
University of London

Imperial College of Science, Technology and Medicine

Department of Computing

Dragon: Processing Node Discovery Protocol
Based on Static Attributes for Homogeneous
and Heterogeneous Wireless Sensor Networks

Roman Kolcun

Submitted in part fulfilment of the requirements for the degree of
Doctor of Philosophy in Computing of the University of London and

the Diploma of Imperial College, February 2015

Declaration

I declare that the work described in this thesis is my own and has not been submitted for any

other degree or diploma. The work of others is properly referenced and the list is provided in

bibliography.

The copyright of this thesis rests with the author and is made available under a Creative

Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to copy,

distribute, or transmit the thesis on the condition that they attribute it, that they do not use

it for commercial purposes and that they do not alter, transform, or build upon it. For any

reuse or redistribution, researchers must make clear to others the licence terms of this work.

i

ii

Abstract

Wireless Sensor Networks (WSNs) are networks consisting of small, battery-powered computers

with short-range radio communication and sensing capabilities. These computers (referred to

as nodes) are used to sense one or more variables using one or more sensors and report these

readings to a base-station via a multi-hop communication. Often, these WSNs are deployed to

detect a phenomenon. Detection of this phenomenon usually depends on readings from several

sensors in different locations. Therefore, sensor readings are periodically collected at the base-

station which processes these data or forwards them to a cloud. This base-station also represents

a gateway for users to access and communicate with the WSN. It allows a user to submit a query,

whose execution retrieves data from relevant sensor nodes and the result of the computation

over these data is detection of a phenomenon. In a typical node, radio is responsible for far

more energy consumption when compared to the CPU or most of the sensors. Therefore, it has

always been researchers’ intention to lower the network communication to the lowest possible

level. Because nodes closer to the base-station transfer more data, their batteries are depleted

faster which may lead to part of the network being unreachable. Additionally, because a user

accesses the WSN via a base-station, it represents a single point of failure. One of the solutions

to overcome this problem is to allow a user to communicate and submit a query via any node

in the network. However, building a fully decentralised and energy-efficient framework allowing

any node to accept and execute a query submitted by a user brings several new challenges.

First, a node needs to be able to communicate with any other node in the network, not only

the base-station, without relying on any central entity. Second, any node must be able to

identify all the nodes which monitor the same phenomenon. And third, a node which processes

the data must be chosen in such way, that the overall communication of the whole network is

minimised.

In this thesis we present Dragon, a framework for in-network data stream processing. Dragon

allows communication among any pair of nodes via optimal or near optimal routes. This is

achieved without the need to first discover or establish a path between two communicating

nodes. Dragon also allows any node to find a list of all other nodes fulfilling given static cri-

teria. The search for these nodes requires communication with only close (possibly multi-hop)

neighbourhood. Finding a list of nodes observing the same phenomenon and requesting data

directly from these nodes allows any node in the network to accept and execute a snapshot

iii

(one-time) query with a very low network overhead and in a timely manor. Finally, Dragon

introduces a distributed algorithm for discovery of a processing node for continuous queries in

WSNs. The algorithm follows the cost gradient to the node with the lowest communication

cost, hence decreasing the overall network traffic and communication delay.

iv

Acknowledgements

I would like to express my sincere gratitude to my supervisor Julie A. McCann, who has guided

me through my PhD and has always helped me with a support and good advice.

I am also grateful to my colleagues Pedro Martins, Michael Breza, Shusen Yang, Usman Adeel,

and Evangelos Spyrou who have always been there for me whenever I needed an advice, help,

or just to go for a beer.

I cannot express how grateful I am for my parents, Iraida and Michal, who have been showing

me the beauty of research throughout my life.

Last, but not least I would like to express my deepest gratitude to my wife, Radka, who has

always supported me in pursuing my dreams and has always stood by my side.

v

vi

Contents

Declaration i

Abstract iii

Acknowledgements v

1 Introduction 1

1.1 Wireless Sensor Networks . 1

1.2 Application of a Wireless Sensor Network . 3

1.3 Challenges . 10

1.4 Contributions . 12

1.5 Structure of Thesis . 13

1.6 Publications . 14

2 Testbed 16

2.1 Introduction . 16

2.2 Uniform Topologies . 18

2.3 Random Topologies . 18

vii

viii CONTENTS

2.4 Communication Primitives . 19

3 Routing Table Discovery 26

3.1 Introduction & Related Work . 26

3.1.1 Routing Towards a Base-station . 27

3.1.2 Peer-to-peer Routing . 29

3.2 Routing Table Discovery Algorithm . 33

3.3 Routing Table Update Algorithm . 37

3.4 Multi-hop Forwarding with Implicit Acknowledgements 42

3.4.1 Packet Merging . 46

3.5 Evaluation . 47

3.5.1 Proactive vs. Reactive Approach to Routing Table Update 47

3.5.2 Routing Stretch . 51

3.5.3 Routing Table Update Algorithm . 53

3.6 Conclusion . 54

4 Distributed Static Attribute Table 56

4.1 Introduction & Related Work . 56

4.2 Distributed Static Attribute Table . 64

4.3 Static Attribute Propagation . 68

4.4 Evaluation . 74

4.4.1 Distributed Static Attribute Table . 74

CONTENTS ix

4.4.2 Static Attribute Propagation . 77

4.5 Conclusion . 82

5 Snapshot Queries 85

5.1 Introduction . 85

5.2 Snapshot Queries . 86

5.3 Evaluation . 91

5.4 Conclusion . 96

6 Continuous Queries 99

6.1 Introduction . 99

6.2 Related Work . 102

6.2.1 Algorithms without Filtering of Non-Joinable Tuples 104

6.2.2 Algorithms with Filtering of Non-Joinable Tuples 107

6.3 Heterogeneous Networks . 111

6.4 Processing Node Discovery Algorithm . 113

6.4.1 Query Processing Overview . 117

6.4.2 Homogeneous Networks . 118

6.4.3 Heterogeneous Networks . 122

6.5 Query Tuple Buffering Optimisation . 129

6.6 Evaluation . 133

6.6.1 Homogeneous Networks . 134

6.6.2 Heterogeneous Networks . 140

6.7 Conclusion . 147

7 Summary and Conclusion 149

7.1 Contributions . 151

7.2 Future Work . 152

Bibliography 154

x

List of Tables

4.1 Cost comparison of DSAT parts assignment in uniform networks of various den-

sities. 77

4.2 Cost comparison of DSAT parts assignment in random network of various densities. 78

4.3 Number of messages comparison of Dragon with Trickle algorithm for static

attributes propagation. 82

4.4 Time of static attributes propagation comparison of Dragon with Trickle algo-

rithm. 82

5.1 Number of messages comparison of Dragon with algorithms based on sum-

maries for Query 1. 93

5.2 Time comparison of Dragon with algorithms based on summaries for Query 1. 95

5.3 Number of messages comparison of Dragon with algorithms based on sum-

maries for Query 2. 97

5.4 Number of messages comparison of Dragon with algorithms based on sum-

maries for Query 2. 97

6.1 Number of messages comparison of Dragon QTB with various algorithms for

in-network data stream processing. 137

xi

6.2 Delay in data processing comparison of Dragon QTB with various algorithms

for in-network data stream processing. 138

xii

List of Figures

2.1 Uniform 250 Node Dense Network . 19

2.2 Uniform 250 Node Medium Dense Network . 20

2.3 Uniform 250 Node Medium Sparse Network . 21

2.4 Uniform 250 Node Sparse Network . 22

2.5 Random 250 Node Dense Network . 23

2.6 Random 250 Node Medium Dense Network . 23

2.7 Random 250 Node Medium Sparse Network #1 24

2.8 Random 250 Node Medium Sparse Network #2 24

2.9 Random 250 Nodes Sparse Network . 25

2.10 Node Degree Histogram for Spare Uniform and Sparse Random Topology 25

3.1 Pro-active broadcasting of routing table records. Records marked in red are

“updated” records which will be broadcast in the next iteration of the Routing

Table Discovery algorithm. 36

xiii

xiv LIST OF FIGURES

3.2 Routing Table Update Algorithm. The Figure depicts the process how routing

tables are updated during a node failure. Only partial routing tables (RT) of four

nodes: n2, n4, n5, and n7 are shown. In a RT a distance to a node marked as “F”

or “U” represents a “failed” or “unreachable” node. Updated routing records

(i.e. to be broadcast) are displayed in a green or red colour. Figure 3.2b also

shows a list of unreachable nodes collected at node n7. Every figure also shows a

list of messages sent in given time period. Messages are marked as follows: “F”

stands for “Failed Node”, “D” stands for “Distance to the Failed Node”, “U”

stands for “Unreachable Nodes”, and “RT” stands for “Routing Table Record”. 41

3.3 Routing Table Discovery Algorithm. Comparison of proactive and reactive ver-

sion of the Dragon algorithm. The results are grouped by network topology

and network density. The figure continues on the next page. On the x-axis “D”

stands for the dense, “MD“ for medium dense, “MS” for medium sparse, and “S”

for sparse topology. Topologies prefixed with “R” stand for random topologies,

otherwise the topology is uniform. 48

3.3 Routing Table Discovery Algorithm. Comparison of proactive and reactive ver-

sion of the algorithm. The results are grouped by network topologies and network

densities. Continuation of the figure from the previous page. On the x-axis “D”

stands for the dense, “MD“ for medium dense, “MS” for medium sparse, and “S”

for sparse topology. Topologies prefixed with “R” stand for random topologies,

otherwise the topology is uniform. 49

3.4 Routing stretch of Dragon, algorithms based on one routing tree and three

routing trees. On the x-axis “D” stands for the dense, “MD“ for medium dense,

“MS” for medium sparse, and “S” for sparse topology. Topologies prefixed with

“R” stand for random topologies, otherwise the topology is uniform. 53

4.1 Assigning parts to nodes in the DSAT. Part 1/3 69

4.1 Assigning parts to nodes in the DSAT. Part 2/3 70

LIST OF FIGURES xv

4.1 Assigning parts to nodes in the DSAT. Part 3/3 71

4.2 Static Attribute Propagation Algorithm. Only four out of ten nodes are needed

to propagate the static attributes of node n1 throughout the network. Nodes

shown in red are the nodes which broadcast the message, nodes in green are the

nodes which has received the message, and the nodes in blue are the nodes which

has not received the message, yet. 73

4.3 Assigning parts of DSAT to nodes in uniform networks. 76

4.4 Assigning parts of DSAT to nodes in random networks. 77

4.5 Static Attribute propagation . 80

4.6 Problem with static attribute propagation algorithm based on neighbour threshold. 81

5.1 Search in tree summaries - Part 1/2. The search request (dashed line) for nodes

with given static criteria is routed up the routing tree. If a node has a summary

which fulfils the static criteria, the request is routed down the routing tree in

given direction. Nodes fulfilling static criteria are diamond shaped. If such a

node receives a request it replies via the same path as the request travelled

(dotted line). 88

5.1 Search in tree summaries - Part 2/2. The search request (dashed line) for nodes

with given static criteria is routed up the routing tree. If a node has a summary

which fulfils the static criteria, the request is routed down the routing tree in

given direction. Nodes fulfilling static criteria are diamond shaped. If such a

node receives a request it replies via the same path as the request travelled

(dotted line). 89

5.2 Network traffic and execution time comparison of Dragon to other approaches

based on tree summaries for Query 1. 94

xvi LIST OF FIGURES

5.3 Network traffic and execution time comparison of Dragon to other approaches

based on tree summaries for Query 2. 96

6.1 An example of a pipe segment with flow sensors. The arrow shows the direction

of the flow of liquid in the pipe. Bars perpendicular to the arrows denote flow

sensors. 100

6.2 Processing Node Discovery Algorithm. The search follows the steepest cost gra-

dient. Once a node whose cost is lower than the cost of all its neighbours, the

node declares itself as the processing node. 119

6.3 Processing Node Discovery Algorithm. Sometimes the search hit a neighbour-

hood of nodes with the same cost and the gradient is lost. In this case the

search by a random walk is executed. Data sources are diamond shaped while

the processing node is polygon shaped. Coordinator in given round is showed in

red. 121

6.4 Query Algorithm for Heterogeneous WSNs. 124

6.5 Traverse Algorithm for Heterogeneous WSNs. 128

6.6 Mixed Algorithm for Heterogeneous WSNs. 129

6.7 Query Tuple Buffering. The graph depicts routes travelled by the packets from

the source nodes (shown as squares) to the processing node n2 depicted as a

circle. Nodes n0, n44, n47, n61, n62, and n63 can perform QTB as packets from

multiple source nodes pass through them. Nodes which do not forward any

packets for given query are omitted from the graph. 130

6.8 An example of a pipe segment with flow sensors. The arrow shows the direction

of the flow of liquid in the pipe. Bars perpendicular to the arrows denote flow

sensors. 134

6.9 Comparison of the number of messages sent by various in-network processing

algorithms. 136

6.10 Comparison of the delay in tuple processing by various in-network processing

algorithms. 138

6.11 Percentage increase of cost of the discovered processing node vs. the optimal

processing node. 139

6.12 Influence of bouncing on the Processing Node Discovery algorithms for hetero-

geneous networks. 140

6.13 Comparison of Query and Traverse algorithms with processing at the base-

station. The comparison is for Query 1 which leads to selection of a smaller

number of possible processing node. “BS” stands for “Bounce Size” and “BT”

stands for “Bounce Threshold”. 142

6.14 Comparison of Query and Traverse algorithms with processing at the base-

station. The comparison is for Query 2 which leads to selection of a larger

number of possible processing node. “BS” stands for “Bounce Size” and “BT”

stands for “Bounce Threshold”. 145

xvii

xviii

Chapter 1

Introduction

1.1 Wireless Sensor Networks

One of the basic discovery methods used by scientists from the early beginnings of mankind has

been observation. Planets were discovered by observing the night sky, the fact that the Earth is

round was discovered by observing the movement of the stars and the Sun. From early ages sci-

entists developed new techniques and instruments which would help them with the observation

of a given phenomenon. By monitoring the phenomenon, scientists tried to better understand

the underlying causes. With the introduction of computers scientists gained a powerful tool for

processing large quantities of data. However, collecting these data was a tedious process which

often involved human intervention. As computers became more common, scientists started to

use them not only to process the data but also to collect them. They attached sensors to

computers to monitor the phenomenon in real time. This solution was sufficient for observing

phenomenon occurring at large scale, e.g. monitoring atmospheric pressure. However, if scien-

tists wanted to better understand distributed phenomena with spatio-temporal characteristics,

e.g. how smoke spreads in a building during a fire, it required installation of many computers

with sensors attached throughout the building. This approach was usually neither simple, nor

feasible.

With the miniaturisation of computers, new types of small, battery-powered devices become

1

2 Chapter 1. Introduction

available. These very small devices are capable of simple sensing, computation, and wireless

communication (from now on referred to as sensor nodes or just nodes). They could be deployed

by researchers in order to monitor a given phenomenon by sensing a variable at a predefined

rate and send collected data to a central computer. These sensor nodes are capable of wireless

communication which allow them to exchange data and talk to each other. Even though one

single sensor node cannot do much, by organising all of the nodes into a network we can get a

powerful observation tool capable of measuring distributed spatio-temporal phenomena.

We refer to these sensor nodes organised in a network as a Wireless Sensor Network (WSN

from here, WSNs in the plural form). WSNs allow us to study the environment and distributed

spatio-temporal phenomena within the environment in a distributed way. They can help us to

better understand the causes and even allow us to control the environment.

To better demonstrate what a WSN can be used for, let us introduce a simple scenario. We

will use this scenario throughout this thesis as we extend the capabilities of the WSN with new

features allowing it to provide a user with richer capabilities.

Scenario:

A remote oil field in a desert consists of many oil pumps, oil reservoirs, and tens of miles of

various pipes delivering a wide range of liquids or gases. These pipes create a complex inter-

connected system, i.e. a pipe can be split into more pipes or several pipes may merge into

one. Each morning an engineer comes to the site to check the volume of oil pumped from the

ground within the last 24 hours. If the volume of oil differs from the long-term average he has

to investigate the cause. If a pump is broken he needs to call a pump engineer to fix it. If all

pumps are OK he has to check miles and miles of pipes and search for a possible leak. If a leak

is found the nearest valve has to be closed and a replacement pipe ordered.

This type of operation is still common in many areas where human resources are wasted on

tedious repeated jobs which could be automated. Additionally, when a pipe bursts after an

engineer leaves, it will not be noticed until the next visit by an engineer. The oil leak could

not only damage environment, it would also cause significant loss of income. Additional costs

could be associated with the repairing of devices which were damaged by a continuous oil leak.

1.2. Application of a Wireless Sensor Network 3

This situation could have been prevented if the information were available to close the correct

valve immediately after the leak was detected.

In the rest of this thesis we will show how a WSN could help with the monitoring of oil pipes

while increasing the reliability, decreasing running costs, and preventing pipe leaks in the case

of a pipe burst.

1.2 Application of a Wireless Sensor Network

The scenario described above could benefit from the use of a WSN. A simple WSN could consist

of just one sensor node at the tank monitoring the volume increase in the last hour. These

data are sent via long-range communication, e.g. GSM or satellite. An application running

in a cloud would processes the data and detect fluctuation in received values. If the received

value is lower than the long-term average the application notifies a response team which will

investigate the decrease in volume. However, this solution will not help the team to localise the

problem. The team will still have to check all the pumps and pipes to find the problem. This

will not prevent a pipe burst which can still cause a lot of damage to the environment and the

equipment.

In order to distinguish between a pipe leak and the dysfunctional oil pump multiple sensor nodes

need to be deployed. One sensor node can be deployed at the beginning of the pipe, one at

the end, and several in the middle in order to achieve multi-hop connectivity. A more powerful

node with more computational power, unlimited battery life, and a wide range communication

radio is dedicated as a base-station which collects data from the whole network and rely them

to the cloud. An application running in the cloud computes volume of oil passing through the

sensor at the beginning of the pipe and compares it with the volume of oil passing through

the sensor at the end of the pipe. If there is any difference it means that there is a pipe leak.

Other sensor readings from the pipe could be used to detect the segment of the pipe where a

leak occurred. In case there is no oil passing through the sensor at the beginning of the pipe,

it means there is a problem with the oil pump. Now, the application can better determine the

4 Chapter 1. Introduction

cause of the problem and notify the response team with greater precision as to what and where

the problem is.

This type of deployment can be seen as the first generation of WSNs. Data from all sensor

nodes are periodically collected at the base-station which forwards them to a cloud, where

reasoning about the data takes place. The WSN is seen only as a source of data. For this type

of network algorithms focusing on reliable delivering of sensed data were developed. Collection

protocols such as CTP [GFJ+09] or RPL [WTC+12] became very popular and are still widely

used.

However, we argue that this approach is not scalable for future needs. It is estimated that

by the year 2020 the number of connected devices to the Internet will be between 30 billion

[Res13] and as much as 212 billion (including 30.1 billion of autonomous things) with a market

value of $8.9 trillion [IDC13]. We assume that this vast amount devices will not create one

huge network but will rather be organised in smaller networks consisting of hundreds of nodes.

Each network will be used to monitor a single unit, e.g. a building, a street, or a factory.

In order to be able to process these vast amounts of data streams originating in hundreds of

millions WSNs, new techniques are being researched. As an example, a new protocol called

Constrained Application Protocol (CoAP) [SHB14] was designed to represent a bridge between

a WSN and the Internet. Kovatsch et al. presented Californium [KLS14] - a scalable cloud

service capable of handling hundreds of thousands of concurrent CoAP connections between

the cloud and many WSNs. However, collecting all the data from the network in the cloud may

not always be the best solution. Not only may the network itself not be able to transfer all data

to a base-station, the link between a base-station and a cloud may not exist, be insufficient,

or may be extremely expensive. Additionally, shipping data to the cloud will increase the

delay between sensing the data and processing them. Furthermore, data centres are already

responsible for 1.4% of World-wide energy consumption, growing by 12% every year [ULS14],

excluding power consumption of the network infrastructure that scales accordingly.

Lets have a closer look at a wireless sensor node and the key factors influencing its operational

lifetime. There are several key characteristics describing a wireless sensor node. Firstly, the

1.2. Application of a Wireless Sensor Network 5

CPU has only limited capabilities and is rather slow when compared to current CPUs used, for

example, in cell phones. Secondly, each node has only a very small memory available, usually,

a couple of kB. Thirdly, its radio communication is low-powered, hence its communication

range is rather short and the transmission rate is just a few hundreds of kbps. And last but

and the most important, it is battery powered which means that a node has only a limited

amount of energy during its lifetime. This energy is used to power both, the CPU and the

radio. However, radio is responsible for much more energy consumption when compared to the

energy used by CPU [ZG04]. For example, current draw of CPU of a popular TelosB node is

1.8 mA in an active mode, while radio consumes as much as 23 mA in receiving or transmitting

mode [Crob]. Therefore, most of the research in WSNs has been focusing on decreasing the

network communication as it can lead to the largest energy savings. By saving energy a node

can operate longer and prolong the lifetime of the WSN.

The topology of a WSN can change instantly because the nodes are battery-powered. Any node

can die instantly without any prior warning. Similarly, any node can be added to the network.

Not only the nodes are unstable. Communication link quality between two nodes is dynamic

as well. A link between two neighbours can instantly be lost due to weather conditions, traffic,

or masses of people moving by. Each node has to be able to adapt to new environments by

communicating with its neighbours.

Many researchers have been trying to minimise communication traffic by using various ap-

proaches. One of the popular approaches to decrease the network traffic is by pushing a part

of an application logic from the cloud or a base-station (off-line processing) into the WSN.

There are three key benefits leading from this approach: i) decreasing the network traffic,

hence prolonging the lifetime of the network, ii) decreasing the load on back-end servers, and

iii) decrease the response time.

One of the simplest methods to lower the network traffic is by aggregating several values into

one. For example, a node may first collect sensed data from its neighbours, aggregate them

(e.g. compute an average of values), and only then send the value to the base-station. However,

in this case it is still required that all of the nodes sense and send the sensed data.

6 Chapter 1. Introduction

We have mentioned that the first generation of WSNs were used to collect data only. The next

generation of WSNs were deployed not only to collect data from every sensor but also to detect

a phenomenon. In this case a user is interested in data only if a certain condition is met. In

the case of our scenario it could be an oil leak. A simple application running in a cloud could

detect a leak by comparing two consecutive readings from the same sensor and computing:

∆V = Vi−Vi−1, where Vi is the volume of oil flown through the sensor during the time interval

i. Lets say, that there is a leak if the difference is more than 10% of the current reading, i.e. if

∆V > 0.1×Vi. This type of computation could easily be pushed into the network as every node

can detect an oil leak by comparing the previous reading with the current one. A base-station

can push a filter to every sensing node. The filter can be just a simple interval of values. If the

value falls outside the range of the interval it is sent to the base-station. Otherwise, the value is

discarded locally. This simple piece of logic can significantly decrease the network traffic while

still it is able to detect large pipe leaks. On the downside, small pipe leaks (i.e. those that

increase by less than 10% each sampling interval) will remain undetected.

The filtering technique is applicable only in cases where the decision to send or to discard the

value can be done by the node locally, without communicating with other nodes. The decision

is based on the current, and possibly historical, readings of one single node. The filtering

approach is not applicable if the decision depends on readings from several nodes.

The next step to push computation into the WSN involved the insight that the WSN could be

seen as a collection of continuous data streams, produced by sensor nodes. If all of these data

streams are put together we can see the WSN as a stream of continuous relational data. Each

node is represented by a row and each column represents a variable sensed by a node at given

time. Researchers then proposed various Data Stream Management Systems (DSMS) which

operated on these data streams. DSMS execute queries which are then pushed into a network

and the result is reported back to the base-station. The operation over streams of data can

be expressed using an SQL-like language. There is no standardised language for continuous

data stream processing, however, many of the languages designed for this purpose use a similar

design. For example, Continuous Query Language (CQL) proposed by Arasu et al. is as a

part of DSMS called STREAM [ABB+03]. Carney et al. presented Aurora [CcC+02] which

1.2. Application of a Wireless Sensor Network 7

processes continuous queries expressed in a language very similar to SQL. The simplicity and

expressiveness of SQL is behind the fact that basically every data stream processing framework

uses an SQL-like language to express the computation over the data streams. The DSMS then

translates the query into a Query Execution Plan (QEP) which specifies how the query will

be executed. It is during the translation of query into a QEP when an optimisation takes

place. The optimisation is responsible for generating such a QEP so that the network traffic is

minimised.

Many of the current DSMS for WSNs are designed to support only a subset of the continuous

SQL-like language. These DSMS focus on execution of queries of a specific type, e.g. aggrega-

tion, ordering, join of several data streams, etc. These queries could be categorised according

to several criteria. The first criterion shows how many nodes are affected by the query. In the

case of a universal query sensor readings from every node in the network are required. In the

case of a subset query data from a subset of the nodes satisfy the query. In this thesis we focus

only on subset queries as they allow to easily lower the network traffic by requesting the data

only form nodes fulfilling given criteria. In our scenario a subset query will require readings

only from sensors deployed on one particular pipe.

The second criterion is to categorise queries according to the confidence of the correctness of the

result. Some queries may require only an approximation of the result with a certain degree of

confidence [UTK13]. In this case the query can be optimised using various summary structures

like histograms or Bloom filters [Blo70]. Otherwise, the query requires exact readings from

sensor nodes. In this thesis we assume that the user requires exact readings every time a query

is submitted. In our scenario a query will require the exact readings of volume passed through

the sensor, not only approximation.

The third criterion distinguish the range of queries that the DSMS accepts. Some DSMS accept

only a specific types of queries, e.g. AVG, MAX, or MIN [UTK13]). Others support a wider

range including joins (known from relational databases) between data stream. In this thesis

we present a framework capable of performing a wide range of queries including aggregation

and join queries.

8 Chapter 1. Introduction

The last criterion is the duration of the query. A snapshot query is executed only once and

therefore offers very small room for query execution optimisation. The optimisation is focused

on inexpensive identification of relevant nodes and retrieving data from them as the query

optimisation overhead could easily exceed the gain of this optimisation. On the other hand,

continuous queries allow much wider query optimisation possibilities as the query is executed

many times over a specified period of time (possibly indefinitely). Therefore, the query optimi-

sation overhead is mitigated by executing the query many times. In our scenario an example

of a snapshot query would be an engineer checking all sensor readings on a specific pipe p. If

the engineer wants to check whether given pipe has no leaks he does not have to communicate

with nodes on given pipe. The engineer can submit a query to any node in the network and

ask it to find all sensors monitoring the pipe p. The node will find all those nodes, request data

from them, and report the data back to the engineer. An example of a continuous query is an

application which for each segment of the pipe compares the volume of oil entering the segment

with the volume of oil exiting the segment. As we have described in the scenario, the pipes are

not linear - a pipe can be split into more pipes or several pipes may be joined into one. If the

volumes are not the same it means there is a leak at a given segment and the response team

needs to be notified. In this thesis we focus on both, snapshot and continuous queries.

Most of the DSMS presented by researchers so far heavily rely on a base-station [SBB09, SBB10,

GBG+11, MJIG10]. The base-station plays a crucial role either in pre-processing the query,

post-processing the partial results obtained from the network, or both. However, we argue

that a base-station can not be depended upon for various reasons: it may be in a form of a

mobile sink which visits the network infrequently, it may fail for various reasons like vandalism

or physical destruction, or it can cease to function due to a software error.

In the case when there is no base-station most of the DSMS will not be able to operate. A

base-station usually represents a gateway between a user and a WSN. The base-station receives

queries from users via long-range communication from the Internet. After pre-processing the

query it pushes the QEP into the network and waits for results. Most of the current DSMS

compute only partial results inside the network and the final computation has to be done at

the base-station. The final result is then sent to a cloud where users can access it.

1.2. Application of a Wireless Sensor Network 9

We argue, that this centralised approach is not scalable as WSNs become omnipresent. Addi-

tionally, if the base-station looses its Internet connection, the whole WSN will become inacces-

sible. In many cases, the Internet connection might not even be available (or not feasible) at

the first place. In our scenario the oil field might be in a deserted place, with no GSM signal.

Engineers will have to physically go to a base-station whenever they need to read sensor data.

In our thesis we present a fully distributed approach to in-network data stream processing where

all nodes can receive queries from users. Every node can find nodes fulfilling query require-

ments and response to the user with a result. Our DSMS allows engineers to submit queries no

matter where they are located, provided they are within a communication range of any of the

sensor node. However, our approach does not require every node to be equipped with hardware

capable of communication with a user. In scenarios, where equipping every sensor node with

additional hardware is not feasible, we allow the user to communicate and submit queries via a

subset of nodes, or even a single base-station. The advantage of our approach is that we allow

the user to interact directly with the WSN without the need for an Internet connection.

Another reason for pushing the computation close to data sources and not relying on a base-

station comes with the spread of actuation WSNs. An actuation WSN is a network which

contains actuators, i.e. devices which are capable of influencing the sensed environment. A

simple example is switch controlling an air conditioning. A set of sensors may sense the tem-

perature at various places in a room. If the average temperature goes above a threshold value,

the AC is turned on, if the average value is lower then a threshold, the AC is turned off. In

our scenario an actuator would be a valve. If a pipe leak is detected a message to the nearest

valve is sent. The valve is closed in order to stop the leak and minimise the damage. Suppose

a traditional method is used. First data are collected at the base-station which then forwards

them to a cloud. In case the Internet connection is down, it may take several hours until the

Internet connection is available again. Once data are in the cloud, the application will even-

tually process them. This additional delay may also be significant if there is a vast amount

of data arriving every second. Once the application detects a leak, a message is sent to the

base-station, provided the Internet connection is working. The base-station then forwards the

actuation message to the correct valve.

10 Chapter 1. Introduction

The last area of research, which has not caught much attention from the research community

is heterogeneity of WSNs. Currently, a vast majority of research work done in the area of WSN

assumes that the networks are homogeneous, i.e. all sensor nodes are the same. A small group

of researchers see the heterogeneity of the networks only in uneven distribution of the residual

energy. However, we argue that as the number of WSNs grow, more and more of the networks

will be heterogeneous on hardware level. Especially, as the old networks will be extended or

upgraded. We can see a similar trend also in cloud computing - at the beginning most of

the computers in a data-centre were the same. However, as the data-centre is extended and

upgraded, new machines are brought, which cause large differences in the computational power.

Similarly, we expect the same to happen to WSNs. If we go back to our scenario, the owner

of the network may want to extend the current network, and add new sensor nodes in order

to decrease the granularity of pipe segments so that a potential leak can be better localised.

The nodes already deployed might not be available any more so new, more powerful nodes are

added to the network. This causes the network to become heterogeneous.

Heterogeneity brings new challenges to in-network data stream processing. When choosing a

node which will process all data streams we need to take into consideration not only where the

node is located but also whether it is capable of processing data from a given number of data

streams. In the scenario described above, when new sensors are added, more data streams must

be processed. The old generation of nodes might not be capable of such computation. During

the process when a new processing node is chosen, only the new, more powerful, nodes should

be considered.

1.3 Challenges

Detecting an event in an environment monitored by a WSN often requires sensor readings from

several sensor nodes. Data produced by these sensor nodes need to shipped to a common node

which can process them and detect the event. Sending data requires multi-hop communication

due to the short range, low-powered radios. Radio communication in WSNs is the largest

1.3. Challenges 11

consumer of energy. Energy is a finite resource which determines for how long the WSN can

operate. Therefore, the biggest challenge is to find a common node inside the network, which

will receive and process data streams from all sensor nodes contributing to the detection of an

event; the position of this common node has to be chosen in a way that leads to minimising

the communication. This is especially challenging in networks with no central node which has

a global knowledge about the nodes or the topology of the network. Every node in the network

must be equal and capable to accept and satisfy queries without communicating with a central

point. In order to tackle this challenge we need to equip every sensor node with following

abilities:

1. Allow any node in the network to directly communicate with any other node. A node

needs to be able to communicate with other nodes directly, without involvement of a

third party, in order to be able to request data from, or to send data to a node. Allowing

peer-to-peer communication in a WSN is challenging due to the memory constraints and

dynamic nature of WSNs.

2. Each node can be characterised by a set of static attributes, e.g. node’s ID, room it is

deployed in, or what kind of sensor readings it can provide. Any node in the network

should be able to identify all nodes fulfilling given static requirements. Finding a list of

nodes with given static attributes is challenging without flooding the whole network with

a request.

3. Allow any node to satisfy a snapshot query submitted by a user, while keeping the com-

munication overhead low. A node has to be able to find all nodes which contribute to the

query and request data from them in a timely manner.

4. Allow any node to satisfy a continuous query submitted by a user. Similar to a snapshot

query, the node has to be able to identify all contributing nodes. Additionally, the node

has to find a common node which will be processing data from all data streams. The

common node has to be chosen in such a way that the overall communication during

the execution of the query is minimised. While searching for the common node in a

12 Chapter 1. Introduction

heterogeneous network, node’s resources (i.e. CPU and RAM) have to be taken into

account.

The reason why we have chosen these challenges is to enable the WSNs to support new kinds

of applications. Allowing any node in the network to accept queries from a user will enable

engineers to deploy the WSNs in new areas, where having a single base-station would not be

a feasible solution. An example of such scenario is a remote oil field refinery where having a

permanent Internet connection, not only for the base-station, but also for users of this WSN,

might be impossible or very expensive. Additionally, by removing base-stations, we can make

these WSNs completely distributed, without any single point of failure.

1.4 Contributions

The main contribution of this thesis is that we present a DSMS framework called Dragon

capable of executing snapshot and continuous queries submitted by a user to any node in the

network. Every node can act as a gateway providing WSN’s data or control capabilities to a

user. The query execution does not require any central node for pre-processing the query or

for post-processing the final result. Particularly, contributions of our thesis are:

1. We present a routing algorithm for WSNs which allows point-to-point communication

amongst any two nodes in the network. The routing paths used by the algorithm are

optimal or near-optimal in the terms of the number of hops. Because the routing is based

on routing tables, after initialisation the communication between two nodes can begin

instantly, without discovering the path first. We also present a simple and fast routing

table update algorithm which can cope with node failures.

2. We present a Distributed Static Attribute Table (DSAT) which is used to store static

information about each node in a scalable way allowing any node in the network to

find a list of nodes fulfilling given static attributes by communicating with only its near

1.5. Structure of Thesis 13

neighbourhood nodes. DSAT allows any node to easily find all the nodes satisfying the

query while keeping the communication overhead and the delay low.

3. We present a DSMS framework built on top of the routing algorithm and DSAT which

can satisfy snapshot queries submitted by users. The framework can easily find all nodes

satisfying given query and request data from these nodes with very low communication

overhead and in timely manner.

4. We present a DSMS framework for continuous queries submitted by users via any node

in the network. The framework is identical with the one for snapshot queries in terms of

identifying which nodes satisfy the query. The framework uses the list of source nodes

to choose a node (referred to as a processing node) in the network which periodically

receives data from all the source nodes and performs the computation defined in the

query submitted by the user. When choosing the node the framework tries to minimise

the sum of distances from the processing node to all the sources. If the condition specified

in the query is met, the processing node notifies the user. In the case of heterogeneous

network the processing node’s capabilities (in terms of CPU and RAM) are taken into

account.

1.5 Structure of Thesis

The structure of this thesis is as follows. Before we describe individual Dragon’s sub-system

we present our evaluation environment in Chapter 2. In Chapter 3 we present a new peer-to-

peer routing algorithm for WSNs and that show it can find optimal or near optimal routes while

being able to handle the dynamic essence of WSNs. In Chapter 4 we describe the Distributed

Static Attribute Table which is used to store static attributes of all the nodes in the network in

a distributed way. By distributing the data throughout the network we achieve that every node

can easily access this table by communicating with close (possibly multi-hop) neighbourhood

only. Chapter 5 describes execution of snapshot queries in our framework, while the following

Chapter 6 outlines algorithms for discovering processing nodes for continuous queries. These

14 Chapter 1. Introduction

algorithms are presented for both homogeneous and heterogeneous networks. In Chapter 7 we

summarise the ideas presented in the thesis and outline possible future extensions.

1.6 Publications

Below is the list of published and submitted publications related to this thesis.

• Roman Kolcun and Julie A. McCann. Dragon: Data discovery and collection architec-

ture for distributed IoT. In Internet of Things 2014 - The 4th International Conference

on the Internet of Things (IoT 2014), Cambridge, USA, Oct 2014. [KM14]

This paper describes the novel peer-to-peer routing algorithm covered in Chapters 3, the

way static attributes of every node in the network can be stored in a distributed manner

as described in Chapter 4, and how these two sub-systems can be used to evaluate a

snapshot query submitted by a user to any node in the network, described in Chapter 5.

• Roman Kolcun, David Boyle and Julie A. McCann. Efficient Distributed Query Process-

ing. IEEE Transactions on Automation Science and Engineering (T-ASE) for the Special

Issue on Advances and Applications of Internet of Things for Smart Automated Systems.

under 2nd revision

This is an extended version of the previous paper. The paper was invited as one of the

nine papers to be submitted in an extended version in the journal.

• Roman Kolcun, David Boyle and Julie A. McCann. Optimal Processing Node Discovery

Algorithm for Distributed Computing in IoT. In Internet of Things 2015 - The 5th In-

ternational Conference on the Internet of Things (IOT) 2015 (IoT 2015), Seoul, Korea,

Oct 2015. [KBM15]

The paper builds on top of the previous paper and shows how to choose a node which

process data for a continuous query. In this paper we assume that a network is homoge-

neous and every node can process the query. The paper describes algorithm for finding

1.6. Publications 15

a node in the network whose weighted sum of distances to all source nodes is minimised.

The algorithm is described in Chapter 6.

• Roman Kolcun, David Boyle and Julie A. McCann. Processing of continuous queries in

heterogeneous WSNs. to be submitted.

In this paper we will describe how a node processing a continuous query can be chosen

in a heterogeneous network, where only a subset of the nodes are capable of processing

the query. The algorithm is described in Chapter 6.

Chapter 2

Testbed

2.1 Introduction

In this chapter we introduce our test environment where we evaluated all Dragon’s sub-

systems. Dragon has been written in nesC programming language, running on top of TinyOS

[LMP+05] operating system, and evaluated in TOSSIM [LLWC03] simulator. TOSSIM has

been chosen for its reasonably accurate communication model. It can simulate radio noise

which causes changes in the link quality and leads to packet loss. Therefore Dragon , as

all other algorithms for WSNs, has been designed to cope with packet losses and none of

the Dragon’s sub-systems rely on reliable communication. The second reason why we chose

TOSSIM simulator is that Innet [MJIG08, MJIG10], the state-of-the-art competitor at the

time, was written in nesC and evaluated in TOSSIM. Therefore our comparison is fair as both

algorithms are executed on top the same topologies and in the same simulator.

We have used the built-in radio and noise model with default MAC layer. We assume the nodes

are synchronised and operate with 15% duty cycling. The packet size was set to 30 bytes.

In our evaluation of Dragon platform we studied the influence of various factors on the

performance of the platform. Particularly, we evaluated influence of i) topology type and

ii) density of the network.

16

2.1. Introduction 17

Topology is one of the main factors which influence the performance of algorithms used in a

WSN. As we have mentioned in the previous chapter, some platforms can work only in networks

of a specific topology. An example is the Combs, Needles, Haystacks algorithm which works

only in a grid topology. We argue, that the platform for WSN should be able to perform well

in any type of topology. Therefore, we evaluate Dragon on two sets of topologies: i) uniform

topologies and ii) random topologies. We exclude the grid topology as in real life deployment

it is rather unrealistic scenario. Even if the nodes are physically laid out in a grid, the network

topology will rather resemble a uniform topology. We argue, that if an algorithm performs well

in a uniform topology, it will also perform well in a grid topology. All topologies were generated

using the standard network generating tool provided with TinyOS.

The second main factor which influence how well an algorithm performs is the density of the

network. If we define number of node’s neighbours as the degree of a node, then the network

density is the average number of node degrees in the network. We evaluated Dragon using

four different densities: i) dense with 12 neighbours on average, ii) medium dense with an

average of 10 neighbours per node, iii) medium sparse with an average of 7 neighbours per

node, and iv) sparse with only 5 neighbours per node on average.

In our thesis we target deployments with hundreds of nodes as we expect them to be a dominant

deployment size of WSNs in the future. Other frameworks for in-network data stream processing

were evaluated on networks of various sizes: PEJA [LCC08] and TPSJ [YLOT07] on networks

of several hundreds of nodes, Synopsis Join [YLZ06] on a network consisting of 400 nodes,

Mediated Join [CNS07, CN07] on a network of 1655 nodes, SENS-Join [SBB09] on networks

ranging from 1000 to 2500 nodes, and the state-of-the-art competitor Innet [MJIG08, MJIG10]

on networks ranging from 50 to 200 nodes with the focus on networks with 100 nodes. At

the beginning we also started experimenting with 100 node networks but in order to show

the scalability we decided to run experiments on 250 node networks. Because in order to

thoroughly evaluate our framework we ran thousands of experiments it was unfeasible to execute

the experiments on networks of any other sizes. The initial experiments which were executed

on smaller networks showed similar improvements than the experiments executed on 250 node

networks.

18 Chapter 2. Testbed

For each network density three various networks were generated in order to minimise the in-

fluence of a certain topology layout. Every experiment was run for 10 times in order to min-

imise influence of the randomness of WSNs. In total, the final number of experiments for each

Dragon’s sub-system was 2 (topologies) ×4 (densities) ×3 (networks) ×10 (experiments) =

240

Results presented in the evaluation parts of the following chapters are presented for each topol-

ogy separately. The results shown are averages grouped by network density.

2.2 Uniform Topologies

When generating uniform network topology, the area is split into equally sized grids. Next,

in every grid same number of nodes are placed randomly. Different network densities can be

achieved either by making the area smaller or by extending the communication range. Following

four Figures 2.1–2.4 are examples of uniform topologies with various densities. These densities

can be clearly identified by looking at the number of links between nodes.

2.3 Random Topologies

In random topologies nodes are placed randomly. Therefore these topologies may create clusters

of nodes which are loosely interconnected by a few links only as can be seen in Figure 2.5 for

a dense topology and Figure 2.6 for medium dense topology. As the networks get more sparse

we can see that clustering gets even more obvious as can be seen in Figure 2.7 and 2.8, both

depicting medium sparse topologies. These highly irregular topologies are typically the cause

of off-the-chart results in research generally and likewise we also encountered edge-case results

while evaluating our algorithms. Regular topologies are especially important for algorithms

which rely on the fact that nodes in the network are of similar degree, i.e. all nodes have

approximately the same number of neighbours.

2.4. Communication Primitives 19

0

16

1

2

17

33

32

48

18

19

34

3
4

20

35

49

50

51

65
66

21

37

36

5

6

22

38

39

7

23

54

53 52

8

40

2425

55

70

71

9

10

41

57

56

72

73

26

42

11

27

28

12

43

44

59

58

60

7475

2945

13

6162

76

14

3047

4663

15

31

64

80

68

67

82

83

69

89

92

7778

93

79

94

96

81

84

85

86

98

87

101

102

88

103

105

90106

91
109110

111

95

112

97114

113

99

116
115

100

118

104

107

123

108

124

126

129 128

119
120

132

117

133

134
135

121
122

136

127

125142

141158

143

130
131

145

148
149

151

150

137
154

138

139

140

155

153

157

159

144

161

146

147164

165

166

152

169

170

156

171

173

174

175

190

177

160178

162

181

167

183

168
185

186187

172
188

176

163
179

180
197

182

184

201

203
202

204

189

191

206207

194

192

193

209

208

195

211

212

196

198

199

200

215

218

221
205

226

210227

213

228

214

229

230

216

231

232

217

233

219

235

220

236

222
238

223

239

224225

240

241

243
244

245

234

237

242

246

248

247

249

Figure 2.1: Uniform 250 Node Dense Network

In the case of a random sparse topology (Figure 2.9) we can see that the graphic representation

of the generated network looks pretty messy. It may seem there is a little difference between

the uniform sparse topology and the random sparse topology. However, if we compare the

distribution of node degrees, shown in Figure 2.10, we can see that the random network topology

has much wider range of node degrees. We can see the same trend when we compare node

degrees distribution of other network densities. However, node degree distribution for other

network densities are not presented as the difference between uniform and random topologies

are obvious from the graphical network layouts.

2.4 Communication Primitives

The essential property of wireless communication is that a message transmitted by a node can

be received by all nodes within the communication range from the sender. In this thesis we

rely on the usage of several types of communication primitives. Description of these primitives

20 Chapter 2. Testbed

0

16

1

32

17

33

2

18

48

64

49

34

35

50

3

19

20

36

4

5

37

51

52

6

7

21

22

38

53

54

69

23

8

9

39

55

24

40

25

10

26

57
41

56

42

27

43

11

59

5874

12

28
44

60

13

14

29

3046

15

45

31

61

76

62

47

63

65

81

67

66

84
68

71

70

72

73

75

77

78

95
79

80

82

86

85

87

88

90

105

89

106

91

107

92

93

94

97

98

96

8399

100

114

115

101

102

103

104

111

112

113
130

117

116

118

132

133

119

120

121

122

136

108

123

125

124

139

109

110
127

142

141

126

129

147

146

131

134

151
135

152

137

149

150

138

140

143

159

128
144

145

148

166

153

155

157

171

156
172

158

173

160

162

161

163

164

165

180

167

168

184

169

154170

183

186

188

187

174

175

191

190

176

177

178
179

193

181

196

182

200

185

201

189

195

210

209

194

197

198

199

202

203

204

219

206

207

192208

211

213

229212

214

230

231

215

217

232216

222

205221

237

224

225

226

227

242

228

241

218
234

233

220

235

236

223

239

238

240

243

246

245

244

247

248
249

Figure 2.2: Uniform 250 Node Medium Dense Network

is presented below:

Broadcast is the simplest type of wireless communication. Broadcast message is received and

processed by all nodes within the communication range. However, there is no guarantee

that all nodes (or any, for that matter) within the communication range will receive the

message. A node may not receive a message due to the interference, bad link quality, or

because its radio is turned off at that moment. In the description of the algorithms this

type of communication is called via Broadcast(message) procedure.

Unicast is a directed one-hop communication towards one node. It is built on top of the

broadcast, with the difference that the header of the message includes ID of the destination

node. Because a unicast message is also transmitted wirelessly, the message is received

by all nodes within the communication range. However, as a node processes the received

message, it first compares the ID included in the message header with its own ID. If both

IDs match, the message is processed. Otherwise, the message is discarded. However,

2.4. Communication Primitives 21

016
1

33 1732 2

34

48

49
19

18

3

20

35 4

21

38

3637

5

6

22
23

7

8

24
54

9
39

40 25 10

41

27
2642

11

43
59

58

28

44

12

13

29

45
14

46

31

30
15

47

62

61

64

50

67
51

52

68 53
69

56

55

72
57

60

76

74

75

63

78

79

65

80

66
82

83

85

84

70

71

88

73
89

92

77

93
94

9781

98

102

87
103

86

104

90
91

109

108

110

95

96

112

113

114

99 100

101

119

117

134

118

105

107

123
124

106

125

126

127

111

129

130

115

116

136
120

135

137

138

121
122

140

139

141

143

145

131

132

147

133

150

149

151

152

154

153

155

156

142

146

148
163

167

166

170169

171

158

157

159

128

144
160

162161
176

178

164

165

168

184

183

182

172

174

173

175

177

193

192

179

180

196

181

185

200

201

199

186

202

187

188

189
205

190

191

194

209
208

195

197

211

212

203

219

218

204

206

220

207

210

225

224

229

228

214213

215

232
216

217

233

221

223

239

241

240

226
242

227

230

244

245

243

198

231246

247

248

249

235

234

236

237

222

238

Figure 2.3: Uniform 250 Node Medium Sparse Network

because the unicast is built on top of the broadcast the message delivery is unreliable

and there is no guarantee that the message is received by the destination node. In the

description of the algorithms we use the notation Unicast(message, destinationID).

Reliable Unicast is the same as the regular unicast, with the difference that the receiver

acknowledges receiving of the message. Acknowledgement is another unicast message

sent by the receiver to the sender. The sender waits for a predefined time for the

acknowledgement to arrive. If the acknowledgement is not received within this time,

i.e. either the message or the acknowledgement was lost, the sender re-sends the mes-

sage. If the message is not delivered after predefined times of retransmissions, the

message is discarded. In the description of the algorithms we use the notation Uni-

cast(message, destinationId,ACK).

Receiving a message is a basic capability of every node. It occurs when a node receives a

broadcast or a unicast message where the destination is the node which received the

message. Every message includes an ID of the sender node. In the algorithms presented

22 Chapter 2. Testbed

0

16

1

32
17

2

3

19

4
34

35

20

21
37

5

22

6

38
23

7

8
24

9

10

25

39
40

26

11

43

41

27 12

28 13

2944

30

14

46

45

31

15

47

3349
64 48

18

50

51

52

53

55

71

54

56

70

72

58

74

59

42

57

60

62

63

61

65

66

67

68

36

69

73

87

88

75

76

77

78

94 79

80

82

81

83

84

85

86

91 92

90

93

110 95

96

97

98

99

100

101

102

89

108

105

106

107

109

112

113 114

130

115

116

117

133

103

121

122

123 124

125

111126

127

128

129

131

146

147
132

134

148

149
165

104

118

119

120

135

136

137

138

139
140

155 141

142

144

145

151

152

153

154

156

157

172

171

143158
159

162

163

161

164

150

181

167

168

169

170

173

174

175

178

177

180

166

183

184

185

186

187

189

188

207

190

191

160176

192

193 194

179
195

196

197

182

199

198

200

201

202

203

204

205

222

206

209

208

210

211

212

229

214

213

215

216

217

218

220

219

221

223

224

225

226

227

228

230

231

232

233

234
235

236

237

238

239

240

241 242

243

244

245

246

247

248

249

Figure 2.4: Uniform 250 Node Sparse Network

in this thesis, this is operation is shown as Receive(message, senderID).

Snooping occurs when a unicast message is received by a node which is not specified as the

destination node in the header of the message. When the message is parsed and the ID in

the header does not match the node’s ID, the node may discard the message, or process

it. By snooping a message a node can receive important information which it may use

in the near future. In the algorithms presented in this thesis this operation is shown as

Snoop(message, senderID).

CRC stands for Cyclic Redundancy Check and it is a hash of the message. CRC is appended

to the footer of each message. Upon receiving a message a node computes CRC of the

message and compares it with the value in the footer of the message. If these values do

not match, the message is discarded as it is assumed to be corrupted.

2.4. Communication Primitives 23

0

32

162

99

36

7

104

42

171

142

168

238

155

245

115
133

65

103
39

205

83

74 207

121

200

174

120

249

156
234

111

68

63

49 5967

27

179

161

1

208

34

35

232

202

14

206

80

177146
117

150

55

124

157

126

192
210

148

91

247

152

188 228

198

218

224

139

167

196

239

183

2

201

77

16

145

52

62

98

154

230
71

184

153

118

3

4

40

233
216

147

24

187

28

127

22

94

215

10790

227199

5
166

136

106

236

15

144

50

243

212

88

60

189

190

220

109

182

221

66

17

53

191

160
204

242

194

140

134

241

95132

81
159

75

6
226

38

70
138

11

214
165

128
176

64

164

135

209 20

213

217

244

143

8

195
137

149

25

186

125

31

197

175

163172

47

178
181

185

9

246

86

223

10

12

129

72

13

240
113

151

222

170

237

122

18

48
29

19

21

87

23

102
229

26

30

33

131
100

116

193

169

173

46

211

84

57

219

93

105
78

158

180

101

119

141
97

235

114

92

37

96

108

41

43

231

44

76

51
85

123

130

79

248
89

61

58

110

45

69 225

73

112

54

56

82

203

Figure 2.5: Random 250 Node Dense Network

0

96

195

132

167

136

73

44

45

79

168

212

25

192

151

185

236

231

178

208
179

128169

164

53

224

100

98

239

1

193

26

36

149

62

68

210

156

67

247119

77
221

2

162147
165

138

171

120

19

213

214
56

122 220

230

187

157

32

49

108

131 146

3

35

9

10

11 203

238
143

52

118

137

159 92

170

95

228

246

14

113

15

27

216

4

572

188

81

186

60

101

6

70

105

78
112

40

13
20159

117

90

173177

180182

189

196

106

163

83

217123

135

243

7

161

34

199
226

240

50

29

30

242

38
84

69

125

94

75

74

8

43

64

115

12

160

225
229

172

114

51

158

222

198
200

204

66

205

16194

197

166

109
241

116

219
127

233
184

209

17

71

237

142 176

88

249

155

181
80

235

82

140

191

18
130

39

139

14557

190

148

86
183

124
234

20

65

152

15428
31 102

129

47 55

61

21

227

37134

41

76

206
111

144

245

153
58

175

126

97

244

223

207

218

150

22

107

174

121

215

141

2391

104

24

46

48

133

103

3385

110
248

42

211

54

63

232

87

202

93

89

99

Figure 2.6: Random 250 Node Medium Dense Network

24 Chapter 2. Testbed

0

89

91

133

142

229

147

143

119

1

33

51

20

215

249

157

127

67

46

207

141
245

214

66
221

231

2

193

69
105

74

86

59
244

110

246

70

81

3

192

162

165135

200

167

47

54

219

61

198208

230
140

124

240

138

184

62
94

4

224

129

226

35
39

236
45

16

212

123
168

13949

189

76

166
201174

29

5

238

182

15

191

242

164

6

57
58

106
13 131

13488

120

38 40

171

22

7 137

204

77

23

202158

111

93

73

98

8

130

156

144

222

9

25
78

95

100

84

10

132

126

11

172 114

21

12

104

155

206

241

14

225

234 235

239

48

50

148

183

121

125 247

170176

185
203

197

190

232

154

237

17
146

243

188

18

218

209

19

43

101

118

24

128

161

177

248

26

65

27

99

195

72

205

117122
30

149

103

178

194

15390

28
199

75
44

175
181186

187

92
63

136
115

151

233

163

31

223

32

97

34

227 68 82

87

216

36

42

220

37

150

145

41
113

108

53

64
180

96
217

52

79

55

56

85 60

71
169

228
213

80

107 83

173

152

102
116

159

179

109

196

112

160

210

211

Figure 2.7: Random 250 Node Medium Sparse Network #1

0

193

163

101

136

168

247
58

142

206

1

200
107

188
134

54
237

2 99

36 167

11

141

239

164

171
100

59
201

144

132

229

194

162

21

218

165

3

7

9

236

14

48

233
220

33

133

45

4
123

124

230

55

150

65

228

5

235

92

75

221
211

148

149

156 61

191

175

161

6

129

98

140117
110

227219

205

202

130

8

210
226

10

152
35

20

139 240
182

145

12

13

69

103
76

81

248

217

122

215

186
169

222

113

244

198

223

204

15

216

155
199

39

249

241

213

224

57

66

16

106

78

111 245

196
190

166
17

73
109

112184

18

40

19

105
207

231

22

88

96

128

151187

208

23

83

67

71

146
82 51

8656

27

137

114
93

2497
197

135
74

177
116

53

26

159

25

28

29

42

87

209

243

84

183

234

30

32

64

131
138

70

225

77

242

120

179

31

38
189

49

125

94

174 160

80
158

181

232

34

115

37

153

43

44
157

170

176

147

195
126

41

246

46

79

178118
121

127

60

63

47

102
172

185

238

50 108

173

214

95

52

212

143

180

62

68

72
104

90

85

89

91

192

203

119

154

Figure 2.8: Random 250 Node Medium Sparse Network #2

2.4. Communication Primitives 25

0

165

221

143

212

164

1

225

103

167

177

83

153

158

243

231

110

147

199

222

233

191

189

238

192

87

86 159

202

227

2

24

35

44

187

57

29

46

195

229

194

69

105

219

208

3

217

60

12

79

223

213

98

137

71

145

73

244

173

4
184

141

5

138

230

6

104

109

241

25

61

130107

149

133

234

190

97

7

136

201

108

28

156

168

102

96

160

183

8

226

70

115

119

218

171

224

151

142

163

185

146

186

235

9

34

175

39

101

81

209

58

157

240

179

10

18

37

170

56

85

120

27

214
132

84
128

100

112

114

11

72

197

13

161

216

148
14

19

152

75

125

95

15

121

211

16

193

43

228

242

232

66

99

139

122

17

88

200

155

215

198

178

182

93

117207

150

127

144

31

20

247

245

94

174

21

206

248

123

22

23

196

134

41

249

237

203

78

26

176

124

30

92

169

129

32

220

210
239

33

55

205

246

106

131

77

116

36

236

38

40

59

42

118

188

162

45

82

172

47

68

48

49
67

50
51

52

80

126

135
111

53

180

54

90

204

62

91

63

181

64

65

74

76

89

113

166

140

154

Figure 2.9: Random 250 Nodes Sparse Network

 0

 10

 20

 30

 40

 50

 60

 70

1 2 3 4 5 6 7 8 9 10 11 12 13

C
o
u
n
t

Node Degree

Random Topology
Uniform Topology

Figure 2.10: Node Degree Histogram for Spare Uniform and Sparse Random Topology

Chapter 3

Routing Table Discovery

3.1 Introduction & Related Work

Routing algorithms are essential for every WSN as they define how data flow within the network.

The algorithms differs from each other based on their capabilities, effectiveness, amount of

memory required to store the routing state, agility, and energy awareness.

Routing protocols for WSNs could be categorised into two main groups depending on the

functionality they provide: i) the protocols that route data only towards one or several

predefined base-stations or ii) the protocols that allow peer-to-peer communication amongst

any nodes in the network. Protocols which belong to the first group are usually based on

building routing trees which are rooted in the base-station and span throughout the network.

Every node in the network forwards all data towards the base-station via its parent. Protocols

form the latter group support peer-to-peer communication, i.e. any node in the network can

send a message to any other node. Below we will present algorithms from both groups in more

details.

26

3.1. Introduction & Related Work 27

3.1.1 Routing Towards a Base-station

Historically, many WSNs were deployed to collect data about a certain phenomena in a pre-

defined geographic area. The nodes in such a network sense a variable at a predefined rate

and reports the sensed data towards one base-station. The whole network may contain several

base-stations, in which case a node forwards data towards the closest base-station only.

The two most common routing protocols are Collection Tree Protocol (CTP) [GFJ+09] and

Routing Protocol for Low Power and Lossy Network (RPL) [WTC+12]. CTP is a standard

library of TinyOS [LMP+05] operating system, while RPL is a standard library shipped with

Contiki [DGV04] operating system. There is also an RPL implementation for TinyOS. Both

protocols are based on creating a directed acyclic graph rooted in the base-station. Each node

in the network forwards all data towards the closest base-station.

Disadvantage of building rigid routing trees is that the nodes on the path towards the base-

station have to transfer more data than other nodes, hence their batteries deplete faster. This

especially applies to the nodes closer to the base-station. To tackle this problem Lindsay et al.

proposed a Disjoint Paths and a Braided Paths algorithms [LRS01]. Disjoint Paths algorithm

constructs a small number of alternative paths from each sensor to the base-station. These

paths are sensor-disjoint, i.e. paths have no intermediate nodes in common. Braided Paths

algorithm creates partially disjoint paths from the primary path, i.e. for each node on the path

an alternative path is created which does not contain given node. Therefore, in the case of a

node failure an alternative path can be used without the need find it first.

Alternative approach to creating rigid routing trees is the Backpressure protocol (BCP) [MSKG10]

presented by Moeller et al. In networks with BCP the routing decision depends on the size of

the packet queue and the packet rate amongst two nodes. Each node holds a queue of packets,

where a base-station has a queue of zero length. A node forwards packet to a neighbour only

if the neighbours’ queue is shorter than the queue of the sending node. The received packet is

put on the top of the queue and in the next iteration forwarded to a node with a shorter queue.

Another older approach which tries to eliminate rigid routing trees is hierarchical routing. This

28 Chapter 3. Routing Table Discovery

approach breaks the network into clusters, each of which has a cluster-head. Nodes send data

to these cluster-heads which are then responsible for delivering data to the base-station.

Heinzelman et al. presented Low-Energy Adaptive Clustering Hierarchy (LEACH) [HCB00], one

of the popular clustering algorithm whose goal is to reduce energy consumption of the nodes

in a WSN. The operation of the algorithm is split into two phases: i) the setup phase during

which cluster-heads are elected and nodes choose which cluster they will be part of, and ii) the

steady phase during which sensor nodes transfer data to the cluster-heads which aggregate

received data and forwards them to the base-station.Cluster heads election is distributed and

nodes do not require any global knowledge of the network. Disadvantage of this algorithm is

that the communication between the nodes and the cluster-heads as well as the communication

between the cluster-heads and the base-station is single-hop only, which limits the size of the

network. Additionally, cluster-head selection does not take into account the residual energy of

the node.

One of the extensions of LEACH algorithm presented by Lindsey and Raghavendra, Power-

Efficient Gathering in Sensor Information Systems (PEGASIS) [LR02], creates chains of sensor

nodes where each node aggregates data received from the previous node with its local data.

In each iteration a random node from the chain is chosen to forward aggregated data to the

base-station. Disadvantage of PEGASIS is that it assumes that each node has global knowledge

of the network layout, particularly, the position of the nodes.

Younis and Fahmy presented another LEACH extension called Hybrid, Energy-Efficient Dis-

tributed Clustering (HEED) [YF04]. Unlike LEACH it operates in multi-hop networks and for

cluster selection it uses both, the residual energy of the node and the node degree or density.

This way the algorithm is able to better balance the energy consumption amongst the nodes,

hence prolong the lifetime of the network.

3.1. Introduction & Related Work 29

3.1.2 Peer-to-peer Routing

For the networks deployed for the purpose of monitoring and continuous collection of data,

peer-to-peer (P2P) communication is not necessary. Each node only needs to know how to

deliver data to one of the base-stations. However, as the WSNs become more common and

serve wider range of purposes, communication amongst the nodes in the network will become

more important. WSNs will not be used only to collect data but also to react to the environment

and control it via actuators. Nodes inside the network will need to send messages directly to

other nodes, while lowering the overall traffic. With actuation networks, i.e. networks that

contain actuator nodes, this requirement will become even more important as the nodes will

need to send an actuation message directly to the actuator. For that purpose, routing protocols

which allow P2P communication were developed.

These P2P protocols could be categorised into four groups, depending on how they locate and

forward messages in order to the communicate with a peer: i) geographic routing, ii) routing

based on trees, iii) hierarchical routing, and iv) ad-hoc shortest path routing.

Geographic routing

In geographic routing each node is not addressed by its ID or IP address but by its

geographic location. The routing decision is then based on the position of the node making

the forwarding decision, the position of the destination node, and the position of the

neighbours of the forwarding node. The neighbour which is closest to the destination node

is chosen as the next-hop. As geographic routing heavily relies on the exact geographic

position of the nodes, either specialised hardware is required (e.g. GPS) or a localisation

algorithm needs to be used. However, specialised hardware increases the price of the

node, increases the energy requirements, and are often not very precise. Similarly, using

localisation algorithms ([BHE00, BP00, DpEG01]) not only leads to additional network

traffic, but these algorithms are often not very precise.

Amongst others, Karp and Kung proposed Greedy Perimeter Stateless Routing (GPSR)

[KK00], Kuhn et al. proposed Geometric Ad-hoc Routing [KWZZ03], and Yu et al. pro-

30 Chapter 3. Routing Table Discovery

posed Geographic and Energy Aware Routing (GEAR) [YGE01], all of which implement

greedy geographic routing. Even though this type of greedy routing works well under

ideal condition, it fails when a routing void is encountered. The routing void is a sit-

uation when there is no neighbour which is closer to the destination node. In practice

this situation is common when there is either an error in the localisation algorithm or a

physical obstacle prevents radio communication between nearby nodes.

Additionally, there is no practical way of porting geographic routing to the three dimen-

sional space [IvS09], e.g. in a network deployed in a building or a tower.

Routing trees

In networks where P2P communication is based on routing trees the nodes are organised

in one or several trees where each node stores its parent’s ID only. The root of a tree

is represented by a more powerful node storing connectivity information of the whole

network. The packet is first routed to the root of a tree, where the central router computes

the shortest path to the destination. The packet is then routed downwards towards the

destination via this shortest path. The advantage of this approach is minimal memory

requirements on the nodes and simplicity of the routing algorithm. The disadvantage

is potentially high routing stretch, i.e. the ratio between the length of the found path

and the optimal one, and the requirement that the central router is aware of the whole

network topology. Additionally, top-level nodes may become overloaded by the network

traffic, especially in large networks.

In order to tackle some of the disadvantages mentioned above, several improvements to

the routing trees have been introduced. The principle of improvements is based on storing

meta-data on the nodes within the network. Dedicated nodes store meta-data about all

nodes in a sub-tree rooted in given node. Then a node can decide to route a packet down

a tree without forwarding it to the root node. In RPL [WTC+12] the base-station holds

a routing table for the whole network. However, any node in the network, provided it

has enough memory, can store a routing table for a sub-tree rooted in given node. These

nodes are referred to as routing nodes. If a routing node receives a packet, it first checks

its local routing table whether it contains a record for the destination. If so, the packet

3.1. Introduction & Related Work 31

is forwarded directly to the destination. Otherwise, it is forwarded towards the root.

Duquennoy et al. presented an opportunistic version of RPL called Opportunistic RPL

(ORPL) [DLV13]. Here, each node uses a Bloom filter [Blo70] to store all node IDs from

the sub-tree rooted in given node. Each node then uses the summary to decide whether

the packet should be forwarded up towards the root of the tree or down the sub-tree rooted

in given node. Additionally, when the packet travels up the tree, it does not necessary

follow the spanning tree. Any node, which is closer to the root can opportunistically

forward the packet. These two improvements can significantly lower the routing stretch.

However, the possibility of a false positive in Bloom filters is the main disadvantage of

this approach. In this case a special algorithm is required which can recover from the

situation when a packet is routed down the tree based on a false positive. The packet has

to be sent to the root of the tree which can then find the correct path to the destination.

Mihaylov et al. use a similar approach in their Innet algorithm [MJIG08], however, in

order to lower the routing stretch, they build up to three routing trees, each rooted in

a different part of the network. Each node stores a summary for each sub-tree rooted

in given node. The search for the destination node is performed in all routing trees in

parallel. Additionally, in order to avoid the problem with false positives of Bloom filters,

the packet is always also forwarded up, until it reaches the root of a tree. The packet stores

the path it takes until it reaches the destination node. The destination node replies to the

source node by reversing this path. As the reply packet travels back to the source node,

each node uses several techniques to find a shortcut between the communicating nodes.

Innet was designed to support a long-term communication, i.e. the communicating peers

exchange messages for a longer period of time. Therefore, the main goal of the algorithm

is to minimise the routing stretch. The higher cost of the search phase is outbalanced by

savings that could be achieved during the long term communication amongst the nodes.

Hierarchical routing

In hierarchical routing each node is a part of multi-level hierarchically organised clusters

[IvS09, CnDLR12]. At the lowest level 0, each node is a member of its own singleton

cluster. Then, a neighbourhood of level 0 clusters are organised into level 1 cluster, which

32 Chapter 3. Routing Table Discovery

in turn is grouped into level 2 cluster, until all nodes are member of one (or very few) big

cluster. At each level a node is a member of exactly one cluster.

In the centre of each cluster is a cluster-head. At each level i the cluster-head is advertised

Ri hops away. The R depends exponentially on the level i. A node can be a member of

a level i cluster if it is at most ri hops away from the cluster-head, where ri ≤ Ri−1. In

practice, usually Ri = 2i and ri = bRi/2c. Each node is addressable by concatenating

the cluster-head ID at each level (e.g. X.Y.Z, where node’s ID is X, Y is a level 1

cluster-head, and Z is a level 2 cluster-head).

The routing table, stored at each node, consists of entries for each cluster-head the node

received an advertisement from. Remember that each cluster head is at most Ri hops

away at every level. Because the routing table is stored at every node, each node in a

network acts as a router. When a node receives a packet it tries to find the record in

the routing table for the cluster-head from the lowest level. For example, if the packet’s

destination is X.Y.Z, the node first tries to locate a record for X. If it is not found, it tries

the same for Y . Otherwise, it locates the record for Z. Because, Z is the top level cluster,

every node in the network will know a route to it. The packet is routed towards the first

found record. Because ri ≤ Ri−1 it is guaranteed that as the packet is routed towards the

level i cluster-head, there will be a node on the path which knows the route towards the

level i− 1 cluster-head. Therefore, the packet will eventually reach the destination node.

Ad-hoc routing

Unlike other routing algorithms, ad-hoc routing does not require any global preparation

phase during which the network is prepared for P2P communication. However, when a

node needs to communicate with another peer, a path between the nodes needs to be

established first. This is usually done by flooding the network with a request [JM96,

PR99, LG00]. The request contains the source node ID, the destination node ID, and a

path taken by the request so far. Each node, unless the node is the destination, which

receives the request adds itself into the path and re-broadcast the request. Once the

destination node receives the request it replies back to the source node by reversing the

path of relay nodes. The algorithm leads to discovery of the shortest path between two

3.2. Routing Table Discovery Algorithm 33

nodes.

The disadvantage of this approach is a very expensive path discovery as the whole network

is flooded with a request. Even though, other approaches, like routing via trees, also rely

on the path discovery, the search in those networks is more directed and does not flood

the whole network.

In this thesis we describe a fully distributed system, which, from its definition, cannot rely on

a single node. Therefore, we developed a distributed algorithm for WSNs which allows peer-

to-peer communication among any two nodes in the network. In this chapter we give a full

description of the design of our P2P algorithm and how it is able to cope with node failures.

3.2 Routing Table Discovery Algorithm

Routing algorithm is an essential part of the Dragon framework as many of its subsystems

rely on it. Routing is based on a routing table stored at every node. The routing table stores

for each node in the network three pieces of information: the destination, the next hop, and the

distance. For the distance we have chosen the number of hops as the simplest, yet representative

metric; but any other kind of additive metric could be used (e.g. energy spent by nodes to

deliver a packet from one node to another or ETX as used in CTP [GFJ+09]).

Routing Table Discovery process is split into two phases: the learning phase during which each

node learns the routing table and the commit phase during which each node makes sure that

the learned routing table is complete.

During the learning phase, which is formally described in Algorithm 1 and 2, each node runs an

algorithm inspired by Tajibnapis’ Netchage [Taj77]. Netchange is designed for wired distributed

computer networks with no broadcast capability and which assumes reliable packet delivery.

Our algorithm is optimised for wireless networks which are by their nature unreliable but

with real broadcast capabilities where one packet is received by all nodes within broadcasting

distance.

34 Chapter 3. Routing Table Discovery

Algorithm 1 Routing Table Discovery - Part 1

Preamble: on on expiration of a periodic timer do execute SendRT(rt, packet)
rt is a link to the routing table
packet is a link to an empty packet

1: procedure SendRT(rt, packet)
2: for all record in rt do
3: if is record is updated then
4: add record to the packet
5: end if
6: end for
7: if the packet is not empty then
8: Broadcast(packet)
9: end if

10: end procedure

At the beginning of the algorithm, each node creates a record in its local routing table and

broadcasts a routing table discovery packet to all its neighbours. A routing table discovery

packet contains a list of 〈destination, distance〉 pairs. Upon receiving a routing table discovery

packet the receiving node updates its records in the routing table. If there is no record for

the destination a new record is created (line 15). If there is a record and the received distance

is shorter than the one already learned, the routing record is updated. In both cases as the

“next hop” is set as the node the discovery packet was received from. The record is marked

as “updated”. Every iteration records which are marked as “updated” are broadcast to all

neighbours. Once the updated record was broadcast it is unmarked.

Due to the unreliability of the wireless communication some nodes may not receive the mes-

sage, hence they may learn a sub-optimal route to some nodes. This is mitigated by two

techniques: i) proactively broadcasting better paths, should a node identify one and ii) by

exploiting overhearing of neighbours updating their routing tables.

This process is demonstrated in Figure 3.1. We assume that node n2, n3, and n4 are neighbours

and know about each other (Fig. 3.1a). At some point, node n2 receives a discovery message

from n1 (Fig. 3.1b). Node n2 inserts this record into its routing table and mark it as “updated”.

In the next iteration, this record is broadcast and is received by node n3 but not by node n4

(e.g. due to the interference) (Fig. 3.1c). When in the following iteration node n3 broadcasts

3.2. Routing Table Discovery Algorithm 35

Algorithm 2 Routing Table Discovery - Part 2

Preamble: on receiving a message of type RT Discovery sent by procedure SendRT do
execute ReceiveRT(rt, senderId)
rt is a part of routing table received from a neighbour
senderId is ID of the sender of the packet

11: procedure ReceiveRT(rt, senderId)
12: for all record in rt do
13: localRecord← find record in local routing table
14: if localRecord is not found then
15: add record to local routing table
16: mark record as updated
17: else if localRecord.hops > record.hops+ 1 then . Local route is longer then the

neighbour’s one
18: localRecord.hops← record.hops
19: localRecord.nextHop← senderId
20: mark localRecord as updated
21: else if localRecord.hops ≤ record.hops− 2 then
22: mark localRecord as updated . The node has a shorter route than the

neighbour
23: end if
24: end for
25: end procedure

the update record about n1 it is also received by node n4 (Fig. 3.1d). Currently, node n4 has a

sub-optimal path to node n1 via node n3 with a distance of 3 hops. When node n4 broadcasts

the updated record about node n1 it is also received by node n2. It compares its distance to

node n1 with the one received from n4. Because distance from node n2 to n1 is 1, it means

that the distance to n1 of any of its neighbour should not be more than 2. Because node’s n4

distance to n1 is 3, node n2 marks the record to n1 as “updated” so it will be broadcast in

the next iteration (Fig 3.1e, Alg. line 21). Node n2 re-broadcasts the record and the record is

received by node n4. Node n4 updates its routing table with an optimal path to n1 and this

record will be propagated further (Fig. 3.1f).

This pro-active broadcasting of better routing paths can significantly improve initially learned

routing paths while having only a minimal impact on number of messages transferred during

the learning phase.

Once a node has not updated its routing table for some predefined time ∆t it assumes that

the routing table is complete and the commit phase starts. The node broadcasts a commit

36 Chapter 3. Routing Table Discovery

n1

n2

n3 n4

n5 n6

Dest Next Hop Dist

3 3 1

4 4 1

Dest Next Hop Dist

2 2 1

4 4 1

Dest Next Hop Dist

2 2 1

3 3 1

(a) Initial state

n1

n2

n3 n4

n5 n6

Dest Next Hop Dist

3 3 1

4 4 1

1 1 1

Dest Next Hop Dist

2 2 1

4 4 1

Dest Next Hop Dist

2 2 1

3 3 1

(b) Node n2 learns path to n1

n1

n2

n3 n4

n5 n6

Dest Next Hop Dist

3 3 1

4 4 1

1 1 1

Dest Next Hop Dist

2 2 1

4 4 1

1 2 2

Dest Next Hop Dist

2 2 1

3 3 1

(c) Node n3 learns path to n1 via n2. Node n4

does not receive the message.

n1

n2

n3 n4

n5 n6

Dest Next Hop Dist

3 3 1

4 4 1

1 1 1

Dest Next Hop Dist

2 2 1

4 4 1

1 2 2

Dest Next Hop Dist

2 2 1

3 3 1

1 3 3

(d) Node n4 learns sub-optimal path to n1 via n3.

n1

n2

n3 n4

n5 n6

Dest Next Hop Dist

3 3 1

4 4 1

1 1 1

Dest Next Hop Dist

2 2 1

4 4 1

1 2 2

Dest Next Hop Dist

2 2 1

3 3 1

1 3 3

(e) Node n2 pro-actively broadcast path to n1.

n1

n2

n3 n4

n5 n6

Dest Next Hop Dist

3 3 1

4 4 1

1 1 1

Dest Next Hop Dist

2 2 1

4 4 1

1 2 2

Dest Next Hop Dist

2 2 1

3 3 1

1 2 2

(f) Node n4 learns optimal path to n1 via n2.

Figure 3.1: Pro-active broadcasting of routing table records. Records marked in red are “up-
dated” records which will be broadcast in the next iteration of the Routing Table Discovery
algorithm.

message, which contains a number of records in the routing table, and waits for a reply. If the

node receives the same number from all its neighbours it finishes the routing table discovery

3.3. Routing Table Update Algorithm 37

phase. Otherwise, it keeps listening for routing table updates. If a node does not receive the

commit message from a neighbour, it assumes that the message or the reply may have been

lost so it re-sends the commit message and requests an acknowledgement to ensure that the

message is not lost for the second time.

After the commit phase the platform enters stable phase in which each node broadcasts a small

portion of its routing table in a round robin fashion as a heartbeat message in case there is no

other message scheduled.

The biggest advantage of our routing platform is the support of peer-to-peer communication

along optimal or near-optimal paths. On the other hand, the disadvantages are the space

requirements for storing the whole routing table at every node and the need to update large

part of the table in the case of a neighbour failure.

The space requirements could be decreased by storing the list of 〈destination, distance〉 pairs for

each neighbour, where the neighbour is the next hop, instead of storing tuples of 〈destination,

next hop, distance〉. The cost to store the routing table is computed as ci = 2N + nb, where

N is the size of the network and nb is number of neighbours of the node ni. We leave further

reduction of the space requirements as an opportunity for further research. The problem of

routing table updates in the case of a node failure is addressed in the following section.

3.3 Routing Table Update Algorithm

In case a node detects a failure of a neighbour, the node executes a failure recovery procedure.

A disadvantage of the algorithms based on a routing table is, that if a node fails, all destination

nodes for which the failed node was set as the “next hop” become unreachable and these records

need to be updated. The process of updating the routing tables of nodes in the network is

described in Algorithm 3.

The whole process is illustrated in Figure 3.2 on a small, simple WSN. Each sub-figure lists the

first six records of a routing table for four nodes: n2, n4, n5, and n7. The updated routing records

38 Chapter 3. Routing Table Discovery

Algorithm 3 Routing Table Update - Part 1

Preamble: on detecting a neighbour failed do execute FailedNeighbourDe-
tected(failedNode)
failedNode - a neighbour which failed

1: procedure FailedNeighbourDetected(failedNode)
2: mark failedNode as failed
3: mark all records, for which failedNode is the “next hop”, as unreachable
4: packet← failedNode and the list of all unreachable destinations
5: Broadcast(packet)
6: end procedure

Preamble: on receiving a message of type Failed Node sent by FailedNeighbourDetected
or TimerExpires do execute ReceiveFailedNodeMsg(packet, senderId)
packet - contains information about the failed node, distance of the sender from the failed
node, and the list of unreachable destinations of the sender
senderId - ID of the sender of the packet

7: procedure ReceiveFailedNodeMsg(packet, senderId)
8: failedNode← packet.failedNode
9: distance← packet.distance

10: unreachableDestinations← packet.unreachableDestinations
11: mark failedNode as failed
12: if my distance to failedNode < distance then
13: return
14: end if
15: for all destination in unreachableDestinations do
16: add sender to a list associated with destination in a global variable unreachableList

17: end for
18: if first message for the failedNode then
19: set timer for time in the future depending on my distance to failedNode
20: end if
21: end procedure

in the routing table are shown in green or red colour. These marked records are broadcast in

the next iteration. We show only a small part of the routing table for a subset of nodes due

to the space constraints. Additionally, each sub-figure displays a list of messages sent during

the time period depicted in the sub-figure. The node which broadcasts a message is shown in

red. The message may contain information about the failed node (marked as “F”), distance to

the failed node (marked as “D”), list of unreachable nodes (marked as “U”), and routing table

records (marked as “RT”).

3.3. Routing Table Update Algorithm 39

Algorithm 4 Routing Table Update - Part 2

Preamble: on expiration of a timer associated with the failedNode set up by Receive-
FailedNodeMsg(do)execute TimerExpires(failedNode)
failedNode - node which failed

22: procedure TimerExpires(failedNode)
23: for all destination in unreachableList do
24: record← find record for destination in local routing table
25: if record.nextHop is in the list associated with destination then
26: mark record as unreachable
27: else
28: mark record as updated
29: end if
30: end for
31: if there is a record marked as unreachable then
32: packet← failedNode along with the list of unreachable destinations
33: Broadcast(packet)
34: else
35: packet← failedNode only
36: Broadcast(packet)
37: end if
38: end procedure

If a node has not received five consecutive heartbeat messages from a neighbour it assumes the

neighbour has failed. Once a node detects failure of a neighbour it executes FailedNeigh-

bourDetected procedure which marks the failed node as “failed” and all destinations, where

the failed node is set as the “next hop”, as unreachable. Then it broadcasts the request which

contains the failed node, list of unreachable destinations, and the node’s distance to the failed

node (line 2–5). This process can be seen in Figure 3.2b, where nodes n2, n4, and , n5 marked

node n1 as the failed one. Each of these nodes broadcast a message notifying their neighbours

about the failed node and informing them about destinations they have lost a path to.

Upon receiving a message informing about a failed node, the receiving node compares its

distance to the failed node with the one received from the sending node. If the receiving node’s

distance is lower than the sender’s one the message is ignored (line 12). The message is ignored

so the information is propagated further into the network and does not return back and create

loops.

If the message is received from a node closer, or the same distance, to the failed node, the

40 Chapter 3. Routing Table Discovery

receiving node processes the message. The message contains a list of all destinations the sender

cannot reach. The receiving node adds the sender to a list associated with every unreachable

destination sent in the message. This list stores the nodes through which the receiving node

will not be able to reach the destination (line 16). As there might be more shortest path passing

through the same failed node the node has to wait for all the messages from nodes closer to

the failed node to be received. For example, in Figure 3.2b node n7 has to wait for messages

from nodes n4 and n5 as the node n0 can be reached via paths n7, n4, n1, n0 and n7, n5, n1, n0.

Therefore, node n7 ought not to broadcast the path to n0 via n5 immediately after it receives

the unreachable list from node n4. Node n7 has to wait for the list of unreachable nodes from

node n5, too.

In Figure 3.2b we can see the list created at node n7. It shows, that the destination node

n0 is currently not reachable through nodes n4 and n5, destination nodes n2 and n3 are not

reachable through node n4, and the destination node n4 can not be reached via node n5. This

information is used when the node checks its routing table and invalidates outdated records.

If a node is informed about a failed node for the first time, it sets a timer for a random timeout

after which it will update its routing table and propagate information about the failed node

further into the network (line 19). The timeout depends on the distance from the failed node

- the further away the node is the more the node waits. The increasing timeout is important

as with the increase of the distance from the failed node the more nodes are informed about

the failed node and new alternative paths might be discovered which then decrease number of

unreachable nodes. This can be seen in Figure 3.2e where the routing table of node n7 is fully

updated, without any unreachable node. In networks, where nodes have several neighbours,

the unreachable list is rarely propagated more than one or two hops away.

After the timer expires the node checks its routing table. For every unreachable destination it

has received from neighbours which are closer to the failed node, the node checks what is the

next hop for given unreachable destination. If the routing table lists as the “next hop” a node

which is associated with an unreachable destination, the destination is marked as unreachable

(line 26). Otherwise, it means the node has an alternative path to the destination and therefore

3.3. Routing Table Update Algorithm 41

n0

n1n1 n2 n3

n4 n5 n6

n7 n8

Routing Table for Node n4

Dest Next Hop Dist

0 1 2

1 1 1

2 1 2

3 1 3

4 4 0

5 7 1

Routing Table for Node n7

Dest Next Hop Dist

0 5 3

1 4 2

2 5 2

3 5 2

4 4 1

5 5 1

Routing Table for Node n2

Dest Next Hop Dist

0 0 1

1 1 1

2 2 0

3 3 1

4 1 2

5 5 1

Routing Table for Node n5

Dest Next Hop Dist

0 1 1

1 1 1

2 2 1

3 3 1

4 1 2

5 5 0Messages

Src Message

(a) Initial state, just before node n1 fails. Par-
tial routing tables for node n2, n4, n5, and n7 are
shown.

n0

n1 n2n2 n3

n4n4 n5n5 n6

n7 n8

Routing Table for Node n4

Dest Next Hop Dist

0 U

1 F

2 U

3 U

4 4 0

5 7 1

Routing Table for Node n7

Dest Next Hop Dist

0 5 3

1 4 2

2 5 2

3 5 2

4 4 1

5 5 1

Routing Table for Node n2

Dest Next Hop Dist

0 0 1

1 F

2 2 0

3 3 1

4 U

5 5 1

Routing Table for Node n5

Dest Next Hop Dist

0 U

1 F

2 2 1

3 3 1

4 U

5 5 0

Messages

Src Message

2 F: 1, D: 1, U: 4

4 F: 1, D: 1, U: 0, 2, 3

5 F: 1, D: 1, U: 0, 4

Unreachable n7

for Node n7

Dest Neighs

0 4, 5

2 4

3 4

4 5

(b) Neighbours of node n1 notice the failure and
update their routing tables. Node n1 is marked as
failed and the destinations where n1 was the next
hop as unreachable.

n0

n1 n2n2 n3

n4n4 n5n5 n6

n7n7 n8

Routing Table for Node n4

Dest Next Hop Dist

0 U

1 F

2 7 3

3 7 3

4 4 0

5 7 1

Routing Table for Node n7

Dest Next Hop Dist

0 U

1 F

2 5 2

3 5 2

4 4 1

5 5 1

Routing Table for Node n2

Dest Next Hop Dist

0 0 1

1 F

2 2 0

3 3 1

4 U

5 5 1

Routing Table for Node n5

Dest Next Hop Dist

0 2 2

1 F

2 2 1

3 3 1

4 7 2

5 5 0

Messages

Src Message

2 RT: 〈0, 1〉
4 F: 1, D: 1, U: 0, 2, 3

5 F: 1, D: 1, U: 0, 4

7 F: 1, D: 2, U: 0, RT: 〈2, 2〉, 〈3, 2〉, 〈4, 1〉

(c) Message about the failure is propagated fur-
ther into the network. Node n7 broadcasts those
records for which it knows a path.

n0

n1 n2n2 n3

n4 n5 n6

n7n7 n8

Routing Table for Node n4

Dest Next Hop Dist

0 U

1 F

2 7 3

3 7 3

4 4 0

5 7 1

Routing Table for Node n7

Dest Next Hop Dist

0 5 3

1 F

2 5 2

3 5 2

4 4 1

5 5 1

Routing Table for Node n2

Dest Next Hop Dist

0 0 1

1 F

2 2 0

3 3 1

4 5 3

5 5 1

Routing Table for Node n5

Dest Next Hop Dist

0 2 2

1 F

2 2 1

3 3 1

4 7 2

5 5 0

Messages

Src Message

2 RT: 〈4, 3〉
7 RT: 〈0, 3〉

(d) Nodes n7 and n2 broadcast updated records
from their routing tables.

n0

n1 n2 n3

n4n4 n5 n6

n7 n8

Routing Table for Node n4

Dest Next Hop Dist

0 7 4

1 F

2 7 3

3 7 3

4 4 0

5 7 1

Routing Table for Node n7

Dest Next Hop Dist

0 5 3

1 F

2 5 2

3 5 2

4 4 1

5 5 1

Routing Table for Node n2

Dest Next Hop Dist

0 0 1

1 F

2 2 0

3 3 1

4 5 3

5 5 1

Routing Table for Node n5

Dest Next Hop Dist

0 2 2

1 F

2 2 1

3 3 1

4 7 2

5 5 0
Messages

Src Message

4 RT: 〈0, 4〉

(e) Node n4 learns a new path to node n0 via node
n7.

n0

n1 n2 n3

n4 n5 n6

n7 n8

Routing Table for Node n4

Dest Next Hop Dist

0 7 4

1 F

2 7 3

3 7 3

4 4 0

5 7 1

Routing Table for Node n7

Dest Next Hop Dist

0 5 3

1 F

2 5 2

3 5 2

4 4 1

5 5 1

Routing Table for Node n2

Dest Next Hop Dist

0 0 1

1 F

2 2 0

3 3 1

4 5 3

5 5 1

Routing Table for Node n5

Dest Next Hop Dist

0 2 2

1 F

2 2 1

3 3 1

4 7 2

5 5 0Messages

Src Message

(f) The algorithm converges. All nodes have up-
dated routing tables.

Figure 3.2: Routing Table Update Algorithm. The Figure depicts the process how routing
tables are updated during a node failure. Only partial routing tables (RT) of four nodes:
n2, n4, n5, and n7 are shown. In a RT a distance to a node marked as “F” or “U” represents a
“failed” or “unreachable” node. Updated routing records (i.e. to be broadcast) are displayed
in a green or red colour. Figure 3.2b also shows a list of unreachable nodes collected at node
n7. Every figure also shows a list of messages sent in given time period. Messages are marked
as follows: “F” stands for “Failed Node”, “D” stands for “Distance to the Failed Node”, “U”
stands for “Unreachable Nodes”, and “RT” stands for “Routing Table Record”.

42 Chapter 3. Routing Table Discovery

the record is marked as updated so it will be broadcast in the next iteration and the neighbour

can learn this alternative path (line 28).

In Figure 3.2c the timer expired at node n7. It uses the list of unreachable nodes received from

neighbours (depicted in Figure 3.2b) to find invalid records in the routing table. We can see

the destination node n0 is marked as unreachable. This is due to the fact that prior to the

node failure, as the next hop was chosen node n4. However, node n4 has lost its connection to

node n0. On the other hand, node n7 has alternative paths to nodes n2, n3, and n4, therefore

these records are marked as updated and are broadcast to neighbours.

Finally, the node checks whether there are any unreachable destinations in its routing table. If

there is any, the list is propagated to the neighbours (line 33). Otherwise, only the information

about the failed node is broadcast (line 36).

In Figure 3.2c node n7 propagates information about the failed node n1 and unreachable node

n0 to its neighbours. This information is processed only by node n8 as all other neighbours

are closer to the failed node than node n7. After two more iterations (Figure 3.2d – 3.2e) all

routing tables are updated with new routes and the network converges to the stable state, as

shown in Figure 3.2f.

3.4 Multi-hop Forwarding with Implicit Acknowledge-

ments

Our multi-hop forwarding algorithm with implicit acknowledgement is built on top of a reliable

unicast as defined by the IEEE 802.15.4 standard [oEI03] or used by De Couto et al. in their

paper on expected transmission count metric (ETX) [DCABM05]. A reliable unicast of a packet

amongst two neighbouring nodes requires an acknowledgement packet sent by the receiver to the

sender. Therefore, sending a message to a neighbouring node leads to exchange of 2 messages,

provided the communication is reliable and neither the message nor the acknowledgement is

lost. If we apply the single-hop reliable unicast communication to send a message to a node

3.4. Multi-hop Forwarding with Implicit Acknowledgements 43

Algorithm 5 Multi-hop Forwarding Algorithm - Part 1

Preamble: A node which wants to communicate with any node in the network calls Send-
ForwardedMsg procedure
packet - a message sent to another node
destination - ID of a node to whom the message is sent. It is not necessary a next-hop
neighbour

1: procedure SendForwardedMsg(packet, destination)
2: nextHop← find the next hop for the destination in local routing table
3: packet.destination← destination
4: crc← compute CRC of the payload of packet
5: store packet and crc in local buffer
6: associate timer with packet
7: Unicast(packet, nextHop)
8: end procedure

Preamble: on receiving a message of type Forwarded Message do execute ReceiveFor-
wardedMsg procedure
packet - contains the message and the ID of the destination node
sendedId - a neighbour from whom the message was received

9: procedure ReceiveForwardedMsg(packet, senderId)
10: destination← packet.destination
11: crc← compute CRC of payload of packet
12: if crc is found in message buffer then
13: enqueue acknowledgement for packet
14: end if
15: if destination is this node then
16: process packet
17: enqueue acknowledgement for packet
18: else
19: SendForwardedMsg(packet, destination)
20: end if
21: end procedure

which is h hops away, the overall number of messages will be at least 2h. However, this number

can be reduced by lowering the number of acknowledgement packets sent by the receivers. The

forwarding algorithm described in Algorithm 5 and 6 exploits snooping (i.e. overhearing of

communication) in order to decrease the number of acknowledgement packets. The algorithm

achieves reliable single-hop communication of a forwarded message in a multi-hop environment

while reducing the communication overhead. The algorithm does not guarantee end-to-end

reliable communication between two nodes h > 2 hops away.

44 Chapter 3. Routing Table Discovery

Algorithm 6 Multi-hop Forwarding Algorithm - Part 2

Preamble: on snooping on a neighbour and receiving a message of type Forwarded Message
(sent on line 7 or 34) do execute SnoopForwardedMsg procedure
packet - contains the message and the ID of the destination node
senderId - a neighbour who was forwarding the message to another node

22: procedure SnoopForwardedMsg(packet, senderId)
23: destination← packet.destination
24: crc← compute CRC of payload of packet
25: if crc is found in message buffer then
26: remove packet from the buffer
27: cancel timer associated with packet
28: end if
29: end procedure

Preamble: on expiration of a timer associated with a packet (line 6 or 33) do execute Timer-
Expires procedure
packet - a packet in the buffer

30: procedure TimerExpires(packet)
31: destination← packet.destination
32: nextHop← find next hop for the destination in local routing table
33: restart the timer for packet
34: Unicast(packet, nextHop)
35: end procedure

Preamble: on receiving an acknowledgement packet (sent on line 13 or 17) do execute Re-
ceiveAcknowledgement
packet - acknowledgement for the packet
senderId - ID of the sender of the packet

36: procedure ReceiveAcknowledgement(packet, senderId)
37: if packet is found the message buffer then
38: remove packet from the buffer
39: cancel timer associated with packet
40: end if
41: end procedure

When a node wants to send a message to any destination node, it calls SendForwardedMsg

procedure. This procedure finds in the node’s local routing table which neighbour is the next

hop for given destination. Node computes Cyclic Redundancy Check (CRC) of the payload

of the message and stores it in a buffer alongside with the message. The reason, why CRC is

computed of the payload only and not the whole message is that the header of the message,

which contains also ID of the next hop, changes as the message is forwarded through the

3.4. Multi-hop Forwarding with Implicit Acknowledgements 45

network, while the payload of the message remains the same. CRC is used as a unique identifier

of the message. When the message is inserted into the buffer a timer is associated with the

message. The duration of the timer is the time the sender waits for a confirmation from the

receiver. Finally, the message is sent using unicast communication to the next hop neighbour

(lines 2–7).

Upon receiving a unicast message the receiver executes the ReceiveForwardedMsg proce-

dure. The procedure computes CRC of the payload of the message and compares it with the

buffer. If the computed CRC is already in the buffer it means that the sender assumes the

receiver had not received the message before, therefore the message was re-sent. In this case

the receiver enqueues an acknowledgement packet into the buffer (line 13). If the receiver is

the destination node of the message, the processes the message and enqueues an acknowledge-

ment packet as it is not forwarding the message any further (line 17). Otherwise, the receiver

forwards the message using SendForwardedMsg function described above.

When a message is forwarded all neighbours snoops this message and execute the SnoopFor-

wardedMsg procedure. Upon snooping a message the node computes CRC of the payload

and compares it with messages stored in the buffer. If CRC matches with a message stored in

the buffer it means the message was successfully received and is now being forwarded towards

its destination. The message is removed from the buffer and the associated timer is cancelled

(line 39).

Once a node receives an acknowledgement packet it executes the ReceiveAcknowledge-

ment procedure (line 36) which acts similarly to the SnoopForwardedMsg procedure

described above. The procedure removes the message from the buffer and cancels the timer

associated with this message.

If a timer expires it means that either the receiving node has not received the message or the

sender has not snooped the message being forwarded. As the sender cannot distinguish between

these two possibilities, the message is re-sent (line 34).

As it was stated above, sending a message to a node h hops away in a multi-hop forwarding

46 Chapter 3. Routing Table Discovery

environment while using a reliable single-hop unicast leads to the exchange of at least 2h number

of messages. The algorithm described above can, under ideal conditions, decrease this number

to h + 1 (h messages sent by the forwarding nodes plus acknowledgement packet sent by the

destination). Under “ideal conditions” we assume that no single-hop unicast message is lost

and each node on a path between two endpoints can snoop on their neighbours.

The algorithm does not increase the delay when compared with the traditional reliable single-

hop way of sending confirmations, provided the timeout is set to the following cycle.

3.4.1 Packet Merging

When a node receives two independent messages from two neighbours with a common destina-

tion node, the node may decide to merge these two messages into one. The decision depends

on the size of the payload. If the sum of two payloads is less than the maximum size of the

packet’s payload, two messages are merged.

The problem with merging two messages together is that the payload of the forwarded message

differs from the two individual messages, hence the CRC is also different. Therefore the merging

node has to send explicit confirmations for the original messages received. However, it is not

necessary to send two individual confirmations, as they can be merged into one message.

Another problem with merging two messages is that both messages have to arrive within the

same cycle. If the merging node, for some reason, waits for the second message to arrive, the

sender of the first message will think, as it has not received the confirmation, that his message

was lost and it would re-send the message. Re-sending the message will increase the network

traffic unnecessary. The solution to this problem would be to increase the timeout of a timer,

so the node would re-send the message later, giving more time to the merging node to confirm

reception of the message.

3.5. Evaluation 47

3.5 Evaluation

We evaluate Dragon’s Routing Table Discovery algorithm in our testing environment de-

scribed in Chapter 2. The evaluation is split into two separate parts. First we compare two

version of our algorithm: the proactive and the reactive version. Next we compare our routing

algorithm to other routing algorithms.

There is a subtle difference, from the algorithmic point of view, between the proactive and

the reactive version of our Routing Table Discovery algorithm. The only difference is that

the reactive version does not contain lines 21 and 22 in Algorithm 2. In practice it means

that a node running the reactive version of the algorithm does not broadcast shorter paths to

destinations if a node discovers that its neighbour learned a sub-optimal path. If we relate back

to Figure 3.1, in the case of the reactive version the steps depicted in Figure 3.1e and 3.1f do

not occur.

3.5.1 Proactive vs. Reactive Approach to Routing Table Update

In the evaluation of the Routing Table Discovery algorithm we first compare proactive and

reactive version of the algorithm. In this evaluation we focus on three metrics: i) number of

messages sent by each node, ii) time it takes to learn the routing table by each node, and iii) an

error in the distances learned by nodes, i.e. the difference between the length of the optimal

path and the learned one.

Figure 3.3a shows the average number of messages sent by each node during the routing table

discovery. As it can be seen from the figure, the proactive version of the algorithm sends only

4 − 7% (5% on average) more messages than the reactive one. This can be expected as the

proactive node broadcasts a message also in cases when it overhears a sub-optimal path from

a neighbour, while the reactive version does not broadcast anything.

The figure also shows an interesting trend which can be seen in the case of uniform networks.

The more sparse the network is, the more messages a node has to send. This behaviour is

48 Chapter 3. Routing Table Discovery

 0

 5

 10

 15

 20

 25

D MD MS S RD RMD RMS RS

A
v
g
.
N

u
m

b
e
r

o
f
M

e
s
s
a
g
e
s
 p

e
r

N
o
d
e

Proactive
Reactive

(a) The average number of messages sent by a node during the Routing Table Discovery process

 0

 10

 20

 30

 40

 50

 60

 70

 80

D MD MS S RD RMD RMS RS

A
v
g
.
T

im
e
 p

e
r

N
o
d
e
 (

C
y
c
le

s
)

Proactive
Reactive

(b) The average time it takes for a node to converge to the stable state.

Figure 3.3: Routing Table Discovery Algorithm. Comparison of proactive and reactive version
of the Dragon algorithm. The results are grouped by network topology and network density.
The figure continues on the next page. On the x-axis “D” stands for the dense, “MD“ for
medium dense, “MS” for medium sparse, and “S” for sparse topology. Topologies prefixed with
“R” stand for random topologies, otherwise the topology is uniform.

caused by the fact that in more sparse networks the maximum distances between nodes are

larger and each node has fewer neighbours. Therefore in one broadcast the number of nodes

that receive an information about a certain node is lower.

Next metric we focus on is the average time it takes for a node to learn a routing table. From

the comparison in Figure 3.3b it can be seen that the proactive version of the algorithm is

slightly slower than the reactive one. In fact, the proactive version is only 2− 5% slower (with

3.5. Evaluation 49

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

D MD MS S RD RMD RMS RS

A
v
g
.
C

u
m

m
u
la

ti
v
e
 D

is
ta

n
c
e
 E

rr
o
r

(H
o
p
s
)

Proactive
Reactive

(c) Cumulative error of distances discovered by nodes in terms of hops.

Figure 3.3: Routing Table Discovery Algorithm. Comparison of proactive and reactive version
of the algorithm. The results are grouped by network topologies and network densities. Con-
tinuation of the figure from the previous page. On the x-axis “D” stands for the dense, “MD“
for medium dense, “MS” for medium sparse, and “S” for sparse topology. Topologies prefixed
with “R” stand for random topologies, otherwise the topology is uniform.

an average of 3%). Again, this behaviour could be expected as the time is strongly correlated

with the number of messages.

The last metric we focus on is the error in routing tables. Figure 3.3c shows an average of

sums of differences between the optimal distance between two nodes and the learned one. After

the algorithm converge we save the routing table learned by each node and compare it with

the shortest distance computed externally by Dijkstra algorithm [Dij59]. For each run of an

experiment we compute the sum of these differences in the distances. On the y-axis of the

figure we display the average of these sums.

As can be clearly seen from the figure, the proactive version of the algorithm greatly outperforms

the reactive version by reducing the error by as much as 85 − 93% (with an average of 90%).

This extreme improvement is achieved at the expense of only 5% more messages and 3% more

time. The reason why the proactive version decreases the error so significantly is due to the

unreliability of the wireless communication. Because all of the nodes are building the routing

table at the same time, a lot of messages are lost due to the interference. Once a node learns

a sub-optimal path, in the case of the reactive algorithm, there is a lower chance that this

50 Chapter 3. Routing Table Discovery

sub-optimal path is corrected. The node propagates this sub-optimal path further into the

network and more nodes may learn the sub-optimal path. In the case of the proactive version

of the algorithm, a node proactively broadcasts better paths, should the node find out that its

neighbour had learned a sub-optimal path. As it can be seen in Figures 3.3b and 3.3a, this

proactive broadcasting of better paths comes at the expense of only a very small network traffic

and convergence delay overhead.

The reason why errors in the routing tables occur, even in the case of the proactive version of the

algorithm, is again unreliability of broadcasts in WSNs. As it has been shown in Figure 3.1d,

node n4 learns a sub-optimal path to node n1 via node n3 because it missed the broadcast

message from node n2. In the scenario depicted in Figure 3.1f node n4 eventually learns an

optimal path via node n2, however, it happens only if node n2 overhears sub-optimal path

broadcast by node n4 and, subsequently, node n4 receives broadcast from node n2 with an

optimal distance. If any of these messages is not received, node n4 will keep the sub-optimal

path.

Additionally, at this point node n6 stores path to n1 via node n4 with a distance of 4 hops. If

the node misses subsequent update from node n4 it will keep and further propagate distance

to node n1 of 4 hops instead of 3 hops, even though the message sent by node n6 to node n1

would have travelled via three hops only.

In Figure 3.3c we can see an evident outlier represented by random medium sparse network. As

we have described in Section 2.2 medium sparse networks are consist of large clusters of nodes

loosely connected by very few links. If an incorrect information about a distance to a node is

propagated from one cluster to another, it is highly probable that the rest of the network will

learn the wrong distance.

3.5. Evaluation 51

3.5.2 Routing Stretch

The second metric we focus on in our evaluation is the routing stretch. Routing stretch is

defined as:

s =
dfound
doptimal

(3.1)

where dfound is the distance found by the routing algorithm and doptimal is the shortest path

between two nodes. The lower the routing stretch is the better paths is the routing algorithm

able to find. In an ideal scenario, when the algorithm finds and optimal path the routing stretch

s = 1.

Finding the shortest path between two nodes is important as it lowers the network traffic. The

reason for it becomes even stronger when this path is used for long term communication, i.e. if

two nodes communicate using this path for a longer period. An example of such communication

is a continuous query when a node samples data at predefined rate and send them to another

node for processing.

In Section 3.1 we described and categorised routing algorithms. In our evaluation we only

compare our algorithm to the algorithms capable of peer-to-peer communication. Collection

algorithms like CTP [GFJ+09] or Backpressure [MSKG10] are omitted as they support routing

towards one node only. From the peer-to-peer group of routing algorithms we do not include

algorithms based on geographic routing, e.g. GPSR [KK00] or GEAR [YGE01]. These al-

gorithms rely on the exact geographic location of the nodes which either requires specialised

hardware or localisation algorithms. The specialised hardware increases the cost of the nodes

as well as their energy consumption. Localisation algorithms require additional communication

amongst the nodes. Both of these approaches are not very precise. Additionally, geographic

routing algorithms are not capable of dealing with routing voids.

From evaluation we also exclude ad-hoc routing algorithms, e.g DSR [JM96] or AODV [PR99].

These algorithms are based on flooding the whole network in order to find the destination node.

This type of searching is extremely expensive in terms of network traffic and not scalable.

Therefore, we compare Dragon routing algorithm only to those algorithms which are capable

52 Chapter 3. Routing Table Discovery

of restricting the search space. In particular we compare against three groups of algorithms:

i) algorithms based on one routing tree, ii) algorithms based on several routing trees, and

iii) hierarchical routing.

The representative of the first group is RPL [WTC+12]. Even though RPL was designed to

route data towards a base-station, it also supports peer-to-peer communication using following

scheme. By default data are routed towards a base-station via a tree. The tree is rooted at the

base-station. Any node in the network can act as a routing node. This node stores a routing

table for all nodes in a sub-tree rooted in given node. A packet sent to a specific destination

is routed up the tree until it reaches a node which has a record in the routing table for the

destination. Subsequently, the packet is routed down the tree towards the destination node.

The base-station has records about every node in the network. In our implementation, we

assume that every single node is a routing node, therefore, the route discovered is the shortest

path in a tree.

The second group of algorithms is based on several routing trees, e.g. Innet [MJIG08]. Each

routing tree is rooted in a different part of the network. The principle of routing is the same

as with just one routing tree, however, because a packet is routed in several directions, there is

a higher possibility that a shorter path will be discovered.

The last group of algorithms is the hierarchical routing. We have not implemented this type

of routing but we rely on an extensive evaluation of this type of routing presented by Iwanicki

and van Steen [IvS09] where the authors stated that the average routing stretch is 25%.

The results of our comparison are depicted in Figure 3.4. As it can be seen (or in this case,

as it cannot be seen) Dragon’s routing stretch is constantly lower than 0.1% regardless the

network topology or the network density. Therefore, we can claim that Dragon is able to

route messages via optimal or near-optimal paths.

The routing algorithm which exploits three different routing trees in order to find the shortest

path performs rather well in all but random sparse topology. The routing stretch ranges from

only 3% to as much as 28%, with an average of 11%. In the case of the algorithm based on one

3.5. Evaluation 53

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

D MD MS S RD RMD RMS RS

R
o
u
ti
n
g
 S

tr
e
tc

h
 (

%
)

Dragon
3 Trees
1 Tree

Figure 3.4: Routing stretch of Dragon, algorithms based on one routing tree and three routing
trees. On the x-axis “D” stands for the dense, “MD“ for medium dense, “MS” for medium
sparse, and “S” for sparse topology. Topologies prefixed with “R” stand for random topologies,
otherwise the topology is uniform.

routing tree, where every node acts as a router, the routing stretch ranges from 16% to 50%

with an average of 33%.

It is important to note, that after the bootstrapping Dragon and Hierarchical Routing algo-

rithm can start routing packets immediately, while the algorithms based on routing trees must

first discover the paths between the nodes. This discovery phase requires additional messages

being sent, hence these platforms are not suitable for ad-hoc communication.

3.5.3 Routing Table Update Algorithm

We tested the Routing Table Update algorithm (described in Algorithm 3 & 4) in several

various densities and on different topologies. The network has always converged into a stable

state while every node learned new optimal routes to all destinations. However, in order to

thoroughly evaluate the algorithm, one must take into account many variables, including but

not limited to i) network density, ii) network topology, iii) whether after the node failure the

network is still connected or not, iv) number of nodes neighbours, v) how many paths passes

through the node, or vi) how many nodes fail at the same time. Evaluation of so many different

parameters is beyond the scope of this thesis and we leave it as an open research question which

54 Chapter 3. Routing Table Discovery

we would like to address in the future.

3.6 Conclusion

Routing is one of the basic part of every application running in a WSN. It could take a form of

just a simple forwarding of data towards a base-station, a more sophisticated data aggregation,

or inter-node communication. The objective of every routing algorithm is virtually the same -

to minimise the communication while achieving the goal. Several constraints have to be taken

into consideration while designing any routing protocol, e.g. a limited memory space or a

sudden node failure.

Here we have presented a new routing algorithm for WSNs based on routing tables. Its idea is in-

spired by Tajibnapis’ Netchage [Taj77] algorithm. Netchange was designed for wired distributed

networks with reliable unicast communication only. This type of communication implies that

every message sent by a node is reliably delivered to the node’s neighbour. On the other hand,

every message can be delivered to one neighbour only. In order to send a message to all neigh-

bours the node has to send the message to each neighbour separately. Our Routing Table

Discovery algorithm was adapted for WSNs which uses unreliable broadcast communication.

This type of communication allows one message to be delivered to all the node’s neighbours at

once. On the other hand, the delivery of the message is not guaranteed and the sender cannot

know which neighbours received the message. The unreliability of wireless communication was

mitigated by proactive broadcasting of better paths, should a node detect its neighbour learned

a sub-optimal path. We presented and evaluated two version of the algorithm: reactive and

proactive. We have shown that the proactive version of the algorithm can decrease the errors

in the routing table by 90% while sending only 5% more messages and taking 3% more time to

converge. Additionally, we have also presented how the algorithm updates the routing table in

a case of a node failure.

Next we compared Dragon routing algorithm with other state-of-the-art routing algorithms

for WSNs. We have shown that Dragon achieves increase in routing stretch by only 0.1%.

3.6. Conclusion 55

The routing algorithm based on one routing tree (e.g. RPL [WTC+12]) increases the routing

stretch by 16 − 50%, while the routing algorithm based on three routing trees (e.g. Innet

[MJIG10]) increased the routing stretch by 3 − 28%. Finally, the hierarchical routing [IvS09]

algorithm increases the routing stretch on average by 25%.

Chapter 4

Distributed Static Attribute Table

4.1 Introduction & Related Work

Each node in a network can be characterised by a set of static attributes, i.e. the attributes

which do not change during the lifetime of the network. Amongst them we can include node’s

ID, location where the sensor node is deployed (e.g. room ID, floor ID, building ID, pipe ID, or

geographic coordinates), type of sensors given node has (e.g. temperature, light, accelerometer,

magnetometers, etc.), or hardware specification of the node (e.g. CPU, memory size, etc.). We

can assume that these attributes will not change during the operation of the node. The actual

sensed data streams are dynamic attributes as they change over time.

Often, users want to communicate only with nodes which fulfil given static criteria. Kang in

his recent survey on in-network processing in WSNs refers to inability to readily allow a node

to search the network based a given static criteria as one of the three major problems of in-

network processing in WSNs [Kan13]. If we relate back to our scenario, if an engineer wants to

see how liquid flows through a given pipe, the system needs to find all sensors with flow meters

on given pipe. Nodes on other pipes or nodes on the pipe but not having a flow sensors cannot

contribute to the request submitted by the engineer. And it is not only engineers which need

to target specific nodes. In actuator networks, if a leak is detected by a node, the node must

be able to find an actuator which operates a valve on given pipe. The node which detects the

56

4.1. Introduction & Related Work 57

leak informs the actuator which then closes the valve. If the leak detection depends on readings

from all sensor nodes monitoring the pipe, the node processing the data needs to be able to

find all the nodes with relevant data.

If we consider all static attributes of all nodes in a network we can represent it as a table

where each column represents a static attribute and each row represents one node. This table

is distributed amongst all nodes and each node holds only one record describing the node.

An analogy of searching for a node fulfilling given static criteria is executing an SQL query on

the table of static attributes. For example, to find all flow sensor node on the pipe with id 5

we can execute a query similar to:

SELECT id FROM static attributes WHERE pipe id = 5 AND sensor type = "flow".1

Various systems may support different operators. Some of the system may support equality

operator only while others may also support the inequality operator.

Because we assume that the static attributes do not change during the lifetime of the network,

one may suggest to store these metadata in a cloud where users can easily reach it. However,

in this thesis we target scenrios where a WSN is isolated with either no Internet connection

or no permanent Internet connection. Our goal is to enable any node in the network to find a

list of nodes which fulfil given static attributes. A node should be able to achieve it with low

network overhead and low latency.

Currently, there are several basic strategies used to find all nodes with given static attributes.

Below, we describe these five different approaches in more detail and list their advantages as

well as disadvantages.

Flooding

The easiest way how to find all the nodes with given static attribute is to flood the

network with a request. This approach was proposed by Intanagonwiwat et al. in Directed

Diffusion algorithm [IGE00]. The request is periodically broadcast by a sink into the

1Please note, it is not our intention to create a sensor/actuator SQL-like language in this thesis.

58 Chapter 4. Distributed Static Attribute Table

network. During the request dissemination a gradient is used to build a tree-like structure

rooted at the sink. Once the request reaches the nodes which hold relevant data for the

request they use the tree to route sensed data back to the sink. Similar approach was

also proposed by Ye et al. in Gradient Broadcast (GRAB) [YZLZ05] algorithm. The

algorithm works on a similar principle to Directed Diffusion with a difference that instead

of a tree a forwarding mesh is created and used to deliver data from sensor nodes to the

sink.

The advantage of this approach is its simplicity, its data is current, local space require-

ments are minimal, and static attributes are not required to be collected a priori. The

obvious disadvantage is scalability given the numbers of messages required to collect the

data, possible network congestion, and long response times due to the need to wait for a

reply from every node in the network.

Super-node

This approach assumes there is at least one super-node (usually the base-station) which

has a global knowledge about whole network. This super-node is more powerful than other

nodes and is equipped with bigger storage capabilities. The initiating node forwards

the query to the super-node which finds all nodes fitting the static criteria and reply

back to the initiating node. This approach was adapted by Stern et al. in their SENS-

Join [SBB09] and Continuous Join Filtering [SBB10], where all the static attributes are

collected at the base-station. When a request is submitted to the base-station, it is able

to find the list of all the nodes that fulfil given static criteria. The request is then routed

towards the correct nodes via a routing tree.

The advantage of this approach is lower message footprint when compared to flooding

the network. However, the number of messages required to retrieve the result depends

on the distance between the super-node and the base-station. The disadvantage of this

approach is that data from the whole network needs to be collected at the super-node

before it can be queried. Additionally, this node represents not only a single point of

failure, but also a congestion point because the load is not distributed throughout the

network but is forwarded towards one node or very few ones.

4.1. Introduction & Related Work 59

This category also includes approaches which ship all static attributes into a cloud. If a

node needs to find all nodes with given static attributes it requests data from the cloud via

a base-station. Users outside the WSN can send a request directly to the cloud, without

relying on the base-station.

Hashing

In this case by “hashing” we mean any type of function or process (e.g. election) which

leads to a mapping of a particular value to a particular node. For example, a column in

a table is translated to a geographical coordinate. Then a node which is closest to given

geographical coordinate stores given table column, e.g. a column storing pipe ID. In case

a node needs to find all nodes deployed on given pipe, it sends a request to this particular

node and the node replies with the result. We refer to the node which initiates the search

as the requesting node.

The approaches described below were designed to distribute sensed values in a network

in such a way that a node can discover these sensed values without flooding the whole

network. Even though these approaches are used to periodically distribute newly sensed

values within the network, the same approach could be used to distribute information

about static attributes and allow any node to discover them. These approaches could be

categorised into three groups: i) hierarchical cluster-based approaches ii) geometrical

approaches, and iii) hash-based approaches [CD13].

The first group of approaches is based on hierarchical clustering. Demirbas and Fer-

hatosmanoglu proposed Peer-to-Peer (PP) [DF03] algorithm which creates cluster over

rectangle-shaped regions. Cluster heads for each region aggregate attributes from all the

nodes within the region. If a region exceeds a predefined threshold the cluster-head splits

the cluster into new clusters. The requesting node first searches within the same region. If

the request is not satisfied, it is propagated upward to search a larger part of the network.

Distance-Sensitive Information Brokerage (DSIB) [FGNW06] proposed by Gibbons et al.

also falls in the same category. DSIB uses a hash function to choose a node, referred

as the information server, on which the data are stored. The querying node visits all

60 Chapter 4. Distributed Static Attribute Table

information server in the hierarchy until the request is satisfied.

Demirbas and Lu proposed Distributed Quad-Tree (DQT) [DL07] which splits the network

area into grid cells. One grid cell may contain several sensor nodes which share the same

data. The cells are organised in a quad-tree hierarchy where four lower-level cells form

a higher-level cell. A request submitted by a requesting node is routed towards a higher

level cluster-heads until the request is satisfied.

The second group of approaches use geometrical shapes to distribute data and to answer

requests. Liu et al. proposed Combs, Needles, Haystacks [LHZ04] algorithm designed for

networks with a regular grid topology. Each node broadcasts its attributes to a certain

neighbourhood vertically. The shape formed by the nodes storing this attribute remind a

shape of a needle. The size of the needle is tunable. The requesting node then propagates

the query first vertically and then horizontally every n nodes. The path taken by the query

reminds a comb. The distance between the teeth of a comb, which are perpendicular to

the needle, depends on the size of the needle in order to ensure that the query and the

needle intersects. A node which receives a request and stores data relevant for the query

reply back to the requesting node.

Alternative approach based on geometrical shapes is an algorithm proposed by Braginsky

and Estrin called Rumor Routing [BE02]. The algorithm is based on a probability of

intersecting two independent paths in a rectangular-shaped network. An attribute is

randomly disseminated into the network. Each node which receives an attribute stores

it locally. A node issues a request which travels randomly for a certain amount of time

through the network. If the request reaches a node which stores an attribute satisfying

the request, the attribute is reported back to the requesting node.

The hash-based approaches is the last group of algorithms which distribute attributes

in the network. The most common one is Geographic Hash Table (GHT) [RKY+02]

proposed by Ratnasamy et al. GHT stores 〈key, value〉 pairs in a distributed way. It uses

a hash function to map a key into a geographic location. A node closest to the geographic

location is chosen as the storage point. GHT relies on GPSR [KK00] routing protocol.

The requesting node sends a request to the node which stores given key. If the key is

4.1. Introduction & Related Work 61

very popular a node storing values for given key may become overloaded. In this case

the hash function produces a list of geographic locations. A node sends the value to the

closest geographic location. However, the requesting node has to send the request to all

of geographic locations from the list.

Greenstein et al. proposed A Distributed Index for Features in Sensor Networks (DIFS)

[GRS+03] algorithm which extends the GHT algorithm with a support for range operators.

DIFS has a similar organisation to quad-trees with a difference that one child node points

to several parents. At each level of the tree a node stores values for a larger part of the

network. When a range request is submitted, DIFS can forward the request to a minimum

set of points covering given range. Bottlenecks in DIFS are solved by replicating nodes

to several locations and expanding number of parent nodes.

A disadvantage of the aforementioned algorithms is that if a node is not capable of storing

whole column of the table, i.e. all association between node ID and pipe ID, several hash

functions are used, each of which results into a different geographical coordinate. The

table column is then split amongst several nodes. However, in this case, the initiating

node has to request data from all nodes storing this information. Similarly, if a node’s

search is based on several attributes, the initiating node has to send a request to all

nodes storing all required attributes which may result in large network traffic. Another

disadvantage of this approach is that the hash function in its essence is random, therefore

the nodes storing information are chosen randomly and their proximity to other nodes is

not taken into consideration. Additional network traffic is generated by distributing static

attributes throughout the network before the network can be queries. Last, as we have

mentioned in Section 3.1.2, geographic routing has several disadvantages, e.g. it is not

able to route in network with routing voids and it requires a node to know its geographic

location, which is not always possible.

Approaches which do not rely on hash functions and geographical coordinates, e.g. Peer-

to-Peer, Rumor Routing, or Combs, Needles, Haystacks are limited for grid topologies

only. These approaches cannot operate on uniform or random topologies.

62 Chapter 4. Distributed Static Attribute Table

Summaries

With summaries every node stores a summary of one or more attributes for a certain

part of the network. Usually summaries are used in a tree structure where each node

stores a summary of attributes for all nodes in a sub-tree rooted in given node. What

type of summary is used is determined by a developer and it depends on the static

attribute and expected types of queries. Amongst most common types of summaries

belong Bloom filters [Blo70], histograms, or R-Trees. Sometimes a node stores several

different summaries for the same attribute, e.g. Bloom filter and histogram. The reason

is that each summary better serves different type of queries, e.g. Bloom filters better

fit queries with equality operators while histograms better serve range queries. When

a node receives a query it first checks the summaries stored locally. The node decides

whether there is any node in the sub-tree rooted in the node which fits the static criteria

of the query. If so, the query is propagated down the tree, otherwise it is discarded. The

search space can be further lowered by storing a separate summary for each direct child

in the sub-tree. However, storing more summaries means larger memory requirements,

especially if several summaries are stored for each attribute. Memory requirements are

closely connected with the fidelity of the summaries. The more memory is dedicated for

a summary, the more precise it could be and provide user with lower number of false

positives.

An example of this approach can be seen in the work of Mihaylov et al. who proposed

the Innet algorithm [MJIG08, MJIG10] or Madden et al. who proposed TinyDB. These

algorithms build a summary tree, where each node holds a summary of a static attribute

for all the nodes in a sub-tree rooted in given node.

A disadvantage of this approach is the fact that the search has to originate at the root of

the summary tree. Therefore a query submitted to a node in the network has to travel

up the tree to the root node and then be propagated down the tree. This fact contributes

to a rather high time delays. Additionally, the root represents a single point of failure

in the network. These two disadvantages, i.e. the search delay and the single point of

failure, can be mitigated by building several summary trees, each rooted in a different

4.1. Introduction & Related Work 63

part of the network. However, this comes at the cost of even higher memory requirements.

This approach was adopted by Innet framework which uses Bloom filters, histograms, and

R-Trees to store summary of attributes for each child in three separate summary trees.

Apart from large memory requirements the summary approach also suffers from long and

expensive bootstrapping, i.e. it takes long time and exchange of a lot of messages to create

summary trees. Summaries could be collected only after a tree is formed. Additionally, as

each new root of a tree is chosen to be furthest away from all other previous roots of other

summary trees, these summary trees cannot be built in parallel. It is also important to

note that the tree structure remains the same and children cannot choose a new parent

if the link quality decreases as it would require to rebuild all the summaries. Last, it is

also not possible to remove a node’s static attribute from a summary.

Store locally

The most convenient solution would be to store all static attributes about all nodes in the

network, i.e. the whole static attribute table on every node. In this case each node can

easily find all relevant nodes without communicating with any other node. However, the

obvious disadvantage are very large memory requirements and the need to disseminate

static attributes of every node to every other node. To the best of our knowledge, there

is no system applying this strategy to store information about static attributes. The

probable reason is the memory constraints of a typical WSN node. For example, memory

size of MicaZ node is 4KB only [Croa].

Here we have described most common approaches for allowing any node in a network to identify

a set of nodes with given static criteria. Each of the aforementioned approach imposed different

requirements on memory, number of messages required to fetch the result and bootstrap. In

the rest of this chapter we propose a new approach to distributing static attributes information

about every node throughout the network.

64 Chapter 4. Distributed Static Attribute Table

4.2 Distributed Static Attribute Table

Our design takes a form of the last approach described in the Introduction above, i.e. it stores

all static attributes locally. We prefer storing real values to storing summaries as with the real

data a node can instantly find out which node fulfils given static criteria and which does not.

As we assume that the static attributes will not change throughout the lifetime of the network

we can assume that the higher cost of bootstrapping will be easily overcome by savings made

during the lifetime of the network as we assume that searching for other nodes with given static

attributes will be a common type of query submitted by users, nodes, or actuators.

However, because WSN nodes are very limited in terms of memory, fitting the whole table of

static attributes on a single node may not be possible. Due to this limited memory, we took

an inspiration from traditional databases where large tables are horizontally partitioned, i.e.

the table is split amongst several computers where each computer holds one part of the table.

In case a user wants to execute a query on such partitioned table, the query is sent to every

computer holding a part of the table. Each node replies with a partial result and the final result

is composed on the computer which issued the query. Similarly to this partitioning design we

split the static attributes table into n equally sized parts and each node needs to store only one

part which could easily fit into the node’s memory. We refer to this distributed table as the

Distributed Static Attribute Table (DSAT).

Similarly to the design of distributed tables in traditional distributed databases, when a node

receives a query instructing it to find all nodes which have a static attribute equal to x, the

node first looks at its local DSAT and then forwards the query to p−1 nodes which contain the

rest of the table. These nodes search in their local copy of the table and reply with the result

only. So, if a node wants to search the whole table it has to send at least p − 1 messages and

receive p−1 replies, assuming that the nodes containing the rest of the table are its neighbours.

DSAT introduces two challenges: i) into how many parts should the table be split and ii) how

to distribute the parts amongst the nodes. The first challenge could be solved rather easily:

we compute the size of the whole table in bytes and divide it by the size of the memory we are

4.2. Distributed Static Attribute Table 65

willing to dedicate for storing static attributes. Each node will store one part of the DSAT,

provided the network is homogeneous. If the network is heterogeneous, i.e. some nodes are

more powerful and have a larger memory, one node may store several parts of the DSAT. We

assume that the developer knows how big the DSAT could be and how much memory each node

can dedicate to storing part of the DSAT. Similar decision must be also done in case hashing

or summaries are used to store static attributes.

However, the second challenge is much harder to tackle. In the case of distributed databases,

the system is not concerned with which computers store the distributed table because the cost

of communication within the same network is uniform. Also, if data replication is not used,

each computer stores a different part of the distributed table. On the other hand, in the case

of a WSN, nodes communicate in a multi-hop manner. Therefore the cost of communication

depends on the number of hops between the endpoints. Here the objective is to assign parts

of the table in such a way that if any node in the network wants to search the whole table it

ought to send the minimum number of messages. Because we assume that the DSAT will not

change during the lifetime of the network we allow more than one node to store the same part

of the DSAT, i.e. the parts are replicated throughout the network.

In terms of communication we can define the lower bound of number of messages a node has

to send in order to search in the whole DSAT. Let the DSAT be split into p parts, N be the

number of nodes in the network, and Di = {d0, d1, . . . , dN−1} be the vector of distances to all

nodes from node ni ordered ascending order. The minimum cost c in terms of the number of

messages a node ni has to send is defined as:

cmin
i =

p−1∑
j=0

dj (4.1)

In other words, it is the sum of distances to p− 1 closest nodes. However, this can be achieved

only if each of the p− 1 closest nodes store a different part of the DSAT.

If we think about each part as a colour, the objective of assigning DSAT parts to nodes is similar

to a graph colouring problem with two main differences: i) a node can have a neighbour with

66 Chapter 4. Distributed Static Attribute Table

the same colour and ii) each node wants to reach all other colours with minimum number of

hops.

So how can we assign DSAT parts to nodes in such a way that we minimise average ci of the

whole network? Let partId ∈ {0, . . . , p − 1} be the ID of a DSAT part a node is storing.

Then the objective of the distributed algorithm is to find a mapping f between nodeId and

partId, i.e. f(nodeId)→ partId. The simplest solution is to use a hash function which assigns

partId to a node randomly. However, this approach does not take the locality of the nodes into

consideration. In order to evaluate proximity of the parts to a node we define the following

metric. The real normalised cost c of a node ni to perform a search in the DSAT is defined as:

ci =
1

p

p−1∑
j=0

dij (4.2)

where dij is the number of hops from node i to a node which holds part j of the DSAT. For

example, if the DSAT is split into 4 parts and a node’s neighbours hold different parts of the

DSAT the node has to send 3 messages in order to retrieve the whole DSAT (it does not need to

send a message to retrieve the part which is stored on the node), therefore the normalised cost

will be c = 3/4. On the other hand, if a node has only 2 neighbours the minimum number of

messages the node has to send is 4 (one part is at least 2 hops away), therefore the normalised

cost will be c = 4/4. Because we want to minimise number of messages in the whole network,

the normalised cost C of the whole network is:

C =
1

N

N∑
i=0

ci (4.3)

where N is the number of all nodes in the network.

To minimise the overall cost we propose the following distributed algorithm described in Algo-

rithm 7. The objective of this algorithm is not only to choose the partId but also to discover

closest nodes which store the rest of the DSAT. This information is stored in the dsat variable

which contains association between partId and nodeId, i.e. the node which stores given part

4.2. Distributed Static Attribute Table 67

Algorithm 7 Distributed Static Attribute Table

Preamble: on receiving a message of type DSAT Association do execute ReceiveDSATAs-
sociation procedure

1: procedure ReceiveDSATAssociation(packet, senderId)
2: receivedDSAT ← packet.dsat
3: update dsat with data from receivedDSAT
4: if message of type DSAT Association was received for the first time then
5: set timer with a random timeout
6: end if
7: if dsat was updated then
8: packet.dsat← dsat
9: Broadcast(packet)

10: end if
11: end procedure

Preamble: on expiration of the timer set by ReceiveDSATAssociation procedure (line 5)
do execute DSATTimerExpires

12: procedure DSATTimerExpires
13: partId← choose part which was chosen least times by neighbours or is furthest away
14: insert chosen partId into dsat
15: packet.dsat← dsat
16: Broadcast(packet)
17: end procedure

of the DSAT. Variable dsat is an array of size p where the index is partId and the value is a

list of IDs of k closest nodes storing given partId.

The algorithm is initiated by a single node, which is chosen randomly, or in the case of a large

network, several nodes may initiate the algorithm simultaneously. The initiating node calls

DSATTimerExpires function in which the node chooses its partId randomly and broadcast

this information to all neighbours. Upon receiving a broadcast message a node updates its

dsat variable which stores k closest nodes for each part of the DSAT. The distance to a node

is retrieved from the routing table. If a node receives the DSAT association message for the

first time it chooses a random delay, after which it will choose its own partId. Which partId

the node chooses depends on the current state of the dsat variable. First, the node chooses

the part which has not been chosen by any other node. Otherwise, it decides using one of two

techniques: i) the node chooses the partId which has been chosen by a node furthest away or

ii) the node chooses the partId which has been chosen by least number of neighbours. Ties are

68 Chapter 4. Distributed Static Attribute Table

resolved by choosing the partId randomly. We evaluate both techniques and show under what

conditions is one superior to the other.

The whole process is demonstrated in Figure 4.1. In this scenario the node uses the first

technique, i.e. node chooses the partId which is chosen by a node furthest away. The parameter

k = 1, i.e. each node stores only one closest node for each part of the DSAT. The node which

runs DSATTimerExpires function is depicted in red colour, while the node depicted in green

shows a node which re-broadcast its updated dsat (line 9. In the table summarising all dsat

variables, the node shown in green is the node which has already chosen its partId, while the

value shown in red represent an updated value, i.e. part that will be re-broadcast in the next

epoch.

The process is initiated by node n1 which, in this case, randomly chooses part 3 and broadcasts

this information. The message from from node n1 is received by its neighbour nodes n2 and

n3, both of which starts a timer with a random delay (Fig. 4.1a). Timer at node n3 expires

sooner and the node chooses to store part 2. This information is broadcast to all neighbours

(Fig. 4.1b). There are two cases in which the dsat variable is updated: i) the node chooses

which part of DSAT it will store or ii) the node receives information that a part of DSAT is

stored on a closer node than the currently discovered one. If the dsat variable is updated the

node re-broadcast it.

4.3 Static Attribute Propagation

Static Attribute (SA) which describe each node in the network are stored in the DSAT. How

a node decides which part of DSAT it will store was shown in the previous section. Now, the

DSAT has to be filled in with actual SA of each node. Theoretically, in order to propagate each

node’s list of SA to every other node, each node has to broadcast the list of every other node,

leading to exchange of N2 messages, where N is the size of the network.

However, this number could be significantly reduced using algorithm described in Algorithm 8.

Prior to starting the algorithm each node learns a list of common neighbours with every other

4.3. Static Attribute Propagation 69

n1n1

n2 n3

n4 n5 n6

n7 n8

n9 n10

Node Part1 Part2 Part3 Part4
1 1

2 1

3 1

4

5

6

7

8

9

10

(a) The process is initiated by n1.

n1

n2 n3n3

n4 n5 n6

n7 n8

n9 n10

Node Part1 Part2 Part3 Part4
1 3 1

2 1

3 3 1

4

5 3 1

6 3 1

7

8

9

10

(b) Timer expires at node n3.

n1

n2 n3

n4 n5 n6n6

n7 n8

n9 n10

Node Part1 Part2 Part3 Part4
1 3 1

2 3 1

3 3 6 1

4

5 3 1

6 3 6 1

7

8 3 6 1

9

10

(c) Timer expires at node n6. Node n1 re-broadcast its dsat as it was updated in previous epoch.

Figure 4.1: Assigning parts to nodes in the DSAT. Part 1/3

70 Chapter 4. Distributed Static Attribute Table

n1

n2n2 n3n3

n4 n5 n6

n7 n8n8

n9 n10

Node Part1 Part2 Part3 Part4
1 3 2 1

2 3 2 1

3 3 6 1

4 3 2 1

5 3 2 1 8

6 3 6 1 8

7 3 6 1 8

8 3 6 1 8

9

10 3 6 1 8

(d) Timer expires at nodes n2 and n8. Node n3 re-broadcast its updated dsat.

n1n1

n2 n3

n4n4 n5n5 n6n6

n7n7 n8

n9 n10n10

Node Part1 Part2 Part3 Part4
1 3 2 1

2 3 2 1 4

3 3 6 1 8

4 3 2 1 4

5 3 2 1 8

6 3 6 1 8

7 3 6 1 8

8 3 6 10 8

9 3 6 1 8

10 3 6 10 8

(e) Timer expires at node n4 and n10. Nodes n1, n5, n6, and n7 re-broadcast their updated dsat.
Almost every node has its dsat full.

n1

n2n2 n3n3

n4 n5n5 n6

n7 n8n8

n9n9 n10

Node Part1 Part2 Part3 Part4
1 3 2 1 4

2 3 2 1 4

3 3 6 1 8

4 3 2 1 4

5 3 2 5 8

6 3 6 1 8

7 3 9 5 8

8 3 6 10 8

9 3 9 1 8

10 3 6 10 8

(f) Timer expires at node n5 and n9. Nodes n2, n3, and n8 re-broadcast their updated dsat.

Figure 4.1: Assigning parts to nodes in the DSAT. Part 2/3

4.3. Static Attribute Propagation 71

n1n1

n2 n3

n4 n5 n6

n7n7 n8

n9 n10

Node Part1 Part2 Part3 Part4
1 3 2 1 4

2 3 2 1 4

3 3 6 1 8

4 7 2 1 4

5 3 2 5 8

6 3 6 1 8

7 7 9 5 8

8 7 6 10 8

9 7 9 1 8

10 3 6 10 8

(g) The last node to choose its part is node n7. After node n1 re-broadcast its dsat the process is
finished.

Figure 4.1: Assigning parts to nodes in the DSAT. Part 3/3

neighbour. When a receiving node nr receives a list of static attributes sa from a sending node

ns for the first time (line 3), nr stores sa in a buffer. Along with sa two additional pieces of

information are stored: ln - a list of neighbours (of nr) and a timer with a random timeout

after which the nr will broadcast the received sa. Now, we can assume that all ns’s neighbours

have also received the sa, so we can remove ns and all common neighbours with ns from the

ln (line 13). If nr has already received the sa before, nr just removes ns and all ns’s common

neighbours from the ln.

Once a random timeout has expired, nr is ready to broadcast the sa using the function Stat-

icAttributeTimerExpires. Prior to broadcasting, the node checks the ln (line 16). If the

ln is empty, i.e. all node’s neighbours have received the sa from other nodes, the node removes

the sa from the buffer without broadcasting the sa. If the ln is not empty the node broadcasts

the sa (line 18). The timeout is chosen randomly in order to avoid all nodes broadcasting at

the same time.

The principle of how the algorithm disseminates static attributes of node n1 in the network is

demonstrated in Figure 4.2. Nodes depicted in red colour are the nodes which broadcast static

attributes to their neighbours. The nodes depicted in green are the nodes which received node’s

n1 static attributes but they did not broadcast this information further as at the time when

72 Chapter 4. Distributed Static Attribute Table

Algorithm 8 Static Attribute Propagation

Preamble: on receiving a message of type Static Attribute do execute ReceiveStaticAt-
tribute procedure

1: procedure ReceiveStaticAttribute(packet, senderId)
2: staticAttribute← packet.staticAttribute
3: if staticAttribute is received for the first time then
4: insert staticAttribute into buffer
5: associate timer with a random timeout with staticAttribute
6: associate list of neighbours with staticAttribute
7: if this node stores the part of DSAT to which staticAttribute belongs then
8: insert staticAttribute into DSAT
9: end if

10: else
11: fetch staticAttribute from the buffer
12: end if
13: remove senderId and all common neighbours with the senderId from the list of neigh-

bours associated with staticAttribute
14: end procedure

Preamble: on expiration of the timer associated with a staticAttribute set by ReceiveStat-
icAttribute procedure (line 5) do execute StaticAttributeTimerExpires procedure

15: procedure StaticAttributeTimerExpires(staticAttribute)
16: if list of neighbours for staticAttribute is not empty then
17: packet.staticAttribute← staticAttribute
18: Broadcast(packet)
19: end if
20: remove staticAtrribute from buffer
21: end procedure

their timer expired all their neighbours had already received node’s n1 static attributes.

First, node n1 broadcasts its static attributes to all neighbours (Fig. 4.2a). After a random delay,

node n3 broadcasts the static attributes information it received from node n1 (Fig. 4.2b). Next,

timer at node n5 expires and the node broadcasts the attributes (Fig. 4.2c). At this moment,

when the timer expires at nodes n2, n4, or n6, the nodes will not broadcast the attributes, as

all their neighbours have already received this information. Last, the timer expires at node n7

and the node’s n1 static attributes are disseminated in whole network (Fig. 4.2d). As it can be

seen from the figure, only four nodes out of ten were needed to disseminate information to the

whole network.

4.3. Static Attribute Propagation 73

n1n1

n2n2 n3n3

n4 n5n5 n6

n7 n8

n9 n10

(a) Node n1 broadcasts its static attributes to its
neighbours.

n1n1

n2n2 n3n3

n4 n5n5 n6n6

n7 n8n8

n9 n10

(b) Timer at node n3 expired and because not all of
its neighbours have received the message, the node
broadcast the message.

n1n1

n2n2 n3n3

n4n4 n5n5 n6n6

n7n7 n8n8

n9 n10

(c) Timer at node n5 expired and the node broad-
cast the message. If a timer at node n2, n4, or n6

expires, the message will be discarded as all of
their neighbours have received the message.

n1n1

n2n2 n3n3

n4n4 n5n5 n6n6

n7n7 n8n8

n9n9 n10n10

(d) After node n7 broadcast the message all nodes
have received the message and no further commu-
nication is required.

Figure 4.2: Static Attribute Propagation Algorithm. Only four out of ten nodes are needed to
propagate the static attributes of node n1 throughout the network. Nodes shown in red are
the nodes which broadcast the message, nodes in green are the nodes which has received the
message, and the nodes in blue are the nodes which has not received the message, yet.

74 Chapter 4. Distributed Static Attribute Table

The algorithm finishes after a predefined ∆t from the time the node has received last static

attribute update. Next, the node checks whether it has received static attributes about every

node it is supposed to store information about. Each node knows the list of nodes whose static

attributes it should store by combining the information from the routing table and knowing

which part of DSAT the node stores. In our implementation we use a simple modulo function,

i.e. the node ni stores SA of a node nj if and only if

j mod partId = 0 (4.4)

Due to the unreliability of wireless communication it may happen that a node has not received

the list of static attributes for some node nx. In this case static attributes about node nx is

first requested from the nodes storing the same part of DSAT. If these nodes also miss this

information the static attributes are requested directly from node nx.

4.4 Evaluation

In this section we separately evaluate assigning partId to nodes and dissemination of static

attributes throughout the network. Algorithms are evaluated on the platform described in

Chapter 2.

4.4.1 Distributed Static Attribute Table

We evaluate our algorithm using the cost function defined in Equation 4.3. The cost represents

normalised average number of messages any node in the network has to send in order to reach

all nodes storing the DSAT. We compare two versions of our algorithm with a naive random

assigning of parts to nodes.

Unfortunately, we were not able to find an algorithm which can find a “perfect assignment” of

parts to nodes. Because the search space is extremely large: pN , where p is number of parts the

4.4. Evaluation 75

DSAT is split into and N is number of nodes in the network, as a reference point we provide a

“theoretical minimum” which computation is based on Equation 4.1

Cmin =
1

N

N∑
i=0

1

p
cmin
i (4.5)

Cmin is the normalised cost computed by summing of distances to p − 1 closest nodes. We

assume, that in an optimal assignment each node can find the rest of the DSAT on the nearest

p− 1 nodes. However, in reality, such mapping might not be possible.

Figure 4.3 shows results of comparison of two our algorithms with a random assignment and

a theoretical minimum in uniform networks of various densities. The x-axis shows how many

parts the DSAT is split into, while the y-axis shows the normalised overall cost as defined

by Equation 4.3. Even though on average both our algorithms perform very similar (with

an exception of sparse networks) when we look at the results in more detail we can see that

the Maximum Distance version of our algorithm works better in more sparse networks or if

the DSAT is split into more parts. On the other hand, Minimum Neighbour version of our

algorithm performs slightly better in dense networks or if the DSAT is split into fewer parts.

This behaviour could have been expected as in dense networks each node has more neighbours.

In this case the Maximum Distance algorithm has often chosen the parts randomly as many

nodes holding other parts of the DSAT are equally distant. However, the Minimum Neighbour

algorithm in this case takes into account how many neighbours have chosen given part and

chooses the part which was chosen least times.

Table 4.1 summarises the results for uniform topologies, showing minimum, maximum, and

average gain for both versions of algorithm when compared to random assignment. Results are

grouped by network density. It could be seen that the average gain is around 10% while the

maximum gain can be as high as 17%.

Figure 4.4 shows results for random networks of various densities. As it can be seen from

the figure, in random network the Maximum Distance and Minimum Neighbour version of

our algorithm perform very similar. If we take a closer look at the results, similarities with

76 Chapter 4. Distributed Static Attribute Table

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

A
v
g
.
N

u
m

b
e
r

o
f
M

e
s
s
a
g
e
s

DDT Size

Maximum Distance
Minimum Neighbour

Random
Theoretical Optimal

(a) Uniform Dense Network

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

A
v
g

.
N

u
m

b
e

r
o

f
M

e
s
s
a

g
e

s

DDT Size

Maximum Distance
Minimum Neighbour

Random
Theoretical Optimal

(b) Uniform Medium Dense Network

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

A
v
g
.
N

u
m

b
e
r

o
f
M

e
s
s
a
g
e
s

DDT Size

Maximum Distance
Minimum Neighbour

Random
Theoretical Optimal

(c) Uniform Medium Sparse Network

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

A
v
g

.
N

u
m

b
e

r
o

f
M

e
s
s
a

g
e

s

DDT Size

Maximum Distance
Minimum Neighbour

Random
Theoretical Optimal

(d) Uniform Sparse Network

Figure 4.3: Assigning parts of DSAT to nodes in uniform networks.

the uniform results could be seen, however, the differences in performance are much smaller.

Similarly to uniform networks, the Maximum Distance version performs better in more sparse

networks or if the DSAT is split into more parts. The Minimum Neighbour version performs

better in more dense networks or if the DSAT is split into fewer parts. However, the difference

in performance is less than 3%.

The results are summarised in Table 4.2. The average gain is approximately 12% in all but

sparse network. The maximum saving could be as much as 17%.

4.4. Evaluation 77

Table 4.1: Cost comparison of DSAT parts assignment in uniform networks of various densities.

Algorithm Maximum Distance Minimum Neighbour
Topology/Gain Min. Max. Avg. Min. Max. Avg.

Dense 3.9% 14.0% 11.1% 4.1% 15.5% 11.4%
Med. Dense 5.6% 13.6% 10.6% 5.8% 14.5% 11.0%
Med. Sparse 1.8% 15.4% 8.9% 6.0% 15.7% 10.3%
Sparse 0.0% 14.8% 7.7% -5.3% 17.0% 0.3%

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

A
v
g
.
N

u
m

b
e
r

o
f
M

e
s
s
a
g
e
s

DDT Size

Maximum Distance
Minimum Neighbour

Random
Theoretical Optimal

(a) Random Dense Network

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

A
v
g

.
N

u
m

b
e

r
o

f
M

e
s
s
a

g
e

s

DDT Size

Maximum Distance
Minimum Neighbour

Random
Theoretical Optimal

(b) Random Medium Dense Network

 0.5

 1

 1.5

 2

 2.5

 3

4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

A
v
g
.
N

u
m

b
e
r

o
f
M

e
s
s
a

g
e
s

DDT Size

Maximum Distance
Minimum Neighbour

Random
Theoretical Optimal

(c) Random Medium Sparse Network

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

A
v
g

.
N

u
m

b
e

r
o

f
M

e
s
s
a

g
e

s

DDT Size

Maximum Distance
Minimum Neighbour

Random
Theoretical Optimal

(d) Random Sparse Network

Figure 4.4: Assigning parts of DSAT to nodes in random networks.

4.4.2 Static Attribute Propagation

Static Attribute Propagation problem could be seen as a dissemination problem where each

node has to disseminate its static attributes to other nodes in the network. However, there

are several differences between the traditional dissemination problem and the static attribute

78 Chapter 4. Distributed Static Attribute Table

Table 4.2: Cost comparison of DSAT parts assignment in random network of various densities.

Algorithm Maximum Distance Minimum Neighbour
Topology/Gain Min. Max. Avg. Min. Max. Avg.

Dense 5.1% 14.9% 12.3% 5.2% 16.3% 12.5%
Med. Dense 7.1% 16.0% 13.0% 7.1% 17.0% 12.7%
Med. Sparse 4.0% 18.8% 12.2% 6.0% 18.4% 12.3%
Sparse 2.9% 11.8% 5.8% 2.2% 10.1% 4.1%

propagation problem. First, in the case of dissemination usually one node needs to disseminate

certain value to all other nodes while in the case of static attribute propagation problem all

nodes need to disseminate their values to other nodes. Second, the disseminated value has

to reach all nodes, while in case of static attribute propagation the value has to reach only a

subset of nodes, i.e. those nodes which store a certain part of the DSAT. Third, a node cannot

establish by itself whether it has the latest disseminated value, while in case of static attribute

propagation a node can find all missing values locally and request these data from other nodes.

Nevertheless, value dissemination is the closest problem solved in WSNs, therefore we compare

SA propagation algorithm to simple dissemination protocols. Trickle [LPCS04] is the simplest

dissemination protocol where each node upon receiving a disseminated value broadcasts the

value several times, each subsequent broadcast occurs after longer delay from the previous

broadcast. In order to lower the number of messages, in our evaluation each node broadcasts

the message only once.

Other dissemination protocols lower number of messages by overhearing dissemination messages

from neighbours. A node upon receiving a message waits for a random delay. During this delay

the node listens to neighbours and count how many of them broadcast the message. Let x be

the percentage of neighbours that have broadcast the message at time when the random delay

expires. If x > t, where t is a threshold, the node discards the message without broadcasting

it. This approach is similar to our approach with the difference that in our case the node is

aware of which neighbours might or might not have received the message.

In our evaluation we vary the threshold t. The higher the threshold is, the more neighbours

have to broadcast the message before the node decides to discard it. We used the following

4.4. Evaluation 79

set of thresholds: t ∈ {50%, 75%, 100%}. If t = 100% every node broadcast the dissemination

message upon receiving it and therefore it mimics the Trickle algorithm. We have also tried

lower thresholds t ∈ {10%, 25%} but even though they performed rather well in dense networks,

in all other network densities they were not able to converge. Algorithms with such a small

thresholds were able to propagate static attributes within a small part of the network only. The

nodes which have not received the data started to request the missing data directly from the

source nodes which led to extremely high traffic, buffer overflows, causing the whole network

to crash.

In our evaluation we focus on two metrics: i) number of messages sent and ii) time it takes

to propagate all static attributes. While the first metric shows amount of energy spent to

propagate static attributes throughout the network, the latter one shows how long it takes for

the network to converge to the point when every node can start searching in the DSAT.

The results comparing number of sent messages are presented in Figure 4.5a. The results

are grouped by network topology and network densities. As it can be seen from the figure,

Dragon is more energy efficient than all other dissemination algorithms in all but random

sparse networks, where it is slightly (by 4%) outperformed by the Trickle algorithm with t =

50%. As it can be seen the gain in performance of Dragon algorithm is lower as the network

become more sparse. This is understandable as in sparse network there are fewer common

neighbours, therefore, more nodes are required to broadcast a message.

The comparison of Dragon and Trickle algorithm with several different thresholds is sum-

marised in Table 4.3. As it can be seen from the table, Dragon algorithm sends 26 − 59%

less messages in the case of uniform topologies (with an average of 45%) and 11 − 58% less

messages in the case of random topologies (with an average of 37%). Dragon is outperformed

by Trickle algorithm with t = 50% only in the case of random sparse topology and only by 4%.

By looking at the graph we can see an obvious outlier in the case of random medium sparse

networks. The reason lies in the topology of these networks. The networks consist of loosely

connected large clusters of nodes, at it can be seen in Figure 2.7 and 2.8 in Chapter 2. In this

case, with a small threshold it is more likely to happen that static attributes about a node is

80 Chapter 4. Distributed Static Attribute Table

 0

 10000

 20000

 30000

 40000

 50000

 60000

D MD MS S RD RMD RMS RS

A
v
g
.
N

u
m

b
e
r

o
f
M

e
s
s
a
g
e
s

Dragon
Trickle t = 50%
Trickle t = 75%

Trickle t = 100%

(a) Messages count

 0

 200

 400

 600

 800

 1000

 1200

D MD MS S RD RMD RMS RS

A
v
g
.
D

u
ra

ti
o
n
 (

C
y
c
le

s
)

Dragon
Trickle t = 50%
Trickle t = 75%

Trickle t = 100%

(b) Duration

Figure 4.5: Static Attribute propagation

not propagated from one cluster to another, which leads to high traffic once the nodes start to

request static attributes directly from other nodes.

Figure 4.6 demonstrates how the Trickle algorithm with t = 50% may fail to propagate

static attributes from one part of the network to the other. Node n4 has four neighbours:

n1, n2, n3, and n5. After node n4 receives a message from node n1 (Figure 4.6a) it sets up a

timer with a random timeout. Before the timer times out nodes n2 and n3 re-broadcast the

message (Figure 4.6b and 4.6c). Now, when the timer at node n4 times out, the node decides

4.4. Evaluation 81

n1n1 n2n2 n3

n4n4

n5

n6 n7 n8

(a) Node n1 broadcasts its static
attributes. The message is re-
ceived by nodes n2 and n4.

n1n1 n2n2 n3n3

n4n4

n5

n6 n7 n8

(b) Node n2 re-broadcasts the
static attributes. The message is
received by all its neighbours.

n1n1 n2n2 n3n3

n4n4

n5

n6 n7 n8

(c) Node n3 re-broadcasts the
static attributes. At this time
3/4 of n4 neighbours have re-
broadcast the message, there-
fore n4 decides not to re-
broadcast the message. Nodes
n5, n6, n7, and n8 will not receive
static attributes of n1.

Figure 4.6: Problem with static attribute propagation algorithm based on neighbour threshold.

to not re-broadcast the message as three out of four of its neighbours have already broadcast

the message. As a result, nodes n5, n6, n7, and n8 will never receive the message. Therefore,

algorithms based on threshold are more suitable for uniform networks where most of the nodes

are of the same degree.

The next metric we focus our evaluation on is the time it takes for all static attributes of

each node to propagate throughout the network. As it can be seen from Figure 4.5b and the

summary Table 4.4 Dragon algorithm is faster in most of the studied cases by up to 35%.

Dragon is slightly slower in the case of random medium sparse network when compared to

Trickle with threshold t = 75% or t = 100%. Additionally, Dragon is also slower in the case

of a random sparse topology when compared to Trickle with threshold t = 50%. Generally,

we can see the same trend as with the number of messages, i.e. the more dense the network

is the faster Dragon algorithm propagates static attributes. This is understandable as the

fewer messages the network has to send, the faster it reaches the final state. The duration

82 Chapter 4. Distributed Static Attribute Table

Table 4.3: Number of messages comparison of Dragon with Trickle algorithm for static at-
tributes propagation.

Topology Uniform
Density Dense Med. Dense Med. Sparse Sparse

Trickle t = 50% 48.7% 43.3% 29.6% 25.6%
Trickle t = 75% 57.6% 52.8% 41.5% 37.4%
Trickle t = 100% 59.0% 54.5% 43.5% 40.6%
Topology Random
Trickle t = 50% 45.3% 39.4% 55.2% -4.0%
Trickle t = 75% 55.1% 49.7% 26.1% 10.9%
Trickle t = 100% 57.6% 52.6% 30.6% 22.8%

Table 4.4: Time of static attributes propagation comparison of Dragon with Trickle algorithm.

Topology Uniform
Density Dense Med. Dense Med. Sparse Sparse

Trickle t = 50% 23.9% 20.6% 7.7% 1.1%
Trickle t = 75% 33.0% 31.7% 16.3% 7.5%
Trickle t = 100% 34.8% 32.5% 20.7% 8.8%
Topology Random
Trickle t = 50% 8.3% 5.4% 34.7% -4.9%
Trickle t = 75% 17.6% 12.8% -5.6% 5.0%
Trickle t = 100% 21.4% 15.9% -7.4% 9.5%

may only be influenced by the final stage of the algorithm when nodes are requesting missing

data directly from other nodes. This effect can be seen in the case of Trickle algorithm with

threshold t = 50% in random medium sparse network when a lot of nodes were requesting data

from other nodes. This is consistent with the results of the number of sent messages.

4.5 Conclusion

Searching a WSN for nodes by static attributes is a challenging problem. Sensor nodes are

very restricted in terms of memory (with only a few KB of memory) and communication

capabilities (with slow low powered radio). Therefore, the nodes tend to learn only about close

neighbourhood. So far, very little research attention has been paid to the solution to this

problem. Researchers did not find it important to allow any node in the network to search

other nodes by given static attributes. This has been also pointed out by a recent survey on

4.5. Conclusion 83

in-network processing for WSNs [Kan13].

The solutions that have been proposed either rely on a central point with a greater knowledge

of the whole network or the solutions did not take into account locality of the nodes and the

distribution of data was not even. The central point represents a single point of failure. In

case it fails, the whole network become unavailable and will not be able to accept queries. On

the other hand, if data are distributed throughout the network, but the locality of the data is

not taken into consideration, some nodes will have to spend more energy to perform a search

than the others. Additionally, if data are not distributed evenly, hotspots may appear leading

to higher network traffic and sooner battery depletion.

We argue, that this type of communication, when a user instructs a node to find all other nodes

with given static criteria will become very common. Finding all flow sensors on a pipe or all

temperature sensors on a floor are just two types of queries which might become common in

near future. We do not see the network as a separate closed environment but rather open and

interactive. And this type of queries will not be interesting only for users. As more WSNs will

be equipped with actuators, a node sensing an event will want to find all actuators which fulfil

given criteria. A flow sensor detecting a leak will want to send message to a valve on given

pipe, a temperature sensor will want to send a message to a node controlling the HVAC, or a

fire sensor will want to send a message to all sprinklers in given room. These are just a small

set of examples that future WSNs will want to perform.

In this chapter we present Dragon’s sub-system for distributing static attributes throughout

the network. Dragon splits the table holding all static attributes about all the nodes in the

networks into p parts. We refer to this table as the Distributed Static Attribute Table (DSAT).

Each node is assigned to store one part of the DSAT. If a node wants to search in the table, it

has to contact p − 1 nodes which store the rest of the table. How these parts are assigned to

nodes affects how many messages a node has to send in order to retrieve data from the whole

table. We proposed two algorithms for assigning parts to nodes. A node running the Maximum

Distance algorithm chooses the part which is stored by a node furthest away from the node

making the decision. A node running Minimum Neighbour algorithm chooses a part which is

84 Chapter 4. Distributed Static Attribute Table

stored by least number of neighbours. We evaluated both algorithms and compared them to

random assignment of the parts to the nodes. We showed that Dragon can decrease average

number of messages required to search in the DSAT by as much as 18% with an average of

11%.

Once a node decides which part of DSAT it will store, it has to fill the table with static attributes

of other nodes. For this purpose we proposed an algorithm for energy efficient data propagation

in a WSN. Data propagation is based on overhearing broadcast of neighbours and exploiting

the knowledge of the list of common neighbours. We evaluated the algorithm by comparing it

with the Trickle [LPCS04] algorithm and its improved version focused on lowering the network

traffic by overhearing the neighbours. We showed that Dragon lowers the network traffic by

as much as 59% (with an average of 45%) in the case of uniform topologies and as much as

58% (with an average of 37%) in the case of random topologies.

Chapter 5

Snapshot Queries

5.1 Introduction

Currently WSNs are seen as single purpose platforms deployed to serve a limited group of users.

These WSNs either periodically collect data or allow the limited group of users to submit specific

type of queries. These queries are usually not general and the application running in the WSN

support only a limited range of queries. These queries must be submitted through a more

powerful node, i.e. a base-station. The base-station represents a communicating gateway by

making WSN’s capabilities available to outside world while translating users’ requests to the

WSN. The base-station usually uses a long-range communication so the users communicate

with it via the Internet.

In our opinion, this type of traditional WSNs deployments will become obsolete as the WSNs

will become more widespread. There will not be any need to communicate with the WSN via

the Internet but users will interact directly with the notwork, e.g. using smart phones. WSNs

will not be used to perform long-term monitoring tasks but will also support ad-hoc queries

submitted by users, who are interested in current state of the network.

If we relate back to our scenario, an engineer may be interested in current flow readings of all

sensors on a specific pipe. Alternatively, only readings from a specific range of pipe segments

85

86 Chapter 5. Snapshot Queries

might be in the engineer’s interest. The platform should allow any user to submit this type of

ad-hoc queries and be able to response with minimal communication overhead and in timely

manner. The platform should not rely on any central point or any node with a higher knowledge

of the network.

In this chapter we propose such system based on top of Dragon’s routing algorithm and DSAT

introduced in Chapter 3 and 4 respectively. We evaluate Dragon platform using snapshot

(one-time) queries and compare it with a state-of-the-art solution.

5.2 Snapshot Queries

When users are interested in the current state of the network and require the latest readings,

they issue a snapshot query. We define a snapshot query as a query which is executed only

once. The opposite of a snapshot query is a continuous query which is executed repeatedly

many times (possibly indefinitely) at a predefined rate. The following Chapter 6 is dedicated

to continuous queries.

When it comes to optimisation, continuous queries offer many possibilities. The query execution

plan maps operators to specific nodes in the network with the aim to minimise the network

traffic. However, finding the optimal placement for given operator requires time and network

communication. This communication is negligible from the long-term perspective of executing

the continuous query. However, in the case of a snapshot query, this optimisation could easily

outweigh possible savings many times. Therefore, when a snapshot query is executed, the focus

is on identifying the nodes which can contribute to the query and requesting data from these

nodes with a minimal overhead.

We assume that the nodes which contribute to the query could be identified using static at-

tributes only. We do not support searching by dynamic attributes as it would require flooding

the whole network. We could say that snapshot queries test Dragon’s ability to quickly and

correctly identify all the nodes satisfying the query using the DSAT. Additionally, Dragon’s

5.2. Snapshot Queries 87

ability to request data directly from the source nodes test its routing sub-system based on

routing tables and implicit acknowledgement.

An alternative to using the DSAT are approaches based on summaries. A summary like Bloom

filter [Blo70] or a histogram can point the search towards the parts of the network which contain

nodes that fulfil given static requirements. Nodes in the network form a tree structure where

each node holds a summary for the sub-tree rooted in given node.

Searching for nodes with given static attributes based on summary trees is depicted in Fig-

ure 5.1. The search is initiated by a user using a cell phone and connecting to any node, in this

case node n9 (Figure 5.1a). The user sends a request which contains a list of static criteria,

e.g. pipe id = 25. In the figure, nodes which fulfil given static criteria are diamond shaped

(n2, n7, n8). The request is forwarded up the tree until it reaches the root of the summary

tree. Every node which receives a request checks the locally stored summary to find if there is

any node in the sub-tree rooted in a given node which fulfils given static criteria. If there is,

the request is forwarded in the given direction. This could be seen in Figure 5.1c where node

n1 forwards the request to node n4 as well as towards the root. Similarly, in Figure 5.1d the

root node n0 forwards the request to node n2. In order to avoid loops, the request which is

forwarded downwards cannot be forwarded upwards again.

Once a node which fulfils given static criteria receives the request it replies back to the initi-

ating node by reversing the path the request was routed through. It is possible because each

forwarding node includes itself into the path vector which is a part of the request. This could

be seen in Figure 5.1e where nodes n7 and n2 reply back to the initiating node n9. Similarly,

in Figure 5.1g node n8 replies to the initiating node after the request was received.

There are several aspects which affect the memory requirements, the speed of the search, and

the amount of traffic generated during the search for the nodes. Below we will describe these

in more detail and how they affect the discovery process:

Number of summary trees

An approach based on summaries may rely on one summary tree or on several summary

88 Chapter 5. Snapshot Queries

n0

n1 n2

n3 n4

n5

n6 n7

n8

n9n9
n10

(a) The search is initialised by an engineer via a
cellphone. The request is routed up the tree.

n0

n1 n2

n3 n4

n5

n6n6 n7

n8

n9
n10

(b) Node n6 cannot find in its summaries any node
fulfilling the static criteria. The request is routed
up the tree towards the root.

n0

n1n1 n2

n3 n4

n5

n6 n7

n8

n9
n10

(c) Node n1 found in its summary for its child
n4 a node which fulfils given static criteria. The
request is forwarded to node n4 and towards the
root.

n0n0

n1 n2

n3 n4n4

n5

n6 n7

n8

n9
n10

(d) Node n4 found in its summary for the child n7 a
node which fulfils given static criteria. The request
is forwarded to node n7. The request reached the
root node n0. Summary for the child n2 contains
a node which fulfils static criteria. The request is
forwarded to node n2.

Figure 5.1: Search in tree summaries - Part 1/2. The search request (dashed line) for nodes
with given static criteria is routed up the routing tree. If a node has a summary which fulfils the
static criteria, the request is routed down the routing tree in given direction. Nodes fulfilling
static criteria are diamond shaped. If such a node receives a request it replies via the same
path as the request travelled (dotted line).

trees. If the platform uses only one summary tree, the tree is rooted at the base-station.

This approach resembles the approach used in SENS-Join [SBB09] where a summary tree

is used to route the query to relevant nodes. Alternatively, the platform may rely on more

summary trees, with each tree rooted in a different part of the network. This approach is

used in the Innet [MJIG10] platform which relies on three summary trees. Storing several

summary trees has an advantage of finding the relevant nodes faster as the search is done

5.2. Snapshot Queries 89

n0

n1 n2n2

n3 n4

n5

n6 n7n7

n8

n9
n10

(e) Nodes n2 and n7 fulfil static criteria and send
a reply (dotted line) to the initiating node. The
reply follows the same path as the request.

n0

n1 n2

n3 n4

n5n5

n6 n7

n8

n9
n10

(f) Summary for the child n8 fulfils the static cri-
teria. The request is forwarded to this node.

n0

n1 n2

n3 n4

n5

n6 n7

n8n8

n9
n10

(g) Node n8 fulfils the static criteria. The reply is
sent via the same nodes as the request. Request is
not forwarded as node n8 is the leaf node.

Figure 5.1: Search in tree summaries - Part 2/2. The search request (dashed line) for nodes
with given static criteria is routed up the routing tree. If a node has a summary which fulfils the
static criteria, the request is routed down the routing tree in given direction. Nodes fulfilling
static criteria are diamond shaped. If such a node receives a request it replies via the same
path as the request travelled (dotted line).

over several trees in parallel. However, this comes at the expense of higher network traffic

as three different searches are executed. Additionally, storing multiple summary trees

require more memory, which is very precious in WSN nodes.

In Figure 5.1 only one summary tree is used. If the second summary was rooted in node

n9 the search for the nodes with given static attributes would be faster in the second tree

as the request would have to be forwarded only downwards. It is important to note, that

requests in each summary tree are routed independently.

90 Chapter 5. Snapshot Queries

Summary types

There are many different types of summaries, and each has its pros and cons. They

differ by memory requirements, supported operations (e.g. Bloom filter does not support

removing a value from the summary), precision of the summary (which is correlated with

memory requirements), etc. The summary type also affects what kind of queries the

platform can support. For example, Bloom filters [Blo70] can only check whether a given

value is or is not in the filter (with given probability). Therefore, Bloom filters are suitable

for queries based on equality operator. On the other hand, histograms can also answer

range queries with inequality operator. Therefore, some platforms store several different

summaries for the same static attribute.

Summary size

Summary size directly influences how many false positives a given summary will produce.

With more memory dedicated to the Bloom filter or histogram it is possible to make them

more fine grained and therefore point the search in correct direction.

In Figure 5.1c node n1 forwards the request to node n4 but not to node n3. If the Bloom

filter summary used for the sub-tree routed in node n3 was very small, it could lead to a

false positive and node n1 would forward the request to node n3, too.

Number of nodes in the summary

A summary may store static attributes of all the nodes in the sub-tree, or a separate

summary could be held for each of the node’s child. Storing one summary per a child

leads to lower traffic during the search, as the search could be pushed into correct direction.

However, this comes at the expense of higher memory requirements, especially if the node

has many children, has to store a lot of summaries, or both.

This could be demonstrated in Figure 5.1c where node n1 can store one summary for

all the nodes in the sub-tree rooted in itself or for each child separately. If there is a

summary for each child, the request is sent only to node n4 as in its sub-tree there is a

node which fulfils static criteria. However, if only one summary is used for all children,

then node n1 has to forward the request to n3 and n4 as it cannot determine which node

5.3. Evaluation 91

is on the correct path to the nodes fulfilling the static criteria. Node n1 does not forward

the request to node n6 as the request was received from this node. Should the request

arrive from node n0 then all three children nodes would have received the request.

In the next section we evaluate Dragon and we compare it to platforms based on summaries.

These platforms have been chosen as they represent state-of-the-art algorithms for WSNs and

they support search in the network without one orchestration super-node.

5.3 Evaluation

We evaluate Dragon’s ability to find a list of nodes with certain static attributes and request

data from them with low network overhead. We compare Dragon to approaches based on

summaries. We study the influence of number of summary trees on the network traffic as well

as the number of summaries hold by each node. Particularly, we evaluate the network traffic

in a platform with one and three summary trees (in the figures and tables marked as “1T”

and “3T” respectively). Each node in a tree holds either one summary for the whole sub-tree

rooted in given node (referred to as “tree summary” (TS)) or the node holds one summary for

each child (referred to as “child summary” (CHS)).

Number of trees and number of summaries have a large impact on the memory requirements.

In our evaluation, we assigned six static attributes to every node in the network: id - a unique

identifier, x - a random uniformly distributed variable, x ∈ (0, 10), y - an exponential variable

with λ = 0.05, z - an exponential variable with λ = 0.1, and coordx, coordy - virtual coordinates

of the node. In the case of Dragon , static attributes are stored in the DSAT split into 10

parts, i.e. every node stores information about 25 nodes. In the case of summaries, attributes

id, x, y, z are stored using both, Bloom filters and count histograms, while coordx, coordy are

stored using an R-Tree. Using both the Bloom filter and count histogram summary allows

nodes to answer both, equality queries as well as range queries. For each summary 16 bytes of

memory is allocated. If we assume, that a node has six children on average then the cost to to

store all summaries could be computed as:

92 Chapter 5. Snapshot Queries

c = trees× children× summaries× summary length (5.1)

c1TCHS = 1× 6× 9× 16 = 864B (5.2)

c3TCHS = 3× 6× 9× 16 = 2592B (5.3)

c1TTS = 1× 1× 9× 16 = 144B (5.4)

c3TTS = 3× 1× 9× 16 = 432B (5.5)

In the case of Dragon we distinguish between the memory required to store one part of the

DSAT and to store the routing table:

cDSAT = 6 static attributes× 25 attributes per part = 150B (5.6)

cRT = 250 number of nodes× 2 destination and distance + 6 neighbours

= 506B (5.7)

cDragon = cDSAT + cRT = 150 + 506 = 556B (5.8)

We evaluate Dragon abilities to answer snapshot queries by executing two queries based on

our scenario. In the first case, an engineer wants to retrieve a minimum, a maximum, and an

average flow from sensors on the specific pipe. We assume that every node on that pipe has

a flow sensor and can provide queried for a flow dynamic attribute. This can be achieved by

issuing a query similar to the following one:

Query 1:

SELECT MIN(S.flow), MAX(S.flow), AVG(S.flow) FROM Sensors S WHERE S.x = @val

where @val is a random number.

In our evaluation we focus on two metrics: i) the number of messages sent and ii) the time it

takes to receive the result. The results for the Query 1 are presented in Figure 5.2. Because

5.3. Evaluation 93

Table 5.1: Number of messages comparison of Dragon with algorithms based on summaries
for Query 1.

Topology Uniform
Density Dense Med. Dense Med. Sparse Sparse

1T CHS 83.2% 79.8% 83.4% 87.6%
1T TS 85.5% 82.6% 84.5% 88.5%
3T CHS 82.6% 81.8% 80.4% 83.3%
3T TS 87.9% 87.3% 85.4% 87.0%
Topology Random
1T CHS 78.9% 72.4% 82.8% 77.9%
1T TS 82.4% 76.1% 83.8% 79.7%
3T CHS 79.2% 77.7% 82.6% 78.9%
3T TS 86.9% 85.2% 85.1% 84.5%

Query 1 uses equality operator, the algorithms based on summaries use Bloom filters to direct

the search to the correct parts of the network. The query resulted into requesting data from

3 − 11 nodes, depending on the network. Because static attributes were generated for each

network randomly, it is important to note that the results are comparable only between different

approaches within the same network, not between different network topologies or densities.

As it can be seen from Figure 5.2a (and the summary in Table 5.1) Dragon significantly

outperforms all other approaches based on summaries, in terms of network traffic. Dragon

can decrease the network traffic by as much as 88% with an average over 80%, depending on

the network density and the approach the Dragon is compared with. Surprisingly, there is

no much difference between algorithms using various numbers of trees and various numbers of

summaries. This fact suggests that the Bloom filter is effective in finding correct source nodes

and there are very few false positives.

The comparison of the time it took for the initiating node to retrieve the result from the

network is depicted in Figure 5.2b and summarised in Table 5.2. Similarly to the network

traffic, Dragon greatly outperforms other approaches in terms of response time. The response

to the query could be as much as 84% faster, with an average of 64%. The network response

time is very important in actuation networks where a node should act as soon as possible to

the detected event.

After the engineer received the results they may want to check the average flow only on segments

94 Chapter 5. Snapshot Queries

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

D MD MS S RD RMD RMS RS

A
v
g
.
N

u
m

b
e
r

o
f
M

e
s
s
a
g
e
s

Dragon
1T CHS

1T TS
3T CHS

3T TS

(a) Messages count

 0

 50

 100

 150

 200

 250

 300

D MD MS S RD RMD RMS RS

A
v
g
.
D

u
ra

ti
o
n
 (

C
y
c
le

s
)

Dragon
1T CHS

1T TS
3T CHS

3T TS

(b) Duration

Figure 5.2: Network traffic and execution time comparison of Dragon to other approaches
based on tree summaries for Query 1.

from their current position downstream. In order to do that a query similar to the following

one may be submitted:

Query 2:

SELECT AVG(S.flow) FROM Sensor S WHERE S.z > @val

where @val is a random number.

The query finds all flow sensors whose z attribute is higher than given value @val. In the

5.3. Evaluation 95

Table 5.2: Time comparison of Dragon with algorithms based on summaries for Query 1.

Topology Uniform
Density Dense Med. Dense Med. Sparse Sparse

1T CHS 69.7% 66.6% 75.8% 83.3%
1T TS 70.5% 66.1% 75.2% 83.5%
3T CHS 58.7% 53.7% 53.6% 59.1%
3T TS 60.5% 54.3% 53.0% 60.6%
Topology Random
1T CHS 62.0% 61.9% 75.3% 66.9%
1T TS 60.9% 60.1% 75.6% 67.3%
3T CHS 48.5% 52.3% 69.1% 59.9%
3T TS 51.0% 52.5% 69.2% 61.8%

case of Dragon there is no difference whether the equality or inequality operator is used as it

operates over raw data stored in the DSAT. Dragon is influenced only by number of parts the

DSAT is split into. However, in the case of summaries, the situation is different. Bloom filters

cannot be used as they can only check whether given value was or was not added previously to

the filter. Therefore, for this query the count histogram is used as it can identify whether in

given sub-tree there are any nodes with an attribute larger than given value.

The results for the Query 2 are shown in Figure 5.3. This query results into requesting data

from 2 − 18 nodes, depending on the network. The results are grouped by network topology

and density.

As it can be seen from Figure 5.3a and its summary in Table 5.3, Dragon outperforms all

other approaches in terms of network traffic. The saving ranges between 30 − 81% with an

average of 61%. It could be seen that the approach based on three trees and just one summary

for all the children (marked as “3T TS”) struggles and sends significantly more messages than

other approaches. This suggests that having too many nodes in just one summary can have a

negative impact on false positives given by histograms.

In the terms of time, Dragon outperforms all other approaches almost all the time, as it can

be seen in Figure 5.3b and Table 5.4. The only time when Dragon is slightly slower than

approaches based on three summary trees is in a sparse network. This can occur when all the

source nodes are relatively close to the initiating node. In that case searching in DSAT takes

96 Chapter 5. Snapshot Queries

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

D MD MS S RD RMD RMS RS

A
v
g
.
N

u
m

b
e
r

o
f
M

e
s
s
a
g
e
s

Dragon
1T CHS

1T TS
3T CHS

3T TS

(a) Messages count

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

D MD MS S RD RMD RMS RS

A
v
g
.
D

u
ra

ti
o
n
 (

C
y
c
le

s
)

Dragon
1T CHS

1T TS
3T CHS

3T TS

(b) Duration

Figure 5.3: Network traffic and execution time comparison of Dragon to other approaches
based on tree summaries for Query 2.

longer than searching via summaries in a close neighbourhood. The maximum saving could be

as high as 77%, while on average Dragon is 31% faster.

5.4 Conclusion

Snapshot queries are used to find out about the current state of a WSN. They are, by their

nature, ad-hoc and the users are usually interested in the precise state of the network. We

5.4. Conclusion 97

Table 5.3: Number of messages comparison of Dragon with algorithms based on summaries
for Query 2.

Topology Uniform
Density Dense Med. Dense Med. Sparse Sparse

1T CHS 52.8% 47.9% 63.4% 65.3%
1T TS 65.8% 60.1% 70.0% 68.9%
3T CHS 65.0% 62.5% 61.8% 64.6%
3T TS 80.9% 76.9% 75.8% 74.2%
Topology Random
1T CHS 30.3% 37.6% 49.7% 43.8%
1T TS 53.4% 54.8% 59.6% 60.5%
3T CHS 52.6% 56.5% 59.4% 48.9%
3T TS 75.7% 74.8% 73.6% 72.9%

Table 5.4: Number of messages comparison of Dragon with algorithms based on summaries
for Query 2.

Topology Uniform
Density Dense Med. Dense Med. Sparse Sparse

1T CHS 44.6% 36.3% 62.9% 76.3%
1T TS 46.4% 38.6% 63.9% 76.6%
3T CHS 13.5% 3.2% 11.6% 47.3%
3T TS 14.3% 8.9% 15.9% 47.8%
Topology Random
1T CHS 13.6% 42.1% 66.4% 12.8%
1T TS 13.2% 42.0% 67.0% 17.0%
3T CHS -6.5% 25.5% 54.2% -27.9%
3T TS -1.4% 23.6% 55.5% -25.2%

believe, that as WSNs will become more popular and widespread, these types of queries will be

responsible for a significant part of the queries submitted to a WSN.

Answering a snapshot query has been shown to be a challenging problem. The challenge lies

in identifying all the nodes that fulfil given static requirements of the query and requesting

data from these nodes. The most challenging part is to retrieve the result with low network

overhead and in timely manner. In order to do so, every node in the network must be able to

identify these nodes and to request data from these nodes with low communication overhead.

Various approaches have been proposed to solve this problem either by involving a base-station

(e.g. SENS-Join [SBB09]) or by using in-network summaries (e.g. Innet [MJIG10]). These

approaches use a tree structure where each node holds a summary for the sub-tree rooted in

98 Chapter 5. Snapshot Queries

given node. In order to speed up the search, some approaches use more than one summary

tree. On the other hand, network traffic can be lowered by using a more types of summaries

for the same attribute, separate summary for each child in the sub-tree, or both.

In this chapter we evaluated abilities of the Dragon routing algorithm and its Distributed

Static Attribute Table (DSAT) sub-systems to answer snapshot queries. We compared it with

state-of-the-art protocols focusing on snapshot queries. In our evaluation we used two queries,

the first one uses an equality operator while the second one an inequality operator. In the case

of the first query, the platforms based on summaries rely on the Bloom filter summary, while

in the case of the second query they rely on count histograms.

Our evaluation focused on two metrics: i) network traffic and ii) network delay. Dragon

decreases the network traffic by as much as 80% on average for the first query and 61% for

the second query. In terms of the network delay, Dragon fetched the data from the relevant

nodes on average 64% faster for the first query and 31% for the second one.

Chapter 6

Continuous Queries

6.1 Introduction

In the previous chapter we have shown how any node in the network can provide a user with

current readings from all the sensor nodes satisfying user’s criteria, while imposing only a very

low communication overhead. It has been achieved by allowing any node in the network to find

a list of all the nodes satisfying static criteria by looking them up in the DSAT and requesting

data from these nodes via near-optimal paths.

Requesting data directly from the relevant sensor nodes is energy efficient in case when a user

is interested only in the current readings. However, when a user wants to be continuously

updated about given phenomenon for a longer period of time (possibly indefinitely), it is highly

probable that processing data inside the network will lead to lower network traffic, as opposed

to repeatedly retrieving data directly from the source nodes. Processing data inside the network

could also be energy efficient if the network is used to detect a rare phenomenon. For example,

we are interested only in data, from which a pipe burst can be detected. Because we assume

that the pipe burst will occur very rarely, a lot of nodes’ energy is wasted on sending data that

show normal operation.

To better demonstrate what kind of continuous processing could be done on data streams from

99

100 Chapter 6. Continuous Queries

f1

f2

f3

f4

f5

f6

Figure 6.1: An example of a pipe segment with flow sensors. The arrow shows the direction of
the flow of liquid in the pipe. Bars perpendicular to the arrows denote flow sensors.

a WSN, lets revisit our scenario. The company has already deployed sensors which monitor

flow of oil through the pipes. Each pipe is split into segments. An example of a pipe segment

could be seen in Figure 6.1. In the figure we can see a main trunk pipe with four branch pipes,

each of which has its own flow meter. During the normal operation, i.e. without a pipe leak,

the volume of oil passing through meter f1 must be exactly the same as the sum of volumes of

oil passing through all other flow meters f2, . . . , f6.

The simplest solution to detecting a pipe leak is to periodically collect all data from the network

at a base-station, transfer these data to a cloud, where an application groups data by segments

and computes the differences of volumes in each segment. If a leak is detected, a message to a

control centre is sent. The control centre then dispatches an engineer to fix the problem.

However, this approach has two major disadvantages. The first one is the large amount of

unnecessary traffic. Transferring all data from a network into a cloud is rather expensive in

terms of the energy spent on communication. And because we assume that pipe bursts are rare

events, most of these sensor readings are transferred unnecessary.

Another disadvantage of collecting all data from the network is the processing latency. First

collecting data via a multi-hop link, then sending them to a cloud and waiting for an application

to process the data may incur long delay. Especially, if, for example, the connection between

the base-station and the cloud fails.

However, it is not necessary to periodically ship all data to a cloud to perform a simple sum

of several values. When a node is installed it is associated with a specific pipe and a specific

segment. This information is part of its static attributes. All sensor nodes from the same

6.1. Introduction 101

segment can send data to a common node which can process them. We refer to this common

node as the processing node. Once the processing node detects a burst, it can either report the

burst back to the user via a base-station, or send an actuation message to an actuation node

controlling a valve upstream. The actuation node will close the valve and stop the leak.

However, the decision of which node will be chosen as the processing node is not trivial and

has to be done carefully with the objective to lower the network traffic. Choosing the wrong

node can easily lead to an increase in the network traffic as well as the processing latency.

When a node is chosen to process data streams it has to dedicate some of its computational

power and memory to perform the computation on the data streams. How much CPU and

memory is needed depends on the algorithm processing the data, the rate at which data are

arriving, and the number of data streams. A network may be homogeneous, i.e. it consists of

the same type of node, or it may be heterogeneous, i.e. it consists of several different types of

node. The heterogeneity of the network may be caused by the design of the network, when a

person responsible for the design of the network chose different types of nodes on purpose, or

it may be caused by extending the network with a newer type of the sensor nodes after the

initial WSN deployment. This heterogeneity of a WSN brings another challenge in finding the

processing node, as only a small subset of the nodes may be capable of processing the query.

In this chapter under processing we understand it to mean any type of operation applied to any

number of data streams. Processing includes, but is not limited to: i) aggregation functions

like maximum, minimum, average, or sum of several numbers, ii) more complex functions like

compression, or iii) join operation as known from traditional databases.

We do not compare Dragon to algorithms which focus on aggregation functions only as they

support only a specific type of query. Additionally, these approaches usually exploit historical

summaries to answer the queries (e.g. M2 [UTK13]) as opposed to exact readings. We also

do not compete with approaches which heavily rely on a base-station, e.g. Continuous Join

Filtering (CJF) [SBB10], as we propose a fully decentralised approach with no single point of

failure. Additionally, we also do not compare to approaches which require the nodes in the

network to be reprogrammed upon receiving a query, e.g. SNEE [GBG+11], as we propose a

102 Chapter 6. Continuous Queries

platform where users can communicate with a network via any node and can receive a reply

instantly without the need to update the programme running on the nodes. Finally, we also ex-

clude the whole family of inter-region based algorithms, e.g. Distribute-Broadcast Join [CG05],

Mediated Join [CNS07], or Distributed Index-Join [PG06], as these approaches are limited to

joining data from two non-overlapping regions only.

In the rest of this chapter we describe and evaluate our Processing Node Discovery Algorithm

for homogeneous and heterogeneous networks. We present one algorithm for homogeneous

networks and three algorithms for heterogeneous networks. We compare their performance in

terms of energy spent on discovering the processing node and the optimality of the discovered

processing node. We compare our solution with the state-of-the-art frameworks for WSNs.

6.2 Related Work

The first approaches to perform in-network data stream processing focused on joining of a data

stream generated by a sensor and a fixed set of values, i.e. a small relational table. Madden et

al. considered joining of a data stream and a storage point, i.e. a single node which holds a list

of values the data stream should be joined with. The storage point can be seen as a materialised

view known from relational databases. Data from a sensor are routed up the routing tree and

as they reach the storage point the data are joined with a fixed set of values. This type of

joining was later used also in Madden’s et al. later work, called TinyDB [MFHH03], where

they introduced the idea of seeing WSNs as relational databases. TinyDB accepts SQL queries

which are pushed to the relevant sensors in the network and data are periodically retrieved at

the base-station. TinyDB lowers the network traffic by retrieving data only from sensor nodes

which can contribute to the query and only if the sensed value fulfils the condition specified in

the query. However, the decision whether to send or not to send the data must the node be

able to do without communicating with other nodes.

Similar approach was adapted by Adabi et al. in their REED [AML05] framework which

joins sensed data with an external relation. This external relation represents a set of events

6.2. Related Work 103

the network was deployed to detect. REED pushes this external relation into the network.

Depending on how big the external relation is, REED distinguishes between three scenarios:

i) the external relation fits into a memory of a single node, ii) the external relation can be

partitioned amongst a small set of neighbouring nodes, and iii) the external relation is too large

and has to be partitioned across larger part of the network. REED uses various techniques, e.g.

group formation, relation partition, Bloom filter [Blo70], partial join, etc., in order to lower the

network traffic.

The approaches described above are able to operate on single data stream only. The data

stream is joined with a pre-defined set of values, not a dynamic stream of data. If the query

operates on two or more data streams, these approaches are not able to perform in-network

computation and ship all data to the base-station where final processing takes place. This is

the reason why other approaches for in-network data stream processing were proposed. The

research work presented below focuses on frameworks capable of processing joins over several

sensor data streams, which are well known from relational databases.

There are many various ways how the in-network join of sensor data stream algorithms could be

categorised, e.g. according to join types, filtering approach, base-station involvement, adapta-

tion to changes, cost-based optimisation, query dissemination, join initiation, routing protocol,

collection of statistics, failure handling, or duration of join execution [Kan13]. Here, we briefly

characterise the categorisation according to join types and then we describe various joining

algorithms categorised according to the filtering approach.

Initially, large interest was dedicated to joining data streams on spatial predicates, i.e. the

location (geographic coordinates) is the joining condition. The most common type of join is

inter-region join where two disjoint sets of sensors from two non-overlapping areas join their

data streams. Because every node is aware of its geographic position it can decide whether it

participates in the query or not without communicating with other nodes.

Later, the interest of researchers was pointed towards joining data streams on temporal pred-

icates, i.e. on time-based windows. Each sensor reading is timestamped and the joining node

keeps a history (i.e. window) of n readings for each sensor participating in a query. Join is

104 Chapter 6. Continuous Queries

performed either on fixed, sliding, or jumping window of sensor readings.

Snapshot queries may have specified fixed window of sensor readings. The join operates only

on fixed number of values which are not updated. The most common is the sliding window

which is either specified by its size or by its time. As the new tuples are arriving they replace

the old ones. Jumping window is similar to the sliding one, however, the window is replaced as

a whole, not continuously as in the case of the sliding window.

According to sensor tuples filtering we can split joining algorithms into two groups: i) al-

gorithm without filtering of non-joinable tuples before the final join and ii) algorithms which

filter non-joinable tuples before the final join. Next, for each group we list and describe several

in-network joining algorithms.

6.2.1 Algorithms without Filtering of Non-Joinable Tuples

Algorithms presented in this section do not support the filtering of non-joinable tuples before

the final join, i.e. if the joining condition is based on dynamic attribute a node cannot decide

apriori whether the sensed tuple will or will not join with other tuples. Algorithms from this

group focus on the optimal location of the join nodes, lowering the cost of join initiation, or

indexing of join tuples.

Chowdhary and Gupta proposed Distribute-Broadcast Join [CG05] which focuses on inter-

region join R 1 S of continuous join query. All data from region R and S are shipped to

the join area P which is within a triangle formed by the region R, S, and the base-station

B. The location of the join region P depends on the size of individual regions and the size of

the output of R 1 S. Distribute-Broadcast Join relies on geographic routing protocols such as

GPSR [KK00] and TBF [NN03].

While the previous approach focused on continuous queries, Coman et al. proposed the Mediated

Join [CNS07, CN07] which executes snapshot (one-shot) queries submitted through a base-

station. It works on a similar principle as the Distribute-Broadcast Join algorithm, i.e. it

collects data from regions R and S in a region P, which is in the middle of the triangle formed

6.2. Related Work 105

by R, S, and the base-station. Data are first requested from one region and are distributed

amongst the nodes in the join region P. Next, data are requested from the second region and

are distributed amongst the nodes holding the data from the first region. The size of the

join region, hence the amount of communication, depends on the size of the first region. The

mediated join takes the size of the region into consideration and chooses the best strategy for

joining the data.

Another approach for region-based queries, this time for continuous queries with a range joining

predicate, was presented by Pandit and Gupta. The Distributed Index-Join [PG06] algorithm

is based on a distributed B+ tree implemented in a WSN. Tuples from both regions are stored in

a distributed B+ tree where pointers to the new branches in the tree are geographic locations.

Therefore Distributed Index-Join relies on geographic routing. Since the join predicate is a

range, it is easy to find the lowest tuple which satisfy the predicate and then follow the siblings

until the largest tuple satisfying the predicate is found.

In addition to Distributed Index-Join, Pandit and Gupta also proposed Distributed Hash-Join

[PG06] to solve the same problem, i.e. continuous join queries with range join predicate. The

algorithm partitions sensed values from both regions R and S on the joining attribute using

the same hash function. If the joining operand is equality (i.e. an equipping) the output of the

hash function is a random geographic coordinate. In case the joining operand is inequality (i.e.

a range query) a locality preserving hash function is used, which hashes similar values to the

close proximity locations.

So far, all of the approaches presented in this section rely on geographic location and use

geographic routing protocols to route data from a source to a destination. Next, we will

present an in-network join algorithm which is based on routing trees.

Pair-wise Join [MJIG08, MJIG10] proposed by Mihaylov et al. is a framework for long-running

continuous queries execution. Unlike other approaches, it is not region-based, therefore it

supports other than location based joining conditions. The framework is built on top of several

routing trees where every node in a network stores summaries of static attributes for all nodes

in a sub-tree rooted in given node. Summaries include Bloom filters [Blo70], histograms, R-

106 Chapter 6. Continuous Queries

Trees, etc. These summaries allow any node in the network to initialise a search for another

node(s) based on static attributes, i.e. find other sensor nodes with whom the node should join

its data stream. It also allows a node to find out that there are no other node participating in

the query, hence it should ignore the query. The decision, whether a node should or should not

participate in the query cannot be made by a node locally and it requires to do a search in the

network.

After an initiating node finds a set of target nodes with which it should join data, one join

node is chosen on each path between the initiating node and every target node, i.e. there are

so many join nodes as there are target nodes. When choosing the location of the join node,

the distance to the nodes participating in the query as well as the distance to the base-station

is taken into account. Additionally, the selectivity of the initiating node, the target node, and

the join has an impact on the location of the join node. Each join node joins only one pair of

values - one from the initiating node and one from one of the target node. If the pair fulfils

the join condition it is sent to the base-station which then performs the final join of all of the

partial pair-wise joins.

Abrams and Liu proposed Greedy is Good (GIG) [AL06] algorithm which answers continuous

queries. The goal of the algorithm is to find one join node which is in the centre of all nodes

participating in the query. As a metric, GIG uses the number of hops between the nodes. This

join node collects data from all source nodes, computes the join, and the result is sent to the

base-station. GIG finds the join node by flooding the network from every node participating

in the query. First, every source node broadcast a discovery message. The discovery message

is broadcast one hop further from the source node every round. A node which first receives a

message from every node participating in the query declares itself as the join node. The setup

phase of this algorithm is rather expensive as the whole network is flooded n times, where n

is number of nodes participating in the query. Additionally, the selectivity of the source nodes

is not taken into account. Finally, the algorithm assumes that all the source nodes are located

within a small region of the network.

Inspired by GIG, Chatzimilioudis et al. proposed a distributed framework [CCGM13] which

6.2. Related Work 107

tackles some of the problems experienced by GIG. While they still assume that all the source

nodes are located within a small region of a network, they avoid flooding the network. Flooding

is avoided by first computing maximum distance of the join node from a source node. The

maximum distance d depends on the distance between the source nodes, which researchers

assume that every node knows. When a source node starts a search for the join node it includes

the maximum distance d into the discovery message. Once the message has been broadcast d

times, it is discarded. This way flooding of the whole network is avoided. Additionally, when

choosing the join node, selectivity of the source node (known apriori by the node) is taken into

account. The results showed, that under those conditions the algorithm was able to find the

optimal join node in more than 90% of the cases.

6.2.2 Algorithms with Filtering of Non-Joinable Tuples

Algorithms presented in this subsection are using various techniques to filter non-joinable tuples.

Usually, the base-station or other node with a better knowledge of the network status produce

some kind of filter which is pushed to the sensor nodes so it can check the sensed value against

the filter and decide whether to send it to the join node or not.

Synopsis join [YLZ06], proposed by Yu et al. , focuses on answering snapshot inter-region

equijoin queries R 1A=B S. Nodes in both regions use a hash function to transfer value of

joining attribute into a geographic coordinate in a region T located between regions R and

S. Part of the synopsis the nodes send to the join region T is a histogram of values of the

joining attribute along with some other auxiliary information. The nodes in T region check the

joinability of the values. If the tuples are joinable they inform nodes in R and S to send full

information to a node J. The node J is chosen in the middle of the path between the joining

nodes, whose exact position is sent as a part of the synopsis.

Local Semijoin [CNS07], proposed by Coman et al. , answers a snapshot inter-region equijoin

queries R 1A=B S. First, all joining attribute values along with the nodes’ IDs from the nodes

in the region R are collected and sent to the region S. The values are compared with the local

values and joinable tuples are found. The IDs of the joinable tuples are sent back to the region

108 Chapter 6. Continuous Queries

R. The joinable nodes from both regions send data to the base-station which performs final

join.

Coman et al. also proposed Mediated Semijoin [CNS07] where another region T, between

regions R and S, is chosen to receive joining attribute values and to check joinability of the

nodes. Next, the result is sent back to both regions. However, as these algorithms were

developed for rather small regions R and S, it has been shown that the optimal location for T

is either region R or S. Therefore, the Mediated Semijoin was always outperformed by Local

Semijoin.

In-Network Join strategy using Cost based optimisation in Tree routing sensor networks (IN-

JECT) [MYC11] proposed by Min et al. answers continuous join queries R 1 S. INJECT uses

routing trees to collect and transfer data within the network. INJECT considers three joining

strategies: i) Partition Join, ii) Synopsis Join, and iii) Full Synopsis Join. Statistics of node

and join selectivities are collected in order to choose the correct joining strategy. In Partition

Join tuples from region R are shipped via the base-station to the region S. Non-joinable tuples

are filtered out and the result of the join is sent back to the base-station. In the case of Synopsis

and Full Synopsis Join only Bloom filters of the join attributes are sent to the region S instead

of tuples.

Two-Phase Self-Join (TPSJ) [YLOT07] proposed by Yang et al. answers time-based sliding

window continuous join queries. Data are routed via routing trees. Unlike most of the previous

algorithms the networks is not split into two non-interleaving regions but the nodes participating

in the query are randomly placed within the network. In the first phase, the query is injected

into the network and values from nodes which satisfy selection predicate are retrieved at the

base-station. In the second phase the base-station injects the query along with the values

collected in the first phase back to the network. Join is carried out at every node and the result

is sent back to the base-station. TPJS is focused on monitoring applications where selection

predicate from the first phase is highly selective and returns only a small set of values.

SENS-Join [SBB09] introduced by Stern et al. answers snapshot queries R 1 S where the join

predicate could be any attribute, including dynamic ones. The join computation consists of

6.2. Related Work 109

three steps. In the first step all nodes form a routing tree rooted at the base-station. During this

phase the join attributes are collected. In the second step the base-station checks the joining

attributes, computes join filters, and pushes these filters back to the network. In the third step

nodes that are not included in the filter send values to the base-station which computes the

final join.

In the first and second step the data and filters are sent in a compact form using quadtrees

[Sam84] and Z-ordering [Mor66]. Using these summaries encoding significantly reduces amount

of network traffic required to collect joining attributes from the network and distributing join

filters back to the nodes. However, how many nodes will send data to the base-station in the

third steps depends on the fidelity of these summaries and if the size of the summary is too

small or the network is too big, it may lead to many unnecessary nodes to participate in the

query.

Continuous Join Filtering (CJF) [SBB10] proposed by Stern et al. is an extension of their

previous work SENS-Join to answer continuous queries. Under ideal conditions, a node in the

network sends value to the base-station only if it is joinable. CJF was designed to get as close

to these ideal conditions as possible. Please remember, that the joining attributes are dynamic

(i.e. sensed value).

To exclude the non-joinable tuples from being sent to the base-station CJF installs join filters

at every node in the network. The filter is in a form of intervals 〈vmin, vmax〉. If the sensed

value v falls within given interval, i.e. vmin ≤ v ≤ vmax, the value is filtered out and is not

sent to the base-station. Otherwise, the value is sent and the base-station performs final join.

A collision is a state when the base-station receives a value u which might be joinable with a

value that might have been filtered out. In this case the base-station requests the filtered value

directly from the node.

All filters are computed by the base-station and pushed into the network. The base-station

keeps all filters in order to be able to detect collisions. Filters must be non-overlapping. CJF is

effective in lowering the network traffic in scenarios where the joining attributes do not change

rapidly (e.g. temperature). CJF is also able to update the join filters as the sensed value is

110 Chapter 6. Continuous Queries

gradually changing using a linear regression model.

Progressive Energy-efficient Join Algorithm (PEJA) [LCC08] proposed by Lai et al. executes

continuous inter-region equijoin queries R 1A=B S. In each region a routing tree is constructed

spanning all nodes within given region. The joining attribute is split into sub-ranges and each

node constructs a histogram which is sent to the root node. The root node in each region

merges all histograms together and send it to a common node c, which is in the middle of the

path between the root nodes. The common node c then uses both histograms to find mergeable

intervals. These mergeable intervals are then sent to both root nodes. Root nodes distribute

the mergeable intervals within their regions. Next, the whole network is partitioned into a

grid and nodes use geographic hashing which map each interval into particular grid. If interval

I from region R is mapped to grid g then the same interval from region S is mapped into a

mirror grid g′. Finally, nodes from grid g and g′ exchange values and the result is sent to the

base-station.

Synopsis Refinement iceberg-Join Algorithm (SRJA) [LLG10] also proposed by Lai et al. and

focus on answering snapshot inter-region equijoin iceberg queries R 1i
A=B B. An iceberg join

[FSGM+99] for an attribute value v is a join for which number of joined tuples exceeds specific

iceberg threshold α. The idea behind iceberg join is to find a pattern of correlation among the

sensor reading.

The joining process of SRJA is similar to the one described in PEJA. First, routing trees for

each region are constructed. Each root node collects a histogram which in addition to count for

each sub-range contains also counts for the minimum and maximum value from given interval.

These extended histograms are sent to the common node c located in the middle between the

roots of two regions. The common node, depending on the counts for each interval, flags each

interval with PRUNE, JOIN, or DIVIDE. The flagged histogram is sent back to the roots. The

root disregards all values from the interval marked as PRUNE. Values from a interval marked

as JOIN are joined between the regions and the result is sent to the base-station. The interval

marked as DIVIDE is split into smaller intervals and the same process is repeated.

SNEE [GBG+11] proposed by Galpin et al. describes SNEEql continuous declarative query

6.3. Heterogeneous Networks 111

language. A query submitted by user in the SNEEql language is translated into Query Execu-

tion Plan (QEP) in a form of a routing tree. The QEP is optimised and the system generates

source code for each node in the network. The framework must have a knowledge about the

network topology prior to generating the source code. The generated source code is compiled

and uploaded to the nodes. Because the base-station has to have knowledge about the whole

network and different source code is generated for each query, SNEE does not support ad-hoc

queries. Additionally, SNEE does not have a mechanism to respond to node failures. If a node

on a critical path fails the base-station has to generate a new QEP and disseminate it into the

network.

The problem with node failures was addressed by Stokes et al. who proposed a Proactive

Adaptation in the case of a node failure [SPF14]. The authors proposed to generate several

alternative QEPs at compile time and disseminate them all together. They also studied under

what conditions the QEP should be switched to an alternative one: after the node failure or

prior to the node failure. The experiments suggested that proactive (i.e. prior to node failure)

switching between QEPs provides better results.

6.3 Heterogeneous Networks

So far, not much attention has been paid to heterogeneous WSN. Heterogeneity of a WSN can

be caused by various factors. A network can be heterogeneous due to the different amount of

residual energy available. This is a common case of networks where some nodes are utilised

more for relaying data, e.g. a node acts as a cluster-head or it is close to a base-station in a

network using routing trees. Additionally, some nodes in the network might by connected to a

power supply or their batteries are repeatedly changed.

Another type of heterogeneity is caused by different hardware specifications of the node itself,

e.g. a node might have a larger memory or a more powerful CPU. This scenario might occur

when a network is extended with a newer type of nodes, or, various entities are responsible

for different parts of the network. For example, a water pipe network and a gas pipe network

112 Chapter 6. Continuous Queries

may cooperate and relay information for each other. Some networks might be deliberately

designed to include more powerful nodes, capable of processing more data streams or storing

more historical data.

Lastly, heterogeneity can be caused by different supporting several radio transceivers. Some

nodes may be capable of long-range or high-bandwidth communication. These nodes can in-

crease throughput of a network and decrease the end-to-end latency as a packet needs to travel

through fewer hops before it reaches a base-station.

Vast majority of research of heterogeneous WSN focuses on routing protocols, more precisely

routing protocols based on clustering [SJKZ11]. As we have mentioned before, routing protocol

based on clustering are used to forward data to a base-station only. In each round a cluster-

head is elected which during this round collects and aggregates data from other nodes in the

same cluster. Aggregated data are then sent to a base-station. As the cluster head must stay

awake during the whole duration of the round, its battery depletes faster. Therefore, the head

election should take into consideration residual energy of the node.

Vast majority of the algorithms proposed to solve this problem focus heterogeneity of energy re-

sources only. Amongst others Energy efficient heterogeneous clustered scheme (EEHC) [KAP09]

proposed by Kumar et al. , Developed Distributed Energy-Efficient Clustering (DDEEC)

[ESEFA10] proposed by Elbhiri et al. , Stochastic Distributed Energy-Efficient Clustering

(SDEEC) [ESA09] proposed by Elbhiri et al. , Improved and Balanced LEACH (IB-LEACH)

[HL] proposed by Hssane and Lahcen, or Multi-hop communication routing (MCR) [KAP11]

proposed by Kumar et al.

Guilherme et al. studied the domain of distributed storage protocol for heterogeneous WSN. In

their paper they propose ProFlex algorithm [MGV+13] which solves the problem of distributing

sensed data throughout a heterogeneous WSN. The objective is to distribute sensed data in

such a way that a mobile sink travelling randomly through the network can receive maximum of

the sensed data by visiting minimum number of nodes. ProFlex assumes the network consists

of many low-end sensors, referred to as L-sensor nodes, and a small number of high-end sensors,

referred to as H-sensor nodes. H-sensor nodes are equipped with two radios: one which allows

6.4. Processing Node Discovery Algorithm 113

it to communicate with other L-sensor nodes within radius rL, and the second radio allowing

it to communicate with other H-sensor nodes within radius rH , while rL � rH .

ProFlex algorithm works as follows: all L-sensor nodes form a tree around closest H-sensor

node. L-sensor nodes then forward sensed data to the root, i.e. the H-sensor node, which

subsequently forwards data to other H-sensor nodes. Other H-sensor nodes then distribute the

sensed data from other trees within their own tree. A mobile sink is then able to retrieve large

part of all sensed data by visiting only a small random part of the network.

To the best of our knowledge there no prior work on in-network processing in heterogeneous

WSNs.

6.4 Processing Node Discovery Algorithm

A user can communicate with any node in the network and submit queries. The node which

receives a query from the user is referred to as the initiator or the initiating node. As soon as

the initiator receives a query it follows the same procedure as in the case of a snapshot query

described in previous chapter. In summary, the initiating node search in the DSAT for other

nodes which satisfy static attributes of the query. These nodes are referred to as sources. Each

source produce data at a certain rate. This rate depends on the sampling rate and the dynamic

condition specified in the query. For example, the dynamic condition may look like: WHERE

temperature > 23. Here, the senor node sends the data tuple only if the sensed temperature

is higher than 23◦C. Let us define selectivity σ as:

σ =
tuples sent

tuples sampled
(6.1)

Because the selectivity has an impact on the position of the processing node, the initiator sends

the list of dynamic conditions of the query to all of the sources. This list of dynamic conditions

is used by the source node to compute its selectivity for given query. Where a source is able

to compute its selectivity (e.g. using pre-stored historic data or a histogram), it reports the

114 Chapter 6. Continuous Queries

selectivity back to the initiator. Otherwise, the source node assumes that the selectivity for

given query is σ = 1. After collecting selectivity from every source the initiator starts a search

for a node which can process the data streams. We refer to this node as the processing node.

Let us define the cost of processing all sources S with selectivity σ at node i as

ci = σSri +
∑

j∈S
σjdij (6.2)

where ri is the number of hops between node i and the node to whom the final result should

be reported (referred to as report node), dij is the number of hops between nodes i and j, σj

is the selectivity of the node j, and σS is the selectivity of the processing node. The lower the

cost is, the fewer messages are sent within the network in order to process data streams from

all sources.

As we have described in Section 3.4, the reliable transmission of a packet requires an acknowl-

edgement packet sent by the receiver to the sender. However, by overhearing the receiver’s

communication, it is possible to decrease the number of messages required to deliver a message

between the two nodes h hops away while sending only h+ 1 messages, instead of 2h. The cost

defined above does not take into account this additional acknowledgement packet sent by the

last hop, therefore in addition to the cost we also define the real cost :

rci = σSrri +
∑

j∈S
σjdrij (6.3)

where

drij =

0, if i = j

dij + 1, if i 6= j

and rri is the number of messages required to reliably deliver the result to the reporting node.

In cases where the selectivity of the processing node is very low, e.g. if detecting a pipe leak,

the part is negligible and does not contribute to the overall cost.

6.4. Processing Node Discovery Algorithm 115

The difference between the cost and the real cost is that the real cost prefers source nodes to

non-source nodes, therefore several nodes with the same cost may have different real costs. Lets

assume there are two source nodes s1, s2. If we do not take the distance to the report node

into account, all nodes on the shortest path between s1 and s2 (including the source nodes)

will have the same minimal cost. However, the real cost of the source nodes will be lower than

the real cost of the nodes on the path between these two source nodes. Unfortunately, the real

cost deforms the search space which can lead to creating local minima at the source nodes.

Therefore we use the cost in our Processing Node Discovery algorithm and the real cost during

the evaluation as it better reflects the real traffic in the network.

The objective of the algorithm is to find a node whose sum of weighted distances to all source

nodes is minimised. From geometry this problem is known as the geometric median or Fermat-

Weber problem. The geometric solution is known only for three nodes. There is no general

solution for this problem for n (n > 3) nodes, only numerical or symbolic approximations are

possible.

Approximations are based on the fact that, since the distance to a single point is a convex

function, the sum of distances from a single point to all source nodes remains a convex function.

If the algorithm decreases the cost in each step it will eventually reach the global minimum.

Having only one processing node for a query has a several advantages as well as disadvantages.

The biggest advantage is that one node receives data from all the source nodes and can perform

any type of computation on the received values. Additionally, the final result is produced and

there is no need for a base-station to process partial results. However, processing a query on a

single node brings also several disadvantages. Amongst the main disadvantages belong: i) no

ability to filter out values before they reach the processing node, ii) possible congestion around

the processing node, and iii) limited number of source nodes depending on the computational

capabilities of the processing node. Below, we describe each of these disadvantages in more

detail.

When all sensed values for a given query are delivered to one processing node, it may lead to

higher network traffic. In approaches, where the sensed data are routed towards a processing

116 Chapter 6. Continuous Queries

node in a tree-like structure [SBB10, GBG+11] or a pair of values towards one node [MJIG10],

some of the sensed values might be filtered out before they reach the processing node. Filtering

out the values closer to the source nodes may lead to lower overall traffic in the network.

Another disadvantage of a single processing node is that it could lead to network congestion

around the processing node which may lead to sooner battery depletion of the processing node

and the nodes in the close neighbourhood of the processing node. Finally, the number of nodes

participating in a query is limited by the memory and computational capacity of the processing

node. In this thesis we focus on subset queries, where only a small subset of nodes participate

in the query. Therefore, we assume that in the case of a homogeneous network every node can

process a query submitted by a user. In the case of heterogeneous networks we assume that

there exists at least one node capable of processing the query.

We present algorithms for two different types of networks: i) homogeneous and ii) heteroge-

neous network. Recall, in the case of homogeneous network each node has the same processing

and memory capabilities. In the case of heterogeneous networks we assume that some of the

nodes have higher computational capabilities in terms of CPU, memory, or both. Therefore

while in the case of homogeneous network we assume that every node is capable of processing

the data streams, i.e. the search space consists of every node n ∈ N , where N is the set of

all nodes in the network, in the case of heterogeneous network only a subset of the nodes are

capable of processing the data streams. Which nodes are capable of processing the data streams

is given by the number and selectivity of source nodes participating in the query. The more

sources participate in the query, the more memory and CPU is required in order to process

the data streams. For every query q we can split the set of all nodes N into two disjunctive

subsets: i) N q
h - the set of high nodes capable of processing the query q and ii) N q

l - the set of

low nodes not capable of processing the query q. Then the search space is limited only to the

subset N q
h. It is important to note, that nodes in this subset are not necessary neighbours and

there is an arbitrary distance between them.

In the rest of this section we first describe how a query is represented in Dragon and the

lifetime of the query in our platform. Next we describe four different join node discovery

algorithms: one for homogeneous networks and three for heterogeneous networks.

6.4. Processing Node Discovery Algorithm 117

6.4.1 Query Processing Overview

In this section we describe how Dragon processes a query submitted by a user. A query is

represented by a C structure containing following information: i) the list of attributes the

user is interested in, i.e. the SELECT clause, ii) the joining condition, i.e. the JOIN clause, and

iii) the list of restrictions, i.e. the WHERE clause. This simple structure was chosen as it can

easily represent an evaluation query. We would like to emphasise that parsing of a general SQL

query is not the aim of this thesis. On the other hand the structure allows developers to easily

extend it and add another functionalities, e.g. more complex processing of the sensed data.

Once a node, referred to as the gateway node, receives a message with the structure representing

a query it assigns a unique random ID to the query. This ID uniquely identifies the query and

is used for all network communication related to the query. Next, the gateway node uses the

static attributes from the WHERE and the JOIN clauses to determine which nodes participate in

the query by looking up the information in the DSAT. Once the gateway node retrieves the

list of nodes participating in the query (i.e. the source nodes) it uses the dynamic attributes

from the WHERE clause to retrieve selectivities from the source nodes. After selectivities are

received the gateway node starts an algorithm for finding the processing node. The algorithm

is described in the following sections. Once the algorithm converges and the processing node is

found, the processing node sends a message all the source nodes for given query. The message

contains the query ID and the ID of the processing node. Each source node uses the dynamic

attribute, received previously to compute the selectivity, to filter out the sensed values which do

not pass the dynamic condition. All other sensed values are sent to the processing node. After

receiving all values from given epoch, the processing node performs the calculation specified in

the query and if the condition is met, the result is sent to the gateway node which relays the

result to the user.

118 Chapter 6. Continuous Queries

Algorithm 9 Processing Node Discovery for Homogeneous Networks

Preamble: on receiving a message of type Query Assignment do execute ReceiveQueryAs-
signment
The initial query assignment is send by a user via cell phone to any node

1: procedure ReceiveQueryAssignment(packet, senderId)
2: query ← packet.query
3: local cost← compute the cost for query
4: request a cost from every neighbour
5: if local cost is the lowest or this node was a coordinator before then
6: declare this node to be the processing node
7: inform all nodes participating in the query about the processing node
8: else
9: neighbourId ← from the list of nodes with the lowest cost randomly choose one

node and send an assignment to the node
10: packet.query ← query
11: Unicast(packet, neighbourId,ACK)
12: end if
13: end procedure

6.4.2 Homogeneous Networks

The iterative algorithm described in Algorithm 9 decreases the cost in each iteration by following

the cost gradient towards the node with the lowest cost. How the algorithm works is depicted

in Figure 6.2. In this figure the source nodes are diamond shaped, the regular nodes are shown

as circles, and the processing node has a shape of a polygon. The algorithm consists of rounds,

each of which is led by one coordinator, in the figure shown in green colour. At the beginning

the node which received the query from a user, the initiator, becomes the first coordinator

(Figure 6.2a). The coordinator computes its cost (line 3) and broadcasts the cost to all its

neighbours, which reply with their cost for the query. The cost is computed by looking up the

distances to every source node in the routing table stored at every node. In Figure 6.2a the

replies from nodes n6 and n10 are shown with dashed arrows. After the coordinator receives a

reply from every neighbour, it compares its cost with all the received costs (line 5). If there

is a node with a lower cost, the coordinator sends it an assignment message (line 9) and the

receiver becomes a coordinator for the next round. In Figure 6.2a node n9 with c9 = 5 sends

an assignment message to node n6 with c6 = 4 as its cost is lower. The assignment message

is depicted with a dotted arrow. If there are several nodes with the same lowest cost the next

6.4. Processing Node Discovery Algorithm 119

n0

n1 n2

n3 n4

n5

n6c6 = 1 + 1 + 2 = 4 n7

n8

n9

c9 = 0 + 2 + 3 = 5

n10 c10 = 1 + 2 + 3 = 6

(a) The search is initiated by an engineer over a
cell phone. The first coordinator is the node which
received the query.

n0

n1
c1 = 1 + 2 + 3 = 6

n2

n3

c3 = 0 + 2 + 3 = 5

n4

n5

n6
c6 = 4

n7

c7 = 2 + 2 + 1 = 5
n8

n9

n10

(b) The search follows the cost gradient. The next
coordinator becomes the node with the lowest cost
(n6).

n0

n1 n2

n3 n4

n5

n6
c6 = 4

n7

n8

n9

n10

(c) Because there is no neighbour with a lower cost,
node n6 declares itself as the processing node.

Figure 6.2: Processing Node Discovery Algorithm. The search follows the steepest cost gradient.
Once a node whose cost is lower than the cost of all its neighbours, the node declares itself as
the processing node.

coordinator is chosen randomly.

If all coordinator’s neighbours’ cost is higher then the coordinator declares itself as the pro-

cessing node (line 6). In Figure 6.2b node n6 receives costs from all neighbours. Because all

received cost are higher than 4, the node declares itself as the processing node, which is depicted

in Figure 6.2c.

It may happen that the cost gradient is lost when the search hits an area of nodes with the same

lowest cost. This situation is depicted in Figure 6.3. The search follows the cost gradient from

node n9 to node n6 and then to node n7. At this point, shown in Figure 6.3c, the coordinator

120 Chapter 6. Continuous Queries

cannot find a node with a lower cost, however, node n8 has the same cost as node n7, therefore

an assignment message is sent to node n8. The same situation happens when node n8 is the

coordinator and it assigns node n7 as the coordinator again, as it is depicted in Figure 6.3d.

Upon receiving an assignment the node checks whether it has already been a coordinator for

the given query before (line 5). If so, it means that there is at least one node with the same

cost which was delegated as a coordinator but it was unable to find a node with a lower cost,

therefore the assignment was returned back to the previous coordinator. In this case the node

declares itself as the processing node (line 6) in order to avoid loops in the search. This process

can be seen in Figure 6.3e.

In rare cases it may happen that the search reaches a neighbourhood of nodes with the same

cost and the search terminates before the node with the lowest cost in the network is found. It

is partially compensated by the fact that a new coordinator is chosen also in the case where the

neighbour’s cost is the same, i.e. the requirement that the cost of the new coordinator must

be lower than the current one is relaxed. However, if there are more neighbours with the same

cost, the new coordinator is chosen randomly and it may not be on the path to the node with

the lowest cost.

This problem could be solved by performing an exhaustive search, i.e. choosing multiple nodes

with the lowest cost as coordinators. Unfortunately, this approach has a drawback of signifi-

cantly increasing the number of messages exchanged during the discovery phase.

Once a node decides to declare itself as a processing node, it informs all sources participating

in the query about its ID and its cost. Because each round is led by only one coordinator each

source can receive a notification from one processing node only.

The number of messages exchanged during the discovery phase mainly depends on the the

number of coordinator’s neighbours as the coordinator requires a reply from every neighbour.

This number can be significantly decreased by snooping on neighbours as they reply back to

the coordinator. Each node stores these replies and in the case it becomes a coordinator for

the next round the node requests costs only from neighbours for which it is missing the cost.

In Figure 6.3b node n6 may request the cost only from nodes n1, n3, and n7. Node n6 has

6.4. Processing Node Discovery Algorithm 121

n0

n1 n2

n3 n4

n5

n6c6 = 1 + 2 + 3 = 6 n7

n8

n9

c9 = 0 + 3 + 4 = 7

n10
c10 = 1 + 3 + 4 = 8

(a) The search is initialised by an engineer via a
cellphone.

n0

n1
c1 = 2 + 2 + 3 = 7

n2

n3

c3 = 2 + 3 + 3 = 8

n4

n5

n6
c6 = 6

n7

c7 = 1 + 2 + 2 = 5
n8

n9
n10

c10 = 8

(b) Node with the lowest cost (n6) is the new co-
ordinator.

n0

n1
c4 = 1 + 2 + 3 = 6

n2

n3 n4

n5

n6 n7n7

c7 = 5
n8

c8 = 0 + 2 + 3 = 5

n9
n10

(c) The search follows the cost gradient to node
n7.

n0

n1 n2

n3 n4

n5c5 = 1 + 1 + 4 = 6

n6 n7

c7 = 5
n8n8

c8 = 5

n9
n10

(d) The node with the same cost (n8) becomes a
new coordinator.

n0

n1 n2

n3 n4

n5

n6 n7n7

c7 = 5
n8

n9
n10

(e) The search is returned back to node n7 which
declares itself as the processing node.

Figure 6.3: Processing Node Discovery Algorithm. Sometimes the search hit a neighbourhood
of nodes with the same cost and the gradient is lost. In this case the search by a random walk
is executed. Data sources are diamond shaped while the processing node is polygon shaped.
Coordinator in given round is showed in red.

122 Chapter 6. Continuous Queries

already received the cost of node n10 previously, when node n9 was the coordinator and node

n10 reported its cost to node n9 (Figure 6.3a).

6.4.3 Heterogeneous Networks

In case of heterogeneous networks we present three different algorithms: i) query algorithm,

ii) traverse, and iii) mixed algorithm. We assume that a network is heterogeneous if some of

the nodes have different computational and/or memory capabilities, i.e. some of the nodes

are capable of processing data from more data streams. We assume that these attributes

(CPU/memory) are static and can be stored in the DSAT. We also assume there is a function

f(src, sel) → (cpu,mem), where (src, sel) is a list of sources and their respective selectivities

and (cpu,mem) is a tuple specifying minimum CPU and memory requirements. Then, any

node can retrieve a list of all possible processing nodes by running the query:

SELECT node id FROM dsat WHERE CPU >= cpu AND MEMORY >= mem.

After a list of all possible processing nodes is retrieved, i.e. the list of all nodes capable of

processing of all data streams of the query, the initialising node can start one of the three

processing node discovery algorithms. These algorithms are, similarly to the algorithm for

homogeneous networks, iterative, i.e. in every round one node is in charge and coordinates

the search. The objective of each round is to find a node with a lower cost than the currently

discovered one. If such node is not found in the current round, the message is bounced back to

the coordinator. These bounces inform the coordinator that the search may not be going in the

right direction and that the optimal node might have already been found. Additionally, they

could be used to decrease the search space, hence speeding up the discovery process and lower

the number of messages required to find the node.

All three algorithms decrease the bounce variable whenever the assignment message has been

bounced back. The algorithm stops if at least one of the following conditions is met: i) all

possible processing nodes have been visited or ii) the number of bounces reaches 0. If the initial

value of bounces >= |possible processing nodes| then the bounces variable has no influence on

the search algorithm.

6.4. Processing Node Discovery Algorithm 123

Algorithm 10 Processing Node Discovery for Heterogeneous Networks - Query Algorithm

Preamble: on on receiving a message of type Query do execute ReceiveQuery
query - a structure representing a query received from a user communicating with the node
via cell phone

1: procedure ReceiveQuery(query)
2: retrieve all possible processing nodes for query
3: repeat
4: retrieve the cost from the closest processing node
5: if the cost < minimal cost then
6: store the processing node
7: else
8: bounces← bounces− 1
9: end if

10: until bounces = 0 or all processing nodes have been requested
11: nodeId← the node with the lowest cost node
12: packet.query ← query
13: SendForwardedMsg(packet, nodeId) . Send the query to the node with the lowest

cost. The node will become the processing node.
14: end procedure

The main difference between algorithm for homogeneous and heterogeneous networks is that

while in the case of homogeneous networks communication occurs only among neighbours,

in the case of heterogeneous networks the possible processing nodes are arbitrary number of

hops away. Therefore, instead of using broadcast, a reliable multi-hop forwarding algorithm,

described in Section 3.4, is used for communication.

In all of the proposed algorithms for heterogeneous networks we investigate a scenario where

a forwarding node is allowed to inspect the packet and, if a condition is met, act on behalf of

the destination node by bouncing the message back to the sender. By allowing a message to be

bounced back before it reaches the destination node it is possible to further reduce the search

space and speed up the discovery process. However, if the message is bounced back under

false assumptions, it may lead to discovering sub-optimal processing node. While evaluating

our algorithms we investigate the influence of the bouncing conditions on the optimality of the

discovered processing node.

124 Chapter 6. Continuous Queries

n0/8

n1/6 n2/9

n3/5

n4/7

n5/8

n6/4

n7/5

n8/6

n9/5n9/5 n10/6

Node: n9

bounces: 1

possible nodes: n7, n1, n2

min. cost: null

join node: null

(a)

n0/8

n1/6 n2/9

n3/5

n4/7

n5/8

n6/4

n7/5

n8/6

n9/5n9/5 n10/6

Node: n9

bounces: 1

possible nodes: n1, n2

min. cost: 5

join node: n7

(b)

n0/8

n1/6 n2/9

n3/5

n4/7

n5/8

n6/4

n7/5

n8/6

n9/5n9/5 n10/6

Node: n9

bounces: 0

possible nodes: n2

min. cost: 5

join node: n7

(c)

n0/8

n1/6 n2/9

n3/5

n4/7

n5/8

n6/4

n7/5n7/5

n8/6

n9/5 n10/6

(d)

Figure 6.4: Query Algorithm for Heterogeneous WSNs.

Query Algorithm

The Query algorithm shown is in Algorithm 10. Please note, that the word “query” refers to

the name of the algorithm and it does not describe overall overview of how a query is processed.

The algorithm is based on a principle of the coordinating node requesting costs from the list of

possible processing nodes until bounces = 0 or the list of possible processing nodes is empty.

This process is depicted in Figure 6.4. In the figure the nodes are marked in the form of

“ID/cost”, where the cost is the sum of distances to all the source nodes. The source nodes are

diamond shaped (n3, n8 and n9) and possible processing nodes are of the shape of a polygon

(n1, n2, and n7). The coordinator is coloured in green and the processing node in red.

6.4. Processing Node Discovery Algorithm 125

Algorithm 11 Processing Node Discovery for Heterogeneous Networks - Traverse Algorithm
- Part 1

Preamble: on receiving a query from a user do execute ReceiveQuery procedure
query - a structure representing a query submitted by a user to any node

1: procedure ReceiveQuery(query)
2: packet.list← retrieve the list of possible processing nodes
3: packet.cost← null
4: packet.bounces← initial value
5: nodeId← choose the closest possible processing node from the packet.list
6: SendForwardedMsg(packet, nodeId) . Send a message of type Assignment to the

closest node from the packet.list
7: end procedure

The process begins with the coordinator requesting the list of possible processing nodes and

ordering them in ascending order according to their distance from the coordinator. The bounces

variable is set to a predefined value, in this case bounces = 1 (Figure 6.4a). A request to the

first node from the possible processing nodes list is sent. The request contains the list of source

nodes and their selectivities only. In Figure 6.4b the request, depicted as a dashed line, is sent

to node n7, which replies with its cost (c7 = 5). The coordinator removes the node from the

list and saves the cost if it is lower than the one discovered so far. Otherwise, bounces variable

is decreased. This process is repeated until either the possible processing nodes list is empty or

the bounces = 0. In Figure 6.4c, after the coordinator receives the cost c1 = 6 from node n1,

which is higher than the cost of node n7 the bounce variable is decreased. Because bounce = 0

node n2 is not requested for its cost but node n7 is chosen as the processing node (line 11). In

Figure 6.4d is the assignment message depicted as a dotted line.

Traverse Algorithm

The Traverse algorithm described in Algorithms 11, 12, and 13 is based on traversing the

possible processing nodes from one to another. The process is depicted in Figure 6.5 and uses

the same notation as the Query algorithm. The initiating node becomes the first coordinator

and retrieves the list of all possible processing nodes from the DSAT. The coordinator then

sends an assignment message to the closest possible processing node (lines 2–6). The assignment

contains the list of source nodes with their selectivities, the list of possible processing nodes

126 Chapter 6. Continuous Queries

Algorithm 12 Processing Node Discovery for Heterogeneous Networks - Traverse Algorithm
- Part 2

Preamble: on receiving a message of type Assignment (sent on line 6, 24, or 41) do execute
ReceiveAssignment procedure
packet - a packet which contains a structure representing the query, minimal cost, list of
possible processing nodes, and bounces left
senderId - the node which sent the message of type Assignment

8: procedure ReceiveAssignment(packet, senderId)
9: query ← packet.query

10: minimal cost← packet.cost
11: list← packet.list
12: cost← compute cost for the query
13: remove this node from the list of possible processing nodes
14: if the cost > minimal cost then
15: send a message of type Reply to senderId
16: else if the list of possible processing nodes is empty then
17: declare this node to be the processing node
18: inform all nodes participating in the query about the processing node
19: else
20: nodeId← choose the closest possible processing node from the list
21: packet.query ← query
22: packet.list← list
23: packet.cost← cost
24: SendForwardedMsg(packet, nodeId) . Send a message of type Assignment to

the closest node from the list
25: end if
26: end procedure

that have not been visited yet, the minimal cost discovered so far, and the bounces variable.

Sending the first assignment message could be seen in Figure 6.5a where node n9 sends an

assignment to node n1.

Upon receiving an assignment the node removes itself from the list of possible processing nodes

and computes the cost for given query. If cost <= minimal cost the node becomes a new

coordinator and sends an assignment to the closest node from the possible processing node. If

the list is empty, it means that all possible processing nodes have been visited, therefore the

node declares itself as the processing node (line 17). Sending an assignment to node n7 by node

n1 is depicted in Figure 6.5b. Similarly, in Figure 6.5c, node n7 sends an assignment to node

n2.

However, if cost > minimal cost the node bounces the assignment back to the previous node,

6.4. Processing Node Discovery Algorithm 127

Algorithm 13 Processing Node Discovery for Heterogeneous Networks - Traverse Algorithm
- Part 3

Preamble: on receiving a message of type Reply (sent on line 15) do execute procedure
ReceiveReply
packet - a packet which contains a structure representing the query, minimal cost, list of
possible processing nodes, and bounces left
senderId - the node which sent the message of type Reply

27: procedure ReceiveReply(packet, senderId)
28: query ← packet.query
29: bounces← packet.bounces
30: list← packet.list
31: bounces← bounces− 1
32: if bounces = 0 or the list of possible processing nodes is empty then
33: declare this node to be the processing node
34: inform all nodes participating in the query about the processing node
35: return
36: end if
37: packet.query ← query
38: packet.list← list
39: packet.bounces← bounces
40: nodeId← choose the closest possible processing node from the list
41: SendForwardedMsg(packet, nodeId) . Send a message of type Assignment to the

closest node from the list
42: end procedure

i.e. the node from which it received the assignment (line 15). In Figure 6.5c node n2 bounces

the assignment back to node n7 as its cost c2 = 9 is larger than c7 = 5. Upon receiving the

reply the node decreases the bounce variable (line 31). If bounce = 0 or the list of possible

processing nodes is empty, the node declares itself the processing node (line 33). If the list is

not empty, it continues in the search and sends an assignment to the closest node from the list

(line 41). In Figure 6.5d both of these conditions were met, therefore node n7 declares itself as

the processing node.

Mixed Algorithm

The Mixed algorithm combines the algorithm for homogeneous networks and the Query algo-

rithm. How the algorithm operates is depicted in Figure 6.6. The figure uses the same notation

as in the case of the Query algorithm. First, the algorithm for homogeneous networks finds

128 Chapter 6. Continuous Queries

n0/8

n1/6 n2/9

n3/5

n4/7

n5/8

n6/4

n7/5

n8/6

n9/5n9/5 n10/6

Node: n9

bounces: 1

possible nodes: n1, n7, n2

min. cost: null

join node: null

(a)

n0/8

n1/6n1/6 n2/9

n3/5

n4/7

n5/8

n6/4

n7/5

n8/6

n9/5 n10/6

Node: n1

bounces: 1

possible nodes: n7, n2

min. cost: 6

join node: n1

(b)

n0/8

n1/6 n2/9

n3/5

n4/7

n5/8

n6/4

n7/5n7/5

n8/6

n9/5 n10/6

Node: n7

bounces: 1

possible nodes: n2

min. cost: 5

join node: n7

(c)

n0/8

n1/6 n2/9

n3/5

n4/7

n5/8

n6/4

n7/5n7/5

n8/6

n9/5 n10/6

Node: n7

bounces: 0

possible nodes:

min. cost: 5

join node: n7

(d)

Figure 6.5: Traverse Algorithm for Heterogeneous WSNs.

the optimal processing node amongst all nodes. In Figure 6.6a is this process shown with a

dotted arrow. More in-depth description could be find in Figure 6.2. Next, this node is used as

the starting point for the Query algorithm with very strict bouncing criteria, i.e. only a very

small fraction of possible processing nodes are requested for their cost. We assume that the

optimal possible processing node is in a close proximity to the optimal processing node, but not

necessary the closest one. In the example in Figure 6.6 bounce = 1 so the coordinator requests

costs from node n7 (Figure 6.6b) and n2 (Figure 6.6c). At the end, the node with the lowest

cost is chosen as the processing node and the assignment is sent to this node (Figure 6.6d).

6.5. Query Tuple Buffering Optimisation 129

n0/8

n1/6 n2/9

n3/5

n4/7

n5/8

n6/4

n7/5

n8/6

n9/5n9/5 n10/6

(a)

n0/8

n1/6 n2/9

n3/5

n4/7

n5/8

n6/4n6/4

n7/5

n8/6

n9/5 n10/6

Node: n6

bounces: 1

nodes to visit: n1, n2

min. cost: 5

join node: n7

(b)

n0/8

n1/6 n2/9

n3/5

n4/7

n5/8

n6/4n6/4

n7/5

n8/6

n9/5 n10/6

Node: n6

bounces: 0

nodes to visit: n2

min. cost: 5

join node: n7

(c)

n0/8

n1/6 n2/9

n3/5

n4/7

n5/8

n6/4

n7/5n7/5

n8/6

n9/5 n10/6

Node: n7

bounces: 0

nodes to visit:

min. cost: 5

join node: n7

(d)

Figure 6.6: Mixed Algorithm for Heterogeneous WSNs.

6.5 Query Tuple Buffering Optimisation

Each epoch every source node senses the required value and sends the query tuple, in the

form of 〈source id, epoch, value〉 to the processing node using the reliable multi-hop forwarding

algorithm described in Section 3.4. As the query tuples from two different sources are forwarded

towards the processing node they may pass via a common node. This node can, instead of

forwarding each query tuple separately, merge two or more query tuples into a single message

in order to lower the network traffic. We refer to this node as the merging node.

Each node, that is forwarding a query tuple towards the processing node, keeps the list of source

nodes producing the query tuples. Once a forwarding node registers it is forwarding query

130 Chapter 6. Continuous Queries

0

168

36

99

156

2

145
62

63

230

67

98

25

47

136

4461

85

92

76 182

141

236

88

221

161

Figure 6.7: Query Tuple Buffering. The graph depicts routes travelled by the packets from
the source nodes (shown as squares) to the processing node n2 depicted as a circle. Nodes
n0, n44, n47, n61, n62, and n63 can perform QTB as packets from multiple source nodes pass
through them. Nodes which do not forward any packets for given query are omitted from the
graph.

tuples from more than one source node for the same query, it becomes a merging node and

executes the Query Tuple Buffering algorithm described in Algorithm 14 and 15. The merging

node receives query tuples from several source nodes and merges them into one message. The

merged message is then forwarded towards the processing node.

6.5. Query Tuple Buffering Optimisation 131

Algorithm 14 Query Tuple Buffering - Part 1

Preamble: on receiving a packet of type Tuple do execute ReceiveTuple procedure
packet - a packet which contains data tuple, query identifier, and the sourceId of the node
which sensed and sent the tuple
senderId - a neighbour from whom the packet was received
maximum delay - a global variable storing the maximum delay for given query
source list - a global variable storing a list of sources for given query
buffer - a global variable storing tuples for given query in the same epoch

1: procedure ReceiveTuple(packet, senderId)
2: tuple← packet.tuple
3: query ← packet.query
4: sourceId← packet.sourceId
5: if this is the first tuple in this epoch then
6: rcv time← current time
7: timer ← set up a timer to expire at rcv time+maximum delay
8: end if
9: if there is only one source node in the source list then

10: forward tuple towards the processing node . Simple forwarding without merging.
11: cancel timer
12: return
13: end if
14: if tuples for current epoch have already been sent then
15: forward tuple towards the processing node . Simple forwarding without merging.
16: update maximum delay . A tuple arrived later than usually therefore

the maximum delay is updated so in the next epoch the merging node waits longer for all
tuples to arrive.

17: return
18: end if
19: add tuple to the buffer
20: enqueue acknowledgement packet for senderId
21: if the number of tuples in buffer equals to the number of sources in the source list

then . tuples from all sources in this epoch have been received
22: packet← merge tuples in buffer
23: nodeId← processing node for the query
24: SendForwardedMsg(packet, nodeId) . Send merged tuples to the processing

node.
25: ackPacket← merge all pending acknowledgement packets
26: Broadcast(ackPacket)
27: cancel timer
28: end if
29: end procedure

We have already described packets merging as a part of the routing algorithm in Section 3.4.1,

however, it was limited only to packets which arrive at the same time. Obviously, this may

not always be possible as the source nodes could be arbitrary number of hops away from the

132 Chapter 6. Continuous Queries

Algorithm 15 Query Tuple Buffering - Part 2

Preamble: on expiration of the timer associated with the buffer (set on line 7) do execute
MaxDelayExpiration procedure
buffer - the buffer the timer is associated with

30: procedure MaxDelayExpiration(buffer)
31: packet← merge tuples in buffer
32: nodeId← processing node for the query
33: SendForwardedMsg(packet, nodeId) . Send merged tuples to the processing node.
34: ackPacket← merge all pending acknowledgement packets
35: Broadcast(ackPacket)
36: end procedure

merging node, hence the messages can arrive at various time. Figure 6.7 depicts routing paths

in a network for one query. Source nodes are displayed at the edges of the graph while the

processing node is node n2 (shown as a circle). The difference in the arrival time of tuples to a

merging node can be seen at the merging node n44 which 2 hops away from the source node n141

but 3 hops away from the source node n221. In the case of the merging node n61 the difference

is even larger, the closest node n141 is 3 hops away while the furthest away source node n25 is

6 hops away.

And it is not only the distance which has an influence on the arrival time of tuples to a merging

node. There are many other reasons why the merging node may not receive a query tuple from

a source node at some epoch, e.g. the source node may not produce the query tuple, the query

tuple may be filtered by the dynamic condition of a query, the message may be lost, or a node

on the path between the source and the merging node may fail.

Therefore, the merging node has to continuously monitor the maximum delay, ∆d, i.e. the

largest difference between arriving of the first and the last query tuple within the same sampling

epoch. The maximum delay, obviously, mainly depends on the distance between the merging

node and the source node furthest away, but it is also influenced by the link quality on given

path. The merging node forwards all the query tuples in its buffer towards the processing node

whenever it has received all query tuples for given sampling epoch (line 21) or ∆d time later

since the arrival of the first query tuple in given sampling epoch (line 30). If a query tuple

arrives after the merging node has already sent all query tuples in the buffer, i.e. later than

6.6. Evaluation 133

∆d, the newly arrived query tuple is simply forwarded towards the processing node and the ∆d

is updated (line 14).

Recall, that in the reliable forwarding algorithm (described in Section 3.4) the sender considers

the message acknowledged when the sender snoops on the receiver to forward the same message

further or if the sender receives an acknowledgement packet from the receiver. However, because

the merged message differs from the original messages received from the source nodes, the

merging node has to act as the last hop in the reliable forwarding algorithm and send the

acknowledgement packet to every node it received a query tuple from. As the merging node

can also merge several acknowledgement packets into a single message it is more energy efficient

to wait for all the query tuples to arrive or for ∆d time before sending the acknowledgement

message.

However, the forwarding algorithm waits only for acknowledgement timeout period before con-

sidering the message not to be delivered and re-sending the message. Therefore, the merging

node has to send acknowledgement message before the timeout expires. If the timeout is very

short the merging node has to send acknowledgement for every query tuple received separately.

If the timeout is very long, it may have a negative effect on end-to-end delivery time. The

reason is that the sending node cannot distinguish between the receiver waiting for other query

tuples to arrive before acknowledging the message or not receiving the message at all. If the

message was not received, the sender has to re-send the message.

If Query Tuple Buffering is used we double the normal acknowledgement timeout and exper-

imentally show that it has very low impact on end-to-end delivery time while decreasing the

overall traffic.

6.6 Evaluation

To evaluate our algorithms we used the same settings as in evaluation of other parts of the

Dragon framework which was described in Chapter 2. We evaluate algorithms for homoge-

neous and heterogeneous networks separately. In both cases, the DSAT is split into 10 parts,

134 Chapter 6. Continuous Queries

f1

f2

f3

f4

f5

f6

Figure 6.8: An example of a pipe segment with flow sensors. The arrow shows the direction of
the flow of liquid in the pipe. Bars perpendicular to the arrows denote flow sensors.

i.e. every node is storing static attributes of 25 nodes.

6.6.1 Homogeneous Networks

In order to evaluate in-network data stream processing capabilities of Dragon platform we

revisit the pipe leak scenario from the Introduction of this chapter. To refresh reader’s memory,

in Figure 6.8 we can see an example of a pipe segment. Each flow sensor is uniquely identified

by ID. Additionally, each sensor is a member of two segments because each sensor ends one

segment but also begins another one. Lets assume that the ID of a segment the node starts

is saved in the x static attribute, while the one that the node ends is stored in the y static

attribute. Then, the query which will retrieve all flow readings from one segment may look as

follows:

SELECT S1.id, S1.flow, S2.id, S2.flow

FROM Sensors S1, Sensors S2

WHERE S1.x = S2.y

AND S1.flow > 0

EVERY 50 SECONDS.

If given query is submitted to node n1 it will identify nodes n2 . . . n6 as the sources for given

query. The processing node will retrieve flow readings from nodes n1 . . . n6 every 60 seconds

and pass them to the application for leak detection.

In our evaluation we focus, as usually, on two metrics: i) the number of messages and ii) the

6.6. Evaluation 135

processing delay. While the first metric shows how energy efficient the platform is, the latter

one shows how fast the network can react to the monitored phenomenon. The sooner the source

nodes can deliver data to the processing node, the faster can the processing node react to the

input and act upon it.

We evaluate two versions of Dragon (with and without Query Tuple Buffering (QTB) opti-

misation) against three different approaches: i) process at-the-base, ii) process at the source

node, and iii) pair-wise joining with three different join node selectivities. Processing at the

base-station is the simplest, therefore commonly used solution. We have included this approach

to show a baseline for other approaches. Processing data at a source is similar to the process-

ing at-the-base, with the difference that data streams are processed at one of the source nodes.

This strategy may decrease the network traffic because one of the source node is not required to

transfer data to any other node and can process them locally. An alternative is processing on

a random node in the network. The node could be chosen using, for example, a hash function

[PG06, CG05]. However, it has been shown that processing data on a random node in the

network leads to higher network traffic than processing at-the-base [MJIG10].

The last approach, and the state-of-the-art algorithm for distributed in-network data stream

processing is an implementation of the pair-wise join algorithm, Innet [MJIG08, MJIG10]. The

pair-wise join, as its name suggests, joins exactly two streams of values. In the scenario from

Figure 6.8, using the pair-wise join, node n1 finds five join nodes, each of which joins data stream

produced by n1 and one other node. The location of the join node depends on selectivity of the

two source nodes and the selectivity of the join node. Pair-wise join is able to lower the network

traffic only if the selectivity of the join node is low. Innet framework periodically compares the

cost of in-network pair-wise processing with processing at the base and chooses the one with a

lower cost.

It is important to note the pair-wise joining produces only partial results. If the join condition

is not met, the pair is discarded, otherwise it is sent to a base-station (or any other common

node) which collects all joining pairs from the whole network and performs the final processing.

For comparison we used pair-wise joining with three different selectivity of the pair-wise join

136 Chapter 6. Continuous Queries

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

D MD MS S RD RMD RMS RS

M
e
s
s
a
g
e
s
 (

c
o
u
n
t)

Dragon QTB
Dragon

Base-station
At the Source

Innet 20%
Innet 10%
Innet 5%

Figure 6.9: Comparison of the number of messages sent by various in-network processing algo-
rithms.

nodes: 5%, 10%, and 20%. In case the selectivity of the join node is higher, Innet automatically

switches to processing at-the-base. Using the pair-wise selectivity, it is possible to compute the

overall selectivity of the processing node as:

σ = σ|S|−1p (6.4)

where σ is the overall selectivity, σp is the pair-wise selectivity and |S| is number of sources

participating in the query.

During the evaluation, each source node sampled and sent a value every 50 seconds for the

overall duration of 10000 cycles. As a result, every node produced 200 values which were sent

to the processing node.

A comparison of an average number of messages sent in the network of various topologies and

densities can be seen in Figure 6.9. The comparison of Dragon with QTB optimisation is

summarised in Table 6.1. Interestingly, processing data at the source outperformed processing

at-the-base in all but random medium sparse topology. The savings ranged from 9 − 37%

6.6. Evaluation 137

Table 6.1: Number of messages comparison of Dragon QTB with various algorithms for
in-network data stream processing.

Topology Uniform
Density Dense Med. Dense Med. Sparse Sparse

Dragon w/o QTB 0.2% 14.6% 15.7% 13.6%
Base-station 50.7% 53.2% 62.3% 55.6%
At the Source 27.7% 39.7% 40.4% 49.3%
Innet 20% 37.1% 44.8% 47.1% 38.6%
Innet 10% 25.3% 35.3% 34.1% 21.2%
Innet 5% 18.2% 23.2% 27.5% 18.3%
Topology Random
Dragon w/o QTB 16.5% 8.2% 16.7% 7.4%
Base-station 59.1% 38.2% 44.9% 42.3%
At the Source 35.5% 31.8% 50.6% 33.5%
Innet 20% 19.8% 21.0% 23.4% 16.8%
Innet 10% 37.8% 14.6% 21.4% 11.8%
Innet 5% 36.0% 11.9% 17.5% 10.3%

with an average of 23%. Despite the fact that these two techniques look similarly, significant

savings can be achieved when data are processed at a source. The saving is achieved because

the processing source node does not have to send data to another node but only receives data

and process them locally with its own data stream. Additionally, Chatzimilioudis et al. showed

that under certain circumstances the optimal Fermat-Weber node is often one of the source

nodes [CCGM13].

Comparing the pair-wise join with processing at-the-base shows that savings up to 49% could

be achieved and on average ranges between 28% and 38%, depending on the selectivity of the

join node. The lower the selectivity is, the bigger savings could be achieved. One of the reasons

why pair-wise join can effectively lower the network traffic is the fact they can exploit multicast

trees, because a value from one source node is delivered to several processing join nodes. A

multicast tree can do this delivery with a very small overhead. Additionally, where the join

node selectivity is low it is most energy efficient to perform join at the sources, so only one

source node uses multicast tree to deliver its sensed value to every other source node, while

other source nodes join the received value with the value sensed locally.

However, using Dragon to find one central processing node at an optimal position (Fermat-

Weber point) can further lower the traffic on average by 10% when compared with Innet with 5%

138 Chapter 6. Continuous Queries

 0

 5

 10

 15

 20

 25

D MD MS S RD RMD RMS RS

D
e
la

y
 (

c
y
c
le

s
)

Dragon QTB
Dragon

Base-station
At the Source

Innet 20%
Innet 10%
Innet 5%

Figure 6.10: Comparison of the delay in tuple processing by various in-network processing
algorithms.

Table 6.2: Delay in data processing comparison of Dragon QTB with various algorithms for
in-network data stream processing.

Topology Uniform
Density Dense Med. Dense Med. Sparse Sparse

Dragon w/o QTB -8.1% -9.8% -1.3% -10.8%
Base-station 38.5% 31.1% 41.9% 34.6%
At the Source 20.2% 24.8% 26.9% 41.8%
Innet 20% 42.3% 38.2% 40.1% 31.5%
Innet 10% 38.0% 33.0% 33.8% 22.3%
Innet 5% 38.6% 29.6% 31.6% 20.3%
Topology Random
Dragon w/o QTB -7.5% -11.0% -8.8% -1.0%
Base-station 33.0% 13.3% 19.9% 35.9%
At the Source 25.6% 20.4% 43.9% 33.7%
Innet 20% 16.0% 20.2% 15.1% 34.5%
Innet 10% 33.0% 20.5% 14.6% 35.6%
Innet 5% 34.6% 20.1% 14.1% 33.9%

join node selectivity. Furthermore, if Query Tuple Buffering optimisation is used, the network

traffic is lowered even more leading to the overall average savings of 20% when compared to

the best performing Innet algorithm.

Next we compare the delay of in-network data stream processing. We evaluate the duration of

6.6. Evaluation 139

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

D MD MS S RD RMD RMS RS

C
o
s
t
s
tr

e
tc

h
 (

%
)

Figure 6.11: Percentage increase of cost of the discovered processing node vs. the optimal
processing node.

a period starting when the first source node in given epoch senses the data and ending when the

processing node receives the data from the last source node within the same epoch. Shortening

this delay is especially important in actuation networks where an action needs to be taken as

soon as possible once a phenomenon is observed, e.g. a valve needs to be closed as soon as

a leak is detected. From Figure 6.10 and summarising Table 6.2 it can be clearly seen that

Dragon decreases the network delay on average by 33− 36% depending on the algorithm it is

compared to. As expected, the Query Tuple Buffering version increases the network delay on

average by 7%. This increase is caused by increasing the acknowledgement timeout period in

the forwarding algorithm. We leave the decision which version of Dragon algorithm to use on

the developer, depending on what is more important for the implemented application - whether

lowering the network traffic or decreasing the network delay.

Last we evaluate the cost stretch, i.e. percentage increase in the cost of the discovered processing

node vs. the optimal processing node. In Figure 6.11 we can see the average cost stretch grouped

by network topologies and density. As it can be seen, the average cost increase varies between

0.1% and 4%. The overall average cost increase is less than 1%.

140 Chapter 6. Continuous Queries

n0/8

n1/6n1/6 n2/9

n3/5

n4/7

n5/8

n6/4

n7/5

n8/6

n9/5 n10/6

Node: n1

bounces: 1

possible nodes: n7, n2

min. cost: 6

join node: n1

Figure 6.12: Influence of bouncing on the Processing Node Discovery algorithms for heteroge-
neous networks.

6.6.2 Heterogeneous Networks

In the evaluation of algorithms for heterogeneous networks we focus on three metrics: i) cost

stretch, i.e. percentage increase in the cost of the discovered processing node vs. the optimal

processing node, ii) the number of messages required to discover the processing node, and

iii) the time it takes to find the processing node. To the best of our knowledge, there is no

other framework supporting in-network processing for heterogeneous networks, therefore we

compare our query and traverse algorithms with the simplest solution - processing at-the-base.

We assume that the base-station is the most powerful node, capable of processing any number

of data streams.

In our experiments we also study the influence of bouncing the messages which can significantly

narrow down the search space. We illustrate how a message could be bounced on Figure 6.12.

Here, the coordinating node n1 is sending an assignment message to node n7. Cost of processing

data streams at node n1 is c1 = 6 while at node n7 it is c7 = 5.

We study cases when only the destination node can bounce the message. In our example it

means that only node n7 is allowed to bounce the message back to node n1. We also investigate

6.6. Evaluation 141

cases, when any forwarding node on the path can act on behalf of the destination node. In our

example it means that, depending on the path the message is taking, either node n4 or n6 can

act on behalf of node n7.

In our evaluation we study the influence of the bounces variable on the search quality. We vary

the initial value of the variable and we set it to bounces = {100%, 50%, 25%} of the number

of the possible processing nodes. In practise it means that at least 100%, 50%, or 25% of the

possible processing nodes are queried for their cost.

Additionally, we investigate how the cost threshold which influences when a bounce by a for-

warding node is triggered.

Bouncing by a forwarding node occurs when the cost of processing at the forwarding node is

higher than the cost threshold cT :

cT = bounce threshold×minimal cost (6.5)

In our evaluation we use two values as the bounce threshold ∈ {1, 1.25}, i.e. if the cost of

the forwarding node is either higher than the minimal cost or more than 25% higher than the

minimal cost. If we look back to our example in Figure 6.12 if the assignment message is sent

via node n6, it will always reach node n7. However, if the message is sent via node n4 and the

bounce threshold = 1 then the forwarding node n4 will bounce the message back to node n1,

because c4 = 7 which is more than c1 =. Therefore, the optimal processing node n7 will not be

discovered. On the other hand, if the bounce threshold = 1.25 then the message is not bounced

by node n4 and is forwarded to node n7.

In our experiments we mark the result as “No Bounce” if bouncing occurs only at the destination

node and the number of bounces is not limited. In other cases we allow any forwarding node

to intercept the message and bounce it back. We use abbreviation BS for bounces variable and

“BT” for bounce threshold.

To evaluate the algorithms for heterogeneous networks we use the same query as for the homo-

142 Chapter 6. Continuous Queries

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

B
a
s
e
-s

ta
tio

n

N
o
 B

o
u
n
c
e

B
S

 1
0
0
%

 B
T

 0
%

B
S

 5
0
%

 B
T

 0
%

B
S

 2
5
%

 B
T

 0
%

B
S

 1
0
0
%

 B
T

 2
5
%

B
S

 5
0
%

 B
T

 2
5
%

B
S

 2
5
%

 B
T

 2
5
%

C
o
s
t
in

c
re

a
s
e
 (

%
)

Base-station
Query

Traverse

(a) Cost stretch

 0

 100

 200

 300

 400

 500

 600

B
a
s
e
-s

ta
tio

n

N
o
 B

o
u
n
c
e

B
S

 1
0
0
%

 B
T

 0
%

B
S

 5
0
%

 B
T

 0
%

B
S

 2
5
%

 B
T

 0
%

B
S

 1
0
0
%

 B
T

 2
5
%

B
S

 5
0
%

 B
T

 2
5
%

B
S

 2
5
%

 B
T

 2
5
%

M
e
s
s
a
g
e
s
 (

c
o
u
n
t)

Base-station
Query

Traverse

(b) Messages

Figure 6.13: Comparison of Query and Traverse algorithms with processing at the base-station.
The comparison is for Query 1 which leads to selection of a smaller number of possible processing
node. “BS” stands for “Bounce Size” and “BT” stands for “Bounce Threshold”.

6.6. Evaluation 143

geneous network to retrieve the list of source nodes and their selectivities. After retrieving the

list the initialising node issues the following query:

SELECT id FROM dsat WHERE y > 80.

This simulates retrieving the list of possible processing nodes from the DSAT. The first case,

marked as Query Q1 (Figure 6.13), results in finding 14 − 30 possible join nodes (with an

average of 22) and 2 − 12 source nodes (with an average of 6). The number of nodes capable

of processing the data streams is on average less than 9% of all the nodes in the network. The

fact that only a small fraction of nodes are able to process the data streams is important for

the traverse algorithm as it requires a list of nodes which need to be visited to be sent along

with the message. In the case where the message has to be fragmented into many parts, the

overall traffic will significantly increase. The advantage of the query algorithm is that it does

not require the list of join nodes to be included in the discovery message as the initiating node

orchestrates the search and only this node needs to keep the list of potential processing nodes

in memory.

From the Figure 6.13a it can be clearly seen that whenever bouncing is used the traverse

algorithm outperforms the query algorithm in terms of cost stretch, while both significantly

outperform the processing at-the-base algorithm. The average difference between the cost of

the optimal processing node and the processing node discovered by the traverse algorithm was

constantly less than 3% while in case of the query algorithm it varied between 3− 20%. It can

be clearly seen that the more relaxed the bouncing criteria are, i.e. either more join nodes are

queried (bounce size is higher) or the bounce threshold is higher, the query algorithm performs

significantly better. On the other hand, the bouncing criteria do not have such a big impact

on the traverse algorithm. Bouncing criteria influence the query algorithm because the search

is orchestrated from a single node. If the cost of one of the initiator’s neighbour is higher, e.g.

due to the incorrect routing table, all possible join nodes for whom the given node is saved as

the next hop, will be eliminated from the search and will not be visited.

It can also be seen that the best performance is achieved when bouncing is done only by the

possible processing nodes, not the forwarding nodes. In this case both algorithms achieved 0%

144 Chapter 6. Continuous Queries

cost increase, which was expected as all possible processing nodes were visited.

The second Figure 6.13b displays number of messages required to discover the processing node.

As expected, most messages are sent when the messages are bounced only by the destination

nodes. Additionally, the more relaxed the bouncing criteria are, the more messages are being

sent. This behaviour is expected as with more relaxed bouncing criteria either more possible

processing nodes are queried (if the bounce size is higher) or the discovery message travels

further (if the bounce threshold is higher). It can also be seen that the difference between the

query and traverse algorithm is negligible if forwarding nodes are allowed to bounce messages.

The biggest difference of 20% between the query and the traverse algorithm is in the case

when bouncing occurs only on destination nodes. This behaviour is also expected as the query

algorithm initiates the search form a single node while in case of the traverse algorithm it

traverses through all the join nodes while visiting the closest nodes first.

More interestingly, the cost of selecting the base-station as the processing node is not much

cheaper (in terms of messages), especially if strict bouncing criteria are applied. This suggests

that the cost of finding a processing node is dominated by finding the list of sources, retrieving

their selectivities, notifying the processing node, and notifying the source nodes about the

processing node.

We also compared the time it takes to find the processing node, however, we concluded that

they are practically identical with those that compare the number of messages. Indeed, as the

algorithms for heterogeneous networks rely on unicast rather than on broadcast the correlation

between number of messages and time is very strong.

In the second case the restrictions on the possible processing node were more relaxed and the

possible processing nodes were retrieved using following query:

SELECT id FROM dsat WHERE y > 60.

In this case the query Q2 (Figure 6.14) resulted in a much higher number of possible processing

nodes - 55 on average - which rendered the traverse algorithm unusable due to the fact that

the traverse algorithm has to pass the list of possible processing nodes from a node to a node.

6.6. Evaluation 145

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

B
a
s
e
-s

ta
tio

n

M
ix

e
d

N
o
 B

o
u
n
c
e

B
S

 1
0
0
%

 B
T

 0
%

B
S

 5
0
%

 B
T

 0
%

B
S

 2
5
%

 B
T

 0
%

B
S

 1
0
0
%

 B
T

 2
5
%

B
S

 5
0
%

 B
T

 2
5
%

B
S

 2
5
%

 B
T

 2
5
%

C
o
s
t
in

c
re

a
s
e
 (

%
)

Base-station
Query
Mixed

(a) Cost stretch

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

B
a
s
e
-s

ta
tio

n

M
ix

e
d

N
o
 B

o
u
n
c
e

B
S

 1
0
0
%

 B
T

 0
%

B
S

 5
0
%

 B
T

 0
%

B
S

 2
5
%

 B
T

 0
%

B
S

 1
0
0
%

 B
T

 2
5
%

B
S

 5
0
%

 B
T

 2
5
%

B
S

 2
5
%

 B
T

 2
5
%

M
e
s
s
a
g
e
s
 (

c
o
u
n
t)

Base-station
Query
Mixed

(b) Messages

Figure 6.14: Comparison of Query and Traverse algorithms with processing at the base-station.
The comparison is for Query 2 which leads to selection of a larger number of possible processing
node. “BS” stands for “Bounce Size” and “BT” stands for “Bounce Threshold”.

146 Chapter 6. Continuous Queries

This led to message fragmentation and a large increase in the number of messages sent. On

the other side, the query algorithm does not require the list of possible processing nodes to be

included in the processing node discovery message. This leads to a significant message savings

as only one node orchestrates the search.

For the cases where the number of possible processing nodes is much higher than the packet

size we evaluate the mixed algorithm. Once the optimal processing node is found using the

algorithm for homogeneous networks we use the query algorithm with a very strict bouncing

criteria - in our experiments we query only 15% of the closest possible processing nodes from

the optimal processing node for their costs.

As it can be seen from the Figure 6.14a the cost increase for the query algorithm is very similar

to the cost increase in the case of the first query in Figure 6.13a. On the other hand, the

mixed algorithm performs very well with only 4% cost increase. Similarly to the first query,

the processing at-the-base is on average 40% more expensive when compared with the optimal

one.

If the number of messages is compared (Figure 6.14b), it can be seen that finding the processing

node using the mixed algorithm is comparably cheap to processing at-the-base and cheaper than

most of the query algorithm. We can see that the most messages are sent when bouncing is

done only by processing nodes and significant number of messages can be saved by introducing

bouncing by the forwarding nodes. The trend is similar to the first query. Similarly, the time

is highly correlated with the number of messages; unsurprisingly.

The network is resilient to the node failure as it is handled by the routing layer described in

Chapter 3. If a node on the path between the source node and the join node fails, a new path is

automatically discovered. In the case of processing node failure, the processing node discovery

algorithm is restarted and a new processing node is found.

6.7. Conclusion 147

6.7 Conclusion

In-network data processing has been shown to be a very challenging problem in WSNs. Choos-

ing the right strategy can significantly decrease the number of messages transmitted within

the network, hence increase its lifetime. However, current approaches assume traditional WSN

where nodes are accessible only via a base-station which serves as a gateway between a user and

the network. Unfortunately, this node also represents a single point of failure. Additionally,

these approaches heavily rely on the base-station to perform part of the computation or to have

a global knowledge about the network.

TinyDB [MFHH03] relies on a base-station to push the query down the routing tree towards

the nodes participating in the query while exploiting the summaries stored at every node in

the tree. However, TinyDB does not support joining of two data streams, only one data stream

with a fixed size table stored at a node. Continuous Join Filtering (CJF) [SBB10] heavily rely

on a base-station to first identify the nodes participating in the query and then to produce

filters for each node. These filters are then pushed into the network. Subsequently, the base-

station is responsible for performing the final computation on data which were not filtered out.

Additionally, the base-station is also responsible for requesting the sensed data directly from

the nodes if they were filtered out but may contribute to the final result due to an outlying

reading from another node. In the case of SNEE [GBG+11] the base-station is required to

know the connectivity of the network prior to the query submission. The base-station stores

metadata describing each node in the network as well as the network itself. When a query is

submitted, SNEE uses these metadata to generate a Query Execution Plan. This plan is then

used to generate a different binary for every node. These binaries are uploaded to the nodes

which then execute one or more queries.

Innet [MJIG10] represents a framework where any node in the network can accept a query from

a user and therefore is the closest to our approach. Innet uses several tree summaries to find

the nodes participating in the query. However, Innet is capable to perform pair-wise joins only,

where only two data streams are joined. The result of the pair-wise join is sent to a base-station

where the final join is performed. Innet can significantly decrease the network traffic, however,

148 Chapter 6. Continuous Queries

only if the selectivity of the pair-wise join is very low. Otherwise, joining at the base-station

leads to a lower network traffic.

In this chapter we presented several algorithms for discovering a processing node at or near the

Fermat-Weber node, i.e. the node with the minimal weighted distance to every data source

in the network. By choosing a single processing node in the network we avoid the need to

have a base-station carrying out the final computation. This leads to a fully distributed design

with no single point of failure and it allows every node in the network to accept and execute a

query submitted by a user. However, choosing only one processing node for each query comes

at the expenses of possible network congestion around the processing node and the higher

computational requirements of the processing node.

The platform can operate in both homogeneous networks and heterogeneous networks, where

only a subset of the nodes is capable of processing the data. The algorithm for homogeneous

networks can find processing nodes whose cost is on average only 1% higher than the cost of the

processing node with the lowest cost. Two algorithms presented for heterogeneous networks

perform differently depending on the percentage of nodes capable of processing data streams.

The Traverse algorithm performs better if the set of possible processing nodes is small, while

the combination of algorithm for homogeneous networks and the Query algorithm performs

better for a larger set of possible processing nodes. Depending on the query and heterogeneity

of the network, algorithms can discover a node with no more than 4% higher cost than the

node with the lowest cost. Performing in-network processing at the nodes discovered by the

algorithms leads to a message reduction of up to 56% and decreases the processing delay by as

much as 42%.

Chapter 7

Summary and Conclusion

Wireless sensor network are gradually penetrating our day-to-day life. Currently, they are used

by researcher to observe and better understand the world around us, by companies to monitor

their assets, or by citizen hacker communities to make their lives easier. WSNs can be a very

flexible tool which could help us better understand underlying causes of a phenomenon, could

lower the running costs of various equipment, and make the life easier. However, there are still

many challenges that need to be addressed.

As the networks grow bigger in terms of the number of nodes deployed, it is getting more energy

inefficient to retrieve the information we are interested in. As the wireless communication is

usually one of the most energy hungry sub-system of a WSN node, the aim of every application

is to lower the network communication to the lowest possible level. This cannot be achieved

when every sensor reading is sent to a cloud where a user might eventually use it. Therefore,

researchers investigate possibilities of how to push the computation into the WSN in such way,

that the information a user is interested in is still delivered, but the wireless communication is

minimised.

In order to do so, we must first enhance node’s capabilities. Instead of periodically sensing and

sending the sensed value via the same path to a base-station we need to equip the node with

new abilities. First, we need to allow any node in the network to send data to any other node.

This should be done with as low communication overhead as possible, i.e. the message should

149

150 Chapter 7. Summary and Conclusion

follow the shortest path between two nodes and there should be no need to discover this path

prior to sending the message.

In Chapter 3 we presented and evaluated a new routing algorithm for WSNs based on routing

tables. Each node learns a distance and the next hop neighbour to every other node in the

network in a fast way with low communication overhead. The routing stretch achieved by

Dragon algorithm is less than 0.1% which allows every node to communicate with any other

node via optimal or near-optimal paths.

Once a node is capable of ad-hoc communication with any node in the network we should allow

it to identify all other nodes in the network which fulfil given static requirements. Searching by

static attributes is important in cases when a node has to identify all other nodes monitoring

the same phenomenon, e.g. oil flow on the same pipe. Each node should be able to do so

without flooding the whole network. Search should be fast and with a low communication

overhead.

In Chapter 4 we presented a Distributed Static Attribute Table (DSAT) which stores informa-

tion about all nodes in the network in a distributed way, similarly to how distributed databases

split tables and store them on different computers. By distributing the table throughout the

network, every node has to store only a small part of this table. Additionally, the table is

distributed in such a way that it allows every node to search in whole DSAT by communicating

with a close neighbourhood only.

If a node is able to identify a set of nodes with given static attributes and can communicate

with them directly without a need of a central node, the whole wide range of possibilities open.

Any node in the network can accept an ad-hoc query from any user and evaluate it.

In Chapter 5 we evaluated how the routing algorithm and the DSAT can be exploited to answer

snapshot queries submitted by users. Users are allowed to retrieve current readings only from

sensors they are interested in. Dragon supports snapshot query execution with a very low

communication overhead and in timely manner.

Finally, if a network is capable of serving ad-hoc snapshot queries, it can serve continuous

7.1. Contributions 151

queries, too. Here the problem arises as which node should process the data streams arriving

at predefined intervals. The problem of choosing the correct node is a very broad area of

research and many solutions were proposed. Due to the broadness of this subject, many of the

proposed solutions focus only on a small part of the problem and solve it for a specific criteria

only.

In Chapter 6 we proposed and evaluated algorithm for finding such processing node in a dis-

tributed way, without the need for any centralised node orchestrating the search. We showed

that processing data streams at the node discovered by our approach can significantly decrease

the network traffic as well as the processing delay. Additionally, we investigated the problem of

data stream processing in heterogeneous networks where some nodes have higher computational

capabilities than other nodes.

7.1 Contributions

In this thesis we introduced Dragon framework with the following list features which could

be considered as contributions to the WSN community.

1. We presented a new routing algorithm based on routing tables. Using a proactive ap-

proach and by exploiting broadcast capabilities of the wireless communication we can

achieve routing stretch as low as less than 0.1%. Additionally, the routing algorithm is

resilient to node failures and can adapt routing tables fast and with low communication

overhead.

2. Distributing and storing static attributes throughout the network allows any node in the

network to identify a set of nodes with given static attributes by communicating with close

neighbourhood only. We propose an algorithm which allocates parts of the Distributed

Static Attribute Table to nodes in such way that the average communication overhead is

decreased.

152 Chapter 7. Summary and Conclusion

3. We proposed an algorithm to disseminate static attributes of every node in the network

to a set of nodes. We compared our dissemination protocol with other traditional dissem-

ination protocols and showed that Dragon can decrease the network traffic on average

by 41%.

4. We proposed a framework for evaluation snapshot queries submitted by a user via any

node in the network. The node can identify all the nodes that satisfy user’s query and

request current sensor readings from these nodes. We compared our approach with other

state-of-the-art approaches and showed that Dragon can decrease the network traffic on

average by 71% and the processing delay by 48%.

5. We introduced a distributed algorithm for discovery of a processing node of continuous

queries in WSNs. The algorithm follows the cost gradient to the node with the lowest cost.

The cost of processing is computed as a sum of weighted distances from the processing

node to all the source nodes. We compared executing query at the node discovered

by Dragon with other state-of-the-art algorithms and we showed that Dragon can

decrease the network traffic by 20 − 51% depending on the algorithm the comparison

is done with. Processing query at the node discovered by Dragon also decreases the

processing delay by 33− 36% depending on the algorithm Dragon is compared to.

6. We also extended our work to the area of heterogeneous WSNs. We proposed three new

distributed algorithms for processing node discovery. We assume that in heterogeneous

networks only a sub-set of the nodes are able to process given query. Therefore the search

has to be limited to those nodes only. We showed that our algorithms are capable of

finding either optimal or near-optimal processing nodes.

7.2 Future Work

This work is a small contribution to the big area of in-network data stream processing. Now,

that we have showed advantages of our approach, we can see several possible extensions of

Dragon’s sub-systems.

7.2. Future Work 153

In the routing sub-system we find the requirement to store every destination to be not very

memory efficient. We would like to investigate the possibility to form groups of sensor nodes and

treat them as a single entity. This approach should significantly reduce memory requirements

at every node. However, group forming remains the biggest challenge. Our preliminary thought

experiments suggest that grouping nodes by cliques might lead to good results. If any node

knows the distance to a clique is d hops, then it can be sure that every node from that clique

could be reached within at most d + 1 hops. Additionally, if any node fails, we can be sure

that the clique will remain interconnected, as long as there are more than one node left in the

clique.

Another improvement could be achieved in forwarding algorithm by allowing a pair of nodes to

agree on the acknowledgement timeout period. Currently, we support only one global timeout,

which does not suit nodes which merge several messages into one. By allowing a pair of nodes

to agree on the acknowledgement timeout period we can achieve decrease in network traffic by

merging messages together, while not increasing the end-to-end delivery time in other parts of

the network.

We can also see limitations of our Distributed Static Attribute Table (DSAT) sub-system.

Currently, we do not support dynamic scalability and the number of parts the DSAT is split

into has to be chosen at deployment time. It cannot be changed without re-initialising the

DSAT algorithm and subsequently running the Static Attribute Propagation algorithm, which

fills the DSAT with data.

We also do not support updating of static attributes. We assume that once a node is deployed

its static attributes will never change. We recognise, that in real world it might not always be

true, therefore, we want to investigate the algorithms for updating the DSAT with new values.

Currently, the DSAT is horizontally partitioned. As the searches in the DSAT usually include

only one column we would like to investigate the possibility of vertical partitioning of the

DSAT. We believe that it could lead to significant savings in the preparation phase of the

query execution, both snapshot and continuous.

154 Chapter 7. Summary and Conclusion

The last improvement of Dragon we would like to implement is processing node migration in

the case when selectivity of one or more source nodes changes. We believe that implementing

this improvement will be straightforward as the position of the new processing node will usually

be in the close proximity of the previous one.

Finally, we would like to deploy and evaluate Dragon on real nodes. We plan to do it as a

part of the Information & Communication Technologies (ICT) project which we are part of.

Wireless sensor networks are slowly penetrating our life. In order to be able to exploit most of

their capabilities we should allow them to do the work instead of just use them to mindlessly

sense and report data. Here we have shown how a WSN can perform such computation in a

fast and efficient way.

Bibliography

[ABB+03] Arvind Arasu, Brian Babcock, Shivnath Babu, Mayur Datar, Keith Ito, Itaru

Nishizawa, Justin Rosenstein, and Jennifer Widom. Stream: The stanford stream

data manager (demonstration description). In Proceedings of the 2003 ACM SIG-

MOD International Conference on Management of Data, SIGMOD ’03, pages

665–665, New York, NY, USA, 2003. ACM.

[AL06] Z. Abrams and Jie Liu. Greedy is good: On service tree placement for in-network

stream processing. In Distributed Computing Systems, 2006. ICDCS 2006. 26th

IEEE International Conference on, pages 72–72, 2006.

[AML05] Daniel J. Abadi, Samuel Madden, and Wolfgang Lindner. Reed: Robust, effi-

cient filtering and event detection in sensor networks. In Proceedings of the 31st

International Conference on Very Large Data Bases, VLDB ’05, pages 769–780.

VLDB Endowment, 2005.

[BE02] David Braginsky and Deborah Estrin. Rumor routing algorthim for sensor net-

works. In Proceedings of the 1st ACM International Workshop on Wireless Sensor

Networks and Applications, WSNA ’02, pages 22–31, New York, NY, USA, 2002.

ACM.

[BHE00] N. Bulusu, J. Heidemann, and D. Estrin. Gps-less low-cost outdoor localization

for very small devices. Personal Communications, IEEE, 7(5):28–34, Oct 2000.

[Blo70] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors.

Commun. ACM, 13(7):422–426, July 1970.

155

156 BIBLIOGRAPHY

[BP00] P. Bahl and V.N. Padmanabhan. Radar: an in-building rf-based user location and

tracking system. In INFOCOM 2000. Nineteenth Annual Joint Conference of the

IEEE Computer and Communications Societies. Proceedings. IEEE, volume 2,

pages 775–784 vol.2, 2000.

[CcC+02] Don Carney, Uǧur Çetintemel, Mitch Cherniack, Christian Convey, Sangdon Lee,

Greg Seidman, Michael Stonebraker, Nesime Tatbul, and Stan Zdonik. Monitoring

streams: A new class of data management applications. In Proceedings of the 28th

International Conference on Very Large Data Bases, VLDB ’02, pages 215–226.

VLDB Endowment, 2002.

[CCGM13] Georgios Chatzimilioudis, Alfredo Cuzzocrea, Dimitrios Gunopulos, and Nikos

Mamoulis. A novel distributed framework for optimizing query routing trees in

wireless sensor networks via optimal operator placement. Journal of Computer

and System Sciences, 79(3):349 – 368, 2013. Theoretical and Practical Aspects of

Warehousing, Querying and Mining Sensor and Streaming Data.

[CD13] Zuhal Can and Murat Demirbas. A survey on in-network querying and tracking

services for wireless sensor networks. Ad Hoc Networks, 11(1):596 – 610, 2013.

[CG05] Vishal Chowdhary and Himanshu Gupta. Communication-efficient implementa-

tion of join in sensor networks. In In Proceedings of 10th International Conference

on Database Systems for Advanced Applications, pages 447–460, 2005.

[CN07] A. Coman and M.A. Nascimento. A distributed algorithm for joins in sensor

networks. In Scientific and Statistical Database Management, 2007. SSBDM ’07.

19th International Conference on, SSBDM ’07, pages 27–27, 2007.

[CnDLR12] Eduardo CañEte, Manuel Dı́Az, Luis Llopis, and Bartolomé Rubio. Hero: A

hierarchical, efficient and reliable routing protocol for wireless sensor and actor

networks. Comput. Commun., 35(11):1392–1409, June 2012.

BIBLIOGRAPHY 157

[CNS07] A. Coman, M.A. Nascimento, and J. Sander. On join location in sensor networks.

In Mobile Data Management, 2007 International Conference on, pages 190–197,

May 2007.

[Croa] Crossbow. Micaz datasheet. http://www.xbow.com/Products/Product pdf files/Wireless pdf/MICAz Datasheet.pdf.

[Crob] Crossbow. Telosb datasheet. http://www.willow.co.uk/TelosB Datasheet.pdf.

[DCABM05] Douglas S. J. De Couto, Daniel Aguayo, John Bicket, and Robert Morris. A high-

throughput path metric for multi-hop wireless routing. Wirel. Netw., 11(4):419–

434, July 2005.

[DF03] M. Demirbas and H. Ferhatosmanoglu. Peer-to-peer spatial queries in sensor

networks. In Peer-to-Peer Computing, 2003. (P2P 2003). Proceedings. Third In-

ternational Conference on, pages 32–39, Sept 2003.

[DGV04] A. Dunkels, B. Gronvall, and T. Voigt. Contiki - a lightweight and flexible oper-

ating system for tiny networked sensors. In Local Computer Networks, 2004. 29th

Annual IEEE International Conference on, pages 455–462, Nov 2004.

[Dij59] Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische

mathematik, 1(1):269–271, 1959.

[DL07] M. Demirbas and Xuming Lu. Distributed quad-tree for spatial querying in wire-

less sensor networks. In Communications, 2007. ICC ’07. IEEE International

Conference on, pages 3325–3332, June 2007.

[DLV13] Simon Duquennoy, Olaf Landsiedel, and Thiemo Voigt. Let the tree bloom: Scal-

able opportunistic routing with orpl. In Proceedings of the 11th ACM Conference

on Embedded Networked Sensor Systems, SenSys ’13, pages 2:1–2:14, New York,

NY, USA, 2013. ACM.

[DpEG01] L. Doherty, K.S.J. pister, and L. El Ghaoui. Convex position estimation in wireless

sensor networks. In INFOCOM 2001. Twentieth Annual Joint Conference of the

158 BIBLIOGRAPHY

IEEE Computer and Communications Societies. Proceedings. IEEE, volume 3,

pages 1655–1663 vol.3, 2001.

[ESA09] B Elbhiri, R Saadane, and D Aboutajdine. Stochastic distributed energy-e cient

clustering (sdeec) for heterogeneous wireless sensor networks. 2009.

[ESEFA10] B. Elbhiri, R. Saadane, S. El Fkihi, and D. Aboutajdine. Developed distributed

energy-efficient clustering (ddeec) for heterogeneous wireless sensor networks. In

I/V Communications and Mobile Network (ISVC), 2010 5th International Sym-

posium on, pages 1–4, Sept 2010.

[FGNW06] Stefan Funke, LeonidasJ. Guibas, An Nguyen, and Yusu Wang. Distance-sensitive

information brokerage in sensor networks. In PhillipB. Gibbons, Tarek Abdelza-

her, James Aspnes, and Ramesh Rao, editors, Distributed Computing in Sen-

sor Systems, volume 4026 of Lecture Notes in Computer Science, pages 234–251.

Springer Berlin Heidelberg, 2006.

[FSGM+99] Min Fang, Narayanan Shivakumar, Hector Garcia-Molina, Rajeev Motwani, and

Jeffrey D. Ullman. Computing iceberg queries efficiently. Technical Report 1999-

67, Stanford InfoLab, November 1999. Previous number = SIDL-WP-1999-0121.

[GBG+11] Ixent Galpin, ChristianY.A. Brenninkmeijer, AlasdairJ.G. Gray, Farhana Jabeen,

AlvaroA.A. Fernandes, and NormanW. Paton. Snee: a query processor for wireless

sensor networks. Distributed and Parallel Databases, 29(1-2):31–85, 2011.

[GFJ+09] Omprakash Gnawali, Rodrigo Fonseca, Kyle Jamieson, David Moss, and Philip

Levis. Collection tree protocol. In Proceedings of the 7th ACM Conference on

Embedded Networked Sensor Systems, SenSys ’09, pages 1–14, New York, NY,

USA, 2009. ACM.

[GRS+03] Benjamin Greenstein, Sylvia Ratnasamy, Scott Shenker, Ramesh Govindan, and

Deborah Estrin. Difs: a distributed index for features in sensor networks. Ad Hoc

Networks, 1(23):333 – 349, 2003. Sensor Network Protocols and Applications.

BIBLIOGRAPHY 159

[HCB00] W.R. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-efficient com-

munication protocol for wireless microsensor networks. In System Sciences, 2000.

Proceedings of the 33rd Annual Hawaii International Conference on, pages 10 pp.

vol.2–, Jan 2000.

[HL] Abderrahim BENI HSSANE and Moulay Lahcen. Improved and balanced leach

for heterogeneous wireless sensor networks.

[IDC13] IDC. Worldwide internet of things (IoT) 2013-2020 forecast: Billions of things,

trillions of dollars. Doc 243661, page 22, October 2013.

[IGE00] Chalermek Intanagonwiwat, Ramesh Govindan, and Deborah Estrin. Directed

diffusion: A scalable and robust communication paradigm for sensor networks.

In Proceedings of the 6th Annual International Conference on Mobile Computing

and Networking, MobiCom ’00, pages 56–67, New York, NY, USA, 2000. ACM.

[IvS09] Konrad Iwanicki and Maarten van Steen. On hierarchical routing in wireless sen-

sor networks. In Proceedings of the 2009 International Conference on Information

Processing in Sensor Networks, IPSN ’09, pages 133–144, Washington, DC, USA,

2009. IEEE Computer Society.

[JM96] David B. Johnson and David A. Maltz. Dynamic source routing in ad hoc wireless

networks. In Tomasz Imielinski and HenryF. Korth, editors, Mobile Computing,

volume 353 of The Kluwer International Series in Engineering and Computer

Science, pages 153–181. Springer US, 1996.

[Kan13] Hyunchul Kang. In-network processing of joins in wireless sensor networks. Sen-

sors, 13(3):3358–3393, 2013.

[KAP09] Dilip Kumar, Trilok C. Aseri, and R.B. Patel. Eehc: Energy efficient heteroge-

neous clustered scheme for wireless sensor networks. Computer Communications,

32(4):662 – 667, 2009.

[KAP11] Dilip Kumar, Trilok C Aseri, and RB Patel. Multi-hop communication routing

(mcr) protocol for heterogeneous wireless sensor networks. International Jour-

160 BIBLIOGRAPHY

nal of Information Technology, Communications and Convergence, 1(2):130–145,

2011.

[KBM15] Roman Kolcun, David Boyle, and Julie A McCann. Optimal processing node

discovery algorithm for distributed computing in IoT. In The 5th International

Conference on the Internet of Things (IOT) 2015 (IoT 2015), Seoul, Korea, Oc-

tober 2015.

[KK00] Brad Karp and H. T. Kung. Gpsr: greedy perimeter stateless routing for wireless

networks. In Proceedings of the 6th annual international conference on Mobile

computing and networking, MobiCom ’00, pages 243–254, New York, NY, USA,

2000. ACM.

[KLS14] Matthias Kovatsch, Martin Lanter, and Zach Shelby. Californium: Scalable cloud

services for the internet of things with coap. In Proceedings of the 4th International

Conference on the Internet of Things (IoT 2014), 2014.

[KM14] Roman Kolcun and Julie A McCann. Dragon: Data discovery and collection ar-

chitecture for distributed IoT. In Internet of Things 2014 - The 4th International

Conference on the Internet of Things (IoT 2014), Cambridge, USA, Oct 2014.

[KWZZ03] Fabian Kuhn, Rogert Wattenhofer, Yan Zhang, and Aaron Zollinger. Geometric

ad-hoc routing: Of theory and practice. In Proceedings of the Twenty-second

Annual Symposium on Principles of Distributed Computing, PODC ’03, pages

63–72, New York, NY, USA, 2003. ACM.

[LCC08] Yong-Xuan Lai, Yi-Long Chen, and Hong Chen. Peja: Progressive energy-efficient

join processing for sensor networks. Journal of Computer Science and Technology,

23(6):957–972, 2008.

[LG00] Sung-Ju Lee and M. Gerla. Aodv-br: backup routing in ad hoc networks. In

Wireless Communications and Networking Confernce, 2000. WCNC. 2000 IEEE,

volume 3, pages 1311–1316 vol.3, 2000.

BIBLIOGRAPHY 161

[LHZ04] Xin Liu, Qingfeng Huang, and Ying Zhang. Combs, needles, haystacks: Balancing

push and pull for discovery in large-scale sensor networks. In Proceedings of the

2Nd International Conference on Embedded Networked Sensor Systems, SenSys

’04, pages 122–133, New York, NY, USA, 2004. ACM.

[LLG10] Yongxuan Lai, Ziyu Lin, and Xing Gao. Srja: Iceberg join processing in wireless

sensor networks. In Database Technology and Applications (DBTA), 2010 2nd

International Workshop on, pages 1–4, Nov 2010.

[LLWC03] Philip Levis, Nelson Lee, Matt Welsh, and David Culler. Tossim: accurate and

scalable simulation of entire tinyos applications. In Proceedings of the 1st inter-

national conference on Embedded networked sensor systems, SenSys ’03, pages

126–137, New York, NY, USA, 2003. ACM.

[LMP+05] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay,

J. Hill, M. Welsh, E. Brewer, and D. Culler. Tinyos: An operating system for

sensor networks. In Werner Weber, JanM. Rabaey, and Emile Aarts, editors,

Ambient Intelligence, pages 115–148. Springer Berlin Heidelberg, 2005.

[LPCS04] Philip Levis, Neil Patel, David Culler, and Scott Shenker. Trickle: A self-

regulating algorithm for code propagation and maintenance in wireless sensor

networks. In Proceedings of the 1st Conference on Symposium on Networked Sys-

tems Design and Implementation - Volume 1, NSDI’04, pages 2–2, Berkeley, CA,

USA, 2004. USENIX Association.

[LR02] S. Lindsey and C.S. Raghavendra. Pegasis: Power-efficient gathering in sensor

information systems. In Aerospace Conference Proceedings, 2002. IEEE, volume 3,

pages 3–1125–3–1130 vol.3, 2002.

[LRS01] Stehpanie Lindsay, C. S. Raghavendra, and Krishna M. Sivalingam. Data gath-

ering in sensor networks using the energy delay metric. In Proceedings of the

15th International Parallel &Amp; Distributed Processing Symposium, IPDPS ’01,

pages 188–, Washington, DC, USA, 2001. IEEE Computer Society.

162 BIBLIOGRAPHY

[MFHH03] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong. The

design of an acquisitional query processor for sensor networks. In Proceedings

of the 2003 ACM SIGMOD international conference on Management of data,

SIGMOD ’03, pages 491–502, New York, NY, USA, 2003. ACM.

[MGV+13] Guilherme Maia, Daniel L. Guidoni, Aline C. Viana, Andre L.L. Aquino,

Raquel A.F. Mini, and Antonio A.F. Loureiro. A distributed data storage protocol

for heterogeneous wireless sensor networks with mobile sinks. Ad Hoc Networks,

11(5):1588 – 1602, 2013.

[MJIG08] Svilen R. Mihaylov, Marie Jacob, Zachary G. Ives, and Sudipto Guha. A substrate

for in-network sensor data integration. In Proceedings of the 5th workshop on Data

management for sensor networks, DMSN ’08, pages 35–41, New York, NY, USA,

2008. ACM.

[MJIG10] Svilen R. Mihaylov, Marie Jacob, Zachary G. Ives, and Sudipto Guha. Dynamic

join optimization in multi-hop wireless sensor networks. Proc. VLDB Endow.,

3(1-2):1279–1290, September 2010.

[Mor66] Guy M Morton. A computer oriented geodetic data base and a new technique in

file sequencing. International Business Machines Company, 1966.

[MSKG10] Scott Moeller, Avinash Sridharan, Bhaskar Krishnamachari, and Omprakash

Gnawali. Routing without routes: The backpressure collection protocol. In Pro-

ceedings of the 9th ACM/IEEE International Conference on Information Process-

ing in Sensor Networks, IPSN ’10, pages 279–290, New York, NY, USA, 2010.

ACM.

[MYC11] Cun-Ki Min, Heejung Yang, and Chin-Wan Chung. Cost based in-network join

strategy in tree routing sensor networks. Information Sciences, 181(16):3443 –

3458, 2011.

[NN03] Badri Nath and Dragoş Niculescu. Routing on a curve. SIGCOMM Comput.

Commun. Rev., 33(1):155–160, January 2003.

BIBLIOGRAPHY 163

[oEI03] Institute of Electrical and Electronics Engineers Inc. IEEE Std. 802.15.4-2003

“Wireless medium access control (MAC) and physical layer (PHY) specifications

for low rate wireless personal area networks (LR-WPANs)”. October 2003.

[PG06] Aditi Pandit and Himanshu Gupta. Communication-efficient implementation of

range-joins in sensor networks. In In Proceedings of 11th International Conference

on Database Systems for Advanced Applications, pages 859–869, 2006.

[PR99] C.E. Perkins and E.M. Royer. Ad-hoc on-demand distance vector routing. In

Mobile Computing Systems and Applications, 1999. Proceedings. WMCSA ’99.

Second IEEE Workshop on, WMCSA ’99, pages 90–100, Feb 1999.

[Res13] ABI Research. Abi research: More than 30 billion devices will

wirelessly connect to the internet of everything in 2020, May 2013.

https://www.abiresearch.com/press/more-than-30-billion-devices-will-wirelessly-

conne.

[RKY+02] Sylvia Ratnasamy, Brad Karp, Li Yin, Fang Yu, Deborah Estrin, Ramesh Govin-

dan, and Scott Shenker. Ght: A geographic hash table for data-centric storage. In

Proceedings of the 1st ACM International Workshop on Wireless Sensor Networks

and Applications, WSNA ’02, pages 78–87, New York, NY, USA, 2002. ACM.

[Sam84] Hanan Samet. The quadtree and related hierarchical data structures. ACM

Comput. Surv., 16(2):187–260, June 1984.

[SBB09] Mirco Stern, Erik Buchmann, and Klemens Böhm. Towards efficient processing of

general-purpose joins in sensor networks. In Proceedings of the 2009 IEEE Inter-

national Conference on Data Engineering, ICDE ’09, pages 126–137, Washington,

DC, USA, 2009. IEEE Computer Society.

[SBB10] Mirco Stern, Klemens Böhm, and Erik Buchmann. Processing continuous join

queries in sensor networks: A filtering approach. In Proceedings of the 2010 ACM

SIGMOD International Conference on Management of Data, SIGMOD ’10, pages

267–278, New York, NY, USA, 2010. ACM.

164 BIBLIOGRAPHY

[SHB14] Zach Shelby, Klaus Hartke, and Carsten Bormann. The constrained application

protocol (coap), rfc 7252. 2014.

[SJKZ11] Razieh Sheikhpour, Sam Jabbehdari, and Ahmad Khadem-Zadeh. Comparison

of energy efficient clustering protocols in heterogeneous wireless sensor networks.

International Journal of Advanced Science and Technology, 36:27–40, 2011.

[SPF14] Alan B. Stokes, Norman W. Paton, and Alvaro A. A. Fernandes. Proactive adap-

tations in sensor network query processing. In Proceedings of the 26th Interna-

tional Conference on Scientific and Statistical Database Management, SSDBM

’14, pages 23:1–23:12, New York, NY, USA, 2014. ACM.

[Taj77] William D. Tajibnapis. A correctness proof of a topology information maintenance

protocol for a distributed computer network. Commun. ACM, 20(7):477–485, July

1977.

[ULS14] Awada Uchechukwu, Keqiu Li, and Yanming Shen. Energy consumption in cloud

computing data centers. International Journal of Cloud Computing and services

science, 3(3), 2014.

[UTK13] Muhammad Umer, Egemen Tanin, and Lars Kulik. Opportunistic sampling-based

query processing in wireless sensor networks. GeoInformatica, 17(4):567–597,

2013.

[WTC+12] T Winter, P Thubert, T Clausen, J Hui, R Kelsey, P Levis, K Pister, R Struik,

and J Vasseur. Rpl: Ipv6 routing protocol for low power and lossy networks, rfc

6550. IETF ROLL WG, Tech. Rep, 2012.

[YF04] O. Younis and Sonia Fahmy. Distributed clustering in ad-hoc sensor networks:

a hybrid, energy-efficient approach. In INFOCOM 2004. Twenty-third Annu-

alJoint Conference of the IEEE Computer and Communications Societies, vol-

ume 1, pages –640, March 2004.

[YGE01] Yan Yu, Ramesh Govindan, and Deborah Estrin. Geographical and energy aware

routing: A recursive data dissemination protocol for wireless sensor networks.

BIBLIOGRAPHY 165

Technical report, Technical report ucla/csd-tr-01-0023, UCLA Computer Science

Department, 2001.

[YLOT07] Xiaoyan Yang, Hock Beng Lim, Tamer M. Özsu, and Kian Lee Tan. In-network

execution of monitoring queries in sensor networks. In Proceedings of the 2007

ACM SIGMOD International Conference on Management of Data, SIGMOD ’07,

pages 521–532, New York, NY, USA, 2007. ACM.

[YLZ06] Hai Yu, Ee-Peng Lim, and Jun Zhang. On in-network synopsis join processing

for sensor networks. In Mobile Data Management, 2006. MDM 2006. 7th Inter-

national Conference on, pages 32–32, May 2006.

[YZLZ05] Fan Ye, Gary Zhong, Songwu Lu, and Lixia Zhang. Gradient broadcast: A robust

data delivery protocol for large scale sensor networks. Wirel. Netw., 11(3):285–

298, May 2005.

[ZG04] Feng Zhao and Leonidas J Guibas. Wireless sensor networks: an information

processing approach. Morgan Kaufmann, 2004.

	Declaration
	Abstract
	Acknowledgements
	Introduction
	Wireless Sensor Networks
	Application of a Wireless Sensor Network
	Challenges
	Contributions
	Structure of Thesis
	Publications

	Testbed
	Introduction
	Uniform Topologies
	Random Topologies
	Communication Primitives

	Routing Table Discovery
	Introduction & Related Work
	Routing Towards a Base-station
	Peer-to-peer Routing

	Routing Table Discovery Algorithm
	Routing Table Update Algorithm
	Multi-hop Forwarding with Implicit Acknowledgements
	Packet Merging

	Evaluation
	Proactive vs. Reactive Approach to Routing Table Update
	Routing Stretch
	Routing Table Update Algorithm

	Conclusion

	Distributed Static Attribute Table
	Introduction & Related Work
	Distributed Static Attribute Table
	Static Attribute Propagation
	Evaluation
	Distributed Static Attribute Table
	Static Attribute Propagation

	Conclusion

	Snapshot Queries
	Introduction
	Snapshot Queries
	Evaluation
	Conclusion

	Continuous Queries
	Introduction
	Related Work
	Algorithms without Filtering of Non-Joinable Tuples
	Algorithms with Filtering of Non-Joinable Tuples

	Heterogeneous Networks
	Processing Node Discovery Algorithm
	Query Processing Overview
	Homogeneous Networks
	Heterogeneous Networks

	Query Tuple Buffering Optimisation
	Evaluation
	Homogeneous Networks
	Heterogeneous Networks

	Conclusion

	Summary and Conclusion
	Contributions
	Future Work

	Bibliography

