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Multiple Finite Capacity Queues

As observed in the paper, for simplicity we have described the QRF analysis in the
case of a single finite capacity queue. The case with two or more finite capacity queues
follows the same arguments but introduces complications due to possible chains of
dependence, as shown in the following example.

Consider a station i blocked by a finite capacity queue f1 such that Head(mf1) =
i. Suppose now that f1 is itself blocked by a finite capacity queue f2 such that
Head(mf2) = f1 and assume that f2 can route jobs to i. Then the marginals in (8)
require to express the event in which f2 sends a job to i and, due to the chain of de-
pendencies, simultaneously f1 sends a job to f2 and i sends a job to f1. This event does
not contribute to the marginal balance in (8) because the population at ni remains
unchanged.

We here note that this problem does not arise if finite capacity stations are not
blocked by each other. This case can then be handled by either avoiding a direct con-
nection between finite capacity stations, or by introducing a surrogate infinite server
station, with a large service rate, between f and g. The last option avoids the case
where two unblocking events are perfectly simultaneous. This comes at the cost of
adding an extra station for each pair of finite capacity queues, but it sufficient to ad-
dress the problem and generalize the approach in an approximate manner.

Bounding Problem 1

We study a network composed of M = 3 queues, with queue f = 1 having a finite
capacity of F1 = 4 jobs and we use populations N ≥ F1 + 1 such that blocking can
occur. We assume that service times are exponentially distributed at queues 2 and
3, while the finite capacity queue 1 has temporal dependent MAP service. For ease
of interpretation, we consider different routing matrices resulting in different levels
of balancing between service demands, which are mean number of visits divided by
mean service rates. It is well-known that service demands, rather than just visits or
rates, determine the effective utilization levels of resources in a system [Lazowska
et al. 1984]. Specifically, we consider mean service rates µi = 1, i = 1, . . . ,M , and the
following routing matrix

P =

[

0.10 0.50 0.40
p 0 1− p
0 0.50 0.50

]

(1)

which provides mean number of visits by computing the equilibrium of P interpreted
as a discrete time Markov chain. We then vary the routing probability p to obtain three
network profiles:
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• p = 0.99: maximum demand at finite capacity queue. This is an unbalanced network
where jobs cumulate at queue 1 the maximum amount of service time.

• p = 0.81: maximum demand at infinite capacity queue. This case is symmetric to
p = 0.99 and queue 3 is now the bottleneck resource.

• p = 0.90: balanced demands. Setting p = 0.90 balances demands such that the
cumulative time spent in service at the queues is identical.

Figures 1-3 illustrate bounding results across more than 240 runs of BQR bounds
and reports results for the utilization levels Ui and for the effective utilization E2 of
queue 2. Figures 1 reports BAS and RS-RD results, while the remaining figures only
BAS results since RS-RD results are qualitatively very similar to the BAS ones. Note
that it is U1 = E1 and U3 = E3 for all populations, thus we only report the effective
utilization for queue 2. Since throughput and system response time follow easily from
such quantities, such results are representative of the bounding quality for several
performance metrics. The computational costs for a single run of BQR bounds are very
small: on a laptop computer in the worst case the solution took 0.3s and 32MB for BAS
and 0.2s and 7MB for RS-RD, with the difference being due to the small set of BQR
probabilities in RS-RD due to m = ∅.

The results indicate that the BQR bounds perform well in limiting the utilization
and the effective utilization of the three queues. In several cases, the bounds are ex-
tremely tight with good results for the utilization being achieved in Figure 2 where
queue 3 has the highest demand, while the effective utilization is tightly limited par-
ticularly in Figure 1. The results indicate that the upper and lower bounds perform
equally well and that there are not substantial accuracy differences between BAS and
RS-RD. The hardest quantity to bound is the utilization of queue 2, which is the sum
of the effective utilization and the component due to the blocking of queue 2. Still, in
such cases, the absolute gap between bound and exact value of the effective utilization
is approximately 8%, whereas it is usually 3− 4% in the other queues. This makes the
case that BQR bounds are effective for quantitative analysis of systems with blocking.

Bounding Problem 2: Comparison with EMVA Algorithm

In this section, we consider BAS blocking and compare the proposed method with an
approximation proposed in the literature, namely the expanded mean value analysis
(EMVA) algorithm proposed in [Yuzukirmizi 2006]. This algorithm considers marginal
queue-length probabilities and uses them to estimate blocking probabilities alongside
with effective service rates. The EMVA algorithm only supports exponential distribu-
tions, thus we illustrate the behaviour of the BQR bounds in this setting.

We have implemented the EMVA algorithm and validated it on a set of models. In
several case, both EMVA and BQR bounds were very close to the optimal solution. In
several other cases, we noticed that EMVA as the load increases may incur into in-
stabilities that are not instead experienced by the BQR bounds. An example model is
the case p = 0.9 in the previous set of examples. Results are shown in Figure 4 for a
range of populations between 5 and 30 jobs. The figure shows the effective utilization
at queue 2. The curves indicate that EMVA is able to follow well the trend of the ex-
act solution for low populations. As the effective utilization grows larger towards its
asymptotic value, EMVA becomes progressively less stable and the solution deterio-
rates in heavy load. Conversely, the BQR bounds maintain their bounding properties
in a stable manner across the whole range of considered populations. This suggests
that BQR bounds can be more reliable compared to existing techniques; however, the
example also shows that there can be situations in which the bounds do not converge
early, thus point approximations may not be accurate enough. We address these cases
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(e) i = 1, RS-RD
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(f) i = 2, RS-RD
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(g) Eff. Util. i = 2, RS-RD
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(h) i = 3, RS-RD

Fig. 1. Finite capacity queue 1 has highest demand (p = 0.99). MAP is short-range dependent (srd).

in Section 7 by developing two methodologies for approximation of queueing network
models with blocking.

Approximation Problem 1: RS-RD Blocking

Let us first consider a model composed of M = 5 queues with N = 10 jobs, capacity
Fi = 5 for each queue i = 1, . . . ,M , and service processes all equal to the short-range
dependent MAP given in (12). Hence, all stations can be blocked. The routing matrix
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(d) i = 3, BAS

Fig. 2. Infinite capacity queue 3 has highest demand (p = 0.81). MAP is short-range dependent (srd).

is

P =











0 0.5000 0 0 0.5000
0.5000 0 0.5000 0 0

0 0.5000 0 0.5000 0
0 0 0.5000 0 0.5000

0.5000 0 0 0.5000 0











This is a case where we compare approximations and bounds under multiple RS-RD
blocking. We see in Figure 5 that the upper and lower bounds (“ub” and “lb”, respec-
tively) are not able to generate a tight envelope around the exact utilization and ex-
act effective utilizations (“ex”). However, both MEM and MMI return almost perfect
results within less than 2% utilization. Similarly to the toy example, MMI appears
slightly more effective than MEM for capturing the probability distribution. Notice
also that the MEM solution is slightly affected by numerical perturbations due to the
fully symmetric routing of this network.

Approximation Problem 2: Central Server Model

We now consider a classic central-server-type topology, where queue 1 feeds parallel
stations. The model is quite similar to the one used for the Bounding Problem in Sec-
tion 6.1. We assume M = 5, N = 10, and routing matrix P− as in Section 6.1. Similarly,
service processes and finite capacities are identical to the ones in Section 6.1. Figure 6
reports experimental results. We see again that the proposed approximations are very
effective, however this illustrates a case where also the bounds are very tight, and one
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(d) i = 3, BAS

Fig. 3. Balanced demands (p = 0.90). MAP is short-range dependent (srd).
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Fig. 4. Comparison with EMVA algorithm.

may for instance take their middle point as a first approximation of the exact value
of the utilizations. Thus, this shows a case where station 1 has a dramatic difference
between utilization and effective utilization, due to the blocking on queue 5. This is
perfectly captured by our techniques.

Application Domains

Queueing networks with blocking have been systematically investigated for decades
and there are many examples of their applications to real-world systems. As men-
tioned in the introduction, models with blocking that can be analyzed with QRF are
particularly suited for performance analysis of computer and communication systems,
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(a) Utilization (b) Effective Utilization

Fig. 5. Approximation Problem 1 - queueing network model with RS-RD blocking

(a) Utilization (b) Effective Utilization

Fig. 6. Approximation Problem 2 - A queueing network model with central-server-type topology

albeit they have also been applied to other fields such as manufacturing and health
care. The reader may consult surveys such as [Balsamo et al. 2001], [Onvural 1990],
[Perros 1989], [Perros 1994] for specific examples of how blocking mechanisms such as
RS-RD and BAS apply to real systems. Additional resources include papers focused on
computer systems [Almeida and Kellert 2000], communication systems and networks
[Awan et al. 2006], [Daduna and Holst 2008], streaming systems [Xia et al. 2007],
manufacturing systems [Yamada et al. 2009], software architectures [Balsamo et al.
2003] and health care [Koizumi et al. 2005]. While in general RS-RD and BAS may
not be exact models of the actual blocking happening in a real-world system, RS-RD is
a reasonable modeling approximation for cases where a call to a finite capacity node
does not block the caller. Instead, the BAS blocking represents the opposite case where
the caller is blocked by this synchronization. This appears adequate to represent the
blocking patterns of many enterprise workloads, as for instance illustrated in several
examples in [Balsamo et al. 2003].

In the context of computer systems, since the QRF methodology is particularly
suited for optimization, it could be easily integrated for optimal decision-making in
problems such as load-balancing, optimal sizing of thread pools and buffers, and opti-
mal resource allocation. The parallel system analyzed in Section 8 and the networks
with state-dependent routing in Section 3.5 illustrate applicability to load-balancing.
Another example is that of server consolidation problems in computer infrastruc-
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tures [Ardagna et al. 2014]. These problems involve deciding the number of servers
that will be utilized in an infrastructure to serve web requests, taking into account
requirements on the utilization of the machines, end-to-end response times, and oper-
ational costs [Ardagna et al. 2014]. These problems are typically NP-hard and the goal
is to find a good local optimum. The underpinning optimizations are mixed integer non-
linear programs where either the modelled simplifies the queueing analysis to basic
M/M/1 and M/G/1 queues, or the decision variables are decomposed so that solves can
rely on external procedures to evaluate a queueing subproblem at each iteration. Sev-
eral algorithms exist to evaluate a queueing subproblem, e.g. AMVA [Bolch et al. 2006]
and fluid queueing solvers [Franceschelli et al. 2013], however none of these methods
offers robust approximations for dependent workloads, blocking, state-dependent rout-
ing, especially when considered in combination. QRF instead offers analysis methods
that can encompass all of these features. Furthermore, it is well-suited for successive
invocations, being able to quickly re-optimize the optimal solution of a complex queue-
ing network using the methodology discussed in Section 8. It therefore offers a suitable
alternative to existing external solvers for queueing subproblems.

In terms of expressiveness, compared to existing models with blocking, QRF allows
to express temporal dependent service processes, which recent work has identified as
being important for performance characterization of web servers [Mi et al. 2007] and
disk drives [Riska and Riedel 2006]. In these systems, the service process is normally
autocorrelated due to caching. However, it is difficult to express temporal dependent
requirements in ordinary networks, particularly closed ones. Closed networks are im-
portant in computer system performance analysis to express limits on concurrency lev-
els in accessing connections or gaining control of a thread, and finite capacity adds to
the closed feature to express limits on buffer sizes that compound to the finite concur-
rency levels. Standard queueing network with blocking can be represented by closed
systems and finite buffers, however only QRF models currently allow for temporal de-
pendent descriptions of the service process.
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