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Abstract 

The European Medicines Agency (EMA) has expressed concern regarding (i) the potential 

for antisense oligonucleotide (ASO) therapeutics to induce sequence specific mutation at 

genomic DNA and (ii) the capability of ASO degradation products (nucleotide analogues) to 

incorporate into newly synthesised genomic DNA via DNA polymerase and cause mutation if 

base-pairing occurs with reduced fidelity. Treating human lymphoblastoid cells with a 

biologically active antisense molecule induced sequence specific mutation within genomic 

DNA over four fold, in a system where RAD51 protein expression was induced. This finding 

has implications for ASO therapeutics with individuals with an induced DNA damage 

response, such as cancer patients.  Furthermore, a phosphorothioate nucleotide analogue 

potently induced mutation at genomic DNA two orders of magnitude above control. This 

study shows that a biologically active ASO molecule can induce heritable sequence 

alterations, and if degraded, its respective analogue may incorporate into genomic DNA with 

mutagenic consequences. 

 

 

Key words: antisense oligonucleotides, targeted nucleotide exchange, mutation, nucleotide 

analogues, genomic DNA. 
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Introduction 

The potential for ASO to modulate protein expression by translational repression or RNase H 

mediated degradation has application as a powerful therapeutic tool (Denli and Hannon, 

2003, Zamore, 2001). However, recent studies demonstrating the potential for 

oligonucleotides to induce site directed mutation within reporter genes has caused concern 

regarding the potential for oligonucleotide based pharmaceuticals to induce heritable 

sequence alterations (European Medicines Agency, 2004).  

In a process known as targeted nucleotide exchange (TNE), oligonucleotides have 

been reported to induce mutation mainly within engineered reporter constructs (Bonner and 

Kmiec, 2009, Dekker et al., 2003, Olsen et al., 2009). Oligonucleotides, typically over 45 

nucleotides in length, are designed to bind complementary to the non-transcribed (sense) 

strand within duplex DNA. Oligonucleotides with a single mismatched base, relative to its 

homologous sequence, are capable of directing mutation to the site of the mismatch. For 

example, a mutant GFP construct carrying a single inactivating point mutation was reported 

to be corrected, to the wild-type sequence restoring fluorescence, using a 74-mer 

oligonucleotide with correction frequencies in the order of 2% (Bonner and Kmiec, 2009). 

 Furthermore, the potential for nucleotide analogues, released as oligonucleotide 

degradation products, to enter intracellular nucleotide pools has been questioned by the EMA 

but genotoxicity was deemed unlikely (European Medicines Agency, 2004); if base pairing 

with the nucleotide analogue occurred with reduced fidelity, mutation might be expected. The 

genotoxicity of antiviral nucleoside analogues has been well established (Wutzler and Thust, 

2001), but these analogues are not used in ASO construction. Significantly, perturbation of 

endogenous nucleotide pools even by excess canonical nucleosides or nucleotides can also 

have a mutagenic consequence (Mattano et al., 1990, Phear et al., 1987). 
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 This study has addressed these concerns by examining the genotoxicity of an ASO 

entity and its putative degradation products.  
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Materials and methods 

Oligonucleotides. All oligonucleotides were DNA based and obtained from Sigma Genosys. 

Oligonucleotides were chemically modified to contain four terminal phosphorothioate 

linkages and reverse phase purified. Oligonucleotide sequences are as follows: AD3-hprtPM 

5’-A*C*A*G*TCATAGGAATGGATA*T*A*T*C-3’ and control 5’-A*C*C*T*TGAT 

GGCAAATAGGT*A*A*T*A-3’. The * indicates the position of the phosphorothioate 

linkage. 

 

Cell culture. Human lymphoblastoid TK6 cells were obtained from ATCC. TK6 cells were 

cultured in RPMI 1640 media supplemented with 10%v/v heat inactivated horse serum, L-

glutamine (2 mM), penicillin (100 units/ml) and streptomycin (100 µg/ml). All cell culture 

reagents were obtained from Invitrogen, unless otherwise stated.  

 

Induction of RAD51 protein expression in TK6 cells using methyl methanesulfonate 

(MMS). Exponentially growing TK6 cells were treated with MMS (0 µg/ml, 0.1 µg/ml, 0.2 

µg/ml or 0.5 µg/ml) for 24 h to induce RAD51 protein expression. Following treatment, TK6 

cells were washed in culture media and maintained in exponential growth for up to 72 h. 

Aliquots of TK6 cells were removed at 2 h, 4 h, 8 h, 24 h, 48 h and 72 h following treatment 

and washed in ice cold PBS for protein extraction and subsequent immunoblot analysis to 

determine RAD51 protein expression. The optimum concentration of MMS was used to pre-

treat TK6 cells the day before treatment with oligonucleotide.  

 

Total protein extraction. Total cell protein content was extracted by suspending cell pellets 

in freshly made lysis buffer (1 µl Halt protease inhibitor + 99 µl of 150 mM NaCl, 0.1%v/v 

igepal, 1 mM Tris (pH 7.4) and 1 mM EDTA) on ice for 20 mins. Samples were then 
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centrifuged at 10,000x g for 10 mins at 4 °C. Supernatants were collected into fresh 

eppendorf tubes and stored at -20 °C. Protein content in samples was determined using the 

bicinchoninic acid (BCA) assay according to manufacturer’s protocol (Thermo Scientific). 

 

Immunoblot. Protein expression was determined by immunoblot. In brief, for ADAMTS3 

and RAD51 protein expression, total protein (20 µg) was loaded per well. Samples were 

electrophoresed through 10% SDS-polyacrylamide gel and transferred on to a PVDF 

membrane. Membranes were stained with primary antibody overnight; for RAD51, 1:2000 

mouse anti-human RAD51 antibody; for ADAMTS3, 1:2000 rabbit anti-human ADAMTS3 

antibody. Following primary antibody staining and several wash steps, blots were stained 

with HRP-conjugated secondary antibody and visualised. GAPDH protein expression was 

employed as a loading control using primary rabbit anti-human GAPDH antibody (1:1000). 

Protein expression was determined using densitometry and normalised to GAPDH loading 

control.  

 

HPRT and TK forward mutation assay.  

a. Treating TK6 cells with oligonucleotide. For treatment of TK6 cells with 

oligonucleotide, the desired concentration of oligonucleotide was mixed with siPORT NeoFX 

(Ambion) and allowed to stand to allow complex formation. Meanwhile, TK6 cells were 

counted and 3x10
6
 cells were aliquoted per treatment and mixed with the 

oligonucleotide/siPORT complex. Treatments were in three independent cultures. 

Transfection was allowed to occur for 4 h at 37 °C, 5% CO2. TK6 cells were then washed and 

suspended for culturing overnight. As a positive genotoxic control, TK6 cells were treated 

with ethyl methanesulphonate (EMS; 5 µg/ml). To measure the spontaneous mutant 

frequency at each locus, oligonucleotide transfection mixtures were replaced with culture 
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media (Background). Following treatment of TK6 cells with oligonucleotide, cells were 

sampled (24 h, 48 h and 72 h) for protein extraction, to determine ADAMTS3 protein 

expression, by immunoblot, as a marker of AD3-hprtPM antisense activity. 

 

b. Treating TK6 cells with nucleotides. For treatment of TK6 cells with nucleotide, 4x10
6
 

TK6 cells were aliquoted per 75 cm
2
 flask in a 5 ml volume. Serial dilutions of nucleotides 

were dissolved in cell culture media to a final 2x concentration. Cells (5 ml) were mixed with 

2x nucleotide (5 ml). As a negative control, culture media (5 ml) replaced the nucleotide. 

EMS (5 µg/ml) was used as a positive control. Cells were exposed to test compounds for 24 

h. Following treatment, cells were pelleted at 200x g for 5 mins and washed with culture 

media. 

 

c. Determining cytotoxicity and the TK and HPRT mutant frequency. Following 

treatment of TK6 cells with oligonucleotide or nucleotide, cells were counted daily for three 

days to determine the relative suspension growth (RSG; a measure of cell death and 

proliferative ability following treatment (Clive et al., 1995, Clements, 2000). On the third 

day, TK6 cells were plated at 1.6 cells per well in 96 well plates to determine cloning 

efficiency and 20,000 cells per well in trifluorothymidine to determine the TK mutant 

frequency. This cloning efficiency was used to correct the RSG to give the relative total 

growth (RTG) as a measure of cytotoxicity following treatment. The remaining cells were 

maintained for a further four days phenotypic expression. Following this, the HPRT mutant 

frequency was then determined by seeding 20,000 cells per well in 96 well plates in 6-

thioguanine and cloning efficiency determined by seeding 1.6 cells per well in the absence of 

6-TG. Plates were incubated for 14 days minimum at 37 °C, 5%CO2 and then colonies were 
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scored. Mutant clones were individually isolated and expanded in 6-well plates for 7-10 days 

for genomic DNA extraction and PCR amplification. 

 

Genomic DNA extraction. Genomic DNA was extracted from TK6 cells using the QIAamp 

DNA Blood mini kit (Qiagen, Crawley) according to manufacturer’s instructions. In brief, 

pelleted TK6 cells were suspended in PBS containing with proteinase K and lysis buffer AL. 

Samples were mixed by pulse vortexing and incubated at 56 °C for 10 mins. Lysates were 

mixed with ethanol and added to a spin column followed by centrifugation. Columns were 

washed with wash buffer AW1 and then AW2. DNA was eluted out of the spin column using 

DNase/RNase free water. DNA was quantified using the NanoDrop ND1000 

spectrophotometer.  

 

Polymerase chain reaction and DNA sequencing. PCR reactions were performed to 

amplify a  one Kb region of exon 3 in the HPRT locus which enclosed the AD3-hprtPM 

target sequence. A typical reaction was in a 50 µl reaction volume containing genomic DNA 

(300 ng to 1 µg) from isolated HPRT mutant clones, 200 nM of each forward (5’-

AGGGCAAAGGATGTGTTACG-3’) and reverse (5’-AGTGGTTTCTGGTGCGACTT-3’) 

primer, dNTPs (200 µM),  Tfi polymerase (5 units) and 1x Tfi PCR buffer supplemented with 

MgCl2 (1.5 mM). Amplification was performed using a Peltier thermal cycler as follows: 

initial denaturation step at 94 °C for 4 mins, followed by 35 cycles of denaturing at 94 °C for 

30 secs, annealing at 58 °C for 30 secs and polymerisation at 72 °C for 1 min. The final 

polymerisation step was extended to 7 mins. Samples were then stored at 4 °C until time of 

analysis. Aliquots of PCR products were resolved by electrophoresis through a 1.2% agarose 

gel containing ethidium bromide (0.5 µg/ml) and visualised under UV. PCR products were 

extracted and purified for DNA sequencing using the PureLink Quick gel extraction kit 
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(Invitrogen, Paisley), according to manufacturer’s protocol. Purified PCR products were 

diluted to 10 ng/µl and sent for sequencing by Gene Service ltd (Source Bioscience).  

 

Mbo I restriction enzyme digestion of PCR products. PCR products from HPRT mutant 

clones were subject to Mbo I restriction enzyme digestion to inform the integrity of the 5’-

GATC-3’ recognition sequence. PCR products containing wild-type sequence results in 

cleavage into two fragments; 474 bp and 544 bp. Mutation within the 5’-GATC-3’ sequence 

results in resistance to Mbo I restriction enzyme digestion. Typically, PCR products were 

restriction enzyme digested with Mbo I restriction enzyme (4 units) for 1 h at 37 °C. Digested 

PCR products were resolved on 1.2%w/v agarose gels containing ethidium bromide (0.5 

µg/ml) and visualised under UV.   

 

Primer extension assay. This method was adapted from Lacenere and co-workers (Lacenere 

et al., 2006). Primed template, with an overhang of 5 thymidine nucleotides, was made by 

annealing template strand (5’-TTTTTCCCACAAACCAAAAGCCCAGACACA-3’) with the 

complementary primer strand (5’-6FAM-TGTGTCTGGGCTTTTGGTTTGTGGG-3’) which 

is labelled with a 5’ fluorophore in annealing buffer (75 mM Tris pH 7.2 and 75 mM NaCl). 

A typical reaction mixture contained primed template (25 nM),  Tfi DNA polymerase (0.6 

units), MgCl2 (3.5 mM), 1x Tfi PCR buffer and nucleotide in a 20 µl volume. As a negative 

control in experiments, nucleotide was omitted.  Reactions were allowed to incubate for the 

required length of time at 72 °C to permit extension of the primed duplex. Following this, 

EDTA (5 µl of 1M) was added to stop the reaction. Primed template in the reaction mixture 

was then denatured by adding 25 µl of UREA gel loading buffer (1.5 M sucrose, 7 M UREA, 

10 mM EDTA, 0.1% bromophenol blue) and heated at 95 °C for 5 mins with immediate 

transfer to ice slurry. Samples were then subject to electrophoresis through a 14% 8 M 
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UREA-polyacrylamide gel at 120 V for 3 h. 6FAM labelled primer strand was visualised at 

490 nm/530 nm.  

Page 10 of 38Toxicological Sciences

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

11 

 

Results 

Design of an ASO.  

In the first instance, an ASO was designed to bind complimentary to the mRNA of the 

ADAMTS3 gene as well as contain sequence homology to the Hypoxanthine-guanine 

phosphoribosyltransferase (HPRT) locus except a single mismatched base (AD3-hprtPM; 

Fig. 1). It was proposed that AD3-hprtPM would act as an antisense molecule in modulating 

ADAMTS3 protein expression whilst the HPRT locus served as a genomic reporter of off-

target genotoxicity, which could be quantified using the established HPRT forward mutation 

assay. The integrity of the genomic Thymidine kinase (TK) locus served as a reporter of 

sequence independent genotoxicity following oligonucleotide treatments. 

As a negative control, an oligonucleotide was employed with the same base 

composition as AD3-hprtPM but in a random order (control; Fig. 1). Oligonucleotides were 

chemically modified to contain 4 terminal phosphorothioate linkages at either end to increase 

nuclease resistance (Kenner et al., 2002). 

 

Antisense activity of AD3-hprtPM. 

Human lymphoblastoid TK6 cells were treated with AD3-hprtPM and control 

oligonucleotides up to 10µM to inform antisense activity. Treated cells were sampled at 24h, 

48h and 72h to determine ADAMTS3 protein expression (Fig. 2, A-C). Gels were quantitated 

using densitometry and ADAMTS3 protein expression was normalised to control 

oligonucleotide treatment at the respective dose and time (Fig. 2D); AD3-hprtPM induced a 

dose and time dependent knockdown of ADAMTS3 protein expression by 20-30% with 5µM 

and 10µM treatment by 48h and was further reduced by 45-70% by 72h. 
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Sequence specific mutation at genomic DNA by AD3-hprtPM. 

To quantify off-target genotoxicity caused by the presence of AD3-hprtPM, the HPRT 

forward mutation assay was employed. Previous studies have proposed the involvement of 

homologous recombination (HR) repair in the process of TNE (Radecke et al., 2006, 

Morozov and Wawrousek, 2008). To investigate this, a dose range of the genotoxin methyl 

methanesulfonate (MMS) was used to induce RAD51 protein expression as a marker of HR 

repair activity (Gupta et al., 1997, Saleh-Gohari et al., 2005, Sung and Robberson, 1995). 

MMS treatment is  likely to induce repair pathways other than HR repair but it is HR repair 

that is most likely to facilitate oligonucleotide mediated mutation. Human TK6 cells were 

treated for 24h with MMS up to 0.5µg/ml and aliquots of cells were removed up to 72h for 

determination of RAD51 protein expression (Suppl. Fig. 1). Treatment with 0.2µg/ml MMS 

was found to induce RAD51 protein expression ~2.5 fold by 24h and ~5 fold by 48h. TK6 

cells were then pre-treated for 24h with 0.2µg/ml MMS to induce RAD51 protein expression 

followed by treatment with AD3-hprtPM or control oligonucleotide (Fig. 3). Treatment with 

oligonucleotide up to 10µM was not found to be excessively cytotoxic (Fig. 3A) and the pre-

treatment of TK6 cells with 0.2µg/ml MMS was not found to be significantly genotoxic 

(comparing Untreated vs.0.2µg/ml MMS treated Background). Interestingly, the biologically 

active ASO, AD3-hprtPM, was found to induce the HPRT mutant frequency in a dose 

dependent manner (Fig. 3B). Treating TK6 cells with 5µM AD3-hprtPM induced the HPRT 

mutant frequency ~1.5 fold above 5µM control oligonucleotide and ~4.4 fold with 10µM 

treatment. Genotoxicity was not observed at the non-targeted TK locus following AD3-

hprtPM treatment suggesting a sequence specific mode of action (Fig. 3C).  

Genotoxicity caused by AD3-hprtPM was proposed to be a result of an overactive HR 

repair pathway initiated by the MMS pre-treatment. This conclusion was supported when 
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AD3-hprtPM failed to induce mutation at the targeted HPRT locus following omission of the 

MMS pre-treatment (Suppl. Fig 2).   

 

Analysis of AD3-hprtPM induced HPRT mutant clones. 

According to the proposed TNE model, mutation within duplex DNA is directed to the site of 

the mismatched base (Aarts et al., 2006, Bonner and Kmiec, 2009, Dekker et al., 2003, 

Morozov and Wawrousek, 2008, Olsen et al., 2009). Thus, to confirm sequence specific 

mutation by AD3-hprtPM, a restriction fragment length polymorphism (RFLP) assay was 

designed. The target region of AD3-hprtPM, within exon 3 of the HPRT locus, was PCR 

amplified to yield a 1Kb fragment. AD3-hprtPM mediated mutation at the mismatched base 

would be expected to result in a G>T transversion causing the loss of a 5’-GATC-3’ Mbo I 

restriction enzyme recognition sequence. PCR fragments containing the mutant sequence 

would be rendered resistant to Mbo I digestion. Those which retained the wild-type sequence 

would yield 2 cleavage products of ~550bp and ~450bp. 

Mbo I digestion of 14 control and 29 AD3-hprtPM induced HPRT mutant clones 

resulted in cleavage of all PCR products into 2 fragments, contradicting the expected 

mechanism of mutagenesis (Suppl. Fig. 3). DNA sequencing of PCR amplified HPRT 

mutant clones (41 AD3-hprtPM induced HPRT mutant clones and 29 control) supported the 

retention of the wild-type 5’-GATC-3’ sequence at position 138 (Fig. 4). However, DNA 

sequencing also revealed a single base deletion (position 171; 34%) adjacent to a single G>A 

transition mutation (position 172; 29%) downstream of the AD3-hprtPM target sequence 

(underlined; position 134-156). These mutations were primarily found in AD3-hprtPM 

induced HPRT mutant clones and not control. The frequency of particular point mutations 

upstream (G>A position 126; 58% control vs. 81% AD3-hprtPM) and downstream (G>A 
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position 158; 19% control vs. 51% AD3-hprtPM) of the AD3-hprtPM target sequence were 

also found to be effected following AD3-hprtPM treatment.  

 

Incorporation of ASO derived nucleotide analogues into a primed DNA template.  

Following reports of serum nucleases capable of degrading phosphorothioate 

oligonucleotides after 1h (Hoke et al., 1991, Morvan et al., 1993), this study has also 

addressed the capability of nucleotide analogues to be incorporated into newly synthesised 

DNA. In the first approach, an in vitro primer extension assay, adapted from Lacenere et al. 

(2006), was engineered to inform the potential of Tfi DNA polymerase to incorporate 

nucleotide analogues commonly used in ASO design. Incorporation of nucleotide analogue 

was informed by extension of primed template by five nucleotides. Using this model, DNA 

polymerase was able to extend the primed template to full length using 0.5µM 

deoxyadenosine triphosphate (dATP), as a control, in a 10 minute reaction (Fig. 5A).  

 Using a phosphorothioate analogue of dATP (dATPαS); where a non-bridging oxygen 

in the α-phosphate moiety is replaced with sulphur (the most common type of chemical 

modification used in ASO design (Buchini and Leumann, 2003)), Tfi DNA polymerase was 

able to fully extend the template using 2µM dATPαS in a 20 minute reaction (Fig. 5B). In 

comparison to the unmodified dATP, this correlates to a relative incorporation efficiency of 

~12%. On the contrary, using a 2’O-methyl-ATP modified analogue (2’OMe-ATP); where 

the 2’ hydroxyl group on the ribose moiety of ATP is replaced with O-methyl to increase 

ASO target binding affinity (Yoo et al., 2004), Tfi polymerase failed to extend the primed 

template in a 60 minute reaction (Fig. 5C).  
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Genotoxicity of phosphorothioate nucleotide analogues.  

 Having shown DNA polymerase was capable of incorporating the non-canonical 

phosphorothioate analogue dATPαS into a primed template in vitro, genotoxicity caused by 

incorporation of this analogue into genomic DNA in vivo was assessed through the integrity 

of the HPRT and TK loci in human TK6 cells. Of important consideration was that 

degradation of oligonucleotides would not yield nucleotides as a triphosphate but rather as 

monophosphates. Thus, to reflect a true biologically relevant event, taking into account the 

prerequisite for phosphorylation of monophosphate nucleotides into triphosphates before 

utilisation by DNA polymerase, TK6 cells were treated with monophosphate 

phosphorothioate nucleotide (dAMPαS). 

 Human TK6 cells were treated for 24h with dAMPαS up to 1mM. As a control, TK6 

cells were also treated with 1mM of the unmodified dAMP nucleotide to allow comparison of 

genotoxicity caused by the single substitution of oxygen for sulphur in the 5’ phosphate 

group.   

 Cytotoxicity following dAMPαS treatment was acceptable up to 0.5mM (30% RTG) 

whilst treatment with the nucleotide control, dAMP, was much less cytotoxic (60% RTG) 

(Fig. 6A).  

 Treatment of TK6 cells with dAMP and dAMPαS failed to induce mutation at the 

HPRT locus (Fig. 6B). In contrast, treatment with dAMPαS resulted in a dose dependent 

increase in TK mutants ~20 fold (0.5mM) and ~96 fold (1mM) above control (Fig. 6C). As 

1mM dAMPαS failed to induce mutation at the HPRT locus (Fig. 6B), a cytotoxicity based 

mechanism of mutation at the TK locus could be excluded. In contrast, 1mM dAMP treatment 

marginally induced the TK mutant frequency (Fig. 6C). Thus, the genotoxicity of 1mM 

dAMPαS was significantly (~56 fold) more potent than the unmodified counterpart. In fact, 
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genotoxicity at either the HPRT or TK loci was no greater than ~3 fold for treatment of TK6 

cells with canonical deoxyadenosine, dAMP or dATP (Suppl. Fig. 4). 

Page 16 of 38Toxicological Sciences

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

17 

 

Discussion 

Data presented in this study suggest that a biologically active ASO, AD3-hprtPM, and its 

phosphorothioate nucleotide analogue degradation product are capable of inducing mutation 

at genomic DNA in human lymphoblastoid TK6 cells. 

Oligonucleotides have been previously reported to be capable of inducing mutation 

within a homologous sequence in duplex DNA, in a process known as TNE, where mutation 

is a result of a mismatched base within the oligonucleotide (Aarts et al., 2006, Bonner and 

Kmiec, 2009, Dekker et al., 2003, Morozov and Wawrousek, 2008, Olsen et al., 2009). An 

important point to consider is that oligonucleotides employed in these studies tend to be 

greater than 45 nucleotides in length. In this study, AD3-hprtPM (23 nucleotides in length) 

was engineered to reflect the length of an ASO therapeutic and chemically modified to 

contain the commonly employed phosphorothioate linkages (Buchini and Leumann, 2003, 

Geary, 2009).  

Although AD3-hprtPM was biologically active as an antisense molecule, mutation at 

the targeted HPRT locus in human lymphoblastoid cells was not observed above the detection 

limit of the assay, unless, RAD51 protein expression was stimulated prior to treatment. In 

that instance, AD3-hprtPM induced locus and sequence specific mutation ~4.4 fold above 

control. Sequencing HPRT mutant clones revealed mutation at the site of the mismatched 

base was absent in all clones. However, amongst other mutations, a single base deletion and 

point mutation adjacent to but downstream of the AD3-hprtPM target sequence was 

predominant in mutant clones derived from AD3-hprtPM treatment and not control.  

We propose that AD3-hprtPM binding to its target sequence on the sense strand (non-

transcribed) is facilitated by the strand pairing properties of RAD51 protein, perhaps during 

DNA replication (Gupta et al., 1997, Kow et al., 2007, Sung and Robberson, 1995). Indeed, 

the ability of RAD51 to pair single stranded DNA with homologous double stranded DNA 
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has been previously reported (Gupta et al., 1997, Sung and Robberson, 1995). Upon strand 

invasion, a “displacement loop” structure is formed which results in the displacement of the 

antisense strand. Following this, the model can be extrapolated from Hanawalt (1994) and 

Wang et al. (1996). The displacement loop structure may result in a physical blockade to a 

progressing replication/transcription fork causing it to revert back to a natural pause site 

generating a reiterative repair patch. Repeated attempts in replication/transcription may result 

in mutation introduced by the natural error frequency of the DNA repair polymerase. It may 

be the bound AD3-hprtPM is removed by the helicase activity associated with a progressing 

fork but repeated cycles of binding, inhibition of replication/transcription and re-iterative 

repair increase the probability of a mutagenic event.  

Alternatively, perhaps through HR repair during S-phase (Johnson and Jasin, 2001, 

Takata et al., 1998), AD3-hprtPM physically incorporates into the genome following RAD51 

mediated strand invasion (Radecke et al., 2006). Once incorporated, AD3-hprtPM with the 

mismatched base and the non-canonical phosphorothioate linkages at either end may cause 

replication fork arrest. The sulphur within the phosphodiester backbone is likely to be 

recognised as a lesion by the nucleotide excision repair (NER) pathway ultimately resulting 

in the excision of an encompassing fragment of 27-29nt in length (Huang et al., 1992, 

Svoboda et al., 1993). In support of this, the introduction of phosphorothioate bonds in a 

DNA double helix has been reported to cause structural alterations (Kanaori et al., 1999). 

This mechanism may also explain why the mismatched base from AD3-hprtPM treatment 

was not observed in HPRT mutant clones but was observed in previous studies using 

oligonucleotides that are far greater in length than the NER repair pathway is able to cleave. 

In this study, human TK6 cells were transfected with oligonucleotide for 4h, which 

was then removed by washing. Exposure of cells to oligonucleotide for longer periods of time 

may increase the probability for ASO hybridisation to genomic DNA and mutation. For 
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example, in a Phase I/II clinical trial using a 2’OMe/phosphorothioate ASO (PRO051, 

Prosensa Therapetucis), plasma half-life of oligonucleotide was between 19 and 56 days 

(Goemans et al., 2011). Additionally, subcutaneous injection of a phosphorothioate ASO has 

been shown to rapidly distribute to the liver in mice and remain there with a half-life up to 19 

days (Yu et al., 2001). In fact, ASO elimination from the liver was reduced with increasing 

ASO dose. Thus, accumulation and constant exposure of cells to ASO may increase the 

probability of ASO hybridisation to genomic DNA and subsequent mutation; repeated cycles 

of ASO binding may further increase the likelihood of mutation. This hypothesis is supported 

from a study by Leonetti et al. (1991) and Chin et al. (1990) where micro-injected 

oligonucleotides were shown to rapidly accumulate in the cell nucleus and not the cytoplasm. 

ASO binding to genomic DNA is even more likely when ASO accumulate in the cell nucleus.  

These data suggest that a mismatched base within an ASO may not be a pre-requisite 

for mutation at its homologous sequence in genomic DNA providing RAD51 protein 

expression is sufficient to mediate strand invasion of duplex DNA. The dependence of AD3-

hprtPM mediated mutagenesis on RAD51 protein induction is clinically relevant to patients 

with p53 mutant tumors that are often found to have elevated RAD51 protein expression; it 

has been proposed that RAD51 overexpression may contribute to drug resistance and 

genomic instability (Klein, 2008). Furthermore, the majority of ASO currently in clinical 

trials are for cancer therapy and p53 is inactivated in half of human cancers (Soussi and 

Lozano, 2005). Since p53 negatively regulates RAD51 gene expression these patients may 

also present with elevated RAD51 protein expression (Arias-Lopez et al., 2006, Hannay et 

al., 2007). For example, the extent of RAD51 protein expression in invasive ductal breast 

cancer correlated with the histological grading of tumors and RAD51 is reportedly induced 2-

7 fold in several cancer cell lines similar to that reported here (Maacke et al., 2000, 
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Raderschall et al., 2002). However, how our in vitro genotoxicity data translates to an in vivo 

system is unknown and warrants further investigation. 

ASO that are degraded can result in the release of non-canonical nucleotides, which 

may enter endogenous nucleotide pools and incorporate into newly synthesised DNA during 

replication. Data presented here suggest that a DNA polymerase can utilise a 

phosphorothioate nucleotide analogue (dATPαS), albeit with reduced efficiency (~8 fold 

relative to unmodified counterpart), but failed to incorporate a 2’Omethyl RNA based 

nucleotide (2’Ome-ATP) into a primed template. It would appear that incorporation of 

nucleotide analogues may entirely depend on the nature of the chemical modification. 

Treating human lymphoblastoid cells with the phosphorothioate analogue dAMPαS 

resulted in significant mutation with an apparent thresholded effect. Remarkably, mutation at 

the genomic TK locus was up to 2 orders of magnitude above control, yet mutation at the 

HPRT locus was not observed. Previous studies suggest that a large proportion of mutations 

at the HPRT locus can be deleterious to the cell whilst the TK locus is a more robust reporter 

capable of detecting point mutations and even inter-gene deletions (Doak et al., 2007, 

McGregor et al., 1996) and we suggest that this may be the case here. 

Human TK6 cells were treated with the monophosphate analogue dAMPαS and so for 

incorporation into genomic DNA (i) the concentration of dATPαS must exceed a threshold 

for insertion of analogue rather than endogenous dATP and (ii) dAMPαS must first become a 

substrate for various kinases to convert the monophosphate into a triphosphate for utilisation 

by DNA polymerase. In essence, both these limitations would contribute to a genotoxic 

threshold as observed in the data presented here. Considering this thresholded effect at the TK 

locus, we suggest the mechanism of mutation by dAMPαS may be in accordance with the 

next nucleotide effect model (Phear et al., 1987). The speed at which DNA polymerase 

extends an elongating strand (5’ to 3’) is governed by the availability of the next (3’) 
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nucleotide in sequence. If a misinserted nucleotide is followed 3’ by a highly abundant 

nucleotide, polymerisation of this next nucleotide is favoured rather than the excision of the 

incorrect one by the 3’ to 5’ exonuclease activity associated to DNA polymerase (Fersht, 

1979). However, in this case, the insertion of the phosphorothioate analogue, dATPαS, would 

render the bond nuclease resistant thereby  locking the error into the sequence.  

It is particularly important to note that although 0.5mM dAMPαS treatment was 

mutagenic in an in vitro system, the in vivo relevance is unknown; phosphorothioate 

oligonucleotides are thought to slowly degrade over time but data is lacking to inform in vivo 

intracellular concentrations of ASO derived nucleotide analogues.  Nevertheless our findings 

raise the question as to whether ASO modalities and their respective degradation products 

can contribute to genomic instability.  
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Supplementary Data 

Supplementary Figures 1-4 can be found online. 
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Figure legends 

 

Figure 1. Oligonucleotide sequences. The target sequence in exon 3 of the HPRT locus is 

shown as a duplex and underlined. AD3-hprtPM antisense oligonucleotide is designed to bind 

complementary to the non-transcribed strand, except a single mismatched base (bold 

lowercase). Control oligonucleotide has no sequence similarity to the HPRT locus. 

 

Figure 2. Antisense activity of AD3-hprtPM oligonucleotide. TK6 cells were treated with 2 

µM, 5 µM or 10 µM AD3-hprtPM or control oligonucleotide. ADAMTS3 protein expression 

at 24 h (A), 48 h (B) and 72 h (C) was determined by immunoblot. ADAMTS3 expression 

was quantified by densitometry and corrected for GAPDH loading control. ADAMTS3 

protein expression following AD3-hprtPM  treatment was normalised to control 

oligonucleotide treatment at the respective time and dose (D). Data represent mean ± SD of 

three independent treatments. ADAMTS3 protein expression from AD3-hprtPM treatment is 

compared to control oligonucleotide at the same dose and time using a two-way student’s t-

test. * p<0.05. 

 

Figure 3. Genotoxicity of AD3-hprtPM in a HR repair induced system. Human TK6 cells 

were pre-treated with 0.2 µg/ml MMS for 24 h to induce the HR repair pathway. The 

Untreated group measures the cytotoxic/genotoxic effect of the MMS pre-treatment. The 

spontaneous mutant frequency following MMS pre-treatment was determined as Background. 

EMS (5µg/ml) was used as a positive genotoxin. Cytotoxicity below the minimum accepted 

20% RTG is not evident following treatment of TK6 cells with 2 µM, 5 µM or 10 µM 

oligonucleotide (A). AD3-hprtPM induced a dose dependent increase in HPRT mutants 

relative to control oligonucleotide (B). AD3-hprtPM oligonucleotide failed to induce 

mutation at the non-targeted TK locus (C). Data represent mean ± SD of three independent 

treatments. * p<0.05 using two-way students t-test. 

 

Figure 4. Distribution of AD3-hprtPM mediated mutation in exon 3 of the HPRT locus. 

Sequences are numbered from the first base of exon 3 (1 to 164). The AD3-hprtPM target 

sequence is underlined from position 134-156. * above guanine (position 138) indicates the 

site of the mismatched base in AD3-hprtPM where G>T transversion mutation was predicted. 

Numbers and letters within a circle represent the frequency (%) and type of mutation from 41 
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AD3-hprtPM induced HPRT mutant clones whereas those in a square are from 29 control 

oligonucleotide induced HPRT mutant clones. + indicates an insertion and ∆ indicates a 

deletion.    

 

Figure 5. Efficiency of nucleotide analogue incorporation into a primed DNA template. Two 

complimentary oligonucleotide strands (25 nt and 30 nt) were annealed together to produce 

an overhang of five thymidine nucleotides. The ability to extend the short strand by five 

nucleotides is used as the marker for incorporation of nucleotide. The values above each lane 

are dose of nucleotide analogue (µM). Full extension of the primed template was found to 

occur in a 10 minute reaction with 0.5 µM dATP (A). Incorporation of the phosphorothioate 

nucleotide analogue, dATPαS, was in a 20 minute reaction at 2 µM (B). Here, dATP (5 µM) 

was used as a positive control (lane C) to reference an extended template. DNA polymerase 

failed to incorporate the nucleotide analogue, 2’Omethyl-ATP, into the primed template in a 

60 minute reaction (C). 

 

Figure 6. Genotoxicity of dAMPαS nucleotide analogue incorporation into genomic DNA. 

Human TK6 cells were treated with nucleotide analogue dAMPαS from 20 µM up to 1mM 

for 24 h. As a nucleotide control, TK6 cells were also treated with 1 mM dAMP. The zero 

dose is the negative control (solvent). EMS (5 µg/ml) was used as a positive genotoxin. For 

mutation assays, RTG above 20% are considered acceptable; only treatment with 1 mM 

dAMPαS (10% RTG) was below this threshold (A). Mutation at the HPRT locus was not 

observed (B). However, treatment with dAMPαS resulted in a dose dependent increase in TK 

mutants up to 96 fold above control (C). The unmodified nucleotide, dAMP (1mM), induced 

the TK mutant frequency ~1.7 fold (C). * p<0.05; ** p< 0.01; *** p<0.001 using one-way 

ANOVA with Dunnett’s post-hoc test compared to control. 
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