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Abstract

From femtosecond bond vibrations to millisecond domain motions, the dy-
namics of biomolecules spans a wide range of time and length scales. This
hierarchy of overlapping scales links the molecular and biophysical details to

key aspects of their functionality. However, the span of scales combined with their
intricate coupling rapidly drives atomic simulation methods to their limits, thereby
often resulting in the need for coarse-graining techniques which cannot take full
account of the biochemical details.

To overcome this tradeoff, a graph-theoretical framework inspired by multiscale
community detection methods and stochastic processes is here introduced for the
analysis of protein and DNA structures. Using biophysical force fields, we propose
a general mapping of the 3D atomic coordinates onto an energy-weighted network
that includes the physico-chemical details of interatomic bonds and interactions.
Making use of a dynamics-based approach for community detection on networks,
optimal partitionings of the structure are identified which are biochemically relevant
over different scales. The structural organisation of the biomolecule is shown to be
recovered bottom-up over the entire range of chemical, biochemical and biologically
meaningful scales, directly from the atomic information of the structure, and without
any reparameterisation.

This methodology is applied and discussed in five proteins and an ensemble of
DNA quadruplexes. In each case, multiple conformations associated with different
states of the biomolecule or stages of the underlying catalytic reaction are anal-
ysed. Experimental observations are shown to be correctly captured, including the
functional domains, regions of the protein with coherent dynamics such as rigid clus-
ters, and the spontaneous closure of some enzymes in the absence of substrate. A
computational mutational analysis tool is also derived which identifies both known
and new residues with a significant impact on ligand binding. In large multimeric
structures, the methodology highlights patterns of long range communication taking
place between subunits. In the highly dynamic and polymorphic DNA quadruplexes,



key structural features for their physical stability and signatures of their unfolding
pathway are identified in the static structure.
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Chapter 1

Introduction

How does function in biomolecules emerge from their atomic structure? Most
biological and physiological processes are the consequence of the action and
interplay of a large body of proteins and their ability, arising solely from the

properties of their molecular structure, to carry out an immense variety of elemen-
tary tasks in the cell. The catalysis of reactions, the transmission of signals inside
and outside the cell, the transport of small molecules, the generation of mechanical
motion, the provision of structural support, or the control of vital processes such
as cell death, DNA replication or the immune response are only some of the vital
roles fulfilled by proteins. The understanding of their physical properties is not only
crucial to our comprehension of many biological mechanisms, but also to our ability
to address issues associated with them. The design of drugs that specifically target
a particular protein, RNA molecule, or DNA sequence provides the means to con-
trol biological processes, for instance to fight diseases resulting from an infection or
anomalies in vital biomolecules. Ultimately, uncovering the design rules that define
their behaviour in living organisms opens the door the engineering of biomolecular
structures with new or improved functions, acting as biological devices at the atomic
level. The link between the chemistry of biomolecules and the ensuing physiological
and biological processes is therefore a central question in biology.

Since 1958, when the first atomic resolution structures of proteins, myoglobin
and haemoglobin, were published by Kendrew (Kendrew et al., 1958) and Perutz
(Muirhead and Perutz, 1963), tremendous progress has been made in experimen-
tal techniques and computational modelling. Yet, due to the complex structural
properties of biomolecules, predicting their dynamical behaviour and rationalising
the mechanisms that give rise to their function remain real challenges more than

23
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five decades later. Specifically, the structural and dynamical aspects that lead to
their macroscopic properties span an extensive range of scales and evolve from the
atomistic level up.

From a structural viewpoint, biomolecules are characterised by a multi-level or-
ganisation. Each protein, DNA or RNA molecule is formed of one or more chains
of amino or nucleic acid residues whose sequence, called the primary structure,
uniquely encodes the biomolecule. Locally, the residue chains often arrange into
particular structural motifs, referred to as the secondary structure, such as helices
or pleated sheets in proteins. Globally, biomolecules fold into a specific three dimen-
sional conformation, the tertiary structure, which in proteins defines domains with a
functional role. At the highest level of organisation, multiple chains can associate to
produce a so-called multimeric protein that is described by its quaternary structure.

But biomolecules are not static entities. Their biological function often depends
on their ability to transition between multiple structural configurations. The binding
and release of substrates, the optimal positioning of bound molecules to catalyse a
reaction, or the creation of mechanical motion, to cite only a few, all depend on
the ability of the protein to change the arrangement of its atoms under particular
circumstances. The constraints imposed by the structure, which for instance define
rigid and flexible regions, in turn determine the subspace of possible displacements.
This ensemble of conformations, and the probability with which they are sampled
by the biomolecule is thus itself encoded by the structure, and this synergy between
structure and dynamics is at the very heart of its function (Henzler-Wildman et al.,
2007a; Henzler-Wildman and Kern, 2007).

The difficulties in predicting the behaviour of biomolecules notably result from
the multiple scales, in both time and space, over which their structure and dynamics
unfold (Henzler-Wildman et al., 2007a; Henzler-Wildman and Kern, 2007; Frauen-
felder et al., 2001; Yaliraki and Barahona, 2007). Atoms, functional chemical groups,
amino acids, the ensuing secondary structures, the large conformational domains:
each of these levels of structural organisation is linked to dynamics occurring at
different time and spatial scales, from the femtosecond vibration of covalent bonds
to the micro to millisecond motion of functional domains (Figure 1.1).

The large scale domain motions are often tightly linked to function, and have
consequently long been the subject of intense research efforts in biochemistry. Yet
the seemingly random atomic fluctuations are not devoid of functional significance.
As suggested by recent experimental data combined with the success of compu-
tational methods such as normal mode analysis, they instead actively drive the
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Figure 1.1: Proteins are complex structures with a multiscale organisation in time
and space. Fully atomic simulations cannot access the large scales while coarse-
grained models cannot fully describe the atomic details of the biochemistry. a.
Time scales of motions in biomolecules. b. Cross-section through the free energy
landscape of protein conformations, showing the energy barriers associated with
motions over different time scales. The global dynamical behaviour of biomolecules
results from the intricate coupling of the dynamics taking place over a deep hierarchy
of scales (Henzler-Wildman and Kern, 2007).

collective motions. In the protein adenylate kinase, a hierarchy of dynamics taking
place over different time and spatial scales was notably identified whereby motions,
even at the smallest scales, occur preferentially along the trajectory towards the
catalytically competent conformation (Henzler-Wildman et al., 2007b). Local fast
time scale dynamics are thus directly facilitating their global slow time scale coun-
terpart. In between the atomic and macroscopic scales, a deep hierarchy of levels of
organisation thus exists which are not behaving independently but rather influence
each other and, through their coupled dynamics, all contribute towards the global
behaviour of the entire biomolecule.
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The range of time and spatial scales spanned by the dynamics of biomolecules
presents a real challenge for computational methods such as molecular dynamics
simulations. The ability to accurately reproduce the dynamics of molecules compu-
tationally from the numerical integration of the Newton’s equations of motion com-
bined with meticulously designed interatomic potential energy functions has been
a remarkable success of computational chemistry (Adcock and McCammon, 2006).
However, simulating the atomic motions of a whole protein over the biologically
relevant regimes would generally require spanning ten to fifteen orders of magnitude
in time, which would rapidly drive such fully atomic molecular dynamics simulation
methods to the limits of available computational resources. Thus, although tradi-
tional tools can deal successfully with the very short time scales, they often cannot
be applied to long times (or large systems) due to their exorbitant computational
cost.

Because many of the key biological functions take place at the micro- to mil-
lisecond time scales, simplified structure models using coarse-graining techniques
have been proposed as a means to reaching the biologically relevant regimes (Ba-
har and Rader, 2005; Tozzini, 2005; Ayton et al., 2007). However, in addition to
ignoring the details of physico-chemical atomic interactions, coarse-grained models
also effectively decouple the smaller from the larger levels of structural organisation.
Consequently, they are usually unable to link atomic scale events such as substrate
binding with the large-scale conformational changes induced and cannot provide a
picture that emerges seamlessly from the smallest scales.

The different levels of organisation in proteins do not indeed behave indepen-
dently: the dynamics at long time and length scales, which is in many cases crucial
for biological function, is the result of the integrative interaction of the finer organ-
isational levels. Analysing proteins from this multiscale perspective can reveal the
intricate linkage between the structural levels of organisation and give insight into
the behaviour of the protein starting from the bottom-up. In addition, this picture
can also aid in understanding the effects that small-scale changes such as mutations
have on the large-scale behaviour.

1.1 Organisation of the thesis
To address this problem, a new computational approach is here introduced which
provides the means to explore the structural organisation of a protein, DNA or RNA
molecule in relation to its dynamical behaviour throughout the entire spectrum of
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scales. Importantly, this is done using its static X-ray or NMR structure only,
defined at the atomic level, and without the use of any coarse-graining, a priori
information or assumption.

While simulations are rapidly limited by computational resources, it is however
well established that the static structure of the protein encodes to a large extent the
space of accessible motions which, in turn, provides the mechanisms allowing the
protein to perform its specific function. Normal mode analysis (Brooks and Karplus,
1983; Go et al., 1983), elastic network models (Bahar et al., 2010), graph theoretical
approaches (Csermely et al., 2013; Di Paola et al., 2013; Böde et al., 2007), and
rigidity theory (Costa, 2008; Jacobs et al., 2001) are some examples of the many
computational methods which have successfully made use of these conclusions to
infer properties of the protein dynamics and function, and we review and discuss
each of them in Chapter 2.

Our methodology is described in Chapter 3. It is twofold: Firstly, we define a
general mapping to convert a fully atomic biomolecular structure into a network of
atoms that includes all the physico-chemical details of the interactions; Secondly, we
use a dynamics-based approach for multiscale graph partitioning (Delvenne et al.,
2010) which uncovers graph communities that are relevant over different time scales
using a stochastic process diffusing on the graph.

This leads to a multi-level hierarchical organisation of the biomolecular struc-
ture that identifies the biochemically meaningful substructures at all scales: from
chemical groups through individual residues, to the appearance of secondary struc-
tures and intermediate structural elements, such as clusters of several helices, to
the eventual emergence of large conformational units. Hence the picture at larger
scales emerges directly from the detailed physico-chemical information at the small-
est atomic scales. These results are exemplified in Chapter 4 on adenylate kinase,
a classical and well studied enzyme, where we also define two biochemically moti-
vated surrogate random graph models that allow us to evaluate the significance of
our results and identify the role of particular types of bonds and interactions.

In Chapters 5 to 7, this general framework is then used to understand the multi-
scale dynamical features and infer possible mechanisms of functional motions of an
ensemble of increasingly complex protein and DNA structures which are currently
actively researched. In Chapter 5, we identify in the myosin tail interacting protein,
a particular myosin-myosin light chain interaction from the malaria parasite, regions
that share a common dynamical behaviour, such as a rigid cluster and regions with
a common functional role. We also introduce a computational mutational analysis
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tool that evaluates the impact of individual residues on the global structural organ-
isation of the protein. In Chapter 6, we demonstrate the ability of our methodology
to provide insight into highly complex multimeric structures such as Rubisco and
ATCase. We show that the complexity of their functional mechanisms is encoded
in their structure in terms of a deep hierarchy of functionally important levels of
organisation which contrasts with simpler globular structures such as hemoglobin.
Through the comparison of different reaction stages and a methodology to analyse
the ensemble of suboptimal solutions, we reveal particular patterns of communica-
tion taking place at the level of the quaternary structure, throughout the multimer.
In Chapter 7, we extend our methodology to the analysis of DNA structures. Our
study of 19 DNA quadruplexes highlights particular structural features related to
the stability, polymorphism, and unfolding pathway of the different structures.



Chapter 2

Computational analysis of biomolecular struc-
tures

Awide range of techniques now exist which provide the means to observe ex-
perimentally different aspects of the structure and dynamics of biomolecules.
Their three dimensional structure can notably be resolved at the atomic

level using nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallog-
raphy, or at a lower resolution using cryo-electron microscopy. Today, more than
100 000 structures can readily be accessed in the Protein Data Bank, the largest
such database (Bernstein et al., 1978). In addition, NMR spectroscopy also allows
to probe the dynamics over a broad range of time scales, from pico- to millisecond
motions, and to infer the probability of the different conformations together with
the rate of transitions between them. The motion of a single molecule can even
be followed in real time using fluorescence resonance energy transfer (FRET) and
normal modes of motions can be identified using infrared (IR) spectroscopy.

Yet experiments remain limited in the level of detail they can provide on the
dynamics of biomolecules. For instance, short-lived transition conformations are
usually inacessible and the exact pathway between different well defined states re-
mains out of reach to experimentalists. As computational methods do not suffer
from this limitation, they can reveal key functional properties that remain unob-
servable experimentally. Simulations and computational analyses of experimental
structures have for instance been used to discriminate between possible functional
mechanisms, identify residues critical for function, suggest preferential communica-
tion pathway accross the structure, characterise allosteric mechanisms, decompose
the structure into rigid clusters, or again uncover new binding sites.

29
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Computational methods can thus both complement the information gathered
experimentally and anticipate the consequences of particular biochemical events to
help guide future experiments. Used in synergy with experiments, they open the
door to an enhanced understanding of protein structure and dynamics. Over the
past decades, a wealth of methods have been proposed and in the following sections,
we describe popular approaches related to this work.

2.1 Normal mode analysis

2.1.1 General approach

In mechanical systems, motions describing small deviations around a stable equilib-
rium position can often be very well approximated by a superposition of independent
vibrational motions. This well-known process of decomposition into decoupled har-
monic oscillations has a long history and is of widespread applicability in a broad
range of physical systems (Goldstein, 1953). In chemistry, it has long been a very
popular method, and was originally used for small molecules, in connection with the
vibrational spectrum observed experimentally in Raman and infrared spectroscopy
(Wilson et al., 1955). Since the 1980’s and its first application to proteins (Brooks
and Karplus, 1983), it has become a standard method to analyse the dynamics of
large biomolecules. Its interest lies in its ability to reveal collective fluctuations
spanning the whole system, and the recent realisation that low frequency modes
are often related to the biological function (Ma, 2004, 2005). As a result, normal
mode analysis (NMA) is now primarily used to study large scale motions and slow
time scale dynamics. In this section, we first describe the mathematical basis of the
methodology and then discuss its uses and limitations.

Let us consider a molecule containing N atoms characterised by 3N cartesian
coordinates. For an atom i, the spatial coordinates are represented by a vector
ri = (xi, yi, zi), and its displacement relative to a reference position ri0 by the vector
qi = ri−ri0. Using a series expansion, the potential energy V of the molecule around
the reference point ri0 can be written

V (q) = V0 +
∑
α

N∑
i=1

∂V

∂qαi

∣∣∣∣∣
q=0

qαi + 1
2
∑
α,β

N∑
i,j=1

∂2V

∂qαi ∂q
β
j

∣∣∣∣∣∣
q=0

qαi q
β
j + Θ(q3), (2.1)



Chapter 2: Computational analysis of biomolecular structures 31

where the superscripts α and β extend over the x, y and z components of the
vectors of coordinates and q is the 3N×1 vector (qx1 , q

y
1 , q

z
1, q

x
2 , q

y
2 , ...)T . By choosing

the reference point at the energy minimum, the second term of Equation 2.1 becomes
equal to zero and, since the reference potential can be chosen arbitrarily, the first
term can be set at V0 = 0. If the atomic fluctuations are small in amplitude, the
higher order terms can be neglected and V can be approximated by a harmonic
potential

V (q) = 1
2
∑
α,β

N∑
i,j

∂2V

∂qαi ∂q
β
j

∣∣∣∣∣∣
q=0

qαi q
β
j . (2.2)

Using the Euler-Lagrange formulation of the equations of motion d
dt

∂T

∂q̇i
α +

∂V

∂qiα
= 0, with the kinetic energy T = 1

2
∑
α

∑N
i=1 mi

(
q̇αi
)2

and mi the mass of
atom i, the motion of the molecule can be written in matrix form as

Hq = Mq̈ (2.3)

where (H)αβij = − ∂2V

∂qαi ∂q
β
j

∣∣∣∣∣
q=0

is the 3N×3N Hessian matrix of the potential V (with

a minus sign), and (M )ij = miδij is the diagonal matrix of atomic masses. Using
the mass-weighted Hessian H ′ = M− 1

2HM− 1
2 and the mass-weighted coordinates

q′ = M
1
2q, Equation 2.3 becomes

H ′q′ = q̈′. (2.4)

Since H ′ is a symmetric matrix, it can be diagonalised by a unitary matrix A, with
AAT = ATA = I, such that

H ′ = ATΛA (2.5)

where Λ is the diagonal matrix of eigenvalues of H ′, and A the matrix of the
normalised eigenvectors of H ′. Using a second change of coordinates Q = Aq′,
Equation 2.4 reduces to 3N independent differential equations

Q̈k(t) = λkQk(t), k = 1, ..., 3N (2.6)

whose solution
Qk(t) = ck cos(ωkt+ φk), k = 1, ..., 3N (2.7)
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defines a vibrational motion with frequency ωk =
√
λk given by the square root of

the kth eigenvalue of the Hessian matrix H. The amplitude ck and the phase-shift φk
are determined by the initial conditions and, when the system is at thermodynamic
equilibrium1 ck =

√
kbT/w2

k, with kb being the Boltzmann constant and T , the
temperature in Kelvin (Hayward, 2001). Unlike Equation 2.3, the motion associated
with each coordinate Qk(t) in Equation 2.7 is now independent from all the other
coordinates. The changes of coordinates have thus decomposed the motion of the
molecule into 3N oscillations which are orthogonal to each other, i.e. none of the
motions described by any of the modes Qk(t) can be reproduced by any combination
of the others. These vibrations defined by the coordinates Qk(t) are the normal
modes of the molecule. As a side note, only 3N−6 normal modes actually correspond
to pure vibrations in molecules. Six modes will indeed always have a zero eigenvalue,
and correspond to the six translational and rotational degrees of freedom of the rigid
body (Wilson et al., 1955).

By reverting back to the atomic coordinates, the motion q(t) of each atom of
the molecule can now be expressed as a combination of normal modes Qk(t)

q(t) =
3N∑
k=1

cka
′
k cos(ωkt+ φk), (2.8)

where a′k is the kth mass-weighted eigenvector of H ′ (kth column of M−1/2A). The
contribution of each mode to the motion of each atom is thus determined by the
eigenvector of the Hessian matrix, and the mass of each atom.

In summary, under the assumption that the potential can be approximated by
a harmonic well at the energy minimum, normal mode analysis (NMA) decomposes
the motion of a molecule into a sum of independent modes of vibration at different
frequencies. Each mode is associated with one eigenvalue of the Hessian matrix,
which determines the frequency of the vibrations ωk, and one eigenvector ak, which
dictates its contribution to the motion of each atom.

Normal mode analysis is useful for computing a variety of properties in biomolecules
such as the mean square displacement of atoms, motional correlations, several ther-
modynamic quantities as well as the vibrational spectrum which can be related to
experimental data such as infrared or Raman spectroscopy (Brooks et al., 1988;
Wilson et al., 1955). NMA can also be used to improve sampling in MD simulations
(Bahar and Rader, 2005; Hayward and de Groot, 2008), or refine experimental struc-

1This can be shown using the equipartition theorem, i.e. assuming that each mode contributes
equally to the total energy.
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tures (Ma, 2004). Indeed, atomic fluctuations can be directly computed from the
normal modes. From equation (2.8) with ck =

√
kbT
w2
k

, and assuming thermodynamic
equilibrium, the mean square displacements are given by

〈
q2
l

〉
= kbT

ml

3N∑
k=1

(
alk
ωk

)2

, (2.9)

where alk indicates the lth component of the kth column of the matrix A. Through
the presence of the freqency ωk in the denominator, this expression shows that the
lowest frequency modes are the dominant contributors to the atomic fluctuations
and therefore drive the largest molecular motions. In addition, these slow modes are
often found to be highly delocalised and can thus reveal collective motions engaging
large portions of the structure (Brooks and Karplus, 1983).

Over the past years, there has been an increasing body of evidence that slow
modes also often bear functional significance. Functionally related conformational
transitions were found in multiple proteins and complexes to follow one or several of
the slow modes (see reviews by Tama and Sanejouand (2001); Ma (2004, 2005), and
references therein). This observation has led to a new surge of interest in normal
mode analysis, with a multitude of new algorithms and NMA-related methods being
proposed, and NMA has now become a common technique to predict large structural
deformations related to function.

Despite its agreement with experimental data, NMA has often been criticised
for being used beyond the theoretical limits of its validity. Because it relies on
the assumption of small deviations from the energy minimum, it is indeed ill-suited
to study large conformational changes. A large number of constraints, such as
steric hindrance, will for instance be violated by all but the smallest excursions
from the equilibrium position. At physiological temperatures, large biomolecules
evolve on a very rugged energy landscape with multiple local minima and energy
barriers of various heights (Frauenfelder et al., 1991; Henzler-Wildman and Kern,
2007), in contrast to the smooth harmonic potential assumed by NMA. A common
alternative is to infer the Hessian from the fluctuations measured in short molecular
dynamics simulations. This procedure, known as quasi-harmonic dynamics (Levy
et al., 1984), thereby allows to take some account of the anharmonicity. Essential
dynamics (Hayward and de Groot, 2008; Ichiye and Karplus, 1991; Amadei et al.,
1993), a very similar method, uses principal component analysis (another eigenvalue
problem) on the correlation matrix of atomic fluctuations obtained from molecular
dynamics trajectories. Essential dynamics thus filters out the major collective modes
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from the local fluctuations to identify the main, functionally important, directions
of motions.

NMA can also be very demanding in computational resources, firstly, because of
the computationally expensive energy minimisation required to bring the molecule
in the equilibrium conformation and, secondly, because of the diagonalisation of a
very large 3N×3N Hessian matrix. As a result, even though a number of methods
have been proposed to reduce the computational cost such as computing the Hessian
in the dihedral angle space, or coarse-graining it into rigid blocks (Hayward, 2001),
the calculation of NMA remains limited to relatively small proteins. Finally, the
computation of the Hessian can be sensitive to the accuracy of the energy minimi-
sation and the choice of empirical force fields used to evaluate the atomic potential
function.

2.1.2 Elastic Network Models

The realisation of the functional importance of slow modes combined with the com-
putational cost associated with normal mode analysis led to the development of a
multitude of new methods for simplified or coarse-grained NMA. Recent advances
were especially sparked by the seminal work of Tirion (Tirion, 1996) who demon-
strated that slow modes are extremely robust with respect to the atomic details
of the interactions, rendering the accurate definition of the atomic potentials and
their second derivative superfluous. Elastic networks models, inspired by Tirion’s
work, are probably one of the most popular classes of simplified NMA methods for
proteins.

The Hessian matrix used in NMA, which can equivalently be seen as the matrix of
spring constants associated with the harmonic potentials, is the only input required
to compute the normal modes. In order to avoid the expensive computation of
this whole matrix from detailed empirical potentials, Tirion proposed the use of a
unique spring constant k for all pairs of atoms within a chosen distance cut-off,
thereby defining a potential function with only a single parameter to be determined,

VENM(q) = k

2

N∑
i<j

(∥∥∥rij∥∥∥− ∥∥∥rij0∥∥∥)2
(2.10)

where rij = ri − rj and the sum is done over all pairs of atoms i and j within a
certain cut-off rc (such that

∥∥∥rij0∥∥∥ < rc), chosen by Tirion between 1.1 and 2.5Å. In
addition, she assumed this expression to be valid for any conformation, thus avoiding
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the lengthy energy minimisations usually required in NMA. Using a second order
expansion of equation (2.10), the potential used by Tirion can be written

VENM(q) = k

2

N∑
i<j

[(
qi − qj

)
.uij0

]2
(2.11)

where uij0 = rij0

‖rij0‖ , which gives a 3N×3N Hessian matrix in the form of a N×N
matrix where the element Hi,j, i, j = 1, ..., N is a 3×3 matrix defined by

(HENM)i,j =



−k.


(
uxij
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uyij.u
x
ij

(
uyij
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ij uzij.u
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ij
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uzij
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 if i 6= j and ‖rij0‖ < rc

−
∑
j 6=i

(HENM)i,j if i = j

(2.12)

Only a single parameter, the spring constant k, thus needs to be fitted to ex-
perimental data. This is usually done by adjusting k such that atomic fluctuations
estimated from Equation 2.9, where k is simply a scaling factor, best reproduce
the atomic mobility experimentally measured in crystallographic B-factors. In spite
of the very simplistic form of this potential, Tirion showed that the results of the
normal mode analysis were very close to those computed using detailed empirical
force fields and preceded by an energy minimisation (Tirion, 1996). Her conclusions
have since been confirmed by the many simplified models inspired by her work,
most of which had the capacity to reproduce the slow modes obtained from detailed
empirical force fields in very little computational time (Bahar et al., 2010). In par-
ticular, elastic network models coarse-grained at the residue level (Atilgan et al.,
2001; Chennubhotla et al., 2005; Doruker et al., 2000; Micheletti et al., 2004) (some-
times referred to as the anisotropic network model) with distance cut-off usually
between 7 and 10Å (Hayward and de Groot, 2008), or non-uniform spring constants
(Hamacher and McCammon, 2006; Lyman et al., 2008; Bongini et al., 2010; Hin-
sen, 1998) have been proposed which demonstrated good agreement with molecular
dynamics simulations, NMR or X-ray experimental data.
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2.2 Graph theoretical methods
Euler’s solution to the problem of the seven bridges of Königsberg (Euler, 1736),
published in 1736, is often referred to as the first article on graph theory. Many
mathematical properties of graphs are now well understood, making graph theory
an invaluable way to model a variety of systems spanning a broad range of disci-
plines such as the Internet, electric power grids, transportation, metabolic networks,
protein-protein interactions, neural networks, social interactions, or scientific collab-
orations, to mention only a few. More recently, the increase in the availability of
relational data and computational resources has triggered a new surge of interest in
graph theory and the study of complex networks (Boccaletti et al., 2006). Reveal-
ing particular patterns of interactions, critical elements for function, or obtaining
a meaningful coarse-grained description of a complex system are some examples of
problems where graph theory can provide valuable insight.

Graphs, also often refered to as networks, are abstract structures defined simply
by a collection of nodes and a collection of edges which specifies the connections
between the nodes. A common form of representation of a graph with N nodes is
the N×N adjacency matrix A such that

Aij =

 1 if there is an edge between node i and node j
0 otherwise

When the strength of the connection between the nodes matters, a graph can also
be weighted, in which case the elements of the adjacency matrix Aij ∈ RN×N can
take any real positive value. Similary, the relation between the nodes can be bi- or
unidirectional (i.e. i is connected to j, but j is not connected to i). When the graph
contains no unidirectional links, it is said to be undirected and its adjacency matrix
is symmetric.

The degree of a node is defined as the total number of edges it is associated with.
In a weighted network, the weighted degree, or strength, ki of a node is the sum of
the weights of its connections to other nodes2 ki = ∑

j Aij. The Laplacian matrix is
another important matrix in graph theory and is defined as

L = D −A (2.13)
2In the rest of this work, only weighted networks will be considered and we will often use the

term degree in place of weighted degree.
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where D is the diagonal matrix of the weighted degrees, Dij = kiδij.

2.2.1 Graph theoretical analysis of protein structures

Following from the growing popularity of networks and complexity science, a va-
riety of methods have been proposed to analyse protein structures from a graph the-
oretical viewpoint. Biomolecules can indeed intuitively be rationalised as networks
of atoms or residues interconnected by an ensemble of physico-chemical bonds and
interactions and, unsurprisingly, a considerable range of tools for network analysis
have been applied to biomolecules.

For instance, clusters of tightly connected residues, or “communities”, in the pro-
tein graph can be expected to have a similar behaviour. Remarkably, communities in
the protein graph have consistently been found to correspond to protein functional
domains using different techniques such as spectral graph partitioning (Kundu et al.,
2004; Kannan and Vishveshwara, 1999) or the minimum cut (Xu et al., 2000). The
network representation has also proved to be valuable for the analysis of long-range
communication mechanisms within the proteins, such as allostery3. Path of sequen-
tially connected residues can intuitively been thought of as possible communication
channels that could propagate perturbations via residue-residue interactions, and
random walks on graphs provide a simple and intuitive model for signal transmis-
sion between residues. Consequently, residues with a high centrality4 (Vendruscolo
et al., 2002; Amitai et al., 2004; del Sol and O’Meara, 2005; del Sol et al., 2006),
located at the interface between network communities (Chennubhotla and Bahar,
2006; del Sol et al., 2007; Sethi et al., 2009), or impacting random walks on the
graph (Lu and Liang, 2009; Park and Kim, 2011) have been repeatedly linked to
allostery, protein folding, or function, or used to directly identify active site or bind-
ing hotspot residues. Bridging these different concepts, Chennubhotla and Bahar
(2006) used the stationary distribution of a Markov process diffusing on the net-
work of residues (which can be equivalently defined as a random walk) to derive a
hierarchical soft partitioning of the protein graph5. Based on the community owner-
ship patterns of the nodes, they classified residues by their role in the transmission

3Mechanism by which the activity of some proteins is regulated through the binding of molecules,
called the effector, to an allosteric binding site usually distinct, and sometimes far away, from the
protein active site.

4Traversed by a large number of (shortest) paths between pairs of nodes in the graph
5A division of the network into communities where each node is associated with a probability

of belonging to each community.
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of allosteric signals: “hubs” are residues with a strong ownership to one particu-
lar community which could “broadcast” the signal, and “messengers” are residues
shared by several communities which could efficiently transfer information from one
group of residues to another. In a related work, Lu and Liang (2009) used the time-
dependent response of localised Markov perturbations as they evolve on the network
to characterise residues by their efficiency in propagating inter-residue signals.

Other graph theoretical concepts, for instance linked to the number of closed
walks or spectral properties, have been used to characterise the degree of folding
(Vendruscolo et al., 2002; Estrada, 2000), or disorder (Csermely et al., 2012) of
protein structures. Protein structure networks have also been analysed through
spectral graph theory (Vishveshwara et al., 2002), notably to identify key residues
for protein-protein association at subunit interfaces (Brinda et al., 2002) and clusters
of residues linked to folding intermediates (Kannan and Vishveshwara, 1999). Hubs
(nodes with high degree) were also suggested as possible mutation sites to alter
protein thermal stability (Brinda and Vishveshwara, 2005).

Protein networks have also been characterised with respect to a variety of net-
work properties such as average shortest path, clustering coefficient, assortativity
and degree distribution (del Sol and O’Meara, 2005; Böde et al., 2007; Greene and
Higman, 2003; Atilgan et al., 2004). Many of these properties are however tightly
linked to the way the graph has been constructed from the protein structure and,
although the use of a distance cut-off for the assignment of edges is often the pre-
ferred method, different strategies can be considered depending on the biophysical
properties to be studied as we will discuss in the next chapter.

In the next sections, we focus on two popular methods, namely the Gaussian net-
work model and rigidity analysis, which are more closely related to our methodology
and establish a link between graph theoretic concepts and protein dynamics.

2.2.2 The Gaussian Network Model

The Gaussian Network Model (GNM) was originally proposed by Bahar et al. (1997)
as a new type of elastic network model. It offers a further simplification of the
3N×3N fully atomic Hessian matrix into the N’×N’ (where N’ is the number of
residues) adjacency matrix of the residue contact graph using two fundamental as-
sumptions: residue fluctuations are assumed to be, firstly, Gaussian and, secondly,



Chapter 2: Computational analysis of biomolecular structures 39

A B

Figure 2.1: According to the GNM potential, motions A and B yield the same change
in the potential energy (Thorpe, 2007).

isotropic. In addition, the model is coarse-grained at the level of the residues, using
the Cα atoms as the nodes of the network6.

The GNM is based on the same principles as the classical elastic network models,
using this time a potential defined by

VGNM = k

2

N∑
i<j

∥∥∥rij − rij0∥∥∥2
= k

2

N∑
i,j

∥∥∥qi − qj∥∥∥2
(2.14)

where the sum extends here over all pairs of Cα atoms i and j within a fixed dis-
tance cut-off rc (

∥∥∥rij0∥∥∥ < rc). Unlike the classical elastic network models, the GNM
potential is not a function of the distance between the two atoms connected by a
spring, but of the norm of the vector describing the transition from rij0 to rij. As
a result, change in the total energy can result not just from a change in the spring
elongation, but also from a change in the relative orientation of connected residues
even if the distance between them is unchanged (see example on Figure 2.1). This
is a direct consequence of the assumption that individual residue fluctuations are
isotropic, i.e. they are identical in all directions. As such, directions become irrele-
vant, and only the amplitude of the individual fluctuations influences the potential
energy.

Equation (2.14) can be conveniently rewritten as

VGNM = k

2

3∑
α=1

N∑
i<j

(
qαi − qαj

)2

and, similarly to Equation (2.12) the Hessian matrix simply becomes

(HGNM)i,j =


−k.I3 if i 6= j and ‖rij0‖ < rc

−
∑
j 6=i

(HGNM)ij if i = j
(2.15)

6Cα atoms are the carbon atoms of the peptide bonds which link the amino acids in a chain.
They are part of the backbone of the protein.
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where I3 is the 3×3 identity matrix, or equivalently,

HGNM = kL⊗ I3 (2.16)

where ⊗ designates the Kronecker product7 and L the Laplacian matrix of the graph
of the Cα atoms. Since all directions become equivalent and independent from each
other, the connectivity between Cα atoms is the only property of the structure taken
into account by the GNM and the protein can thus be conveniently represented as
a graph.

Under the assumption that the residue fluctuations are Gaussian distributed,
the residue fluctuation correlations can be shown to be given by the elements of the
pseudo inverse L̃−1 of the Laplacian matrix (Kloczkowski et al., 1989)

〈
qTi qj

〉
= 3

k

(
L̃
−1
)
ij

and the fluctuations in interresidue distances are therefore expressed by

〈
qTijqij

〉
=

〈
qTi qi

〉
+
〈
qTj qj

〉
− 2

〈
qTi qj

〉
= 3

k

[(
L̃
−1
)
ii

+
(
L̃
−1
)
jj
− 2

(
L̃
−1
)
ij

]
.

Through the pseudoinverse of the Laplacian matrix, the GNM can thus compute the
cross-correlations in residue fluctuations and inter-residue distances, and thereby
reveal delocalised concerted motions, similarly to normal mode analysis.

Interestingly, this expression of interatomic distance fluctuations is also directly
related to other concepts of graph theory such as the resistance distance in electrical
networks (Klein and Randić, 1993), or the properties of a Markov process diffusing
on the network of Cα atoms. In particular, considering a Markov process evolving
on the graph, for instance a random walker jumping from node to node along the
edges, the commute time of the process, i.e. the average time taken by the walker
to go from node i to j and come back, is proportional to fluctuations in interresidue

7Using the Kronecker product, each element Lij of the N×N matrix L is replaced by LijI3, thus
generating a 3N×3N matrix.



Chapter 2: Computational analysis of biomolecular structures 41

distances (Chennubhotla and Bahar, 2007)

C(i, j) =
[(
L̃
−1
)
ii

+
(
L̃
−1
)
jj
− 2

(
L̃
−1
)
ij

]
N∑
l=1

dl

=
〈
qTijqij

〉 k
3

N∑
l=1

dl

 .

The GNM thus establishes a direct link between a Markov process evolving on the
protein graph and residue fluctuations.

Hence, the Gaussian network model allows to calculate in an extremely efficient
way fundamental properties such as individual residue fluctuations and, via the
pseudo inverse of the Laplacian matrix, correlated motions. Its very low computa-
tional cost and the relatively good agreement with crystallographic B factors have
made the GNM a very popular method to analyse protein structures. The GNM
was found to reproduce X-ray and NMR data well (Yang et al., 2007; Bahar et al.,
1997), and to broadly agree with molecular dynamics simulations although less so
than the classical elastic network model coarse-grained at the residue level (Doruker
et al., 2000).

However, the Gaussian network model relies on a number of assumptions which
must be carefully considered. This model was first introduced by James in 1947
(James and Guth, 1943; James, 1947) as an attempt to explain the elastic properties
of rubber, following the work of Lord Rayleigh and Flory (Lord Rayleigh, 1919;
Flory, 1969) on the statistics of ideal chain molecules. Rubber was then modelled
as a network of individual freely jointed chains8 interconnected at junction points.
Between each pair of junction points, chains exert an entropic force that results
from the decrease in the number of possible configurations of the chain when it
is stretched, and which reproduces the force exerted by a spring. The isotropic
assumption used by James was then motivated by the isotropicity of rubber. Forces
in proteins are however not isotropic, have an enthalpic contribution and take place
between atoms separated by much smaller distances.

The physical model underlying the GNM for proteins has consequently been
criticised (Bahar et al., 2007; Thorpe, 2007; Halle, 2002). In particular, the absence
of rotational invariance in the GNM (i.e. rigid-body rotations yield an increase in
potential energy, see Figure 2.1) has been pointed out by Thorpe (2007). This has
consequences on the ability of the GNM to capture collective motions (Fuglebakk

8Simple model of polymer molecules which consists in a chain of connected rigid rods whose
individual orientation is unconstrained by that of the neighbouring rods.
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et al., 2013). For instance, the rigid-body rotation of a whole domain around a hinge,
a common form of collective motion in proteins, would incur an unrealistically large
energy cost in the GNM. Halle (2002) also observed that the profile of the amplitude
of atomic fluctuations is to a large extent determined by the spatial variations in the
local packing density9 which, being well captured by a distance-based graph model,
could explain the success of the GNM in reproducing the crystallographic B-factors
(Rader et al., 2006).

2.3 Rigidity analysis
Traditional engineering concepts of rigidity analysis have also been sucessfully ap-
plied to protein structures. Bonds and interactions of high energy define an ensemble
of distance constraints which, to some extent, can be considered as rigid rods. De-
pending on their topology, they can rigidify some regions of a structure and leave
other parts fully flexible. We briefly introduce two methods to identify rigid clusters
in biomolecules, combinatorial rigidity and infinitesimal rigidity.

Combinatorial rigidity provides an algorithm to identify rigid clusters by a simple
counting of the number of nodes and constraints. The method is based on Laman’s
theorem (Laman, 1970) which gives a necessary and sufficient condition to the ex-
istence of a rigid cluster by evaluating a simple inequality condition (b ≥ 2N − 3)
on the number of constraints b and the number of nodes N in all subgraphs10 of the
original structure.

As such, the direct application of the Laman’s theorem scales badly with the
number of nodes in the graph. However, it can be applied recursively using a
particular algorithm, called the pebble game (Jacobs and Thorpe, 1995), which, in
practice, scales linearly with the number of nodes. Unfortunately, Laman’s theorem,
originally formulated for 2D graphs, does not provide a sufficient condition anymore
in the case of generic graphs in three dimensions. It is however directly applicable
to a special kind of graph, coined “bond-bending networks”, characterised by the
presence of angle constraints between all next nearest neighbours (Jacobs, 1998)
which limit the movable parts of the structure to the dihedral angles only.

The analysis of protein structures using combinatorial rigidity has been devel-
oped by Thorpe and coworkers in their software package FIRST (Jacobs et al.,
2001). Covalent bonds, salt bridges and hydrogen bonds are taken into account

9The number of atoms in a sphere of a small radius centered around the atom.
10All subsets of nodes and edges of the original graph.
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directly as rigid rods together with two angle constraints while hydrophobic teth-
ers are included by inserting an additional phantom node, which allows for sliding
motions within the tethers.

Using a 3D version of the pebble game algorithm (Jacobs and Thorpe, 1995),
redundant constraints and rigid clusters can be identified in most protein structures
in a fraction of a second. Its linear scaling in both memory and cpu means that
molecular structures of almost any size can be analysed by FIRST.

Other approaches for rigidity analysis of proteins have also been proposed. In
particular, Costa (2008) introduced the use of infinistesimal rigidity to extracts the
subspace of infinitesimal motions which respect the ensemble of Nc fixed distance
constraints cij ∥∥∥ri − rj∥∥∥2

= c2
ij (2.17)

for the Nc pairs of atoms (i, j) subject to a constraint based on the same ensemble
of covalent bonds and weak interactions as FIRST. Deriving Equation 2.17 yields
an ensemble of conditions which must be respected by infinitesimal displacements
ṙi = dri

dt of the constrained atoms

(ri0 − rj0)ṙi − (ri0 − rj0)ṙj = 0 (2.18)

or, in matrix form,
Cṙ = 0

where the matrix C is the Nc×3N rigidity matrix and ṙ the 3N×1 vector of infinites-
imal displacements. Hence, the null space of the rigidity matrix C defines the space
of infinitesimal motions which respects all Nc constraints. Rigid clusters can then
be identified by monitoring the atoms that keep their relative orientation unchanged
after infinitesimal displacements.

Infinitesimal rigidity is applicable to any 3D constraint framework, without be-
ing limited to bond-bending networks only. It comes however at the expense of a
higher computational cost, scaling as O(N3) in the worst cases and O(N2) when
all constraints are independent. A heuristic has also been proposed (Costa, 2008)
which scales linearly but only guarantees a lower bound on the number of degrees
of freedom.

The mechanical point of view of rigidity theory provides an intuitive perspective
on the structural organisation of biomolecules. In addition, the presence of hinges,
rigid clusters, and domains displaying concerted motions, which can all be rapidly
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identified through rigidity analysis, are often key to the function of most protein
and DNA molecules. Considering the ability of weak interactions to break and
reform to varying degrees depending on their energy, the scope of these methods
can be extented by studying changes in the rigid clusters as the energy threshold
in the graph construction changes. Finally, beyond the insight they give on the
structural organisation of the protein, they also provide an excellent coarse-graining
for simulations.



Chapter 3

Methodology

Most of the computational methods described in the previous chapter were
designed to probe one particular time or spatial scale, whether it be slow
modes involving concerted motion over the whole structure or localized

rigid clusters. However, none really provides a way to seamlessly link the atomic,
residue, secondary, tertiary and quaterary levels of organisation, or is able to trace
back the emergence of the large scale, slow mode, behaviour from the structural
organisation of the biomolecule at the atomic level.

The objective of this work is to uncover dynamical and functional properties of
proteins, not only at the domain level, but over the entire range of scales, from
atoms to the quaternary structure and beyond. This is enabled by the complete
characterisation of the physico-chemical details of the biomolecular structure into
a network of interconnected atoms, combined with a dynamical multi-resolution
graph partitioning framework called Markov stability. We now describe in details
the motivation and principles of the methodology at the basis of this work.

3.1 Motivation
The success of the methods introduced in the previous chapter provides clear evi-
dence of the considerable insight that can be gained about the function and dynamics
of proteins from the analysis of the static structure alone. However, as is often the
case in complex systems, the intrinsic structural organisation of large biomolecules is
concealed by an extensive, intricate and diverse ensemble of interactions taking place
between the many atoms of which they are constituted. An immediate consequence
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of this complexity is an often perceived trade-off between the level of description
that should be used by a method and the time and spatial scales it can access.

The ensemble of interatomic bonds and interactions in large biomolecular struc-
tures however naturally lends itself to a graph theoretical description. In addition
to being intuitive and appropriate, rationalising a protein structure as a network of
interacting atoms unlocks a whole range of graph theoretical tools which can un-
ravel, at a very low computational cost, key properties of the network which relate to
features of biological interest of the protein structure (see Section 2.2.1 and reviews
by Csermely et al. (2013); Di Paola et al. (2013); Böde et al. (2007)).

Here, we take advantage of the low computational cost associated with graph
theoretical methods to probe over the entire range of scales the structural organi-
sation that defines the dynamics. Importantly, this analysis is carried out from the
atomic description, and without the use of any a priori information other than the
topology of interatomic connections specified by the physico-chemical bonds and
interactions of the original structure. To this end, we make use of a multi-resolution
graph partitioning method. Tools for the identification of community structures
have already been shown to be powerful methods for the analysis of protein struc-
tures, whether it be to uncover allosteric mechanisms, study protein stability, or
establish the functional domains (Kannan and Vishveshwara, 1999; Chennubhotla
and Bahar, 2006; del Sol et al., 2007; Sethi et al., 2009; Kundu et al., 2004). Re-
markably, community structures have also been used in the study of intramolecular
signals with residues at the interface between communities suggested as essential to
the communication pathways (del Sol et al., 2007; Sethi et al., 2009; Chennubhotla
and Bahar, 2006). Here, rather than studying the impact of the community struc-
ture on the communication accross the molecule, we use the propagation of a Markov
process on the network of atoms over different time scales as a way to explore the
structural organisation of the protein and relate it to its biological function.

3.2 Contributions and summary of previous work
The generic methodology introduced in this chapter was first suggested as a suc-
cessful route for the analysis of the multiscale organisation of protein structures by
Delvenne et al. (2010) and subsequently refined by Meliga (2009).

The structure was originally modelled by Delvenne et al. (2010) as an unweighted
network of covalent bonds, hydrogen bonds, salt bridges and hydrophobic tethers at
the atomic level. Subsequently, the method has been revised by Meliga (2009) using
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an approximated spring constant derived from the energy potentials. In this work,
the graph theoretical model was further improved into a fully consistent energy-
based graph. In particular, strong electrostatic interactions and π-stacking inter-
actions have been included. It has also been also further extended to nucleic acid
structures such that any biomolecule, whether it be DNA or proteins, can be anal-
ysed and non-standard amino-acids or ligands can be included.

The mathematical developments of Markov stability presented below were first
introduced by Delvenne et al. (2010) and the random walk interpretation was pro-
posed by Lambiotte et al. (2009). The latter also introduced the use of the variation
of information to identify the most relevant levels of organisation in the all-scale anal-
ysis given by Markov stability. The contribution of this work lies here in bringing
all these different components together into a general framework for the identifica-
tion of the biochemically meaningful substructures in biomolecules. In the following
chapters, the methods is further expanded through the use of random graph sur-
rogates, the analysis of the landscape of optimised partitions, and the detection of
structurally important edges in the graph (mutational analysis). A Matlab/C++
code was also developed as part of this work for the use of the Louvain algorithm
for Markov stability.

3.3 Modelling biomolecules as networks
A variety of strategies have been proposed over the recent years to construct a graph
from the spatial coordinates of a biomolecular structure (reviewed by Di Paola et al.
(2013); Csermely et al. (2013); Böde et al. (2007)). The vast majority relies on an
amino acid level of description, each node corresponding to one residue, with edges,
often unweighted, defined by inter-residue contact maps using a euclidian distance
cut-off between all pairs of residues. Other methods have also been proposed with
edges weighted based on the number of atom-atom contacts (Kannan and Vishvesh-
wara, 1999; Chennubhotla and Bahar, 2006) or correlation coefficient computed from
short molecular dynamics trajectories (Sethi et al., 2009).

The rationale behind the construction of the graph is however rarely discussed
and distance-based edge assignments is often assumed as a default choice with highly
variable distance cut-offs ranging from 3 to 18Å(Soheilifard et al., 2008; Park and
Kim, 2011; Csermely et al., 2013). Yet all the graph theoretical properties derived
from the protein network, whether it be community structures, shortest paths, cen-
trality, clustering coefficient or degree distribution are highly dependent on the cri-
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teria chosen by the modeller to assign edges and edge weights. Schemes based on
distance cut-off can be approriate in certain situations. For instance, as detailed
in the previous chapter, Tirion (1996) demonstrated that a simple distance cut-off
is sufficient to reproduce the slow modes in elastic network models. This property
was also later successfully reused by Bahar et al. (1997) in the protein graph un-
derlying the Gaussian network model. While the success of elastic network models
in reproducing large conformational transitions supports the idea that slow modes
are insensitive to the details of the interatomic potentials, it is unclear whether al-
losteric mechanisms and signal propagation in the protein should be equally robust
to the way edges are assigned, especially as some graph theoretical measures, such as
shortest paths, dramatically rely on the exact location of the edges. Bongini et al.
(2010) notably suggested that outside of the low end of the frequency spectrum,
key vibrational properties of the secondary structure can only be reproduced when
differences in the bond strength are taken into account in the network.

The challenge is therefore to find a simple yet physically realistic graph model
which retains the key biophysical properties involved in the phenomena studied.
When using distance-based edge assignments, one ignores the physico-chemical de-
tails of the interactions and only the relative local spatial position of the residues is
captured in the graph. In many graph construction schemes, covalent interactions
are even explicitely removed (Ribeiro and Ortiz, 2014; Vijayabaskar and Vishvesh-
wara, 2010), despite the fact that the motions of covalently bound atoms are usually
highly correlated (Ichiye and Karplus, 1991). Yet it seems reasonable to expect sig-
nals that propagate structural changes to travel from one residue to another along
the bonds and interactions that exist between them. Through a comparison with
experimental and computational studies, recent research (Ribeiro and Ortiz, 2014)
showed that edge weights computed from the inter-residue interaction energy (Vi-
jayabaskar and Vishveshwara, 2010; Jiao et al., 2007) lead to a more accurate re-
production of the intra-protein signaling pathways than graphs constructed from
distance cut-offs or correlated motions.

As we here wish to exploit the diffusion of signals on the graph to probe the struc-
tural organisation of biomolecules all scales, the topology of distance-based inter-
residue contacts is unlikely to be sufficiently accurate and the physico-chemical de-
tails of the interactions should be fully taken into account. In this work, biomolecules
are therefore encoded in terms of a weighted graph formalism that is built from the
atomistic description of the structure using the potential energy derived from atomic
force fields. In this formalism, edge assignment and weighting is thus entirely based
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on the underlying chemistry, using criteria based on geometry, interaction energy
and atom type. Following from observations of Ribeiro and Ortiz (2014), edges are
weighted by the interaction energy, and signals are thus assumed to travel preferen-
tially along higher energy bonds and interactions. Finally, the graph is defined at
the atomic level. Bonds and interactions indeed fundamentally take place between
atoms rather than between residues. Amino acids also exhibit strong variations in
size and physico-chemical properties, with triptophan containing more than three
times the number of atoms of glycine. In addition, coarse-graining the network at
the residue level is unnecessary considering the low computational cost of graph
theoretical methods. Hence, rather than being preimposed in the construction of
the network, we expect the individual residues to appear naturally as a result of our
analysis.

3.3.1 Edge assignment and weighting

Our methodology builds upon the work of Jacobs et al. (2001) on the combinatorial
rigidity analysis of protein structures, which defines a sparse graph at the atomic
level with a detailed description of the covalent bonds and weak interactions. The
edge weighting and assignment methodology presented in this section is a revised
and improved version of those originally proposed by Meliga (2009) and Delvenne
et al. (2010). In particular, it has been adapted to the analysis of DNA molecules,
is energy-based, and includes electrostatic as well as π-stacking interactions.

The process of the construction of the graph is summarised in Figure 3.1. The
graph is generated from the atomic spatial coordinates of an all-atom experimen-
tal structure (X-ray or NMR) obtained from the PDB database (Bernstein et al.,
1978). For X-ray crystal structures, missing hydrogen atoms are first added using
the software package Reduce (Word et al., 1999). Each atom in the experimental
structure is then included as a node in the graph, and all covalent bonds and weak
interactions (hydrogen bonds, salt bridges, hydrophobic tethers, large electrostatic
interactions and π-stacking interactions) between a pair of atoms are represented by
an energy-weighted edge in the graph derived from an atomic force field (summa-
rized in Table 3.1). Full details of the procedure, potential function, and parameters
used can be found in Appendix A. We now briefly summarize the assignment and
weighting of edges in the graph.

Edges for the covalent bonds, hydrogen bonds, salt bridges and hydrophobic
tethers are all identified in the structure from the geometric criteria implemented in
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Figure 3.1: Construction of the weighted graph from an experimental structure.

the software package FIRST (Thorpe, 2009; Jacobs et al., 2001). Each edge is then
given a weight equal to the energy of interaction between the two atoms linked and
derived from specific potential associated with each type of interaction. The energy
of covalent bonds is obtained from standard tabulated values of bond dissociation
energies (Huheey et al., 1993). Hydrophobic tether edges are weighted using the
hydrophobic potential of mean force proposed by Lin et al. (2007), and hydrogen
bonds and salt bridges using the modified Mayo potential proposed by Rader et al
(Rader et al., 2002; Dahiyat et al., 1997).

Π stacking interactions are modelled differently in proteins and DNA. In pro-
teins, they are identified using FIRST and assigned a fixed weight of 10 kcal/mol
corresponding to a typical energy for this type of weak interaction (Sponer et al.,
2008). In DNA however, stacking interactions are much more abundant and play
a major role in the dynamics of nucleic acid molecules. We thus chose to model
them more accurately using the DNA-specific potential proposed by Hunter and
Sanders (1990), which sums the contributions from van der Waals and electrostatic
interactions. In DNA, the stacking interaction assignments given by FIRST using
the relative orientation of bases is ignored and the edges are assigned based on an
energy threshold on the Hunter & Sanders potential.

Due to their long-range nature, we made the choice to generally neglect electro-
static interactions in the graph. In addition to being small, they decay very slowly
with the distance and including them would thus lead to an almost fully connected
graph which would simply blur the details of the dominant paths of communica-
tion. Strong electrostatic interactions which were known to play a crucial role in
the dynamics or function of the protein or DNA, i.e. coordination of metal ions
and electrostatic interactions between phosphate groups of the DNA backbone, are
however included in the graph and weighted using the Coulomb potential and point
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Interaction type Potential

Hydrogen bonds & salt bridges Modified Mayo potential (FIRST)
(Jacobs et al., 2001; Dahiyat et al., 1997)

Hydrophobic tethers Hydrophobic potential of mean force
(Lin et al., 2007)

π-stacking interaction Sum of Van der Waals and electrostatic interactions
(Hunter and Sanders, 1990)

Electrostatic interactions
Coulomb potential using partial charges from the
all-atom OPLS-AA force field
(Jorgensen and Tirado-Rives, 1988)

Covalent bonds Tabulated dissociation energies (Huheey et al., 1993)

Table 3.1: Force field used for weighting the edges of the graph of a protein structure.

charges derived from the OPLS-AA molecular dynamics force fields (Jorgensen and
Tirado-Rives, 1988).

This framework is however only one of the many ways in which the graph can
be constructed. Different force fields and physical criteria can be used for edge
assignment and weightings which would similarly lead to a biologically relevant
representation of the biomolecule. Although the use of a weighted graph is crucial
for our analysis, our numerics show that our final results are relatively insensitive
to small variations in the edge weights or the atomic resolution (see Appendix B).
The framework introduced here and used throughout this work is thus robust with
respect to the details of the potentials, and energy-weighted networks constructed
from any atomic force field should yield essentially identical results.

3.4 Community structures in networks
Due to the large number of elements combined with their non-trivial relationships,
it is often hard to understand the global behaviour of a large network by focusing
solely on its individual constituents. When dealing with complex graphs, it is there-
fore sometimes desirable to obtain simplified reduced representations in terms of
subgraphs or communities, i.e. meaningful groupings of nodes that are significantly
related. This coarse-grained representation provides a mesoscopic scale perspective
on its overall organisation with the objective to gain a deeper understanding of its
function and general properties.



52 3.5 The Markov stability of a graph partition

Although intuitive, community structure in networks still lacks a rigorous defi-
nition, and a large number of methods have been introduced over the recent years,
traditionally expressing the quality of a graph partition1, in terms of the density
of edges. One commonly accepted notion of a community is that of a tightly-knit
group with many connections within the group and fewer to external nodes.

This form of modular architecture is commonly found in many networks span-
ning various fields including biology, engineering and sociology. Well-known exam-
ples include social communities or online social networks, but also neural networks,
the Internet, the world wide web and, the subject of this work, large biomolecules.
Community detection has a long history, and recent research following the pioneer-
ing work of Newman and Girvan (2004), has both rediscovered classic results and
introduced novel methods (Fortunato, 2010; Schaeffer, 2007).

3.5 The Markov stability of a graph partition
The structural organisation of biomolecules such as proteins is however not only
complex due to the large number of interactions, it is also defined over multiple
scales, as discussed in Chapter 1. While many graph partitioning methods aim at
identifying the single best division of the graph into communities, we are looking to
explore the structural organisation of biomolecules at all scales.

Beyond the structure-based approaches which use the location of edges, commu-
nity detection can also be approached from a dynamical perspective. Indeed, the
temporal evolution of a dynamical process is tightly linked to the topology of the
network on which it unfolds, and the observation of one can often reveal key char-
acteristics of the other (Strogatz, 2001; Barahona and Pecora, 2002). Accordingly,
several methods have taken this approach to unveil communities, using processes
such as random walks (Gfeller and De Los Rios, 2007; van Dongen, 2000) or the
synchronisation of oscillators (Arenas et al., 2006).

Interestingly, Delvenne et al. (2010) showed that the dynamical viewpoint pro-
vides a route towards elucidating the underlying community structure in a network
over the entire spectrum of scales. This method called the Markov stability of a
graph partition (Delvenne et al., 2010; Lambiotte et al., 2009; Delvenne et al., 2012)
allows to establish the optimal community structures at all levels, from communi-
ties including a single element, to the optimal division of the whole system into two

1A graph partition is here defined as the subdivision of the nodes of a network into an ensemble
of non-overlapping communities.
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groups, by using the time evolution of a Markov process on the network. Communi-
ties are here seen as regions which temporarily trap the dynamical process evolving
on the network. Considering a random walker jumping from node to node along the
edges of the graph, the walker would be expected to remain with a high likelyhood
within a group of densely connected nodes, since links to other nodes of this com-
munity are more frequently encountered by the walker in this region than towards
other parts of the graph. As the dynamical process is allowed to explore the graph
for longer, it becomes more likely to escape smaller communities and gets trapped
over larger portions of the network. More precisely, a partitioning will be associated
with a high Markov stability over a particular time scale if the dynamical process
tends to be more contained inside the communities over that time scale than would
otherwise be expected at stationarity (i.e. after an infinite time).

Formally, we consider the general case of a random walk taking place on the
graph whose dynamics is driven by a continuous time Markovian diffusion process2

ṗ(t) = p(t)Q. (3.2)

Here, p(t) denotes the 1×N vector of probabilities representing the density of ran-
dom walkers on each of the N nodes of the graph at time t. The N×N matrix Q
encodes the dynamics that governs the time evolution of the random walk, where
Qij defines the rate at which the random walker jumps from node i to node j. As
such, we effectively define a poisson process on each node of the graph with an ex-
ponentially distributed waiting time with mean 1/Qij. Since the random walkers
progress along the edges, Q is directly defined by the topology of the graph and is
typically contructed from its N×N adjacency matrix.

The solution from Equation 3.2 is given by

p(t) = p(0)eQt, (3.3)
2Although we will use this continuous time process throughout the rest of this work, it is worth

noting that discrete time processes of the form

pt+1 = ptQ. (3.1)

can also be used. This yields a different version of Markov stability associated with synchronous
jumps taking place at unit time intervals, as opposed to jumps occuring at random times in the
continuous case. Further discussion on discrete time Markov stability can be found in references
(Delvenne et al., 2010, 2012).
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and defines, for each node, the probability that the random walker will be at the
same position initially and at time t (having potentially visited other nodes in the
time interval).

We now use the time evolution of this random process as a way to probe the un-
derlying structure of the graph. As we have indicated, communities can be viewed as
subgraphs with a superior ability to retain the probability flow. The autocovariance
matrix of the random process provides a natural way to reveal regions where the
random walk is transiently trapped by measuring the similarity of the process with
itself at a later time. The autocovariance of the random process can be expressed
as

X(t) = cov(p(0),p(t)) = E[p(0)Tp(t)]− E[p(t)]2 = ΠeQt − πTπ, (3.4)

where E is here the expectation, and we here made use of the ergodicity of the
stochastic process, with π designating its stationary distribution. Π = diag (π) is
the diagonal matrix of the stationary distribution, taken here as the initial condition
of the process, which is a reasonable assumption in the absence of any a priori
information.

The entry Xij(t) effectively measures the fraction of the total probability flow
that has been transferred from node i to node j after a time t, weighted by the
initial probability at node i at time zero, discounted by the expected probability
flow that would be transfered at random. To evaluate the quality of a particular
(hard) partition P in terms of the total probability flow retained within each of its
M communities, we need to compute the same matrix X, but now in terms of the
clustered random walk taking place at the community level. To this end, we define
the N×M indicator matrix H of P with entries Hij equal to one if node i belongs to
community j and zero otherwise. Using the linearity of the covariance matrix, the
autocovariance of the clustered random walk y(t) = HTp(t) is given by the M×M
matrix

R(t,P) = HT
[
ΠeQt − πTπ

]
H . (3.5)

The effect of the matrix H is to sum all the entries of X corresponding to the nodes
associated with each community of the partition, and

(
R(t,P)

)
ij thus measures the

excess probability of a random walker which started in community i to end up in
community j at time t over the expectation of it happening by chance.

Since we are here only interested in the events where the random walkers remain
in the same community, whose probabilities are given for each walker by the diagonal
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elements of R(t,P), we define the Markov stability of a graph partition P as

r(t,P) = trace
(
R(t,P)

)
. (3.6)

From the random walk perspective, Markov stability can thus equivalently be
expressed in terms of the probability of the random walker to be found in the same
community after a period of time t

r(t,P) =
∑
C∈P

PC(0, t)− PC(0,∞), (3.7)

where PC(0, t) denotes the probability of the random walker to be in community C
at times 0 and t.

The dynamicsQ can be defined in a number of different ways, which provides the
opportunity to include any a priori information one may have about the problem
at hand and the way nodes communicate or interact with each other in the system
analysed. In particular, the dynamics of many physical systems, such as electrical
networks (Schaub et al., 2014; Wu and Huberman, 2004) and oscillators (Barahona
and Pecora, 2002; Arenas et al., 2006), is governed by the Laplacian matrix L of the
graph 3, in which case Q = A−D = −L, where A designates the adjacency matrix
of the graph and D the diagonal matrix of the nodes degree Dii = ki = ∑

j Aij. Un-
surprisingly, this dynamics is one of the most commonly used. In the particular case
of proteins, the dynamics driven by the Laplacian matrix has been successfully used
to model signal propagation (Chennubhotla and Bahar, 2007, 2006) and diffusion
of vibrational dynamics (Reuveni et al., 2010a) throughout biomolecular structures,
and this will also be the dynamics used throughout this work.

Using the Laplacian matrix, the stationary distribution becomes π = 1N/N ,
where 1N the 1×N vector of ones, and is uniform over all the nodes in the network.
Markov stability can be rewritten as

r(t,P) = trace

HT

 1
N
e−Lt/〈k〉 − 1T1

N2

H
 , (3.8)

where 〈k〉 is a normalisation factor equal to the average degree of the graph.
For very large graphs (typically N > 10000), evaluating the exponential in Equa-

tion 3.5 can be computationally very demanding. When the computational resources
3More precisely, the standard Laplacian, also called combinatorial Laplacian.
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do not allow to compute the full Markov stabiliy r(t,P), we use a linearisation given
by the first order expansion of r(t,P) around zero

rlin(t,P) = r(0,P) + t dr(t,P)
dt

∣∣∣∣∣∣
t=0

= r(0,P)− trace
HT

[
L

2m

]
H

 . (3.9)

where 2m = ∑
i ki is the sum of the degrees of the nodes in the graph, or two times

the sum of all the edge weights.
Hence, Markov stability is defined for a particular Markov time t associated with

the dynamics that reveals the community structure. The analysis can be viewed as
following the time evolution of a probabilistic process on the graph and identifying
the subgraphs where the probabilistic flow gets trapped. As the Markov time in-
creases, Markov stability follows the expanding transient of this dynamics towards
stationarity and, in doing so, it allows us to reveal naturally a sequence of coarser
partitions that uncovers the multiscale structure of the graph, if it exists.

Unlike traditional partitioning methods, Markov stability is thus not limited
by an implicit scale. The concept of flow at its base allows for instance to detect
non-cliquish communities, i.e. communities that are not characterised by the local
node-level density of links but by the broader view of retention of flow (Schaub
et al., 2012). The Markov time here acts as zooming lens allowing to focus the
analysis on a chosen scale without any upper or lower limit. By sweeping the entire
range of Markov times, Markov stability decomposes the structure into a hierarchy
of communities which reflects its levels of organisation at all scales. This property
makes it particularly well suited for the analysis of protein structures, which possess
an intrinsic organization spanning a vast range of scales (from chemical groups to
functional domains) with non-clique like communities which are difficult to detect
using standard methods (Schaub et al., 2012).

Markov stability also provides a dynamical interpretation of community struc-
tures that generalises classical heuristics for graph partitioning. In particular, the
partitioning according to the Fiedler eigenvector is equal to Markov stability for
large times going to infinity (Delvenne et al., 2010; Lambiotte et al., 2009; Delvenne
et al., 2012) and Markov stability at time zero can be linked to measures of entropy.
Finally, when using a discrete Markov chain or the linearised version of the con-
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tinuous time Markov stability, the very popular modularity (Girvan and Newman,
2002) is identical to Markov stability at Markov time one.4

3.6 The Louvain algorithm
Markov stability, as defined in equation (3.6), provides a measure to assess the
quality of a defined partition. However, as it is the case in most clustering-related
problems (Fortunato, 2010), the global optimisation of Markov stability is computa-
tionally hard (Delvenne et al., 2010; Brandes et al., 2008)—a common occurrence in
the study of complex landscapes. Finding the exact solution for the optimal Markov
stability partition is thus impossible for all but the smallest graphs. In practice, a
variety of heuristic strategies can however be used to obtain good partitions which
can then be ranked by Markov stability to provide us with near-optimal partitions
at different time scales. Several such algorithms exist, and often proceed by either
progressively aggregating nodes (agglomerative algorithm) or gradually dividing the
whole network into smaller and smaller groups of nodes (divisive algorithm).

Here, we use a greedy agglomerative method, the Louvain algorithm (Blondel
et al., 2008), which has been shown to provide an extremely efficient optimisation of
Markov stability. Briefly, Louvain works as follows. Initially, each node is assigned
to its own community, i.e. the number of communities equals the number of nodes.
Then, each node is transferred in turn into the neighbouring community (i.e. a
community to which it is linked by an edge) where the increase of Markov stability
is the biggest, as long as it improves the Markov stability of the overall partition.
This step is repeated until no further transfer can increase the Markov stability.
At that point, a new meta-graph of communities is generated, and the algorithm
repeats these two steps until a coarse-grained graph is obtained where no further
grouping can improve the Markov stability.

The Louvain algorithm has been observed to require little computational effort
and to find partitions close to the optimal solution (Blondel et al., 2008). The
method is deterministic but the final solution found depends on the order in which
the different nodes are scanned for the grouping step. This initial ordering, which we
will refer to as the Louvain initial condition, can be chosen at random every time the
algorithm is run. Indeed, we will use the variability of the observed solution induced

4Please note that, to allow for comparison between the Markov stability analysis of different
protein structures, the Markov time is normalised by the total number of nodes throughout this
work (tnorm = t.N).
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by our random choice of the Louvain initial condition to estimate the robustness of
a partition, a measure of its relevance.

3.7 The variation of information
For each value of the Markov time, a different partition with optimal Markov sta-
bility can be obtained. However, there should only be a limited number, if any,
of meaningful levels of organisation in any network. Consequently, not all scales
should be relevant, and not all Markov times should lead to a significant community
structure. As is the case for modularity (Good et al., 2010; Karrer et al., 2008), the
Markov stability value alone is a poor predictor for the relevance of a graph partition
and an independent measure is needed to discriminate meaningful partitions from
transient solutions. This issue is here addressed using a robustness tool, which is of
general importance in multiscale analysis methods.

As suggested by Karrer et al. (2008), a distinctive property of a significant com-
munity structure should be its robustness to small perturbations. The expectation
is that good partitions should be clear and well-defined in the network, and therefore
relatively insensitive to noise. Upon introducing slight variations in the graph itself,
the partitioning heuristic, or quality function, the new partition found should be
highly similar to the one obtained originally. In this sense, the “Markov lifetime” of
a partition, i.e. the Markov time span for which the partition is optimal in terms
of Markov stability, provides a straightforward way to obtain an initial assessment
of its robustness and relevance, the perturbation being here given by the change of
Markov time itself (Ronhovde and Nussinov, 2009; Meliga, 2009; Delvenne et al.,
2010).

An alternative way consists in quantifying the extent to which the partitions
are affected by the perturbation (Ronhovde and Nussinov, 2009; Karrer et al., 2008;
Good et al., 2010) using a measure of distance between the solutions found before and
after the perturbation. An information-theoretic distance between two partitions
can be measured by the variation of information (Meila, 2003, 2007, 2005), a true
metric based on the total information which is not shared by two partitions.

Consider a partition P of a graph into M communities Ck, k = 1...M of nk nodes.
If we choose a node at random, how much uncertainty is there about the community
it is assigned to in P? The probability of this node belonging to community k can be
estimated by the fraction of the nodes in Ck, P (k) = nk

N
. From these probabilities,

one can use the common measure of uncertainty given by the Shannon entropy,
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Figure 3.2: The variation of information (hatched region) is the sum of H(P|P ′) the
additional information needed to describe P given P ′ and H(P ′|P) the additional
information needed to describe P ′ given P

which, for nodes allocations in partition P can be defined as

H(P) = −
∑
k

P (k) logP (k). (3.10)

The variation of information estimates the distance between two partitions P and
P ′ as the sum of the uncertainty left about P when knowing P ′ and the uncertaintly
left about P ′ when knowing P , which can be expressed as

V I(P ,P ′) = H(P|P ′) +H(P ′|P) (3.11)

where H(P|P ′) designates the entropy of P conditional on P ′, or equivalently

V I(P ,P ′) = 2H(P ,P ′)−H(P)−H(P ′), (3.12)

where H(P ,P ′) = −∑k P (k, k′) logP (k, k′) designates the joint entropy of P and
P ′, with P (k, k′) = nk,k′

N
the probability that a node belongs to community k in P and

k′ in P ′. In this sense, the variation of information measures the total information
content which is not in common between P and P ′.

As such, the variation of information depends on the size of the network: larger
networks contain more information. The maximum variation of information achiev-
able between two partition is given by logN and, to allow for comparisons, we will
thus use the normalized VI (Meila, 2007) V Inorm(P ,P ′) = V I(P ,P ′)/ logN in the
rest of this work.

A variety of other measures of distance between partitions exist, often based
either on counting pairs of nodes assigned in the same and different clusters in both
partitions, such as the Rand index (Rand, 1971) and Jaccard coefficient (Ben-Hur
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et al., 2002), or on matching communities between both partitions (for a detailed
review and comparison of the different methods with the VI, see reference (Meila,
2007)). However, the Variation of Information posesses several desirable and in-
tuitive properties, such as being a true metric on the space of partitions (i.e. it
respects the properties of a distance measure such as the triangle inequality), which
are not fully met by other methods (Meila, 2005).

The random initial conditions of the Louvain optimisation algorithm provide us
with an ideal perturbation with respect to which we can measure the robustness of
the partitions. By optimizing Markov stability for an ensemble of such initial con-
ditions for each Markov time, we can calculate the variation of information between
all pairs of solutions obtained, and compute the average as a measure of the rele-
vance of the solutions obtained at a particular scale. Other perturbations affecting
for instance edge weights or the quality function itself have been considered in the
past and shown to yield similar results (Lambiotte, 2010).



Chapter 4

Markov stability analysis of adenylate kinase

In this chapter, we exemplify the Markov stability, variation of information de-
veloped in the previous chapter on adenylate kinase (AdK) from Escherichia
coli and introduce two biochemically motivated surrogate random graph models.

AdK is a classic example of a protein whose structure and dynamics have been stud-
ied extensively both experimentally and computationally (Henzler-Wildman et al.,
2007a), and thus serves as an ideal case study to illustrate and evaluate the capa-
bilities of the computational framework we just introduced.

4.1 AdK structure and function
Adenylate kinase (AdK) is a small monomeric phosphotransferase enzyme that catal-
yses the reversible transfer of a phosphoryl group from adenosine triphosphate (ATP)
to adenosine monophosphate (AMP) to yield two molecules of adenosine diphosphate
(ADP) via the reaction:

ATP + AMP
Mg++

2 ADP.

The structure of AdK is characterised by three domains: the LID, where ATP
binds, CORE, and AMP binding domains (see Figure 4.1). Structural analyses
(Müller et al., 1996; Müller and Schulz, 1992) showed that AdK takes an open con-
formation when unliganded and a closed form when bound to the substrates or some
inhibitors. The transition between the two forms involves the LID and the AMP
domains closing over the CORE region, which provides the condition for catalysis
by optimally positioning the AMP and ATP molecules and shielding the active site
from the solvent (Maragakis and Karplus, 2005; Gerstein et al., 1993; Müller et al.,
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1996). Although the closed conformation is the catalytically active form in which
the phosphorylation takes place, AdK has been observed to spontaneously explore
the closed conformation even in the absence of substrate (Arora and Brooks III,
2007; Henzler-Wildman et al., 2007b).

LID

AMP

CORE

LID

CORE

AMP

1

2
3

4

5

6 7

8

Open Closed

Figure 4.1: The conformational change between the free (left, PDB 4AKE) and the
complex-bound AdK (right, PDB 1AKE) is characterised by the closure of the AMP
(in red, residues 28-72) and LID (in gold, residues 113-176) domains towards the
CORE (in grey-blue) domain (Olsson and Wolf-Watz, 2010) around 8 hinges (circles
labeled from 1 to 8, with hinge 8 located on the background helix (Henzler-Wildman
et al., 2007b))

4.2 Indentifying relevant community structures in AdK
The analysis proceeds as described in Chapter 3. We first convert the PDB file con-
taining the crystal structure of Escherichia coli AdK (PDB 4AKE) into a weighted
graph representation with edges based on identifying physico-chemical interactions.
We then find partitions that optimise Markov stability at different Markov times.

The Markov stability analysis of AdK at all scales is shown in Figure 4.2. We
first observe that as the Markov time increases, the optimal partition gets coarser:
at very small values, each atom is identified as a distinct community; at very large
times, the graph is partitioned into two large communities. This behaviour follows
naturally from the definition of the Markov stability: with increasing Markov times,
the probability that the diffusion process will stay within the smallest communities
drops and larger communities become favored.
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Secondly, at both small and large Markov times, it is apparent that certain
partitions have long persistence, i.e. they remain optimal over long intervals of the
Markov time. This persistence is a manifestation of their robustness: despite the
process being allowed to explore the graph for longer, we cannot find a partition with
larger communities where it is optimally trapped. These “plateaus” in the number
of communities are thus an indication of the strong relevance of these partitions over
the corresponding scales.

However, it is difficult to establish the significance of partitions in the interme-
diate regime of the Markov time. This is partly due to the fact that the number of
possible partitions of intermediate size grows combinatorially. The larger ensemble
of solutions renders the optimisation of Markov stability more difficult, and reduces
the chances of always finding the single best partition.

In order to refine the evaluation of the robustness of the partitions, we calculate,
at each Markov time, the average variation of information (VI) for an ensemble of
100 optimal solutions found starting from 100 random Louvain initial conditions and
compare it with the VI of surrogate random graph models using a z-score statistic.
The ensemble of surrogate models can be designed to test the null hypothesis. In this
particular case, we use our knowledge of the intrinsic physico-chemical structure of
proteins to formulate surrogates that can probe the emergence of biochemically rel-
evant substructures at different scales. Indeed, the multiscale organisation observed
in the case of proteins is particularly interesting because communities at different
levels are linked to the presence of edges of different biophysical origins. For in-
stance, the organisation of the protein in the form of a chain of amino acids is only
defined by the network of covalent bonds, while higher levels of organisation, such as
secondary, tertiary and quaternary structures, functional domains and rigid clusters,
only depend on the position of the weak interactions and are essentially indepen-
dent from the organisation of the covalent bonds outside of their role in maintaining
the polypeptide chain. The biophysical origin of the different forms of structural
organisations, which can either be chemical or spatial, leads to the definition of two
types of surrogate random graph models for the robustness analysis.

4.3 Biochemically motivated null models
The normalised variation of information introduced in Chapter 3 does not give in
itself an absolute value of the robustness of the partitions which is independent
from the scale considered. Indeed, the number of possible partitions varies with the
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Figure 4.2: Markov stability analysis of AdK and comparison with biochemically
motivated random graphs surrogates. a. Number of communities and variation
of information as a function of the Markov time. Biochemically meaningful parti-
tions at different scales (peptide bonds, amino acids, single helical turns, functional
domains) show a very distinct robustness as compared to that of random graph mod-
els. The blue shaded area on the left corresponds to the Markov times for which
the surrogates and the protein are equivalent, i.e. the level of the local chemistry
which has been preserved in the random graphs. The green and red shaded areas
around the curves correspond to one standard deviation. Real protein and random-
ized weak interaction surrogates diverge when weak interaction contribute to the
formation of helical tunrs. b. Relevant partitions of AdK at large Markov times.
The partition into 7 communities relates to previous hinge analyses (Meliga, 2009;
Henzler-Wildman et al., 2007a), and the 3-way partition to the functional domains.
c. The z-score between AdK and the surrogates with randomised weak interactions
indicate the partitions indentifying the functional domains as the most meaningful.
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number of communities found, which changes with the Markov time. The values
of the VI obtained for different scales can thus not be compared directly. This
problem can be partly overcome by comparing the VI at each Markov time against
a surrogate control group, obtained from a random graph model. The use of random
graph surrogate models is a classical bootstrapping tool in graph theory (Newman,
2005). Here we use the z-score statistic to compare the robustness of the partitions
of a particular graph with an ensemble of graphs from the random graph model,

Z(t) = V I(t)− µ(t)
σ(t) , (4.1)

where µ(t) and σ(t) are the mean and standard deviation of the average VIs obtained
for an ensemble of surrogate graphs generated from the random model. The Z-
score can then be used as an estimate of the robustness of the partition which is
independent from the number of communities detected.

4.3.1 Robustness at short scales: the chemical configuration model

Our first surrogate set is based on a random graph that preserves the local chem-
istry of the protein while randomising all other interactions. This can be used as
a chemical null model that should be identical to our original graph at short time
and length scales but will highlight the differences that emerge with the larger scale
organisation. The random graph model is designed to preserve the basic chemi-
cal attributes of the protein including its chemical composition by preserving the
valence of the atoms, encoded in the degree of the nodes, and the energies of the
bonds and interactions, encoded in the weights of the edges. All the basic chemical
properties of the graph can be kept using a simple randomisation scheme similar to
the one proposed by Maslov and Sneppen (Maslov and Sneppen, 2002), in which
pairs of bonds chosen at random exchange one of the two nodes they link. By doing
this repeatedly, a new random graph keeping the number but also the weights of
the connections of each node is generated. The same method is used here, with
two additional constraints: Firstly, the pairs of bonds to be exchanged must be
of the same kind (covalent bonds of the same energy, or weak interactions of the
same nature), and secondly, the exchange must keep the whole network of covalent
bonds connected within each monomer (the number of subunits is maintained). This
randomisation thus also keeps the chemical nature of the neighbours of each atom.
Consequently, from a chemical point of view, the small chemical groups are kept,
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and, from a graph theoretical point of view, the degree of each node is also main-
tained. In that respect, this model is similar to the configuration model (Molloy
and Reed, 1995) and can be thought of as the “chemical configuration model”.

4.3.2 Robustness at long scales: randomised weak interactions

The large scale spatial organisation of the protein is mainly determined by the weak
interactions such as hydrogen bonds, hydrophobic tethers, salt bridges, electrostatic
and pi-stacking interactions. The second type of surrogate random graph conserves
the whole network of covalent bonds defining the primary structure of the protein,
but randomises the positions of the weak interactions which govern the secondary
and tertiary structures. The randomisation of these interactions is carried out pre-
serving the necessary chemical constraints: hydrogen bonds should only bind oxy-
gen or nitrogen with hydrogen atoms and hydrophobic tethers, carbon and sulphur
atoms. The weak interactions are then re-positioned between nodes of the required
nature selected at random.

Randomisation
of the weak
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a b
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Figure 4.3: Illustration of the randomisation schemes used. a. Covalent bonds are
randomised in the chemical configuration model by repeatedly swapping nodes from
covalent bonds of the same types. b. Weak interactions are randomised by rewiring
at random each subnetwork formed by the weak interactions of each particular type.

4.4 The Markov stability analysis of AdK
Results of the partitioning and robustness analysis for AdK are summarized in Fig-
ure 4.2. At each Markov time, the Markov stability was optimised a hundred times
with different Louvain initial conditions. For each Markov time, the number of
communities of the optimal partition is shown in the top panel of Figure 4.2a, and
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the variation of information between all the partitions found at this Markov time is
shown in the bottom panel. Partitions at very small and very high Markov times
remain optimal for extended periods of Markov time and correspond to biochem-
ically meaningful components such as small chemical groups (small times) or the
three functional domains (LID, AMP and CORE domains). This is confirmed by
our robustness analysis, which shows small values of VI for the long-lived partitions.

Figure 4.2 also shows the comparison of the robustness of the partitions of the
protein against that of ensembles of random graphs from our surrogate models. As
expected, the random graphs obtained from the chemical configuration model are
indistinguishable from the protein at short Markov times, since their local chemical
structure is identical. However, at longer times the comparison reveals two ad-
ditional partitions of strong biochemical significance corresponding to the peptide
bonds between the amino acids (at Markov times around 30) and to the emergence
of amino acids at Markov times around 500. At the local minimum of VI, 63% of
the amino acids were grouped as a community, while most of the others, essentially
small amino acids, were grouped with another residue.

The robustness of the protein is indistinguishable from the ensemble of graphs
obtained by randomization of weak interactions until Markov times of around 6000.
This establishes the spatial and time scales at which the weak interactions start
having an influence on the communities, and, by extension, on the conformation
of the protein in space. Interestingly, the communities identified at this Markov
time correspond to the helical turns, which can indeed be thought of as the small-
est biochemical building block at which weak interactions start to play a role in
the structural organisation of the protein. This is another demonstration that the
parametrisation established in the previous chapter yields the expected behaviour
in the Markov stability analysis.

As expected, the two random models converge at long Markov times since in
both cases the composition of the molecule is conserved, and the weak interactions
have been randomized. At Markov times above 105 we observe an increase in the
variability and a decay in the value of the VI for the surrogates from the weak
interaction randomization. This indicates the point where weak interactions placed
at random begin to induce robust compact subgroups in the structure in an effect
akin to undirected packing. In contrast, the specific location of the weak interactions
in the structure of the protein induces robust and reproducible partitions that reveal
the specific organisation of the protein conformation.
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At long Markov times, Markov stability finds partitions into a few subunits that
are much more robust for the protein than for the random surrogates. The study of
their robustness indicates the relevance of partitions into two, three, four and five
communities. Interestingly, each of these partitions corresponds to the identification
of one of the three functional domains. The AMP domain is fully clustered into
one community for the first time in the five-community partition, followed by the
LID domain in the four-community and finally the CORE domain in the three-
community partition, at which point the three functional domains correspond to
the three communities and the variation of information drops at zero.

On Figure 4.2, three sharp drops in the variation of information can also be
noticed at Markov times 2 × 106, 3 × 106 and 7 × 106. Each drop corresponds to
the identification of a new partition (marked by a new plateau in the number of
communities), into five, four and three communities respectively, which each mark
the detection of one functional domain by Markov stability. These sudden decreases
in the variation of information thus reveal the “crystallisation” of one region of the
graph into a robust community, which thus ceases to contribute to the total variation
of information observed at the previous Markov time point. We will see in the next
chapter that this observation holds in other structures as well, which will allow us to
circumvent the need to compute the surrogate random graphs and z-score statistics.

Although the partitions into seven and eleven communities do not distinguish
themselves from the surrogates in terms of their robustness (see z-scores on Fig-
ure 4.2), both have a plateau in the number of communities, and correspond to well
known levels of organisations in the structure of AdK. The partition into eleven
communities almost perfectly identifies the secondary structure, with each individ-
ual helix, and each individual β-sheet englobed into a distinct community. The
partition into seven community is highly correlated with the location of the eight
hinges around which the LID and AMP domains rotate upon closure of AdK (Müller
et al., 1996; Henzler-Wildman et al., 2007b). Of the eight hinges, only hinge 2 is
not located at the frontier of two communities.

4.5 Closed form of AdK
The discovery that AdK does actually explore its closed conformation spontaneously,
even in the absence of substrate has been at the origin of a new understanding of
the functionning of enzymes, and led to the hypothesis that the spontaneous closure
could be a more widespread property.
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In Figure 4.4, we compare the Markov stability of four structures of Escherichia
Coli AdK in both open and closed conformations. The similarity of our results for
all four structures in spite of the huge difference in their conformation (RMSD of
7.4 Å between the two conformations, see Figure 4.1) is striking, and shows the
ability of our analysis to capture this fundamental property of AdK. Indeed, the
absence of any difference in the structural organisation of AdK as identified by the
Markov stability analysis suggests that the closed conformation is not the result of
a structural change induced by the ligand, but an intrinsic property of AdK in any
conformation.
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Figure 4.4: Markov stability analysis of open and closed conformations of AdK.
a. The Markov time evolutions of the number of communities and variation of in-
formation of AdK in the open and closed conformations are almost indistinguish-
able. Both forms are known to coexist in solution, and AdK and other enzymes
are thought to close spontaneously in the absence of substrate (Arora and Brooks
III, 2007; Henzler-Wildman et al., 2007b). The structural organisation captured by
Markov stability is thus an intrinsic property of the protein rather than of a particu-
lar conformation. b. The biologically meaningful communities – here the functional
domains – are almost identical in both structures.
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4.6 Discussion
In this chapter, we demonstrated the suitability of the methodology introduced in
Chapter 3 for the analysis of biomolecular structures through its application on a
classical and well documented protein example, Escherichia coli adenylate kinase.
In particular, we showed that the chemical, biochemical and biological levels of or-
ganisation detailed in the first chapter, i.e. chemical groups, residues, secondary
structures and functional domains (see Figure 1.1), are all successfully recovered
by the method at increasing scales, and in so doing, confirmed results previously
obtained by Meliga (2009). Communities identified through the partitioning algo-
rithm at a particular Markov time relate to regions of the protein sharing common
dynamical properties over a certain range of time scales. Two sets of biochemically-
motivated random graph models were also introduced in this chapter against which
we tested the significance of our results. Beyond providing a benchmark against
which our robustness analysis could be tested, they also demonstrated the valid-
ity of our methodology by identifying in the real protein biochemically meaningful
structural levels of organisation that significantly diverged from the random graph
surrogates such as peptide bonds, residues, helical turns and functional domains.
Finally, our analysis of the open and closed forms of AdK revealed a surprisingly
high similarity between the two structures in spite of their largely different confor-
mations. While hinges and functional domains are expected to be conserved accross
conformations, our observation goes beyond: It is the entire structural organisation
that encodes the dynamics of the whole protein which is strictly conserved. The
experimental observation that AdK explores both conformations spontaneously in
the absence of substrate fully aligns with our results.

The possibility of a relation between the Markov time at which communities are
detected and the time scale of motion of their corresponding region in the protein
has been previously hypothesised by Meliga (2009). From Figure 4.2, it indeed
appears that the communities identified at increasing Markov times are linked to
increasing time scale of motions: Individual covalent bonds are first found, followed
by chemical groups, then residues, secondary structure elements and finally the
functional domains, which corresponds to their ordering in Figure 1.1.

We find this observation to carry over to the time scale of motion of the individual
domains in AdK. In our analysis, the AMP domain is the first to cluster, followed
by the LID and finally the CORE domain when the Markov time is increased. This
is consistent with results from a Molecular Dynamics and Normal Mode Analysis
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study of AdK (Lou and Cukier, 2006) which reports the three slowest normal modes
of AdK to be linked to domain motions. The fastest mode 3 is dominated by the
movement of the AMP domain, and the slowest mode 1 by the movement of the LID
domain while mode 2 describes a collective motion of the LID and AMP domains.
The three slowest normal modes do not show a collective motion in the CORE
domain, and it also only forms a community in our analysis after the AMP and
LID domains have been found. Although the generality of this observation remains
highly speculative, the time scale of motion of each of the three domains of AdK
appears to be in agreement with the Markov time at which each of them is identified
by our analysis.
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Chapter 5

The myosin tail interacting protein and mu-
tational analysis

Adenylate kinase provided an ideal case study to test our framework and
exemplify its capabilities and its limitations. We now use our methodol-
ogy to contribute towards understanding the functioning of the myosin tail

interacting protein (MTIP), a recently discovered anchoring protein from a myosin
A molecular motor complex whose structural organisation and dynamics are still
poorly understood (Bergman, 2002).

In this chapter, we investigate the structure of MTIP through the lens of Markov
stability and identify regions of the protein sharing a common dynamical behaviour
at a particular scale, leading to a hypothetical closing mechanism. The same tool is
then used to explain the differences observed between different conformations and
between structures from two different species.

Finally, we introduce a measure based on Markov stability which estimates the
impact of a particular residue on the global structural organisation of the protein and
thus suggests key residues or “hotspots” that could be targeted through mutagenesis.
We subsequently use it to probe each amino acid of the tail of myosin A, the motor
protein binding MTIP.

5.1 MTIP and myosin-myosin light chain interactions
Most forms of movement in living organisms are implemented by motor proteins
(Schliwa and Woehlke, 2003). The most prominent example is myosin II which,
powered by the hydrolysis of ATP, carries out the contraction of muscle cells by
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Figure 5.1: a. Structure of P. falciparium MTIP in complex with the MyoA tail
(PDB 4AOM). b. Crystal structure of the scallop muscle myosin essential (ELC)
and regulatory (RLC) light chains in complex with the myosin heavy chain (PDB
1QVI). This ELC is the closest structural MTIP homolog (Bosch et al., 2006) and,
when bound to the myosin heavy chain, adopts a conformation similar to the way
MTIP wraps around the MyoA tail.

pulling against actin filaments (Eisenberg and Hill, 1985). All myosin forms consist
of a long tail terminated by a head region. The head is usually subdivided into
the actin-binding motor domain activated by ATP and the neck region formed by a
single α-helix . The latter acts as a lever arm and also serves as the binding domain
for calmodulin-like molecules called myosin light chains (Figure 5.1b) (Sweeney and
Houdusse, 2010; Lowey and Trybus, 2010; Schiaffino and Reggiani, 1996).

Myosin light chains, such as the essential and regulatory light chains in mam-
malian muscle cells, play a major role in regulating and fine-tuning molecular motor
complexes, notably by regulating ATPase activity and actin binding affinity, and
even by interacting directly with the actin filaments (Trybus, 1994; Timson, 2003).
Crystal structures of the myosin head and neck regions (Rayment et al., 1993) also
suggested a possible role of the light chains in stabilising the lever arm, thereby
allowing for a more powerful stroke in the cross-bridge cycle1.

Here we focus on the myosin tail interacting protein (MTIP) (Bergman, 2002),
a myosin light chain analog forming part of the molecular machinery which allows

1The sequence of reactions generating the motion.
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Plasmodium species to invade red blood cells. Plasmodium species are the causative
agents of malaria, an endemic disease affecting most developing countries with an
estimated 500 million people being contaminated and three million killed every year
(Snow et al., 2005). The life cycle of the malaria parasite includes a series of de-
velopment phases in the Anophele mosquito and human. The human blood phase
involves the invagination of red blood cells by the parasite using an acto-myosin
motor system (Baum et al., 2006; Farrow et al., 2011; Besteiro et al., 2011) based
on an unconventional class XIV myosin, called myosin A (MyoA) (Heintzelman and
Schwartzman, 1997; Hettmann et al., 2000), which lacks the C-terminal tail. MyoA
is anchored inside the parasite via the MTIP protein to an inner membrane complex
located just behind the plasma membrane (Bergman, 2002; Rees-Channer et al.,
2006; Green et al., 2006; Frénal et al., 2010). This protein-protein interaction is key
to this stage in the life cycle of the parasite, and therefore to its survival, and is
consequently increasingly being seen as a potential target for the design of new anti-
malarial drugs which could overcome the typical drug resistance effects in malaria
(Kortagere et al., 2010; Douse et al., 2012).

The structural organisation of MTIP and the ways in which it interacts with the
MyoA tail are still poorly understood. A first crystal structure containing three con-
formations of Plasmodium knowlesi MTIP (PkMTIP) suggested that MTIP binds
MyoA via the two lobes of the C-terminal domain wrapping around the MyoA tail
(Bosch et al., 2006) (Figure 5.1a). Subsequent crystal structures of Plasmodium
falciparium MTIP (PfMTIP) and binding assays showed the N-terminal domain to
influence binding as well, and suggested the existence of a conformational change
which would allow the N-terminal domain to bind with the MyoA tail directly
(Thomas et al., 2010; Bosch et al., 2007). MTIP was initially suggested to only
bind the last 15 residues of the MyoA tail (Bergman, 2002), but recent experiments
(Thomas et al., 2010) showed the interaction to be much stronger when the last
nineteen residues are included in binding assays.

Further developments in anti-malarial drugs targeting MTIP or the motor com-
plex require first a deeper understanding of the functional organisation of MTIP and
particularly its binding mechanism to the MyoA tail. The goal of this analysis is to
investigate further the mechanism by which MTIP wraps around the MyoA tail by
understanding the changes that occur in the structural organisation of MTIP upon
binding, and to identify amino acids of the MyoA tail that play a key role in this
mechanism. To this end, we use Markov stability to study the multiscale structure
of MTIP and evaluate how different parts of the protein behave together over dif-
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ferent scales. By comparing our results for different conformations, we explore how
this functional organisation changes upon binding. Finally, we introduce a method-
ology to measure the impact of individual residues on the multiscale structure which
allows us to identify key binding residues of the MyoA tail.

5.2 Structural data
We here study in detail four crystal structures of Plasmodium knowlesi (Pk) and
Plasmodium falciparium (Pf) MTIPs, either unliganded or in complex with a MyoA
tail peptide. The PkMTIP structures (PDB 2AUC) have been obtained by Bosch
et al. (2006) through X-ray crystallography at 2.6 Å resolution and pH 5.3. The
asymmetric unit in the crystal shows MTIP residues S803 to A817 and comprises
three conformations: two unliganded forms and one structure in complex with
residues S803 to A817 of P. yoelii MyoA tail. The crystal structure of PfMTIP
(PDB 2QAC) has been resolved by the same group (Bosch et al., 2007) at 1.7 Å
resolution and pH 7.5, and comprises MTIP residues S61 to Q204 in complex with
the same 15-residue P. yoelii MyoA tail peptide.

For each structure, we performed two preliminary energy minimisation steps
using the molecular dynamics package Gromacs (Hess et al., 2008) with the steepest
descent and conjugate gradient algorithms. After having immersed each protein in a
cubic box with spc216 water molecules and periodic boundary conditions, ensuring
that the borders of the box are at least 10 Å away from the protein at all points, the
two energy minimisations were done using the GROMOS96 43a1 force field (Christen
et al., 2005) until convergence.

5.3 Connections to a rigid cluster and the closing
mechanism

We now use our Markov stability framework to study the structural organisation
of PfMTIP/MyoA[803-817], i.e., PfMTIP in complex with a peptide of the last 15
amino acids of the MyoA tail (PDB 2QAC).

At small Markov times (Figure 5.2), we find partitions of high robustness (large
z-score) corresponding to the peptide bonds and individual residues, similarly to our
analysis of AdK.



Chapter 5: The myosin tail interacting protein and mutational analysis 77

4

0

R
es

id
u

es

P
ep

ti
d

e 
b

o
n

d
s

C
he

m
ic

al
 

co
nf

ig
ur

at
io

n 
m

od
el

 Z
-s

co
re

N
um

be
r 

of
 

co
m

m
u

ni
tie

s
V

ar
ia

tio
n 

of
 

In
fo

rm
at

io
n

Grouping of 
secondary 
structure
elements

Markov time

MTIP

Secondary 
structure

Chemical configuration model
Random weak interactions model

100

101

102

103

0.12

0.08

0.04

0

8

100 101 102 103 104 105 106

Figure 5.2: At small Markov times, residues and peptide bonds (blue shaded re-
gions) are correctly identified as relevant communities by the z-score statistics (bot-
tom panel) contrasting the robustness of the PfMTIP partitions to that of random
graphs from the chemical configuration model across Markov times. At large Markov
times, the results for PfMTIP substantially deviate from both the chemical config-
uration and random weak interactions models indicating the presence of relevant
partitions. The shaded area in orange, corresponding to the scales beyond the sec-
ondary structure, is further analysed in Figure 5.3.

The relevant partitions at long Markov times are summarized in Figure 5.3a.
Starting from the detection of the secondary structure at Markov time 8× 104, the
different α-helices and β-sheets are progressively incorporated in a quasi-hierarchical
manner into bigger clusters as the Markov time increases. Some of the groupings
lead to a marked increase in the robustness of the partition (indicated by the higher
z-score in Figure 5.3a & c). This is the case for the first community to appear that
incorporates two secondary structure elements: helices α6 and α7. This community
is conserved across a broad range of Markov times, more than any other community
of multiple elements of secondary structure. Following from our results in AdK, this
suggests a strong dynamical linkage between these two α-helices over an extended
time scale of motion. This result is in agreement with previous analysis of the
PkMTIP crystal structure by Bosch et al. (2006), which suggested that these helices
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form together a rigid cluster. Indeed, in all three conformations present in their
crystal, comprising both liganded (MyoA-bound) and unliganded (free) structures,
these two helices always keep their relative position unchanged.

Another important community is formed by helices α5 and α8 and similarly leads
to a marked increase in the robustness of the partition. Together with the α6− α7
cluster, they divide the C-terminal domain into two regions corresponding to the two
lobes that wrap around the MyoA peptide. The next rise in the z-score appears at
Markov times 7× 105, at which point MTIP is divided into three domains: the two
lobes of the C-terminal domain and the entire N-terminal domain (Figure 5.3b).
The strong robustness of this particular partition reflects its significance for the
functioning of the protein. This again supports hypotheses from Bosch et al. (2007)
that the closing mechanism of MTIP around MyoA should be in the form of a clamp,
with the two lobes of the C-terminal domain wrapping around the MyoA tail, and
the N-terminal domain fortifying the binding by bending towards the C-terminal
domain to close the clamp.

Strikingly, helix α0 forms another very long-lived community and remains dis-
sociated from the rest of the MTIP structure for almost as long as the MyoA
peptide—which does not form any covalent bond with MTIP. Preceding the se-
quence MTIP[61-204] resolved in the structure we analysed, 60 additional residues
form part of a third unresolved domain (Frénal et al., 2010) through which MTIP
binds the protein GAP45 and thus anchors itself to the inner membrane complex
of the malaria parasite. The strong separation of helix α0 from the rest of the N-
terminal domain as found by Markov stability suggests that this helix could in fact
be the only resolved portion of this third domain in this structure.

At long Markov times, the complex is partitioned into N- and C-terminal do-
mains, with the MyoA peptide clustered with the C-terminal domain. This is also
in agreement with results from Kd analyses (Thomas et al., 2010), which suggest
that the MyoA tail should be more tightly bound to the C-terminal than to the
N-terminal domain.

5.4 Stabilising role of MyoA and similarities between
conformations

We here study the changes in the structural organisation of MTIP induced by the
presence of the MyoA peptide by comparing our results for unliganded and liganded
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Figure 5.3: a. Multi-scale partitioning of PfMTIP/MyoA as a function of Markov
time. The elements of the secondary structure are progressively grouped into larger
communities as the Markov time evolves. Although in general our methodology
does not pre-impose a hierarchical community structure, in this case the succession
of community groupings is close to a strict hierarchy. Clusters kept for a long range
of Markov times, such as the group of helices α6 and α7 are well-defined partitions.
The identification of the rigid cluster (ten communities) and functional domains (four
communities) leads to an increase in the robustness (z-score) of the partitions and a
drop in the variation of information. b. Detection of the functional domains in the
four-community partition of PfMTIP/MyoA. c. The comparison of the z-score per
number of communities suggests that the partitions into nine and ten communities,
where the rigid cluster is found, and the partition into two communities, where the
N and C-terminal domains are identified, are significant.
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structures of MTIP. When generating the graph prior to the analysis, the MyoA
peptide and all its interactions with MTIP have here been removed from the liganded
structures to make the results more comparable. In doing so, the graphs constructed
from liganded structures reflect solely the change of conformation in MTIP induced
by the MyoA peptide, independently from the effect of the direct constraints, and
the analysis is thus focused on MTIP only.

Figures 5.4a & b show that the partitions for the liganded structures (PkMTIP3
and PfMTIP) obtained from the complexed forms are in general much more robust
than the partitions for the two unliganded structures (PkMTIP1 and PkMTIP2),
especially at the level of the secondary structure (eight, nine, and ten communities)
and functional domains (three communities). Such increase in the robustness of the
partitions in the liganded conformations thus emerges naturally from the change in
the spatial structure induced by the MyoA peptide.

Importantly, although the partitions differ significantly in their robustness and
the Markov time of their predominance, they are themselves very similar among the
different conformations, especially between the two liganded forms. In particular,
the important communities identified in the previous section, such as the α6 − α7
cluster and the functional domains (Figure 5.3b), are also detected in all three
conformations with high robustness (except for the functional domains of PkMTIP2
whose robustness is comparatively low). The fact that the same partitions are found
in all structures is in line with our previous results on AdK in closed and open forms.
This suggests that the overall organisation of MTIP, and particularly the aspects
of it tightly linked to function, is maintainted throughout the different conforma-
tions. This observation is in line with the previously proposed hypothesis that the
structure of proteins could have been optimised by evolutionary selection for an ef-
ficient exploration of their conformational space (Henzler-Wildman et al., 2007b,a;
Henzler-Wildman and Kern, 2007): the functionally important conformations are
already encoded in the fold.

The changes in the robustness and Markov lifetime of the partitions however sug-
gest that the secondary and tertiary structures get better structured upon binding
with the MyoA tail since the corresponding partitions are better defined in this case.
Note also that in comparing the liganded conformations, PfMTIP has more robust
partitions than PkMTIP3, possibly a result of the stabilising role of the N-terminal
domain, which in PfMTIP also binds the peptide and closes the clamp. On the other
hand, the unliganded form PkMTIP2 possesses the least robust partitions, which is
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in accordance with the hypothesis proposed by Bosch et al. (2006) that it should be
an intermediate conformation between the fully opened and fully closed forms.

Z
-s

c
o

re

1
2
3

10 9 8 7 5 4 3

PkMTIP1

2
1

3

9 8 76 5 4 3 2

PkMTIP2

2 3 4 5 6 7 8 9

0

1

2

3

Number of communities

Z
-s

c
o

re
-0.5

0.5

1.5

2.5

3.5
PfMTIP

PkMTIP
PkMTIP3

2

PkMTIP1

a b

Markov 10
5

10
6

1
2
3

10 9 8 7 6 5 4 3 2

PfMTIP

1
2
3

10 9 8 7 6 5 4 3

PkMTIP3

Figure 5.4: a. Robustness of the partitions of MTIP in different conformations as a
function of the Markov time. The liganded conformations (PfMTIP and PkMTIP3)
show better properties of robustness than the unliganded ones at the level of the
secondary structures and of the functional domains, suggesting a stabilising role of
the binding with MyoA. Partitions are very similar between the three conformations,
in particular for the functional domains, although the grouping of helices α5 and
α8 only occurs at long Markov times for PkMTIP2. Note: PkMTIP3 has four
communities instead of three for the functional domains due to helix α0 being only
partially resolved and thus failing to fully merge with the rest of the N-terminal
domain. b. The z-score of the partitions with the same number of communities
compared across different conformations of MTIP shows that the liganded forms
PfMTIP and PkMTIP3 have better defined partitions in general.

5.5 Robustness of the secondary structure
In spite of a very high sequence similarity (80%), the conformations adopted by
PfMTIP and PkMTIP differ considerably, with a RMSD of 1.06 Å for 121 amino
acids. While the N and C terminal domain are linked by an extended α-helix
in PkMTIP, PfMTIP adopts a kinked conformation which allows the N-terminal
domain to interact with MyoA (Figure 5.4a). Considering the unphysiological pH of
5.3 at which the PkMTIP structures were obtained, their structural differences with
other myosin light chains, as well as the smaller construct (portion of the MTIP
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sequence) used to obtain the crystal structure, Bosch et al. (2007) suggested that
PkMTIP also adopts a compact conformation similar to the PfMTIP structure in
physiological conditions.

The similarity between the partitions of the complexed forms of PfMTIP and
PkMTIP (PkMTIP3) obtained in the previous section also supports the expecta-
tion that their structural organisation should not be very different. Our partitioning
indeed consistently divides the central α-helix of PkMTIP into two different commu-
nities at all Markov times. Furthermore, the separation between the two halves of
this central α-helix in the partitions is constrained within the region that corresponds
to the central loop in PfMTIP (from residues H135 to N140). This partitioning is
thus consistent with the central α-helix of PkMTIP being partly identified as a loop
by the partitioning algorithm. To further support this observation, we have carried
out an analysis of the robustness of loops and α-helices with the same number of
nodes (50 atoms) across Markov times. Figure 5.5 shows that the central region of
the central α-helix of PkMTIP has a robustness much lower than the typical α-helix
with a profile similar to that of loops. These results demonstrate the insights that
our method can bring into the analysis of the structural organisation of a protein
beyond its pre-assigned secondary or tertiary structure.



Chapter 5: The myosin tail interacting protein and mutational analysis 83

5.6 MyoA tail computational mutational analysis
The last part of the analysis aims at identifying residues in the MyoA tail that
have a strong impact on the multiscale organisation of the protein complex and can
therefore be considered to play a significant role in its structure and dynamics. This
analysis does not evaluate the influence of a mutation on the binding energy; rather,
the expectation is that residues with a large influence on the structural organisation
of the protein will affect the global dynamics of the binding events.

Typically only a very small number of residues contributes to most of the bind-
ing (Clackson and Wells, 1995). These residues, coined “hot spots”, are commonly
defined as those whose mutation to alanine produces a change in binding free energy
of 2.0 kcal/mol or more (Bogan and Thorn, 1998). Alanine scanning mutagenesis
is the standard experimental method to identify hotspots. Each residue to be anal-
ysed is sequentially converted to alanine and the change in the binding affinity is
then measured (Wells, 1991). Although mutations to different amino acids can be
considered, alanine has the advantage of minimising the side chain without adding
extra flexibility to the backbone. Alanine is also the most common amino acid in
proteins, and is found in all secondary structures, in buried as well as non buried
regions.

Although most computational methods to find hotspots are naturally energy-
based (Moreira et al., 2007; Morrow and Zhang, 2012), functionnally critical residues
are often linked to the global mechanical properties of the protein, and experimen-
tal evidence has associated them with flexibility and intrinsically disordered regions
(Ma et al., 2001; Radivojac et al., 2007; Henzler-Wildman et al., 2007a; Costa and
Yaliraki, 2006). Furthermore, various computational methods have demonstrated
the high influence of binding site residues on large-scale attributes such as the dis-
tribution of conformations (Ming and Wall, 2006), the network of cooperativity
between residues measured in terms of coupled fluctuations (Liu et al., 2007), or
their propensity to be located in regions with distinctive mobility patterns in the
slow modes (Yang and Bahar, 2005).

To assess whether the contribution of each residue to the binding energy is related
to its impact on the structural and dynamical features detected by our method, we
have compared our computational results with the outcome of binding assays of
MTIP with mutated MyoA tail peptides. Our computational setup mimics the
standard alanine scanning mutagenesis experimental procedure: Each residue is
“mutated” in turn by removing from the graph all the edges corresponding to the
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Figure 5.6: a. The partition most influenced by computational mutagenesis is the
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with the residues identified experimentally (Thomas et al., 2010) to have a strong
effect on the binding affinity (indicated by the black arrows). c & d. Front and
side view of the positions of the key residues found.

weak interactions it makes with other residues . The mutated graph is then analysed
with our multiscale methodology, and the partitions are compared with those of the
original graph using the VI. For each mutation, we compute the VI between all
the partitions found with the same number of communities from the original and
mutated protein averaged over ten different Louvain initial conditions from which
we substract the average VI of the original graph to renormalise the results. Using
this scheme, partitions which are the most affected by a particular mutation will
give a high value of the variation of information.

Figure 5.6a shows that the partitions into three communities are the most af-
fected by the mutations. This is not surprising since the three-way partition is the
first where the MyoA peptide is grouped with part of the MTIP molecule (Fig-
ure 5.3a). Consequently, the mutations essentially affect the strength of the asso-
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ciation between the MyoA tail and the portion of MTIP that includes the hinge
region and the helices α5 and α8 from the C-terminal domain. More specifically,
the mutations that cause the largest changes in the three-way partition are those
in residues R806, A809, H810, K813, R814, and V816 (Figure 5.6b). These results
are in accordance with experimental binding assays for MyoA peptides of different
lengths (Thomas et al., 2010), crystallographic data and yeast two-hybrid experi-
ments (Bosch et al., 2007). In particular, residues R806 and K813 have been ob-
served to be essential for complex formation; H810 and R814 provide key contacts for
tight binding; and V816 also generally improves the binding strength. On the other
hand, our method does not single out a significant contribution of residue M815,
which has also been found experimentally to influence binding affinity. A possible
explanation is that the importance of this residue might be related to effects that
are not directly addressed by our method, such as intermediate states in the folding
pathway or a pure modification of the binding energies without any other impact on
the structure and dynamics of the complex. Finally, our method finds one residue,
A809, predicted to have an important effect on the multiscale organisation which
has not been investigated experimentally to date. This residue is however one of
the only four completely conserved residues of the MyoA tail in Plasmodium species
and other affiliated apicomplexan parasites (Bosch et al., 2007).

5.7 Conclusion
Our analysis has uncovered important features of the MTIP/MyoA complex that
agree well with experimental data. The rigid cluster formed by helices α6 and α7,
as suggested by the crystal structures of PkMTIP (Bosch et al., 2006), was observed
to form a well-defined community, conserved across a broad range of Markov times
and associated with very robust partitions. The functional domains suggested by
the analysis of crystal structures of different conformations across species (Bosch
et al., 2006, 2007) have been detected by the partitioning and also showed strong
robustness and conservation across Markov times. The robustness analysis of the
hinge region of PkMTIP confirms these similarities between species and therefore
suggests that their dynamical behavior should be similar. Furthermore, it supports
the hypothesis (Bosch et al., 2007) that the reported differences between PkMTIP
and PfMTIP in the the hinge region could result from the particularities of the
crystallisation. Finally, a computational tool for mutational analysis was introduced
and used to identify five out of the six residues known from binding assays (Thomas
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et al., 2010) to have a strong influence on the binding of MyoA. It also suggested
one additional residue, A809, which has not yet been investigated experimentally,
to be particularly important.

The experimental identification of hotspots through alanine scanning mutagen-
esis is a slow and laborious task. Consequently, a variety of computational methods
have been developed in the past, notably using free energy calculations, molecular
dynamics simulations, or machine learning (Fernández-Recio, 2011; Moreira et al.,
2007; DeLano, 2002; Morrow and Zhang, 2012). The mutational analysis tool we
introduced in this chapter is not aimed at competing in accuracy with these meth-
ods, but rather offers a different perspective to the identification of key residues for
the functioning of a protein. Our graph theoretical approach allows for instance to
account for indirect or long-range effects that disrupt the global network of atomic
interactions and could thus impact distant regions of the protein. Our approach
also has certain limitations. In particular, it does not account for the change in
the conformation of the protein that could follow some of the mutations, as all the
interactions, with the exception of the mutated residue, are kept identical. In addi-
tion, as our method aimed at measuring the impact of each residue individually as
opposed to simulating the experimental setup, it is not stricktly speaking an alanine
scanning method, since we removed all the side-chain interactions including those
associated with the β carbon. Both issues could however be easily addressed if
needed; the former through a short MD simulation, and the latter through a simple
modification of the graph construction.

The strong agreement we obtained with the results from experimental binding
assays was certainly not predictible. Our methodology is indeed not designed to
capture changes in the binding free energy and its accuracy therefore suggests that
the global structural organisation of the protein-ligand complex plays, at least in
the case of MTIP, a major role in the binding strength. This observation calls for
further studies to evaluate how the binding affinity in proteins is linked to their
global structural organisation.

Several of the predictions presented in this chapter have been later confirmed
by experiments (Douse et al., 2012; Turley et al., 2013) conducted after this study
had been published (Delmotte et al., 2011). In particular, the increased physical
stability of the structures upon binding with MyoA, reflected by a decrease in the
variability of the solutions in the variation of information, was verified by subsequent
NMR experiments (Douse et al., 2012), which identified a general loss of flexibility
of the protein in the bound state. In the same article, Douse et al. (2012) showed
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that residues from helix α0, which we identified as being exceptionally stronlgy
disconnected from the rest of the N-terminal domain (see Figure 5.3), do not actually
form a helix in solution but remain as an unstructured region which contributes
neither to the binding with MyoA nor to the folding of the rest of the protein. In
addition, they observed helix α8, the last helix to join the C-terminal domain in our
analysis and therefore the most independent region according to our measure, to be
in a different dynamic regime from the rest of the C-terminal domain. Finally, the
hypothesis of the absence of an extended central α-helix in physiological conditions,
which our results strongly supported, has been confirmed experimentally only very
recently (Turley et al., 2013).

Together, the results in this chapter provide a better understanding of the possi-
ble dynamical behavior of MTIP and other myosin light chains and their strong con-
cordance with earlier as well as subsequent experiments confirms that our method-
ology is a good predictor for the structural organisation and dynamical behaviour
of the protein.
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Chapter 6

Highly multiscale biomolecular structures

In the preceding two chapters, we benchmarked our method on a well charac-
terised protein example and demonstrated its predictive power on a recently dis-
covered myosin light chain in the context of protein-protein interactions. In this

chapter, we focus on large protein complexes displaying a highly multiscale struc-
tural organisation and covering a much broader range of length and time scales, and
introduce new developments in our methodology to probe this increased complexity.
In particular, we use Markov stability to explore phenomena taking place at the
extreme end of the spectrum of scales, beyond the tertiary structure, such as the
interplay between subunits of multimeric structures, or patterns of communication
spanning the entire complex.

In the first part, we develop a detailed analysis of Rubisco, a vital yet notoriously
inefficient enzyme responsible for carbon assimilation in photosynthetic organisms.
A large heteromeric enzyme, with four dimers of large subunits and eight small
subunits in its most common form, Rubisco exhibits highly complex multiscale dy-
namics associated with its multistep catalytic reaction. The structural mechanisms
which control its activity, and particularly the fundamental roles of the quaternary
structure interactions are still poorly understood. Using an ensemble of structures
which capture the conformation of Rubisco at several key intermediate steps of its
reaction, we explore the evolution of its structural organisation both through scales
and throughout the catalytic pathway. In the second part, we contrast our results
with two classic examples of multimeric structures representing extreme cases of a
simple and a very elaborate hierarchical organisation: hemoglobin and ATCase.

89
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Side view

Top view Exploded view

Figure 6.1: The structure of hexadecameric form I Rubisco contains a barrel formed by
four pairs of large (L) subunit dimers which each enclose two active sites, and capped at
both ends by four small (S) subunits. Small subunits are colored in yellow, large subunits
in blue and cyan, and the substrate RuBP, located in the active sites, in red. Structures
drawn with PyMOL using the PDB structure 1RXO.

6.1 The structure and function of Rubisco

6.1.1 Context and perspectives

Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) is often considered to
be one of the most important enzyme on the planet. It catalyses the fixation of
atmospheric CO2 during the Calvin cycle in a reaction that constitutes the source
of virtually all the organic carbon in the biosphere, the building material for the
organic molecules of life (Hartman and Harpel, 1994; Field, 1998; Schneider et al.,
1992). The carbon atoms in our own cells, our food, our clothes or the fuel we
consume have probably all one day gone through the active site of Rubisco.

In spite of its vital role, Rubisco is notoriously inefficient with between only one
and four carboxylation reactions completed per second at each catalytic site (Parry
et al., 2007; Schneider et al., 1992). In addition to its slow rate, it suffers from a lack
of specificity. Having first evolved three to four billion years ago in an atmosphere
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much richer in CO2 and depleted from oxygen (Kapralov et al., 2011), it cannot
completely distinguish between O2 and CO2 in the modern atmosphere. In addition
to its carboxylation reaction, it catalyses a competing reaction with atmospheric
oxygen which depletes the pools of substrate and generates a waste product that
is eventually degraded through an energy consuming salvage pathway, resulting in
a lowering of its efficiency by up to 50% (Ellis, 2010; Lorimer and Andrews, 1973;
Zelitch, 1973). It has been hypothesised (Ellis, 2010) that, to account for its poor
turnover, plants have multiplied their content in Rubisco. It is thought to be the
most abundant protein on Earth, Rubisco forming an estimated 50% of the soluble
proteins in plant leafs.

The impact of Rubisco’s catalytic role on photosynthetic efficiency and crop
yield is considerable and has established Rubisco as a potential optimisation target
to address societal challenges such as the food and energy crises (Monteith and Moss,
1977). There are substantial variations between species in terms of both Rubisco’s
catalytic rate (Sage, 2002) and specificity (Bainbridge et al., 1995; Jordan and Ogren,
1981, 1984; Parry et al., 1989; Read and Tabita, 1994), and it was anticipated that
structural differences could be exploited to guide genetic modification to improve
Rubisco’s efficiency. However, numerous attempts at mutant and chimeric variations
of Rubisco have met with limited success, notably due to an inverse correlation
between catalytic rate and specificity (Bainbridge et al., 1995; Tcherkez et al., 2006;
Zhu et al., 2004; Tabita et al., 2008; Tabita, 1999; Spreitzer, 1999; Whitney et al.,
2011). Unravelling the engineering rules that control and regulate Rubisco’s activity
therefore appears to be critical if we are to reveal, and ultimately manipulate the
regulatory restraints that dictate photosynthetic efficiency.

6.1.2 Complexity in Rubisco’s structure and functional mechanisms

Uncovering the relationship between structural modifications and catalytic efficiency
in Rubisco remains a major challenge due to, firstly, the remarkable intricacy of
Rubisco’s large heteromeric structure and, secondly, the complexity of the associated
functional mechanisms (Portis Jr, 1992; Schneider et al., 1992; Cleland et al., 1998)

Rubisco is one of the largest enzymes in nature (550 kDa) and exists in a vari-
ety of multimeric forms. The most common form, which will be the focus of this
work, is found in higher plants, cyano-bacteria and eukaryotic algae (Hartman and
Harpel, 1994; Spreitzer, 1999; Spreitzer and Salvucci, 2002; Andersson, 2008). It
is a heterohexadecamer (16 subunits) and comprises four dimers of large (L) sub-
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units (50-55 kDa), each enclosing two active sites, forming a barrel capped at the
top and bottom by four small (S) subunits (12-18 kDa) (see Figure 6.1). In some
species of autotrophic bacteria and archaea, it can take the form of a homodimer,
homooctamer or homodecamer of exclusively large subunits.

L

S S

L L

Sa

1

2

3

b

N-terminal
region

G60 
loop

2

d
Small 
subunit 3

e

Loop 6

C-terminal 
loop

α/β barrel domain

1

c

Figure 6.2: a. Hexadecameric Rubisco (1RXO) showing the location of large (L) and
small (S) subunits. b. Conformational changes in Rubisco during closure involve motions
over a wide range of scales, including loop motions, domain rotation and subunit dis-
placement, here indicated by red arrows superimposed on one L and one S subunit. The
conformational changes observed between open and closed forms are obtained by aligning
the structures 1RXO (Stage II, open) and 8RUC (Stage III, closed) using PyMol with a
cutoff of 0.6Å. The length of the arrows is equal to the displacement. c, d & e. Zoomed
regions of b. indicating the motions observed during closure in the α/β barrel domain (d,
in green), N-terminal domain (e, in purple), and S subunit (c, in orange). These motions
involve the closing of loop 6 (d, in yellow) into the active site (ligand and magnesium
ion colored in brown) located inside the barrel domain (d, in green), the rotation of the
N-terminal domain (in purple and blue in e), the ordering of the C-terminal loop along
the barrel domain (in cyan in d), and the displacement of the S subunit (in orange in c).
Colors used in this figure reflect the organisation of Rubisco as suggested in the literature
(Duff et al., 2000; Taylor and Andersson, 1996), and are not the result of our analysis.

Whilst the large subunits, which contain the active sites, are directly involved
in the reaction (Portis Jr, 1992; Hartman and Harpel, 1994; Cleland et al., 1998;
Spreitzer, 1999; Tabita, 1999; Spreitzer and Salvucci, 2002), the small subunit is
not essential for catalysis and its precise role remains unclear. It is notably absent
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in some active wild-type species (Tabita et al., 2008) and an artificial structure of
Synechococcus deprived of its small subunits has been shown to retain some activity,
although as little as 0.6% of the turnover rate (Gutteridge, 1991). In addition, small
subunits display a wide diversity in sequence and structure, associated with signif-
icant variations in stability, specificity and catalytic rate (Spreitzer and Salvucci,
2002; Spreitzer, 2003), as shown in chimeric enzymes combining large and small
subunits from different species (Karkehabadi et al., 2005).

This structural complexity is associated with a very elaborate functional mech-
anism which is not yet well understood. Rubisco’s catalytic function involves a
sequence of steps associated with structural rearrangements, which have been char-
acterised through detailed comparisons of crystal structures that captured Rubisco’s
conformation at different stages of the reaction (Duff et al., 2000; van Lun et al.,
2011) (see Figure 6.3 for a visual summary of the structural reaction intermedi-
ates, and Figure 6.2 for details of the conformational changes). First, Rubisco is
activated through the carbamylation1 of the Lys201 residue in the active site and
subsequent stabilisation with Mg2+. This step is followed by the binding of the sub-
strate ribulose-1,5-bisphosphate (RuBP) which is linked to a conformational change
from an ‘open’ to a ‘closed’ conformation and a series of reaction steps (enolisation,
carboxylation and hydration reactions, see Figure 6.3), although the precise timing
remains unclear. The open-closed conformational change involves the closure of loop
6 (in yellow in Figure 6.2d, motion 1), the rotation of the N-terminal domain (in
purple in Figure 6.2e, motion 2), the displacement of the entire S subunit (in orange
in Figure 6.2c, motion 3), and, finally, the ordering and packing of the C-terminal
strand (in cyan in Figure 6.2d) along the barrel domain and against loop 6 (Duff
et al., 2000; Taylor and Andersson, 1996). The process ends with the opening of the
enzyme and the release of two molecules of 3-phosphoglycerate (PGA). Rubisco can
be inhibited by several molecules, including CABP, a transition state analog, and
XuBP, which results from the isomerisation of the substrate RuBP. In addition, if
RuBP binds before the active site is activated, Rubisco becomes inhibited.

The ’open’ to ’closed’ transition is thus associated with displacements within
the individual L subunits. Such local rearrangements are embedded within a highly
organised heteromeric quaternary structure supporting inter-subunit collective phe-
nomena that could be linked to regulatory mechanisms such as cooperativity between
active sites or the role of effectors (Taylor and Andersson, 1996; Yokota et al., 1991;

1Addition of a CO2 molecule.
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Figure 6.3: Rubisco’s catalytic reaction steps and the corresponding structural confor-
mations of the enzyme. Following the activation step (Stage I), the substrate ribulose-
1,5-bisphosphate (RuBP) binds (Stage II) and undergoes enolisation, carboxylation and
hydration reactions (reaction scheme shown leading to Stage III). Rubisco opens again at
the end of the reaction (Stage IV), following the carbon-carbon cleavage and protonation
reactions that give rise to the product 3-phosphoglycerate (PGA). The pictures at each
stage indicate the motion of loop 6 and the ligand anchoring points within the α/β barrel
domain (black line in the central inset). The anchoring points are colored red when a
ligand is bound, and pink when free. Ligands such as xylulose 1,5-bisphosphate (XuBP)
and 4-carboxy-arabinitol 1,5-bisphosphate (CABP) inhibit activity, as does RuBP when
it binds to inactive Rubisco.
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Parry et al., 2008). However, the role of this larger scale of organisation, and in
particular of the S subunits, remains unclear.

6.1.3 Computational means to address Rubisco’s complexity

The computational exploration of Rubisco dynamics across different time and spatial
scales can shed light on how its structural organisation affects the catalytic function.
However, the vast array of length and time scales involved in the structural rear-
rangements associated with its catalytic function places the computational analysis
of Rubisco beyond standard simulation methods. The use of fully atomic Molecular
Dynamics simulations is severely limited in the case of Rubisco due to both its size
and the slow time scales of the biologically relevant dynamics. On the other hand,
coarse-graining techniques not only ignore atomic details but also decouple the dif-
ferent levels of organisation, and are thus unable to link atomic scale events, such
as substrate binding, with the large-scale conformational changes induced.

Here we shed light on the link between chemical structure, conformational rear-
rangements and biological function using Markov stability. Our framework allows
us to elucidate how the all-scale structural anatomy of Rubisco changes throughout
the catalytic reaction keeping atomistic details throughout.

Our results uncover, for the first time to our knowledge, changes in the hierar-
chical organisation of Rubisco at all scales associated with different stages of the
reaction and upon inhibition. In particular, at intermediate scales, we find that Ru-
bisco’s α/β barrel switches between the dominance of two hierarchical organisations,
both coexisting and encoded as fingerprints in the structure. These hierarchies can
be linked to structural rearrangements leading to an increased connectivity between
the anchoring points of the ligand in agreement with experiments. At larger scales,
we reveal differences at the level of the quaternary structure: the closure of the
structure during the reaction leads to increased connectivity between the two lobes
of the active site spanning across subunits. At even larger scales, we find a role for
the enigmatic small subunits in mediating an enhanced connectivity between the
large subunit dimers at the end of the catalytic reaction.

We also find evidence that the conformational changes that Rubisco undergoes
during its enzymatic reaction or following inhibition are already encoded in the pro-
tein structure, similarly to the experimental suggestion that enzymatic behaviour is
encoded in the intrinsic dynamics of the enzyme’s unbound state (Henzler-Wildman
and Kern, 2007). As our method accesses all scales without coarse-graining or re-
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Figure 6.4: a. Details of the seven spinach Rubisco crystal structures used in this
study: 1AUS (Taylor and Andersson, 1996), 1RXO (Taylor and Andersson, 1997b), 8RUC
(Andersson, 1996), 1AA1 (Taylor and Andersson, 1997a), 1RCX (Taylor and Andersson,
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reaction steps associated with the corresponding structural conformations of the enzyme.
The structure 8RUC used as a proxy for the transition state analog (Stage III) differs from
the in vivo hydrated intermediate in the oxygen atom colored in red.

parameterisation, probing structure-function relationships throughout the catalytic
cycle based on full atomistic detail, this may help identify distinct chemical design
strategies for enzyme optimisation.

6.2 Materials and methods

6.2.1 Structural data

In this chapter, all the structures analysed are X-ray crystal structures of hexade-
cameric (L8S8) wild type forms of Spinacia oleracea (spinach) Rubisco. Spinach was
chosen due to the availability of crystal structures associated with a series of stages
of the catalytic reaction and bound to several inhibitors found in vivo. Figure 6.4
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summarises the structures used in this work in the context of the catalytic reaction
steps.

Relevance of the structures as intermediates in the catalytic pathway

Although many stages of the catalytic pathway are represented in our dataset, the
structures used for stages II and III are only proxy for the real conformation. Indeed,
the structure of Mg2+-activated Rubisco bound to RuBP (Stage II) has never been
resolved and its exact conformation in vivo, whether it is open or closed, thus remains
unknown and a subject of debate. Initially, the larger size of Ca2+ compared to the
true activator ion Mg2+ was thought to artificially maintain the active site in an
open conformation (Duff et al., 2000). However, a closed activated structure with
Ca2+/CABP was later resolved (Karkehabadi et al., 2003), which argues against
calcium alone preventing closure. In the absence of any further structural data for
Rubisco with Mg2+/RuBP, we have assumed the Ca2+/RuBP structure (1RXO) to
be a reasonable proxy for the Mg2+/RuBP state found in vivo, and will consider it
as the equivalent of Stage II in the rest of this work. Regarding Stage III, CABP is
the transition state analog to this reaction stage, but differs from the true hydrated
intermediate by one oxygen atom (in red in Figure 6.4b). The structure of spinach
Rubisco with CABP is the closest available structure to the conformation found in
vivo and is considered as its best proxy in this work.

Treatment of the missing residues and ligands

For four of the Rubisco structures we used (1AUS, 1RXO, 8RUC, 1AA1), only half
of the hexadecamer was reported in the PDB file. The full structures were generated
by symmetrisation using the script MakeMultimer.py2. For PDB structures 1AUS
(Taylor and Andersson, 1996) and 1AA1 (Taylor and Andersson, 1997a), the unre-
solved residues 333-337 from loop 6 were added based on the PDB structure 1RXO
(Taylor and Andersson, 1997b) in order to avoid an unrealistic break in the chain of
covalent bonds, yet any new weak interaction formed by these added residues were
omitted. All the ligands have here been included in the protein graphs. Charges
were modelled using the server PRODRG (Schüttelkopf and van Aalten, 2004).

2Available at http://watcut.uwaterloo.ca/makemultimer/

http://watcut.uwaterloo.ca/makemultimer/
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Solvent accessible area

The total solvent accessible area is computed using PyMol (Schrödinger, LLC, 2010)
with a 1.4Å probe and, for comparability, is restricted to the common subset of
residues resolved in all structures, i.e. residues 20-332 and 338-463 for the L subunits,
and residues 1-123 for the S subunits.

6.2.2 Markov stability analysis

Due to the computational cost of evaluating the matrix exponential for large net-
works (Rubisco structures contain more than 70 000 nodes), we use here the lin-
earised version of Markov stability with the combinatorial Laplacian (see Chapter
3):

R(t) ≈ (1− t)R(0) + tR(1) (6.1)

For each Markov time, the Louvain optimisation is repeated for one thousand ran-
dom initialisations and the ensemble of solutions found is kept. We then report
the optimal of all the solutions found at each time and we also calculate the mean
variation of information (VI) of the ensemble of solutions obtained.

As we observed in AdK and MTIP in the last two chapters, sudden drops in
the variation of information often convey the identification of a robust partition or
community. The “freezing” of a portion of the graph into a well-defined community
manifests itself by a drop in the total variation of information as this region of
the graph ceases to contribute to it. In order to avoid the cumbersome analysis
of a large ensemble of surrogates and z-score, we will here use this property in
conjunction with plateaus in the number of communities as the main indicators of
a relevant community structure.

6.3 The all-scale analysis of Rubisco
The all-scale Markov stability analysis of the atomic graph of activated unliganded
spinach Rubisco (PDB 1AUS) is shown in Figure 6.5a. The Markov zooming starts
by detecting chemical groups at high resolution, then on to amino acids and sec-
ondary structures, followed by intra-unit functional domains (labelled a–d in Fig-
ure 6.5a), and finally groupings involving the small subunits and spanning the qua-
ternary structure organisation (labelled e–g). From Markov time 106 onwards, Ru-
bisco exhibits a marked hierarchy of well-defined communities indicated by local
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Figure 6.5: Structural anatomy of Rubisco at all scales. a. All-scale Markov stabil-
ity analysis of activated unliganded spinach Rubisco (Stage I, PDB code 1AUS). As the
Markov time increases, we recover first the meaningful chemical and biochemical levels
of organisation (chemical groups, residues, secondary structure); then previously reported
functional domains (N-terminal and barrel domains); and finally partitions involving the
quaternary structure (L and S subunits) and inter-dimer interactions. The number of
communities (blue line) decreases with Markov time indicating coarser partitions. Rele-
vant partitions are indicated by persistent plateaus of the number of communities (blue
line) together with dips in the variation of information (green line). b. Expanded view of
the hierarchy of intra-unit functional domains. The N-terminal domain {7, 8} and the S
subunit {1, 2} form robust communities persistent over a long range of Markov times.
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minima in the variation of information (i.e. robust to the optimisation) and by
long plateaus in the number of communities (i.e. persistent under the diffusive dy-
namics), as described in the previous chapters. However, in contrast to the results
we obtained for AdK and MTIP, Rubisco displays a much larger number of robust
community structures beyond the identification of the secondary structure. These
communities are not only more numerous, but also span a much broader range of
Markov times, and are associated with longer plateaus and smaller values of the vari-
ation of information. These features reflect the highly organised multiscale structure
of Rubisco and distinguish it from proteins with less elaborate dynamics, as we will
discuss in the second part of this chapter.

We have applied this method to study how the all-scale structural anatomy
of Rubisco changes between the conformations it adopts throughout its catalytic
reaction. Specifically, we have analysed four spinach Rubisco crystal structures,
which provide snapshots of Rubisco at different stages of the reaction, labelled in
this work from I to IV: activated unliganded (1AUS, Stage I); bound to the substrate
RuBP (1RXO, Stage II); the intermediate state analog (8RUC, Stage III); and bound
to the product 3-phosphoglycerate (PGA) (1AA1, Stage IV). We have also compared
them with three conformations of inhibited Rubisco bound to three different ligands:
xylulose 1,5-bisphosphate (XuBP) (1RCO), RuBP (1RCX) and 4-carboxy-arabinitol
1,5-bisphosphate (CABP) (1RBO) (see Figure 6.4).

Our analysis follows Rubisco’s hierarchical organisation bottom up from its
atomic organisation. As expected, our method finds no differences between the
structures at short scales, since the chemical and biochemical building blocks are
identical and the secondary substructures are largely similar across all conforma-
tions. However, at intermediate to long scales our analysis reveals significant differ-
ences in the structural organisation of Rubisco throughout the reaction and upon
inhibition, involving the intra-unit organisation of the functional regions (α/β bar-
rel, N-terminal domain) within the single L subunits, and the quaternary structure
organisation (involving inter-subunit communication) at larger scales, as we now
detail.
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6.3.1 Intermediate scales: The intra-unit functional domains throughout
the catalytic reaction

S subunits and N-terminal domain are decoupled from the barrel domain at intermediate
scales

At intermediate scales, our analysis extracts the hierarchical organisation of intra-
unit substructures, as seen in the expanded view in Figure 6.5b. Reassuringly,
we find robust communities corresponding to the three functional domains in the
enzyme (Taylor and Andersson, 1996): the L subunit α/β barrel domain {3, 4, 5, 6},
the L subunit N-terminal domain {7, 8}, the entire L subunit {2–8} and the S
subunit {1, 2}.

As shown in Figure 6.5b, both the S subunit {1, 2} and the N-terminal domain
{7, 8} are particularly well conserved across scales (as shown by a very long branch
in the hierarchical tree), and remain well separated from the α/β barrel across these
intermediate Markov times. The independence of the S subunit is expected, due to
the absence of covalent bonds with the L subunit. Yet we showed in the case of MTIP
(Figure 5.3) that robust communities grouping sections from different subunits can
form under the Markov stability optimisation, and the absence of such communities
in Rubisco suggests that the dynamics of the small subunits is largely decoupled
from that of the large subunits at intermediate scales.

This conclusion is supported by the fact that the S subunit is known not to be
essential for catalytic function. However, it does not necessarily contradict reports
of experiments observing a strong decrease in activity upon the removal of the S
subunit from hexadecameric Rubisco. As it will be shown hereafter, our calculations
suggest that S subunits play an important role at high scales.

At first sight, the isolation of the N-terminal domain {7, 8} from the catalytically
important α/β barrel domain {3–6} of its own subunit is more surprising, as they are
covalently linked. However, in this case, Markov stability detects sensitive details
of the quaternary structure related to function. Hexadecameric Rubisco is indeed
organised into four functional L subunit dimers (see Figure 6.1). The two L subunits
forming a dimer are arranged antisymmetrically such that each dimer possesses two
active sites enclosed by the α/β barrel domain {3–6} of one L subunit together with
the N-terminal domain {7, 8} of the other. This result thus shows the capacity of
Markov stability to uncover, in the case of Rubisco, the functional organisation into
active sites beyond the apparent structural organisation of the hexadecamer.
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Figure 6.6: (Figure on the previous page) Markov stability analysis of the seven spinach
Rubisco structures used in this study (see Figre 6.4). Each subfigure shows the quasi-
hierarchical organisation identified by Markov stability for each PDB structure, together
with the evolution of the total number of communities (in blue) and variation of infor-
mation (in green) as a function of the Markov time. All spinach Rubisco structures share
a number of similarities in their structural organisation, including the presence of well-
defined communities for the N-terminal domain and S subunit. The analysis of inactivated
structures (1RCX, 1RCO and 1RBO) suggests that, at intermediate scales, the absence of
activation induces the opposite behaviour in the α/β barrel hierarchical organisation to
the equivalent activated structure (see Figure 6.8).

Generalities across structures

The four communities identified in the previous section relate to fundamental el-
ements of the functioning and structure of Rubisco (Taylor and Andersson, 1996;
Duff et al., 2000), and should thus be well conserved in all conformations. Figure 6.6
shows the results of the Markov stability analysis for all seven structures: As ex-
pected, these four important regions of the protein, i.e. the N-terminal domain, α/β
barrel domain, L and S subunits, indeed form well defined communities in all the
structures of spinach Rubisco we analysed.

Similarly, our previous conclusion that the small subunits are largely decoupled
from the large subunits at intermediate scales is general and can also be observed
in the other six structures. To verify this hypothesis, we carried out the Markov
stability analysis of all structures with the S subunits removed from their protein
graph, thus effectively creating their equivalent L8 structure. Figure 6.7 confirms
both L8 and full L8S8 structures yield identical results up to the Markov time at
which the quaternary structure is identified. At Markov times beyond 107, the
curves start to diverge at the scale where the small subunits begin to influence the
quaternary structure organisation, which we will explore in more details later. These
results thus support the hypothesis of a weak involvement of the S subunits in the
dynamics of the L subunit at intermediate scales at all stages of the catalysis.

Evolution of Rubisco structural organisation during catalysis

Now that we have identified these four well conserved regions, we focus on the chang-
ing elements of Rubisco’s structural organisation throughout the catalytic pathway.

As it is shown of Figure 6.6, the majority of the differences between the seven
structures of Rubisco are localised inside the α/β barrel domain, the region con-
taining most of the active site. The activated structures at Stages I and III show a
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within the S subunits (marked by the blue arrow). Beyond the quaternary structure (be-
yond the red arrow), the Markov stability analyses diverge as the S subunits are then
involved in the inter-L subunits communication.
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robust structural hierarchy clearly subdividing the barrel domain into two and four
communities. Stages II and IV, on the other hand, exhibit a less compartmentalised
barrel region with a non-hierarchical organisation comprising two, three and four
communities. These two hierarchies, labelled type 1 and 2 respectively, are shown
in more details in Figure 6.8a.

These two types of hierarchies appear unrelated to the global (open/closed)
conformation, which is often used to classify Rubisco structures. Whereas Stages I,
II and IV are open and Stage III closed, type 1 hierarchy is common to Stages I and
III and type 2, to Stages II and IV. (see Figure 6.3).

To resolve this apparent discrepancy, we analyse the ensemble of solutions,
optimal as well as suboptimal, given by the Louvain algorithm at each Markov
time, rather than focusing on the highest Markov stability partition only as in Fig-
ures 6.5 and 6.6. In some cases indeed, the ensemble of Louvain-optimised partitions
can be dominated, not by a single solution, but several solutions with similar values
of Markov stability (one optimal, and a few suboptimal but optimised). The Lou-
vain ensemble of solutions therefore provides a more complete picture which include
other highly relevant partitions, close in Markov stability to the optimal one.

To visualise the ensemble of partitions found and their relevance at each Markov
time, we construct heatmaps of community structures. The heatmaps are computed
from the observed frequency of each similar community in the ensemble obtained
from 1000 runs of the Louvain optimisation at each Markov time. Communities are
considered similar if: (i) they differ in fewer than 100 nodes (∼ 6 amino acids) so
as to allow for flexibility in communities with soft borders such as loops, which do
not influence much the overall Markov stability of the graph; or (ii) they contain
the same elements of the secondary substructure (even if they differ by more than
100 nodes), so as to include communities with longer soft borders.

In Figure 6.8, the heatmaps clearly highlight the presence of additional coexisting
community structures besides the optimal partition. Each line of a heatmap corre-
sponds to one particular community, and each column to a particular Markov time.
The colours indicate the frequency with which each community is observed in the
Louvain ensemble of optimal and suboptimal partitions, going from dark blue (not
observed) to dark red (identified in 100% of the Louvain runs at this Markov time).
The black lines superimposed on the heatmaps indicate the optimal Markov stability
partition (which may differ from the most frequent), as obtained in Figure 6.5b.

We find that the two structural hierarchies identified previously (Hierarchies 1
and 2, Figure 6.8a) are both present at all stages, and are each alternatively more
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Figure 6.8: Rubisco switches between two hierarchical organisations of the α/β bar-
rel throughout the catalytic reaction. a. The two types of hierarchical organisation of
the barrel found with Markov stability in all seven Rubisco structures analysed as in Fig-
ure 6.5a. b. The heatmaps depict the probability of finding each community when Markov
stability is optimised at each Markov time and show the coexistence of both hierarchies
throughout the stages of the reaction. However, Stages I and III are characterised by
the dominance of the well-defined Hierarchy 1, while Stages II and IV are characterised
by dominance of Hierarchy 2, which has more diffuse communities encompassing regions
around loop 6 and the two anchoring subsites of each phosphate group. The anchoring
points are colored red when a ligand is bound, and pink when free.
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probable: Stages I and III are both dominated by Hierarchy 1, with its well-defined
organisation of the α/β barrel domain into two binary splits, and Stages II and
IV are characterised by a more fluid structure of the barrel domain, as indicated
by the less robust partitions of Hierarchy 2. The heatmaps however indicate that
the suboptimal partitions of Hierarchy 1 are found during Stages II and IV, when
Hierarchy 2 is optimal and, conversely, signatures of Hierarchy 2 are visible in Stages
I and III, when Hierarchy 1 is dominant.

These results relate to previous observations from the preceding two chapters,
but take place here in the context of an ensemble of possible states as opposed to
a single one previously. Firstly, our results show that the hierarchy that dominates
in the ‘closed’ transition-state conformation (Stage III) is already encoded in the
‘open’ unliganded structure (Stage I), similarly to our results for AdK and MTIP in
the open and closed forms. Secondly, the presence of both hierarchies at all stages
of the reaction, alternatively as optimal and suboptimal, is suggestive of the coexis-
tence of two local minima in the landscape of protein conformations throughout the
catalytic reaction encoded in the structure: the conformational changes associated
with the binding of the substrate RuBP or the formation of the product PGA would
thus shift the likelihood of these two hierarchies of intra-unit functional domains.
Thirdly, the hierarchies obtained by our method are also consistent with other exper-
imental observations from Rubisco crystal structures linking key functional aspects
with rearrangements of loop 6 and the three anchoring points of the ligands during
the catalytic reaction (Duff et al., 2000). Previous comparisons of Rubisco crystal
structures (Taylor and Andersson, 1996) have established loop 6 as a key structural
element for the open-closed transition, and as the region of Rubisco undergoing the
largest displacement between these main conformations. In addition, Duff et al.
(2000) proposed a model linking the three ligand anchoring points to Rubisco’s
function and associated closing mechanism. The three anchoring points located in
the active site (represented by red dots in Fig. 6.8) are the magnesium ion and the
pockets formed around each of the two phosphate groups of the ligand (P1 and P2).
During the transition from the open to the closed conformation (Stage II to III), the
P2 site moves from the upper subsite (P2d, formed by Arg295 and His298) to the
lower subsite (P2p, formed by Arg295 and His327), in a displacement which bends
the ligand, reduces the P1-P2 distance, and removes its steric hindrance with loop
6, thereby allowing loop 6 to close into the active site. Similarly, the displacement
of the P1 site from the distal subsite (P1d, Gly381, formed by Gly403, Gly404 and
Trp66) to the proximal subsite (P1p, formed by Gly381, Gly403, Gly404 and Thr65)



108 6.3 The all-scale analysis of Rubisco

is thought to trigger the rotation of the N-terminal domain of the neighbouring L
subunit (see Figure 6.3).

Our analysis shows that Rubisco goes from Hierarchy 1 at Stage I, in which the
residues forming the P1 anchoring points (both P1d and P1p) are spread out in
different communities ({3} and {4}) and P2d (in {5}) is isolated from P2p (spread
across {4} and {5}), to Hierarchy 2 at Stage II with fluid communities that, firstly,
group together the P1 residues (in {3′}) and, secondly, the two subsites P2d and P2p
({4′, 5}). Hence, Stage II reflects enhanced communication around the phosphate
group anchoring points and between their subsites. Furthermore, the emergent role
of loop 6 is signalled by its becoming part of a single community {4’,5} at Stage
II. Stage II can thus be viewed as a state with structurally-enhanced connectivity
between the phosphate subsites, and across loop 6 and its surrounding substructures,
hence primed for the closure of loop 6 needed for function (Duff et al., 2000). Rubisco
then recovers the Type I hierarchy at Stage III, but now with increased connectivity
between the relevant functional points in the structure (loop 6 and anchoring points).

Finally, it is interesting to note on Figure 6.6, that inactive structures appear
to have the opposite behaviour to their activated counterparts, with the inactivated
forms bound to RuBP and XuBP (inactivated analog to Stage II) displaying a well
defined structural hierarchy of type 1 and the inactivated structure with CABP
(inactivated analog to Stage III) showing a fluid organisation similar to a hierarchy
of type 2.

6.3.2 Large scales: closure favours inter-unit communication between
the two domains of the active site

At larger scales, our method uncovers structural partitions beyond the individual
subunits. This is significant for Rubisco since the active sites lie at the interface
between two L-subunits. At these scales ((e) in Figure 6.5), our method always finds
the expected optimal partition into 16 communities, i.e. the ‘quaternary structure
partition’ with each of the sixteen L and S subunits as independent communities.
However, coexisting with this natural partition, we find another sub-optimal 16-
partition with communities that span across adjacent L-subunits enclosing each of
the active sites. We denote this partition, which reflects the organisation of Rubisco
in terms of catalytically competent substructures, as the ‘catalytic region partition’
(Figure 6.9a).
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Figure 6.9: The disconnectivity between the two lobes of each active site is directly related
to closure of Rubisco. a. The two 16-community partitions found: the optimal ‘quaternary
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b. The active site disconnectivity, defined as the difference between the Markov stability
of the quaternary structure partition and the catalytic region partition, for all spinach
Rubisco structures studied. c. Solvent accessible area and d. inter-phosphate distance
(P1-P2) are both strongly correlated with the active site disconnectivity calculated in our
analysis.

The difference in Markov stability between the optimal ‘quaternary structure
partition’ and the suboptimal ‘catalytic region partition’ can be used as a measure
of disconnectivity between the lobes of the active site situated in different subunits
(α/β barrel of one L subunit and N-terminal domain of its partnering L subunit).
Figure 6.9b shows that the disconnectivity is high for Stages I, II and IV, while the
inter-L subunit communication across the two lobes of the active site is stronger at
the transition state (Stage III) and in all the inhibited structures.

Furthermore, Rubisco undergoes a gradual transition between a fully open (Stage
I) and a completely closed conformation (Stage III) in the course of the catalytic re-
action. Closure of Rubisco’s active site involves a rotation of the N-terminal domain
towards the α/β barrel of the partnering L subunit, resulting in the formation of
additional contacts between the two neighbouring L subunits which share the active
sites (Taylor and Andersson, 1996). In Figure 6.9c & d we show that the active site
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disconnectivity obtained with our method is closely related to two measures of clo-
sure calculated directly from the PDB structures, i.e. the solvent accessible area and
the inter-phosphate P1-P2 distance previously suggested to regulate closure (Duff
et al., 2000).

Hence our results indicate that the additional interactions resulting from the
rotation of the N-terminal domain towards the α/β barrel of the neighbouring L
subunit during the ’open’ to ’closed’ conformational change induce increased com-
munication across the active site spanning the subunits.

6.3.3 Ultimate scales: the role of the small subunits in enhancing con-
nectivity across L2 dimers

At even larger Markov times, our method uncovers graph communities at the highest
level of the quaternary structure reflecting communication across L2 dimers via the
S subunits.

Were Rubisco to behave as four independent pairs of active sites, we would expect
the optimal partition at long Markov times to have four well defined communities,
one for each L2 dimer enclosing a pair of active sites grouped with their corresponding
S subunits (i.e. the S subunit with which each L subunit has the highest interaction
energy). This partition corresponds to the L2S2 ‘tetrameric partition’ in Figure 6.11a
and is indeed the optimal partition for Stages I and II. However, the optimal partition
at Stages III (closed) and IV (open), as well as in all inhibited structures (closed),
is a ’promiscuous partition’, in which each L2 dimer swaps one of its S subunits
with that of a neighbouring dimer—its two symmetric realisations are shown in
Figure 6.11a.

The prevalence of the ‘promiscuous partition’ can be traced back to variations
in the number and energy of hydrogen bonds across the three types of interfaces
between the large and small subunits (van Lun et al., 2011) throughout the catalytic
reaction (see Figure 6.10). In the case of the tetrameric partition, the grouping
between large and small subunits takes place across the highest energy L-S interface
(LS1). The communities in the promiscuous partitions, on the other hand, involve
all three L-S interfaces, both the high energy LS1 and the lower energy interfaces LS2
and LS3 which link the L2 dimer to the S subunit ‘belonging’ to the neighbouring
dimer. We find that the appearance of the promiscuous partition at Stages III and
IV (and in all inhibited structures) is linked to an increased symmetry in the strength
of the interaction energies of the LS1 vs. LS2/LS3 interfaces. While the total H-
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bonding energy across the LS1 interface clearly dominates that across LS2 and LS3
interfaces during Stages I and II, the interaction becomes almost balanced in Stages
III and IV. The emergence of this symmetry effectively eliminates the preference
of a S subunit for a particular L2 dimer and leads to the ‘delocalisation’ of the S
subunit in the promiscuous partition with the result of increased connectivity in the
overall structure. Interestingly, this symmetry persists when the structure ‘opens’
again in Stage IV, but is associated with a decrease in the total magnitude of the
L-S interaction energy.

The difference in Markov stability between the ‘tetrameric’ and ‘promiscuous’
partitions can be used as an indicator of the inter-L2 dimer connectivity via the
S subunits. Indeed, because the ’promiscuous partition’ has two symmetric, reso-
nant realisations characterised by the ‘flipping’ of S subunits between adjacent L2

dimers, it effectively creates a channel of communication between dimers through
the ‘delocalisation’ of the shared S subunits. Our results, which we show on Fig-
ure 6.11b, thus suggest that Stages III and IV, as well as all inhibited structures are
characterised by an increased communication between the catalytically competent
L2 dimers across the whole hexadecamer.

The efficiency of this inter-dimer communication channel mediated by the S
subunits can also be estimated from the probability of finding each type of partition
in the ensemble of solutions given by the Louvain optimisation, similarly to the
heatmaps from Figure 6.8. The sharing of the small subunits between L2 dimer
should indeed manifest itself by a more diverse Louvain ensemble of partitions which
would reflect that small subunits are being grouped indifferently with both L2 dimers
by the partitioning algorithm. This can be estimated using an information-theoretic
measure, similar to a previously proposed estimator for the residue communication
ability (Chennubhotla and Bahar, 2006), as

Si =
∑
j∈L2

pij log(pij), (6.2)

where the sum extends over the L2 dimers and pij is the ratio of partitions in which
the S subunit i is grouped with the L2 dimer j in an ensemble of 1000 Louvain op-
timisations of 4-community partitions between Markov times 9× 107 and 1.5× 108.
Using this additional and independent measure provided by our method, we fur-
ther confirm on Figure 6.11c the increased inter-L2 dimer communication efficiency
present in Stages III and IV (and in all inhibited structures) mediated via the shared
S subunits.
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interaction across the different L-S interfaces computed as the sum of hydrogen bonds
(using the Mayo potential (Dahiyat et al., 1997)) and hydrophobic interactions (using a
hydrophobic potential of mean force (Lin et al., 2007)) for the different stages of the re-
action. In Stages I and II, the total interaction energy across the LS1 interface is much
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their two adjacent L subunit dimers. This balancing of the energy across the different
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the S subunits (Figure 6.11) and the ‘resonant’ structure with enhanced global connectiv-
ity. Note that the ‘closed’ structure (Stage III) has stronger L-S interactions overall. c.
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Hence, changes in the hydrogen bond energies between L and S subunits are
responsible for the emergence of an increased global connectivity in the structure
at the last two stages of the reaction and upon inhibition through the creation of a
communication channel spanning across the quaternary structure via the sharing of
small subunits.

6.4 Analysis of large multimers - Application to AT-
Case & hemoglobin

In this section, we investigate the generality of some of the characteristics of the
structural organisation identified in Rubisco and whether they can be transposed to
other multimeric structures, especially with observed and well documented cooper-
ative effects. To this end, we conduct a short analysis of two multimeric structures:
ATCase, a textbook example of allosteric multimeric enzyme whose catalytic and
regulatory mechanisms have been studied extensively, and hemoglobin, a small glob-
ular heterotetrameric transport protein and a classic example of cooperativity. In
particular, the activity of ATCase is autoregulated by a clever molecular feedback
enabled by allostery and homotropic cooperativity.

6.4.1 ATCase

Using a representative dataset of six structures sampling ATCase in different states
of allosteric regulation and with different ligands bound, we identify general prop-
erties of ATCase’s structural organisation and link changes in the intersubunit as-
sociation patterns to the cooperative mechanisms induced by allosteric effectors.

Structure and function of ATCase

Aspartate transcarbamoylase (ATCase) is the enzyme that realises the first step
of the biosynthesis pathway of pyrimidines, one of the two types of nucleic acid
bases which includes cytosine, thymine and uracile. ATCase has been extensively
studied and has become a classic model of allosteric regulation (see recent reviews
by Kantrowitz (2012); Lipscomb and Kantrowitz (2012)).

ATCase is especially known for its ability to regulate its own metabolic pathway
by altering its rate of catalysis through both homotropic cooperativity and allostery.
Cooperativity is the phenomenon by which the affinity of some binding sites of a
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protein is modified upon binding events in other binding sites of the same protein. It
is said to be homotropic if the molecule causing the cooperative effect is also the one
being affected by it. In ATCase, homotropic cooperativity is initiated by a major
conformational change from a T (tense) state to an R (relaxed) state following the
occupation of one active site or so by the substrate (Lipscomb and Kantrowitz, 2012;
Macol et al., 2001). The R state favours the binding of additional substrates to the
unoccupied binding sites and thus increases enzymatic activity.

ATCase activity is also allosterically controlled by the end products of the purine
and pyrimidine pathway. ATCase is inhibited by the binding to the regulatory
subunits of cytidine triphosphate (CTP) and uridine-triphosphate (UTP), two end
products of the larger pyrimidine pathway it is part of (Kantrowitz, 2012; Cockrell
et al., 2013; Cockrell and Kantrowitz, 2012). Similarly, the binding to the regulatory
subunit of adenosine triphosphate (ATP), an end product of the purine pathway,
stimulates its activity. The binding of these effectors induces a reorientation of
key residues within the active sites of the catalytic subunits, and shifts the T/R
equilibrium towards respectively the T and R states (Stevens and Lipscomb, 1992;
Stevens et al., 1990). These two allosteric effects thus create a feedback control
mechanism which allows ATCase to regulate its own metabolic pathway and helps
balancing the total amount of purine and pyrimidine nucleotides in the cell.

ATCase catalyses the reaction between apsartate (Asp) and carbamoyl phos-
phate (CP) to form carbamoyl-aspartate (CA) and inorganic phosphate (Pi). Its
structure consists of two trimers of catalytic subunits and three dimers of regulatory
subunits (see Figure 6.12). The catalytic subunits comprise two domains associated
with the catalytic binding sites for Asp and CP. The regulatory subunit also con-
tains two domains which comprise the allosteric binding sites for the zinc cofactor
and the allosteric effector (ATP, CTP or UTP) in the regulatory subunit.

The binding events are ordered, with CP binding before Asp and CA being
released before inorganic phosphate (Ke et al., 1988). The binding of CP induces
tertiary conformational changes essentially in the 50’s, 80’s and 240’s loops which
create a structurally and electrostatically favourable binding site for Asp (Wang
et al., 2005). Upon Asp binding, ATCase transitions from a relaxed T state to an
excited R state through a major conformational change taking place both locally
at the level of the tertiary structure, and globally in the quaternary structure. In
particular, this transition involves rearrangements of the 80’s and 240’s loops which
brings the two substrates together and lowers the activation energy of the reaction,
and a large quaternary conformational change characterised by an 11 Å elongation
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Figure 6.12: ATCase is formed of six catalytic subunits arranged in two trimers
linked together by three dimers of regulatory subunits. When the substrate binds
one or more of its catalytic sites, ATCase transitions from a T state to an R state.
A large conformational change is associated with this transition which includes a
12˚rotation of one catalytic trimer relative to the other, a 15˚rotation of all regu-
latory dimers, and an 11 Å increase of the distance between the catalytic trimers.

along the 3-fold axis, a 12˚rotation of one catalytic trimer relative to the other
triplex, and a 15˚rotation of each regulatory dimer around their 2-fold axis (see
Figure 6.12) (Kantrowitz, 2012).

Structural data

We selected a representative subset of six structures of Escherichia coli ATCase
which capture the conformation of the enzyme at different stages of the reaction
and in several states of activation and inhibition by allosteric effectors. In partic-
ular, our dataset comprises the unliganded ATCase as well as ATCase bound with
a bisubstrate analog, the products (Pi and CA) and each of the allosteric effectors
(CTP, ATP and the combination of UTP and CTP in the presence of Mg2+). All
structures are bound with the Zn effector in the regulatory subunits. Two of the
structures use the bisubstrate analog N-phosphonacetyl-L-aspartate (PALA) which,
although effectively inhibiting ATCase by blocking the active sites to which it binds,
also mimics the combined structural effect of the two substrates aspartate and car-
bamyl phosphate (Huang and Lipscomb, 2004) and can thus be considered as the
transition state analog (Kantrowitz, 2012).

Intermediate scales and general behaviour

Our analysis of ATCase in Figure 6.13 confirms several key properties of the struc-
tural organisation of multimeric structures which we identified in Rubisco.
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4, 5 and 6-community partitions, CTP-bound structures distinguish themselves by
having strictly hierarchical partitions, while other structures show regulatory sub-
units being alternatively grouped with another regulatory and a catalytic subunit
as Markov time evolves.
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PDB Ligand State Reference

6AT1 Zn T – unliganded (Stevens et al., 1990)
4AT1 Zn/ATP T – activated (Stevens et al., 1990)
1ZA1 Zn/CTP T – inhibited (Wang et al., 2005)
1R0C Zn/Pi/CA T – product bound (Huang and Lipscomb, 2004)

1D09 Zn/PAL R – transition state (Jin et al., 1999)analog bound

4KH1
Zn/Mg/CTP/ R – inhibited and

(Cockrell et al., 2013)UTP/PAL/Pi transition state
analog bound

Table 6.1: PDB structures of ATCase analysed.

Firstly, similarly to Rubisco and in contrast with the analyses of AdK and MTIP
in the preceding two chapters, a larger number of robust levels of organisation are
identified in ATCase as indicated by multiple plateaus together with a low variation
of information. They reflect the complexity of the functional mechanisms in ATCase
as compared to proteins with less elaborate dynamics (see the analysis of hemoglobin
in the next section).

Secondly, residues, secondary structure and functional domains are again success-
fully recovered. In all structures, robust communities obtained within the different
subunits perfectly match the asp and CP domains in the catalytic subunits (18 com-
munities at Markov time 2 × 106), as well as the Zn and allosteric domains in the
regulatory subunits (30 communities at Markov time 2× 106).

Thirdly, the community structures are almost undifferentiated between the T and
R states despite the large difference in their conformations and the reinforcement and
breaking of several key interfaces between subunits (Stevens and Lipscomb, 1992).
This result aligns with our previous observations in AdK and supports the model
of enzyme dynamics proposed by Henzler-Wildman et al. (2007b). The absence of
modifications in the global structural organisation of the protein upon binding of
substrates or allosteric effectors suggests that the intrinsic organisation of the en-
zyme at closure is already encoded in the open form. The R and T states appear
to differ only in the 18-community partition which is marked by a slightly smaller
plateau in the R state (structures 1D09 and 4KH1). This partition corresponds to
the detection of the two domains of the catalytic subunits (12 communities), and
the regulatory subunits (6 communities). The smaller robustness of this partition
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thus indicates a smaller disconnectivity between the binding domains of the two
substrates in the catalytic subunits, which could reflect a slightly enhanced com-
munication between the pairs of catalytic subunits, in parallel with the stronger
association we observed between the two lobes of Rubisco active site in the closed
conformation.

Large scale organisation and impact on cooperativity

Beyond these general properties of proteins and multimeric structures, our analysis
also unveils possible links between the structural organisation of ATCase and the
mechanisms of allosteric and homotropic cooperativity. At Markov time 6×106, the
partition into 12 communities successfully identifies the quaternary structure of AT-
Case, each community englobing a single subunit. At longer Markov times, favoured
subunit-subunit associations are revealed in the subsequent coarser partitions which
signal particular patterns of communication across the whole multimer.

The first intersubunit partition to appear (9 communities) groups together the
pairs of regulatory subunits into the three dimers. The identification of the regula-
tory dimers before the catalytic trimers and the dimers of catalytic and regulatory
subunits is indicative of a particularly strong communication between them. This
partition is also the first to group subunits from the two sides of the multimer, and
thereby underlines the key role played by the regulatory subunits in transmitting
the necessary signals for homotropic cooperativiy between the two catalytic trimers
(Stevens and Lipscomb, 1992; Newell et al., 1989). This partition is identical in all
structure except for ATCase bound with the transition state analog PALA. In this
structure, the three regulatory subunits from one side only are dissociated: their
Zn domain joins the neighbouring catalytic subunit while the allosteric domain is
grouped into one community with the other regulatory subunit. Although the rea-
sons for this disconnectivity are unclear, previous molecular dynamics simulations
conducted on the same state of PALA-bound ATCase (Tanner et al., 1993) found
the allosteric domains to be mechanically uncoupled from the zinc domains in this
state, which agrees with our results.

The next partition into six communities groups together the catalytic subunits
with their associated regulatory subunit. Although this partition seems natural,
it is surprisingly short-lived and non robust, as indicated by the variation of in-
formation and the small plateau, and is even absent in the structures of ATCase
inhibited by CTP. Regulatory subunits are thus weakly linked to their catalytic
subunit comparatively to their paired regulatory subunit.



120 6.4 Analysis of large multimers - Application to ATCase & hemoglobin

The partitions into four and five communities highlight changes in the intersub-
unit communication patterns upon allosteric inhibition. Except for the CTP-bound
ATCase, all structures follow the subunit grouping pattern in the upper panel of
Figure 6.13b. Following the partition into six communities, subunits are associ-
ated following an asymetric four community partition containing three communities
formed by the regulatory dimers with one catalytic subunit from one side of the
structure, and one community containing the catalytic trimer from the other side of
the structure. Unlike Rubisco, the symmetric equivalent of this partition has a much
lower Markov stability and never appears as a suboptimal solution in the Louvain
ensemble of solutions.

This result, together with the six community partition found in the 9 commu-
nity partition of PALA-bound ATCase, actually reflects the inherent asymmetry
of ATCase. Previous crystallographic studies identified structural asymmetries in
the regulatory subunits in PALA-bound ATCase (Jin et al., 1999) and CTP-bound
structures (Kim et al., 1987; Lipscomb and Kantrowitz, 2012; Kosman et al., 1993),
which are thought to be preexisting in other conformations as well (Kantrowitz,
2012), as well as differences in the nucleotide binding constants of the two regula-
tory chains (Winlund and J. Chamberlin, 1970; Mendes et al., 2010).

Our results suggest that these assymmetries impact ATCase differently in differ-
ent states. Indeed, we found that structures inhibited by CTP exhibited a different
pattern of association between subunits at these scales, as shown in the lower panel
of Figure 6.13b. Unlike the other structures, the partitions are here perfectly sym-
metric, and transition directly from the identification of the regulatory dimers to
the partitioning into the three regulatory dimers and the two catalytic trimers.

An important difference between the two sequences shown in Figure 6.13 is the
sharing of the regulatory subunits through scales. In the upper panel, the regulatory
subunits are alternatively grouped with the catalytic subunit and into dimers while
in the CTP-bound structures, the groupings follow a strict hierarchy. This once
again relates to the results obtained for Rubisco at the largest scales. Although
we do not observe a sharing of subunits at the same level of organisation within
the Louvain ensemble, the sharing takes place here at different scales. Rather than
both types of partitions being both equally relevant at a same Markov time, they
are here alternatively optimal at different scales. Similarly to Rubisco, this sharing
could create a communication channel between the two catalytic trimers which could
enable the homotropic cooperativity between them.
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Unlike the other structures, CTP-bound ATCase appears to have no sharing of
the regulatory subunits in our partitions. This suggests a decreased level of commu-
nication between the catalytic trimers in the presence of CTP which may negatively
impact homotropic cooperativity. Interestingly, this reduced communication level
could explain the decrease in cooperativity induced by CTP observed by Newell
et al. (1989) in binding assays of CTP-bound ATCase with PALA.

In conclusion, our results suggest that the small local asymmetries in the struc-
tures of ATCase propagate upwards at quaternary level where they have a direct
global impact on the communication between subunits which could influence coop-
erative and allosteric mechanisms.

6.4.2 Unstructured biomolecules - Application to hemoglobin

The rich multiscale hierarchical organisation of Rubisco and ATCase identified us-
ing Markov stability is in sharp contrast to that rendered by other proteins with
simpler structure and dynamics. In this section, we oppose the intricate and refined
structural organisation of Rubisco to hemoglobin, a well understood globular protein
with an unsophisticated tertiary structure and simple dynamical behaviour.

Structure and function of hemoglobin

An essential protein for almost all vertebrates, hemoglobin is a small globular mul-
timer which transports oxygen and carbon dioxyde between the lungs and organs in
the bloodstream. As the protein where cooperativity was first discovered, it is one
of the most extensively studied protein and the first to have its three-dimensional
structure resolved.

In human adults, its tetrameric structure contains two types of subunits, α and β,
arranged in two identical heterodimers. α and β subunits are very similar in sequence
and structure and consist of a single domain all-α-helical globin fold comprising
respectively seven and eight α-helices. Each subunit encloses one heme group, an
aromatic chemical compound containing an iron ion which binds oxygen.

Hemoglogin is the paradigm for homotropic cooperativity in proteins and has
been the subject of a long history of models (reviewed by Eaton et al. (1999, 2007)).
Perutz (1970) was the first to understand the structural basis for cooperativity.
Similarly to ATCase, hemoglobin exits in two states: the deoxy T state (no oxy-
gen), and the oxy R state (oxygen-bound) characterised by a higher affinity for
oxygen. Oxygen binding shifts the equilibrium towards the R state, and induces
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local rearrangements in the individual subunits. These local changes in the tertiarty
structure propagate to the other subunits by altering the α1/β2 interface, which
triggers a global conformational change in the quaternary structure that can be ap-
proximated by a 15˚rigid body rotation and 1Å translation along the rotation axis
of one α/β dimer with respect to the other.

In the context of this work, hemoglobin serves as an ideal counterexample to
the rich multiscale structural organisation we identified in ATCase and Rubisco.
Hemoglobin is a single domain globular protein without any clear structural organ-
isation beyond the secondary structure, and the T-R conformational change mostly
takes place in the quaternary structure with only minor tertiary rearrangements.
The structural organisation of hemoglobin outside of the secondary and quaternary
structures should thus be minimal.

Markov stability analysis of hemoglobin

Figure 6.14 shows a comparison of the results for activated unliganded spinach Ru-
bisco and human T state hemoglobin (PDB 1GZX). At small scales (from Markov
time 1 to 106), both proteins show the same organisation since Markov stability re-
covers the basic chemistry and biochemistry, including the chemical groups, residues
and secondary structure, which is shared by all proteins. At intermediate scales and
beyond, however, both proteins show strikingly different organisations. In the case
of hemoglobin, only the four subunits that compose the quaternary structure are
identified as a relevant community structure—with the exception of a partition into
eight communities showing a small plateau but associated with a much higher vari-
ation of information. Rubisco, on the other hand, shows the complex hierarchy
described in the previous section with nine plateaus in the number of communities,
eight of which are associated with a low variation of information and are linked to
key aspects of Rubisco’s functional mechanisms.

We have also tested the relevance of the structural organisation at large scales for
Rubisco and hemoglobin through another significance test. This is achieved through
a comparison against an ensemble of surrogate random graphs using the weak in-
teractions model described in Chapter 4. The randomisation is here aimed at the
secondary and tertiary structure and perturbs all the weak interactions (hydrogen
bonds, hydrophobic tethers and salt bridges) present in the original structure be-
tween atoms separated by more than four residues along the sequence. In order to
preserve the quaternary structure, intra-unit and inter-unit weak interactions are
randomised independently. This scheme thus effectively randomises the structural
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Figure 6.14: Comparison between the all-scale Markov stability analysis of activated
unliganded spinach Rubisco (1AUS, in a) and T state human hemoglobin (1GZX, in
b). The chemical and biochemical constituents identified at small Markov times (up to
106) are similar in both cases and lead to a very similar Markov time evolution up to
those scales. However, the two proteins show distinct outcomes at larger Markov times.
The limited number of local minima in VI (green) and long plateaus in the number of
communities (blue) suggests that hemoglobin has a simpler multiscale organisation, with
only individual subunits identified as a meaningful level of organisation (long-lived 4-
community partition).
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organisation of the protein beyond helical turns within each subunit, and also blurs
the details of the inter-subunit interactions while keeping the total interaction en-
ergy constant between all pairs of subunits. Figure 6.15 shows that the hierarchical
organisation of Rubisco at large scales exhibits a marked difference against the sur-
rogate models, while hemoglobin remains very close to the ensemble of randomised
models. The structure of hemoglobin is thus well approximated by four chains of
randomly interacting amino acids which indicates a very low degree of organisation
at the tertiary level.
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Figure 6.15: Variation of information (VI) of the partitions found for T state human
hemoglobin (1GZX, in a) and activated unliganded spinach Rubisco (1AUS, in b). The
VI of the protein structures (in blue) is compared to the VI of an ensemble of random graph
surrogates (in green) in which the higher scale structural organisation has been blurred by
relocating at random the intra-subunit weak interactions beyond the secondary structure
(see text). Green lines and shaded area correspond to the mean and standard deviation of
an ensemble of 100 surrogate random graphs. Rubisco exhibits a clear difference between
the protein and its surrogates, indicative of a much richer and better defined structural
organisation as compared to a globular protein such as hemoglobin, in which the ran-
domisation beyond the secondary structure is indistinguishable from the original protein.

6.5 Discussion
The low computational cost of Markov stability not only permits the analysis of very
large structures such as ATCase and Rubisco, but also the identification of struc-
tural features linked to dynamical events over the longest time and spatial scales,
including collective behaviours involving multiple subunits and spanning entire mul-
timers. In this chapter, we have used Markov stability to uncover bottom-up, the
structural anatomy of Rubisco at all scales starting from a fully atomic descrip-
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tion, and avoiding re-parameterisation or a priori coarse-graining often needed in
such large biomolecules. As an important and well-researched enzyme, Rubisco pro-
vides a suitable stage to demonstrate the power of the method and to enlighten
our knowledge of the workings of complex multimeric structures. The generality of
our approach and conclusions was also shown through a comparison with ATCase,
a classic example of a multimeric enzyme with cooperative and allosteric mecha-
nisms and of similar complexity to Rubisco, and hemoglobin, a globular multimeric
transport protein with a very simple structural organisation.

Our analysis of the structural data of spinach Rubisco throughout the catalytic
reaction (Stage I: “activated unliganded analog”; Stage II: “activated substrate
bound”; Stage III: “transition state analog”; and Stage IV: “activated product
bound”) as well as with three different inhibitors bound sensitively unveils changes
throughout the reaction involving not only substrate-induced intra-unit domain
movements but also communication patterns over the whole structure at the level
of the quaternary structure. At intermediate scales, we find that the α/β barrel is
organised in two possible hierarchies (Types I and II in Figure 6.8) and that both
hierarchies are encoded as fingerprints in the structure. However, the two hierar-
chies appear with different likelihood throughout the steps of the catalytic reaction,
suggesting a switch from one to the other in the course of the reaction. In par-
ticular, both the ‘open’ activated/unbound conformation (Stage I) and the ‘closed’
transition state conformation (Stage III) have the same hierarchical organisation
(Type I) but with increased connectivity between key structural areas (loop 6 and
anchoring points) in Stage III. The intermediate steps (Stages II and IV) involve
rearrangements that lead to a more fluid hierarchical organisation (Type II) with
enhanced integrity in the vicinity of each structural element linked to the conforma-
tional change (phosphate anchoring subsites P1/P2 and loop 6) (Duff et al., 2000).
We find that the rearrangements of the subunits also have effects beyond the sin-
gle unit. We find that the change in the interactions of the α/β barrel with the
N-terminal domain of the neighbouring subunit (Duff et al., 2000) associated with
closure of the structure leads to increased inter-unit connectivity between the two
lobes of the active site within the L2 dimer (Figure 6.9) in the “closed” conformation.

Our analysis also reveals a role for the S subunits in enhancing the communi-
cation across all the L2 dimers in the structure. Despite extensive research into
Rubisco, the function of the S subunits remains enigmatic. It is well known that the
L2 dimer is the minimal catalytic processing unit and the S subunit is not essential
for catalysis (Tabita et al., 2008; Gutteridge, 1991; Hartman and Harpel, 1994).
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Other multimeric enzymes of comparable complexity, such as ATCase, have been
shown to make use of non-catalytic subunits, which are often smaller, as regulatory
domains to control their efficiency. Regulatory inputs are most often triggered by an
allosteric effector binding to the regulatory subunit, causing binding sites to influ-
ence each other and resulting in the observed cooperativity. Indeed, the S subunits
have been hypothetically associated with cooperativity in Rubisco (Knight et al.,
1990; Yokota et al., 1991; Taylor and Andersson, 1996). Remarkably, our method
finds that Stages III and IV, as well as inhibited structures, are characterised by a
change in the relative strength of hydrogen bonds between the L-S subunits leading
to increased symmetry of the interactions. These subtle changes lead to the “res-
onant” communities in which the S subunits are shared across the L2 dimers with
increased connectivity across all the L2 dimers at longer time scales mediated via the
S subunits (Figure 6.11). This increased connectivity could be indicative of a direct
involvement of the S subunits in the completion of the reaction at time scales that
are much slower than the loop 6 rearrangements associated with the ‘closing’ of the
structure. We observed a similar effect in ATCase, whose cooperative mechanisms
are very well known. In our analysis, regulatory subunits were indeed alternatively
associated with catalytic subunits from different trimers as the Markov time evolved.
This effect was notably absent in CTP-bound structures which are known to have
a reduced cooperativity between the trimers.

Intriguingly, the multiscale organisation of Rubisco is remarkably well-defined
and robust; much more so than most proteins, as showed our analysis of hemoglobin,
which displays a less pronounced hierarchical organisation. This suggests that the
complexity of the functional mechanisms of a protein are reflected in its multiscale
structural organisation. Conversely, ATCase, whose multistep reaction and diverse
cooperative mechanisms are well known, displayed a complex hierarchy of scales
similar to Rubisco.

Long range effects such as allostery and cooperativity, whereby the binding of
a molecule can propagate and impact events at very distant catalytic sites, remain
a central but poorly understood phenomenon in biochemistry. In multimeric struc-
tures, cooperative and allosteric signals often spread from one subunit to another,
but identifying the channels of communication remains a difficult problem. Although
our method is not aimed at revealing the path taken by allosteric signals through-
out the structure, our results identified preferred intersubunit associations which
shed light on the way subunits interact and possibly communicate in multimeric
structures.



Chapter 7

DNA quadruplexes

So far, only proteins have been considered. Due to its general applicability,
this methodology however extends to other biomolecules with a distinct bio-
logical role and dynamical behaviour. Nucleic acid structures, in contrast to

proteins, are governed by a different mix of physico-chemical interactions, with elec-
trostatic and π-stacking interactions dominating along with hydrogen bonds. These,
in turn, yield unique dynamical as well as structural properties which have crucial
implications for their function.

Whereas DNA has long been seen as little more than an information storage
medium for the cell, its structural and mechanical properties have now been found
to be essential to many physiological processes. DNA indeed shows a certain de-
gree of conformational inhomogeneity that departs from the double helix model of
Watson and Crick. Crucially, the structural details of its energetically favourable
conformations determine key aspects of its interactions with proteins such as tran-
scription factors and histones which govern some of the most essential biological
processes including DNA packaging, repair and replication, as well as gene expres-
sion. Beyond the biological significance of its in vivo structure and dynamics, DNA
is also becoming a prominent material in nanotechnology, and is now increasingly
used as a building block for the design of new forms of nanostructures.

Beyond the classical Watson and Crick double helix, DNA thus adopts a wide
range of other topologies in vivo. In this chapter, we use Markov stability to anal-
yse G-quadruplexes, characterised by the association of four strands of DNA driven
by the formation of planar quartets of guanine bases. DNA quadruplexes pos-
sess a highly polymorphic nature, and interconvert between multiple conformations
dynamically. The challenge is here to generalise our approach to other types of

127
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biomolecules and establish whether signatures of a structural organisation can also
be identified in biomolecules with very different structural properties and dynamics
such as DNA, and linked to biologically relevant mechanisms.

7.1 Structure and function of DNA quadruplexes
For more than 50 years, guanine rich DNA sequences have been known to form
planar tetrads of guanine bases linked together by Hoogsten base pairing (Gellert
et al., 1962). Later, the discovery that they arrange DNA into quadruple stranded
structures and could form in biologically important region of the genome such as
promoter1, and telomeric regions2 has sparked a new surge of interest in their bio-
physical properties (Moyzis et al., 1988; Sen and Gilbert, 1988; Williamson et al.,
1989). G-quadruplexes are now thought to be involved in a variety of biological
processes (Maizels, 2006; Bochman et al., 2012). Cell death and cancer in particular
have been found to be related to their formation at the telomeric ends of the chro-
mosomes and quadruplexes are now increasingly considered as preferential targets
for anti-cancer drugs (Stewart and Weinberg, 2006; Neidle, 2010). In addition to
their biological importance, their mechanical, self-assembly and electron transport
properties make them ideal building blocks for DNA nanotechnology (Alberti et al.,
2006; Tran et al., 2013)

G-quadruplexes can be broadly defined as four-stranded nucleic acid structures
held together by a core of at least two stacked tetrads of guanine bases that are
stabilised by monovalent ions (Neidle and Balasubramanian, 2006; Neidle, 2009).
They can result from the folding and association of a single, two or four separate
strands of DNA. When formed by a single or two individual DNA molecules, the
different strands are linked by loops which vary in length and conformations (see
Figure 7.1). Depending on the sequence, cation type and concentration, bi- and uni-
molecular quadruplexes can consequently display a wide range of different topologies

1Region of the DNA where a gene transcription is initiated.
2Telomeres are repeated sequence motifs at the end of the chromosomes which protect them

from erosion or fusion events with other chromosomes. At every cell division, when the DNA
is duplicated, the telomeric ends get shortened. They are however maintained by the enzyme
telomerase which adds multiple copies of the telomeric sequence motif. With every cell division
event, the total length of the telomeric region nonetheless decreases and thereby limits the number
of cell divisions. In cancer cells, several mechanisms are involved which maintain the length of
the telomeric ends such as the overexpression of the telomerase enzyme. The stabilisation of the
quadruplexes at the telomeric ends has been found to inhibit telomerase activity, and quadruplexes
are consequently seen as possible targets for antitumor agents (De Cian et al., 2008; Shay and
Wright, 2011).
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distinguished by the individual orientation of each strand, the configuration of their
connecting loops and the orientation of the individual guanine bases (Phan et al.,
2006; Burge et al., 2006). In addition, quadruplexes formed by the human telom-
eric sequence 5’-AGGG(TTAGGG)N -3’ (and variants) have been found to be highly
polymorphic, with at least six different topologies observed experimentally to date
(Lee et al., 2005; Phan, 2010) between which telomeric sequences are thought to
interconvert dynamically in solution (Xue et al., 2011; Dai et al., 2008). Finally,
quadruplex folding is kinetically complex and is thought to proceed through a mul-
tistep process with several stable intermediates (Lane et al., 2008).

Although the equilibrium conformation has been well characterised for a large
number of G-quadruplexes by X-ray and NMR structural data, their dynamical
behaviour is still largely unknown. Yet their ability to easily change conformation is
likely to be linked to their biological function and understanding their dynamics is
therefore critical for the design of more effective drugs (Xue et al., 2011; Zhang and
Balasubramanian, 2012). Many biological processes are indeed regulated by kinetic
control and operate on transient rather than fully equilibrated conformations. Drugs
designed solely on the fully folded structure may thus fail to target these biologically
relevant intermediates.

A number of recent studies points towards quadruplex folding/unfolding proceed-
ing via a multistep pathway with kinetically significant intermediates, which could
include hairpins, triplexes or different transient quadruplex folds (Chaires, 2010;
Lane et al., 2008; Zhang et al., 2010; Stadlbauer et al., 2013; Gray and Chaires,
2008; Mashimo et al., 2010; Bončina et al., 2012; Li et al., 2013; Gray et al., 2014).
However, the structural details of the relevant intermediates along the pathways
through which quadruplexes fold, unfold and interconvert between topologies are
not yet clearly understood. Indeed, the presence of multiple conformations in solu-
tion and slow folding kinetics make experimental analysis difficult, while traditional
computer simulation techniques remain too limited in the time scales they can access
to fully resolve folding and unfolding events and explore quadruplexes polymorphism
in depth.

In this work, we aim at bridging this gap by relating the structure of quadru-
plexes at equilibrium to their unfolding process. To this end, we make use of Markov
stability to decompose the global structure of quadruplexes into a hierarchy of clus-
ters of tightly interconnected atoms that are likely to display a collective behaviour
during the conformational transitions. Through the analysis of the all-scale struc-
tural organisation of an ensemble of nineteen different quadruplex structures, we
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Figure 7.1: a. Details of the dataset of nineteen PDB structures used in this work.
b. The ten different topologies included in the dataset. Three different types of
loops can be found in the structures: lateral (in blue), diagonal (in orange) and
double chain reversal (in green).
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hope to get a better understanding of their general dynamical properties, identify
the structural characteristics that enable their high polymorphism, and determine
likely pathways of conformational transitions between the different topologies.

7.2 Results
We here analyse and compare the multiscale structural organisation of nineteen
single, double and quadruple stranded DNA quadruplexes, nine of which are hu-
man telomeric DNA structures, and which encompass ten different topologies (Fig-
ure 7.1). We show that our methodology recovers the elementary chemical and
biochemical organisation of DNA, and identifies the bases involved in the guanine
tetrads core of the quadruplex. It also captures the importance of ions in maintain-
ing the physical stability of the quadruplexes, and provides indications on the origin
of quadruplexes polymorphism and their physical stability. Finally, we show that
signatures of the unfolding process are already encoded within (folded) structures:
the first bases to unfold show a more pronounced disconnectivity from the quadru-
plex G-tetrads core and we exemplify this property of our method in the case of the
human telomeric DNA interconversion between different quadruplex topologies.

7.2.1 Structural data

The dataset of G-quadruplex structures used in this study is summarised in Fig-
ure 7.1. When multiple structural models were included in the PDB file, as is often
the case for NMR data, each model has been analysed separately and the parti-
tions presented here are taken from the most representative example of the dataset.
When ions were missing from the PDB file3, they have been manually included in
the structure: Na+ ions are positioned in plane with the G-tetrads, while K+ ions
are placed in-between pairs of tetrads, in agreement with their position in X-ray
structures of quadruplexes (Neidle and Balasubramanian, 2006).

7.2.2 The all-scale structural organisation of DNA quadruplexes

In Figure 7.2a, we illustrate our approach with the all-scale structural analysis of
the propeller type human telomeric quadruplex (1KF1). As we have previously
observed in proteins, Markov stability identifies the elementary chemical and bio-
chemical building blocks at small Markov times. In DNA structures, the chemical

3Ions often cannot be resolved by NMR spectroscopy.
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Figure 7.2: a. Markov stability analysis of the d[A(G3T2A)3G3] unimolecular pro-
peller quadruplex (PDB 1KF1). The basic chemical (chemical groups and aromatic
rings) and biochemical building blocks (nucleobases and nucleotides) are identified
at small scales, followed by groupings of two and three nucleotides and a community
englobing the three G-tetrads. All are associated with a strong persistence over
Markov time (long plateaus in the number of communities) as well as an increased
robustness (sharp decrease in the variation of information). b. The two charts show
the Markov time evolution of the partitioning of the propeller quadruplex with and
without the inclusion of the stabilising potassium ions. The left y axis lists the dif-
ferent residues in order and the colours indicate the community membership of each
residue. The comparison between the two charts shows that the removal of the sta-
bilising ions significantly disrupts the structural organisation of the quadruplexes, in
particular at the level of the G-tetrads community whose Markov time persistence is
considerably decreased. In the other unimolecular structures analysed, the tetrads
community actually completely disappears in the absence of ions.
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groups, aromatic rings, nucleobases, backbone (formed by the deoxyribose and phos-
phate groups), and nucleotides are all identified as significant community structures
(presence of a plateau in the number of communities and drop in the variation of
information). As the Markov time grows, larger groups of two and three nucleotides
are identified, leading to the formation of a single community by the three G-tetrads.

These levels of organisation are common to all the DNA quadruplex structures
analysed here (see Figure 7.3 where the results for all unimolecular structures are
superimposed). As expected, the different structures are virtually indistinguishable
by our analysis up to the individual nucelotides since all share the same elementary
chemical and biochemical building blocks. Similarly, the identification of all the
G-tetrads as a single group, well separated from the loops, is common to all the
quadruplex structures analysed. Yet the path through which individual nucleotides
aggregate to form the G-tetrads and beyond differ amongst structures in terms of the
scale at which groupings appear, their robustness, and the order in which individual
nucleotides associate with each other.
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Figure 7.3: Markov stability analysis of all unimolecular DNA quadruplexes.
All quadruplexes remain undifferentiated in their structural organisation at early
Markov times as they are made up of the same chemical and biochemical building
blocks. From the intermediate scales onwards, they display a great variability, yet,
at larger scales, all quadruplexes show with high robustness a community formed by
the ensemble of G-tetrads.
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7.2.3 Role of the stabilising cations

Monovalent cations such as Na+ and K+ usually sit either in plane or in between the
tetrads and are coordinated by the carbonyl oxygens of the guanine bases. Their
presence is a key requirement for quadruplex formation and efficient energy trans-
fer (Dumas and Luedtke, 2010), and their type and concentration has a considerable
impact on the physical stability of the quadruplexes (Hud and Plavec, 2006). To
estimate their influence on the structural organisation of the quadruplexes, we re-
constructed the graph of each quadruplex after having removed the coordinating
cations from their original structure.

Figure 7.2b shows a comparison of the Markov stability analysis of the propeller
type human telomeric quadruplex (1KF1) with and without the presence of the cen-
tral cations, from the identifications of the nucleotides onwards. Although most of
the communities remain the same in both cases, the lifetime of the G-tetrads com-
munity is considerably reduced. A similar effect is observed for all the structures
analysed, the tetramolecular structures being the least sensitive and the unimolec-
ular quadruplexes the most sensitive to the removal of the cations. Except for the
propeller form, the absence of stabilising cations even resulted in the complete ex-
tinction of the tetrads community in all other unimolecular structures analysed. In
agreement with experimental observations, we thus find the presence of the cations
to have a crucial impact on the formation of a robust community by the core of
guanine tetrads which stabilises the quadruplex structure. In addition, we find the
influence of the cations to be limited to the structural organisation of the quadru-
plexes at the largest scales, i.e. from the identification of the tetrads community
onwards.

7.2.4 Bases involved in the G-tetrads

Although the majority of quadruplex structures involve the maximum number of
guanine bases in the formation of tetrads, structures exist where the number of
tetrads does not actually reflect the number of guanine bases present in the sequence.
This is notably the case for the unimolecular quadruplexes form 3, chair type and
(T2G4)4 (2KKA, 2KF8, 2KM3 and 186D, see Table 7.1). In Figure 7.4, we show that
Markov stability correctly identifies three tetrads in (T2G4)4, and only two tetrads in
human telomeric form 3. For each structure, only the bases actually involved in the
tetrads are included in the G-tetrads community by Markov stability, irrespective
of their type or the stacking interactions they form, and our methodology is thus
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Figure 7.4: Markov stability analysis of (T2G4)4 and two form 3 unimolecular
quadruplexes containing fewer tetrads than their sequence suggests. When only a
subset of the guanine bases are involved in the formation of tetrads, our methodology
successfully distinguishes the guanine bases which are indeed part of the quadruplex
tetrads core from those which only form part of a loop. Three tetrads are found for
(T2G4)4 and only two for human telomeric form 3.

also able to distinguish the bases actually participating in the formation of a tetrad
from those which are not.

7.2.5 Comparison of quadruplexes with different number of strands

DNA quadruplexes formed by one, two or four separate strands (see Figure 7.1)
largely differ in their physical properties such as thermal stability, kinetics, polymor-
phism, and sensitivity to the ion type and concentration. Tetramolecular structures,
for instance, often have higher melting temperatures than bimolecular quadruplexes,
which are themselves more stable than the unimolecular ones. Unimolecular quadru-
plexes, unlike quadruplexes formed by multiple strands, have been resolved in a wide
range of different topologies between which they are thought to interconvert dynam-
ically (Lee et al., 2005). Ion type and concentration also have a strong impact on
their topologies and stability. Conversely, bimolecular quadruplexes such as the
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Markov time

Figure 7.5: Schematic “unrolled” view of the multiscale partitioning pathway of most
uni- (a.), bi- (b.) and tetramolecular (c.) DNA quadruplexes analysed here. Loops
(curved lines) are mostly separated from the guanine bases involved in the tetrads
(straight lines) and only become integrated into global interstrand communities at
the largest scales, where the quadruplexes are usually partitioned along one of the
tetrads.

classic O. Nova d(G4T4G4) usually take a unique conformation and the ion type or
concentration only have a minor impact on loop mobility (Hud and Plavec, 2006).

On Figure 7.5, we show in a schematic way how the multiscale organisation of
the quadruplexes unfolds at the larger scales. The communities initially group bases
locally along the sequence, and then evolve towards global clusters that associate
bases from all strands, starting from the identification of the tetrads community,
and until the division of the quadruplex into two along one of the G-tetrads and
perpendicularly to the ion channel.

Although all quadruplexes share these broad characteristics, differences appear
at the transitions between these main levels of organisation (see Figure 7.6). Firstly,
bi- and tetramolecular quadruplexes exhibit persistent intermediary groupings tak-
ing place across pairs of strands, unlike unimolecular structures which only form
interstrand communities at larger scales when the tetrads community, which joins
bases from all four strands, is identified. Interestingly, the two strands that are
joined together in the communities of the bimolecular quadruplexes also always
belong to two different DNA molecules. Our identification of robust communities
containing pairs of strands in bi- and tetramolecular quadruplexes could be indica-
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tive of the existence of stable intermediates of DNA duplexes that could be stabilised
by base pairings between guanines along the association/dissociation pathway in bi-
and tetramolecular structures. Interestingly, recent NMR experiments (Ceru et al.,
2014) published while this work was being written identified a new folding interme-
diate in the O. Nova d(G4T4G4) quadruplex where all guanine bases are involved in
G-G base pairings as predicted by our communities. Tetramolecular quadruplexes
have also been found to assemble in a step-wise manner via the formation of stable
intermediate states which include DNA strand dimers and triplexes (Tran et al.,
2013).

Secondly, the distinction between loops and tetrads is less marked in tetramolec-
ular structures than for the other quadruplexes. In tetramolecular quadruplexes,
interstrand groupings are formed equally between both loop and tetrad residues, al-
though G-tetrads still associate faster than loops. Compared to other quadruplexes,
loops from different strands are thus clustered together earlier which suggests that
they might be interacting more strongly in tetramolecular structures. These in-
creased loop interactions could provide an extra contribution to the quadruplex
physical stability, in addition to that given by the tetrads, which could explain the
higher melting temperature which has been observed experimentally for tetramolec-
ular quadruplexes.

Thirdly, the highly polymorphic unimolecular structures display a wider vari-
ety of partitions. At the largest scales, while most divide into two along one of
the tetrads which results in mixed groups of loop and tetrad residues, double chain
reversal loops generally remain more disconnected and form a well separated com-
munity up until the latest partition (notice the isolation of the double chain reversal
loops in the propeller, form 1 and 2 unimolecular structures in Figure 7.6 as op-
posed to the basket-type). This behaviour is particularly marked in the propeller
quadruplex which, unlike all the other structures, partitions exclusively along the
sequence at the largest scales. This suggests that double chain reversal loops may be
more stabilised by the local interactions between neighbouring nucleotides (such as
pi-stacking and covalent bonds), than through global interactions between different
strands (governed by hydrogen bonding and cation coordination). In turn, rela-
tively weaker interstrand interactions relax the constraints imposed on the motions
of each individual strand. This could in turn favour the high polymorphism observed
in unimolecular quadruplexes. In the unfolding pathway of quadruplexes, our results
suggest that strands connected through double chain reversal loops should be the
most prone to dissociate from the quadruplex tetrads core.
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Finally, with the exception of the propeller quadruplex, the tetrads community
is always much more persistent over Markov times in bimolecular than in unimolec-
ular structures. For tetramolecular structures, the tetrads community always cor-
responds to the final bipartition obtained at the largest scales, and thus has an
infinitely long Markov lifetime. A higher persistence of this community is indicative
of a higher propensity of the quadruplex to exhibit a global interstrand collective be-
haviour relative to local intrastrand interactions along the sequence. This could once
again be a contributing factor to the physical stability as our results agree with the
melting temperatures being generally the highest for tetramolecular quadruplexes
and the lowest for unimolecular quadruplexes.

7.2.6 The community structure of the G quadruplexes predicts the fold-
ing/unfolding pathway

While early works focused on the equilibrium conformations, quadruplexes are now
increasingly being studied from a dynamical perspective. As detailed in the intro-
duction, some have indeed been found to exhibit a high polymorphism and to inter-
convert between different stable conformations in solution. It has now become clear
that any static structure must be viewed in the broader context of these dynamical
interconversions between multiple relevant conformational substates. Here, we use
our methodology to shed light on the relation between the quadruplex structures
and their dynamical behaviour. In particular, we relate their structural organisation
as identified by our methodology to their unfolding process, comparing our results
with the model developed by Ambrus and coworkers (Ambrus et al., 2006; Zhang
et al., 2010) from NMR data, and the no-salt molecular dynamics simulations from
Stadlbauer et al. (2013).

Due to the slow rates of interconversion between the conformational substates
and the computational limitations of molecular dynamics simulations, Stadlbauer
et al. (2013) chose to monitor the unfolding process of DNA quadruplexes under
no-salt conditions4 to make it observable under the time scale limitations of fully
atomic molecular dynamics. Specifically, by running simulations of uni-, bi- and
tetramolecular DNA quadruplexes starting from an experimental crystal or NMR
structure from which they removed the cations, they obtained mechanistic insights
into the unfolding process of quadruplexes. Similarly, we here study the impact of

4Since the coordinating cations are necessary to the formation and stability of the quadruplexes,
molecular dynamics simulations conducted in a solution devoid of ions result in a rapid unfolding
of the quadruplexes.
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Figure 7.7: Bases belonging to a same community tend to remain together during
the unfolding process. a. The three conformations correspond to snapshots of the
unfolding process of the propeller type quadruplex at three different time steps (ini-
tial structure, and after 7.3 and 11.6 ns) as observed in no-salt molecular dynamics
simulations conducted by Stadlbauer et al. (2013). The colouring of bases and loops
is done according to our results (shown in b.) obtained using Markov stability on
the graphs of the fully folded quadruplex NMR structure, with (simulation time
0) and without (simulation times 7.3 and 11.6 ns) the inclusion of the stabilising
central cations. The colouring at 7.3 ns and 11.6 ns correspond respectively to the
partitions identified in the range of Markov time (d) and (e) (see Figure 7.2) in
the protein graph without the inclusion of the central cations. b. The partitions
obtained using Markov stability shown here on the structures.
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removing the cations on the structural organisation of each quadruplex, and relate
our results to the unfolding pathway observed by Stadlbauer et al. (2013).

Our analysis of the multiscale structural organisation of the quadruplexes after
removal of the stabilising cations shows that bases grouped together in the com-
munities found by Markov stability tend to remain together in the early stages
of the unfolding process. Figure 7.7a shows the first three relevant intermediate
conformational states identified by Stadlbauer et al. under the no-salt molecular
dynamics simulation of the propeller type human telomeric quadruplex (1KF1, see
Figure 7.1). The unfolding proceeds via the slippage of the guanine base 2, followed
by a further displacement resulting in the two strands from the 5’ end separating
from the last two 3’ end strands. Figure 7.7b highlights the major changes in the
partitions obtained by Markov stability upon the removal of the cations. Interest-
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ingly, removing the cations maintains the tetrads community (although it strongly
impacts its robustness, see Figure 7.2), with the exception of guanine 2 which is
now dissociated from the tetrads community and grouped with the 5’ terminal loop.
The latest robust partition we identified divides the quadruplex into three groups
(the last two 3’ end strands, the first two 5’ end strands and the middle loop) which
appear to match closely the regions of the quadruplex that are kept together in
the later stages of the unfolding pathway. In Figure 7.8a, the unfolding pathway
of the form 1 unimolecular quadruplex, as observed in the same no-salt molecular
dynamics simulations, is shown to proceed via an opening motion which keeps the 5’
first two strands and 3’ last two strands grouped together. Interestingly, removing
the cations from the original structure also appears to disrupt their all-scale struc-
tural organisation (Figure 7.8b). In particular, the tetrads community disappears
in favour of duplexes of strands corresponding to those moving together during the
unfolding process.

To explain the interconversions they observed in their NMR data upon the ad-
dition of K+ in a Na+ solution, Zhang et al. (Zhang et al., 2010; Ambrus et al.,
2006) proposed a pathway for a conformational transition between the basket type
quadruplex and the hybrid forms 1 and 2, with hybrid form 3 as a stable intermedi-
ate. Their model (see Figure 7.9a) assumes the following steps: firstly, a slippage of
one of the guanine bases occurs at the 5’ end, giving rise to a transient 2-tetrad in-
termediate equivalent to form 3; then, the 5’ end strand dissociates from the tetrads
core, producing a triplex intermediate, and swings back to the other side of the
second strand which results in a double chain reversal loop and the formation of the
hybrid form 1 quadruplex. They further hypothesised that, considering the slow rate
of interconversion between forms 1 and 2, form 2 unimolecular quadruplex could be
generated through a symmetric pathway that would start from the 3’ end instead
of the 5’ end.

Interestingly, the community structures found appear to correctly identify the
dissociating strands suggested by Zhang et al. (2010). Markov stability indeed con-
sistently identifies the 5’ end strand in the basket type, and both the 3’ and 5’ end
strands in form 1 and 2, as being always more disconnected from the tetrads core
than the other two or three strands (see Figure 7.9b). At the Markov time where
the G-tetrads community is identified, the backbone atoms from the 5’ end (as well
as the 3’ end for forms 1 and 2) either form an independent community or become
grouped with the neighbouring loop.
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Figure 7.9: (Figure on the previous page) The partitions identified by Markov sta-
bility contain signatures of the interconversion pathway between the basket type,
form 1 and form 2 unimolecular quadruplexes. For each topology, the strand show-
ing a more pronounced disconnectivity in our analysis corresponds to the one that
dissociate in the interconversion pathway. a. Schematic diagram of the interconver-
sion pathway proposed by Zhang et al. (Ambrus et al., 2006; Zhang et al., 2010)
between the Na+ basket type and the hybrid form 1 and 2 telomeric quadruplexes.
b. Relevant partitions obtained through Markov stability for the basket type, form
1, 2, and 3 DNA quadruplexes.

In addition, guanine 2 is entirely absent from the tetrads community in the
basket type quadruplex suggesting that it is already primed for the unfolding in
the fully folded structure. Similarly, in form 1 and 2, the last guanine base from
the dissociating strand (5’ end in form 1 and 3’ end in form 2) is absent from the
tetrads community. Finally, form 1 and 2 have both the 3’ and 5’ ends backbone
atoms disjoined from the tetrads core.

Altogether, these results are in agreement with the interconversion pathway pro-
posed by Zhang et al. (Ambrus et al., 2006; Zhang et al., 2010), but suggest that the
hypothetical symmetric pathway which reaches form 2 directly through the slippage
of the 3’ end of the basket type should be much less prevalent, if it indeed exists.
Instead, our results suggest that the preferred interconversion pathway towards form
2 is a direct route via the dissociation of both the 3’ and the 5’ strands from form
1, either each in turn through triplexes and an intermediary chair conformation, or
simultaneously through an transient hairpin.

7.3 Discussion
In this chapter, we have shown that, using a detailed graph theoretical model
adapted for nucleic acid molecules, the all-scale analysis of G-quadruplex structures
recovers the elementary biochemical building blocks, but also relates a number of
experimentally observed dynamical properties to the static structure of the quadru-
plexes. This allowed, for instance, to help establish the unfolding pathway or identify
important structural elements for their physical stability.

In particular, we showed that the importance of ions in the formation and stabil-
ity of the quadruplexes can be partly rationalised in terms of their impact, via their
coordination of the guanine bases, on the existence and robustness of a cohesive
substructure formed by the ensemble of guanine tetrads. The method itself was also
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able to distinguish the guanine bases actively involved in the tetrads through hy-
drogen bonds, cation coordination and stacking interactions, from those effectively
associated with the connecting loops. This could be used to identify guanine bases
with a higher mobility, likely to dissociate from the tetrads core, and which should
be targeted in priority in the design of stabilising drug compounds.

Double chain reversal loops emerged from our analysis with a clearly distinct
behaviour from diagonal and lateral loops. Unlike the latter, double chain reversal
loops always remain highly disconnected from the rest of the structure in all the
quadruplexes analysed. They emerge as more independent from the tetrads core
than other types of loops, and could therefore notably be expected to display a higher
mobility. Their segregation is particularly pronounced in the propeller structure
where, unlike any of the other quadruplexes analysed, the structural partitioning at
the largest scale dissociates the tetrads core between each individual strand and the
large scale dynamics is thus likely to be dominated by the loops. Interestingly, many
of its properties have been found to be very different from the other unimolecular
topologies (Lane et al., 2008) and it has been hypothesised that the propeller form
should not be found in normal solution, and only form under particular conditions
such as those found in crowded or solution depleted environments, e.g. crystals or
the cell nucleus (Heddi and Phan, 2011; Yu et al., 2012). Its relevance in vivo has
also been debated (Marchand et al., 2013). Our results suggest that a possible higher
mobility of the double chain reversal loops could be responsible for the destabilisation
of the propeller quadruplex in solution. Loop motions could however be restricted
by molecular crowding which would then stabilise the structure (Marchand et al.,
2013). In light of these observations, we suggest that double chain reversal loops
might form a preferential target for stabilising compounds and we believe that their
dynamics should be further investigated experimentally. Recent molecular dynamics
simulations seem to agree with our general conclusions (Zhu et al., 2013).

Our results also provide a possible link between the structural organisation of
the quadruplexes and their thermal stability and polymorphysm. In our analysis,
a higher propensity for the nucleotides to associate with bases from other strands,
as opposed to their neighbouring bases along the sequence, appears beneficial for
thermal stability and unfavourable for structural polymorphism. The expectation
is that stronger interstrand associations could limit the ability of the individual
strands to dissociate from the tetrads core to unfold or form a new conformation.
In particular, the highly polymorphic unimolecular quadruplexes were the most
likely to exhibit groupings along the sequence, while the very stable tetramolecular
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quadruplexes exhibited additional interstrand groupings between loops which could
further stabilise the quadruplex in addition to the tetrads. Finally, we found both
bi- and tetramolecular quadruplexes to generally have a more robust community of
G-tetrads, which could also contribute to their higher thermal stability (Neidle and
Balasubramanian, 2006).

Finally, our analysis demonstrates that signatures of the quadruplexes unfolding
pathway are already encoded in their structure, and can be successfully captured
by our methodology. In particular, bi- and tetramolecular quadruplexes showed ro-
bust intermediary groupings of DNA strand duplexes. This suggests the possibility
of stable bi-stranded intermediates along the association or dissociation pathways.
This hypothesis is supported by previous experimental data on the kinetics of as-
sociation of DNA tetramers (Wyatt et al., 1996) suggesting the association of two
dimers to form the tetramers as the rate-limiting step. In addition, the strands that
appeared the most disconnected from the tetrads core in our analyses were those
predicted to initiate the unfolding process in hypothetical pathways derived from
both experimental data and molecular dynamics simulations. A comparison of no-
salt molecular dynamics simulations with the Markov stability analysis of the same
quadruplexes in the absence of the central cations showed that some of the main
transition steps along the unfolding pathway could be predicted from the partitions
obtained through Markov stability alone. The model of interconversion between
the basket-type, form 1, form 2 and form 3 telomeric quadruplexes proposed by
Zhang et al. (2010) was similarly consistent with the partitions we identified for
each structure. We find that the regions which were more disconnected from the
tetrads core in our analysis correspond to the first bases to dissociate during the
unfolding or interconversion pathway proposed in their model. Our results also sug-
gests the symmetric pathway speculated by Zhang et al. (2010), which yields the
hybrid 2 form from the basket type quadruplex, to be much less prevalent than the
direct conversion of form 1 into form 2.

Together, our results suggest that the dynamical behaviour of the DNA quadru-
plexes is, to a large extend, already encoded in their structure. As the dynamics
of quadruplexes is paramount to the understanding of their biological role and the
design of specific drugs, it is encouraging that some of its key aspects can be under-
stood from the structural data alone. Considering the agreement of our results with
experimental data and other computational analyses, our methodology could thus
prove to be a powerful tool to predict the folding/unfolding pathway of other DNA
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quadruplexes, and identify bases that should be preferentially targeted by stabilising
drugs.

Despite the highly dynamical nature of the DNA quadruplexes, we here showed
the ability of our computational framework to uncover significant structural features
that relate to key dynamical properties, with a comparable accuracy to our analyses
of the much more structured proteins.
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Chapter 8

Conclusions

Decoding the internal machinery of biomolecular structures remains a true
scientific challenge today. At its very heart lies the complexity emanating
from the wide spectrum of time and spacial scales over which their structure

and dynamics unfolds. This deep hierarchy of scales is inherent to protein function-
ality: the emergence of functional motions at large scales is the consequence of the
individual contributions of the dynamics at the atomic level.

While the multiscale organisation is often assumed a priori, we have, in this
thesis, taken the opposite view, and sought to unravel the multiscale organisation
of biomolecules from the atomic structure as a means to improve our understand-
ing of the mechanisms behind biological function. To this end, we introduced a
graph theoretical framework for protein and nucleic acid structures inspired by bio-
chemical force fields and multiscale community detection on networks. Acting as a
computational microscope, it provides a lens to explore the structural “anatomy” of
biomolecules at all scales, from atoms to the quaternary structure, by sweeping its
focus. As such it seamlessly links the dynamics at different scales, without initial
assumptions or the use of any a priori information other than the atomic interactions
given by the structure and force fields.

In Chapter 3, we proposed a fully atomic energy-based network model of biomolec-
ular structures that takes full account of the physico-chemical details of the atomic
interactions along with their energies. As such, it contrasts with the common use of
an unweighted network of residues based on distance cutoffs by providing a physi-
cally more realistic representation of the atomic interactions. Building on the earlier
works of Delvenne et al. (2010) and Meliga (2009), and noting that any dynamics
taking place on a network is shaped by the structure on which it unfolds, we pro-
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posed the use of Markov stability (Delvenne et al., 2010) to explore the structural
organisation of biomolecules at all scales. The time evolution of the random process
evolving on the graph was used as a way to reveal substructures that are relevant
over particular time spans of the dynamics, and the robustness of our solutions,
measured by the variation of information, to evaluate their biochemical significance.

The suitability of the methodology was shown in Chapter 4 on adenylate kinase,
a simple enzyme whose structure, dynamics and functional mechanisms are well
characterised. Firstly, we recovered the main biochemical building blocks includ-
ing atoms, chemical groups, residues, secondary structure and functional domains.
Secondly, we obtained a good agreement with diverse experimental data including
hinge analyses, normal modes and open-closed conformational changes. Thirdly,
we designed two types of biochemically motivated surrogate random graph models
which showed that biochemically meaningful substructures were found with high
significance, and allowed us to correctly identify the scale at which particular types
of interactions influence the structure and dynamics of the molecule. Finally, our
analyses of the open and closed forms of AdK revealed an almost unchanged struc-
tural organisation between the two highly distinct conformations. This remarkable
property of AdK structure could be linked to its ability to spontaneously sample the
closed conformation in the absence of substrate.

In Chapter 5, our methodology was further expanded and used towards im-
proving our understanding of MTIP, a small yet largely unexplored myosin light
chain. Long-lived clusters identified were found to correspond to regions with well
defined dynamical properties, such as domains and rigid clusters, or with a distinct
functional role. Several of our conclusions were subsequently verified and further ex-
plained by experiments, including the loss of physical stability in the unbound state
which was associated with less robust community structures, the destabilisation of
the N-terminal end α-helix which we found to be highly dissociated from the rest
of the structure, and the very distinct dynamics undergone by the C-terminal end
which appeared in our analysis as the most disconnected region of the C-terminal
domain. Taking advantage of the low computational cost of our approach and its
all-scale property allowing evaluate the impact of individual bonds on the largest
scales, a computational alanine scanning mutagenesis tool was developed which suc-
cessfully identified five of the six MyoA tail residues experimentally found to be
critical for binding, and suggested a seventh yet to be verified in binding assays.

The contribution of our approach also lies in its ability to deal with very large
structures with rich and complex dynamics without the need to sacrifice the level of
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detail in the model. This property was fully exploited in Chapter 6, where Markov
stability was used to study the workings of multimeric proteins characterised by
collective quaternary events that are initiated by local atomic changes propagating
bottom-up through the secondary and tertiary levels. The methodology was fur-
ther expanded by taking into account the ensemble of suboptimal yet meaningful
solutions which, plotted as heatmaps, provided a visualisation of the underlying
landscape of the biologically relevant partitionings. Our analysis of Rubisco re-
vealed, at the level of the barrel domain, functional units and quaternary structure,
the coexistence of multiple structural organisations dominating in alternance at dif-
ferent stages of the catalysis. Two symmetric partitions, in particular, involved a
sharing of the small subunits at the last stages of the reaction and upon inhibi-
tion, and suggested the existence a communication channel accross subunits which
could be linked to forms of cooperative mechanisms. In ATCase, a classic example
of cooperative enzyme, a similar behaviour was observed which disappeared in the
presence of CTP, an effector found to negatively impact cooperativity. Contrast-
ing our results with hemoglobin, a globular structure, suggested that biomolecules
with highly complex functional mechanisms tend to display a much richer structural
organisation across scales.

In Chapter 7, the methodology was generalised to nucleic acid structures, which
present a real challenge for most computational methods. Unlike proteins, DNA
molecules are generally less structured, more flexible and sample a large variety of
configurations in vivo. Focusing on G-quadruplexes, four-stranded DNA structures
held together by planar quartets of guanine bases, our analysis established a link be-
tween their dynamical and polymorphic properties and characteristics of their struc-
ture. Double-chain reversal loops appeared as highly disconnected from the tetrads
core, suggesting a higher mobility that could favour polymorphism. Analysing the
robustness of communities encompassing different strands, which was found to be a
good predictor for the physical stability of the structures, highlighted the stabilising
role of the central cations. Finally, nucleotides that appeared as more disconnected
from the structure in our analysis were shown to identify the first bases to dis-
sociate from the tetrads core and initiate the unfolding process in two models for
quadruplexes folding/unfolding pathways.
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8.1 Future work
The present work opens several research directions, including further experimental
and computational analyses of the protein and DNA molecules investigated here, as
well as new methodological developments and other applications.

8.1.1 Further analyses of the biomolecules studied

Hypotheses derived from our analyses of the different protein and DNA structures
should be verified experimentally. In the case of MTIP, the effective impact on the
binding affinity of the MyoA tail alanine 809 detected by our mutational analysis
could be assessed in new binding assays. Further testing for cooperativity in Ru-
bisco with mutated L-S interface residues could help verify and better characterise
the communication patterns that take place between the different subunits. Con-
cerning the G-quadruplexes, NMR or FRET could be used to further investigate
the dynamics of double chain reversal loops, which our analysis suggests to have
a destabilising effect, along with mutations or compounds that specifically target
them. The bases we found to be more disconnected from the tetrads core could
similarly form preferential targets for drugs aimed at stabilising the structures.

While we studied the changes in the structural organisation of spinach Rubisco
throughout the catalysis, applying the same computational analysis across multiple
species would likely provide a deeper insight into the relation between structure,
specificity and kinetics in Rubisco. Similarly, the role of particular residues could
be further evaluated in mutant structures or by estimating their impact on the
community structure at different scales. Such analyses could help suggest new mu-
tagenesis studies to uncover the structural rules that regulate Rubisco’s activity by
enhancing or blocking particular communication pathways in the structure. RNA
quadruplexes, which have recently been shown to form in vivo (Biffi et al., 2014),
would be a valuable comparison to our analysis of DNA quadruplexes. They exhibit
distinct properties of self-assembly, stability and ligand binding to their DNA coun-
terpart, and are involved in a wide range of biological processes, notably through
their probable presence in many mRNAs (Collie and Parkinson, 2011).

8.1.2 Methodological developments

Although water molecules have not been included in the graphs, the effect of solvent
has been implicitely taken into account through the use of a hydrophobic potential
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of mean force as well as criteria based on distance and atom types. Water is how-
ever not an inert medium, but plays an active role that fundamentally impacts
the structure, dynamics and function of biomolecules. Water molecules can link
different parts of the biomolecule through water-mediated hydrogen bonds, form
ordered clusters on its surface, or be buried inside the core of the protein (Levy
and Onuchic, 2006). Water also acts as a “lubricant”, facilitating particular con-
formational changes by lowering energy barriers, and its explicit inclusion in some
models is essential for protein folding prediciton (De Los Rios and Caldarelli, 2000;
Papoian et al., 2004). Explicitely including water molecules in our graph-theoretical
framework is straightforward, and our approach could therefore be used to provide
insights into the role of water on protein structure and dynamics.

Our definition of Markov stability assumes the stationary distribution of the
random walkers (uniform in this case) as the initial state of the process. However,
the perturbations are likely to be more important on the surface, in the active and
allosteric sites than inside the biomolecule. The initial probabilities can however be
readily adapted and studying the impact of different perturbations could provide
a better insight into the behaviour of the protein or DNA molecule, and better
model particular experimental setups. If more information on the time-evolution
of the perturbation can be obtained, for instance through short simulations, an
approximation of the actual diffusion process observed on the structure could also
be directly used in place of the Markov process using a recently proposed temporal
version of Markov stability (Petri and Expert, 2014).

Markov stability appears to establish a link between the Markov time at which
a particular meaningful substructure is identified and the time scale of its associ-
ated dynamics, and a monotonic relation between the two has indeed already been
observed before this work (Meliga, 2009). In spite of the general agreement of our
results with experimental data, the derivation of a physical model for the Markov
diffusion process is however lacking. As noted by Reuveni et al. (2010b,a), a mapping
can be established between a random walk on a graph and the vibrational motion
of the atoms in the protein, according to which our results could be reinterpreted in
terms of the local trapping of atomic oscillations. However, this model requires the
assumption of perfectly isotropic atomic motions which leads to unphysical charac-
teristics of the potential (Thorpe, 2007) (see Section 2.2.2).

This work is also applicable to other problems in biochemistry. Allostery in
particular, whereby the binding of a molecule to one site controls the activity of the
protein taking place at a sometimes distant active site, ultimately relates to long-
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range communication through the network of interacting residues. A wide range of
graph-theoretical approaches have unsurprisingly been used with success (see Section
2.2.1) and, recent work by Amor et al. (2014) combining Markov stability with an
analysis of the random walk transients was indeed used to reveal intra-molecular
signaling pathways in caspase-1.

Due to the range of time scales spanned by the dynamics of biomolecules, coarse-
graining is often a necessity for many simluation methods. Although systematic
approaches exist (see for instance (Sinitskiy et al., 2012)), coarse-graining is most
often a choice of the modeller based on a priori information. Our partitioning
method could therefore help provide a meaningful coarse-graining for simulations
that is directly derived from the fully atomic structural information.

8.2 Final comments
The main contribution of this work has been to explore the functional mechanisms of
biomolecules by relating their atomic structure to the dynamics over the entire spec-
trum of time and spatial scales, from bond vibration to domain displacement, from
atoms to the quaternary structure. Its computationally inexpensive nature opens
up time and length scales often inaccessible to traditional methods and, through the
graph representation, information about the global structural organisation and slow
dynamics of some of the largest proteins and protein assemblies could be extracted
while keeping atomic details in the model.

Beyond the methodological developments and individual results for specific pro-
teins or DNA quadruplexes, the intention has also been to offer a different perspec-
tive on the study of biomolecular structures. Traditionally, the analysis of protein
structural data has been inclined to focus on either coarse global measures (e.g.
root mean square deviation, solvent accessible area) or on the detailed study of local
structural changes (e.g. rotation of individual side chains, large domain displace-
ments). Similarly, computational methods have generaly considered the different
scales rather independently, targeting for instance localised atomic vibrations (e.g.
nanosecond molecular dynamics simulations), rigid regions spanning a few residues
(e.g. combinatorial rigidigy), or the largest scale molecular motions that drive func-
tional conformational transitions (e.g. analysis of the slowest normal modes). Yet
the function of biomolecules is defined by the coupled interplay of their dynamics at
all scales (Henzler-Wildman et al., 2007a; Henzler-Wildman and Kern, 2007; Yali-
raki and Barahona, 2007; Leitner et al., 2006). Computational tools that can link
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atomic alterations to their impact on the structural organisation at all scales open
up a new perspective to study the intrinsic linkage between structure, dynamics and
function in biomolecules.
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Appendix A

Parameters for the construction of the graphs

In this appendix, we detail the parameters and potential energy functions used to
identify and weight the edges of the graphs for protein and DNA structures.

Covalent bond
Covalent bonds are modelled by a single edge between the two atoms bound and
are identified by FIRST from interatomic distances combined with a dictionnary
of covalent bonds in standard amino acids. The weights given to covalent bonds
correspond to the standard tabulated values of bond dissociation energies (Huheey
et al., 1993) (see Table A).

Bond Energy Bond Energy Bond Energy
(kJ/mol) (kJ/mol) (kJ/mol)

H H 432 H Se 276 C O 358
H C 411 C C 346 C O 799
H N 386 C C 602 C S 272
H P 322 C N 305 P O 335
H O 459 C N 615 P O 544
H S 363 C P 264

Table A.1: Energy used to weight the edges for covalent bonds in the graphs of
proteins and DNA. Values correspond to the covalent bonds dissociation energy as
given in reference (Huheey et al., 1993).
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Figure A.1: Variables used to identify and compute the energy of covalent bonds
and salt bridges.

Hydrogen bonds
Hydrogen bonds and salt bridges are assigned as an edge between a hydrogen and
an acceptor atom if their distance is less than 2.6Å, the donor-acceptor distance is
less than 3.6Å and the donor-hydrogen-acceptor angle is between 90˚and 180˚.

The enery weight associated with hydrogen bonds is given by the modified Mayo
potential (Rader et al., 2002; Dahiyat et al., 1997):

EHB = V0

5
(
R0

R

)12

− 6
(
R0

R

)10
F (θ, φ, ψ) (A.1)

with

V0 = 8kcal/mol

R0 = 2.80Å

F (θ, φ, ψ) =



cos2(θ)e−(π−θ)6 cos2 (φ− 109.5) for sp3 donor- sp3 acceptor
cos2(θ)e−(π−θ)6 cos2 (φ) for sp3 donor- sp2 acceptor
cos4(θ)e−2(π−θ)6 for sp2 donor- sp3 acceptor
cos2(θ)e−(π−θ)6 cos2 (max [φ, ψ]

)
for sp2 donor- sp2 acceptor

where θ is the donor-hydrogen-acceptor angle, φ the hydrogen-acceptor-base angle,
and ψ the angle between the normals to the planes defined by the 3 atoms around
both sp2 centre.

For salt bridges, the edge weight is computed by (Dahiyat et al., 1997)

ESB = V0

5
(

Rs

R + x

)12

− 6
(

Rs

R + x

)10
 (A.2)
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with

V0 = 8kcal/mol

R0 = 3.2Å

x = 0.375Å

The energy threshold for hydrogen bonds and salt bridges was set at 0.01 kcal/mol.

Hydrophobic tethers
Hydrophobic tethers are identified using the software package FIRST. Edges are
placed only between pairs atoms if they are either carbon or suflur atoms, are within
8Å from each other, and are themselves covalently bound to a carbon, sulfur or
hydrogen atom. In addition, only one hydrophobic tether edge is allowed per atom.

Hydrophobic tether edges are weighted using a simplified potential based on the
hydrophobic potential of mean force proposed by Lin et al. (2007). Hydrophobic
interactions are given an energy of -0.8 kcal/mol when the distance between the two
atoms is below 5Å and -0.2 kcal/mol when it is below 8Å.

Π-stacking interactions

In proteins, edges for π-stacking interactions are assigned by FIRST using a 5.5Å
distance cut-off and a 30˚angle cut-off between the aromatic rings, as well as a
40˚angle cut-off between the normal to the rings and the vector joining the ring
centres. Edges are given a fixed weight of 10 kcal/mol corresponding to a typical
energy of interaction (Sponer et al., 2008).

In DNA structures, the weights are computed more accurately using the potential
proposed by Hunter and Sanders (1990). The total energy is given by the sum of
the contributions from van der Waals and electrostatic interactions:

Estacking =
∑
ij

KiKj

C exp(−α rij
rij0

)− A

r6
ij

+
∑
kl

332
ε

qki q
l
j

rklij


 . (A.3)

Here, the outer sum extends over all pairs of atoms belonging to two different aro-
matic rings. rij represents the distance between the two atoms, and Ki, Kj, C, A,
rij0 and α are standard parameters (Caillet and Claverie, 1975) (see Box 1). The
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electrostatic contribution (Warshel et al., 2006) is modelled by the third term. The
sum extends over indices k and l which corresponds to three different point charges
associated with each atom: one σ point charge at the nucleus of the atom and two
π point charges placed 0.47Å above and below the aromatic plane.ε is the dielectric
constant which we fixed at the most commonly used value of 4 (Gilson and Honig,
1986). The identification of π-stacking interactions in DNA does not rely on the
geometric criteria set by FIRST. Instead, the total π-stacking energy of interactions
is computed between every pair of bases and edges are assigned using an energy
threshold set at 0.6 kCal/mol, corresponding to the energy of thermal fluctuation
at room temperature.

The standard parameters used in Equation A.3 are as follows (Caillet and Claverie,
1975):

α = 12.35 A = 0.214 C = 47× 103

rij0 =
√(

2rWi
) (

2rWj
)

where rWi is the van der Waals radii of atom i:

rWH = 1.2Å RWC = 1.7Å RWC = 1.77Å RWN = 1.6Å RWO = 1.5Å.

Finally, the parameters Ki also depend on the atomic specie:

KH = 1 KC = 1 KN = 1.18 KO = 1.36.

Box 1: Parameters for the π-stacking interaction potential used for nucleic acids
(Equation A.3).

Electrostatic interactions
Electrostatic interactions are generally neglected, unless they play a crucial role in
the dynamics or function of the protein or DNA, such as the coordination with metal
ions and the electrostatic interactions between the negatively charged phosphate
groups of the DNA backbone.

Interactions with coordination ions are identified directly from the structure
using the LINK entries from the PDB file (Bernstein et al., 1978) and weighted
using the Coulomb potential

Ecoulomb(q1, q2, r12) = 332
ε

q1q2

r12
(A.4)
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Adenine Thymine

Atom name σ charge π charge Atom name σ charge π charge

N9 1.7057 -0.8623 N1 1.6939 -0.8725
C8 1.1687 -0.4342 C6 1.0444 -0.4718
H8 0.0675 0 C5 1.009 -0.5817
N7 0.7074 -0.6358 C4 1.1808 -0.4286
C5 1.1684 -0.5253 N3 1.5617 -0.9048
C4 1.24 -0.4778 C2 1.2671 -0.4194
N3 0.7185 -0.6049 O2 0.9448 -0.6752
C2 1.2027 -0.4647 O4 0.9329 -0.6635
H2 0.0698 0 C7 -0.104 0.0175
N1 0.722 -0.6106 H6 0.059 0
C6 1.2726 -0.4446 H3 0.1914 0
N6 1.4443 -0.9399 H71 0.0409 0
H62 0.2076 0 H72 0.0409 0
H61 0.2076 0 H73 0.0409 0

Guanine Cytosine

Atom name σ charge π charge Atom name σ charge π charge

N9 1.7056 -0.8583 N1 1.6964 -0.8398
C8 1.1687 -0.4676 C2 1.2847 -0.4263
H8 0.0675 0 N3 0.7183 -0.6976
N7 0.7065 -0.6293 C4 1.2651 -0.4125
C5 1.1631 -0.5819 C5 0.9713 -0.5881
C4 1.2401 -0.474 C6 1.0481 -0.4165
N3 0.7249 -0.696 O2 0.9471 -0.6776
C2 1.363 -0.3942 N4 1.4431 -0.9416
N2 1.4534 -0.9387 H5 0.0552 0.0175
H22 0.2087 0 DH6 0.0593 0
H21 0.2087 0 H42 0.2075 0
N1 1.5729 -0.8615 H41 0.2075 0
H1 0.1926 0
C6 1.192 -0.4291
O6 0.9351 -0.6696

Table A.2: Parameters for the π-stacking interaction potential used for nucleic
acids (Hunter and Sanders, 1990). We thank Christopher A Hunter for having
kindly provided us with these parameters.
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where r12 is the distance between the two atoms, q1 and q2 their two charges (in
electronic unit), and ε is the dielectric constant (ε = 4 in generally chosen in pro-
teins (Gilson and Honig, 1986)). Charges for the residues were taken from the OPLS-
AA force field (Jorgensen and Tirado-Rives, 1988) and for all non-standard residues
and ligands, charges were obtained using the webserver of PRODRG (Schüttelkopf
and van Aalten, 2004).

Similarly, the electrostatic repulsion between the negatively charged phosphate
groups of the DNA backbone were included and weighted using the same Coulomb
potential, with the addition of the Manning counterion and Debye screening ef-
fect (Swigon, 2009; Ravishanker et al., 2007; Manning, 1978):

Ebackbone(r12) = 332
ε

δ2

r12

e−r12

λr12
(A.5)

where δ is charge partially neutralized by the counterion condensation effect, called
the effective charge, and λ is the Debye screening length. For a monovalent salt such
as NaCl, λ = 3.0395

√
cÅ where c is the ionic concentration and δ = 0.24.

Our computations however showed that the DNA backbone electrostatics had
no impact on the final results our the Markov stability analyses. These interactions
indeed mostly take place between adjacent residues which are only a few covalent
bonds away from each other. The path joining adjacent bases in the graph is there-
fore dominated by the high-energy covalent bonds and the additional weak links
created by the electrostatic interactions are negligible.



Appendix B

Robustness of the graph construction

The results of the Markov stability analysis are relatively insensitive to the exact
value of the edge weights. As an exemple, we computed 100 Markov stability analy-
ses of PfMTIP (PDB 2QAC, see Chapter 5) where, for each run, we added a gaussian
random noise to the edge weights. The random perturbations were chosen with a
zero mean and a standard deviation equal to 10% of the edge weights, such that

Apert
ij = Aij(1 + 0.1×N (0, 1))

where N (0, 1) designates a normal random variable with zero mean and unitary
variance, and Aij is the weight of the edge between nodes i and j. The results of
our analysis, shown in Figure B.1, indicate that the final partitions between the
different randomized graphs is small and always well below the intrinsic variability
of the solutions as measured from the Louvain initial conditions (see Chapter 3).
The results of our analysis are thus almost unchanged after the modification of the
edge weights. A precise weighting of the edges is consequently unnecessary for the
purpose of this work, and the majority of the most commonly used force fields should
yield identical results.
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Figure B.1: The weighting of edges matters, but the final result is insensitive to
small variations in edge weights. The plot shows the Markov stability analysis of 100
runs of PfMTIP (PDB 2QAC) with randomized edge weights. The blue and green
curves indicate the mean of the number of communities and variation of information
(based on the Louvain initial conditions) respectively. Shaded areas correspond to
one standard deviation of the distribution at each Markov time. The orange curves
corresponds to the number of communities and variation of information obtained
for the equivalent unweighted graph (same edges, but with uniform weights).



Appendix C

Finding the optimal partition in practice

Once the graph is constructed from the protein structural data, we carry out the
community analysis of this graph by optimising the Markov stability quality function
(Delvenne et al., 2010). The optimisation is carried out using the Louvain algorithm
(Blondel et al., 2008)—see Figure C.1 for an example. For each Markov time, the
Louvain optimisation is repeated for several random initializations (usually 100 for
small graphs and 1000 for larger graphs such as Rubisco) and the ensemble of solu-
tions found is kept. We then report the optimal of all the solutions found at each
time and we also calculate the mean variation of information (VI) of the ensemble
of solutions obtained. The VI measures the dissimilarity of the optimised solutions
found in the ensemble of runs of the Louvain algorithm, and thus serves as a de-
scription of the robustness of the optimal solution to the optimisation. As we sweep
Markov time, the relevant partitions should be robust, i.e., they are found with high
reproducibility by different initial randomisations of the Louvain optimisation. As
the Markov time is increased, the quality function to be optimised (i.e., Markov
stability) changes and the optimal partitions for each time will be different, i.e., as
the Markov time changes, so does the ranking of the different partitions according
to their Markov stability.

Figure C.1 shows the evolution of the Markov stability of five different partitions
with the Markov time, and how the curve of the total number of communities
emerges. The number of communities of the optimal partition (and the VI of the
optimisation ensemble) for one of the structures are presented in Figure C.1a, while
Figure C.1b shows the Markov stability of different partitions (in a range of Markov
times) to indicate how the different partitions become optimal over different time
intervals. Partitions which are optimal over a large range of Markov times and which
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are also robust to the optimisation (as given by the VI) usually relate to well-defined,
relevant levels of organisation.
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Figure C.1: (a.) Markov stability analysis of activated unliganded spinach Rubisco
(1AUS) showing the number of communities (blue) and the variation of information (green)
as a function of the Markov time. (b.) Zoom of the large Markov time region displaying
the Markov stability for five partitions. As the Markov time increases, the Markov stabil-
ity of the different partitions changes along with their ranking. This results in different
partitions being optimal over different time intervals. Here, the partitions into 4 (in red)
and 2 (in magenta) communities are optimal for a broad range of Markov times, while the
partitions into 5 (orange) and 3 (cyan) communities are optimal only for small ranges of
Markov times, indicating lower robustness of these partitions.
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