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Abstract What we know about the magnetosphere of the outermost planet, Neptune, is primarily
based on data taken during the Voyager 2 flyby in 1989. Establishing how Neptune’s magnetosphere
interacts with the solar wind is crucial for understanding the dynamics of the system. Here we assess how
magnetic reconnection couples the solar wind to Neptune’s magnetosphere, using analytical modeling that
was recently applied to the case of Uranus. The modeling suggests that typical near-Neptune solar wind
parameters make conditions at Neptune’s magnetopause less favorable for magnetic reconnection than at
themagnetopause boundary of any other solar systemmagnetosphere. The location of reconnection sites on
Neptune’s magnetopause is expected to be highly sensitive to planetary longitude and season, as well as
interplanetary magnetic field (IMF) orientation, which is similar to the situation at Uranus. Also similar to past
Uranus results, the present Neptune modeling indicates a seasonal effect, where one of the two dominant
(Parker spiral) IMF orientations produces more favorable conditions for magnetopause reconnection than
the other near equinox. We estimate the upper limit of the reconnection voltage applied to Neptune’s
magnetosphere as 35 kV (the typical voltage is expected to be considerably lower). Further progress in
understanding the solar wind-magnetosphere interaction at Neptune requires other coupling mechanisms
to be considered, as well as how reconnection operates at high plasma β.

1. Introduction

Neptune is the outermost planet in our solar system. Much of what we know about this distant planetary system
is based on data taken during a single spacecraft flyby, made by Voyager 2 in 1989 [Stone and Miner, 1989].
Neptune orbits the Sun at a distance ~30 times greater than the mean Sun-Earth distance (an Astronomical
Unit, AU), and its axial tilt of 28.3° leads to strong seasons.

Like a number of other solar system planets, Neptune is protected from the solar wind by an intrinsic
magnetic field [Ness et al., 1989]. Neptune’s magnetic field is well represented as an offset tilted dipole, where
the magnetic dipole and rotation axes subtend a relatively large angle of 47°, and the dipole center is
displaced from the planet’s center by 0.55 Neptune radii (RN, 1 RN=24765 km) [Ness et al., 1989; Connerney
et al., 1991; Holme and Bloxham, 1996]. The planetary magnetic field presents an obstacle to the solar wind,
resulting in a magnetosphere that is similar to those that surround other magnetized planets in some
respects [e.g., Bagenal, 2013]. However, Neptune’s large dipole tilt leads to significant changes in the
magnetic environment surrounding the planet over a Neptune day of 16.1 h, as illustrated in Figure 1. This
results in a magnetosphere that undergoes dramatic diurnal reconfiguration [e.g., Voigt and Ness, 1990].

When Voyager 2 flew by Neptune in 1989, the spacecraft entered the magnetosphere via Neptune’s
magnetospheric cusp. The configuration of the system at this time is illustrated in Figure 1b (the spacecraft
encountered the cusp close to the planet-Sun line). Voyager 2 then flew through the magnetosphere,
resolved plasma populations closer to the planet that are likely sourced from Triton (Neptune’s largest moon),
and later exited through the distant flank of the system’s magnetopause boundary [Belcher et al., 1989; Ness
et al., 1989; Richardson and McNutt, 1990; Mauk et al., 1991; Richardson et al., 1991; Szabo et al., 1991; Zhang
et al., 1991; Lepping et al., 1992; Richardson, 1993]. Partly due to the lack of dayside magnetopause
observations, there has been little focus on the question of how Neptune’s magnetosphere interacts with the
solar wind, with the exception of Selesnick [1990], who considered plasma loss from the system due to solar
wind-driven convection. The purpose of this paper is to resume detailed investigation of this interaction, by
considering the operation of magnetic reconnection at Neptune’s magnetopause.

The process of magnetic reconnection occurs at current layers across which there is some shear in the
magnetic field. Reconnection changes the structure of the field and releases magnetic energy [Dungey, 1961].
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The magnetopause boundary of a
planetary magnetosphere is an
example of a current layer where
reconnection can occur and allow
solar wind energy into the system.
Much of present understanding of
reconnection is based on in situ
observations of its operation at
~1 AU, at current sheets embedded
in the solar wind, and at Earth’s
magnetopause (see the recent reviews
by Fuselier and Lewis [2011], Gosling
[2012], and Paschmann et al. [2013]).
A thin current layer (order 1 ion
inertial length) and both sub-Alfvénic
relative particle drift and sub-Alfvénic
flow shear in the direction of the
reconnecting fields are thought to be
required for reconnection to take
place [Sanny et al., 1994; Swisdak et al.,
2003, 2010; Phan et al., 2010, 2011,
2013; Cassak and Otto, 2011]. Once
operating, the strength of the electric
field resulting from reconnection
is controlled by the magnetized
plasma conditions in the adjacent

environments [e.g., Cassak and Shay, 2007; Mozer and Hull, 2010] and a (dimensionless) reconnection
efficiency that may be dependent on these local parameters [Sonnerup, 1970; Slavin and Holzer, 1979;
Anderson et al., 1997; DiBraccio et al., 2013].

Desch et al. [1991] proposed that reconnection at Neptune’s magnetopause drives the planet’s radio
emission, and Huddleston et al. [1997] discussed to what extent magnetopause reconnection leads to
transport of solar wind plasma into Neptune’s magnetosphere. Beyond these studies there has been very
little discussion of this topic in the literature, and none based on current understanding of how magnetic
reconnection works. In this paper we use an analytical modeling approach as the basis for applying this
understanding to the case of Neptune’s magnetopause. This allows us to examine how favorable typical
conditions are for reconnection, where we expect reconnection to occur on the boundary under different
conditions, and how strong we expect the resulting reconnection electric fields to be.

The magnetosphere of Neptune is often paired with that of Uranus, since they are similarly asymmetric and
dynamic. An equivalent magnetopause reconnection assessment for Uranus (based on the same modeling
approach) has recently been reported by Masters [2014]. At a number of points in the following sections we refer
the reader to this companionUranus publication, in order to limit reproduction ofmaterial. In addition, comparison
between the present Neptune results and those of this past Uranus study is made during the discussion.

2. Approach

We use the Neptune Solar Orbital (NSO) coordinate system. The origin is at the center of Neptune, and the
x axis points toward the Sun. The y axis defines an xy plane that lies in Neptune’s orbital plane, and the y axis is
antiparallel to the planet’s orbital velocity vector. The z axis completes the right-handed orthogonal set,
pointing north of the ecliptic. The terms “northward” and “southward” refer to the directions that are parallel
and antiparallel to the z axis, respectively. The NSO coordinate system is the Neptune equivalent of
Geocentric Solar Ecliptic (GSE) coordinates commonly employed in the case of Earth. However, due to
Neptune’s small orbital speed with respect to the near-Neptune solar wind speed, we apply no aberration to
the NSO system (in contrast to the use of the GSE system at Earth).

Figure 1. Diagrams illustrating Neptune’s dynamic magnetosphere at
northern winter solstice (the closest solstice or equinox to the Voyager 2
flyby that occurred in 1989). (a and b) Configurations of the system
separated by half a planetary rotation, for the special case of southward
interplanetary magnetic field (IMF) and no magnetic connection across
the magnetopause boundary. In Figures 1a and 1b the solar wind plasma
flow is indicated by block arrows, the IMF is shown in blue, Neptune’s bow
shock and magnetopause are shown as (outer and inner) gray curves, the
planetary magnetic field is shown in red, and the planetary rotation axis is
shown in black.
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The analytical modeling approach
used here is identical to that used
by Masters [2014] in their assessment
of reconnection at Uranus’
magnetopause. To avoid reproduction
of material, we refer the reader to this
publication for full details of the
approach. In this section we summarize
the methodology and highlight
Neptune-specific model inputs.

2.1. Treatment of Near-Magnetopause Parameters

Typical near-Neptune solar wind parameters are key inputs to the analytical modeling. These solar wind inputs
can either be derived from the measurements made by Voyager 2 upstream of the planetary bow shock or
from predictions based on present understanding of how solar wind parameters vary with heliocentric distance
[e.g., Slavin and Holzer, 1981]. Note that the same choice must be made for the case of near-Uranus solar wind
conditions, where the set of inputs is similar whichever source is chosen [Masters, 2014].

The same is not true of Neptune. Voyager 2 measurements at Neptune’s dayside bow shock were presented
by Szabo and Lepping [1995]. A number of the solar wind parameters measured upstream of Neptune’s
bow shock differ significantly from the predicted (typical) values. Most strikingly, the measured upstream
proton number density of 0.0046 cm�3 at Neptune is lower than the predicted value by a factor of ~4
[e.g., Slavin and Holzer, 1981]. However, this difference is not surprising, given the level of solar wind
variability. In the present study we require typical solar wind conditions in order to draw qualitative
conclusions about the general nature of reconnection at Neptune’s magnetopause. As a result, we
choose to use solar wind scaling predictions as inputs, rather than values based on the Voyager 2
“snapshot” of dynamic solar wind conditions.

Fixed upstream solar wind inputs to the Neptune modeling are given in Table 1 [e.g., Slavin and Holzer, 1981],
where the solar wind plasma flow is antisunward. The influence of interstellar pickup ions is not considered
(see discussion in section 4.1). The orientation of the interplanetary magnetic field (IMF) is set as a free
parameter but is constrained to lie in the yz plane. This constrained range of IMF orientations captures the
two prevailing IMF orientations at Neptune orbit (see section 3) and simplifies our modeling of Neptune’s
magnetosheath (the solar wind downstream of the bow shock) [e.g., Petrinec et al., 2003]. A neutral solar wind
plasma with an ion composition of 96% protons and 4% He++ by number is assumed when calculating
mass densities.

To describe the dayside surface of both Neptune’s bow shock and magnetopause, we use parabolic conic
sections, with standoff distances of 32 and 25 RN, respectively [Ness et al., 1989]; the focus of both of which is
located on the x axis, halfway between the center of the planet and the magnetopause. Both the bow shock
and magnetopause surfaces are axisymmetric about the x axis.

Maps of magnetized plasma parameters immediately adjacent to the model Neptune magnetopause surface
are the basis of our approach. For external, magnetosheath, solar wind conditions we follow four steps.
First, we specify all plasma parameter maps using expressions based on a hydrodynamic treatment of solar
wind flow around a magnetospheric obstacle [Petrinec and Russell, 1997]. Second, we specify draped IMF
vectors using expressions presented by Petrinec et al. [2003] (based on the work of Kobel and Flückiger [1994]).
Third, we include the effect of a typical plasma depletion layer (PDL) in the near-magnetopause
magnetosheath [e.g., Zwan and Wolf, 1976] by lowering the mass density and raising the magnetic field
strength at all points so as to reduce the local ratio of plasma to magnetic pressure (the plasma β) by 85%
(without changing the total pressure). Finally, we correct for the influence of the draped IMF on the
magnetosheath flow using the approach outlined by Petrinec et al. [1997].

For magnetospheric conditions immediately inside Neptune’s magnetopause surface, we first assume that
the local magnetospheric plasma pressure is equal to zero [e.g., Belcher et al., 1989]. The magnetospheric
magnetic field is then determined by taking a specified orientation of the planetary dipole moment axis
(controlled by the free parameters of Neptune season and Neptune longitude), calculating the planetary
magnetic field at all points on the model magnetopause surface, setting all boundary normal field

Table 1. Fixed Solar Wind Conditions Upstream of Neptune’s Bow Shock
Used as Input to the Magnetopause Reconnection Modeling [Slavin and
Holzer, 1981]

Flow Speed 450 km s�1

Proton number density 0.02 cm�3

Plasma pressure 1.6 × 10�5 nPa
Magnetic field strength 0.11 nT
Sonic Mach number 28
Alfvén Mach number 24
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Figure 2. An example of model-predicted conditions at Neptune’s magnetopause. (a) Magnetosheath plasma flow
velocity. (b) Magnetosheath proton number density. (c) Magnetosheath magnetic field. (d) Magnetospheric magnetic
field. (e) Magnetosheath plasma pressure. (f ) Magnetosheath plasma β. (g) Cross-magnetopause magnetic shear for
southward IMF. (h) Cross-magnetopause magnetic shear for northward IMF. Arrows give only the direction of vector fields
(no arrow heads are shown in Figure 2c since both southward and northward IMFs are considered). In Figures 2a–2h
the dayside magnetopause surface is viewed from along the upstream solar wind flow direction, and the circle centered
on the origin represents the planet.
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components to zero, and then specifying the local field strength as a value that achieves total pressure
balance with the adjacent magnetosheath environment.

The free parameters in this modeling are the IMF orientation (in the yz plane), Neptune season, and phase of
Neptune rotation (the time of day). For any combination of these free parameters the model gives maps of
near-magnetosheath and near-magnetosphere conditions at Neptune’s magnetopause.

2.2. Example Near-Magnetopause Parameters

To provide examples of near-magnetopause conditions given by the present modeling, we can specify free
model parameters that reproduce the situation shown in Figure 1a. This requires a purely southward IMF, a
Neptune season of exactly northern winter solstice, and a Neptune longitude that makes the planetary dipole
axis lies in the xz plane, with a positive projection on the x axis. Note that this southward IMF orientation is rare
but is used here to be consistent with the two-dimensional diagram shown in Figure 1a. The dominant IMF
orientations are considered in section 3.

Figures 2a–2g show model-predicted conditions at Neptune’s magnetopause for this combination of free
parameters, all viewed from along the upstream solar wind flow (i.e., viewed from the Sun), and all showing
only the dayside magnetopause surface. Figure 2a shows the magnetosheath flow velocity, where the
influence of the draped IMF has been accounted for (see section 2.1). Figure 2b shows the magnetosheath
proton number density, and Figure 2c shows the magnetosheath magnetic field. Figure 2d shows Neptune’s
magnetospheric magnetic field, where cusp features are in locations similar to those shown in Figure 1a,
Figure 2e shows the plasma pressure in Neptune’s magnetosheath, and Figure 2f shows the plasma β in the
near-magnetopause magnetosheath. Figure 2g shows the angular difference between the magnetosheath
and magnetospheric magnetic fields (the magnetic shear) across the model magnetopause surface.

If we reverse the direction of the IMF from southward to northward, this has no effect on Figures 2a–2f,
except that the direction of the draped IMF in Figure 2c is reversed. This example can therefore also cover the
combination of free model parameters where the IMF is northward (with other free parameters unchanged).
Like southward IMF, a northward IMF orientation is rare (see section 3). Figure 2h shows the map of magnetic
shear for northward IMF, which produces close to antiparallel magnetic fields over a larger fraction of the
model magnetopause surface.

2.3. Example Magnetopause Reconnection Assessments

For the example conditions near Neptune’s magnetopause presented in Figure 2, we can carry out example
magnetopause reconnection assessments. When carrying out all such assessments, we consider a system
where there is no magnetic connection across the magnetopause (i.e., a “closed” system) and assume that
the magnetopause current sheet is sufficiently thin for reconnection everywhere on the surface [Phan et al.,
2013]. A reconnection assessment then involves the separate application of two established conditions for
reconnection onset, one concerning the drift of the potential reconnection site caused by the relative particle
drift within the current layer (the diamagnetic drift condition) [Swisdak et al., 2003, 2010; Phan et al., 2010,
2013], and the other concerning the flow shear across the potential reconnection site (the flow shear
condition) [Cassak and Shay, 2007; Cassak and Otto, 2011].

The diamagnetic drift condition places a lower limit on the magnetic shear at which reconnection can occur for
a given level of current layer symmetry [Swisdak et al., 2010]. The level of asymmetry is quantified as the
absolute difference between the plasma β on either side of the layer (Δβ). The lower limit of magnetic shear
increases with increasing Δβ, restricting reconnection to closer to antiparallel magnetic fields (antiparallel
reconnection cannot be suppressed by this effect). In the present modeling, the plasma β in Neptune’s
near-magnetopause magnetosheath is equal to Δβ, and the model-predicted plasma β is high enough to
require shears of greater than ~175° for reconnection onset at any point. The flow shear onset condition
requires that the flow shear across the magnetopause current layer in the direction of reconnection
outflow [Swisdak and Drake, 2007] must be lower than the outflow speed [Cassak and Shay, 2007] for onset
to occur [Cassak and Otto, 2011].

Figures 3a–3c show the reconnection assessment results for the southward IMF case discussed in section 2.2
(see Figure 2a–2g). Dashed contours indicate where the transition from sub-Alfvénic to super-Alfvénic
magnetosheath flow occurs. In Figure 3a the diamagnetic drift condition is applied and is only satisfied in the
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regions of close to antiparallel magnetic fields (see Figure 2g) that are antisunward of the cusps. In Figure 3b
the flow shear condition is applied and is not satisfied anywhere on the dayside boundary. Figure 3c applies
both conditions, producing a total reconnection onset assessment that predicts that reconnection cannot
occur anywhere on the dayside magnetopause for this combination of free parameters.

Figures 3d–3f show the reconnection assessment results for the northward IMF case discussed in section 2.2
(see Figures 2a–2f and 2h). These results differ significantly from the southward IMF case. Figure 3c shows
that the large magnetic shear across the model surface leads to the satisfaction of the diamagnetic drift
condition over a far larger region. Figure 3e shows that the flow shear condition is satisfied over the majority
of the surface. Note that the location of regions where reconnection is (and is not) prohibited in Figure 3e
(and Figure 3b) is not only controlled by the magnetosheath flow but also by how the expected reconnection
outflow direction changes across the surface [Swisdak and Drake, 2007]. It is also worth pointing out that the
reconnection outflow speed differs from the magnetosheath Alfvén speed [Cassak and Shay, 2007]. Figure 3f
applies both conditions and predicts that reconnection onset is possible in a region that spans Neptune’s
dayside magnetopause.

At this point we remind the reader that a more comprehensive discussion of the present modeling approach
can be found in Masters [2014]. This includes a more detailed description of how these reconnection onset
conditions are applied.

3. Results: Solstice and Equinox

In sections 2.2 and 2.3 we presented examples of how the present analytical modeling can be used to predict
where reconnection onset will occur at Neptune’s magnetopause. In these examples we considered only two

Figure 3. Example assessments of magnetic reconnection at Neptune’s magnetopause. Panels in the same row correspond
to the same IMF orientation, indicated by the far left circles that show the upstream IMF vector (with length 2 Neptune radii)
projected onto the planet, as viewed from along the upstream solar wind flow direction. (a and d) The applications
of the diamagnetic drift condition for reconnection onset. (b and e) The applications of the flow shear condition for
reconnection onset. (c and f ) The application of both onset conditions (requiring both conditions to be satisfied for
reconnection to not be prohibited). In Figures 3a–3f the dayside magnetopause surface is viewed from along the
upstream solar wind flow direction, the circle centered on the origin represents the planet, and the dashed contour
bounds the region where the local magnetosheath flow is sub-Alfvénic. Regions of the surface shown in green indicate
where the applied reconnection onset condition(s) is satisfied, and thus reconnection is not prohibited by the
considered effect(s); whereas regions shown in red indicate where the condition(s) is not satisfied, and thus reconnection
is prohibited by the considered effect(s).
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IMF orientations, both at northern winter solstice and at the same planetary longitude. In this section we
consider solstice and equinox conditions over a broader free parameter space.

Let us first extend our consideration of northern winter solstice on Neptune, since this is the closest solstice or
equinox to the Voyager 2 flyby that took place in 1989. Figure 4 shows the magnetic shear across Neptune’s
magnetopause for 16 different pairings of IMF orientation and planetary longitude, all at northern winter
solstice. Panels in the same row correspond to the same IMF orientation (illustrated to the left of each row),
and panels in the same column correspond to the same Neptune longitude (i.e., the same orientation of
magnetic dipole axis with respect to the planetary rotation axis, illustrated above each column). The following
four different IMF orientations are considered: Purely southward IMF (Figures 4a–4d), IMF parallel to the y axis
(Figures 4e–4h), IMFantiparallel to the y axis (Figures 4i–4l), and purely northward IMF (Figures 4m–4p). Figures 4a,

Figure 4. (a–p) The variable magnetic shear across Neptune’s magnetopause at northern winter solstice (the era of the
1989 flyby by Voyager 2). Panels in the same row correspond to the same IMF orientation, indicated by the far left circles
that show the upstream IMF vector (with length 2 Neptune radii) projected onto the planet, as viewed from along the
upstream solar wind flow direction. Panels in the same column correspond to the same orientation of planetary rotation
and magnetic dipole axes, similarly shown in black and red (respectively) above each column. In Figures 4a–4p the
magnetic shear across the dayside magnetopause is shown as viewed from along the upstream solar wind flow direction,
the circle centered on the origin represents the planet, and the dashed contour bounds the region where the local
magnetosheath flow is sub-Alfvénic.
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4e, 4i, and 4m correspond to the same dipole axis orientation as the examples given in section 2, and in
subsequent columns the dipole axis is rotated about the planetary rotation axis in increments of 90° (in the sense
of Neptune’s rotation). The magnetic shear map for the southward IMF example presented in section 2.2
(Figure 2g) is shown in Figure 4a, and the northward IMF example (Figure 2h) is shown in Figure 4m. In all panels
the region of the dayside magnetopause surface where the adjacent magnetosheath flow is sub-Alfvénic is the
region bounded by the dashed contours.

We expect an IMF that is close to parallel or antiparallel to the y axis to be the dominant orientation at
Neptune’s orbit [Parker, 1958], so Figures 4e–4l show the most frequent IMF orientations, although rarer
northward/southward orientations should be possible. The magnetic shear across Neptune’s magnetopause
at solstice is highly variable and controlled by planetary longitude, as well as the variable orientation of the

Figure 5. (a–p) Assessments of magnetic reconnection at Neptune’s magnetopause at northern winter solstice (the era of
the 1989 flyby by Voyager 2). Panels in the same row correspond to the same IMF orientation, indicated by the far left circles
that show the upstream IMF vector (with length 2 Neptune radii) projected onto the planet, as viewed from along the
upstream solar wind flow direction. Panels in the same column correspond to the same orientation of planetary rotation
and magnetic dipole axes, similarly shown in black and red (respectively) above each column. In Figures 5a–5p the dayside
magnetopause is shown as viewed from along the upstream solar wind flow direction, both the reconnection site drift and
flow shear conditions for reconnection onset have been applied (green: reconnection not prohibited; red: reconnection
prohibited), the circle centered on the origin represents the planet, and the dashed contour bounds the region where the
local magnetosheath flow is sub-Alfvénic.
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IMF. The corresponding total magnetopause reconnection assessment (equivalents of Figures 3c and 3f) for
each panel in Figure 4 is shown in Figure 5. These plots indicate that reconnection will be suppressed over the
majority of Neptune’s dayside magnetopause in almost all cases, and in all cases of the prevailing IMF
orientations (Figure 5e–5l). These results are qualitatively the same for northern summer solstice.

Let us now consider northern spring equinox on Neptune, which will occur on 28 February 2038. Figure 6
shows equinox magnetic shear maps for a range of IMF orientations and planetary longitudes, in the same
format as Figure 4. Like Figure 4, Figure 6 also shows a variable magnetic shear across the dayside
magnetopause that is controlled by both planetary longitude and IMF orientation. However, there appears to
be a typically higher magnetic shear across the subsolar region (close to the x axis) for one of the dominant
IMF polarities (Figures 6e–6h) than for the other dominant polarity (Figures 6i–6l). Figure 7 shows full

Figure 6. (a–p) The variable magnetic shear across Neptune’s magnetopause at northern spring equinox (28 February 2038).
Panels in the same row correspond to the same IMF orientation, indicated by the far left circles that show the upstream IMF
vector (with length 2 Neptune radii) projected onto the planet, as viewed from along the upstream solar wind flow direction.
Panels in the same column correspond to the sameorientation of planetary rotation andmagnetic dipole axes, similarly shown in
black and red (respectively) above each column. In Figures 6a–6p themagnetic shear across the daysidemagnetopause is shown
as viewed from along the upstream solar wind flow direction, the circle centered on the origin represents the planet, and the
dashed contour bounds the region where the local magnetosheath flow is sub-Alfvénic.
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reconnection assessments for equinox, where each panel is paired with the equivalent panel in Figure 6. As for
solstice, these equinox assessments predict that reconnection onset cannot take place over the majority of the
dayside magnetopause surface in almost all cases. The difference between IMF polarities at equinox that we
noted in Figure 6 is also apparent in Figure 7, where the suppression of reconnection onset ismore severe for the
polarity with lower magnetic shear across the subsolar region (Figures 7i–7l, cf. Figures 7e–7h). These results are
qualitatively the same for northern fall equinox.

4. Discussion

Because we have followed the same modeling approach as Masters [2014], these results concerning
reconnection at Neptune’s magnetopause can be directly compared to equivalent Uranus results. The Uranus

Figure 7. (a–p) Assessments of magnetic reconnection at Neptune’s magnetopause at northern spring equinox (28 February
2038). Panels in the same row correspond to the same IMF orientation, indicated by the far left circles that show the upstream
IMF vector (with length 2 Neptune radii) projected onto the planet, as viewed from along the upstream solar wind flowdirection.
Panels in the same column correspond to the same orientation of planetary rotation and magnetic dipole axes, similarly shown
in black and red (respectively) above each column. In Figures 7a–7p the dayside magnetopause is shown as viewed from
along the upstream solar wind flow direction, both the reconnection site drift and flow shear conditions for reconnection
onset have been applied (green: reconnection not prohibited; red: reconnection prohibited), the circle centered on the origin
represents the planet, and the dashed contour bounds the region where the local magnetosheath flow is sub-Alfvénic.
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and Neptune results are similar in that they both predict a highly variable cross-magnetopause magnetic
shear for all seasons, with planetary longitude playing an important role. In addition, typical suppression of
reconnection across the majority of the dayside magnetopause is common to both the ice giant planets, and
there are similar indications of a seasonal effect.

The following subsections cover specific discussion topics, focusing on the comparison between
magnetopause reconnection at Uranus and Neptune in order to highlight the predicted differences. To avoid
reproduction of material, discussion points concerning our (idealized) modeling approach (which are thus
common to both the past Uranus and present Neptune studies) are not included here, and we refer the
reader to Masters [2014] where these issues are considered.

4.1. The Influence of Near-Neptune Solar Wind Conditions

Masters [2014] discussed how increasing solar windMach numbers with heliocentric distance are expected to
make magnetosheath conditions at Uranus less favorable for magnetopause reconnection than at the
magnetopause of any of the magnetized planet closer to the Sun. The physics underlying this argument is
that higher upstream Mach numbers produce a higher downstream plasma β in the planetary
magnetosheath and super-Alfvénic magnetosheath flow adjacent to a greater fraction of the dayside
magnetopause surface. These changes in magnetosheath environment with solar wind Mach numbers
suggest that there is both greater diamagnetic drift suppression of reconnection (i.e., onset becomes
increasingly restricted to regions of close to antiparallel magnetic fields) and greater flow shear suppression
of reconnection at the magnetopauses of planets that orbit the Sun at larger distances.

This argument can be extended to Neptune. Solar wind Mach numbers are slightly higher at Neptune orbit
than at Uranus orbit (the Alfvén Mach number at Neptune is ~24 compared to ~23 at Uranus) [Slavin and
Holzer, 1981; Bagenal et al., 1987]. This suggests that conditions at Neptune’s magnetopause are less favorable
for reconnection than at any other planetary magnetopause in the solar system. This expectation is
consistent with the present Neptune results, where the model-predicted magnetosheath plasma β at
Neptune’s magnetopause is slightly higher than at Uranus (maximum value of ~18 in Figure 2f, compared to
~16 at Uranus), which means that magnetopause reconnection is generally restricted to slightly higher
magnetic shears at Neptune than at Uranus (>175° at Neptune’s magnetopause compared to >170° at
Uranus’). Also, the fraction of Neptune’s dayside magnetopause where the nearby magnetosheath flow is
sub-Alfvénic is slightly smaller than in the case of Uranus. In addition, at some sufficiently high solar wind
Alfvén Mach number, we expect the level of the magnetosheath PDL to be lower; i.e., we expect the PDL to
cause a smaller reduction in the local plasma β. Since the solar wind Alfvén Mach number at ~30AU is higher
than at any other planet, it is possible that the typical PDL at Neptune is “weaker” than we have assumed in
our modeling (see section 2.1). If so, this would reinforce the conclusions drawn here.

However, while modeling results support the statement that typical conditions at Neptune’s magnetopause are
less favorable for reconnection than those at Uranus, the predicted differences between the two planets are
marginal. Changes in the solar wind (influenced by the solar cycle) will likely make it difficult to resolve such a
small distinction using future in situ observations.

The near-Neptune solar wind conditions used as model inputs in this study (see Table 1) do not consider the
influence of interstellar pickup ions, the acceleration of which accounts for a significant fraction of the energy
dissipated at the solar wind termination shock [e.g., Decker et al., 2008]. The justification for this is the analysis
of Voyager 2 observations at Neptune’s bow shock reported by Szabo and Lepping [1995]. These authors
showed that the in situ data are in good agreement with shock jump conditions, suggesting that the situation
at Neptune’s bow shock is unlike that at the termination shock in the more distant heliosphere. If a
dynamically significant population of nonthermal pickup ions were present at 30 AU, then we also might
expect this to reinforce the conclusions of the present study.

4.2. Seasonal Effects

The equivalent Uranus results presented byMasters [2014] suggest a seasonal dependence of magnetopause
reconnection. The modeled magnetic shear across the subsolar Uranian magnetopause at solstice varies
similarly for both the prevailing IMF orientations over a Uranus rotation, whereas at equinox one produces
typically higher subsolar shears than the other. This difference is reflected in the daily changes in the fraction
of the dayside Uranian magnetopause where reconnection onset conditions are met. At solstice there is
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symmetry between the two IMF polarities, but this symmetry is broken at equinox, and the average fraction
(over a Uranus rotation, considering both IMF polarities) appears to be lower at equinox than at solstice. The
physical reason for this is the different allowed range of planetary dipole axis orientations at Uranian solstice
compared to at equinox.

The present Neptune results also suggest a seasonal effect. Figure 8 explores this further. Figures 8a and 8b
correspond to northernwinter solstice (considered in Figures 4 and 5), whereas Figures 8c and 8d correspond to
northern spring equinox (considered in Figures 6 and 7). Figures 8a and 8c show how themagnetic shear across
the subsolar point on the model magnetopause (where the x axis intersects the surface) changes over a
Neptune day for each season, and Figures 8b and 8d show how the fraction of the dayside magnetopause
surface where reconnection onset is not prohibited also changes over a Neptune day for each season. Both of
the dominant IMF orientations at Neptune are considered in all panels (note that the prevailing IMF orientations
at Uranus and Neptune are essentially identical) [Parker, 1958].

The differences between Neptune seasons noted in section 3 are clear in Figure 8. The subsolar magnetic
shear for both IMF polarities varies over a range of<180° at both solstice and equinox. At solstice this range is
the same for the two dominant IMF orientations, whereas at equinox the ranges only partially overlap (i.e.,
subsolar shear is generally higher for one than for the other). Fractions of the magnetopause surface where
reconnection is not prohibited tend to be higher when the subsolar shear is higher, and at solstice there is
symmetry between the two IMF polarities, as expected. However, at equinox the fraction reaches far higher
values for one polarity than for the other, over the course of a Neptune day. The physical origin of these
features and seasonal differences is the same as that invoked in the case of Uranus: Different ranges of
possible dipole axis orientations at different seasons. A difference between the equivalent Uranus and
Neptune seasonal assessments is that at Neptune the average fraction of the magnetopause surface where
reconnection onset can occur (averaged over a Neptune day, considering both IMF polarities) is similar at
solstice and equinox, whereas at Uranus the average values differ.
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Figure 8. An assessment of seasonal influences on reconnection at Neptune’s magnetopause. (a) Variation of the magnetic
shear across the magnetopause subsolar point over a Neptune day, at northern winter solstice. (b) Variation of the
percentage of the dayside magnetopause surface area where reconnection onset is not prohibited over a Neptune day,
at northern winter solstice. (c) Variation of themagnetic shear across themagnetopause subsolar point over a Neptune day,
at northern spring equinox. (d) Variation of the percentage of the dayside magnetopause surface area where reconnection
onset is not prohibited over a Neptune day, at northern spring equinox. In Figures 8a and 8c the planetary rotation and
magnetic dipole axes are shown (black and red, respectively, both with length 2 Neptune radii), projected onto the planet
as viewed from along the upstream solar wind flow direction. The axes are shown at 90° increments of planetary rotation
phase. In Figures 8a–8d the variation for a fixed IMF parallel to the y axis is shown in pink, and the variation for a fixed
IMF antiparallel to the y axis is shown in green.
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4.3. Reconnection Electric Fields
and the Reconnection Voltage

To understand to what extent the solar
wind drives Neptune’s magnetosphere,
we need to constrain the reconnection
voltage, and how this quantity varies
with changing solar wind conditions,
Neptune longitude, and Neptune season.
This voltage is equivalent to the rate of
open magnetic flux production resulting
from reconnection. Note that plasma
production inside Neptune’s
magnetosphere by the moon Triton
may represent an internal driver of
magnetospheric dynamics that competes
with external driving by the solar wind
[e.g., Richardson, 1993].

Our Neptune results allow us to begin to
constrain the reconnection voltage
applied to the system, by calculating an
upper limit. The foundation of this is the
determination of the electric field
tangential to Neptune’s magnetopause
that would result from the onset of
reconnection at some point—the
reconnection electric field. This can be
calculated using the near-magnetopause
parameters that are treated by our
modeling approach, based on an assumed
value of the dimensionless reconnection
efficiency [Cassak and Shay, 2007]. Figure 9
shows the magnetopause reconnection
assessment for northern winter solstice
and purely northward IMF shown in
Figures 2h, 3d–3f, 4m, and 5m. This is the
assessment where reconnection is
possible over the greatest fraction of the

modeled dayside magnetopause surface. In Figure 9 the reconnection electric field strength divided by the
reconnection efficiency is shown in the region of the surface where reconnection is not prohibited.

There is some debate about how the reconnection efficiency depends on local parameters. Some authors argue
that the value drops below ~0.1 (the typical value for reconnection in the near-Earth solar wind) as the local
plasma β increases [Sonnerup, 1970; Slavin and Holzer, 1979; Anderson et al., 1997; DiBraccio et al., 2013]. If this is
so, we would expect the reconnection efficiency at Neptune’s magnetopause to be lower than 0.1, due to the
high plasma β in Neptune’s magnetosheath (see Figure 2f). If we assume an Earth magnetopause-like efficiency
of 0.1, then Figure 9 suggests a typical electric field strength at Neptune’s magnetopause that is ~0.02mVm�1;
whereas if we assume a lower efficiency of 0.01, then the typical electric field strength would be
~0.002mVm�1. These values are slightly lower than the model-predicted values for Uranus.

As mentioned at the beginning of this subsection, we can place an upper limit on the reconnection voltage at
Neptune. If reconnection occurs at all points along a line on themagnetopause surface (a reconnection “X line”)
then the reconnection voltage is the potential difference between one end of the line and the other. If we use
our most favorable case for reconnection at Neptune’s magnetopause shown in Figure 9, and assume that a
reconnection X line forms that spans the dayside surface and is ~70 RN long, then our (more generous) typical

Figure 9. An assessment of the reconnection electric field strength at
Neptune’s magnetopause. A specific set of conditions is considered
(shown in Figures 4m and 5m), corresponding to northern winter
solstice. The circle to the left of themain panel shows the upstream IMF
orientation, by projecting an IMF vector with length 2 Uranus radii onto
the planet, as viewed from along the upstream solar wind flow
direction. The circle above the main panel similarly shows the
orientation of the planetary rotation and magnetic dipole axes, in black
and red, respectively. In the main panel the dayside magnetopause is
shown as also viewed along the upstream solar wind flow direction,
the circle centered on the origin represents the planet, and the
dashed contour bounds the region where the local magnetosheath
flow is sub-Alfvénic. The color scale indicates what the ratio of the
reconnection electric field strength to the dimensionless reconnection
efficiency would be if onset were to occur. Color is only applied to
regions of the surface where both reconnection onset conditions are
satisfied (see Figure 5m).

Journal of Geophysical Research: Space Physics 10.1002/2014JA020744

MASTERS ©2014. American Geophysical Union. All Rights Reserved. 491



electric field strength of ~0.02mVm�1 suggests an upper limit to the reconnection voltage of ~35kV. The
typical reconnection voltage at Neptune is likely to be significantly lower than this upper limit. Note that this
estimated reconnection voltage upper limit for Neptune is similar to that at Uranus. This is because Neptune’s
magnetosphere is larger, potentially allowing longer X lines that counteract theweaker reconnection electric field.

5. Summary

We have used an analytical modeling approach to investigate how the solar wind interacts with Neptune’s
magnetosphere via magnetic reconnection at the magnetopause boundary of the system. We have used the
same modeling approach as that used by Masters [2014] for the case of Uranus, and we have compared the
present Neptune results with their Uranus results.

Our modeling suggests that typical near-Neptune solar wind parameters make conditions at Neptune’s
magnetopause less favorable for magnetic reconnection than at the magnetopause boundary of any other
solar system magnetosphere. The location of reconnection sites on Neptune’s magnetopause is expected to
be highly sensitive to planetary longitude and season as well as the orientation of the IMF, which is comparable
to the situation at Uranus. The present Neptune modeling results also indicate a Uranus-like seasonal
dependence of magnetopause reconnection, where conditions are more favorable for magnetopause
reconnection for one of the dominant IMF orientations than for the other at equinox, whereas at solstice there is
symmetry between the two IMF polarities in this respect. We estimate the upper limit of the reconnection
voltage applied to Neptune’s magnetosphere as 35 kV but point out that the typical voltage is expected to be
considerably lower.

A great deal remains to be learned about how the solar wind interacts with the magnetosphere of the
outermost planet, and what role the solar wind plays in driving energy flow throughNeptune’s magnetosphere.
Additional means of coupling to the solar wind need to be considered (e.g., via a “viscous-like” interaction),
as well as the effectiveness of Triton-related internal mass loading as a competing driver of the system.
A mystery that deserves to be highlighted here is the question of why Voyager 2 observations suggest different
dynamical states of the magnetospheres of Uranus and Neptune. Solar wind-driven convection, injection-like
processes, dynamic whistler mode emissions, and an appreciable radiation belt were identified at Uranus
[Selesnick and McNutt, 1987;Mauk et al., 1987, 1994; Kurth and Gurnett, 1991], unlike at Neptune [Mauk and Fox,
2010]. The modest differences between the recent Uranus and present Neptune reconnection assessments
do not indicate an answer to this question. The physics of both ice giant magnetosphere is likely to remain
mysterious until we continue in situ spacecraft exploration, in the form of planetary orbiters [e.g., Arridge et al.,
2014; Masters et al., 2014].

References
Anderson, B. J., T.-D. Phan, and S. A. Fuselier (1997), Relationships between plasma depletion and subsolar reconnection, J. Geophys. Res., 102,

9531–9542, doi:10.1029/97JA00173.
Arridge, C. S., et al. (2014), The science case for an orbital mission to Uranus: Exploring the origins and evolution of ice giant planets, Planet.

Space Sci., 104, 122–140.
Bagenal, F. (2013), Planetary magnetospheres, in Planets, Stars and Stellar Systems, edited by T. D. Oswalt, L. M. French, and P. Kalas, p. 251,

Springer, Dordrecht, Netherlands.
Bagenal, F., J. W. Belcher, E. C. Sittler Jr., and R. P. Lepping Jr. (1987), The Uranian bow shock: Voyager 2 inbound observations of a high Mach

number shock, J. Geophys. Res., 92, 8603–8612, doi:10.1029/JA092iA08p08603.
Belcher, J. W., et al. (1989), Plasma observations near Neptune—Initial results from Voyager 2, Science, 246, 1478–1483.
Cassak, P. A., and A. Otto (2011), Scaling of the magnetic reconnection rate with symmetric shear flow, Phys. Plasmas, 18, 074501,

doi:10.1063/1.3609771.
Cassak, P. A., and M. A. Shay (2007), Scaling of asymmetric magnetic reconnection: General theory and collisional simulations, Phys. Plasmas,

14, 102114, doi:10.1063/1.2795630.
Connerney, J. E. P., et al. (1991), The magnetic field of Neptune, J. Geophys. Res., 96, 19,023–19,042, doi:10.1029/91JA01165.
Decker, R. B., et al. (2008), Mediation of the solar wind termination shock by non-thermal ions, Science, 454, 67–70.
Desch, M. D., et al. (1991), The role of solar wind reconnection in driving the Neptune radio emission, J. Geophys. Res., 96, 19,111–19,116,

doi:10.1029/91JA01138.
DiBraccio, G. A., J. A. Slavin, S. A. Boardsen, B. J. Anderson, H. Korth, T. H. Zurbuchen, J. M. Raines, D. N. Baker, R. L. McNutt Jr., and S. C. Solomon

(2013), MESSENGER observations of magnetopause structure and dynamics at Mercury, J. Geophys. Res. Space Physics, 118, 997–1008,
doi:10.1002/jgra.50123.

Dungey, J. W. (1961), Interplanetary magnetic field and the auroral zones, Phys. Rev. Lett., 6, 47–48.
Fuselier, S. A., and W. S. Lewis (2011), Properties of near-Earth magnetic reconnection from in-situ observations, Space Sci. Rev., 160, 95–121.
Gosling, J. T. (2012), Magnetic reconnection in the solar wind, Space Sci. Rev., 172, 187–200.
Holme, R., and J. Bloxham (1996), The magnetic fields of Uranus and Neptune: Methods and models, J. Geophys. Res., 101, 2177–2200,

doi:10.1029/95JE03437.

Acknowledgments
Please direct data requests to Adam
Masters (a.masters@imperial.ac.uk).

Michael Liemohn thanks the reviewers
for their assistance in evaluating
this paper.

Journal of Geophysical Research: Space Physics 10.1002/2014JA020744

MASTERS ©2014. American Geophysical Union. All Rights Reserved. 492

http://dx.doi.org/10.1029/97JA00173
http://dx.doi.org/10.1029/JA092iA08p08603
http://dx.doi.org/10.1063/1.3609771
http://dx.doi.org/10.1063/1.2795630
http://dx.doi.org/10.1029/91JA01165
http://dx.doi.org/10.1029/91JA01138
http://dx.doi.org/10.1002/jgra.50123
http://dx.doi.org/10.1029/95JE03437


Huddleston, D. E., et al. (1997), Magnetopause structure and the role of reconnection at the outer planets, J. Geophys. Res., 102, 24,289–24,302,
doi:10.1029/97JA02416.

Kobel, E., and E. O. Flückiger (1994), A model of the steady state magnetic field in the magnetosheath, J. Geophys. Res., 99, 23,617–23,622,
doi:10.1029/94JA01778.

Kurth, W. S., and D. A. Gurnett (1991), Plasma waves in planetary magnetospheres, J. Geophys. Res., 96, 18,977–18,991, doi:10.1029/91JA01819.
Lepping, R. P., et al. (1992), Neptune’s polar cusp region—Observations and magnetic field analysis, J. Geophys. Res., 97, 8135–8144,

doi:10.1029/92JA00314.
Masters, A. (2014), Magnetic reconnection at Uranus’magnetopause, J. Geophys. Res. Space Physics, 119, 5520–5538, doi:10.1002/2014JA020077.
Masters, A., et al. (2014), Neptune and Triton: Essential pieces of the solar system puzzle, Planet. Space Sci., 104, 108–121.
Mauk, B. H., and N. J. Fox (2010), Electron radiation belts of the solar system, J. Geophys. Res., 115, A12220, doi:10.1029/2010JA015660.
Mauk, B. H., S. M. Krimigis, E. P. Keath, A. F. Cheng, T. P. Armstrong, L. J. Lanzerotti, G. Gloeckler, and D. C. Hamilton (1987), The hot plasma and

radiation environment of the Uranian magnetosphere, J. Geophys. Res., 92(A13), 15,283–15,308, doi:10.1029/JA092iA13p15283.
Mauk, B. H., E. P. Keath, M. Kane, S. M. Krimigis, A. F. Cheng, M. H. Acuña, T. P. Armstrong, and N. F. Ness (1991), The magnetosphere of

Neptune: Hot plasmas and energetic particles, J. Geophys. Res., 96(S01), 19,061–19,084, doi:10.1029/91JA01820.
Mauk, B. H., E. P. Keath, and S. M. Krimigis (1994), Unusual satellite-electron signature within the Uranian magnetosphere and its implications

regarding whistler electron loss processes, J. Geophys. Res., 99(A10), 19,441–19,450, doi:10.1029/94JA01658.
Mozer, F. S., and A. Hull (2010), Scaling the energy conversion rate from magnetic field reconnection to different bodies, Phys. Plasmas, 17,

102906, doi:10.1063/1.3504224.
Ness, N. F., et al. (1989), Magnetic fields at Neptune, Science, 246, 1473–1478.
Parker, E. N. (1958), Dynamics of the interplanetary gas and magnetic fields, Astrophys. J., 128, 664–676.
Paschmann, G., et al. (2013), In situ observations of reconnection in space, Space Sci. Rev., 178, 385–417.
Petrinec, S. M., and C. T. Russell (1997), Hydrodynamic and MHD equations across the bow shock and along the surfaces of planetary

obstacles, Space Sci. Rev., 79, 757–791.
Petrinec, S. M., et al. (1997), Geotail observations of magnetosheath flow near the magnetopause, using Wind as a solar wind monitor,

J. Geophys. Res., 102, 26,943–26,959, doi:10.1029/97JA01637.
Petrinec, S. M., et al. (2003), Steady reconnection during intervals of northward IMF: Implications for magnetosheath properties, J. Geophys.

Res., 108(A12, 1458), doi:10.1029/2003JA009979.
Phan, T. D., T. E. Love, J. T. Gosling, G. Paschmann, J. P. Eastwood, M. Oieroset, V. Angelopoulos, J. P. McFadden, D. Larson, and U. Auster

(2011), Triggering of magnetic reconnection in a magnetosheath current sheet due to compression against the magnetopause, Geophys.
Res. Lett., 38, L17101, doi:10.1029/2011GL048586.

Phan, T. D., G. Paschmann, J. T. Gosling, M. Oieroset, M. Fujimoto, J. F. Drake, and V. Angelopoulos (2013), The dependence ofmagnetic reconnection
on plasma β and magnetic shear: Evidence from magnetopause observations, Geophys. Res. Lett., 40, 11–16, doi:10.1029/2012GL054528.

Phan, T.-D., et al. (2010), The dependence of magnetic reconnection on plasma β and magnetic shear: Evidence from solar wind observations,
Astrophys. J., Lett., 719, L199–L203.

Richardson, J. D. (1993), A quantitative model of plasma in Neptune’s magnetosphere, Geophys. Res. Lett., 20, 1467–1470, doi:10.1029/93GL01353.
Richardson, J. D., and R. L. McNutt (1990), Low-energy plasma in Neptune’s magnetosphere, Geophys. Res. Lett., 17, 1689–1692,

doi:10.1029/GL017i010p01689.
Richardson, J. D., J. W. Belcher, M. Zhang, and R. L. McNutt Jr. (1991), Low-energy ions near Neptune, J. Geophys. Res., 96, 18,993–19,011,

doi:10.1029/91JA01598.
Sanny, J., R. L. McPherron, C. T. Russell, D. N. Baker, T. I. Pulkkinen, and A. Nishida (1994), Growth-phase thinning of the near-Earth current

sheet during the CDAW 6 substorm, J. Geophys. Res., 99(A4), 5805–5816, doi:10.1029/93JA03235.
Selesnick, R. S. (1990), Plasma convection in Neptune’s magnetosphere, Geophys. Res. Lett., 17, 1681–1684, doi:10.1029/GL017i010p01681.
Selesnick, R. S., and R. L. McNutt Jr. (1987), Voyager 2 plasma ion observations in the magnetosphere of Uranus, J. Geophys. Res., 92,

15,249–15,262, doi:10.1029/JA092iA13p15249.
Slavin, J. A., and R. E. Holzer (1979), The effect of erosion on the solar wind stand-off distance at Mercury, J. Geophys. Res., 84, 2076–2082,

doi:10.1029/JA084iA05p02076.
Slavin, J. A., and R. E. Holzer (1981), Solar wind flow about the terrestrial planets: 1. Modeling bow shock position and shape, J. Geophys. Res.,

86, 11,401–11,418, doi:10.1029/JA086iA13p11401.
Sonnerup, B. U. O. (1970), Magnetic field reconnection in a highly conducting incompressible fluid, J. Plasma Phys., 4, 161–174.
Stone, E. C., and E. D. Miner (1989), The Voyager 2 encounter with the Neptunian system, Science, 246, 1417–1421.
Swisdak, M., and J. F. Drake (2007), Orientation of the reconnection X-line, Geophys. Res. Lett., 34, L11106, doi:10.1029/2007GL029815.
Swisdak, M., B. N. Rogers, J. F. Drake, and M. A. Shay (2003), Diamagnetic suppression of component magnetic reconnection at the

magnetopause, J. Geophys. Res., 108(A5), 1218, doi:10.1029/2002JA009726.
Swisdak, M., M. Opher, J. F. Drake, and F. Alouani Bibi (2010), The vector direction of the interstellar magnetic field outside the heliosphere,

Astrophys. J., 710, 1769–1775.
Szabo, A., and R. P. Lepping (1995), Neptune inbound bow shock, J. Geophys. Res., 100, 1723–1730, doi:10.1029/94JA02491.
Szabo, A., G. L. Siscoe, A. J. Lazarus, R. L. McNutt Jr., R. P. Lepping, and N. F. Ness (1991), Magnetopause and cusp observations at Neptune,

J. Geophys. Res., 96(S01), 19,149–19,152, doi:10.1029/91JA01600.
Voigt, G.-H., and N. F. Ness (1990), The magnetosphere of Neptune—Its response to daily rotation, Geophys. Res. Lett., 17, 1705–1708,

doi:10.1029/GL017i010p01705.
Zhang, M., J. D. Richardson, and E. C. Sittler Jr. (1991), Voyager 2 electron observations in the magnetosphere of Neptune, J. Geophys. Res.,

96(S01), 19,085–19,100, doi:10.1029/91JA01857.
Zwan, B. J., and R. A. Wolf (1976), Depletion of solar wind plasma near a planetary boundary, J. Geophys. Res., 81, 1636–1648,

doi:10.1029/JA081i010p01636.

Journal of Geophysical Research: Space Physics 10.1002/2014JA020744

MASTERS ©2014. American Geophysical Union. All Rights Reserved. 493

http://dx.doi.org/10.1029/97JA02416
http://dx.doi.org/10.1029/94JA01778
http://dx.doi.org/10.1029/91JA01819
http://dx.doi.org/10.1029/92JA00314
http://dx.doi.org/10.1002/2014JA020077
http://dx.doi.org/10.1029/2010JA015660
http://dx.doi.org/10.1029/JA092iA13p15283
http://dx.doi.org/10.1029/91JA01820
http://dx.doi.org/10.1029/94JA01658
http://dx.doi.org/10.1063/1.3504224
http://dx.doi.org/10.1029/97JA01637
http://dx.doi.org/10.1029/2003JA009979
http://dx.doi.org/10.1029/2011GL048586
http://dx.doi.org/10.1029/2012GL054528
http://dx.doi.org/10.1029/93GL01353
http://dx.doi.org/10.1029/GL017i010p01689
http://dx.doi.org/10.1029/91JA01598
http://dx.doi.org/10.1029/93JA03235
http://dx.doi.org/10.1029/GL017i010p01681
http://dx.doi.org/10.1029/JA092iA13p15249
http://dx.doi.org/10.1029/JA084iA05p02076
http://dx.doi.org/10.1029/JA086iA13p11401
http://dx.doi.org/10.1029/2007GL029815
http://dx.doi.org/10.1029/2002JA009726
http://dx.doi.org/10.1029/94JA02491
http://dx.doi.org/10.1029/91JA01600
http://dx.doi.org/10.1029/GL017i010p01705
http://dx.doi.org/10.1029/91JA01857
http://dx.doi.org/10.1029/JA081i010p01636

