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ABSTRACT: The intriguing ability of certain surfactant
molecules to drive the superspreading of liquids to complete
wetting on hydrophobic substrates is central to numerous
applications that range from coating flow technology to
enhanced oil recovery. Despite significant experimental efforts,
the precise mechanisms underlying superspreading remain
unknown to date. Here, we isolate these mechanisms by
analyzing coarse-grained molecular dynamics simulations of
surfactant molecules of varying molecular architecture and
substrate affinity. We observe that for superspreading to occur,
two key conditions must be simultaneously satisfied: the adsorption of surfactants from the liquid−vapor surface onto the three-
phase contact line augmented by local bilayer formation. Crucially, this must be coordinated with the rapid replenishment of
liquid−vapor and solid−liquid interfaces with surfactants from the interior of the droplet. This article also highlights and explores
the differences between superspreading and conventional surfactants, paving the way for the design of molecular architectures
tailored specifically for applications that rely on the control of wetting.

■ INTRODUCTION

Superspreading is the anomalously rapid and spontaneous
wetting of hydrophobic substrates by surfactant-laden aqueous
droplets.1 This phenomenon is of fundamental importance to
diverse applications that include, among others, coating
technologies, enhanced oil recovery, drug delivery, and
herbicides.2 Despite the earliest reports of superspreading
dating back to over 50 years ago,3 the precise mechanisms
underlying this phenomenon remain unclear,4,5 though a
number of factors have been suggested as being relevant.
The first conundrum is why only some siloxane-based

surfactants exhibit this behavior.6 In that sense, the peculiar T-
shaped geometry of the known superspreading trisiloxane
surfactants is often cited1,7 as the enabling factor in the
formation of a bilayer near the three-phase contact line (CL).
This surfactant bilayer is thought to “sandwich” water
molecules and accelerate their spreading over the surface.8

The abnormally rapid adsorption of surfactant molecules
directly into the CL aided by Marangoni effects has also been
postulated as a prerequisite for superspreading by a recent
continuum-scale study.9,10

Experiments have explored individually the plethora of
factors that may aid or suppress superspreading, such as rate
of evaporation,11 humidity,1,12 pH,13 surfactant structure and
concentration,14,15 surfactant aging effects,16 surfactant mix-
tures,17,18 substrate hydrophobicity,1,12,19 and temperature,12,20

but in general have failed to give a complete molecular picture
of the underlying mechanisms for this unique behavior. One
could envisage that this understanding could come about from
molecular dynamics (MD) simulations at the atomistic level.
Current and foreseeable computational power, however, is

insufficient to cover the size and length scales required to
model the spreading of even the smallest nanoscale drops. For
example, an MD simulation based on an all-atom force field
found that trisiloxane surfactant-laden droplets spread very little
on graphitic substrates despite being able to form bilayers in an
aqueous solution. In contrast, alkyl polyethoxylate surfactant-
laden droplets were found to spread significantly further,21

which is in contradiction to what is expected from experi-
ments.1 This result was partially attributed to the limitations in
time and length scales accessible to simulations.21 To address
this, one needs to resort to coarse-graining the irrelevant
degrees of freedom but then employ a force field that describes
fluid−fluid and fluid−solid interactions quantitatively in order
to have the required level of correspondence with experiments.
The approach has shown promising results22,23 and trends that
are in line with experiments. For example, it has been found
that the T-shaped geometry of the surfactant leads to the
formation of bilayers and considerably favors the spreading of
droplets. However, no details with respect to superspreading
mechanisms are given in those studies.
To isolate the mechanism, we develop large-scale coarse-

grained MD simulations of droplets of aqueous solutions of
Silwet-L77, (a well-known superspreader) using the SAFT24

force field. (See the Supporting Information for a detailed
description and validation of the SAFT models.) The level of
coarse-graining, the large simulation sizes, and the extended
time allow us to obtain, for the first time, a picture of the
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superspreading mechanism. Moreover, understanding the
pivotal differences between superspreading (Silwet-L77) and
nonsuperspreading molecules (e.g., polyalkylether surfactants)
allows us to determine the molecular design of the mentioned
surfactants.

■ METHODOLOGY

We employ MD simulations of a coarse-grained model in the
canonical ensemble as implemented in the HOOMD-blue
package.25 A temperature of T = 25 °C is fixed throughout by a
Nose-́Hoover thermostat. Simulation lengths depend on the
spreading rate and extent of the spreading but typically last for
over (5−10) × 104 τ, where τ is the time unit. The simulation
box is rectangular in shape, bounded by a bottom surface
(substrate) of dimensions L = 131 nm in each of the directions
of the plane with periodic boundary conditions applied in these
directions. Perpendicular to the plane, the size of the simulation
box is 78 nm and its upper bound is a repulsive wall; no
periodic boundary conditions are applied in the z direction.
The coarse-graining methodology smears out the atomistic

details and substitutes them with a model based on a collection
of spherical beads which, in the case of the surfactants, are

linked in linear and branched geometries. Each bead roughly
corresponds to a similar molecular weight and encompasses
between three to five heavy atom centers. In excess of 80 000
individual beads are included in any given simulation,
corresponding to O(106) atoms. In our study, a bead denoted
as “W” represents two water molecules26 (H2O), effective beads
“M” represent a chemical group (CH3)3−Si−O1/2, and an
effective bead “D” corresponds to the group O1/2−(CH3)2−Si−
O1/2. “EO” effective beads represent −CH2−O−CH2− (ether)
chemical groups, while “CM” effective beads correspond to
−CH2−CH2−CH2− (alkane) chemical groups.27 No distinc-
tion is made between terminal methyl groups and CH2 groups.
The nonbonded interactions are regressed from pure
component thermophysical data (typically densities and vapor
pressures) of smaller chemical moieties using an analytical
equation of state (EOS) and the statistical associating fluid
theory (SAFT).24,28 One of the key issues in developing coarse-
grained force fields is the methodology used to parametrize the
intermolecular potential, i.e., what values of ε, σ, and so forth to
use and where to regress them from. At one end of the
spectrum, one can think of coarse-graining as a way of upscaling
an atomistic simulation or a finer-resolution model, reducing

Figure 1. Superspreading. Different stages of the superspreading process at 0τ, 7 × 104τ, and 14 × 104τ (time increases from the left to right column)
for Silwet-L77 (a−c), an exemplar conventional polyalkylether surfactant with T-shaped geometry (d−f), a straightened Silwet-L77 (g−i), and an
exemplar conventional linear surfactant polyalkyether surfactant (j−l). Red (M or D effective beads, with D being the central bead) or orange (CM
effective beads) denotes the hydrophobic effective beads, blue denotes the hydrophilic EO effective beads, and cyan denotes the water molecules
(Supporting Information). Droplets have the same surfactant concentration, namely, 8.3CAC, which is above the critical wetting concentration
(CWC). One-quarter of the droplet has been removed from the snapshots in order to show the external structure of the LV interface and the interior
of the droplet for each case.
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the number of degrees of freedom and effectively integrating
the detail. A review of some of these so-called “bottom-up”
approaches29 unequivocally discusses how these approaches
have issues in terms of the transferability and “representability”
of the potential parameters to scenarios that have not been
fitted. A fundamentally different “top−bottom” approach is
used herein, as the potential parameters are optimized to
reproduce the macroscopically observed thermophysical
properties, namely, the saturated liquid density and the vapor
pressure of selected compounds. This is done by employing an
equation of state (an analytical representation of the free energy
corresponding to the given interaction potential). Very few
coarse-grained force fields provide both the level of flexibility
(large parametrization set) and accuracy to be used in
quantitative simulations such as the ones described here. The
MARTINI30 force field is a possible example. This force field
has been adjusted to fit the oil−water partition coefficients and
is a prime example of excellent parametrization. In this
particular application, however, it presents several deficiencies,
namely, in the description of the tension of pure water, the
failure to account for beads of different sizes, and the lack of
parameters for all moieties required. The SAFT force field does
not suffer from the aforementioned limitations and has been
shown to reproduce in a quantitative manner the behavior of
complex fluids and, of particular interest to this case,
ethoxylated surfactants and photosensitive surfactants in
water.31

In our study, the surfaces correspond to unstructured walls
with an integrated potential that depends only on the energy
potential parameters and the distance to the surface.32 The
baseline surface is paraffinic in nature, parametrized so that a
pure water droplet has an average contact angle of 60°,
corresponding to the conditions for which the optimum
superspreading behavior is observed experimentally.1 Details of
the force fields, parameter values, and validations are given in
the Supporting Information.
Results are expressed in reduced units to be able to scale to

macroscopic observables. The average surfactant concentration
is expressed in multiples of the critical aggregation concen-
tration (CAC, see Supporting Information). Our simulations
start with a preliminary simulation of the droplet with
surfactant, where the formation of the droplet and the
deposition of it onto the substrate take place. During this
initial simulation, we choose a weak attraction of the surfactant
to the substrate in order to avoid droplet spreading. After this
initial stage, the interactions of the surfactants with the
substrate are switched on and the droplet starts spreading
with a rate that depends on the surfactant’s affinity on the
substrate for a given wettability. During spreading, we gather
samples of droplet configurations at the same regular intervals.
By using a cluster analysis algorithm, we find, for each
configuration, the effective beads that belong to the droplet and
calculate all of the reported properties. Further details are
presented in the Supporting Information.

■ RESULTS AND DISCUSSION
The simulations for Silwet-L77 confirm the hypothesis8

suggesting the existence of a bilayer (Figure 1b) that forms
in the initial stage of superspreading at the CL. We observe that
this bilayer grows continuously and persists until the
completion of the spreading process (Figure 1c). In this final
stage, the droplet has spread to form a thin film, where all of the
surfactant molecules have adsorbed either at the liquid−vapor

(LV) or solid−liquid (SL) interfaces surrounding the water
molecules (Figure 1c).
In the SAFT coarse-grained representation, Silwet-L77

consists of three head beads, representing the essentially
hydrophobic siloxane groups and a perpendicular (hence the
name “T-shape”) tail of eight beads representing the hydro-
philic ethoxylated moieties. Surfactant-laden aqueous drops are
placed on flat, unstructured surfaces of varying fluid−solid
energies to analyze, among other properties, the time-
dependent spreading and final equilibrium configurations.
The “baseline” simulation corresponds to Silwet-L77 on a
paraffin-like hydrophobic substrate. The latter is a typical
superspreading scenario12 (Figure 1a-c, Supporting Information
video), with a final state of complete wetting.
To assess the influence of the molecular architecture of

Silwet-L77 on spreading, we reconnect the hydrophobic beads
of this molecule in such a way as to obtain a surfactant of linear
architecture (Figure 1g), that is, a “straightened” Silwet-L77,
without changing the interactions between effective beads.
Notwithstanding the existence of a bilayer (Figure 1i), the
spreading is completed at a later time (not shown in the figure).
Moreover, this linear surfactant cannot drive complete wetting
on this substrate, in contrast to Silwet-L77 (Figure 1c), unless a
substrate with a higher attraction of hydrophobic headgroups is
chosen.
To investigate the influence of the interactions between

different chemical groups, we perform simulations where the
hydrophobic siloxane beads (red beads) of the straightened
Silwet-L77 surfactant are “transmuted” to alkyl groups while
keeping the same number of effective beads. This new
surfactant molecule resembles a conventional polyalkylether
nonionic surfactant (Figure 1j−l), which is manifestly not a
superspreader12 (Figure 1l). Moreover, a significant amount of
surfactant remains in the bulk of the droplet, and no evidence
of bilayer formation is seen at the CL.
Finally, if one were to arrange the beads of the conventional

polyalkylether surfactant into a T-shaped geometry similar to
that of Silwet-L77, one again does not observe superspreading
behavior. Moreover, a bilayer does not form, despite the T-
shaped geometry of the surfactant, which is often considered to
be responsible for the formation of bilayers and superspreading.
It becomes evident that the surfactant architecture plays a
secondary role in superspreading as compared to the surfactant
chemistry, which governs the interactions between the
surfactant and the substrate and drives bilayer formation,
which are concomitant requirements for the superspreading
process.
The molecular nature of the model allows for the role of the

adsorption/desorption dynamics to be assessed. We define the
absolute difference between a specific adsorption and the
corresponding desorption, normalized by the spreading time, as
a “tendency”, F, of the surfactant to move toward different
regions of the droplet, i.e., a rate of mass transport. As shown in
Figure 2, the “tendency” F associated with the various
interfaces, as well as the CL, depends on the surfactant
concentration, which is expressed as multiples of the CAC
(details in Supporting Information). The inset of Figure 2
illustrates the configurations and main adsorption/desorption
mechanisms corresponding to the early, intermediate, and late
stages of the spreading process. Clearly, the magnitude of F
associated with the transfer from the bulk to the liquid−vapor
(LV), solid−liquid (SL), and less noticeable from the latter to
the CL exhibits a marked increase beyond concentrations
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approximately equal to 6 × CAC (Figure 2). This increase
coincides with an increase in the spreading exponents shown in
the inset of Figure 3 that indicates a transition toward rapid
spreading, which we interpret as being the onset of super-
spreading. It is known from experimental observations14 that

Silwet-L77 drives superspreading when present at concen-
trations above the critical wetting concentration, which
corresponds approximately to 7 × CAC, in excellent agreement
with our MD results.
A continuum-scale study10 postulated that the direct

adsorption of superspreaders onto the CL plays a fundamental
role in superspreading. We observe visual evidence of this
mechanism (Supporting Information video); the affinity of
Silwet-L77 for adsorption at the CL can be rationalized because
the latter is a most-favorable region energetically for surfactants
in which their hydrophobic part can avoid contact with water
molecules while keeping in contact with the solid substrate and
air. The classical description of superspreading surfactants in
terms of a hydrophobic head/hydrophilic tail fails to take into
account the complexity in the interactions. The perpendicular
(T-shaped) placement of the siloxane groups in the surfactant
molecule favors their placement and assembly at both SL and
liquid−vapor interfaces. This leaves the hydrophilic tails
pointing toward the bulk liquid (dominated by the presence
of water molecules) or perpendicular to the substrate, favoring
a nanolayer of water to form above the substrate. It follows
from this that the self-assembly into a bilayer, where water is
sandwiched between surfactant layers, is a preferred config-
uration from both an entropic and an enthalpic point of view, in
agreement with experimental results.33

As the spreading evolves, increasing the perimeter of the
droplet, a larger number of surfactant molecules belong to the
CL. In addition to surfactant from the LV surface reaching the
CL, there are also surfactant molecules diffusing from the SL
interface toward the CL (Figure 2), in agreement with
experimental suggestions.8 Superspreading is crucially depend-
ent on the replenishment of the LV interface as the perimeter
of the droplet at the CL increases, hence the argument made in
Figure 2 with respect to a requirement that the rates F of
adsorption both from the bulk to the LV and SL interfaces are
crucial, along with a significant increase in the rates F of transfer
from the interface to the CL. Obviously, an increase in the
radius of the drop leads to a rise in the LV and SL interfacial
areas by an amount that scales as (dR)2, which is higher than
the increase in the droplet perimeter that scales as dR, where R
is the radius of the droplet basis. The increase in these
interfacial areas leads to a reduction in the respective
concentrations; the latter is accentuated further by the direct
adsorption at the CL. In order to sustain continuous spreading
of the droplet, these interfacial surfactant deficiencies must be
replenished rapidly via diffusion from the bulk. This, in turn, is
facilitated by the presence of a surfactant “reservoir” in the
bulk; therefore, as seen in experiments, a surfactant
concentration several times higher than the CAC is necessary
to drive complete wetting (Figure 1c).14 As shown in Figure 2,
however, and also in agreement with experimental data,1

concentrations higher than a certain range reduce the driving
force for diffusion toward the interfaces, resulting in slower
interfacial replenishment and a decrease in the magnitude of F
associated with the LV and SL interfaces. Thus, an optimal
range of concentration (6−9CAC) exists in which F for the CL
and the LV and SL interfaces is large. This mechanistic view
explains the maximum in the spreading rates vs surfactant
concentration curve1 shown in the inset of Figure 3. Finally,
when the droplet attains its ultimate thin film shape (Figure
1c), a dynamic equilibrium among all of the adsorption
processes present in the droplet exists: surfactant interchanges

Figure 2. Characterization of the adsorption processes. Nondimen-
sional rate, F, characterizing the migration of surfactant molecules
between different regions within the droplet. The different interfaces
are labeled liquid−vapor (LV), solid−liquid (SL), and contact line
(CL). The legend on the right-hand side indicates the color code and
the preferential direction of mass transfer. The concentration of
surfactant (ordinate) is expressed as a multiple of the critical aggregate
concentration (CAC) of the surfactant. Open symbols are given for
Silwet-L77 (Figure 1a−c) while solid lines are a guide for the eye.
Closed symbols denote the rates for corresponding to the maximum
spreading achievable by the conventional surfactant of Figure 1d−f.
The superspreading concentration regime (6−9.5CAC) is denoted by
a different color. The inset shows from top to bottom three
characteristic stages in the superspreading of a droplet, from the
initial stage (top), to active advancement and superspreading via the
formation of a bilayer at the contact line (middle), to the final stage of
complete wetting of the surface (bottom).

Figure 3. Area of the droplet vs time and spreading rates. Droplet area
vs time for the surfactant in Figure 1j−l (purple) and Figure 1 g−i
(red) and Silwet-L77 in Figure 1a−c (black). The blue line
corresponds to the surfactant in Figure 1d−f. For this surfactant, we
exchange the cross interactions of CM effective beads with water beads
for the cross interactions of M and D effective beads with water
effective beads (green line). We further switch on the cross
interactions of M and D effective beads with EO beads, instead of
the CM with EO beads (magenta line). The inset shows the
characteristic maximum1 in spreading rates vs concentration for Silwet-
L77 (Figure 1a−c), where the superspreading regime is highlighted
with a darker color.
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between the LV surface and the SL interface either through the
CL (inset of Figure 2) or directly.
Differences between superspreading and nonsuperspreading

surfactants can be identified through an inspection of the
adsorption processes. Although the adsorption of surfactant
from the LV or SL interfaces to the CL remains significant for
the T-shaped alkyl-ether surfactant (Figures 1d−f and 2), the
adsorption from the bulk to the interfaces is significantly lower
compared to that in the case of Silwet-L77 (Figure 2). This
further underlines the importance of rapid interfacial surfactant
replenishment and the relative significance of surfactant
chemistry over molecular architecture in driving superspread-
ing. A similar comparison between T-shaped (Figure 1a−c) and
linear (Figure 1g−i) trisiloxane surfactants shows that
adsorption from LV to the CL is multiple times higher in the
case of the T-shaped surfactant, while adsorptions from the
bulk to the LV and SL interfaces are about 25% higher.
To elucidate yet further the contrasting behavior between the

superspreading ability of Silwet-L77 and the conventional
behavior of typical nonionic surfactants, we investigate the
influence of the chemistry of different surfactant chemical
groups. We first consider the linear nonsuperspreading
surfactant whose behavior we examined briefly above (Figure
1d−f) and replace the effective alkyl head beads of this
surfactant with siloxane beads used within the Silwet-L77
model, observing (Figure 3) a considerably higher spreading
rate and area as compared to those of the original linear alky-
ethoxylated surfactant. The larger size and enhanced dispersion
forces of the siloxane headgroup seem to be important for
superspreading because they will promote strong adhesion to
the substrate and the formation of tight self-assembled surface
layers. These interactions, coupled with the antagonism of the
headgroups toward water (and the affinity of the tails toward
water), enable Silwet-L77 to drag water molecules toward the
CL (Figure 2 inset). Subsequently, the LV surface slides on the
SL interface, creating the bilayer (Figure 1b) which is crucially
absent in the case of a common surfactant (Figure 1j−l).
On the basis of the above systematic study, we have

harnessed our understanding of the key “ingredients” of
superspreading to design a surfactant molecule that outper-
forms currently available superspreaders. This molecule has
four hydrophobic beads (M) around the hydrophobic bead (D)
connected to the hydrophilic tail. We have found that this
surfactant increases the spreading rate by 15% compared to the
Silwet-L77 surfactant. This molecule appears to offer more
efficient shielding of the water molecules from the hydrophobic
substrate and a higher probability of adsorption at the CL onto
the substrate, while it carries all of the advantages of the Silwet-
L77 surfactant.

■ CONCLUSIONS
Our computer simulations have confirmed and quantified the
pivotal elements of the superspreading mechanism and have
highlighted the primary differences between superspreading
and nonsuperspreading surfactants. The adsorption of
surfactants from the LV interface onto the substrate through
the CL with the immediate replenishment of the LV and SL
interfaces from the bulk are the two indispensable and
interlinked mechanisms required for superspreading. It follows
that one requires a sufficiently large surfactant concentration,
several times the CAC, for effective mass transport. Exceedingly
high concentrations, however, reduce bulk diffusion and
interfacial surfactant replenishment; thus, superspreading does

not occur for this concentration range. The slow replenishment
of interfaces with surfactant coming from the bulk and the
incapacity of surfactants to replenish the interfaces quickly and
self-assemble in a tight structure are the main causes of the
nonsuperspreading behavior of conventional nonionic surfac-
tants. These incomplete surface structures are incapable of
sliding off of the contact line into an advancing bilayer, which is
the other main component of the superspreading mechanism.
We anticipate that our results will generate advances in
application areas that require control of wetting through the
rational design of the mentioned superspreading surfactants
using the manipulation of both the chemistry and the molecular
architecture.
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