:length(unmatched)){ 
      # if unmatched bin has attempted matches in community matching and remains unmatched, it is a 
failure and needs to be marked as such. 
      if (sum(unmatched[i]==tally)>0) (failed<-append(failed,unmatched[i])) else NULL 
    } 
     
    match.list[failed]<-0 
     
    return(match.list) 
  } 
 
# insert 0's for failed community match participants 
  template.matches<-match.cleanup(template.matches, match.tally.t) 
  candidate.matches<-match.cleanup(candidate.matches, match.tally.c) 
 
######################################################################################## 
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######################################################################################## 
#######----remove orphans----###########  
 
  # outside of communities, independent features with no matches are useless.  either empty bins, 
or require appending to the master.ID.   
  orphans.can<-which(matchcount==0)     # candidate ID's that do not match any template bins 
  orphans.bin<-which(bincount==0)       # template ID's that do not match any candidate bins 
   
  # replaces NAs with 0's indicating matching has occured and has failed.   
  # why do some of these have 0's already???... 
  template.matches[orphans.bin]<-0 
  # ..and none of these do?? 
  candidate.matches[orphans.can]<-0 
 
######################################################################################## 
######################################################################################## 
#######----non-community matching----###########  
 
# 1.  remove mutually unique matches to reduce the size of residual matrix matching. 
  # leave templates with 2 matches and 1-match templates with multiple return matches for matrix 
matching. 
 
# goal is to see if two things point at each other (and only each other).  doesn't matter which 
side starts.   
unmatched.bins<-which(is.na(template.matches))  # ID= template bins without matches 
#unmatched.candidates<-which(is.na(candidate.matches))  # ID= template bins without matches   
 
# do sequentially for every unmatched bin...   
for (i in 1:length(unmatched.bins)){ 
 
# template matches one candidate only 
if (bincount[unmatched.bins[i]]==1) { 
   return.matches<-matchcount[bins[[unmatched.bins[i]]]]     # gets the number of return (template) 
matches for the single candidate ID matched by the template 
   # single return match 
   if (return.matches==1) { 
      # for fun, check that the ID's are the same.  They should be always... just checking for dev. 
      if (bins.matched[[bins[[unmatched.bins[i]]]]]==unmatched.bins[i]) {       
         template.matches[unmatched.bins[i]]<-bins[[unmatched.bins[i]]]  # stores candidate ID as 
unique match to template ID 
         candidate.matches[bins[[unmatched.bins[i]]]]<-unmatched.bins[i] # stores template ID as 
unique match to candidate ID 
      } else print("WARNING: matches are exclusivly mutual, but ID's do not match") 
       
   } else print("returns multiple matches - pass to matrix matching")   
   } else print("template matches more than 1 independent candidate - pass to matrix matching") 
}   
 
######################################################################################## 
######################################################################################## 
############################ compile ledger and write out data ######################### 
 
### recording matched data 
# replaces 0's with NAs, now that functionality of NA's and 0's from matching is no longer needed. 
  template.matches[which(template.matches==0)]<-NA 
   
   
   
# orders the template matches in the same order as the master.ID matrix (in "experimental order")   
ordered.template.matches<-NULL   
  for (o in 1:(length(as.matrix(master.ID)[,sample.count]))){   
    # if the master.ID row has no template entry, then the match must be NA.  Otherwise, the match 
is a value as determined by the template.matches 
    if (is.na(as.matrix(master.ID)[o,sample.count])) ordered.template.matches[o]<-NA else 
ordered.template.matches[o]<-template.matches[(as.matrix(master.ID)[o,sample.count])] 
  }   
 
# adds candidate matches to new column in master.ID reporting matrix 
  master.ID<-cbind(master.ID, ordered.template.matches) 
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### appending orphans to master.ID as new rows 
# duplicates all successfully matched featuresfeatures that have been matched 
  candidates.plus.matches<-na.omit(c((1:(nrow(candidate))),template.matches))  #all candidate 
features + those that have been matched 
   
# finds only features that have a single instance (are not duplicated, and tehrefore are have not 
been successfully matched) 
  candidate.orphans<-candidates.plus.matches[(!duplicated(candidates.plus.matches, fromLast=T) & 
!duplicated(candidates.plus.matches, fromLast=F))] # removing all instances of duplicates 
(including the first of each) 
   
# assures that all candidate features are in order (not critical). 
  candidate.orphans <- sort(candidate.orphans, decreasing = FALSE) 
   
# append candidate.orphans, in order, to the bottom of the master.ID matrix as new rows. 
  new.addition <- matrix(data = NA, nrow = (length(candidate.orphans)), ncol = (ncol(master.ID)-1), 
byrow = FALSE, dimnames = NULL) 
 
# grafts on to master.ID 
  master.ID <- rbind(master.ID, (cbind(new.addition, candidate.orphans))) 
 
 
### use master.ID to update master.mz, rt, and it 
 
master.MZ <- cbind((rbind(as.matrix(master.MZ),new.addition)), 
(candidate[(master.ID[,(sample.count+1)]),"mz"])) 
master.RT <- cbind((rbind(as.matrix(master.RT),new.addition)), 
(candidate[(master.ID[,(sample.count+1)]),"rt"])) 
master.IT <- cbind((rbind(as.matrix(master.IT),new.addition)), 
(candidate[(master.ID[,(sample.count+1)]),"into"])) 
   
 
### looping controls and procedures 
 
# stop matching analysis when all samples in the run order have been matched 
  if (sample.count==nrow(run.order)) break else NULL 
 
# prints the name of the file that was just matched and added to the ledger 
  print (paste((as.character(run.order[(sample.count+1),1])), "matched in, reported to ledger", sep 
= " ")) 
 
# updates the sample count for the next round of matching 
  sample.count <- sample.count+1 
 
# sets the candidate from round n to be the template from round n+1 
  template<-candidate 
 
} # end of program repeat 
 
 
 
# NOTE:  this part of the code will allow the script to monitor the creation of new files and run 
in real-time.  However, it was not used in the Thesis.   
# looks for next file in specified order.  If present, it loads and repeats the matching.  If not, 
it waits.   
file.ready=0 
repeat{ 
print("repeat!")  
if (file.exists((as.character(run.order[(sample.count+1),1])))==F) (file.ready=0) else 
(file.ready=1)   # sets switch to either sleep or repeat  
if (file.ready==1) (print("next file found") & break) else (Sys.sleep(10)) 
} 
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Appendix 4 

Database of empirically observed spectral mass values for 55 standard compounds in negative 

ionization mode  

ID formula/name (M) parent frag adducts adductfrags 

1 C4H6O3 101.0239 225.0377 192.9933 

1 a-ketobutyric acid 264.9778 

3 C19H19N7O6 440.1397 132.0452 462.1131 

3 Folic acid 175.051 

3 311.089 

3 378.1313 

3 396.1426 

3 147.0284 

3 119.0353 

5 C10H17N3O6S 306.076 87.057 482.0998 482.1096 

5 Glutathione reduced 99.05593 328.0579 338.0491 

5 99.0569 635.1392 310.0461 

5 128.0353 613.1608 304.0611 

5 135.0556 611.1435 294.0707 

5 141.0624 328.0584 282.0727 

5 143.0452 264.0565 

5 146.0477 253.0263 

5 160.0074 250.0805 

5 166.0929 242.0784 

5 177.0381 238.0788 

5 179.0471 221.0554 

5 197.0542 219.0384 

5 210.0871 207.0376 

5 254.0779 199.0162 

5 272.0878 184.1058 

5 288.0656 181.0595 

5 175.0174 

5 167.0443 

5 150.017 

6 C8H9NO2  150.0555 107.0374 230.0124 

6 Paracetamol sulfate  

7 C4H8O3 103.0395 275.1138 59.0137 

7 3-hydroxybutyric acid 229.0698 103.0402 

7 573.2156 297.0963 

7 315.104 
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7 401.1432 

7 487.1779 

9 C5H6O5 145.0137 101.0245 334.9995 166.9961 

9 a-ketoglutaric acid 313.0164 

10 C12H14N2O2  217.0977 131.0375 

10 N-acetyl-5-hydroxy-tryptamine 144.0457 

10 157.0534 

10 158.0612 

12 C8H15NO6  220.0821 

12 N-Acetyl-D-galactosamine 

13 C5H9NO3S  162.0225 84.0456 347.0354 217.972 

13 N-acetyl-L-cysteine 323.0376 193.9957 

13 184.0044 162.023 

13 128.0353 

13 116.0178 

13 74.00675 

14 C7H11NO5  188.0559 100.0773 399.1016 

14 N-acetyl-DL-glutamic acid 102.056 210.0378 

14 126.0557 

14 128.0354 

14 144.0667 

14 170.0461 

15 C5H12N2O2S  163.0541 76.02253 545.0976 381.0356 

15 S-(2-aminoethyl)-L-cysteine hydrochloride 349.098 364.0092 

15 294.0026 

15 250.9592 

15 216.9753 

15 206.9691 

15 199.9469 

16 C5H11N3O2  144.0773 102.0554 289.1631 

16 4-guanidinobutyric acid 212.0653 

16 311.1451 

17 C9H10O5  197.045 137.0245 417.0799 

17 DL-4-hydroxy-3-methoxymandelic acid 265.0331 

18 C6H10O3 129.0552 281.1005 169.0489 

18 DL-a-keto-ß-methyl-n-valeric acid 443.1 151.0379 

18 433.1454 313.0397 

19 C10H18N2O5 245.1137 116.0712 

19 ?-L-glutamyl-L-valine 128.0354 

19 165.1037 

19 183.1141 
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19 209.0933 

19 227.1033 

20 C11H13NO2  190.0868 144.0456 

20 5-methoxytryptophol 145.051 

20 175.0643 

22 C9H9O3 165.0552 103.0544 353.1015 59.0138 

22 (S)-3-hydroxy-3-phenylpropionic acid 83.0119 

22 119.0514 

22 143.0459 

22 165.0553 

22 187.0391 

22 205.0467 

22 229.0485 

22 247.06 

25 C4H7NO3 116.0348 74.0245 255.0585 

25 N-acetyl-glycine 

26 C9H13NO3  182.0817 122.0376 

26 (+/-)-Epinephrine 148.0406 

26 149.0484 

26 164.0718 

28 C6H10O3  129.0552 201.1126 99.0811 

28 4-Methyl-2-oxovaleric acid 229.1075 123.1188 

28 281.1006 139.1113 

28 425.214 141.1291 

28 353.1568 157.1231 

28 505.2042 185.1178 

28 151.0371 

28 169.0476 

28 223.0964 

28 295.152 

28 393.1479 

29 C3H4O4 103.0031 

29 ß-Hydroxypyruvic acid 

30 C4H8O3  103.0395 229.0689 

30 (S)-2-hydroxybutyric acid 

31 C9H14N4O3  225.0988 81.045 473.1863 

31 L-carnosine 93.0456 451.2039 

31 110.0722 

31 137.0354 

31 154.062 

31 163.0986 
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31 181.1095 

32 C9H14N3O8P 322.044 78.9589 645.0968 181.0627 

32 Cytidine 5'-monophosphate 96.9697 667.0787 402.0117 

32 110.0363 968.1483 423.9945 

32 138.9786 312.9507 

32 150.9799 

32 192.9881 

32 211.0029 

32 279.0371 

33 C6H10O3 129.0552 

33 (+/-)-3-methyl-2-oxovaleric acid 

34 C4H10O2S2 153.0044 

34 Dithiothreitol 

35 C7H12N2O4 187.0719 125.0722 397.1327 143.0818 

35 N-acetyl-L-glutamine 127.0504 109.0398 

35 145.062 

35 169.0619 

37 C15H18N2O4S 321.0909 234.059 643.1888 

37 Dansylsarcosine piperidinium salt 170.0975 665.1707 

39 C9H8O3 163.0395 91.0554 349.0699 185.0222 

39 phenyl-pyruvate 

40 C3H4O3 87.0082 197.0067 

40 Pyruvic acid 

41 C4H8O3  103.0395 229.0683 

41 ?-Hydroxybutyric acid 171.0271 

42 C6H10O3  129.0552 281.1 151.0384 

42 a-Ketoisocaproic acid 443.099 169.0485 

42 433.1454 209.1164 

42 184.988 

42 241.0532 

42 281.1019 

42 313.0356 

43 C6H9NO5  174.0402 88.0405 371.063 70.028 

43 N-acetyl-DL-aspartic acid 114.0203 112.0378 

43 130.0511 156.0271 

43 112.0429 196.0137 

45 C5H11NO2S  148.0432 319.076 170.0255 

45 L(+)-penicillamine 295.0775 180.0143 

45 114.0564 

47 C6H12O2  115.0759 183.0637 

47 n-Caproic acid 253.1415 
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50 C5H10O5  149.045 

50 D(-)Ribose 

51 C19H17N3O4S2  414.0582 

51 Cephaloridine 

52 C6H12O3  131.0708 85.0658 285.131 

52 L-a-hydroxyisocaproic acid 

54 C5H8O3 115.0395 253.0693 155.0337 

54 a-Ketoisovaleric acid 401.054 143.9887 

54 156.9612 

54 170.9733 

54 213.0239 

54 214.0299 

54 215.0357 

54 285.0063 

54 329.0708 

54 101.9393 

55 L-homocarnosine 239.1144 80.0386 501.2193 102.0568 

55 C10H16N4O3 81.0458 479.2381 

55 84.0458 

55 93.0455 

55 101.0709 

55 108.056 

55 110.0722 

55 136.0513 

55 137.0357 

55 141.0669 

55 150.1005 

55 154.0625 

55 177.1149 

55 193.1131 

55 195.125 

55 221.1006 

57 DL-a-Hydroxybutyric acid 103.0395 57.0348 229.0687 145.0866 

57 C4H8O3 189.077 

58 Homogentisic acid 167.0344 122.0367 357.0572 189.0164 

58 C8H8O4  108.0211 123.0447 

58 93.035 

58 121.0288 

59 a-Keto-?-methiolbutyric acid sodium salt 147.0116 317.0137 99.0084 

59 C5H8O3S 

60 Sulfamethazine 277.0759 236.0486 309.0649 121.0404 
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60 C12H14N4O2S  213.1143 345.064 80.9662 

60 196.0172 887.1623 79.9552 

60 195.0237 

60 155.0057 

60 132.0053 

60 122.0719 

60 106.0404 

61 C6H8O7  191.0192 85.029 441.0487 423.0334 

61 D/a-saccharic acid 1,4-lactone 147.0289 405.0272 231.0118 

61 129.0194 383.045 141.0166 

61 209.0296 147.0298 

61 129.0186 

61 111.009 

61 133.0136 

61 89.0232 

61 71.01305 

61 173.0101 

62 C11H11NO3  204.0661 186.0555 431.1206 226.0491 

62 DL-indole-3-lactic acid 158.0607 409.1389 

62 142.0656 

62 130.0658 

62 128.05 

62 116.0498 

63 C8H15NO5  204.0872 72.0087 431.1642 283.017 

63 Boc-Ser-OH 100.004 357.0916 

63 130.0141 

64 C5H6O4  129.0188 281.0273 85.0278 

64 Mesaconic acid 

65 C6H8O7  191.0192 147.03 423.0377 387.0206 

65 D-Saccharic acid 3,6-Lactone 85.0291 405.0276 361.0359 

65 57.0338 209.0299 343.0264 

65 317.0434 

65 231.0103 

65 141.0181 

65 133.0131 

65 129.0209 

65 115.0028 

65 111.0073 

65 89.0234 

65 71.0131 

69 C5H6N2O2 125.0351 81.0452 147.0176 
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69 Imidazole-4-acetic acid 273.0606 

73 C33H34N4O6  581.24 537.2485 

73 Biliverdin 285.1234 

73 239.1173 

73 213.1015 

74 C4H8O3  103.0395 59.0129 533.2224 171.0649 

74 DL-?-hydroxybutyric acid 573.2144 189.0761 

74 447.1869 85.0291 

74 167.0265 229.0687 

74 315.1046 

74 297.0972 

74 315.1054 

74 401.1421 

74 487.1768 

75 C3H6O3 89.0239 201.0375 

75 L-lactate 

77 C4H8O3  103.0395 229.0684 

77 ß-hydroxybutyric acid 
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Appendix 5 

Deconvolution and de novo database generating script 

### IMPERICAL - de novo database synthesizer 
### Version 12dev - October 3, 2011    
 # Stable parent matching, parent validation via targeted fragment matching, independent 
fragment matching, and independent adduct matching 
### Matthew R. Lewis 
### Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College 
London 
### Much thanks to Florian Geier and Paul Benton for their assistance and contributions 
 
### -----------------------------------------------------------------------------------------------
----------------- ### 
 
### Conditions ### 
  # Data must be given in minutes (RT).  Can be changed easily.... # 
### /Conditions ### 
 
### data import and setup ### 
  # load working directory and xcms package # 
    myDir = "C:/Users/mrlewis1/Dropbox/EMPERIAL/chrom development" 
    setwd(myDir) 
    WD <- getwd() 
  # clean up workspace - start from scratch to ensure no variable carryover # 
    rm(list = ls(all = TRUE)) 
  # database style may change when adducts are incorporated # 
  # imports data from .csv files - physical property database (tDB) and peakpicked mixed-standard 
run (STD) # 
    tDB<-read.csv("XferDB.csv", header=TRUE) 
    STD<-read.csv("MasterMix.csv", header=TRUE) 
### /data import and setup ### 
 
### variables for consideration ### 
  # use intensity to break ambiguity between potential parent matches? (1 = yes, 0 = no)# 
    pTie = 1 
  # multiplication factor to differentiate acceptable match from next most intense possible match # 
    factor = 10 
  # mass error (ppm) #  
    xfragppm = 100 
    xparentppm = 100 
    xadductppm = 100 
  # retention time error window (seconds, +/- 1/2 window) # 
    xdeltaRT=2 
  # arbitrary x variable necessary to make later x[[i]] stuff work # 
    x<-numeric() 
    y<-numeric() 
    z<-numeric() 
 
### /variables for consideration ### 
 
 
### -----------------------------------------------------------------------------------------------
----------------- ### 
 
 
### STEP 1: Creation of initial visualization (base scatter plot) ###  
 
par(mfrow=c(2,1)) 
 
  # sets overall plot X and Y axis limits from min/max values in the peaklist (STD) #  
    xlim.min<-min(STD[,"rt"]) 
    xlim.max<-max(STD[,"rt"]) 
    ylim.min<-min(STD[,"mz"]) 
    ylim.max<-max(STD[,"mz"]) 
 
  # creates blank plot for assigned features #   
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    plot(-1,-1, col="1", xlim=c(xlim.min,xlim.max), ylim=c(ylim.min,ylim.max),xlab="retention 
time", ylab="m/z", main="Assignments") 
 
  # creates m/z vs rt plot of the peaklist #   
    plot(STD[,"rt"],STD[,"mz"], col="1", xlim=c(xlim.min,xlim.max), 
ylim=c(ylim.min,ylim.max),xlab="retention time", ylab="m/z", main="STD mix") 
 
### /STEP 1 ###  
 
 
### -----------------------------------------------------------------------------------------------
----------------- ### 
 
   
### STEP 2: Conversion of data from input form to accessible form ### 
 
  # convert the theoretical database (tDB) to a matrix of unique standard compounds (uniqueID), 
each with one ID, mass, and number of databased fragments.# 
  # In the process, individual fragment lists are generated for each unique standard compound #    
  # once later references are generalized to row names rather than numbers, i'd like to add more 
information here, such as compound NAME.# 
   
  # create matrix of unique standard compounds (across) by ID and mass (down) from the tDB #   
  # rbind won't include text - therefore names can not be included here # 
  # original uniqueID line would not extract DB entries from a table of only unique entries - it 
seemed to depended on the occurance of duplication.  It has therefore been rewritten from scratch # 
  
  # Binds id and parent from tDB, maintaining redundancy that may or may not exist in the tDB # 
    tDB.ID<-rbind(tDB[,"id"],tDB[,"parent"]) 
    rownames(tDB.ID)<-c("id","tMZ") 
  # entries that are NOT duplicates are stored in uniqueID.  Only the first instance of a redundant 
"id" entry is kept # 
    uniqueID<-tDB.ID[,(which(!duplicated(tDB.ID["id",])))] 
  
  # saves the number of unique standard compounds present in the tDB as a variable for later use # 
    nSTDs<-length(uniqueID["id",]) 
 
  # creates and fills a row of # fragments (tFrags) per ID.  Simultaneously creates individual 
fragment lists for each standard compound,  
    fragsperID<- matrix(nrow=1,ncol=nSTDs) 
      rownames(fragsperID)<-"tFrags" 
    # loops for all unique ids # 
      for(i in 1:nSTDs){ 
    # generates a T/F vector for each standard compound referring to the tDB # 
           temp<-tDB[(tDB$id==uniqueID["id",i]),] 
    # saves each fragment list by its uniqueID column number, and removes NA entries from 
fragment count and list #  
      x[[i]]<-na.omit(temp["frag"]) 
        # fills in [# fragments per ID = tFrags] to table #   
      fragsperID[1,i]<-length(x[[i]]$frag) 
    } 
     
  # creates and fills a row of # adducts (tAdducts) per ID.  Simultaneously creates individual 
adduct lists for each standard compound,  
    adductsperID<- matrix(nrow=1,ncol=nSTDs) 
      rownames(adductsperID)<-"tAdducts" 
    # loops for all unique ids # 
      for(i in 1:nSTDs){ 
    # generates a T/F vector for each standard compound referring to the tDB # 
           temp<-tDB[(tDB$id==uniqueID["id",i]),] 
    # saves each adduct list by its uniqueID column number, and removes NA entries from 
adduct count and list #  
      y[[i]]<-na.omit(temp["adducts"]) 
        # fills in [# adducts per ID = tAdducts] to table #   
      adductsperID[1,i]<-length(y[[i]]$adducts) 
    } 
 
  # creates and fills a row of # adduct fragments (tAdductFrags) per ID.  Simultaneously creates 
individual adductfrags lists for each standard compound,  
    adductfragsperID<- matrix(nrow=1,ncol=nSTDs) 
      rownames(adductfragsperID)<-"tAdductfrags" 
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    # loops for all unique ids # 
      for(i in 1:nSTDs){ 
    # generates a T/F vector for each standard compound referring to the tDB # 
           temp<-tDB[(tDB$id==uniqueID["id",i]),] 
    # saves each adduct list by its uniqueID column number, and removes NA entries from 
adduct count and list #  
      z[[i]]<-na.omit(temp["adductfrags"]) 
        # fills in [# adducts per ID = tAdductfrags] to table #   
      adductfragsperID[1,i]<-length(z[[i]]$adductfrags) 
    } 
     
  # adds fragments/ID and adducts/ID to the unique ID matrix #   
    uniqueID<-rbind(uniqueID, fragsperID, adductsperID, adductfragsperID) 
 
### /STEP 2 ###  
 
 
### -----------------------------------------------------------------------------------------------
----------------- ### 
 
 
### STEP 3: PARENTS ### 
 
### STEP 3a:  match all STD feature masses (m/z's) to a list of unique parents, and return a matrix 
of possible hits # 
  # matchmaker and MatchedList functions rewritten from code originally provided by Florian Geier # 
   
  # eliminates tDB standard entries with missing parent values from parent matching # 
    tDB.rents<-uniqueID[,which(uniqueID["tMZ",]!="NA")] 
 
  # matchmaker finds matching values in matchR for each value in matchE, with a specified window of 
error 
    matchmaker<-function(matchE,matchR,window,idList.colnames){  
 
#####matchE<-STD[,"mz"] 
#####matchR<-uniqueID["tMZ",] 
#####window<-xparentppm 
#####idList.colnames<-uniqueID["id",] 
 
    # this section covers the matching of STD features to the parents detailed in tDB # 
   
    # primary is a matrix derived from the mz column of the STD matrix.  Column 1 is minus error, 
and column2 is plus error # 
      primary<- matrix(nrow=length(matchE),ncol=2,dimnames=list(NULL,c("min","max"))) 
    # this loop calculates the error to be applied to each mz entry in STD and fills the empty 
primary matrix explained above # 
      for(i in 1:length(matchE)){ 
     # calculates ppm error #  
      # there may be a way to generalize this so that it can be used for nonppm calcs - split error 
out as a variable function? 
       error<-((window/10^6)*matchE[i]) 
       less<-(matchE[i]-error) 
        more<-(matchE[i]+error) 
        primary[i,1]<-less  
        primary[i,2]<-more 
      } 
     
    # this section matches and reports hits only (y/n = 1/0) # 
    # creates the empty 1 column matrix that will be filled with parent match hits between the tDB 
and STD mzs given the supplied error # 
      MatchedList<- matrix(nrow=length(matchE),ncol=1,dimnames=list(NULL,c("hits"))) 
     
    # fills the above table, replacing NA with digits where matching values were found (1) or not 
(0) # 
      for(i in 1:length(matchE)){ 
        temp<-which(matchR >= primary[i,1] & matchR <= primary[i,2]) 
        MatchedList[i,1]<-length(temp) 
      } 
     
    # this section matches, as above, but reports sorted results # 
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    # creates a matrix where nSTDs = columns and length(STD) = rows.  Matches will be ID'd and 
assigned to one of the database standards in this list # #  
    # old version = idList<- matrix(nrow=length(matchE), ncol=nSTDs) 
      idList<- matrix(nrow=length(matchE), ncol=length(matchR)) 
      colnames(idList)<-idList.colnames 
   
    # rematches and sorts hits (displayed as TRUE or FALSE into proper tDB standard column #  
      for(i in 1:length(matchE)){ 
    # this matching really runs the wrong way around - but it works. 
      idList[i,]<-matrix(matchR >= primary[i,1] & matchR <= primary[i,2]) 
      } 
   
    # combines output from both rounds of matching (hits and sorted values) # 
    # this step makes Ts and Fs into 1s and 0s.  Intended for later addition #  
      FullList<-cbind(MatchedList,idList) 
      return(FullList)   
    } 
 
  # runs the matching function with respect to parents (STD --> uniqueID tMZ (from tDB)) # 
    possibleParents<-matchmaker(STD[,"mz"], uniqueID["tMZ",], xparentppm, uniqueID["id",]) 
 
 
### ----PLOT-BREAK---- ### 
 
  # fades all datapoints on STD peak list plot to grey 
  # for(i in seq(153:230){ 
    for(i in seq(153, 230, by = 10)){ 
      par(new=T) 
      pPlot<-plot(STD[,"rt"],STD[,"mz"], col=colours()[i], xlab="retention time", ylab="m/z", 
main="STD mix") 
    } 
 
  # plotting - this could be done at once, but it looks more interesting if done one standard at a 
time # 
    for(i in 1:nSTDs){ 
#i=20 
    # plots a horizontal line for "i" standard tMZ representing the value to which emperical 
measurements from the peak list (STD) will be matched # 
      par (new=T) 
      abline(h=(uniqueID["tMZ",i]),col=1,lty=3, xlim=c(xlim.min,xlim.max), 
ylim=c(ylim.min,ylim.max)) 
      par (new=T) 
    # replots all points on each iteration, but colors black only those with a positive match to a 
tDB parent mass (sequentially, for each of nSTDs) 
      plot(STD[,"rt"],STD[,"mz"], col=possibleParents[,(1+i)], xlab="", ylab="", pch=16, 
xlim=c(xlim.min,xlim.max), ylim=c(ylim.min,ylim.max)) 
      Sys.sleep(0.1) 
    } 
   
  # to color ambiguous hits (where more than 1 feature in the peaklist matches any one tDB standard 
parent mass) yellow: 
    pBlotter.ambiguous<-STD[(which(possibleParents[,"hits"]>1)),] 
    par (new=T) 
    plot(pBlotter.ambiguous[,"rt"],pBlotter.ambiguous[,"mz"], col=7, xlab="", ylab="", pch=20, 
xlim=c(xlim.min,xlim.max), ylim=c(ylim.min,ylim.max)) 
   
### ----/PLOT-BREAK---- ### 
 
 
 
### STEP 3b: finding and reporting unambiguous hits based on parent matching alone # 
 
# tiebreaking function for when the number of matches reported (column sum) for any tDB standard is 
greater than 1.  Must be turned on in settings to be implemented # 
  tiebreaker<-function(i, temp, factor, matchedParents){  
  # creates a list of all into (intensity) values # 
    intensities<-temp[,"into"] 
  # unlists so that sorting can occur # 
    intensities<-unlist(intensities) 
  # sorts largest to smallest # 
    intensities<-sort(intensities, decreasing = TRUE , na.last = NA) 
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  # fills intensity from the above # 
    if (intensities[1]>=(intensities[2]*factor)) matchedParents["pIntensity",i]<-intensities[1] 
else NULL  
  #fills retention time value #  
    if (intensities[1]>=(intensities[2]*factor)) matchedParents["pRetention",i]<-
(temp[which(temp[,"into"]==intensities[1]),])[,"rt"] else NULL 
    return(matchedParents)   
  } 
 
  tiebreaker.plot<-function(i, temp, factor, pBlotter, solved){  
  # creates a list of all into (intensity) values # 
    intensities<-temp[,"into"] 
  # unlists so that sorting can occur # 
    intensities<-unlist(intensities) 
  # sorts largest to smallest # 
    intensities<-sort(intensities, decreasing = TRUE , na.last = NA) 
  # pulls out best match STD id from above processing  
    best<-temp[(which(temp[,"into"]==intensities[1])),"id"] 
  # returns best STD feature from peaklist 
    if (intensities[1]>=(intensities[2]*factor)) return(STD[best,]) else NULL   
  } 
 
# reduces parent hitlist matrix to only those entries with a single match across the row (single 
match to a single tDB standard) # 
# this eliminates STD matrix features that match multiple tDB standard parent masses.  This would 
be the case with two (or more) isobaric species in the same standard mixture # 
# the match is probably correct for ONE of the tDB standards, but can't be correct for all three, 
therefore it is considered ambiguous # 
  unambiguousRows<-possibleParents[which(possibleParents[,"hits"]==1),] 
 
# removes hits column so the values can be input to the matchedParents matrix, created below #   
  unambiguousRows<-unambiguousRows[,-1] 
 
# creates a matrix resembling uniqueID for reporting matches of tDB standards to the STD matrix.  
Where results are not ambiguous (no more than 1 match) RT and intensity of the matched STD parent 
feature is reported # 
  matchedParents<-matrix(nrow=3,ncol=length(uniqueID["id",])) 
  colnames(matchedParents)<-uniqueID["id",] 
  rownames(matchedParents)<-c("pMatches","pRetention","pIntensity") 
 
# sums each column in the unambiguousRows matrix # 
# sums of 1 have passed both tests (row, above, and column, here) for ambiguity. 
# sums >1 are ambiguous, with multiple STD features are matching that tDB standard compound parent 
mass #  
# stores results in matchedParents as the pMatches row # 
  matchedParents["pMatches",]<-colSums (unambiguousRows, na.rm = FALSE, dims = 1) 
 
# binds STD matrix to possibleParents hitlist (moves "hits" column to end of list), and preforms 
the same-as-above reduction to eliminate nonmatches and ambiguous matches #  
# possibleParents2 only exists in this block, and should not be called outside of this block.  #   
  possibleParents2<-possibleParents[,-1] 
  hits<-possibleParents[,"hits"] 
  parentsSTD<-cbind(possibleParents2,STD,hits) 
# maintains full list w/o removing ambiguous matches and nonmatches - this is used in rematching 
section 
  full.parentsSTD<-parentsSTD[which(parentsSTD[,"hits"]!=0),] 
# removes ambiguous and nonmatches 
  parentsSTD<-parentsSTD[which(parentsSTD[,"hits"]==1),] 
  parentsSTD 
 
 
### ----PLOT-BREAK---- ### 
 
 
# create empty matrix for plotting unambiguous matches of STD features to tDB standards ## 
  pBlotter<-matrix(nrow=nSTDs,ncol=2) 
  colnames(pBlotter)<-c("mz","rt") 
 
  solved<-STD[0,0] 
 
### ----/PLOT-BREAK---- ### 
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  # fills matchedParents with data from unambiguous matches 
  # for each uniqueID, where there is a single unambiguous match to the STD matrix, fill 
retention/intensity data from that matched feature #  
  # i was having trouble with this, because i'd like to specifically target the id number of each 
column in parentsStd ((parentsSTD[,"i"]==1)).  However, "i" is not valid.  So i'm relying on 
ordering.... 
    for(i in 1:nSTDs){ 
      temp<-parentsSTD[which(parentsSTD[,i]==1),] 
    # skips i for which pMatches = NA (ie missing parent values in uniqueID # 
      if (is.na(matchedParents["pMatches",i]==1)==TRUE) next  
    # if only 1 single match exists for a given tDB standard parent, report that retention time 
(from STD peak list) as the RT of the tDB parent # 
      if (matchedParents["pMatches",i]==1) matchedParents["pRetention",i]<-temp[1,"rt"] else 
matchedParents["pRetention",i]<-NA 
    # if only 1 single match exists for a given tDB standard parent, report that intensity (from 
STD peak list) as the RT of the tDB parent # 
    # see if this replacement can be combined with the above, possibly with the & operator # 
      if (matchedParents["pMatches",i]==1) matchedParents["pIntensity",i]<-temp[1,"into"] else 
matchedParents["pIntensity",i]<-NA    
     
### ----PLOT-BREAK---- ### 
 
    # if only 1 single match exists for a given tDB standard parent, report that mass and RT (from 
STD peak list) as uniquely ID'd in the blotter vector (for plotting) # 
      if (matchedParents["pMatches",i]==1) (pBlotter[i,"mz"]<-temp[1,"mz"])&(pBlotter[i,"rt"]<-
temp[1,"rt"])  else NULL 
        
### ----/PLOT-BREAK---- ###  
 
    # insert holding matrix for ambiguous hits here?????  As above pBlotter????? 
    # if the number of matches reported (column sum) for any tDB standard is greater than 1, and if 
the tiebreak function has been implemented by the user, run the tiebreak function # 
      if (matchedParents["pMatches",i]>1 & pTie==1) matchedParents<-tiebreaker(i, temp, factor, 
matchedParents) else NULL  
 
### ----PLOT-BREAK---- ### 
    
    # if the number of matches reported (column sum) for any tDB standard is greater than 1, and if 
the tiebreak function has been implemented by the user, run the tiebreak function # 
      if (matchedParents["pMatches",i]>1 & pTie==1) solved<-rbind(solved,(tiebreaker.plot(i, temp, 
factor, pBlotter, solved))) else NULL     
       
### ----/PLOT-BREAK---- ### 
  
 } 
   
  # binds parent matches and related retention and intensity information to the uniqueID matrix # 
    report<-rbind(uniqueID,matchedParents) 
  # in pMatches row, 1 means an unambiguous match has been made from the STD dataset.  >1 means 
isobaric species (within the given ppm range) have been detected in the STDS matrix.  0 means no 
match was found for the mass #  
    report 
 
 
### /STEP 3 ###  
 
 
### -----------------------------------------------------------------------------------------------
----------------- ### 
 
 
### STEP 4: PLOTTING OUT AND RESET ###  
   
  ## update plot with uniquely ID'd parent masses - puts a smaller dot over ID'ing as unique the 
existing one ID'ing a match. 
  par (new=T) 
  plot(pBlotter[,"rt"],pBlotter[,"mz"], col=3, xlab="", ylab="", pch=20, xlim=c(xlim.min,xlim.max), 
ylim=c(ylim.min,ylim.max)) 
  ## update plot with uniquely ID'd parent masses that were resolved in the tiebreaker function # 
  if (pTie==1) par (new=T) else NULL 
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  if (pTie==1) (plot(solved[,"rt"],solved[,"mz"], col=3, xlab="", ylab="", pch=20, 
xlim=c(xlim.min,xlim.max), ylim=c(ylim.min,ylim.max))) else NULL 
   
    par(mfrow=c(2,1)) 
 
  ## update ASSIGNMENT plot with uniquely ID'd parent masses - puts a smaller dot over ID'ing as 
unique the existing one ID'ing a match. 
  plot(pBlotter[,"rt"],pBlotter[,"mz"], col=3, pch=20, xlim=c(xlim.min,xlim.max), 
ylim=c(ylim.min,ylim.max), xlab="retention time", ylab="m/z", main="Assignments") 
  ## update plot with uniquely ID'd parent masses that were resolved in the tiebreaker function # 
  if (pTie==1) par (new=T) else NULL 
  if (pTie==1) (plot(solved[,"rt"],solved[,"mz"], col=3, xlab="", ylab="", pch=20, 
xlim=c(xlim.min,xlim.max), ylim=c(ylim.min,ylim.max))) else NULL 
   
 
  # creates m/z vs rt plot of the peaklist #   
    plot(STD[,"rt"],STD[,"mz"], col=colours()[230], xlim=c(xlim.min,xlim.max), 
ylim=c(ylim.min,ylim.max),xlab="retention time", ylab="m/z", main="STD mix") 
 
# old code 
#  # fades non-ID'd features # 
#  # pBlotter.unmatched<-STD[(which(possibleParents[,"hits"]==1)),] 
#  # par (new=T) 
#  # plot(pBlotter.ambiguous[,"rt"],pBlotter.ambiguous[,"mz"], col="red", xlab="", ylab="", pch=16, 
xlim=c(xlim.min,xlim.max), ylim=c(ylim.min,ylim.max)) 
#  # par (new=T) 
#   
#  # clean up plot 
#   
#    plot(STD[,"rt"],STD[,"mz"], col=colors()[230], xlim=c(xlim.min,xlim.max), 
ylim=c(ylim.min,ylim.max),xlab="retention time", ylab="m/z", main="STD mix") 
#    par (new=T) 
#    plot(pBlotter[,"rt"],pBlotter[,"mz"], col=1, xlab="", ylab="", pch=16, 
xlim=c(xlim.min,xlim.max), ylim=c(ylim.min,ylim.max)) 
#    par (new=T) 
#    plot(pBlotter[,"rt"],pBlotter[,"mz"], col=3, xlab="", ylab="", pch=20, 
xlim=c(xlim.min,xlim.max), ylim=c(ylim.min,ylim.max)) 
#    if (pTie==1) par (new=T) else NULL 
#    if (pTie==1) (plot(solved[,"rt"],solved[,"mz"], col=1, xlab="", ylab="", pch=16, 
xlim=c(xlim.min,xlim.max), ylim=c(ylim.min,ylim.max))) else NULL 
#    if (pTie==1) par (new=T) else NULL 
#    if (pTie==1) (plot(solved[,"rt"],solved[,"mz"], col=3, xlab="", ylab="", pch=20, 
xlim=c(xlim.min,xlim.max), ylim=c(ylim.min,ylim.max))) else NULL 
 
 
### /STEP 4 ###  
 
 
### -----------------------------------------------------------------------------------------------
----------------- ### 
 
 
### STEP 5: SUBLIST MATCHING ### 
### match all STD feature masses (m/z's) to a list of fragments, adducts, or adduct fragments and 
return a matrix of possible hits # 
 
# matchmaker2 finds matching values in matchR for each value in matchE, with a specified window of 
error, and adds a nested loop for searching fragment groups 
    matchmaker2<-function(matchE,matchR,window,idList.colnames, nEntries, w){  
 
#####matchE<-STD[,"mz"]   
#####matchR<-tDB[,"frag"]  #####matchR<-tDB[,"adducts"] 
#####window<-xfragppm  #####window<-xadductppm 
#####idList.colnames<-uniqueID["id",] 
#####nEntries<-"tFrags" #####nEntries<-"tAdducts" 
#####w<-x #####w<-y #####w<-z 
 
  # primary is a matrix derived from the mz column of the STD matrix.  Column 1 is minus error, and 
column2 is plus error # 
    primary<- matrix(nrow=length(matchE),ncol=2,dimnames=list(NULL,c("min","max"))) 
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  # this loop calculates the error to be applied to each mz entry in STD and fills the empty 
primary matrix explained above # 
    for(i in 1:length(matchE)){ 
   # calculates ppm error #  
    # there may be a way to generalize this so that it can be used for nonppm calcs - split error 
out as a variable function? 
     error<-((window/10^6)*matchE[i]) 
     less<-(matchE[i]-error) 
      more<-(matchE[i]+error) 
      primary[i,1]<-less  
      primary[i,2]<-more 
  } 
   
  # this section matches and reports hits only (y/n = 1/0) # 
  # creates the empty 1 column matrix that will be filled with parent match hits between the tDB 
and STD mzs given the supplied error # 
  MatchedList<- matrix(nrow=length(matchE),ncol=1,dimnames=list(NULL,c("hits"))) 
   
  # fills the above table, replacing NA with digits where matching values were found (1) or not (0) 
# 
  for(i in 1:length(matchE)){ 
    temp<-which(matchR >= primary[i,1] & matchR <= primary[i,2]) 
    MatchedList[i,1]<-length(temp) 
  } 
   
  # this section matches, as above, but reports sorted results # 
  # creates a matrix where nSTDs = columns and length(STD) = rows.  Matches will be ID'd and 
assigned to one of the database standards in this list # #  
  # old version = idList<- matrix(nrow=length(matchE), ncol=nSTDs) 
    idList<- matrix(nrow=length(matchE), ncol=length(idList.colnames)) 
    colnames(idList)<-idList.colnames 
 
  # for every feature in the STD matrix # 
    for(i in 1:length(matchE)){ 
 
  # for every standard in the tDB (uniqueID) 
    for(z in 1:nSTDs){ 
      # checks that the STD in question has any associated fragments.  If not, this inner loop 
continues for the NEXT value of z # 
        if (uniqueID[nEntries,z]==0) next else newVec<-(w[[z]]) 
      # stores frag list, which appears to be itself a vector, for tDB standard "z" in newVec # 
      #newVec<-(w[[z]]) 
        temp<-which(newVec >= primary[i,1] & newVec <= primary[i,2]) 
    idList[i,z]<-length(temp) 
    }  
  } 
 
 
  # combines output from both rounds of matching (hits and sorted values) # 
  # this step makes Ts and Fs into 1s and 0s.  Intended for later addition #  
    FullList<-cbind(MatchedList,idList) 
   
  return(FullList) 
} 
 
 
### /STEP 5 ###  
 
 
### -----------------------------------------------------------------------------------------------
----------------- ### 
 
 
### STEP 6: PREFORM MATCHING FOR FRAGMENTS, ADDUCTS, AND ADDUCT FRAGMENTS ### 
 
 
# runs the matching function with respect to fragments # 
  possibleFragments<-matchmaker2(STD[,"mz"], tDB[,"frag"], xfragppm, uniqueID["id",], "tFrags", x) 
# runs the matching function with respect to adducts # 
  possibleAdducts<-matchmaker2(STD[,"mz"], tDB[,"adducts"], xadductppm, uniqueID["id",], 
"tAdducts", y) 
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# runs the matching function with respect to adduct fragments # 
  possibleAdductfragments<-matchmaker2(STD[,"mz"], tDB[,"adductfrags"], xadductppm, 
uniqueID["id",], "tAdductfrags", z) 
 
 
### /STEP 6 ###  
 
 
### -----------------------------------------------------------------------------------------------
----------------- ### 
 
 
### STEP 7: REDUCE MATCHED SUBLIST DATASETS TO INCLUDE MATCHES ONLY ### 
 
# reduces each possibleXXXX matrix to only those entries with a hit to the STD matrix # 
  #hitlist<-possibleFragments[which(possibleFragments[,"hits"]>=1),] 
  hitlist.x<-possibleFragments[which(possibleFragments[,"hits"]>=1),] 
  hitlist.y<-possibleAdducts[which(possibleAdducts[,"hits"]>=1),] 
  hitlist.z<-possibleAdductfragments[which(possibleAdductfragments[,"hits"]>=1),] 
 
# removes hits column so the values can be input to the matchedXXXX matrix, created below #   
  #hitlist2<-hitlist[,-1] 
  hitlist.x2<-hitlist.x[,-1] 
  hitlist.y2<-hitlist.y[,-1] 
  hitlist.z2<-hitlist.z[,-1] 
 
# binds STD matrix to possibleXXXX hitlist (moves "hits" column to end of list), and eliminates 
nonmatches #  
   
  possibleFragments2<-possibleFragments[,-1] 
  hits.x<-possibleFragments[,"hits"] 
  fragmentsSTD<-cbind(possibleFragments2,STD,hits.x) 
 
  possibleAdducts2<-possibleAdducts[,-1] 
  hits.y<-possibleAdducts[,"hits"] 
  adductsSTD<-cbind(possibleAdducts2,STD,hits.y) 
 
  possibleAdductfragments2<-possibleAdductfragments[,-1] 
  hits.z<-possibleAdductfragments[,"hits"] 
  adductfragmentsSTD<-cbind(possibleAdductfragments2,STD,hits.z) 
 
# removes nonmatched rows (features) - used later for rematching 
   
  full.fragmentsSTD<-fragmentsSTD[which(fragmentsSTD[,"hits.x"]!=0),] 
  full.adductsSTD<-adductsSTD[which(adductsSTD[,"hits.y"]!=0),] 
  full.adductfragmentsSTD<-adductfragmentsSTD[which(adductfragmentsSTD[,"hits.z"]!=0),] 
 
 
 
### /STEP 7 ###  
 
 
### -----------------------------------------------------------------------------------------------
----------------- ### 
 
 
### STEP 8: REPORTING NUMBER OF MATCHES FROM SUBLIST MATCHING ### 
 
# creates a matrix resembling uniqueID for reporting matches of tDB standards to the STD matrix.  
Where results are not ambiguous (no more than 1 match) RT and intensity of the matched STD parent 
feature is reported # 
   
  matchedFragments<-matrix(nrow=3,ncol=length(uniqueID["id",])) 
  colnames(matchedFragments)<-uniqueID["id",] 
  rownames(matchedFragments)<-c("xMatches","xRetention","xIntensity") 
 
  matchedAdducts<-matrix(nrow=3,ncol=length(uniqueID["id",])) 
  colnames(matchedAdducts)<-uniqueID["id",] 
  rownames(matchedAdducts)<-c("yMatches","yRetention","yIntensity") 
 
  matchedAdductfragments<-matrix(nrow=3,ncol=length(uniqueID["id",])) 
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  colnames(matchedAdductfragments)<-uniqueID["id",] 
  rownames(matchedAdductfragments)<-c("zMatches","zRetention","zIntensity") 
 
# sums each column of the fragment hitlist2 matrix, stores results in matchedXXXX as the nMatches 
row # 
   
  matchedFragments["xMatches",]<-colSums (hitlist.x2, na.rm = FALSE, dims = 1) 
  matchedAdducts["yMatches",]<-colSums (hitlist.y2, na.rm = FALSE, dims = 1) 
  matchedAdductfragments["zMatches",]<-colSums (hitlist.z2, na.rm = FALSE, dims = 1) 
 
### /STEP 8 ###  
 
 
### -----------------------------------------------------------------------------------------------
----------------- ### 
 
 
### STEP 9: GROUPING AND DETERMINATION OF BEST ASSIGNMENT FOR SUBLIST MATCHING ###  
 
# this step ignores previous parent assignments and attempts to independently match m/z groups in 
the peak list to fragment vectors (or v/v??) # 
# completely possible that m/z's assigned as parents (or fragments, adducts, etc.) in above steps 
are reassigned as fragments (adducts, etc.) here - truely independent look at the data # 
 
#things called on: 
 
grouper<-function(uniqueID, generalSTD, xdeltaRT, uniqueIDrow){  
 
# creates the empty matrix for reporting best frag group matches #   
  xMatches<-matrix(nrow=4,ncol=length(uniqueID["id",])) 
  colnames(xMatches)<-uniqueID["id",] 
  rownames(xMatches)<-cbind("xMatches", "xRetention", "xIntensity", "xMatched%") 
 
# for each standard in the tDB... # 
  for(i in 1:nSTDs){ 
#i=4 
  # retrieves the number of databased fragments for the standard compound targeted # 
    max.x<-uniqueID[uniqueIDrow,i] 
  # checks that fragments exist for matching.  If so, reduces generalSTD table to relevant hits 
only.  If not, goes to NEXT i (so NA's don't break the loop). # 
    if (uniqueID[uniqueIDrow,i]==0) next else generalSTDi<-generalSTD[(which(generalSTD[,i]!=0)),] 
 
  # if no matches are found, report "0" as number of matches and continue to next i 
  # this line is difficult to test - should validate once loop is finished # 
    if (length(generalSTDi[,i])==0) xMatches["xMatches",i]<-0 & next else NULL 
  # if only 1 match is found, report it immediatly.  No need to do further sorting to establish 
best match. # 
    if (length(generalSTDi[,i])==1) (xMatches["xMatches",i]<-1)&(xMatches["xRetention",i]<-
generalSTDi[,"rt"])&(xMatches["xIntensity",i]<-generalSTDi[,"into"]) else NULL 
 
  # loop only progresses to here if more than 1 match exists, requiring sorting # 
 
### histogram approach ### 
# creates a histogram distribution of number of matched fragments per bin of retention time # 
# rt bin size reflects the original window of error specified up front.  the absolute bin size is 
calculated by applying this window to the entire rt spread # 
# this method is convenient, but has the disadvantage that by imposing hard limits (bins) - 
splitting of rt groups may occur # 
# foo<-hist(generalSTDi[,"rt"],((max(generalSTDi[,"rt"])-min(generalSTDi[,"rt"]))/(xdeltaRT/60))) 
# max(foo$counts) 
### 
 
### moving match approach ### 
 
  # this approach matches each rt in fragmentSTDi to itself and all others, effectivly moving the 
window along each matched fragment.  This way the match that includes the most additional matches 
within its rt window can be selected, and peak splitting is negated # 
 
  # parameters for matching 
    matchE<-generalSTDi[,"rt"] 
    matchR<-generalSTDi[,"rt"] 



 Appendix 5  
 

 291 

    window<-xdeltaRT 
    idList.colnames<-uniqueID["id",] 
 
  # primary is a matrix of max and min rt values (from the generalSTDi matrix).  Column 1 is minus 
error, and column2 is plus error # 
    primary<- matrix(nrow=length(matchE),ncol=2,dimnames=list(NULL,c("min","max"))) 
  # this loop calculates the error to be applied to each rt entry in generalSTDi and fills the 
empty primary matrix explained above # 
    for(j in 1:length(matchE)){ 
    # this needs to be conditional if rt is to be in seconds OR in minutes.... # 
      error<-((window/60)/2) 
 less<-(matchE[j]-error) 
      more<-(matchE[j]+error) 
      primary[j,1]<-less  
      primary[j,2]<-more 
    } 
   
  # this section matches and reports hits only (y/n = 1/0) # 
  # creates the empty 1 column matrix that will be filled with match hits between the tDB and STD 
rts given the supplied error window # 
    MatchedList<- matrix(nrow=length(matchE),ncol=1,dimnames=list(NULL,c("rtMatches"))) 
   
  # fills the above table, replacing NA with digits where matching values were found (1) or not (0) 
# 
    for(b in 1:length(matchE)){ 
      temp<-which(matchR >= primary[b,1] & matchR <= primary[b,2]) 
      MatchedList[b,1]<-length(temp) 
    } 
 
    generalSTDi<-cbind(generalSTDi,MatchedList) 
 
# test ambiguous match seeking code by changing rt of one match 
# generalSTDi[4,"rt"]<-5.00 
 
  # ambiguity must be resolved here 
  # if all matches are found to be without a group, no one can be selected as the best without 
additional criteria # 
  # if each match is its own group (1, reported in rtMatches), the sum of rtMatches will == the 
length of the column 
    if (sum(generalSTDi[,"rtMatches"])==length(generalSTDi[,"rtMatches"])) next else NULL 
 
# reports the number of matched features in the largest group(s) 
# does not tell user if there are multiple groups with that number of matched features - that is 
resolved below 
  matches<-(max(generalSTDi[,"rtMatches"])) 
 
# filling table of results # 
  xMatches["xMatches",i]<-matches 
 
# what if two groups are tied for highest number of matches? 
# validation that all features marked with the max # of matches match in RT - OR, validate that 
there are a max of X features in a group with max X matches 
# if the median rt value of all matches in the highest-match# group matches all values 
individually, +/- the given RT error, the group is homogenious.  Otherwise, it is ambiguous, and no 
best assignment can be made #  
# stores median rt of highest-match# group as "med"   
  med<-median(generalSTDi[(which(generalSTDi[,"rtMatches"]==matches)),"rt"]) 
# checks that all matches belong to the same rt group 
  rt.upper<-sum((med+(xdeltaRT/60))<generalSTDi[(which(generalSTDi[,"rtMatches"]==matches)),"rt"]) 
  rt.lower<-sum((med-(xdeltaRT/60))>generalSTDi[(which(generalSTDi[,"rtMatches"]==matches)),"rt"])   
# if sum of rows for both tests = 0, all matches belong to same rt group - proceed with assignment.  
If not, multiple "best" groups exist (ambiguity).  Do not make assignment. 
  if ((rt.upper+rt.lower)!=0) next else NULL 
 
# filling table of results with assignments # 
# fills median retention time for all fragments in best group 
  xMatches["xRetention",i]<-median(generalSTDi[(which(generalSTDi[,"rtMatches"]==matches)),"rt"]) 
# fills summed intensity for all fragments in best group 
  xMatches["xIntensity",i]<-sum(generalSTDi[(which(generalSTDi[,"rtMatches"]==matches)),"into"]) 
  xMatches 
  } 
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# calculates % fragments matched 
# this should be modified to calculate % only where assignments have been made.  Currently not the 
case! 
  xMatches["xMatched%",]<-((xMatches["xMatches",])/(uniqueID[uniqueIDrow,]))*100 
# write NA over % matched where no assignment has been made 
  for(i in 1:nSTDs){ 
    if (is.na(xMatches["xRetention",i])) (xMatches["xMatched%",i]<-NA) else NULL 
  } 
 
  return(xMatches) 
} 
 
 
 xMatches<-grouper(uniqueID, fragmentsSTD, xdeltaRT, "tFrags") 
 yMatches<-grouper(uniqueID, adductsSTD, xdeltaRT, "tAdducts") 
  # applies a bandaid to change row names - this could be delt with properly in the above function, 
but would require cautious changes 
    row.names(yMatches)<-c("yMatches","yRetention","yIntensity","yMatched%") 
 zMatches<-grouper(uniqueID, adductfragmentsSTD, xdeltaRT, "tAdductfrags") 
  # applies a bandaid to change row names - this could be delt with properly in the above function, 
but would require cautious changes 
    row.names(zMatches)<-c("zMatches","zRetention","zIntensity","zMatched%") 
 
 
# binds new data independent fragment matching to report 
  report<-rbind(uniqueID,matchedParents, xMatches, yMatches, zMatches) 
  report 
 
### /STEP 9 ###  
 
 
### -----------------------------------------------------------------------------------------------
----------------- ### 
 
 
### STEP 10: FUNCTION FOR DECIDING WHICH ASSIGNMENT IS BEST BY TALLYING TOTAL HITS 
 
decisionsdecisions<-function(i,matchedParents,xMatches,yMatches,zMatches){  
 
#i=15 
  consensus.rt<-
rbind(matchedParents["pRetention",],xMatches["xRetention",],yMatches["yRetention",],zMatches["zRete
ntion",]) 
  # omit results where no assignments were made at all  
  if (sum(consensus.rt[,i], na.rm=T)==0) next else NULL 
 
  assignments<-na.omit(consensus.rt[,i]) 
 
# creates a reporting matrix for rematching tally 
    thedecider<- matrix(nrow=9,ncol=length(assignments)) 
      rownames(thedecider)<-
c("assignment","pRematch","xRematch","yRematch","zRematch","pRematchInto","xRematchInto","yRematchI
nto","zRematchInto") 
      thedecider["assignment",]<-assignments 
 
# rematches parents, going back to the full parentsSTD table (w/o ambiguous matches removed) 
  for (k in 1:length(assignments)){ 
  #k=2 
    assignments[k] 
    # returns all parent hits for tDB standard i      
      pHits<-full.parentsSTD[which(full.parentsSTD[,i]==1),] 
    # sums number of matches in total parent match list (with ambiguous matches retained) 
      rematches<-sum((pHits[,"rt"]<(assignments[k]+(xdeltaRT/60)))&(pHits[,"rt"]>(assignments[k]-
(xdeltaRT/60)))) 
    # reports # of matches to the tested assignment in the parents row 
      thedecider["pRematch",k]<-rematches 
    # something to account for new intensity values must go here - i think this code works, but 
have not validated it. 
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      newInto<-
pHits[which(((pHits[,"rt"]<(assignments[k]+(xdeltaRT/60)))&(pHits[,"rt"]>(assignments[k]-
(xdeltaRT/60))))),] 
      newInto<-newInto[,"into"] 
      thedecider["pRematchInto",k]<-sum(newInto) 
  }    
# rematches fragments, going back to the full fragmentsSTD table (w/o ambiguous matches removed) 
  for (k in 1:length(assignments)){ 
  #k=2 
    assignments[k] 
    # returns all fragment hits for tDB standard i      
      xHits<-full.fragmentsSTD[which(full.fragmentsSTD[,i]==1),] 
    # sums number of matches in total parent match list (with ambiguous matches retained) 
      rematches<-sum((xHits[,"rt"]<(assignments[k]+(xdeltaRT/60)))&(xHits[,"rt"]>(assignments[k]-
(xdeltaRT/60)))) 
    # reports # of matches to the tested assignment in the parents row 
      thedecider["xRematch",k]<-rematches 
    # something to account for new intensity values must go here - i think this code works, but 
have not validated it. 
      newInto<-
xHits[which(((xHits[,"rt"]<(assignments[k]+(xdeltaRT/60)))&(xHits[,"rt"]>(assignments[k]-
(xdeltaRT/60))))),] 
      newInto<-newInto[,"into"] 
      thedecider["xRematchInto",k]<-sum(newInto) 
  }  
# rematches adducts, going back to the full adductsSTD table (w/o ambiguous matches removed) 
  for (k in 1:length(assignments)){ 
  #k=2 
    assignments[k] 
    # returns all adduct hits for tDB standard i      
      yHits<-full.adductsSTD[which(full.adductsSTD[,i]==1),] 
    # sums number of matches in total parent match list (with ambiguous matches retained) 
      rematches<-sum((yHits[,"rt"]<(assignments[k]+(xdeltaRT/60)))&(yHits[,"rt"]>(assignments[k]-
(xdeltaRT/60)))) 
    # reports # of matches to the tested assignment in the parents row 
      thedecider["yRematch",k]<-rematches 
    # something to account for new intensity values must go here - i think this code works, but 
have not validated it. 
      newInto<-
yHits[which(((yHits[,"rt"]<(assignments[k]+(xdeltaRT/60)))&(yHits[,"rt"]>(assignments[k]-
(xdeltaRT/60))))),] 
      newInto<-newInto[,"into"] 
      thedecider["yRematchInto",k]<-sum(newInto) 
  }  
 
# rematches adductfrags, going back to the full adductsSTD table (w/o ambiguous matches removed) 
  for (k in 1:length(assignments)){ 
  #k=2 
    assignments[k] 
    # returns all adduct hits for tDB standard i      
      zHits<-full.adductfragmentsSTD[which(full.adductfragmentsSTD[,i]==1),] 
    # sums number of matches in total parent match list (with ambiguous matches retained) 
      rematches<-sum((zHits[,"rt"]<(assignments[k]+(xdeltaRT/60)))&(zHits[,"rt"]>(assignments[k]-
(xdeltaRT/60)))) 
    # reports # of matches to the tested assignment in the parents row 
      thedecider["zRematch",k]<-rematches 
    # something to account for new intensity values must go here - i think this code works, but 
have not validated it. 
      newInto<-
zHits[which(((zHits[,"rt"]<(assignments[k]+(xdeltaRT/60)))&(zHits[,"rt"]>(assignments[k]-
(xdeltaRT/60))))),] 
      newInto<-newInto[,"into"] 
      thedecider["zRematchInto",k]<-sum(newInto) 
  }  
 
# sum of matches 
thedecider<-rbind(thedecider, (thedecider[2,]+thedecider[3,]+thedecider[4,]+thedecider[5,])) 
# calculates highest number of matches 
 
# calculates number of max matches - checks for ambiguity 
replicate.best<-sum(thedecider[10,]==max(thedecider[10,])) 
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# tiebreaker function could be used here to break ties 
 
#sets stillambig to false by default 
stillambig=F 
 
# check to see if ties are from same-group RT's in the original report.  If so, they form a partial 
consensus and would be expected to give similar results, minimicing ambiguity 
if (replicate.best>1) multiple<-assignments[which(thedecider[10,]==max(thedecider[10,]))] else NULL 
if (replicate.best>1) stillambig<-(max(abs(multiple-mean(multiple))))>(xdeltaRT/60) else NULL 
 
# if replicate.best>1, ambiguous result (multiple possibilities with same # total matches - could 
be from two near identical RT matches!) 
if (replicate.best>1 & stillambig==T) print(c(j,"still ambiguous after total retally")) else NULL 
if (replicate.best>1 & stillambig==T) decision<-NA else NULL 
 
if (replicate.best>1 & stillambig==F) (best<-which(thedecider[1,]==multiple[1])) else NULL 
# if replicate best = 1, report best result 
if (replicate.best==1) best<-which(thedecider[10,]==max(thedecider[10,])) else NULL 
if (replicate.best<1) print(c(j,"um... how did this happen?")) else NULL 
 
if (stillambig==F) (decision<-as.numeric(thedecider["assignment",best])) else NULL 
return(decision) 
} 
 
### /STEP 10 ###  
 
 
### -----------------------------------------------------------------------------------------------
----------------- ### 
 
 
### STEP 11: RESOLUTION OF AMBIGUOUS MATCHES BASED ON CONSENSUS DATA ### 
 
# replicates report so that new RT and intensity values can be added w/o changing the original 
report 
pre.report<-report 
write.csv(pre.report, file="prereport.csv")    
 
 
# reduces report matrix to only the RT results from p, x,y, and z  
  report.rt<-
rbind(report["pRetention",],report["xRetention",],report["yRetention",],report["zRetention",]) 
    rownames(report.rt)<-c("pRT","xRT","yRT","zRT") 
# if true, all RT values in that column agree (all matches agree, or no matches!). 
  consensus.rt<-((apply(report.rt,2,max,na.rm=T))-(apply(report.rt,2,min,na.rm=T)))<(xdeltaRT/60) 
 
 
# clean up step for consensus matches only - go back and see if any matches were not resolved to 
assignments.  Search for the concensus rt match in the ambiguous results and report. 
 
# reduces report matrix to only the #matches results from p, x,y, and z  
  report.matches<-
rbind(report["pMatches",],report["xMatches",],report["yMatches",],report["zMatches",]) 
    rownames(report.matches)<-c("pMatches","xMatches","yMatches","zMatches") 
 
# determines if # of assignments in a column equals the number of matched params 
noambiguity<-(colSums(report.matches>0, na.rm=T))==(colSums(report.rt!="NA", na.rm=T)) 
 
# replicates list with same col numbering as consensus.rt (and report), replaces all values with 
NA.   
retention<-consensus.rt 
retention[which(retention==T)]<-NA 
retention[which(retention==F)]<-NA 
 
for (i in 1:length(uniqueID["id",])){ 
# i=1 
j<-as.numeric(uniqueID["id",i]) 
 
# pre scenario 
 
# if there are no RT's reported at all, skip the standard 
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    if ((sum(report.rt[,i], na.rm=T))==0) next else NULL 
 
# scenario 1 
  # if there is RT concensus and no ambiguous matches, simply report the mean RT of the column 
    if (noambiguity[i]==T & consensus.rt[i]==T) retention[i]<-mean(report.rt[,i],na.rm=T) else NULL  
# scenario 2 
  # if there is RT concensus but ambiguous matches, first see if ambiguity can be resolved, then 
report mean RT and into values 
  # establish target consensus RT 
    if (noambiguity[i]==F & consensus.rt[i]==T) target<-mean(report.rt[,i],na.rm=T) else NULL  
 
  # create a blank tally so that script doesn't crash where no tally exists 
    tally<-((report.matches[,i])=="z") 
    tally["pMatches"]<-0 
    tally["xMatches"]<-0 
    tally["yMatches"]<-0 
    tally["zMatches"]<-0 
  # find whether the parent/frag/adduct/addfrag (or multiple) has the ambiguous matches 
    if (noambiguity[i]==F & consensus.rt[i]==T) (tally.match<-
((report.matches[,i])>0))&(tally.match[is.na(tally.match)]<-0) else NULL 
    if (noambiguity[i]==F & consensus.rt[i]==T) (tally.rt<-
((report.rt[,i])>0))&(tally.rt[is.na(tally.rt)]<-0) else NULL 
    if (noambiguity[i]==F & consensus.rt[i]==T) (tally<-tally.match-tally.rt) else NULL 
    if (noambiguity[i]==F & consensus.rt[i]==T & tally["pMatches"]==1) print(c(j,"requires parent 
rematch")) else NULL 
 
# scenario 2a - if the parent was ambiguous 
 
  # create a default rescheck 
    rescheck<-F 
  # if there is ambiguity in the parent, but no matches to help resolve in frag, adduct, adduct 
frag, then skip to next std. 
    if (noambiguity[i]==F & consensus.rt[i]==T & tally["pMatches"]==1) (rescheck<-
((tally.match["xMatches"]+tally.match["yMatches"]+tally.match["zMatches"])==0)) else NULL 
    if (noambiguity[i]==F & consensus.rt[i]==T & tally["pMatches"]==1 & rescheck==T) 
print(c(j,"however no definitive frag adduct or adduct frag matches to resolve parent ambiguity")) 
& next else NULL 
 
  # pulls all features with a match to the std(i) parent mass from the full list of matches 
    if (noambiguity[i]==F & consensus.rt[i]==T & tally["pMatches"]==1) (ambiguous<-
full.parentsSTD[which(full.parentsSTD[,i]==1),]) else NULL 
 
  # if one of the ambiguous feature matches is within the RT window, report the RT and intensity of 
that feature to the report (for record keeping) and report.rt (for inclusion in the RT averaging) 
    # creates a blank test 
      test<-0 
    if (noambiguity[i]==F & consensus.rt[i]==T & tally["pMatches"]==1) (test<-
min(abs((ambiguous[,"rt"])-(mean(report.rt[,i],na.rm=T))))) else NULL 
    if (noambiguity[i]==F & consensus.rt[i]==T & tally["pMatches"]==1 & test>(xdeltaRT/60)) 
print(c(j,"no additional parent matches")) else NULL 
    if (noambiguity[i]==F & consensus.rt[i]==T & tally["pMatches"]==1 & test<(xdeltaRT/60)) 
(report["pRetention",i]<-ambiguous[which((abs((ambiguous[,"rt"])-
(mean(report.rt[,i],na.rm=T))))<(xdeltaRT/60)),"rt"]) else NULL 
    if (noambiguity[i]==F & consensus.rt[i]==T & tally["pMatches"]==1 & test<(xdeltaRT/60)) 
(report.rt["pRT",i]<-ambiguous[which((abs((ambiguous[,"rt"])-
(mean(report.rt[,i],na.rm=T))))<(xdeltaRT/60)),"rt"]) else NULL 
    if (noambiguity[i]==F & consensus.rt[i]==T & tally["pMatches"]==1 & test<(xdeltaRT/60)) 
(report["pIntensity",i]<-ambiguous[which((abs((ambiguous[,"rt"])-
(mean(report.rt[,i],na.rm=T))))<(xdeltaRT/60)),"into"]) else NULL 
  # report mean RT (including newly picked ambiguous match) to the retention vector as a final 
answer.   
    if (noambiguity[i]==F & consensus.rt[i]==T & tally["pMatches"]==1) (retention[i]<-
mean(report.rt[,i],na.rm=T)) else NULL 
# scenario 2b - if the frag, adduct, or adduct frag was ambiguous (currently not delt with) 
    if (noambiguity[i]==F & consensus.rt[i]==T & tally["pMatches"]==0) print(c(j,"Ambiguous frag 
adduct or adduct frag list")) else NULL 
  # this fix copied from scenarios 3 and 4.  may not be appropriate here.   
    if (noambiguity[i]==F & consensus.rt[i]==T) retention[i]<-
decisionsdecisions(i,matchedParents,xMatches,yMatches,zMatches) else NULL  
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# scenario 3 - no absolute consensus, but no ambiguous sections either.  Action = rematch each best 
RT across all params to see which has most support.   
  if (noambiguity[i]==T & consensus.rt[i]==F) retention[i]<-
decisionsdecisions(i,matchedParents,xMatches,yMatches,zMatches) else NULL  
  if (noambiguity[i]==T & consensus.rt[i]==F) print(c(j,"indecision in RTs returned by parent, 
frag, adduct, and adductfrag matching")) else NULL  
 
# scenario 4 - no absolute consensus, some sections ambiguous.  Action is same as in #3.  However, 
this scenario may include resolution of ambiguity and filling to the report in the future. 
  if (noambiguity[i]==F & consensus.rt[i]==F) retention[i]<-
decisionsdecisions(i,matchedParents,xMatches,yMatches,zMatches) else NULL  
  if (noambiguity[i]==F & consensus.rt[i]==F) print(c(j,"indecision and ambiguity in RTs returned 
by parent, frag, adduct, and adductfrag matching")) else NULL  
 
 
 
} 
 
report<-rbind(report,retention) 
 
write.csv(report, file="report.csv")    
 
summary.report<-rbind(report["id",],report["tMZ",],report["retention",]) 
colnames(summary.report)<-c("id","tMZ","eRT") 
 
summary.report<-t(summary.report) 
colnames(summary.report)<-c("id","tMZ","eRT") 
write.csv(summary.report, file="summary_report.csv")   
 
 
 
 
 
### /STEP 11 ###  
 
 
### -----------------------------------------------------------------------------------------------
----------------- ### 
 
 
### STEP 12: PLOT PARENT AND SUBLIST MATCHING DATA ### 
 
# red (or non-black or grey) dots indicate duplicated entries in the tDB.   
par(mfrow=c(1,1)) 
 
## plotting - this could be done at once, but it looks more interesting if done one standard at a 
time # 
for(i in 1:nSTDs){ 
plot.new() 
plot(STD[,"rt"],STD[,"mz"], col=colors()[230], xlim=c(xlim.min,xlim.max), 
ylim=c(ylim.min,ylim.max),xlab="retention time", ylab="m/z", main="STD mix") 
 
#i=15 
# plots a horizontal line for "i" standard parents (red), frags (blue), adducts (red), and adduct 
fragments (orange)  representing the values to which emperical measurements from the peak list 
(STD) will be matched # 
  xBlotter<-x[[i]] 
  yBlotter<-y[[i]] 
  zBlotter<-z[[i]] 
 
# plots parent (red) 
  par (new=T) 
  # plots the individual tDB parent 
    abline(h=(uniqueID["tMZ",i]),col=2,lty=3, xlim=c(xlim.min,xlim.max), ylim=c(ylim.min,ylim.max)) 
  par (new=T) 
  # replots all points on each iteration, but colors black only those with a positive match to a 
tDB parent mass (sequentially, for each of nSTDs) 
    plot(STD[,"rt"],STD[,"mz"], col=possibleParents[,(1+i)], xlab="", ylab="", pch=16, 
xlim=c(xlim.min,xlim.max), ylim=c(ylim.min,ylim.max)) 
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# plots fragments (green) 
  # plots all fragments for tDB standard i 
    abline(h=(xBlotter[,"frag"]),col=3,lty=3, xlim=c(xlim.min,xlim.max), ylim=c(ylim.min,ylim.max)) 
  par (new=T) 
  # plots fragment matches 
    plot(STD[,"rt"],STD[,"mz"], col=fragmentsSTD[,(i)], xlab="", ylab="", pch=16, 
xlim=c(xlim.min,xlim.max), ylim=c(ylim.min,ylim.max)) 
   
#plots adducts (blue) 
  # plots all adducts for tDB standard i 
    abline(h=(yBlotter[,"adducts"]),col=4,lty=3, xlim=c(xlim.min,xlim.max), 
ylim=c(ylim.min,ylim.max)) 
  par (new=T) 
  # plots fragment matches 
    plot(STD[,"rt"],STD[,"mz"], col=adductsSTD[,(i)], xlab="", ylab="", pch=16, 
xlim=c(xlim.min,xlim.max), ylim=c(ylim.min,ylim.max)) 
   
#plots adductfragments 
  # plots all fragments for tDB standard i 
    abline(h=(zBlotter[,"adductfrags"]),col=5,lty=3, xlim=c(xlim.min,xlim.max), 
ylim=c(ylim.min,ylim.max)) 
  par (new=T) 
  # plots fragment matches 
    plot(STD[,"rt"],STD[,"mz"], col=adductfragmentsSTD[,(i)], xlab="", ylab="", pch=16, 
xlim=c(xlim.min,xlim.max), ylim=c(ylim.min,ylim.max)) 
 
#plots consensus RT 
  # plots vertical line at the decided consensus RT 
    abline(v=retention[i],col=1,lty=3, xlim=c(xlim.min,xlim.max), ylim=c(ylim.min,ylim.max)) 
 
var_filename <- uniqueID["id",i] 
dev.copy(png, paste(var_filename, '.png', sep='' )) 
dev.off() 
 
  Sys.sleep(.1) 
# sets the background to be white for plotting - this helps when saving the plots to png 
  par (new=F) 
#erase all plotting, replace with grey base full plot for next tDB standard 
  plot(STD[,"rt"],STD[,"mz"], col=colors()[230], xlim=c(xlim.min,xlim.max), 
ylim=c(ylim.min,ylim.max),xlab="retention time", ylab="m/z", main="STD mix") 
 
} 
 
 
### /STEP 12 ###  
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ABSTRACT: Understanding the metabolic processes asso-
ciated with aging is key to developing effective management
and treatment strategies for age-related diseases. We
investigated the metabolic profiles associated with age in a
Taiwanese and an American population. 1H NMR spectral
profiles were generated for urine specimens collected from the
Taiwanese Social Environment and Biomarkers of Aging Study
(SEBAS; n = 857; age 54−91 years) and the Mid-Life in the
USA study (MIDUS II; n = 1148; age 35−86 years).
Multivariate and univariate linear projection methods revealed some common age-related characteristics in urinary metabolite
profiles in the American and Taiwanese populations, as well as some distinctive features. In both cases, two metabolites4-cresyl
sulfate (4CS) and phenylacetylglutamine (PAG)were positively associated with age. In addition, creatine and β-hydroxy-β-
methylbutyrate (HMB) were negatively correlated with age in both populations (p < 4 × 10−6). These age-associated gradients in
creatine and HMB reflect decreasing muscle mass with age. The systematic increase in PAG and 4CS was confirmed using
ultraperformance liquid chromatography−mass spectrometry (UPLC−MS). Both are products of concerted microbial−
mammalian host cometabolism and indicate an age-related association with the balance of host−microbiome metabolism.
KEYWORDS: age, sex, metabolic profiling, NMR spectroscopy, 4-cresyl sulfate, phenylacetylglutamine

■ INTRODUCTION

The chronic nature of most diseases associated with aging,
coupled with the increased probability of elderly individuals
presenting with multiple pathologies requiring complex
therapeutic management strategies, makes analysis of age-
related conditions challenging. Aging is associated with a
general decline in physiological function, particularly in the
intestine, where a decrease in intestinal motility, a reduction in
the capacity of the immune system and changes in the
beneficial and hostile gut microbiota contribute to the general
decline in health. Many elegant studies in short-lived model
organisms such as the nematode worm Caenorhabditis elegans
and the mouse have contributed to our current understanding

of the aging process.1,2 However, the true complexity of aging
in human populations cannot be fully characterized in these
animal models, given the diverse exposure of humans to a
myriad of physical, environmental and social stressors.3,4 Thus,
in parallel to exploring experimental models of aging, there is a
need for research into the mechanisms and consequences of
aging in human populations. Epidemiological studies inves-
tigating population differences in the prevalence of diseases
across countries5−7 and between men and women8 offer a
particularly useful resource for studying aging.
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Metabolic phenotyping and metabolome-wide association
studies (MWAS) offer a powerful new means for discovering
molecular biomarkers and metabolic pathways that underlie
disease risk.9,10 This approach uses high-resolution spectro-
scopic techniques and mathematical modeling to generate a
molecular fingerprint of a biological specimen11 and can
provide a novel framework for identifying appropriate
therapeutic intervention strategies at the individual and
population level. A particular strength of metabolic phenotyp-
ing lies in its ability to reveal a representative overview of host,
extra-genomic and environmental contributions to metabolism.
Metabolic profiling approaches have been applied to studies

on age-associated diseases in both nonhuman2,12 and human
populations, with a focus on identifying age-related changes in
the biochemical composition of serum or plasma. Several
groups have reported decreased serum carnitines, acylcarnitines
and amino acids with age and increased free fatty acid levels in
aging rodents.13,14 In contrast, other studies have found an
increase in free serum carnitine with age in humans.15 While
plasma provides a useful system-level readout of the
physiological status of an organism at a given point in time,
urine provides time-averaged information on the metabolic
events that have occurred throughout the whole animal. The
metabolic signature of urine is influenced by the host’s genome
and physiology but also provides a window on extrinsic input
from dietary factors and the gut microbiome.
Here we apply a spectroscopic profiling approach to define

the metabolic signature of aging in two distinct human
populationsthe Taiwanese Social Environment and Bio-
markers of Aging Study (SEBAS)16 and the Mid-Life in the
USA (MIDUS II)17 cohortsusing 1H nuclear magnetic
resonance (NMR) spectroscopy and ultraperformance liquid
chromatography−mass spectrometry (UPLC−MS) of urine
specimens. Through this approach we identify the global
sources of metabolic variation and sex-specific elements within
the metabolic signatures of these geographically and culturally
distinct populations. In addition, we identify clear metabolic
correlates of biological aging in relation to declining muscle
metabolism and also age-related variation in the functionality of
several pathways involved in gut microbial−host metabolic
regulation.

■ METHODS AND MATERIALS

Description of Populations and Specimen Collections

SEBAS Study. A total of 857 urine specimens from the 2000
SEBAS study (age range 54−91; mean 68 years) were shipped
from the Lombardi Comprehensive Cancer Center, George-
town University to Imperial College London. This specimen set
comprised urine from 368 females and 489 males. Specimens
were stored at Imperial College at −80 °C prior to analysis.
MIDUS Study. A total of 1148 urine specimens from the

MIDUS II study (age range 35−86; mean 57 years) were
shipped from the Harlow laboratory, University of Wisconsin
and stored at −80 °C at Imperial College prior to analysis.
Participants included 651 females and 497 males. Both sample
sets were 12-h overnight urine collections.
The demographic characteristics of the SEBAS and MIDUS

participants are summarized in Table 1.
1H NMR Spectroscopic Analysis

Quality control (QC) aliquots for NMR analysis were prepared
by combining aliquots of urine from randomly selected
subgroups of individuals. For each cohort, SEBAS and

MIDUS, specimens were randomized and interspersed with
QC aliquots (using a total of 129 QC aliquots) in order to
assess data quality and variation over the analytical measure-
ment period. Specimens were prepared and spectra acquired
using in-house protocols18 adopting a standard one-dimen-
sional pulse sequence with suppression of the water resonance.
Briefly, urine specimens were prepared by the addition of
phosphate buffer made up in deuterium oxide containing 1 mM
3-(trimethylsilyl)-[2,2,3,3-2H4]-propionic acid sodium salt
(TSP) as an external reference and 2 mM sodium azide as a
bacteriocide. For each specimen, a standard one-dimensional
NMR spectrum was acquired with water peak suppression
using a standard pulse sequence (recycle delay (RD)-90°-t1-
90°-tm-90°-acquire free induction decay (FID)). A mixing time
(tm) of 100 ms was used and the RD was set at 2 s. The 90°
pulse length was approximately 12 μs and t1 was set to 3 μs. An
acquisition time per scan was 2.73 s and, for each specimen, 8
dummy scans were followed by 128 scans. The spectra were
collected into 64K data points using a spectral width of 20 ppm.
Preprocessing and Modeling of the NMR Spectral Data

Spectra were phased, corrected for baseline distortions and
referenced to the TSP signal at δ 0.00. The region between δ
4.70 and 6.20 containing the residual water resonance and the
urea peak was removed for all spectra. For the MIDUS spectral
data, the region containing the methyl resonance of acetate (δ
1.92) was removed owing to pretreatment of these aliquots
with acetate. The remaining spectral variables between δ 0.70−
4.70 and δ 6.20−10.00 were normalized to the sum of the
spectral integral prior to analysis using principal components
analysis (PCA). Data were analyzed with and without peak
alignment using the algorithm defined by Veselkov et al.19 The
main sources of variation in the data were identified and further
explored. Partial least-squares discriminant analysis (PLS-DA)
was applied to the data with and without the application of an
orthogonal filter to remove extraneous variation and to
establish metabolic patterns relating to a variety of participant
variables including age and sex. The predictive performance of
the models was assessed using a 7-fold cross-validation
approach and the Q2Y (goodness of prediction) values are
provided. Permutation testing (1000 permutations) has been
performed to ensure the validity of the PLS models. Linear
regression was used to measure the statistical significance of the
metabolic variations. A cutoff of p < 4 × 10−6 was used based

Table 1. Study Participant Information for SEBAS and
MIDUS

SEBAS MIDUS

Total specimens NMRa 857 1148
Total specimens MS 725 1196
Age range 54−91 35−86
Sex (female/male) 368/489 651/497

aThe number of urine specimens for NMR and MS differ due to the
number of specimens excluded based on the differing analytical
constraints of the two techniques. For NMR analysis, specimens were
excluded if the glucose levels or ethanol concentrations were too high,
which caused bias in the models. For MS specimens were excluded
where there was insufficient specimen volume or where specimens
contained a polyethylene glycol contaminant, possibly leached from
the storage vials. Outliers in the PCA scores plots of the NMR data
were evaluated using the Hotellings T ellipse and discarded where
appropriate in order to remove undue influence of artifacts on the
models.
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on the method described by Chadeau-Hyam et al.20 for
selecting a suitable level of significance in metabolome wide

association studies (MWAS) with an expected family wise error
rate of 5% for 13 000 variables.

Figure 1. PCA model of the urinary profiles of all SEBAS participants. Scores plots for (A) PC1 vs PC2 and (B) PC1 vs PC3 (% variance explained
in parentheses). Product of PC loadings with standard deviation of the entire data set, colored by the square of the PC shown for (C) PC1, (D) PC2
and (E) PC3.
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UPLC−MS Spectral Analysis

UPLC−MS analysis was performed to validate the NMR-
detected correlation of PAG and 4-cresyl sulfate with age and to
explore other possible age related variation in the urinary
metabolome using optimized protocols for urine metabolite
profiling.21 Briefly, urine specimens were prepared by dilution
(1:1) with water (Sigma, LC−MS grade), vortexed for ten
seconds, and centrifuged at 16 000× g for 10 min. Two
hundred microliters were aliquoted into 96-well 350 μL plates
(Waters Corporation, Milford, MA) with cap mats (VWR,
U.K.). A composite quality control (QC) aliquot was prepared
by combining 50 μL from 775 randomly selected SEBAS and
MIDUS specimens. The QC aliquot was subaliquoted to
minimize freeze−thaw cycle effects and stored frozen until
required for the analysis. Ten analyses of the QC aliquot were
performed at the beginning of the analytical run for system
conditioning. A single QC aliquot injection was performed at
10-aliquot intervals throughout the subsequent data acquisition
to provide data for the assessment of analytical reproducibility
including peak retention times and detector response. Addi-
tionally, five blanks were injected prior to the injection of QC-
conditioning aliquots in order to ensure that there was no
contamination from the UPLC system, and again at the end of
the experiment to ensure that specimen carryover was not
observed.
Metabolic profiling was performed on an Acquity UPLC

system (Waters Corp., Milford, MA) coupled to an LCT
Premier time-of-flight mass spectrometer (Waters Corp.,
Manchester, U.K.). UPLC−MS conditions were optimized in
terms of peak shape, reproducibility and retention times of
analytes. Chromatography was performed using an Acquity
HSS T3 column, 2.1 × 100 mm column (Waters Corp.,
Milford, MA) held at 40 °C. Separation was performed using
gradient elution with 0.1% (v/v) formic acid in H2O (A) and
0.1% (v/v) formic acid in ACN (B) at a flow rate of 0.5 mL/
min. Starting conditions were 99.9% A and 0.1% B for 1.0 min,
changing linearly to 15% B over the next 2 min, and then to
50% B over the next 3 min, and finally to 95% B in the next 3
min and kept for 1 min. Afterward the solvent composition
returned to starting conditions over 0.1 min, followed by re-
equilibration for 2 min prior to the next injection.
Mass spectrometry was performed using electrospray in both

positive and negative ionization modes (ESI+ and ESI−). The
capillary voltage was 3.2 kV (ESI+) and 2.4 kV (ESI−), cone
voltage was 35 V, desolvation temperature was 350 °C, and
source temperature was 120 °C. The cone gas flow rate was 25
L/h, and desolvation gas flow rate was 900 L/h. The LCT
Premier was operated in V optics mode with a scan time of 0.2
s and interscan delay of 0.01 s. For mass accuracy, a LockSpray
interface was used with a 20 μg/L leucine enkephalin
(555.2645 amu) solution (50/50 ACN/H2O with 0.1% v/v
formic acid) at 70 μL/min as the lock mass. Data were
collected in centroid mode with a scan range of 50−1000 m/z,
with lockmass scans collected every 15 s and averaged over 3
scans to perform mass correction.

Preprocessing and Modeling of the UPLC−MS Data

Since the system is not generally stable during the first
injections, the first 10 QC samples were used to ensure that
stability had been attained, after which the QC-conditioning
aliquots were excluded from further data processing. The rest of
the raw data (i.e., the target specimens plus the remaining QC
aliquots) within the run were converted to netCDF format

using the DataBridge tool implemented in MassLynx software
(Waters Corporation, Milford, MA).
The data were preprocessed using the freely available XCMS

software. The Centwave algorithm was used for peak picking
with a peak width window of 3−15 s, the m/z width for the
grouping was changed to 0.1 Da, the bandwidth parameter was
kept to default (30 s) for the first grouping and was
subsequently determined from the time deviation profile plot
after retention time correction. An output table was obtained at
the end comprising m/z, RT and intensity values of the
detected metabolite features in each specimen.
The data were then normalized in R with an in-house

script.22 The coefficient of variation (CV = standard deviation/
mean) values were calculated for all the intensities of
metabolite features (mz_Rt) in the QC samples analyzed
within the run (see Supporting Information for details). In the
generated data sets features with a CV higher than 30% in
replicated injections of the QC aliquots interspersed within the
run were removed. The output table was exported into SIMCA-
P+ 12.0.1 software (Umetrics, Umea,̊ Sweden) for multivariate
analysis. Principal component analysis (PCA), partial least-
squares-discriminant analysis (PLS-DA) and orthogonal
projection on latent structures-discriminant analysis (OPLS-
DA) were performed on all data.
Adjustment of Data Sets for Differential Age Ranges
between the SEBAS and MIDUS Studies

Owing to different age ranges between the two study
populations (SEBAS 54−91 years, mean 68 years; MIDUS
35−86 years, mean 57 years), auxiliary models were
constructed using a restricted age range that comprised the
overlap between the two studies (ages 54−86 years); the results
are reported in Supporting Information (Figures S3−S5).

■ RESULTS
The analytical platforms and methods were robust and reliable,
as indicated by the coefficients of variation for the quality
control specimens. Moreover, the analytical quality of the data
was good across both the NMR spectroscopy and the UPLC−
MS data, obtained for both the SEBAS and the MIDUS data
sets, with the one exception of ESI negative mode data for the
MIDUS cohort. No adjustment of the MS data for run order
was necessary. For the UPLC−MS in ESI+ ion mode, the
coefficients of variation for the QC samples were 25.2 ± 19.1
and 23 ± 17.7 for SEBAS and MIDUS, respectively. ESI− ion
mode gave similar results with CV values 31.8 ± 19.3 for the
SEBAS study. For the MIDUS study, the CV ESI− ion values
were high (50 ± 53.3); therefore, we refrained from further
analysis of the negative ionization mode data set.
Global Analysis of the 1H NMR Urine Data

The scores and loadings plots from the global PCA model for
the SEBAS data set (Figure 1) show that the first component
was dominated by creatinine and trimethylamine-N-oxide
(TMAO), which represented the greatest sources of variation
across the specimen set. Creatinine is a crude indicator of
muscle mass and can vary with sex and age. TMAO is
associated with consumption of certain fish and shellfish, where
it functions as an antifreeze agent and an osmolyte and has
been shown to be elevated in urine after consumption of diets
rich in phytoestrogens, for example, soy or miso. The variance
in the second component was dominated by metabolites related
to acetaminophen, namely acetaminophen glucuronide and
acetaminophen sulfate. Methylamines and a singlet (δ 4.41)
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tentatively assigned as dihydroxyacetone exerted the greatest
influence on the third principal component.

Similarly to the SEBAS data set, the first component of the
PCA model calculated for the MIDUS data set was strongly

Figure 2. PCA model of the urinary profiles of all MIDUS participants. Scores plots for (A) PC1 vs PC2 and (B) PC1 vs PC3 (% variance explained
in parentheses). Product of PC loadings with standard deviation of the entire data set, colored by the square of the PC shown for (C) PC1, (D) PC2
and (E) PC3.
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influenced by creatinine (Figure 2). In addition, acetaminophen
metabolites also made a substantial contribution to the first
component. Although the principal components are linear and
orthogonal, creatinine also dominated the second component.
When a metabolite is influential in the loadings explaining more
than one component, it is generally because the variance of that
metabolite is determined by more than one major source of
variation in the data set. The mammalian−microbial comet-
abolite hippurate accounted for the majority of the variance in
the third component of the MIDUS II model.
Since methylamines contributed strongly to the variation in

the SEBAS but not the MIDUS II data set, the urinary
concentrations of trimethylamine (TMA) and dimethylamine
(DMA) were calculated from the integrals at δ 2.88 and δ 2.72
respectively and found to be significantly different for the
Taiwanese (mean concentration TMA = 0.11 ± 0.11 mM and
DMA = 0.44 ± 0.46 mM) and American populations (mean

concentration TMA = 0.02 ± 0.01 mM and DMA = 0.15 ± 0.1
mM). Because of overlap with taurine and other metabolites,
the integral values for the TMAO signal were not calculated but
visual inspection of the data suggested that TMAO was found
in higher concentrations in the urine of Taiwanese participants.

Sex-related Differences in Urinary Metabolic Phenotypes

Because creatinine was one of the major sources of variation
found in both the SEBAS and MIDUS cohorts, and is known to
differ with both age and sex, the influence of sex on the NMR
derived metabolic profiles was characterized prior to focusing
on age-related metabolic differences. Using an unsupervised
PCA approach, no clear discrimination of specimens according
to sex could be seen for either the SEBAS or the MIDUS
cohorts (Supporting Information Figure S1) indicating that the
major sources of variation in urine composition across the
populations were not sex-related.

Figure 3. Linear regression analysis correlating 1H NMR spectral profiles of urine with sex. Covariance plots derived from linear regression analysis
for (A) SEBAS and (B) MIDUS, color-coded by significance. Significance determined by p < 4 × 10−6, the metabolome-wide significance level
(MWSL).
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OPLS-DA and linear regression analysis were used to
establish that systematic differences in the metabolic
phenotypes of men and women existed and to extract the
sex-dependent metabolic characteristics. For the SEBAS
specimen set (Supporting Information Figure S2A) a model

with a predictive value (Q2Y) of 0.236 for a 1 orthogonal, 1
aligned component model was obtained. As expected, the major
discriminating metabolite between men and women was
creatinine, which was found to be at systematically higher
concentrations in male urine. Conversely, females excreted

Figure 4. Age-related variation in SEBAS urinary metabolic profiles using linear regression. Covariance plots derived from linear regression analysis
for (A) all SEBAS participants and stratified by sex ((B) females and (C) males). Covariance plots are colored by significance (p < 4 × 10−6). HMB,
β-hydroxy-β-methylbutyrate; PAG, phenylacetylglutamine; 4CS, 4-cresyl-sulfate.
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greater amounts of creatine and citrate than males. This
difference is illustrated in the linear regression plot (Figure 3A).
Men were also found to excrete greater amounts of a
methylmalonate. Similar findings were noted in the OPLS-
DA analysis between sexes in the MIDUS II specimen set

(Supporting Information Figure S2B) with a Q2Y = 0.207 for a
1 aligned and 1 orthogonal component model. As with the
SEBAS cohort, men had higher urinary excretion of creatinine
and methylmalonate and lower citrate and creatine than
women. Additional sex-related differences in the US specimen

Figure 5. Age-related variation in MIDUS urinary metabolic profiles using linear regression. Covariance plots derived from linear regression analysis
for (A) all MIDUS participants and stratified by sex ((B) females and (C) males). Covariance plots are colored by significance (p < 4 × 10−6). 4PY,
N-methyl-4-pyridone-3-carboxamide; NMNA, N-methyl nicotinic acid; NMND, N-methyl nicotinamide; HMB, β-hydroxy-β-methylbutyrate; PAG,
phenylacetylglutamine; 4CS, 4-cresyl-sulfate.
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set included higher taurine in male urine and higher glycine and
4-cresyl sulfate concentrations in female urine (Figure 3B). The
urinary concentration of creatinine was calculated from the
CH2 signal of creatinine at δ 4.06. The mean creatinine
concentrations for men and women in the SEBAS population
were 10.25 ± 5.83 mM and 7.26 ± 4.72 mM respectively and
the values for the MIDUS participants were 11.07 ± 6.68 mM
(men) and 10.55 ± 6.55 mM (women).
When the data sets were adjusted to align the age range for

the SEBAS and MIDUS studies, some of the metabolites
identified as being significantly different between men and
women in the MIDUS II cohort were not sustained and the
urinary metabolites differentiating between men and women
were more similar for the two populations (Supporting
Information Figure S3). Higher urinary concentrations of
citrate and creatine were present in female urine from both
SEBAS and MIDUS participants, whereas males excreted
higher creatinine and methylmalonate. Additionally, for the
MIDUS study, taurine was present in higher concentration in
urine specimens collected from men, even after adjustment for
age range.

Age-related Differences in Urinary Metabolic Phenotypes

PLS models were calculated for the SEBAS and MIDUS
specimen sets independently for both the complete data sets
and the age-restricted data sets as summarized in Supporting
Information Table S1. Both the univariate linear regression and
the OPLS regression models indicated that there was significant
variation in the NMR metabolite profiles with age (summarized
in Table 2). Mean signal intensities for each metabolite
significantly associated with age have been calculated for
youngest and oldest participants (n = 100) in the SEBAS and
MIDUS studies and are provided in Supporting Information
Table S2. Overall, for the SEBAS study, age was directly
correlated with excretion of phenylacetylglutamine (PAG), 4-
cresyl sulfate (4CS) and glutamate and was inversely correlated
with excretion of creatine, β-hydroxy-β-methylbutyrate (HMB)
and guanidinoacetate (GAA) (Figure 4). Further models were
calculated for this data set after stratification by sex. For both
sexes, the gut-microbially derived metabolites, PAG and 4CS,

were directly correlated with age. There were also a few
differences between the sex-specific models: HMB was
inversely correlated with age for males, whereas females
showed a similar trend in HMB with age but the age-related
variation in urinary concentration was not significant. Women
excreted lower amounts of creatine with age.
Similar patterns were observed in the MIDUS study, with

PAG and 4CS excretion increasing and creatine, creatinine and
HMB excretion inversely correlated with age (Figure 5A). In
addition, scyllo-inositol, dimethyl-sulfone, N-methylnicotina-
mide (NMDA), N-methylnicotinic acid (NMNA), N-methyl-
4-pyridone-3-carboxamide (4PY) and ascorbate excretion were
also directly associated with age. Lower amounts of several
amino acids (alanine, glycine and lactate) were excreted with
increasing age. When stratified by sex, the females excreted
higher PAG, 4CS, scyllo-inositol, NMNA, NMND and
ascorbate as they aged and lower levels of HMB, creatine,
creatinine, lactate and glycine (Figure 5B). Fewer metabolites
were correlated with age in the male participants (Figure 5C),
with PAG and 4CS positively correlated with age while HMB,
creatinine and glycine were negatively correlated with age.
When the data sets were restricted to the same age range in

both the MIDUS and SEBAS populations (Supporting
Information Figures S4 and S5), the metabolites related to
age in the complete data set persisted for SEBAS. For the
MIDUS participants, the narrower age range reduced the
sample size (females n = 365; males n = 297) and thus the
predictive strength of the models. When male and female
participants were considered together, PAG and 4CS were
positively correlated with aging. In males, the higher
concentration of urinary PAG was the metabolic feature most
strongly associated with age. The analyses of urine from only
MIDUS females yielded a model with poor predictive strength
(Q2Y = 0.008); the results from this linear regression are not
shown in Supporting Information Figure S5.
UPLC−MS data indicated that the most discriminatory

metabolite for both populations was PAG (Figure 6), followed
by 4CS in the SEBAS population, confirming the results
generated via NMR. These UPLC−MS metabolite findings

Figure 6. S-plots of the OPLS models identifying UPLC−MS derived-metabolic features associated with aging for (A) SEBAS and (B) MIDUS
cohorts.
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were identified by comparison with authentic standards. For
SEBAS, PAG was discriminatory in both the negative (p(corr)
range 0.68−0.79) and positive (p(corr) range 0.72−0.82) ESI
mode profiles with a mean coefficient of variation of 13 ± 2.8%
and 15.5 ± 4.9%, respectively. For MIDUS, the CV values of
PAG were similar (16.1 ± 6.3%) in ESI+, but as noted earlier,
the ESI− data were of insufficient quality. 4CS was a
discriminatory metabolite in urine samples of the SEBAS
population analyzed in ESI− with a mean coefficient of
variation of 19.1 ± 7.0%. The S-plots for the OPLS models
constructed from the SEBAS (ESI−) and MIDUS (ESI+)
UPLC−MS data are provided in Figure 6.

■ DISCUSSION

Human metabolism is influenced by a wide variety of genetic
and environmental factors, giving rise to extensive variation in
the composition of biological tissues and fluids. Understanding
the nature of this variation both between individuals and across
populations is critical to attributing systematic changes in
metabolism to physiological processes or disease and remains a
challenging aspect of biomarker research. In this study, we
characterized metabolic signatures associated with sex and age
in representative national populations from Taiwan (SEBAS)
and the USA (MIDUS). A combination of NMR spectroscopy
and UPLC−MS analysis was used to probe similarities and
differences in urine specimens obtained from a large number of
middle-aged and older participants. The most notable source of
variation associated with age in both populations was attributed
to metabolites derived from gut microbial transformation of
aromatic amino acids, specifically PAG and 4CS.

Global Sources of Metabolic Variation

Major sources of variation within each data set were found to
be similar and comprised a mixture of endogenous, dietary, gut-
microbial and xenobiotic signatures from human metabolite
profiles. The general overview of the metabolic profiles
provided by principal components analysis identified metabo-
lites of dietary origin contributing to variation in the metabolic
profiles and differing across the two samples. In SEBAS, the
excretion of methylamines was a strong source of variation
while hippurate concentrations were highly variable in the
MIDUS II data set. Urinary dimethylamine (DMA) and
trimethylamine (TMA) are predominantly gut microbial
products of dietary choline metabolism.23 The high concen-
tration of TMA in fish is responsible for the characteristic odor.
The significant findings in the Taiwanese data may be indicative
of greater variation in fish/choline consumption across this
cohort, although TMAO is also known to be a component of
foods that are high in phytoestrogens such as soy and miso.
This interpretation is reasonable given that no dietary
restriction was required prior to specimen collection and that
fish, seafood and soy are major components of the Taiwanese
diet. Alternatively, choline biotransformation capacity encoded
in the microbiome may vary widely in this sample. TMAO is a
hepatic oxidation product of dietary amines, specifically TMA,
and was noted to vary across SEBAS participants in a similar
manner to its metabolic precursor. Recent work has
demonstrated an association between gut microbial-produced
TMA and TMAO and cardiovascular disease risk in humans,24

where TMAO was demonstrated to be pro-atherogenic.
A further indication that gut microbial capacity may differ

between the American and Taiwanese populations is the
difference in the urinary variation and concentration of

hippurate, a gut microbial−mammalian cometabolite, which is
formed from glycine conjugation of dietary or microbially
produced benzoic acid in the liver mitochondria. Hippurate was
found in higher concentrations in the MIDUS cohort than the
SEBAS cohort (SEBAS mean hippurate 1.4 ± 1.51 mM;
MIDUS 2.15 ± 1.71 mM) and was also responsible for a large
part of the variation in the PCA scores plot in the MIDUS but
not the SEBAS data set (Figures 1, 2). Typical urinary
concentrations of hippurate in a predominantly Caucasian
population have been reported as 1.83 ± 1.24 mM.25

Differences in the excretion pattern of hippurate and
methylamines may simply reflect dietary variationfor
example in the consumption of fish, coffee and other sources
of benzoic acid (a precursor of hippurate)or may partially
relate to population differences in the gut microbiota and/or
their activities. It has been shown that gut microbial
transformations can be influenced or entrained by diet. For
example, certain porphyranases from marine Bacteroidetes have
been acquired by the gut microbiota of Japanese populations
where sushi is a stable part of the diet but are absent from the
metagenome of Americans.26

From the principal components analysis, creatinine was
identified as the metabolite with the greatest variation across
both the Taiwanese and US samples. Creatinine is known to
differ between sexes, with age, with meat consumption, and to
be proportional to muscle mass. It is expected, therefore, that
creatinine might vary widely across these two large-scale sets of
specimens. Urinary creatinine was also strongly influenced by
sex, with higher concentrations found in men, in keeping with
the known influence of muscle mass.
Other metabolites that exhibited a high degree of variation

across the two data sets included xenobiotics such as
acetaminophen metabolites, namely acetaminophen-glucuro-
nide and acetaminophen-sulfate, an interesting reflection of
prevailing medical practice and medication use across two
nations. Acetaminophen metabolites (predominantly glucur-
onide and sulfate) emerged as strong contributors to the
coefficients of the first principal component of the MIDUS
PCA model and the second principal component of the SEBAS
model.

Sex-dependent Metabolites in the SEBAS and MIDUS
Samples

Variation attributable to sex was a major component of both
the SEBAS and the MIDUS data sets. On the whole the sex-
dependent urinary signature was similar for both data sets. As
expected, differences in urinary creatinine proved to be the
strongest discriminator with higher levels of urinary creatinine
excretion in men, reflecting their greater muscle mass.
Creatinine has also been shown to be directly correlated with
body weight.27 Metabolic profiling studies in Swiss (n = 84
women and 66 men),28 American (n = 30 women and 30
men)29 and Greek (n = 61 women and 61 men)30 populations
using 1H NMR spectroscopy and multivariate statistics have
also reported that creatinine dominates the models. Metabolic
profiling studies in rats and mice have also reported higher
urinary creatinine concentrations in male animals.31

Urinary citrate levels were higher in women than men, in
both the SEBAS and MIDUS samples, a finding also reported
in prior studies of Swiss, American and Greek populations.28−30

Higher urinary citrate levels in females have also been found in
animal studies, and it is known that urinary citrate excretion
increases during pregnancy along with 2-oxoglutarate and
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lactate.32 Urinary citrate excretion in women rises during
ovulation and following the administration of estrogens.33 A
comparison of the age-restricted samples suggested that the
citrate variation between men and women was stronger in
SEBAS (r = 0.24; p = 1.21 × 10−12) than in MIDUS (r = 0.19; p
= 5.99 × 10−7). The higher levels of urinary citrate in women is
thought to account for their lower risk of kidney stone
formation due to citrate’s inhibitory influence on calcium salt
crystallization. Conversely, hypocitraturia is an important risk
factor for kidney stone formation.34

Amino acid excretion was found to differ between sexes in
the MIDUS sample only. Greater taurine excretion was
observed in male participants while higher glycine excretion
was noted in females. Taurine is an amino acid associated with
meat intake and could thus reflect dietary preferences for meat
consumption,35 but increased excretion is also a consequence of
increased tissue catabolism and protein turnover, which is
known to be higher in men. Glycine is required for the
biosynthesis of creatine, which was also observed to be greater
in females than males. The higher excretion of glycine may
therefore reflect a greater requirement for creatine synthesis in
these females.
Methylmalonate (MMA) was present in greater amounts in

male than in female urine. This sex effect was consistent across
both the Taiwanese and US samples. This malonic acid
derivative is a precursor for succinyl-CoA and its synthesis
requires the cofactor, cobalamin (vitamin B12). Hence, urinary
MMA is known to be elevated in cobalamin-deficient
individuals. Cobalamin deficiency is most common in elderly
white males36 and has been associated with cognitive
impairment, anemia and peripheral neuropathy.37

Characterization of Age-associated Metabolites in the
SEBAS and MIDUS Samples

Age-related variation was apparent in both data sets. Two
notable metabolitesphenylacetylglutamine (PAG) and 4-
cresyl sulfate (4CS)were positively correlated with age, even
when the samples were stratified by sex. Another variation that
was consistent across both samples was lower excretion of β-
hydroxy-β-methylbutyrate (HMB) and creatine in older
participants.
Associations with age that were unique to the SEBAS

population included a positive relationship between urinary
glutamate and age and an inverse relationship with guanidino-
acetic acid (GAA). For MIDUS participants, ascorbate, N-
methylnicotinamide (NMND), N-methylnicotinic acid
(NMNA), N-methyl-4-pyridone-3-carboxamide (4PY), dimeth-
yl-sulfone and scyllo-inositol were directly associated with age,
while creatinine, lactate, alanine and glycine were inversely
correlated with age.
Through this molecular epidemiology approach we have

identified potential metabolic windows into multiple age-related
processes and diseases. These have great potential for
understanding the biochemical basis of disease processes,
early diagnostics and health implications of such diseases.
Specifically, the results are relevant to the biochemical events
associated with sarcopenia, neurological dysfunction and the
susceptibility to gastrointestinal infection.
Creatinine, creatine and HMB are likely to be associated with

muscle turnover, which declines with age. As discussed with
respect to sex differences in creatinine excretion, creatinine is an
index of muscle mass27 and aging is associated with progressive
loss of muscle performance and lean mass.38 In a metabolic

profiling study of aging in Labrador retriever dogs, the level of
urinary creatinine rose during development through young
adulthood, reached a maximum at 5−9 years old and then
declined in later life.39 Differences in creatinine concentration
with age can also arise from the age-dependent decrease in
renal plasma flow and glomerular filtration rate.40 However,
since the proximal tubules are responsible for the excretion of
10% of creatinine then although reduced glomerular filtration
rate may contribute to the association between age and
declining creatinine, it is unlikely to be the main factor
influencing this event. Muscle holds a vital role in whole-body
protein metabolism serving as a repository for protein and
amino acids and maintaining systemic protein synthesis.
Reasons for the decline in muscle mass with age include
reduced exercise, poor nutrition and loss of muscle integrity.
However, a definitive mechanism for muscle loss with age has
not yet been established. Maintenance of muscle mass can
protect against various pathologies and diseases. Age-related
muscle mass atrophy (sarcopenia) can have adverse effects on
protein metabolism, immune function, organ function and
wound healing.41 Proposed reasons for sarcopenia stem from a
host of intrinsic and extrinsic factors including decreased
hormonal activity.42 The inverse association between HMB and
age is also consistent with the progressive loss of muscle mass
with age and has previously been reported as characteristic of
differences between young (19−40 years) and old (41−69) in a
metabolic profiling study in a small cohort of Americans.29

HMB is a metabolite of the amino acid leucine and has a
protective effect on muscle loss. It can serve as a precursor for
cholesterol synthesis in muscle tissue, which can then have an
important role in strengthening the cellular membrane of
muscle cells. Furthermore, HMB can attenuate protein
degradation and up-regulate protein synthesis in muscle tissue.
Research has shown that supplementing the elderly with HMB
can decrease muscle damage and increase lean body mass.43

Elevations in the excretion of several metabolites in the
nicotinic acid pathwayN-methylnicotinic acid (trigonelline or
NMNA), N-methylnicotinamide (NMND) and N-methyl-4-
pyridone-3-carboxamide (4PY)were positively associated
with age in the American cohort. This type of metabolic
dysregulation may be associated with age-related neuro-
degenerative conditions and cognitive dysfunction associated
with aging e.g. Parkinson’s and Alzheimer’s disease.6 Lower
urinary 4-PY concentrations have been found in stressed rats
compared with controls, and those exhibiting fatigue have
perturbed nicotinate and nicotinamide metabolism.44 Increased
NMND excretion has also been observed in individuals with
Parkinson’s disease45,46 and has been implicated as a
mechanism mediating the death of dopamine-generating
cells.47 Similarly, brain concentrations of inositol metabolites
have been linked to neurodegenerative diseases, specifically
Alzheimer’s dementia, and are present in greater amounts in
elderly than in young individuals,48 suggesting that the
regulatory integrity for maintaining intracellular inositol
concentrations may weaken with age.

Indices of Age-associated Variation in the Gut Microbiome

Mammals are now considered to be “superorganisms” or
“metaorganisms” whose processes represent the sum of both
genomic and microbiomic contributions. It is reasonable,
therefore, to consider how aging affects the symbiotic
relationship between the host and resident microbiota. Such
age-associated changes are likely to be reciprocal in nature with
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microbial modulations being both a cause and consequence of
structural and biochemical changes in the gastrointestinal tract,
immunosenescence and alterations in food consumption caused
by changes in appetite, taste and digestion. In addition, host
factors, including reduced physical activity, oropharangeal
dysphagia and changes in gut motility and immune competence
in the elderly can all impact on health and the microbiota.49

Conditions such as constipation and slow gut transit times are
also more prevalent in the elderly and may lead to increased
usage of various medications for chronic symptoms.50 Elderly
people are more likely than younger people to be the recipients
of drug therapy of many classes, including ones that affect the
gut microbiome (e.g., elderly, defined as >65 years, comprise
approximately 13% of the U.S.A. population, but are the
recipients of >40% of all prescription drugs51). Laxatives,
antibiotics, and calcium channel blockers commonly lead to
side-effects such as diarrhea, malabsorption and constipation.52

PAG and 4CS showed the strongest association with age for
both populations with a correlation coefficient (r) of 0.32 (p =
1.2 × 10−21) and 0.32 (p = 1.53 × 10−21), respectively, for
SEBAS and 0.29 (p = 6.55 × 10−23) and 0.23 (p = 9.83 ×
10−16) for MIDUS (Figures 4 and 5). PAG and 4CS are formed
from protein putrefaction of phenylalanine and tyrosine by the
gut microbiota. Phenylalanine is converted to phenylacetate in
the colon and subsequently conjugated with glutamine in the
liver and the gut mucosa,53 whereas 4CS is a product of
microbial tyrosine breakdown via hydroxyphenylacetate to 4-
cresyl, followed by conjugation with sulfate.54 Age-related
variations were also observed in the bacterial fermentation
product, lactic acid, being negatively associated with aging in
the American sample.
The marked age-associated alteration of PAG and 4CS

concentrations are consistent with known shifts in the
composition of the microbiome, including increased represen-
tation from enterobacteria and decreasing proportions of
anaerobes and Bifidobacteria.55 The ratio of Firmicutes to
Bacteroidetes has also been found to be lower in the elderly.56

Decreases in anaerobes and Bif idobacterium spp. and increases
in enterobacteria may increase susceptibility to gastrointestinal
infections, and changes in the composition of gut microbiota
have been implicated in many diseases such as Irritable Bowel
Syndrome (IBS), Ulcerative Colitis (UC) and Crohn’s disease
(CD).57 Moreover nosocomial infections such as Clostridium
dif f icile are known to have greater morbidity in the elderly. The
diversity of species comprising the dominant fecal microbiota
increase with aging.58 In addition to the composition changes,
the interaction between the microbiota and intestinal functions
likely shift with age. He et al. demonstrated that certain
Bifidobacterium strains isolated from healthy adults aged 30−
40 were able to bind better to the intestinal mucus than were
the same bacterial strains isolated from healthy seniors (>70
years of age).59 However, not all researchers have consistently
found these age-related differences. Other studies have shown
that there is a tendency for stability in the gut microbiome
throughout adulthood,60 and several studies suggest that age-
related alterations in microbial composition may be dependent
upon the population and geographic location.61 Aging has been
associated with an increase in enterobacteria and Clostridia in
particular, while health-promoting bacteria such as the
Bifidobacteria have been reported to decline in abundance
and diversity of species with age.58 Several bacteria can
synthesize 4CS such as members of the Clostridia including
Clostridium dif f icile.62

Other studies have reported associations between age and
mammalian-microbial urinary cometabolites. One 1H NMR-
based profiling study investigating lifelong changes in the
urinary metabolome of dogs under caloric restricted and
nonrestricted conditions found that hippurate and 3-HPPA
concentrations increased with age.39 Urinary levels of amines,
resulting from degradation of dietary choline by gut microbiota,
also changed with age. This increase in gut microbial
metabolites was enhanced by dietary restriction. Similar results
have been shown in a study in which rats fed with chow diets
were compared with rats fed with casein-rich diets.63 Moreover,
in both humans and nonhumans, clear differences in micro-
bially derived metabolites have been shown in the urinary, fecal
and plasma profiles from obese individuals with metabolites
such as hippurate and PAG being associated with leaner
phenotypes. Thus, it is possible that variation in the excretion
of 4CS and PAG seen with age in both the SEBAS and MIDUS
surveys reflect a general reduction in caloric intake by the older
participants.

■ CONCLUSIONS
In summary, this work reinforces the great potential of applying
metabolome-wide association studies to large-scale epidemiol-
ogy studies. Through this application we have identified
potential metabolic windows into later life diseases. These
windows point to an underpinning dysregulation of the
microbiota that may relate to increased susceptibility to GI
infection in the elderly. Additionally some of the changes are
suggestive of a decline in muscle mass. Specifically, we have
shown significant age-related differences in the urinary
metabolite profiles of Taiwanese and American populations,
with the strongest effects being attributed to 4-cresyl sulfate and
phenylacetylglutamine. These metabolite differences were
significant in both males and females and revealed a marked
shift in the functionality of the gut microbiome with age. In
addition, the bacterial fermentation product, lactic acid, was
negatively correlated with age in Americans. The age-related
variation in these gut microbial metabolites may reflect
increasing enterobacterial numbers and warrants further
investigation to directly link metabolic profiles to fecal
microbial composition. The appearance of functional aging
observed in the microbiome was consistent across both national
populations in spite of some cultural features.
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