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Abstract

The aim of our experiment is to explore two methods of creating an ultracold dipolar

gas which can subsequently be used to simulate quantum phenomena. The first method

is to sympathetically cool polar molecules. In this case, the molecules are overlapped

with ultracold lithium atoms, thus allowing the two clouds to thermalise through elastic

collisions. The second method is to electrically polarise ultracold lithium atoms using an

electric field of approximately 1MV/cm. This involves placing the atoms between two

high voltage electrodes.

This thesis describes and characterises the setup used to produce, trap and transport a

cloud of lithium-7 atoms. The setup consists of a lithium oven, Zeeman slower, magneto-

optical trap (MOT) and magnetic trap. Up to 2.3 × 108 atoms are loaded into the

MOT with an initial temperature of 1.3mK. By implementing a compressed MOT phase

the temperature is reduced to 0.75mK. Before transport, 23% of the MOT atoms are

transferred into the magnetic trap, which has a lifetime of 1.53 ± 0.01 s in the MOT

chamber. Using a motorised translation stage to move the magnetic trapping coils, atomic

transport over a distance of 44 cm from the MOT chamber to the science chamber has been

demonstrated. The transport efficiency is 41%. In the science chamber the lifetime of the

magnetic trap has been measured as 18.5± 0.7 s. Experiments to optimise the absorption

imaging system have also been carried out, highlighting the fact that a time and position

dependent magnetic field is present after the trapping coils switch off. The feasibility

of producing a 1MV/cm electric field has been investigated. By using indium tin oxide

coated glass electrodes in an adjustable electrode mount, an electric field of approximately

0.2MV/cm has been generated. These electrodes were subsequently replaced with super-

polished stainless steel electrodes which generated a field of 0.38MV/cm.
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Chapter 1

Introduction

1.1 Motivation and background

In order to provide context for the work described in this thesis, three important questions

must be answered. These are, what are we trying to make? Why are we trying to make

it, and how can it be made? To answer the first of these questions, section 1.1.1 starts

by describing the overall aim of the project, which is to create an ultracold dipolar gas.

In sections 1.1.2 and 1.1.3, the second question is addressed. In particular, by looking at

some of the potential applications, we explain why dipolar gases are interesting systems

to study. Finally in section 1.1.4, the third question is answered. Here we describe the

many different production techniques that are currently being explored and discuss some

of the experimental challenges that are faced.

1.1.1 What are we trying to make?

Since the first observation of Bose-Einstein condensation in 1995 [1–3], much experimen-

tal and theoretical research has been directed towards studying these quantum systems.

The properties of these gases are determined by the interactions between the constituent

particles. For the majority of Bose-Einstein condensates (BECs) these interactions are

described by the van der Waals potential which is short range, isotropic and scales as

−C6/r6, where C6 is a dimensionless, species specific coefficient, and r is the atomic sep-

aration. To study the collision physics of such a gas, calculations are carried out in the

centre of mass frame. This allows the interaction between two particles with masses m1

11



Chapter 1. Introduction 12

and m2 to be treated as the scattering of a single particle by the interaction potential,

where the particle mass is now the reduced mass μ = m1m2/(m1 + m2). Given that

the interaction potential is spherically symmetric, the technique of partial wave analysis

is usually adopted. This involves decomposing the wavefunction of the particle into its

constituent angular momentum components, which are called partial waves. When the

collision energy is low, as it is for an ultracold gas, only the zero angular momentum par-

tial wave is significantly scattered by the interaction potential. This is because there is

an angular momentum barrier for all other partial waves which prevents a close approach

to the scattering centre. Therefore only s-wave scattering occurs, and as a result only

the s-wave scattering length as, is required to describe the properties of an ultracold gas.

Here we define ultracold as temperatures below 1mK.

One particular property that depends upon the sign of the scattering length, is the sta-

bility of a BEC. When as > 0 the interactions are repulsive. However when as < 0 the

interactions are attractive and this creates an unstable condensate that will eventually

collapse if the atom number is increased above some critical value [4, 5]. In general the

sign of the scattering length is fixed for a given atomic species in a particular spin state.

However in the presence of a Feshbach resonance, the scattering length can be tuned by

varying the size of an applied magnetic field. This has enabled researchers to study the

collapse of a BEC in an highly controlled manner [6].

Given the important role that interactions play, much research effort has been directed

towards producing ultracold gases that instead exhibit dipole-dipole interactions. As

these interactions are long range, anisotropic and scale with distance as 1/r3, many of

the properties of the gas should be distinctly different. The aim of our experiment is to

produce one of these ultracold dipolar gases. In order to create such a gas, many different

approaches are currently being explored. We plan to employ two different methods, which

are discussed in more detail in section 1.2. No matter which approach is adopted, the

chosen particle, whether it be an atom or a molecule, must have an appreciable magnetic

or electric dipole moment. In order to compare different systems, it is useful to introduce

the dimensionless parameter, εdd. This parameter characterises the strength of the dipolar

interaction by comparing the effective dipole-dipole interaction length, add, to the s-wave

scattering length, as. It is normally written as [7]

εdd ≡
add
as
=

mCdd
12π~2as

, (1.1)



Chapter 1. Introduction 13

where m is the mass of the particle and Cdd is a coupling constant which varies depending

on whether the particles have a magnetic or electric dipole moment. For systems with

a magnetic moment μ, the coupling constant becomes Cdd = μ0μ
2, where μ0 is the

permeability of free space. For a system with an induced electric dipole moment, we

instead have Cdd = α2E2/ε0. Here α is the electric polarisability of the atom, E is the

applied electric field and ε0 is the permittivity of free space. Finally for any species with

a permanent electric dipole de, the coupling constant becomes Cdd = d
2
e/ε0. As might be

expected, when 0 < εdd < 1, short range interactions are dominant, although some dipolar

features can be observed. When εdd > 1 dipole-dipole interactions dominate. Depending

on the the size of this value, the potential applications will vary. This is discussed in more

detail in the following sections.

1.1.2 Why are dipolar gases interesting?

Dipolar interactions are of interest to researchers for two main reasons. Firstly dipole-

dipole interactions are predicted to change many of the properties of an ultracold gas.

For example the critical temperature at which condensation occurs is expected to shift

[8, 9], although this is only likely to be apparent for systems that are strongly dipolar.

In addition to this, it is possible to tune the dipolar interaction using easily controlled

experimental parameters. As only some of the properties and potential uses of dipolar

gases are highlighted here, the reader is directed to references [7] and [10] for a more

thorough discussion.

Figure 1.1: Anisotropy of the dipole-dipole interaction. Aligned dipoles positioned end
to end produce an attractive interaction, whilst dipoles placed side by side experience a

repulsive interaction.
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One particular property that is affected by the presence of dipolar interactions is the

stability of the BEC. As shown in figure 1.1, for aligned dipoles that are positioned end

to end, an attractive force is produced that results in an unstable BEC. However when

the aligned dipoles are positioned side by side, a repulsive force is produced which acts

to stabilise the BEC. Therefore, in contrast to a non-polar BEC, the inherent anisotropy

of the dipolar interaction allows the stability of the condensate to be varied by simply

adjusting the aspect ratio of the trap [11, 12]. The ease with which the interaction

can be manipulated also extends to the strength of the dipolar interaction. By using a

rotating field to polarise the dipoles, it is possible, due to time-averaging, to reduce the

effective strength of the dipole-dipole interaction, and even change its sign [13]. This has

a clear advantage over non-polar BECs as these methods can be applied to all dipolar

condensates.

In order to replicate the systems that are commonly encountered in condensed matter and

solid state physics, BECs are often loaded into the periodic potential of an optical lattice.

This trapping potential is formed by the periodic intensity variation that occurs when

two or more laser beams interfere. As the potential can be altered by simply changing

the intensity, or wavelength of the laser light, quantum phase transitions can be easily

investigated. By using a non-polar BEC of rubidium-87 atoms, the superfluid to Mott

insulator phase transition has already been experimentally observed [14]. However by

making use of a dipolar BEC instead, the number of predicted phases increases to include

the supersolid and checkerboard phases [15]. As these have not yet been observed, dipolar

gases provide a unique opportunity to test theoretical predictions in a highly controlled

environment.

1.1.3 Why are ultracold molecules interesting?

Although an ultracold dipolar gas can consist of either atoms or molecules, much interest

currently surrounds molecular gases as they have a wide range of applications that go far

beyond the study of quantum phase transitions [16]. Unlike atoms, molecules are generally

difficult to cool. Therefore by developing techniques to reduce their temperature, many

improvements are expected in a wide variety of research areas. Precision measurement is

one area in which ultracold molecules are expected to play an increasingly important role.

A common factor that limits the precision of these experiments is the interaction time. As
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a result, cooling and trapping techniques are employed wherever possible. For example,

by using an ion trap to confine a single electron, its magnetic moment has been measured

to 0.28 parts per trillion [17]. Therefore experiments that already utilise molecules can

gain in precision by increasing the interaction time. This can be achieved by using cooled

and trapped molecular samples.

A particular instance where molecules are currently favoured over atoms is for measure-

ments of the electron electric dipole moment (EDM). This measurement is important as

it provides a direct way of testing the extensions of the standard model. As many of these

theories predict the electron EDM to have a small but potentially measurable value, by

placing an upper limit on its size, these theories can be tested and if necessary discounted.

In our laboratory a pulsed source of ytterbium monofluoride (YbF) molecules has previ-

ously been used to set the upper limit of the electron EDM at |de| < 10.5 × 10−28 e cm

[18]. The next generation of this experiment plans to use laser cooled YbF molecules

and a molecular fountain to increase the interaction time and therefore the precision [19].

More recently a new upper limit of |de| < 8.7×10−29 e cm has been placed on the electron

EDM [20]. This was achieved by using a pulsed, cryogenic buffer gas source of thorium

monoxide (ThO) molecules.

Another area in which cold molecules are expected to make a significant contribution is

in the search for time variation of the fundamental constants. There are two principle

methods by which this can be probed. The first is to compare spectroscopic data obtained

in the laboratory with astronomical data. As the transition frequency is dependent on the

fine structure constant, α, time variation of α would present itself as a frequency shift. As

recently demonstrated for CH molecules [21], high resolution spectroscopy is required if

stringent limits on time variation are to be found. The second method involves comparing

highly accurate frequency measurements of two transitions that depend differently on α.

From this comparison it is possible to place a limit on the yearly variation of fundamental

constants [22, 23].

Cold chemistry can also benefit from the greater control that comes with reducing the tem-

perature of molecules. It might be expected that chemical reaction rates would decrease

as the temperature is lowered. However due to quantum effects, this is not necessarily

the case. For example calculations have shown that atom exchange reactions, which lead

to vibrational relaxation in x+x2 collisions, where x = Li, Na or K, can have a high rate
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[24]. In order to fully explore the dynamics of these ultracold reactions, a high level of

control is required. To achieve this, external fields can be used to manipulate the interac-

tion potential, thus allowing the reaction dynamics, reaction rates and perhaps even the

outcome of the chemical reaction to be controlled [25].

Finally cold polar molecules have also been highlighted as potential systems for quantum

information processing [26, 27]. A particular advantage of these molecular schemes is

that, due to their complex structure, there are many degrees of freedom in which a qubit

could be encoded. For example, a qubit could be formed by the electric dipole moment

of the molecule, which is either orientated along or against an external electric field [26].

Currently the major obstacle in realising any such scheme is producing large samples of

polar molecules at sufficiently low temperatures.

1.1.4 How can an ultracold dipolar gas be made?

In order to create an ultracold dipolar gas, a variety of methods are currently being

investigated. Depending on whether the constituent particles are atoms or molecules,

different experimental challenges are faced. For instance, many atoms are easy to cool,

but do not have a sizeable electric or magnetic dipole moment. Therefore either an electric

dipole has to be induced by applying a very large DC electric field, or atoms possessing a

large magnetic dipole moment have to be used.

Chromium is a particular example of an atom that has a relatively large magnetic moment

of μ = 6μB, where μB is the Bohr magneton. In 2005 a sample of Chromium-52 was

successfully cooled to form a BEC [28] and since then it has been used to explore the

effects of dipolar interactions. Despite having a value of εdd = 0.16, where εdd is given by

equation (1.1), the effects of dipole-dipole interactions have been observed. In particular

anisotropic expansion of the cloud has been witnessed [29], the collapse dynamics for

different harmonic trap geometries have been investigated [30], and it has been shown

that the potential well depth of a one dimensional optical lattice can affect the stability

of the BEC [31]. More recently BECs of erbium-168 which has a magnetic moment of

μ = 7μB [32], and dysprosium-164 with a magnetic moment of μ = 10μB [33] have also

been demonstrated.
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When it comes to molecules the experimental challenges are slightly different. In general

heteronuclear molecules have a large permanent electric dipole moment that ranges from

anywhere between 0.1D to 10D. This produces a value of εdd � 1, which means that

dipolar interactions are dominant. However due to their complex internal structure which

consists of electronic, rotational and vibrational energy levels, molecules are difficult to

cool. As a result many different cooling techniques, which can be categorised as either

direct or indirect, are currently being investigated.

Direct cooling techniques involve taking pre-existing molecules and reducing their tem-

perature. Stark deceleration, which uses a time varying inhomogeneous electric field to

slow molecules, has been employed to cool a variety of species which include OH [34],

NH3 [35] and LiH [36]. In an analogous method, pulsed magnetic fields have been used to

Zeeman decelerate oxygen molecules [37]. As these techniques produce molecules at mK

temperatures, they can subsequently be confined in static electric traps [38], AC electric

traps [39], or magnetic traps [40].

Buffer gas cooling is another well established technique that can be used to cool molecules

[40, 41]. For this method to work the molecules of interest must be created within a

buffer gas cell that is filled with low temperature helium. This is usually achieved by laser

ablation of a suitable precursor target. As the molecules collide with the helium, thermal

equilibrium is reached, and a cold source of molecules, with a temperature on the order

of 1K, is produced.

As the above mentioned techniques cannot cool molecules to the μK regime, additional

cooling stages are required. One possible method that could be employed is sympathetic

cooling. This involves overlapping a trapped sample of molecules with an ultracold sample

of atoms, thus allowing the two species to reach thermal equilibrium via elastic collisions.

Although this technique is often used to cool atoms [42–44], atomic ions [45] and molecular

ions [46], sympathetic cooling of neutral molecules has not yet been demonstrated.

For the vast majority of molecules, due to their complex structure, laser cooling is not

possible. This is because laser cooling relies on the repeated absorption and spontaneous

emission of photons in order to produce a force that slows the particle down. In general

tens of thousands of scattering events are required, so a closed cycling transition is neces-

sary. As most molecules do not have such a transition, they are quickly pumped to states

that no longer interact with the laser, thus making laser cooling impossible. However for
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a small subset of molecules [47], with the use of a modest number of repump frequencies,

laser cooling to mK temperatures can be achieved. Experimentally this technique has

been demonstrated for strontium monofluoride (SrF) [48], calcium monofluoride (CaF)

[49] and yttrium oxide (YO) [50].

In contrast to direct methods, indirect cooling techniques involve constructing molecules

from pre-cooled atoms. There are two distinct ways in which this can be done. The

first, called photoassociation, is the process in which two colliding atoms absorb a pho-

ton to form an electronically excited molecule [51]. This newly formed molecule can

then be transferred to the ground electronic state via spontaneous emission. The sec-

ond method, which is called magnetoassociation, instead uses a Feshbach resonance to

produce molecules [52]. A Feshbach resonance occurs when a bound molecular state is

energetically close to the scattering state of two atoms. By adiabatically tuning an ex-

ternal magnetic field through this resonance, the colliding atoms are transferred to the

bound molecular state.

As both techniques produce weakly bound molecules in highly excited vibrational states of

the ground electronic potential, methods are required to transfer the population to deeply

bound vibrational states. If this is not done, the newly formed molecules can undergo

inelastic collisions and be lost from the trap. To coherently transfer the population to

the vibrational ground state, stimulated Raman adiabatic passage (STIRAP) is often

employed [53]. This technique uses two laser frequencies to couple the initial and final

states together via an intermediate excited state. By using STIRAP, samples of KRb

[54, 55] and Rb2 [56] in the vibrational ground state have been produced. As these

indirect cooling techniques rely on having pre-cooled atoms, in the past production has

been limited to alkali metal dimers. However due to progress in laser cooling of species

such as ytterbium [57], a number of experiments are currently focussed on producing

molecules such as RbYb and CsYb.

1.2 Project aims

This section describes the techniques that we plan to employ in order to create an ultracold

dipolar gas. For our experiment there are two possible ways in which this can be done.

Either polar molecules can be sympathetically cooled using ultracold atoms, or the same
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ultracold atoms can be electrically polarised by using a high electric field, thus producing

the desired dipolar interactions.

1.2.1 Sympathetic cooling of polar molecules

In order to create an ultracold dipolar gas, we plan to sympathetically cool polar molecules

by using ultracold atoms. As mentioned in the previous section, the molecules must first

undergo a preliminary cooling stage, such as Stark deceleration, helium buffer gas cooling,

or laser cooling. Next, the molecules must be trapped and subsequently overlapped with

an ultracold cloud of atoms. Provided elastic collisions occur, the two species will reach

thermal equilibrium, and a cold cloud of polar molecules will be produced.

Although the basic idea is simple, it is challenging to realise experimentally. This is

largely due to the occurrence of inelastic collisions, which produce a heating effect. These

are particularly problematic if the molecule is not confined in its absolute ground state.

This is because the collision can de-excite the molecule to an untrapped state, causing

it to be lost. As a result the ratio of the elastic to inelastic collision cross section is an

important parameter. A general rule of thumb is that this ratio must be greater than

100 for sympathetic cooling to be successful [58]. There is also a possibility that the two

species will undergo a chemical reaction. Therefore the molecular and atomic species used

in our experiment must be carefully selected. As the molecular trap can influence the type

of collisions that occur, it must also be chosen with care.

To act as a refrigerant, lithium-7 atoms are a good choice as they can be evaporatively

cooled to temperatures below 1 μK. In addition to this, their low mass results in a large

angular momentum barrier, so that s-wave scattering dominates at relatively high tem-

peratures [59]. As there is no orbital angular momentum in the collisions, the probability

of an inelastic collision is greatly reduced.

In order to determine which kind of molecular trap is most suited for sympathetic cooling

of 7LiH molecules with 7Li atoms, simulations have been carried out for three different

kinds of trap [60]. In each simulation the atom cloud contained 1010 lithium atoms at a

temperature of 50μK. The first trap to be studied was a static electric trap. It works

by creating a minimum in the electric field, thus confining only low-field seeking states.

As the absolute ground state of a molecule is always high-field seeking, inelastic collisions
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will lead to trap loss. Therefore the inelastic collision rate has to be low if cooling is to

be successful. These simulations indicated that sympathetic cooling in a static electric

trap is likely to fail due to the small ratio of elastic to inelastic collision cross sections. It

is worth noting that these simulations used collision cross sections that were calculated

in zero electric field. As demonstrated in [61], the presence of an electric field can have

a large effect on atom-molecule collisions. In particular it was found that the inelastic

collision cross section for Rb + ND3 was enhanced by the presence of the electric trapping

field, implying that sympathetic cooling in a static electric trap is even more likely to fail.

Simulations were also carried out for molecules in an AC electric trap and a microwave trap

[62]. As both of these confine the absolute ground state, inelastic collisions are suppressed.

However in the AC trap, collisions can force the molecules into an unstable trajectory,

causing them to be ejected. The losses produced by this mechanism are significant. After

only 1 s of cooling, 94% of the molecules are lost, and after 10 s of cooling 99% are

lost. As a result an AC electric trap is also unsuitable for sympathetic cooling. In the

microwave trap on the other hand, there are no such losses, thus making sympathetic

cooling achievable. In particular it was shown that after 10 s of cooling, the molecular

temperature was reduced from 100mK to 200 μK. On average, 30 collisions per molecule

were required to reach this temperature.

In response to these findings, a prototype microwave trap has recently been constructed

and characterised in our laboratory [63, 64]. It consists of two concave copper mirrors

which are used to form a Fabry-Pérot cavity. The mirrors have a diameter of 90mm, a

radius of curvature of 73mm and a separation of 35mm. In order to form a standing

wave, microwaves are injected into the cavity through a small hole in one of the mirrors.

This allows high-field seeking molecules, and atoms, to be confined at the antinodes of the

standing wave. To increase the quality factor of the cavity, which depends on the fractional

power loss per round trip, the mirrors are internally cooled using liquid nitrogen. Typical

trap depths for molecules are on the order of 1K, whilst for lithium atoms the trap depth

is 0.44mK. Currently an ultra high vacuum compatible version is being built and tested.

It has been designed so that ultracold lithium can be magnetically transported from a

lithium MOT into the microwave trap and that is one of the goals of this work.
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1.2.2 Atoms under high electric fields

The second way in which we can create an ultracold dipolar gas is by polarising the lithium

atoms using a very high electric field. To achieve this, the atoms must first be positioned

between two electrodes. By applying a high voltage to the electrodes, the resulting electric

field will induce a dipole on each atom, thus producing the desired dipolar interactions.

For lithium-7 trapped in the F = 2, MF = 2 state, the scattering length is as = −27.6a0,

where a0 is the Bohr radius [65]. By using equation (1.1) we find that an electric field

of 1MV/cm only produces a value of εdd = 0.16. Comparing this to some of the values

of εdd for other systems, as shown in table 1.1, this is no better than the value given

for Chromium atoms. However if the lithium atoms are instead trapped in the F = 1,

MF = −1 state, then the scattering length is as = 5.3a0, which produces a value of

εdd = 0.82 when an electric field of 1MV/cm is used. Although this is slightly below the

value required for dipolar interactions to dominate, they should still have a significant

effect on the properties of the gas. To date a dipolar gas of this nature has not been

experimentally realised.

Dipole type Cdd Species & parameter values εdd

Magnetic μ0μ
2

7Li, μ = μB, as = −27.6a0 [65] 0.002
52Cr, μ = 6μB, as = 96a0 [66] 0.16

Induced electric α2E2/ε0

7Li, α = 164 au [67], E = 1MV/cm,
F = 2, MF = 2, as = −27.6a0 0.16
F = 1, MF = −1, as = 5.3a0 [65] 0.82

Permanent electric d2e/ε0
Molecule, de = 1D, 47
m = 50 amu, as = 100a0 [68]

Table 1.1: Comparison of εdd for different atomic and molecular systems. The atomic
unit of electric polarisability is au= e2a20/Eh, where e is the charge of the electron, a0 is

the Bohr radius and Eh is the Hartree energy.

It is worth noting that producing an electric field of 1MV/cm is by no means trivial. In

order to achieve anything close to this value, great care must be taken to ensure that the

electrodes have a smooth surface. As the size of the electric field is given by E = V/d,

where V is the applied voltage and d is the electrode separation, it is important to keep

d as small as possible. Therefore we plan to set d = 0.5mm. To reach our desired field,

the two electrodes will be held at V = ±25 kV respectively. Although our ultimate aim is

to generate an electric field of 1MV/cm, provided the field is greater than 0.45MV/cm,

the value of εdd will be greater than 0.16. If a field of approximately 0.54MV/cm can be
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reached, it should be possible to experimental verify the existence of a shape resonance

that has been predicted for lithium atoms in the F = 2, MF = 2 state [69]. This has

interesting applications, as it allows the scattering length to be tuned from negative to

positive. Therefore the unstable condensate that is usually formed by lithium atoms in

the F = 2, MF = 2 state could be stabilised by varying the size of an external electric

field. This shows that even if we are unable to produce a field of 1MV/cm, interesting

properties can still be investigated.

1.3 Thesis overview

Although there are two possible ways in which we can create an ultracold dipolar gas, both

techniques rely on having an ultracold source of lithium-7 atoms. This thesis describes

the work that has been carried out to cool, trap and transport such a cloud. Broadly

the setup consists of a lithium oven, Zeeman slower, magneto-optical trap (MOT) and

magnetic trap. As we plan to electrically polarise the lithium atoms, a setup capable

of producing fields of up to 1MV/cm needs to be developed. Therefore this thesis also

highlights the progress that has been made towards realising this goal.

This thesis has been divided into three main chapters. Chapter 2 begins with a brief

outline of the relevant theory associated with laser cooling and trapping. This is followed

by a description of the original setup that was used to cool, trap and transport lithium

atoms. From initial transportation experiments it became clear that the setup suffered

from a number of shortcomings. To overcome these problems, it was redesigned. This

new setup, which is currently in use, is described in detail. Finally the results of charac-

terisation experiments are presented. In particular the number of atoms trapped in the

MOT, and the cloud temperature are measured, and subsequently optimised by varying

parameters such as the laser beam power and detuning.

Chapter 3 describes the magnetic trap and transportation system that we use to move

atoms from one vacuum chamber to another. Atomic transport is necessary because

neither the microwave trap, nor the high field electrodes can be directly overlapped with

atoms confined in the MOT. After the atoms have been transported, it is important that

we are able to image them. Therefore the problems associated with imaging the atom

cloud after release from the magnetic trap are highlighted. In order to determine the
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source of these problems line shape measurements were taken. These results, and their

implications are discussed in detail. This is followed by a description of the method used

to test and optimise the transport procedure.

Finally chapter 4 covers the progress that has been made towards generating high electric

fields. First the processes which lead to electrical breakdown are described along with

the techniques that are commonly employed to improve electrode performance. In order

to electrically polarise the atoms, in addition to a high field, we require almost perfectly

parallel electrodes. Achieving this through machining of the electrode surface is incredibly

challenging. Therefore we have designed an adjustable electrode mount that allows the

angle between the plates to be precisely varied. By using indium tin oxide (ITO) coated

glass electrodes, interferometric techniques can be employed to ensure that the plates are

parallel. Using this design, high voltage tests were performed. It was not possible to

generate the high fields that we require, therefore super-polished stainless steel electrodes

were also tested. As it is not possible to align these electrodes using interferometric

techniques, the electrode mount has recently been redesigned by Devin Dunseith. An

overview of this new design is given. The chapter concludes by describing the next steps

that will be taken in order to create an ultracold dipolar gas.



Chapter 2

The lithium MOT

This chapter details the experimental setup used to cool and trap a large cloud of lithium-7

atoms. In section 2.1 a brief introduction to the theory of laser cooling is given, along with

a description of the properties of magneto-optical traps. Section 2.2 describes the original

experimental setup used and the problems associated with it. The new setup that has been

built to overcome these problems is detailed in section 2.3, and the methods used to image

the atoms are described in section 2.4. Finally the results of experiments to optimise the

number of trapped atoms, compress the cloud and cool it further are reported in sections

2.5 and 2.6.

2.1 Laser cooling and trapping

Without the invention of the laser the field of atomic physics would not be what it is today.

The start of modern day atomic physics experiments can be marked by the suggestion

made in 1975 by Hänsch and Schawlow that laser light could exert a substantial force

on atoms that could be used to cool them [70]. Around the same time it was suggested

by Wineland and Dehmelt that laser cooling could also be applied to trapped ions [71].

Further development of this idea came a few years later when Ashkin suggested that lasers

could be used not only to cool but also to trap atoms [72].

In 1982 came the first demonstration of deceleration of an atomic beam by laser light

[73] and since then laser cooling has proved to be a hugely successful technique. As the

range of laser wavelengths has increased, so too has the variety of species that have been

24
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successfully laser cooled [48, 57, 74, 75]. In addition to this laser cooling has a wide

variety of applications in such things as tests of fundamental symmetries, investigations

into quantum degenerate gases, and the development of time and frequency standards.

In order to understand how laser cooling and trapping works, it is necessary to first look

at how light and atoms interact. To do this we will use a semiclassical approach, that is,

the atom is treated as a quantum mechanical system and the light as a classical electric

field. It should be noted that only a brief outline of important concepts is given here and

for a more thorough explanation the reader is directed to [76] and the references therein.

To simplify the situation the atom is modelled as a two level system consisting of a ground

state |g〉 with energy Eg and an excited state |e〉 with energy Ee such that Ee−Eg = ~ω0,

where ω0 is the angular frequency of the atomic transition. The light drives transitions

between |g〉 and |e〉 with a strength governed by the electric dipole moment matrix element,

D = e〈e|ε ∙ r̂|g〉, where e is the charge of the electron, r̂ is the position operator and ε

is a unit vector defining the state of polarisation of the light. The wavelength of an

atomic transition is much longer than the size of the atom, so the spatial variation of the

electromagnetic field over the volume of the atom can usually be neglected. This is the

dipole approximation and in this approximation the Rabi frequency Ω, which describes

the oscillation frequency between the two states when the light is on resonance, is related

to D by

Ω = −
DE0
~
= −

e〈e|ε ∙ r̂|g〉E0
~

(2.1)

where E0 is the amplitude of the electric field.

Once the atom is in the excited state it can undergo either stimulated or spontaneous

emission. When the lifetime of the excited state is short, as it is for the lithium D2 line

which has a lifetime of τ = 26.87 ns, then the process of spontaneous emission becomes

important. The optical Bloch equations give a complete description of the coherences

and populations of the system, taking into account the damping term which arises due to

spontaneous emission. Finding the steady state solution of the optical Bloch equations

then yields an expression for the population of the excited state ρee as [76]

ρee =
2Ω2/Γ2

2(1 + 2Ω2/Γ2 + 4δ2/Γ2)
, (2.2)



Chapter 2. The lithium MOT 26

where Γ is the decay rate of the transition, which is also known as the natural linewidth,

and δ = ω − ω0 is the detuning of the laser light from the atomic resonance, where ω is

the angular frequency of the light. By defining the saturation parameter s0 as

s0 =
I

Isat
=
2|Ω|2

Γ2
, (2.3)

where I is the laser intensity, and Isat is the saturation intensity, the equation for the

excited state population can be rewritten in the more useful form,

ρee =
I/Isat

2(1 + I/Isat + 4δ2/Γ2)
. (2.4)

Rearranging equation (2.3) to give Isat = I Γ2/(2|Ω|2), makes it possible to find an ex-

pression for the saturation intensity. By using equation (2.1), along with the relations

I = (cε0E
2
0)/2, and Γ = (ω

3e2|〈e|ε ∙ r̂|g〉|2)/(3πε0~c3) = 1/τ we find

Isat =
πhc

3λ3τ
. (2.5)

The scattering rate Rscatt, is given by the population of the excited state multiplied by

the decay rate of the transition,

Rscatt = Γρee (2.6)

=
Γ

2

s0
(1 + s0 + 4δ2/Γ2)

. (2.7)

2.1.1 The spontaneous force

The force used to laser cool atoms is produced by the repeated cycle of absorption and

emission of photons that comes about when an atom is exposed to resonant laser light.

Each time the atom absorbs a photon, it receives a small momentum kick of size Δp = ~k,

in the direction of travel of the photon. Here k is the wavevector of the light and is related

to the wavelength by k = 2π/λ. When the atom de-excites it will spontaneously emit a

photon in some random direction and again will experience a momentum kick. Therefore

laser cooling works because all absorbed photons come from a particular direction whereas

spontaneously emitted photons are distributed isotropically, so averaging over many cycles
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there is a net force in the propagation direction of the incident laser beam. This can be

used to oppose the motion of the atom and hence slow it down.

To find how much force is exerted by the light on the atom, we start with Newton’s second

law,

F =
dp

dt
, (2.8)

where p is the momentum of the photon. The rate of change of momentum is equal to

the momentum of a single photon multiplied by the rate at which photons are scattered.

This means the force can be written as

Fspon = ~kRscatt, (2.9)

where Fspon is called the spontaneous force because it relies on the absorption and subse-

quent spontaneous emission of photons. Using equation (2.7) this becomes

Fspon = ~k
Γ

2

s0

(1 + s0 + 4δ2/Γ2)
. (2.10)

As I → ∞, the force limits to Fmax = ~kΓ/2. This happens because the rate of sponta-

neous emission for a two level atom tends to Γ/2 when the intensity of the light is high,

as in the steady state the populations of the upper and lower states both approach a half.

For lithium we find that the light will exert a maximum force of 1.8 × 10−20N, which is

equivalent to a deceleration of 1.6× 106m/s2 ≈ 160, 000 g. In our experiment the lithium

gas typically has a temperature in the region of 500 ◦C (773K), which means the atoms

have a velocity of around 960m/s. With this velocity we require a minimum distance of

0.29m to slow a lithium atom to rest, and require over 11, 000 scattering events.

2.1.2 Optical molasses

Now that we have an expression for the force exerted by light on an atom, it is instructive

to look at the resultant force from two counter-propagating light beams of the same

frequency. This configuration is called a one dimensional optical molasses and can readily

be extended to three dimensions by the inclusion of two more counter-propagating beam

pairs placed in orthogonal directions to the first.
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To produce the frictional force which gives the optical molasses its name, the beams must

have a frequency lower than that of the atomic transition (δ < 0), in other words the

beams must be red detuned. Here it is assumed that the total force acting on the atom

is equal to the sum of the force from each of the two individual beams. Using equation

(2.10) from the previous section, it is clear that for a stationary atom the net force will be

zero. However if the atom is moving, then because of the Doppler shift Δω, an imbalance

in the force is created.

Placing the one dimensional optical molasses along the horizontal x axis and starting with

an atom travelling with velocity v in the positive x direction, the frequency of the light

as seen by the atom will be shifted according to Δω = k ∙ v. This means the atom will see

the counter-propagating beam as having a higher frequency and the co-propagating beam

as having a lower frequency. As the beam is red detuned, it follows that the counter-

propagating beam will be shifted closer to resonance and therefore the atom will absorb

more photons from this beam. This will lead to a net force which will act to slow the

atom down.

The Doppler shift introduces an additional term into the detuning giving δom = ω−ω0∓kv,

where the sign of kv depends on the relative motion between the atom and the light. The

total force acting on the atom in a one dimensional optical molasses can then be written

out as

Fom = Fspon(ω − ω0 − kv)− Fspon(ω − ω0 + kv) (2.11)

≈ Fspon(ω − ω0)− kv
∂F

∂δ

∣
∣
∣
∣
ω−ω0

−

[

Fspon(ω − ω0) + kv
∂F

∂δ

∣
∣
∣
∣
ω−ω0

]

(2.12)

≈ −2kv
∂F

∂δ

∣
∣
∣
∣
ω−ω0

(2.13)

where we have carried out a Taylor expansion and assumed that the velocity and hence

Doppler shift is small, thus allowing all terms of order v3 and higher to be neglected.

Note that the term proportional to v2 vanishes. The force can now be written in the form

Fom = −αv, where α is called the damping coefficient. By differentiating equation (2.10)

with respect to δ, we end up with an expression for the force in an optical molasses,

Fom = 8~k
2s0

δ/Γ

[1 + s0 + 4δ2/Γ2]
2 v. (2.14)
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Figure 2.1 shows how the force in an optical molasses varies with velocity. The blue curve

shows the total force given by equation (2.11), the red line is the linear approximation of

equation (2.14) and the black dashed lines represent the force from each individual laser

beam, as described by equation (2.10). Here we can see that the linear approximation is

only valid at low velocities. In this region the force is proportional to the velocity of the

atom, so faster atoms will experience a larger force. However as the velocity continues to

increase the force begins to decline, as shown by the blue curve. At these higher velocities

the Doppler shift is no longer small, and the light becomes increasingly detuned from

the atomic transition, leading to a smaller force and ineffective slowing of the atom. The

capture velocity of the optical molasses, defined as vomc = δ/k, indicates the velocity below

which the linear approximation holds.

Figure 2.1: Velocity dependence of the force in a one dimensional optical molasses
given a detuning δ = Γ and a saturation parameter s0 = 2. The dashed black curves
show the force from each of the two counter-propagating beams and the blue curve is
the combined force from these two beams. The red line shows how the total force can be

approximated by a damping force for low velocities.

It may seem as though an optical molasses alone would be enough to trap atoms, as naively

we might expect the frictional force to cool the atoms to zero velocity, thus effectively

trapping them within the confines of the optical molasses beams. This however would

result in a cloud with zero temperature, which is clearly unphysical. The reason this

does not happen is due to the fact that the frictional force is discontinuous in nature.

This leads to the cloud reaching a non-zero temperature limit, the details of which are

discussed in section 2.1.5, and means that an optical molasses produces a dissipative force
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which confines the atoms in velocity space. In other words an optical molasses can only

be used to slow the atomic motion. In order to trap the atoms, an additional restoring

force must be applied which acts whenever an atom moves too far away from a particular

point in space.

2.1.3 The magneto-optical trap

By combining three pairs of orthogonal, counter-propagating light beams and a modest,

inhomogeneous magnetic field, it is possible to form an atom trap. This trap configuration

is called a magneto-optical trap, or MOT, and was first demonstrated by Raab et al. in

1987 using sodium atoms [77]. By using a three dimensional optical molasses the resultant

damping force is able to slow the atomic motion, whilst the magnetic field is used to tune

the atom-light interaction creating a position dependent restoring force. This results in

atoms that are both cooled and trapped.

In a MOT, the restoring force used to trap atoms is created by having both a linearly

varying magnetic field gradient and light with the correct polarisation. In order to generate

the required spherical quadrupole field, which has a zero field point at its centre, a pair of

anti-Helmholtz coils are used. Typical field gradients are in the region of 10 − 20G/cm,

meaning that the magnetic field alone provides only a weak trapping force.

To understand the details of how a MOT works, we start with the situation depicted in

figure 2.2. For simplicity we choose a system with only two energy levels, an F = 0 ground

state and an F ′ = 1 excited state, where the prime is used to indicate the excited state.

Here F = I + J , where F is the total angular momentum of the atom, I is the nuclear

spin and J is the total electronic angular momentum. These particular states have been

selected for clarity only, meaning that the following explanation can be readily extended

to any other F = N to F ′ = N + 1 pair of states.

A one dimensional optical molasses is formed along the horizontal x axis where both

beams are circularly polarised. The polarisations have been chosen so that the beam

travelling towards the left excites a σ− transition, meaning ΔMF = −1, where MF is the

projection of the total angular momentum on the magnetic field axis. The beam travelling

towards the right excites a σ+ transition, so ΔMF = +1. As before both beams have the

same frequency and are red detuned.
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Figure 2.2: Illustrates the MOT trapping mechanism for an atom with an F = 0 ground
state and an F ′ = 1 excited state. A linearly varying magnetic field produces a Zeeman
shift of the excited states causing an atom moving to the right to experience a restoring

force back to the centre of the trap.

Due to the Zeeman effect, the energy levels of the atom shift as it moves through the

magnetic field. Consider what happens to an atom moving to the right. As the magnetic

field increases the MF = −1 state is shifted to lower energies, bringing it closer into

resonance with the σ− laser beam. This causes the atom to absorb more photons from

this beam than the σ+ beam, resulting in a force which pushes the atom back towards the

zero field point at the centre of the trap. If however the atom is moving to the left, the

opposite situation arises where the MF = +1 state is brought closer into resonance with

the σ+ light and so again the atom will absorb more photons from the laser beam which

opposes its motion, thus pushing the atom back towards the trap centre. In a MOT,

this situation occurs along all three orthogonal axes and so provides a three dimensional

restoring force that depends on the position of the atom.

Going back to equation (2.10) which describes the force exerted by a single laser beam on

an atom, it is possible to include the effect of the magnetic field by introducing a Zeeman

shift term into the detuning along with the Doppler shift term described in section 2.1.2.

In the MOT the total detuning is given by δmot = ω − ω0 ∓ kv ±
ΔμB(x)

~ , where B(x) is

the magnetic field as a function of position and Δμ = (gF ′MF ′−gFMF )μB is the effective
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magnetic moment of the transition in question. Here μB is the Bohr magneton and gF ′

and gF are the Landé g-factors of the excited and ground states respectively.

Using a similar method as was used for the optical molasses, we can write down an

approximation to the total force in the MOT along one axis. Here it is assumed that the

Doppler shift and Zeeman shift are both small compared to the detuning, δ = ω − ω0.

The total force can then be written in the form Fmot = −αv − κx, where κ is the spring

constant and equals

κ =
2ΔμB′

~
∂F

∂δ

∣
∣
∣
∣
ω−ω0

(2.15)

=
ΔμB′

~k
α. (2.16)

Here B(x) has been replaced by using B(x) = B′x where B′ is the magnetic field gradient.

Writing out fully the expression for the total force in the MOT we are left with

Fmot = −αv − κx (2.17)

= 8~k2s0
δ/Γ

[1 + s0 + 4δ2/Γ2]
2

(

v +
ΔμB′

~k
x

)

. (2.18)

Looking at the form of equation (2.17) we see that the atoms in a MOT undergo damped

simple harmonic motion. This means there is a characteristic angular oscillation frequency,

ωmot, as well as a damping rate, Γmot, that describes the motion of atoms in the MOT.

These are given by

ωmot =

√
κ

m
(2.19)

Γmot =
α

m
, (2.20)

where m is the mass of the atom. Using typical values for our lithium MOT, namely

δ = −3.5Γ, s0 = 2.2, B′ ≈ 15G/cm and cooling on the F = 2,MF = 2 to F ′ = 3,MF ′ = 3

transition which gives Δμ = μB, the oscillation frequency is then ω
Li
mot = 5.1 krad/s and

the damping rate is ΓLimot = 18.4 krad/s. As the damping rate is larger than the oscillation

frequency, the system is overdamped. This is generally true for all MOTs.

Two additional parameters which are useful to define when characterising the MOT are

the capture radius Rc and the capture velocity vc, which is not to be confused with the

capture velocity of the optical molasses, vomc described earlier. The capture radius is
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defined as the distance from the trap centre at which an atom at rest will be resonant

with the MOT light. This is simply given by

Rc =
~δ
ΔμB′

. (2.21)

This quantity gives a measure of the trapping volume of the MOT such that if an atom

enters this volume with a sufficiently low velocity it will remain trapped within the MOT.

In the situation where the capture radius is larger than the radius of the MOT beams,

the latter should be used instead. Employing the same values as used previously for our

lithium MOT results in a capture radius of Rc = 0.99 cm, which is just slightly larger than

our beam radius of 0.96 cm. Therefore the capture radius of our MOT is RLic = 0.96 cm.

The capture velocity is defined as the highest atomic velocity that can be slowed to

v = 0 within the trapping region. An estimate is obtained by assuming the maximum

acceleration, amax = Fmax/m = ~kΓ/2m is continuously applied over a distance of Rc,

and results in

vc =

√
~kΓRc
m

. (2.22)

Using the value of RLic given above and the usual values we have in our MOT, this leads to

a capture velocity of vLic = 174m/s. This is an over-estimate of the actual capture velocity

as the atom cannot be resonant with the light throughout the entire slowing process and

the laser intensity is finite. In [78] the capture velocity of a lithium MOT was found to be

approximately 35m/s when using a MOT beam detuning of −2Γ (red detuned), whilst

at a detuning −5Γ the capture velocity was about 50m/s. As our setup is similar, it

is reasonable to assume that the capture velocity for our lithium MOT lies somewhere

within this range.

2.1.4 MOT density limit

In the MOT there are two distinct density regimes which occur depending on the total

number of atoms, N , that are present. When N is small, typically less than 104, the

cloud density is low, meaning that interatomic effects can be neglected and the cloud

can be treated as a collection of N independent particles. In this situation the density

distribution n(x, y, z) for a cloud at temperature T , in a potential U(x, y, z) is given by
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the Boltzmann distribution

n(x, y, z) = n0e
−U(x,y,z)

kBT (2.23)

where n0 is the peak density of the cloud. As can be seen in equation (2.17) the potential

is harmonic, which leads to

U(x, y, z) =
1

2
(κxx

2 + κyy
2 + κzz

2). (2.24)

Clearly the density distribution of the cloud is Gaussian, with a width along each Cartesian

axis given by

σi =

√
kBT

κi
(2.25)

where i = x, y, z. Normalising the distribution to the total number of atoms then produces

a value for the peak atomic density,

n0 =
N

(
√
2π)3σxσyσz

(2.26)

=
N

2(
√
2πσz)3

, (2.27)

where we have assumed a typical MOT configuration so that the magnetic field gradient

along the coil axis, that is the z axis, is twice that of either the x or y directions, meaning

σx/
√
2 = σy/

√
2 = σz. In this regime the radius of the cloud depends only on the

temperature so that for a fixed T, as the atom number increases, so too does the density.

In the vast majority of MOTs however the atom number is well above this low density

limit, and this results in the density reaching a peak value such that when more atoms

are added only the radius of the cloud will increase.

This second density regime occurs when N > 104 and is called the multiple scattering

regime. Here the atom cloud density is sufficiently high that a scattered photon has

a significant chance of being reabsorbed by a second atom. This leads to an effective

repulsive force between the two atoms and so sets a limit on the density that can be

achieved in the MOT. In [79] this maximum density is calculated to be of the form

nmax ∼
κ

IσL(σR − σL)
, (2.28)

where I is the laser intensity, σL is the cross section for absorbing a photon from the

laser field and σR is the cross section for absorbing a re-radiated photon. In general these
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two cross sections are different because the re-radiated photons don’t necessarily have the

same polarisation, or frequency as the incident laser photons. Using a two level model for

the atom, the absorption cross section for the laser light can be calculated using [80]

σL =
3λ2

2π

1

1 + s0 + 4δ2/Γ2
, (2.29)

whilst the value of κ can be found from equation (2.16). Obtaining an expression for

σR is more involved. However for caesium it has been calculated numerically in [79] and

analytically in [80] and [81].

Upon entering the multiple scattering regime the density distribution observed in [80]

was well approximated by a Gaussian, and was found to have a maximum density which

was almost completely independent of atom number. This means that as more atoms are

added to the MOT the size of the cloud grows with no further increase in the density.

Our observations, which are described in section 2.5.2, align well with this observation.

In general the maximum density limit in the MOT tends to be around 1011 atoms/cm3

regardless of the alkali species used [78, 80, 82].

In order to overcome this density limit two principal methods have been developed. The

first is the dark spontaneous force optical trap (dark-SPOT) developed by Ketterle et al.

in 1992 which reported densities approaching 1012 atoms/cm3 [83]. Here they describe

two processes by which the density in the MOT is limited, the first is due to re-radiated

photons as explained above, the second is due to collisions between ground and excited

state atoms where part of the excitation energy is converted into kinetic energy, thus

ejecting the atom from the trap [84]. The dark-SPOT aims to mitigate both of these

effects by keeping the atoms mostly confined in a dark state. This reduces the number of

scattered photons, thus lowering the probability of another atom absorbing a re-radiated

photon. It also reduces the amount of time that the atoms spend in the excited state

and so decreases the rate of trap loss due to collisions between ground and excited state

atoms, therefore allowing the density limit to be overcome.

The dark-SPOT can either be implemented temporally or spatially. In the temporal case

it involves initially loading the atoms into a normal MOT so as to maximise the atom

number, then reducing the intensity of the repump light for some period of time, thus

forming a dark trap and allowing the cloud density to increase. The spatial realisation,

often called a dark spot MOT, is generally a better choice as it allows the dark trap to be



Chapter 2. The lithium MOT 36

continuously loaded. It requires blocking a central portion of the repump light, thereby

creating a dark spot at the centre of the MOT. When an atom reaches this central region

it will be pumped to the dark state. If the atom then moves away from the centre,

both repump and trapping light will be present and so the atom will once again enter

the cooling cycle. Provided this spot is centred on the magnetic field minimum then the

coldest atoms will accumulate in the dark spot and as before, due to the reduction in

scattered photons, there will be an increase in the density.

The second approach used to overcome the density limit is to implement a compressed

MOT [85]. Here the aim is to alter the spring constant, κ, of the trap because in the

multiple scattering regime, as can be seen by equation (2.28), the density of the MOT is

proportional to κ. Equation (2.16) shows that the spring constant in turn is proportional

to the magnetic field gradient. Therefore by increasing the field gradient there should be

a corresponding increase in the cloud density. As observed by Höpe et al. in [86] however,

as the magnetic field gradient is increased the number of atoms loaded into the MOT

can decrease dramatically. This phenomenon is indicated by equations (2.21) and (2.22),

which show that as the magnetic field gradient increases the capture radius and capture

velocity of the MOT decrease. A higher field gradient means that the Zeeman shift at

a particular position is larger, so the point at which an atom at rest will be resonant

with the laser beam, i.e. the capture radius, is shifted closer to the trapping centre. This

leads to a reduction in the capture velocity, which means hotter atoms can no longer be

trapped. Therefore the total atom number in the MOT decreases.

Clearly to have a large atom number at high density a separation of the collection and

compression processes should be employed. This requires a MOT with a low field gradient

to be used initially in order to collect a large number of atoms, followed by a period of

compression which is achieved by rapidly increasing the field gradient. In this situation

sometimes it is also beneficial to increase the detuning of the trapping light so that the

scattering rate is reduced. The compressed MOT has been implemented using lithium-6

in [87], where there was a slight increase in the density going from 2.4× 1010 atoms/cm3

to 3.4× 1010 atoms/cm3 after compression.
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2.1.5 Doppler cooling limit

As mentioned in section 2.1.2 there is a finite, non-zero temperature limit to which the

atoms in an optical molasses can be cooled. This temperature limit, known as the Doppler

cooling limit, comes about because the force exerted by light is discontinuous. In pre-

vious sections the force that has been calculated is the average force exerted over many

absorption and emission cycles. This means the actual force applied at any given time will

fluctuate, and it is these variations in the force which produce heating that counteracts

the cooling effect of the light, resulting in a non-zero temperature limit.

There are two different sources of fluctuations which go on to produce heating. The first

comes from variations in the number of photons absorbed in a given time interval, whilst

the second is due to fluctuations in the direction of spontaneously emitted photons. Both

of these processes lead to a random walk of the momentum of the atom. In order to find

the temperature limit that results from this, it is necessary to find an expression for the

heating rate and to compare it to the cooling rate.

To start we again consider an atom in a one dimensional optical molasses. As before the

average force exerted on the atom is given by equation (2.14) and results in the average

velocity of the atom being reduced to zero. This means the atom is equally likely to

absorb a photon from either of the two beams, with each photon absorption contributing

a step of size ~k to the random walk of the momentum. Each spontaneous emission will

also contribute an ~k sized step, again with an equal probability of a positive or negative

step, provided the situation is purely one dimensional. This means that each scattering

cycle represents two steps in the random walk.

Although the mean velocity of the atom is zero, the mean squared velocity is not. Con-

sequently, the mean squared momentum, 〈p2〉, is also non-zero and by finding the rate of

change of this quantity it is possible to determine the heating rate. To find an expression

for 〈p2〉 first we need to know the number of random walk steps Np, taken in a given time

interval t. This is given by

Np = 2(2Rscatt)t, (2.30)

where 2Rscatt is the total average scattering rate. As before Rscatt is given by equa-

tion (2.7) and the factor two comes from the assumption that two laser beams scatter

twice as many photons as a single beam. The factor of two outside the brackets comes
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about because each scattering event consists of both absorption and emission of a photon.

Therefore after Np steps, the mean squared momentum will have increased according to

〈p2〉 = (~k)2Np = 4(~k)2Rscattt. The rate of change of momentum squared can then be

written as
d〈p2〉
dt
= 4~2k2Rscatt. (2.31)

Using E = p2/2m, the heating rate for two beams in one dimension becomes,

(
dE

dt

)

heat

=
1

2m

d〈p2〉
dt

(2.32)

= 2~2k2
Rscatt
m

(2.33)

=
~2k2Γ
m

s0

1 + s0 + 4δ2/Γ2
. (2.34)

The cooling rate on the other hand is equal to the rate at which the atom loses kinetic

energy when subjected to the average light force. For the one dimensional optical molasses

this is

(
dE

dt

)

cool

=
d

dt

(
1

2
mv2x

)

= mvx
dvx

dt
(2.35)

= vxFom (2.36)

= −αv2x. (2.37)

The atom will reach equilibrium when (dE/dt)heat + (dE/dt)cool = 0. Using this and

rearranging for v2x results in

v2x =
~Γ2

8m|δ|
(1 + s0 + 4δ

2/Γ2), (2.38)

where v2x represents either the mean square velocity of a cloud of atoms undergoing laser

cooling, or for a single atom, the time average of the squared velocity. To relate this to a

temperature we use the equipartition theorem, so for each degree of freedom we have

kBT

2
=
mv2i
2

(2.39)

where kB is the Boltzmann constant, and i = x, y, z. This results in an equation for the

Doppler temperature,

T =
~Γ2

8kB|δ|
(1 + s0 + 4δ

2/Γ2). (2.40)
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The minimum temperature is found for s0 � 1 and δ = −Γ/2, which gives the Doppler

cooling limit

TD =
~Γ
2kB

. (2.41)

For lithium with a natural linewidth of 5.92MHz the Doppler cooling limit is 142 μK.

However the majority of lithium laser cooling experiments quote cloud temperatures in

the region of ∼ 300μK. This is because most experiments have s0 > 1.

Originally it was thought that the Doppler temperature was the lowest temperature that

could be reached via laser cooling and early experiments seemed to confirm this as the

limit [88, 89]. However later experiments revealed that with the more complex structure

of real atoms came new cooling mechanisms, thus allowing even lower temperatures to

be reached [90, 91]. As discussed in the following section, these sub-Doppler cooling

mechanisms as they are known, have not been observed when laser cooling lithium.

2.1.6 Sub-Doppler cooling

Having discovered that atoms could in fact be cooled to temperatures below the Doppler

limit, it became apparent that Doppler theory alone could not fully explain the process

of laser cooling. In response to this, a description of the mechanisms associated with

sub-Doppler cooling was put forward by Dalibard and Cohen-Tannoudji [92]. Their ex-

planation incorporated two features of the real life system which are ignored in the Doppler

theory treatment, that is they took into account the multi-level nature of real atoms as

well as the fact that the total polarisation of the light field varies with position.

Taking a one dimensional optical molasses, there are two different sub-Doppler cooling

mechanisms which can occur depending on whether the beams have opposite circular

polarisations, denoted σ+ − σ−, or orthogonal linear polarisations, lin ⊥ lin. Starting

with the lin ⊥ lin configuration, the total polarisation of the light field varies over a λ/2

length scale. As depicted in figure 2.3 the polarisation is initially σ−, it then changes to

linear, followed by σ+ and finally turns linear again, orthogonal to the previous linear

polarisation. After this the pattern repeats. This variation in the polarisation results in

the atoms being pumped to different MJ sub-levels depending on their position within

the light field. For example, atoms in the σ− region will be pumped to the MJ = −1/2
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ground state, whilst in the σ+ region the atoms will instead be pumped to theMJ = +1/2

state.

Figure 2.3: Diagram of the mechanism associated with Sisyphus cooling. The light
standing wave has a polarisation gradient which produces a spatial modulation of the
atomic energy levels. The atom loses energy by absorbing a photon at the top of the

potential hill and emitting a photon which leaves it in a valley.

In addition to this there is also a modulation of the energy levels of the ground state. This

is caused by the light shift, where the magnitude of the shift is dependent on the strength

of the transition. In general the transition strength varies for different MJ sub-levels,

meaning that the levels will be shifted by differing amounts. Additionally for any given

MJ state the transition strength will vary with polarisation. Therefore the modulation

of the energy levels occurs because of the polarisation gradient of the light field, and

consequently is periodic on the same length scale.

In order for there to be cooling, the mean time taken to pump an atom from one sub-level

to another, τp, must be comparable to the time it takes for the atom to travel a distance

of approximately λ/4. To see this we consider an atom in the MJ = −1/2 state, starting

at a position of σ− polarisation, as shown in figure 2.3. If the atom moves through a

distance of order λ/4 in the pumping time τp, then on average the atom will remain in the
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same MJ sub-level. Therefore as the atom travels to the right it will be able to climb a

potential hill and reach the top before being optically pumped to the lower energy state,

which is now the MJ = +1/2 state. As the atom continues moving to the right this

process is repeated.

This sequence leads to cooling because each time the atom moves up a potential hill

it converts some of its kinetic energy into potential energy. It then absorbs and emits

a photon where the emitted photon has a higher energy. This means the atom has

lost kinetic energy and has therefore been cooled. This cooling mechanism is known as

Sisyphus cooling.

After each absorption-emission cycle the amount of energy lost by the atom is equal to

the energy difference between the two ground state levels, that is the difference in their

light shifts. Sisyphus cooling stops working when the energy lost in going from the top

to the bottom of the potential hill is balanced by the recoil energy, which is the energy

acquired by the atom when a photon is emitted. In this situation there is no net energy

loss and so this imposes a temperature limit, Tsis, on the Sisyphus cooling mechanism.

Provided the laser power is low, this limit becomes Tsis ' TR = Er/kB , where TR is the

recoil temperature, or recoil limit, and ER = ~2k2/2m is the recoil energy.

The cooling mechanism for the σ+−σ− configuration is slightly different. In this situation

the polarisation of the light is linear everywhere, although the angle of polarisation rotates

through 2π over a distance of λ. This means there is no spatial variation in the light shift of

the energy levels, and so the Sisyphus effect just described does not occur. To understand

how this mechanism works, first we consider a frame of reference that rotates with the

linear polarisation such that the quantisation axis is always aligned with the oscillating

electric field. This means that the laser can only drive π transitions.

Looking at figure 2.4 we see that when an atom is excited from MJ = ±1 it is equally

likely to decay to MJ = 0 as to MJ = ±1, but when it is excited from MJ = 0 it is twice

as likely to decay back to MJ = 0 than to the other two states. As a result, the MJ = 0

state will have a larger share of the population than the MJ = ±1 states, provided the

cloud of atoms is stationary. This is the steady state distribution. For a moving atom

the quantisation axis rotates and the atomic distribution is optically pumped to follow it.

There is an intrinsic pumping time which leads to a lag between the current state of the

system and the steady state distribution. This lag results in the MJ = +1 state having a
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Figure 2.4: Clebsch-Gordan coefficients for a J = 1 ground state to J ′ = 2 excited
state transition.

higher population than the MJ = −1 state for atoms propagating towards the laser beam

with σ+ polarisation [92]. Therefore these atoms will scatter more photons from the σ+

beam as the transition strength is larger. For atoms travelling in the opposite direction

the situation is reversed, so in both cases there exists a damping force which opposes the

motion of the atoms and leads to cooling.

For the majority of alkali metals, including Na, Rb and Cs, sub-Doppler cooling mecha-

nisms allow temperatures approaching the recoil limit to be reached. For lithium however

no such cooling effect has been observed [78, 93]. This is due to the unresolved hyperfine

structure of the excited state. For sub-Doppler cooling to be effective there must be a well

defined variation in the populations of the ground state Zeeman sub-levels of the cooling

transition. With an unresolved excited state the probability of an atom decaying to the

lower hyperfine ground state is high, thus diluting the population in any given Zeeman

sub-level and resulting in no additional cooling. Therefore for sub-Doppler cooling to work

it is necessary for the cooling transition linewidth to be small compared to the excited

state energy level spacing.

Even though it is possible to cool lithium to temperatures below the Doppler limit by

employing, for example, evaporative cooling [2], or sympathetic cooling [94], some groups

have devised alternative laser cooling schemes for lithium which allow lower temperatures

to be reached. One such example can be found in [95], where lithium-7 has been cooled

to temperatures as low as 60μK using a Λ-enhanced gray molasses scheme on the D1

line. An alternative approach is outlined in [87] where lithium-6 has been cooled on the

narrow 2S1/2 → 3P3/2 UV transition. Due to its narrow linewidth the Doppler limit of the
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transition is low, allowing the cloud to reach temperatures of approximately 59 μK. The

relative disadvantage of this second scheme however is that lasers operating at 323 nm are

required which is a wavelength where laser power is still relatively limited.

2.1.7 Properties of lithium

Although the first MOT was demonstrated in 1987 it wasn’t until 1991 that the first

lithium MOT was realised [93]. This was followed by the first lithium BEC in 1995 [2].

Since then lithium, although perhaps not one of the most commonly used alkali metals, has

often been used in fermi gas experiments [96–98], as well as for the creation of Feshbach

molecules [99, 100]. One of the advantages of using lithium to create a degenerate fermi gas

stems from the fact that both a fermionic and bosonic isotope are naturally occurring.

In order to reach quantum degeneracy using a bosonic species, evaporative cooling is

usually employed. With fermions however, if they are in the same spin state then it is not

possible to use this same technique as identical fermions do not undergo the necessary

collisions which allow the cloud to rethermalise during the evaporative cooling process

[101]. Therefore by using lithium it is possible to sympathetically cool the fermionic

isotope by using the evaporatively cooled bosonic isotope, thus allowing the fermions to

reach quantum degeneracy [43, 102].

Property Symbol Value

Natural abundance 7Li (6Li) 92.5% (7.5%)[76]
Enthalpy of vapourisation ΔHvap 147.1 kJ/mol [103]
Melting point TM 453.69K (180.54◦C) [103]
Boiling point TB 1614K (1341◦C)[103]
Atomic number Z 3
Nuclear spin I 3/2
Polarisability α 164 au [67]

Table 2.1: General properties of lithium. The atomic unit of electric polarisability is
au= e2a20/Eh, where e is the charge of the electron, a0 is the Bohr radius and Eh is the

Hartree energy.

Our reason for choosing lithium stems from its favourable properties for sympathetic

cooling of molecules. For all of the experiments described throughout this thesis the

bosonic isotope, lithium-7 has been used. Table 2.1 shows some general properties of

lithium.
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Figure 2.5: Energy level diagram for lithium-7 [104].

For the majority of laser cooling experiments, including this one, lithium is cooled on the

D2 line. In figure 2.5 the energy level structure of lithium-7 is shown. In our experiment

we cool on the F = 2 to F ′ = 3 transition as indicated by the red arrow. The natural

linewidth of the D2 line is Γ/(2π) = 5.92MHz, which means the upper hyperfine states are

partly unresolved. This results in an off resonant interaction which can excite atoms to

the F ′ = 2 state, thus opening up a decay channel to the F = 1 ground state. Therefore,

in order to maintain a closed cooling cycle we require an additional beam that is tuned to

the F = 1 to F ′ = 2 transition. This pumps the atoms out of the lower hyperfine ground

state and back into the main cooling cycle. It is indicated in the diagram by the blue

arrow. In table 2.2 some useful values associated with the D2 line for lithium-7 are given.

2.2 Original experimental setup

This section briefly describes the original experimental setup used to produce an ultracold

source of lithium atoms which could ultimately be utilised for sympathetic cooling of

molecules, or for the investigation of atoms under high electric fields. As a number

of major alterations have now been made to the setup, this section also highlights the
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Property Symbol Value

Wavelength λ 670.961 nm
Frequency ν 446.8099THz
Natural linewidth Γ/2π 5.92MHz
Excited state lifetime τ 26.87 ns
Saturation intensity Isat 2.56mW/cm2

Absorption cross section σ 215.0× 10−15m2

Doppler cooling limit TD 142μK
Doppler velocity vD 41.03 cm/s
Recoil temperature TR 6.061μK
Recoil velocity vR 8.474 cm/s

Table 2.2: Properties of the D2 line for lithium-7. All values are taken from [76].

shortcomings of the original design and explains why changes were deemed necessary. For

the full details of this setup, including characterisation of the equipment, see [105].

2.2.1 Setup description

In order to produce all of the beams required for the experiment a single diode laser

system with built in tapered amplifier (Toptica TA100) was used. It operates at 671 nm

and has a maximum output power of 500mW. This laser is currently still in use and

is locked, using polarisation spectroscopy [106], to the cross-over resonance which lies

halfway between the two hyperfine levels of the ground state. The remainder of the

optical setup has been completely replaced. Images of the atom cloud were taken with an

AVT Marlin F-033B CCD camera by using fluorescence imaging.

Figure 2.6 shows a diagram of the original lithium MOT vacuum setup. Broadly speaking

the experiment consists of a lithium oven, Zeeman slower and a single vacuum chamber,

called the MOT chamber, where atoms were confined by using one of three pairs of

trapping coils. In this chamber the atoms were initially loaded into a MOT and were then

transferred to a magnetic trap so that they could be transported. Our initial work on

magnetic transport of atoms was done using this setup, and this highlighted a number of

difficulties that called for a complete redesign. The blue oval indicates the parts of the

vacuum system which remain unchanged in the current setup.

In figure 2.7 (a) and (b) the lithium oven is shown in more detail. It consists of a

T-piece orientated horizontally so that the trunk of the T is connected to the rest of

the experiment. Granules of lithium are deposited into the bottom arm of the T-piece by
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Figure 2.6: Diagram of the original lithiumMOT vacuum setup. The blue oval indicates
the parts of the vacuum system which remain the same in the current setup.

removing the top flange. Once sealed inside the lithium is heated to approximately 500 ◦C

(773K). A copper block has been inset into the top flange to improve heat conduction

to the inner walls of the oven. To heat the oven two heater wires were used, each with a

resistance of ∼ 26Ω. The first was wrapped around the bottom arm of the T-piece and

was used to heat the lithium. The second was wrapped around the trunk and top arm of

the T-piece, allowing these regions to be kept at a higher temperature whenever the oven

was cooled. This was done to encourage the lithium to condense in the bottom arm. The

current supplied to each heater wire was controlled by its own variac which was capable

of producing a maximum of 120V. In order to monitor the temperature, three type K

thermocouples were attached to the top and bottom arms, as well as the trunk of the

T-piece.

Lithium exits the oven through a small aperture of diameter 0.7mm and length 2mm

to produce an effusive beam. To prevent large amounts of lithium from reaching the

vacuum pumps and reducing their operational lifetime, a small copper cup was bolted to

the outside of the oven flange. It has a total length of 74mm, an aperture diameter of

8mm and has been positioned so that it collects any atoms that exit the oven at an angle

which prevents them from reaching the Zeeman slower.
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Figure 2.7: Diagram of the lithium oven. (a) Isometric view of the oven. (b) Cross-
sectional view of the oven. Lithium exits through a 0.7mm diameter aperture to produce
an effusive beam. Excess lithium is collected by a copper cup which is attached to the
oven flange. It has an 8mm diameter aperture. All dimensions are given in millimetres.

Upon exiting the oven the atomic beam passes through a 6-way cross, referred to as

chamber one. Two viewports are positioned perpendicular to the atomic beam in the

horizontal direction to allow absorption measurements of the beam to be obtained. To

block the atomic beam an aluminium flag is attached to the top flange and is lowered

and raised by using a pneumatic, linear motion feedthrough. Chamber one is pumped

by a 65 litres/second turbo pump (Leybold TurboVac TW 70H) which is backed by a

diaphragm pump (Leybold DiVac 2.5VT). The pressure is monitored using a cold cath-

ode gauge, and would typically reach 2 × 10−7mbar when the oven temperature was

approximately 500 ◦C.

A second 6-way cross (chamber two) is attached to the port opposite the oven chamber

via an all-metal gate valve. This enables the oven and Zeeman slower sections to be sealed

off from one another, allowing them to be opened independently if necessary. Between
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chambers one and two there is a small tube of length 100mm and diameter 5mm. This

has been incorporated to allow for differential pumping, and by using a 53 litres/second

ion pump (Varian Noble Diode VacIon Plus 55) it is possible to reach a pressure of

approximately 2×10−8mbar in chamber two. Like chamber one, the pressure is measured

by using a cold cathode gauge.

Chamber two is then attached to the Zeeman slower which cools atoms on the 2S1/2,

F = 2, MF = 2 to
2P3/2, F

′ = 3, MF ′ = 3 stretched state transition by utilising a

decreasing magnetic field, which has a zero field point located approximately 0.47m away

from the slower entrance. It has a total length of 0.51m and was designed to decelerate

atoms from 900m/s to 50m/s. Upon exiting the Zeeman slower, the atoms enter the MOT

chamber. This chamber is pumped by a second 53 litres/second ion pump which, due to

the differential pumping tube of the Zeeman slower, allows pressures of approximately

1×10−9mbar to be reached. Again a cold cathode gauge is used to measure the pressure.

Figure 2.8: Cross-sectional view of the MOT chamber and the three sets of trapping
coils used in the original setup. Trap one (red) was used to form a MOT, trap two
(purple) was used as both a MOT and magnetic trap, and trap three (yellow) was used

as a magnetic trap.

Figure 2.8 shows a cross-sectional view of the MOT chamber and indicates the position of

the three pairs of coils that were used to trap atoms. The coils forming trap one, shown

in red, were positioned outside of the vacuum chamber and could produce a maximum

field gradient of 15G/cm using a current of 20A. Note that here all quoted field gradients

are for the axial direction of the trapping coils. As this field gradient is relatively low,

using these coils to form a magnetic trap would lead to a large, diffuse cloud making

imaging more difficult. Therefore these coils were used only to form a MOT. Using trap
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one it was possible to collect a maximum of 2× 1010 atoms in a cloud with a diameter of

approximately 7mm, giving a density of 1.1 × 1011 atoms/cm3. The temperature of this

cloud was measured to be 0.85mK.

The coils forming trap two, shown in purple, were placed inside the vacuum chamber and

positioned so that their centre was overlapped with the centre of trap one. As these coils

were separated by only 37mm they were able to produce a maximum field gradient of

40.2G/cm using a current of only 3.75A. Due to its positioning and higher field gradient,

trap two was used as both a MOT and magnetic trap. The lifetime of the magnetic trap

was measured to be approximately 1 second.

The final pair of trapping coils, trap three which are shown in yellow, were also placed

inside the vacuum chamber. These coils were 25mm apart and produced a maximum

field gradient of 64.4G/cm using a current of 5.35A. As these coils did not overlap with

the MOT beams, trap three could only be used as a magnetic trap. The lifetime of the

trap was found to be quite short at approximately 100ms. This was attributed to a local

pressure increase due to outgassing from the coils.

2.2.2 Atomic transportation and design problems

In order to achieve the final experimental aims of sympathetic cooling of molecules, or

the study of atoms under high electric fields, transportation of the atom cloud is required.

To illustrate the reason for this, figure 2.9 shows a top view of the MOT chamber. The

MOT beams along two orthogonal axes are depicted by the diagonal red lines and the

position of the atom cloud is indicated by the black dot. The remaining MOT beam pair

is not shown in the diagram, but would pass through the page and overlap with the atom

cloud position. The Zeeman beam is represented by the horizontal red line.

To create a large trapping volume and therefore maximise the MOT atom number, beams

with a large diameter (∼ 2 cm for our MOT), must be able to pass unimpeded along

three orthogonal axes. In addition to this, the Zeeman beam must be able to cross the

intersection point of the MOT beams without being blocked. Therefore trying to directly

overlap a microwave cavity with atoms in the MOT is impossible as the cavity mirrors

will obstruct at least one of these beams. Additionally trying to design an electrode

mount which preserves optical access whilst remaining rigid against large forces becomes
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unnecessarily challenging. For these reasons it is necessary to transport the atoms to a

position away from the MOT where there are fewer optical access requirements.

Figure 2.9: Top view of the MOT chamber along with the MOT and Zeeman laser
beams. The atom cloud is indicated by the black dot and the light blue ring shows the

position of the trap one coils.

In an attempt to meet this condition the atoms were transported from trap two to trap

three, as trap three does not overlap with the MOT beams. By partially overlapping

the coils of traps two and three, transportation of the cloud was demonstrated over a

distance of 27.5mm, with an efficiency of approximately 70%. This design of overlapping

quadrupole traps is similar to that described in [107] where rubidium-87 atoms were

transported through a 90 ◦ turn, covering a total distance of 33 cm.

Although transport experiments were successful, it became apparent that there were two

particular problems with the setup. The first was that once the atoms had reached trap

three there was no way to image them directly. This meant the atoms could only be

imaged by moving them back to trap two. Clearly the ultimate aim of studying the

atoms under high electric fields could not be realised with this setup, as it would not be

possible to view the atoms once an electric field had been applied.

The second design problem was that trap three, although not overlapped with the MOT

beams, did still overlap the Zeeman beam. This imposed a limit on how close together the

trapping coils could be, which in turn restricted the maximum magnetic field gradient that

could be produced. This is because the wire used to construct the coils had a polyester

enamel coating that was rated to 200 ◦C, so the current, and hence magnetic field gradient,

was limited by the amount of heat generated. This was problematic because having a cloud

temperature of 0.85mK and a maximum field gradient of 64.4G/cm results in a minimum

cloud diameter of 3.9mm. As the electrodes will need to have a separation of around
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0.5mm in order to create the necessary electric field, clearly it is not possible to fit the

entire cloud between the two electrodes. Overlapping the Zeeman beam also meant that

designing a mount for the electrodes was not straightforward, as a rigid structure would

not allow the Zeeman beam to pass through unimpeded. Similarly if the microwave cavity

were to be overlapped with trap three, the Zeeman beam would end up being obscured.

A possible way to overcome these problems would be to incorporate additional overlapped

quadrupole traps into the setup, thus allowing transport of the atoms to a position away

from the MOT and Zeeman beams, where they could also be imaged. This however

would require further in-vacuum components, which is not ideal as it would likely lead to

outgassing, thus increasing the pressure in the chamber and reducing the lifetime of the

magnetic trap. An alternative solution would be to position the overlapping coils outside

of the chamber. This would solve all previous problems but would mean higher currents

are required in order to produce a particular magnetic field gradient.

The main disadvantage of this design however is that to maximise the transport efficiency

a complex optimisation procedure is required, as the trap depth during transport is de-

pendent upon the way in which the current in adjacent coil pairs is ramped. So although

this design is known to work, without careful optimisation there will always be some loss

of atoms during the transport procedure. Therefore we decided to implement a more

straightforward method of transport and opted for a complete redesign of the setup.

2.3 Current experimental setup

This section summarises the changes that have been made to the original experimental

setup. First information about the new vacuum system is given, followed by details of

the two pairs of trapping coils that have been constructed. Finally the new optical setup

is described, along with the new control software used for the experiment.

2.3.1 Vacuum chamber setup

In figure 2.10 a diagram of the current vacuum system is shown. The oven and Zeeman

slower sections remain unchanged, however a small alteration has been made to the way

in which the oven is heated. Two band heaters have been incorporated into the design
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to replace some of the heater wire. The first has been placed around the trunk of the

oven T-piece, the second is positioned around the bottom arm of the T-piece. One of the

original heater wires is then used to heat the top arm of the oven. Each of these three

heating units is controlled by its own variac, thus allowing for complete and independent

temperature control of each section of the oven.

Figure 2.10: Diagram showing the current vacuum setup used for the lithium MOT
experiment. The translation stage and moving coil setup is also depicted. In the bottom

right hand corner the coordinate system used throughout this thesis is shown.

The original MOT chamber has now been replaced by a 6′′ and an 8′′ spherical octagon

vacuum chamber, purchased from Kimball Physics (part numbers: MCF600-SphOct-F2C8

and MCF800-SphOct-G2C8 respectively). The former is referred to as the MOT chamber

and the latter, the science chamber. They are connected together via a 250mm long

tube, which has an inner diameter of 9mm. As before the MOT chamber is pumped by

a 53 litres/second ion pump and the pressure routinely reaches 1 × 10−9mbar. To ensure

a low pressure is maintained within the science chamber, a SAES GP502F getter pump

(with GP50-ST707 cartridge) is used. The pressure is monitored using a cold cathode

gauge and is found to be below its measurement range. This sets an upper limit on the

pressure of 1× 10−9mbar. In the bottom right hand corner of figure 2.10 the coordinate

system that is adopted throughout this thesis is shown.
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In order to trap the atoms, a single pair of water cooled coils are placed outside of the

vacuum chamber. As these coils can run at high currents, they can be used to form either

a MOT or magnetic trap. To overcome the optical access issues of the previous design,

the sympathetic cooling and high electric field experiments are to be carried out in the

science chamber. To transport the atoms to this chamber we have implemented a design

similar to that described in [108] and [109]. In our setup the trapping coils are attached

to a Parker 404XR motorised translation stage, which allows them to be physically moved

from one chamber to the other. The atoms in the magnetic trap follow this motion, thus

allowing transport over tens of centimetres to be easily realised. The main advantage of

this design is that only one coil pair is required. This greatly simplifies the setup and

removes the need to develop a complex current switching scheme in order to maximise

the transport efficiency.

2.3.2 Water cooled trapping coils

If the atoms are to be placed, with minimal loss, between two electrodes which are 0.5mm

apart then we require a cloud of a similar size. Two factors determine the cloud size, these

are the temperature and the magnetic field gradient. Therefore, along with having a cold

cloud, it is beneficial to have a magnetic trap with a high field gradient. As our trapping

coils are placed outside the vacuum chamber, the minimum distance between the coils is

set by the height of the biggest chamber. In our case this is the science chamber, which

has a height of around 13 cm. This means the only way to create a high field gradient is

by using a large current.

Taking a cloud with a temperature of 1mK, where all of the atoms are in the F = 2,

MF = 2 state, we would need a magnetic field gradient of around 300G/cm to produce a

cloud with a diameter of 1mm. Given our coil separation, just under 26, 700 amp-turns

are required to produce this field gradient in the axial direction. Using high currents

means the coils will dissipate a large amount of heat, and so will need to be cooled. To

meet this requirement we decided to construct coils using copper tubing so that they could

be internally water cooled.

To determine the cooling power, Pc, of our water cooling system, we use the equation

[110],

Pc = cHRflowΔT, (2.42)
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where cH = 4.2 J/(cm
3K) is the specific heat capacity of water, Rflow is the measured

volumetric flow rate in units of cm3/s and ΔT is the allowable temperature rise in Kelvin.

The power dissipated by the coil, PH, is given by

PH = I
2R, (2.43)

where I is the coil current and R is the coil resistance. By comparing equations (2.42) and

(2.43) we can establish a current limit and therefore determine the maximum magnetic

field gradient that can be produced. It is important to note that this value relates to

steady state operation, meaning that currents above the maximum can be used, provided

they are only used briefly.

Figure 2.11: Dimensions of the two different coils used for experiments. Here (a) shows
coil 1, (b) shows coil 2, (c) shows the wire used to construct coil 1 and (d) shows the

wire used in coil 2. All dimensions are given in millimetres.

Experiments were carried out using two different coil pairs. The dimensions of coil 1 are

shown in figure 2.11(a) and (c), whilst those of coil 2 are shown in (b) and (d). The

characteristics of the two coils are described in table 2.3.

Figure 2.12 shows the power dissipated by coils 1 and 2 as the current is increased. Here

the red and blue lines represent coil 1 and coil 2 respectively. Comparing the two curves,
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Property Coil 1 Coil 2

Total wire length 30.5m 38m
Number of turns 13 6
Number of layers 8 15
Coil resistance 120mΩ 61mΩ
Electrical insulation MR8008 varnish kapton tape
Coil former material aluminium aluminium & plastic
Water flow rate (pump off) 0.05 litres/minute 0.32 litres/minute
Water flow rate (pump on) 0.25 litres/minute 0.92 litres/minute

Table 2.3: Properties of coil 1 and coil 2.

which have been calculated using equation (2.43), we see that the power dissipated by

coil 2 is a factor of two lower than that of coil 1 for any given current. This is due to

the lower resistance of coil 2. As the cooling power of the water cooling system depends

on the flow rate, a Flojet D131H5011AR diaphragm water pump was installed on the

output side of the coils, thus allowing higher currents to be used. The two dash-dot lines

represent the cooling power for coil 1, with the pump off (black line) and on (green line).

The dashed lines depict the cooling power for coil 2, again with the pump off (black line)

and on (green line). Note that these values were calculated using equation (2.42). The

water flow rates are given in table 2.3, and a temperature rise of ΔT = 40K is assumed.

The current limit is set by the intersection point of these lines with the relevant curve.

Therefore when the water pump is off, the current is limited to 24A for coil 1 and 85A

for coil 2. When the pump is on, this increases to 54A for coil 1 and 145A for coil 2.

This shows that coil 2, which has a higher water flow rate, can handle larger currents.

In order to produce high currents, each coil was powered by its own Agilent N8733A DC

power supply, run in constant voltage mode. It has a maximum output of 220A and

15V. To control the current, a bank of five parallel field-effect transistors (FETs) were

connected in series with each coil. Stabilisation of the current was achieved using a hall

effect current sensor.

Figure 2.13 shows the variation of the magnetic field gradient with current for both coils.

Again the red line represents coil 1 and the blue line represents coil 2. This shows that

the magnetic field gradient of coil 1 is approximately 77% of the value produced by coil

2. The increase in the field gradient of coil 2 was achieved by reducing the height of the

coil and increasing its diameter. The dotted gray lines show the maximum field gradient

that can be generated by the two coils, given the highest current limits already discussed.
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Figure 2.12: Graph showing the power dissipated by coil 1 (red line) and coil 2 (blue
line). The dash-dot lines show the water cooling power for coil 1 with the water pump
on (green line) and off (black line). The dashed lines show the water cooling power for

coil 2 with the water pump on (green line) and off (black line).

These maximum gradients are 39G/cm for coil 1, and 137G/cm for coil 2. Taking a

1mK cloud, these gradients produce a cloud diameter of 7.6mm for coil 1 and a cloud

diameter of 2.2mm for coil 2. In both cases this is larger than our ideal cloud size of

0.5mm. A possible way to decrease the cloud diameter is to reduce the temperature

of the atoms. This would require lowering the temperature to 65 μK and 0.23mK for

coils 1 and 2 respectively. It is worth noting that even if coil 2 was run at 220A, the

resulting field gradient of 208G/cm would not be large enough to produce a 0.5mm wide

cloud, assuming it has a temperature of 1mK. Therefore the atoms need to be cooled to

temperatures below 1mK to ensure that a small cloud is created.

Ideally whenever an absorption image is taken, the atom cloud should always be released

from the trap. This is because a non-zero magnetic field will cause the resonance fre-

quency to shift, due to the Zeeman effect. As the magnetic field created by the coils is

inhomogeneous, the size of the shift seen by each atom will depend on its position within

the trap. This can cause problems if the Zeeman shift is large compared to the natural

linewidth, as it leads to some of the atoms becoming invisible. To avoid this, the mag-

netic field must disappear quickly after the coils have been switched off, so that a field-free

image can be obtained before the cloud has had time to expand significantly.

Figure 2.14 shows the decay of the magnetic field generated by a single coil after it has

been switched off. In (a) the current of coil 1 was switched from 30A to 0A. To avoid
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Figure 2.13: Magnetic field gradient versus current for both coils. The red line repre-
sents coil 1, the blue line represents coil 2. The gray dashed lines show the maximum

field gradient that can be produced for each coil.

saturation, the magnetometer was positioned about 20 cm away from the coils. In (b) the

current of coil 2 was switched from 5A to 0A. By moving the coils halfway along the

connecting tube, it was possible to place the probe close to the zero field point, meaning

that this measurement closely resembles the field at the atom cloud position. In both

graphs the coils are switched off at t = 0, and a linear fit to the data, as described by the

equation in the top right hand corner, is depicted by the red line. These results show that

coil 1 has a very slow response time. In particular there is a delay of about 1ms before

the magnetic field begins to respond, and it takes around 14ms for the field to disappear

completely. This slow response is thought to be caused by the formation of eddy currents

in the coil former and chamber, which create a magnetic field that opposes changes in the

current. For coil 2 however, the field begins to respond after only 0.07ms, and it takes

1.9ms for the field to disappear completely. This improvement was obtained by using

formers made out of plastic and aluminium.

As the overall performance of coil 2 is better, it has been used to obtain most of the

results presented in this thesis. However for sections 2.5.1 and 2.5.2, coil 1 was used. The

improved performance of coil 2 is due to its smaller height, larger diameter, the high water

flow rate through the coil, and the plastic and aluminium former onto which the wire has

been wound.
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Figure 2.14: Magnetic field response after coils switch off. In (a) the current of coil
1 is switched from 30A to 0A. In (b) the current of coil 2 is switched from 5A to 0A.

The coils are switched off at t = 0 in both cases.

2.3.3 Optical setup

In order to run the experiment, five separate laser frequencies are needed. These are

shown in figure 2.15, along with their detunings from the relevant atomic transitions.

Two of these frequencies are required for the MOT, where the first is used to address

the main cooling transition and the second acts as a repump. In the diagram these are

represented by the green and purple arrows respectively. In our MOT the main cooling

beam, or MOT beam, is detuned to the red of the F = 2 to F ′ = 3 transition by 3.5

linewidths (20.72MHz). The MOT repump beam is resonant with the F = 1 to F ′ = 2

transition.

The Zeeman slower also requires two laser frequencies. The first, called the Zeeman beam,

is detuned by 401.75MHz to the red of the F = 2 to F ′ = 3 transition and is depicted

by the dark blue arrow. The second beam, called the Zeeman repump, has a detuning

of 401.75MHz to the red of the F = 1 to F ′ = 2 transition. It is represented by the red

arrow. There are two main benefits in choosing to have such large frequency detunings.

The first is that it minimises any interaction between the MOT atoms and the Zeeman

beams. The second is that it places the Zeeman repump frequency at the cross-over

resonance. As the laser is locked to this, no frequency shift is required, and this leads

to a slight simplification of the optical setup. One further advantage, which comes from

having red detuned beams, is that a smaller magnetic field is required at the start of the

Zeeman slower. This is because the light and magnetic field work together to compensate

the Doppler shift of the hot atoms that enter the Zeeman slower.
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Figure 2.15: Diagram of the energy level structure of lithium along with the five
different laser frequencies that are required by the experiment. The position of the cross-

over resonance is also indicated.

The final laser beam frequency, which is represented by the light blue arrow, is resonant

with the F = 2 to F ′ = 3 transition. It is used for taking absorption images of the atoms

and is referred to as the probe beam. To generate each of the required frequency shifts,

acousto-optic modulators (AOMs) are used. This design, as opposed to using a separate

laser for each frequency, has the advantage that only one laser needs to be frequency

stabilised.

In order to produce such large frequency shifts, we use 200MHz AOMs in a double pass

configuration. Originally Isomet 1250C AOMs, which have a bandwidth of 100MHz,

were used. However they were found to be very unreliable, as over time the single pass

conversion efficiency would drop from approximately 70% to around 20%. This occurred

even though the radio-frequency (RF) input power was always kept below the maximum

rating given by the manufacturer. Clearly this was a major problem, especially given that

for early experiments only 500mW of laser power was available. This meant that if any

AOM was not working properly then there would not be enough power for each of the

required beams.

To drive the AOMs, Spectrum Microwave QBH-2832 RF amplifiers were used. These

also caused problems as their output power would suddenly deteriorate, rendering them
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unusable. Initially this behaviour was thought to be caused by inadequate heat sinking,

which allowed the amplifier to overheat. However even after improving the heat sinking,

so that the amplifier temperature was well within the manufacturer’s operating range,

the issue still remained. So this, together with the AOM problems, resulted in beam

powers that were completely unstable. As a result, both the AOMs and RF amplifiers

were replaced. We opted for Gooch and Housego 3200-125 AOMs which have a bandwidth

of 50MHz, and Mini-Circuits ZHL-3010+ RF amplifiers. Since installing these there have

been no further problems.

The biggest disadvantage of using only one laser is that the amount of available power is

limited. To use this power efficiently, the light passing straight through the first AOM

in the optical setup was used to form the other required beams. This meant that all

of the beam powers were coupled together such that if one had more power, another

would necessarily have less. It also made alignment of the whole optical setup very

critical and difficult. It was a constant struggle to maintain sufficient power in all beams

simultaneously and as there was no surplus power, the beams could not be spatially

filtered. This was particularly problematic for the MOT, as we often found dark patches

in the centre of the beams which led to distorted cloud shapes.

To overcome these problems an additional home-built tapered amplifier (TA) was incor-

porated into the optical setup and seeded using about 50mW of power from the main

laser. The design of the TA mount is similar to that described in [111]. It consists of an

aluminium block, which houses the TA chip as well as two aspheric lenses that are used

to focus the input beam and collimate the output beam. To power the TA, a Thorlabs

LDC 220C current controller is used. Temperature stabilisation is achieved by using an

AD590 temperature transducer, along with a Thorlabs TED 200C temperature controller,

which is used to drive a thermoelectric cooler. By using approximately 50mW of light to

seed the TA, it is possible to obtain an extra 250mW of frequency stabilised, laser power.

This additional power allowed the MOT and Zeeman beams to be decoupled from one

another, and allowed the MOT beams to be spatially filtered whilst still maintaining the

same power as before.

Figure 2.16 shows the optical setup used to produce the probe and Zeeman beams. Start-

ing at the laser, the beam first passes through a half-wave plate (λ/2) followed by a

polarising beam cube (PBC). The beam reflected by the PBC is used to seed the TA
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(not shown). This beam passes through an optical isolator before being sent to the TA

through a polarisation maintaining fibre. The beam power can be adjusted by rotating

the half-wave plate. The straight-through beam of the PBC passes through a glass plate

which picks off 17mW of light for the polarisation spectroscopy setup. This is used to

lock the laser and the full details of this setup can be found in section 2.3.1 of [105].

Figure 2.16: Optical setup used to produce the probe, Zeeman and Zeeman repump
beams. The fibre coupler marked with a pink star is attached to the similarly labelled

fibre coupler in figure 2.17.

Next the main beam passes through another half-wave plate and PBC. As the Zeeman

repump light requires no frequency shift, the straight-through beam of the PBC can be

used directly and is sent to the experiment. The light reflected at the PBC forms the

Zeeman beam, which is sent through two double passed AOMs in order to produce a

frequency shift of just over 800MHz.

Following the path of this reflected beam, it first passes through an AOM called the

probe AOM, where the assigned name refers to the beam that it controls. In order to

maximise the diffraction efficiency, the beam diameter should be matched to the active

aperture of the AOM, that is the region over which the performance specifications apply.

For this reason we reduce the beam diameter by a factor of two to approximately 2mm,
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by using a plano-convex and plano-concave lens, where the separation between them is

approximately 50mm.

After passing through the AOM the zeroth diffracted order, which experiences no fre-

quency shift, is blocked. The first diffracted order however, is frequency shifted and exits

the AOM at an angle which depends on the AOM frequency. Using a lens and plane mir-

ror, the diffracted beam is perfectly retro-reflected, irrespective of diffraction angle. The

quarter-wave plate (λ/4) that sits between the lens and mirror is used to rotate the polar-

isation angle of the retro-reflected beam by 90 ◦. This allows the incoming and frequency

shifted beams to be separated from one another at the PBC. After being double passed

through the probe AOM, the beam passes through the Zeeman AOM twice. Again the

retro-reflected beam is split off at a second PBC, after which it is sent to the experiment.

The zeroth order of the Zeeman AOM is used to form the probe beam. It is attenuated

by a filter wheel and is then sent to the experiment through a polarisation maintaining

fibre, which also acts as a spatial filter.

Figure 2.17: Optical setup used to produce the MOT and MOT repump beams. The
fibre coupler marked with a pink star is attached to the similarly labelled fibre coupler

in figure 2.16.

Figure 2.17 shows the optical setup used to produce the MOT beams. First, the beam

from the fibre coupler is focussed into the TA by using an aspheric lens. Next the output
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from the TA is collimated using an aspheric and cylindrical lens, after which it passes

through an optical isolator. To prevent back reflections which could damage the TA, the

cylindrical lens is positioned at a slight angle. After this two plano-convex lenses are used

to reduce the beam diameter to around 4mm, and the beam is sent through a half-wave

plate, PBC and into the MOT AOM. Again the first order diffracted beam is retro-

reflected and split off at the PBC. Before being coupled into a polarisation maintaining

fibre, the beam diameter is further reduced by a factor of 1.6, and is sent through a half-

wave plate. This is used to align the polarisation of the light with the fibre axis, which

helps to minimise any drift in the polarisation.

To form the MOT repump beam the zeroth order of the MOT AOM is utilised. It is sent

to the MOT repump AOM where, as before, the first diffracted order is retro-reflected

and subsequently picked off at the second PBC. It is then combined with the MOT beam

at the first PBC, ready to be coupled into the fibre.

Figure 2.18: Optical setup used to send the MOT, Zeeman and both repump beams
into the MOT chamber. The optics used to deliver the probe beam are also shown.

In figure 2.18 the optics used to deliver all beams to the MOT chamber are shown. We

start by following the path of the two Zeeman beams. First each one is sent through

a quarter-wave plate, after which the two beams are combined by using a regular beam

cube (BC). As the Zeeman repump beam does not pass through an AOM, the only way

to block it is by using a mechanical shutter. This is placed just before the BC. Next the
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combined Zeeman and Zeeman repump beam is expanded and focussed slightly, before

being sent into the Zeeman slower via the MOT chamber.

The combined MOT beams exit the fibre coupler and are expanded. The first horizontal

MOT beam is formed by splitting off light at the first PBC. This beam is circularly

polarised by the quarter-wave plate, passes through the MOT chamber and is retro-

reflected to form the counter-propagating MOT beam. As the retro-reflected beam has

less power than the incoming beam, its intensity will be lower, provided the beam diameter

is kept constant. This means the returning beam will produce a smaller trapping force.

To mitigate this problem a plano-concave and plano-convex lens are used to slightly focus

the incoming beam, thus increasing the intensity of the returning beam. This produces

MOT beams with a 1/e2 radius of 0.96 ± 0.06 cm at the trap centre on the first pass.

The quarter-wave plate positioned before the retro-reflecting mirror is used to ensure the

returning beam has the correct circular polarisation. To create the four remaining MOT

beams a second PBC is used, and as before both the horizontal and vertical beams are

focussed slightly before entering the MOT chamber. The power of each MOT beam pair

is varied by rotation of the half-wave plates that are positioned in front of the two PBCs.

To expand the probe beam to a diameter of 9mm and collimate it so that the change

in size between the MOT region and the camera is < 5%, we use a single anti-reflection

coated aspheric lens on the bare output from the fibre. This is used instead of a fibre

collimator as it was found to reduce abberations and fringing, whilst also producing a

near gaussian spatial mode. After this the probe beam is sent straight to the experiment.

It then passes through the connecting tube and science chamber (not pictured) before

reaching the camera. A later addition to the setup is indicated by the pink oval. To

properly define the polarisation of the probe beam, a PBC was introduced, along with

a quarter-wave plate which is used to create circularly polarised light. The reasons for

adding this to the setup and the results obtained by this alteration are discussed in section

3.2.

2.3.4 Control software

Computer control of the experimental hardware is obtained by using a National Instru-

ments PXIe-1073 chassis with a PXI-6723 analogue output board, and PXI-6229 multi-

DAQ board. To allow the user to vary experimental parameters easily, new software has
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been written in C# which provides various types of functionality. For immediate con-

trol of the hardware, a push button user interface has been developed. This allows all

experimental parameters to be changed quickly and easily. To run a timed sequence of

events, a secondary program was developed. It requires each experimental sequence to

have a corresponding script, which contains information about all the necessary events.

The program then compiles the chosen script, before sending instructions to the hardware

controller about the changes that need to be implemented. A third program is used to

alter particular values within a script before it is compiled. This allows a given parameter

to be automatically scanned over a range of different values as chosen by the user.

2.4 Imaging the atoms

In this section the methods used to image the atoms are detailed. In particular the

procedures used to obtain fluorescence and absorption images are described. As there

are some problems associated with our absorption imaging setup, these are discussed and

quantified where possible.

2.4.1 Fluorescence imaging

One way in which real-time measurements of the MOT atom number can be obtained is

to use fluorescence imaging. This involves capturing some fraction of the light scattered

by atoms in the MOT. If information about the spatial distribution is not required, then

this can be done by using a single lens and a photodiode. Otherwise the cloud should be

imaged onto a CCD camera, so that the size and distribution can be observed. Although

fluorescence imaging is straightforward to implement, it can produce unreliable results if

the atom cloud has entered the multiple scattering regime. This is because some of the

emitted photons are re-scattered by a second atom, resulting in fewer photons reaching

the detector in a given time interval. This leads to an underestimate of the atom number,

which can be verified by comparison with absorption images.

In our setup we image the cloud onto a reverse-biased photodiode using a 75mm focal

length lens. To capture as much light as possible, the lens should be placed close to the

atom cloud. Due to the positioning of various MOT optics, our collection lens, which

has a diameter of 25mm, has to sit approximately 180 ± 5mm away from the atoms.
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The output from the photodiode is connected to a 1MΩ load resistor and the voltage

drop across it is measured. To convert this voltage into an atom number, the light power

emitted by the cloud has to be equated with the light power detected by the photodiode.

The power emitted by the atom cloud, Pa, that reaches the photodiode is given by

Pa = η~ω0NR
MOT
scatt ΩL, (2.44)

where η is the total transmission of all optical elements, ω0 is the atomic resonance

frequency, N is the total number of atoms in the MOT, RMOTscatt is the MOT scattering rate

and ΩL is the fraction of the total solid angle captured by the lens. This is calculated by

using ΩL ≈ 1
4π (

πd2lens
4l2
) = 1.2× 10−3, where dlens is the lens diameter, and l is the distance

between the cloud and lens. Here the 1
4π term denotes the full solid angle over which

photons are emitted, and the term in brackets is the approximate solid angle of the lens.

As the MOT viewports and the lens used in this setup are anti-reflection coated, losses

are negligible which means that we can set η = 1.

The power detected by the photodiode, Ppd, is related to the measured voltage, Vpd, by

Ppd =
Ipd

R
=

Vpd

RLR
, (2.45)

where Ipd is the photocurrent, R is the responsivity of the detector, which is ∼ 0.36A/W

at 670 nm for our particular detector (Thorlabs DET100A) and RL is the load resistance.

By equating these two powers and rearranging for N , an expression for the total atom

number can be found,

N =
Vpd

η~ω0ΩLRLRRMOTscatt

. (2.46)

Before this equation can be used, a value for RMOTscatt must be obtained. This is not

straightforward to calculate because the scattering rate will vary not only with the internal

state of the atom, but also with its position within the MOT. From equation (2.7) we see

that the scattering rate for a two level atom is dependent on two uncertain parameters.

These are the saturation parameter, s0, and the detuning, δ. Therefore, to find an estimate

of the total MOT scattering rate, we have to consider how each of these parameters varies

over the entire atom cloud.

Referring back to equation (2.3), we find that the saturation parameter is dependent on

the beam intensity, I, as well as the saturation intensity, Isat. In turn, Isat is proportional
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to the strength of the transition. As atoms in the MOT are in a mixture of Zeeman sub-

levels, and are exposed to light of various polarisations, it is possible to excite a variety

of transitions. This means the saturation intensity is not well defined. There are two

ways to overcome this problem, either we can assume that all atoms scatter on the same

transition, thus leading to a single value for Isat, or alternatively, an average value can

be calculated over all possible transitions. In [80], measurements of the fluorescent power

scattered by a caesium MOT indicate that an average over all transitions yields a value

for Isat that is too small. This discrepancy is attributed to optical pumping between

the Zeeman sub-levels, which results in an atom at any position being pumped towards

the state that interacts most strongly with the light, thus producing a higher effective

transition strength. In light of this, we choose to simplify the situation by assuming that

all atoms scatter on the strongest transition, which means Isat = 2.56mW/cm
2. This

produces a value of s0 = 2.2 for our MOT.

As mentioned in section 2.1.3, the MOT detuning can be described by δmot = ω − ω0 ∓

kv± ΔμB(x)~ , where for this experiment ω−ω0 = −3.5Γ. Therefore the detuning depends

on the Doppler shift, which is position dependent because of the variation in the velocity

of the atom as it oscillates in the trap, and it depends on the Zeeman shift, which is

position dependent because of the inhomogeneous magnetic field. The transition being

excited also has an effect on the detuning through the Δμ term. This has some position

dependence because the local polarisation affects the sign of the term.

To simplify the situation we only consider atoms that are moving towards the light beam.

This is a reasonable assumption, as the Doppler shift causes atoms to interact most

strongly with the beam that opposes their motion, and as atoms move away from the trap

centre, the Zeeman shift will bring them into resonance with this counter-propagating

beam. When an atom reaches the edge of the cloud its velocity will be small, thus

producing a negligible Doppler shift. At this same position the Zeeman shift is maximised.

Given that our atom cloud has a diameter of around 1mm and the field gradient is

approximately 15G/cm, atoms at the cloud edge will be exposed to a 0.75G magnetic

field. This results in a Zeeman shift term of μBB(x)~ ≈ 1MHz. At the centre of the trap

however, the atomic velocity is maximised and the magnetic field equals zero, resulting in

no Zeeman shift. Assuming the atomic velocity is equal to the most probable velocity of

the Maxwell-Boltzmann distribution means that v =
√
2kBT/m. For a 1mK cloud this

results in a Doppler shift of kv = 2.3MHz. As these two values represent the maximum
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Zeeman and Doppler shifts present in the MOT, a reasonable estimate of the shift for all

atoms can be obtained by taking the average. This produces a total MOT detuning of

δmot = −3.5Γ + 1.65MHz = −19.07MHz.

Having found values for the saturation parameter and detuning in the MOT, it is now

possible to calculate the scattering rate. By using equation (2.7) we find the MOT scat-

tering rate to be RMOTscatt = 9.2×10
5 photons/second. Substituting this into equation (2.46)

shows the expected signal to be approximately 0.1 nV per atom. Typically we measure

voltages of around 13mV which equates to 1.1 × 108 atoms. It is worth noting that in

this experiment fluorescence imaging is used only as an instantaneous diagnostic tool, and

that none of the data presented in this thesis has been collected using this setup.

2.4.2 Absorption imaging

Absorption images are obtained by exposing the atom cloud to low intensity, resonant

light. As the atoms scatter light out of the beam, a shadow is cast. By imaging this

beam onto a CCD camera and measuring the loss of intensity, the atom number can be

determined. The light intensity reaching the camera is given by the Beer-Lambert law,

I = I0e
−σ
∫
n(x,y,z)dz = I0e

−OD, (2.47)

where I0 is the initial light intensity, σ is the absorption cross section of the atoms,

n(x, y, z) is the number density of the cloud, and OD = σ
∫
n(x, y, z)dz is referred to as

the optical depth (OD). For this equation to be valid, the beam intensity must be low,

meaning that I � Isat. This is required because at high intensity, stimulated emission

starts to become an important process which increases the intensity of the light and offsets

some of the absorption.

By integrating along one axis, the number density becomes the column density, which

means
∫
n(x, y, z)dz = N(x, y)/Acol, where N(x, y) is the number of atoms in a particular

column of the cloud and Acol is the area of this column. Using this it is possible to

rearrange the above expression to give,

N(x, y) =
Acol
σ
ln

(
I0

I

)

. (2.48)
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We measure the absorption in each camera pixel, where the area Apixel is related to Acol

by Acol = Apixel/M
2, where M is the magnification of the imaging system. In order to

determine the total atom number, N , a summation over all pixel values must be carried

out, which results in,

N =
Apixel

M2σ

∑

pixels

ln

(
I0
I

)

. (2.49)

In order to form a single absorption image of the atoms, three separate photographs are

taken. These are an image of the probe beam with atoms present, Iatoms, an image of the

probe with no atoms present, Iprobe and finally an image with no atoms or probe, Ibkgd,

where this last image is used to remove background light from other sources. We then

apply the following relation to each individual pixel to find the optical depth at every

point in the image,

OD = ln

(
I0
I

)

= ln

(
Iprobe − Ibkgd
Iatoms − Ibkgd

)

. (2.50)

The final value that needs to be determined before the atom number can be calculated

is the absorption cross section. For a two level atom, in the limit of low light intensity,

equation (2.29) becomes,

σ =
3λ2

2π

b

1 + 4δ2/Γ2
, (2.51)

where b is the branching ratio of the transition being excited, and has a value between

zero and one. Ideally the absorption cross section should be maximised to ensure that a

large signal is obtained for short interaction times. This requires b = 1, which can only

be obtained if all atoms are excited on the stretched state transition. Therefore atoms

should be imaged using circularly polarised light, in a well defined magnetic field that lies

parallel to the propagation direction of the light. Additionally, all atoms must start off

in either the F = 2, MF = 2, or F = 2, MF = −2 state. In practice however, as we do

not employ optical pumping, the MOT atoms will be in a mixture of Zeeman sub-levels.

Also the magnetic field from the coils is usually kept on during imaging, meaning that

the quantisation axis is not well defined unless a large bias field is applied. Therefore to

obtain a reasonable estimate of the absorption cross section, b is averaged over all possible

transitions from the F = 2 to F ′ = 3 state. A transition strength diagram for the D2 line

of lithium can be found on page 285 of [76]. Using this and assuming an even population

of all Zeeman sub-levels produces a value of b = 7/15.
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For the majority of experiments described in this thesis, the atoms are imaged whilst still

in the MOT. This can cause problems as the MOT beams will excite the atoms, thus

reducing the overall absorption and producing an underestimate of the atom number.

However, if the detuning of the light is large and the intensity is relatively low, then the

excited state fraction will be small and atom number measurements should be reliable.

In order to determine whether or not this effect is negligible, we compared images of the

cloud with the MOT beams both on and off. As the difference in atom number was only

0.3%, we conclude that imaging the atoms with the MOT beams on does not greatly

affect our atom number measurements.

To capture images of the cloud, initially an AVT Marlin F-033B CCD camera was used.

It has a pixel size of 9μm, and a sensor consisting of 656 × 494 pixels, which equates to

a chip size of 7.48mm × 6.15mm. Its minimum exposure time is 32 μs and it produces

an 8-bit image. The limited bit depth of this camera led to problems when imaging faint

clouds, therefore it was replaced with an AVT Pike F-145B CCD camera, which produces

14-bit images. The Pike also offers better resolution with a pixel size of 6.45μm and has a

bigger sensor, consisting of 1388×1038 pixels, which equates to a size of 9.0mm×6.7mm.

Its minimum exposure time is slightly longer at 39 μs. All of the results presented in this

thesis were obtained using absorption imaging. The results shown in sections 2.5.1 and

2.5.2, with the exception of figure 2.25, were obtained using the Marlin CCD camera. For

all other results the Pike was used.

In our setup, due to the positioning of the MOT beams and coils, atoms in the MOT

chamber can only be imaged by sending a probe beam along the transport axis. As we

eventually want to obtain high quality images of the atoms in the science chamber, the

camera has been positioned at this end of the experiment. This means however, that

after passing through the MOT cloud, the probe beam has to travel a distance of 660mm

through the connecting tube and science chamber, before reaching the camera. As a result

it is not possible to place a short focal length lens close to the atoms. A lens with a large

diameter could be positioned close to the camera, provided it has a long enough focal

length, however this does not allow a large solid angle to be collected, as the connecting

tube acts as an aperture. Therefore we use no lens in our imaging system. This setup is

not ideal as it can lead to imaging problems.

The first effect that needs to be taken into account is atomic lensing. Although the cloud
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is relatively diffuse, its density can be sufficiently high that it acts like a lens, causing the

probe light to refract. The size of this lensing effect will depend upon the density of the

cloud, its radius, and its refractive index, which will vary with detuning from the atomic

resonance. We can determine how significant this effect is by calculating the focal length

of the atomic lens given typical cloud parameters. To do this we first have to know how

the refractive index of the cloud varies with detuning. For a two level atom, assuming a

low intensity probe beam, the complex index of refraction, nref, is given by [112]

nref = 1 +
σ0nλ

4π

(
i

1 + δ2
−

δ

1 + δ2

)

, (2.52)

where σ0 = 3λ
2/2π is the resonant absorption cross section, n is the density of the cloud

and δ = 2(ω − ω0)/Γ is the detuning in half linewidths. Taking the real part of equation

(2.52) gives the refractive index, whilst the imaginary part represents absorption through

the cloud. By setting the density equal to the maximum achievable in a MOT, namely

1011 atoms/cm3, and assuming it is constant across the cloud, we find the maximum

refractive index occurs at a detuning of −Γ/2 and has a value of Re(nmaxref ) = 1.00057. If

the light is detuned to the other side of the atomic resonance, the refractive index decreases

by an equal and opposite amount from the zero detuning value, reaching a minimum of

Re(nminref ) = 0.99943 at a detuning of +Γ/2. This changes the direction in which light is

refracted, effectively turning the atoms from a converging lens into a diverging lens. So

other than a change of sign, this has no effect on the focal length, and means that either

of these two extremal values can be used.

Taking our value for Re(nmaxref ), and assuming the cloud is a sphere of radius rcloud, we

can calculate the effective focal length, feff, of the atomic lens by using [113]

feff =
Re(nref) rcloud
2(Re(nref)− 1)

, (2.53)

where feff is measured from the cloud centre. For a 1mm cloud diameter, the effective

focal length is 440mm, which is about 220mm shorter than the distance between the atom

cloud and camera. Therefore in the worst case scenario, light emerging from the cloud will

focus before reaching the camera, making the cloud appear smaller than it really is. With

decreasing cloud width, this lensing effect will become even more significant. In section

2.5.2, measurements show that our cloud has a maximum density of 9 × 109 atoms/cm3,
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which means lensing effects should be greatly reduced. In addition to this we use a near

resonant probe beam which should further minimise the effect.

With no imaging optics, and a camera positioned well away from the atoms, it is important

to consider how much diffraction the cloud will produce, and the effect that this has on the

apparent size of the cloud. In order to determine the diffraction regime, we can calculate

the Fresnel number, F , [114]

F =
r2cloud
lλ

, (2.54)

where l is the distance between the cloud and camera. When F ≥ 1, Fresnel diffraction

applies. In this regime calculating the amount of diffraction to expect becomes rather

involved, however when F � 1 diffraction effects should be small and can therefore be

neglected. For F � 1, the Fraunhoffer description of diffraction is accurate. In this

regime, because our cloud has a Gaussian spatial profile, its diffraction pattern will also

have a Gaussian shape.

Given our experimental parameters we calculate a Fresnel number of F ≈ 2. This means

we are in the intermediate regime and will therefore expect to see some minor diffraction

effects. This could pose problems for the smallest clouds and we should bear this in mind

in subsequent sections. Once the atoms have been transported to the science chamber,

the situation improves drastically as l is then far smaller and also an imaging system can

easily be set up to collect the diffracted light.

Figure 2.19: Ideal optical imaging setup that will be installed to image atoms in the
science chamber. The blue lines represent the probe beam. The red circle depicts the
atom cloud. After passing the cloud, light will diffract, this is shown by the purple
lines. A 4f lens configuration can be used to collect this light. The red lines represent

fluorescent light from the atoms.

The required imaging setup, which has not yet been installed, is shown in figure 2.19.

A lens with a focal length, f1, is placed one focal length away from the atoms. This

simultaneously collimates the diffracted light, which is shown in purple, and focusses the
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unscattered light from the probe beam, which is depicted by the blue lines. Then a second

lens, with focal length f2, is positioned a distance f1 + f2 away from the first lens. This

4f configuration has the effect of focussing the diffracted light and re-collimating the

unscattered probe beam. The camera is then placed at the focal plane of this second lens.

To adjust the magnification of the image, the ratio of the focal lengths can be changed. It

is worth noting that this configuration will also collect fluorescent light from the atoms,

as shown by the red lines. This contribution to the signal can only be neglected when a

small solid angle is captured.

2.5 Characterisation of the MOT

This section describes the experiments carried out to characterise the MOT. Measure-

ments of the loading rate are first discussed, followed by a description of experiments

aiming to maximise the number of atoms in the MOT. Finally the results of experiments

designed to cool and compress the cloud are detailed.

2.5.1 MOT loading rate

The atom number in the MOT, N , is determined by the balance between the rate at

which atoms are captured, and the rate at which they are lost. This can be described by

the differential equation,
dN

dt
= L−

N

τ
− β

∫
n2(r)dV, (2.55)

where L is the loading rate in atoms/second, τ is the trap lifetime and the term β
∫
n2(r)dV

describes losses due to two-body collisions between trapped atoms. In our MOT, the load-

ing rate is predominantly determined by the flux of atoms from the Zeeman slower, which

in turn depends on the atom flux from the oven. As the trap lifetime is determined by

collisions with background gases, it is important to maintain a low pressure in the MOT

chamber in order to maximise the atom number.

Two-body losses start to become significant as the density of the MOT increases. In

practise we can verify that two-body losses are negligible by measuring the decay curve

of the MOT, if this deviates from an exponential decay for early times when the density

is still high, then two-body losses cannot be ignored. For lithium-7 the value of β has
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been measured and is found to be small compared to the loss rate from collisions with

background atoms [115]. Therefore we can solve equation (2.55), neglecting the two-body

loss term. This gives,

N(t) = Lτ(1− e−t/τ ), (2.56)

where we have taken the atom number to be zero at time t = 0. As t → ∞, the atom

number limits to Nmax = Lτ . By fitting equation (2.56) to our loading curve, a value for

the capture rate and lifetime of the MOT can be extracted.

Figure 2.20: Measurements of the atom number in the MOT after various load times.
A fit to the data is depicted by the red line. From this values for the capture rate, L,

and MOT lifetime τ have been obtained.

Figure 2.20 shows the measured atom number in the MOT as a function of loading time.

Equation (2.56) has been fitted to the data, producing a value of τ = 2.78 ± 0.03 s,

and L = (1.75 ± 0.01) × 107 atoms/second. This fit is shown by the red line. It takes

approximately 10 s to load the MOT fully, at which point the atom number saturates at

approximately 5 × 107. For all subsequent experiments we load the MOT for 10 seconds

to ensure a large atom number is obtained.

2.5.2 Atom number optimisation

The MOT atom number is dependent on a variety of different parameters which include

the MOT beam power and detuning, the magnetic field gradient and the oven temperature.

Therefore by varying each of these parameters in turn it is possible to maximise the atom

number.
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Figure 2.21 shows the measured change in the atom number as the power of the MOT,

MOT repump, Zeeman and Zeeman repump beams were changed. For each measurement

the power of the relevant beam was scanned by varying the RF power to the AOM, whilst

the other beam powers were kept constant and at their maximum values. As the Zeeman

repump light does not pass through an AOM, its power was changed by using neutral

density (ND) filters. The beam detunings were kept constant for all measurements and a

magnetic field gradient of 14.6G/cm was maintained throughout. As repeat measurements

were taken, in each graph the data points represent the mean atom number, and the

standard error of the mean has been used as the error bar.

Figure 2.21: Experimental results showing the variation in atom number with the
power of the (a) MOT beams, (b) MOT repump beams, (c) Zeeman beam, (d) Zeeman

repump beam.

Each of the four graphs appears to have a similar shape where the atom number increases

with beam power and eventually shows signs of saturation. Unsurprisingly, the highest

atom number of 7.3× 107 was produced by using the maximum beam powers of 46mW,

8.4mW, 38.1mW and 11.4mW for the MOT, MOT repump, Zeeman and Zeeman repump

beams respectively. Looking at figure 2.21(a) saturation starts to become apparent for

MOT powers above 25mW. This corresponds to 8.3mW per MOT beam, which results

in an intensity just above Isat in each beam. Further increasing the power does not

increase the trapping force because the scattering rate saturates. This is equivalent to

maximising the capture velocity of the MOT and so necessarily leads to saturation of the
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atom number. In figure 2.21(b) the atom number starts to saturate for MOT repump

powers above 7.5mW. As the repump light is used to form a closed cycling transition,

saturation of the atom number indicates that atoms which have decayed to the F = 1

ground state are being pumped back into the main cooling cycle effectively. In figure

2.21(c) the atom number starts to level off as the Zeeman beam power approaches the

relatively high value of 40mW. It is important to have a high power Zeeman beam so

that a large decelerating force can be applied, thus resulting in atoms with a lower average

velocity upon exit from the Zeeman slower. Clearly this will lead to an increase in the

number of atoms trapped in the MOT. A high beam power also makes the Zeeman slower

less sensitive to small inaccuracies in the magnetic field profile of the slower. As before

the atom number begins to plateau as the optical transition saturates, and all atoms with

an initial velocity that can be captured by the Zeeman slower experience a reduction in

their velocity that allows them to be loaded into the MOT. Figure 2.21(d) shows that

saturation starts to occur for a Zeeman repump power of about 9mW. Like the MOT

repump, the Zeeman repump is used to maintain a closed transition at the zero field point

of the Zeeman slower. Therefore saturation again indicates that atoms are being pumped

back into the cooling cycle effectively.

Figure 2.22 shows the dependence of the atom number on the detuning of the MOT, MOT

repump, and Zeeman beams. To vary the beam detuning, the AOM frequency was shifted.

Therefore it was not possible to change the detuning of the Zeeman repump beam, as it

does not pass through an AOM. For each measurement, the beam powers were kept at the

optimal values mentioned above, each beam detuning was varied independently and again

the magnetic field gradient was kept constant at 14.6G/cm. In each graph a negative

value denotes light that is red detuned from the relevant atomic transition.

In figure 2.22(a) the atom number peaks strongly as the MOT beam detuning reaches a

value of −4.2Γ from the F = 2 to F ′ = 3 transition. As the frequency is brought closer

to resonance the atom number decreases. From equation (2.21) we can see that smaller

detunings lead to a reduction in the capture radius. This in turn reduces the capture

velocity of the MOT and results in fewer trapped atoms. When the detuning is larger

than −4.2Γ, the capture radius exceeds the MOT beam radius. Therefore increasing the

detuning no longer increases the capture radius. As large detunings reduce the average

scattering rate, the force applied to the atoms is lower. Eventually the force becomes
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insufficient to slow the atoms that exit the Zeeman slower, meaning that they are no

longer captured by the MOT. This produces a drastic drop in the atom number.

Figure 2.22: Experimental results showing the variation in atom number with the
detuning of the (a) MOT beam, (b) MOT repump beam, (c) Zeeman beam.

The dependence of the atom number on the MOT repump beam detuning is shown in

figure 2.22(b). The atom number is maximised for a detuning of −2Γ from the F = 1 to

F ′ = 2 transition, although the overall variation in atom number is small. As atoms are

mainly cycling on the F = 2 to F ′ = 3 transition, the MOT repump light provides only

a weak trapping force in the MOT and so the atom number does not depend strongly on

this detuning. However when the repump light is blue detuned it heats the atoms causing

a reduction in atom number.

The atom number as a function of the Zeeman beam frequency is shown in figure 2.22(c).

Here the detuning is plotted in MHz from the F = 2 to F ′ = 3 field-free transition

frequency for a stationary atom. The Zeeman slower has been designed to use light with

a frequency of −401MHz. This means atoms at the zero field point of the slower must

have a velocity of 269.6m/s in order to be resonant with the light. As these results show a

peak in the atom number at a frequency of −406MHz, atoms at the zero field point must

instead have a velocity of 272m/s. This discrepancy is most likely caused by the fact that

the measured field profile in the Zeeman slower is smaller than the field expected from

simulations [105]. This means the Zeeman shift to the atomic energy levels is smaller,
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so the light must have a larger red detuning in order to interact with the atoms. The

reduction in atom number as the frequency is moved away from the peak value is most

likely caused by inefficient slowing as the light is detuned from the atomic resonance.

Figure 2.23: Experimental results showing the variation in atom number with axial
magnetic field gradient.

The variation in atom number with magnetic field gradient is presented in figure 2.23 and

shows a clear peak at a gradient of 14.6G/cm. For larger field gradients, the steep drop

off in atom number can be attributed to the reduction in the capture radius, which leads

to a smaller capture velocity. For a given MOT beam intensity, there will be a particular

MOT beam detuning and magnetic field gradient that maximise the atom number. As

the field gradient rises, the detuning that optimises the atom number will also increase

[116]. This is because a particular capture radius can only be maintained if both the

field gradient and detuning rise together. As the detuning was not scanned at each of

the field gradients tested, it is possible that our optimal parameter values represent a

local maximum, and that a higher atom number could be attained by using a different

combination of magnetic field gradient and MOT beam detuning.

Having optimised the MOT parameters to capture the largest number of atoms from

the Zeeman slower, we proceeded to investigate the effect of oven temperature on the

atom number. To measure the atomic flux exiting the oven, a 17 μW probe beam with a

diameter of 6mm and a height of 2mm was sent through chamber one, perpendicular to

the atomic beam. For reference see figures 2.7 and 2.10. This probe beam was positioned

approximately 130mm away from the oven aperture, and its frequency was scanned over
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a 0.8GHz range about the F = 2 to F ′ = 3 transition frequency. The resulting absorption

was detected using an amplified photodiode and the measurements were compared to the

absorption signal predicted by theory.

In order to estimate how much absorption to expect, we must determine the average

number of photons an atom will scatter as it passes through the probe beam. As there is

no repump light present, atoms starting out in F = 2 will eventually be pumped to F = 1,

due to the partially unresolved structure of the excited state. Therefore it is necessary

to use a three-level model, where level 1 represents the F = 2 state, level 2 represents all

hyperfine levels of the 2P3/2 state, and level 3 represents the F = 1 ground state. We

assume that all atoms start off in level 1 and through interaction with the probe beam

are driven to level 2 at a rate given by

RLI =
Γ

2

s0

(1 + 4δ2/Γ2)
, (2.57)

where RLI is the scattering rate from equation (2.7) re-written in the limit of low light

intensity and Γ is the spontaneous decay rate of level 2. From level 2 atoms will either

decay to level 1 with a rate bΓ, or to level 3 with rate (1 − b)Γ, where as before b is the

branching ratio and in this case has a value of approximately 2/3.

By solving the rate equations we find the number of atoms in level 2 as a function of time,

N2(t). Then by integrating ΓN2(t) over the laser interaction time, τ , an expression for

the number of photons emitted by an atom, np, is obtained [117],

np =
RLI Γ

R+ −R−

(
e−R+τ − 1

R+
−
e−R−τ − 1

R−

)

, (2.58)

where

R± = RLI + Γ/2±
√
R2LI + bRLI Γ + Γ

2/4 . (2.59)

As the atomic beam is diverging, not all atoms will be moving perpendicular to the probe

beam. Therefore the detuning of the light will not only depend on the laser frequency

but also on the Doppler shift, Δω = kv sin θ. Here v is the velocity of the atom, and θ

is the angle between the atomic velocity vector and the central axis of the atomic beam,

which according to figure 2.10 is labeled as the x axis. To obtain an accurate estimate of

the average number of photons scattered per atom, we can integrate equation (2.58) over
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the atomic velocity distribution and the range of angles that allow an atom to intersect

the probe beam.

To determine the flux of atoms from the oven, we start with the Clausius-Clayperon

equation which relates the lithium vapour pressure to the temperature [118],

P (T ) = 101325 exp

[
ΔHvap

R

(
1

T
−
1

TB

)]

, (2.60)

where P is the pressure in Pascal, ΔHvap is the enthalpy of vapourisation, R = 8.31 J/Kmol

is the universal gas constant and TB is the boiling point of lithium. The values of ΔHvap

and TB can both be found in table 2.1. Using the ideal gas law, P = nkBT , equation

(2.60) can be re-written to describe the variation in number density as a function of

temperature,

n(T ) =
101325

kBT
exp

[
ΔHvap

R

(
1

T
−
1

TB

)]

. (2.61)

We operate the oven in the effusive flow regime where the mean free path is much larger

than the radius of the oven aperture. In this regime we can calculate the number of atoms

that escape from the oven by using the kinetic theory of gases. The number of atoms dN ,

that strike a surface area element dS of the exit aperture, during a time interval dt, given

atoms that have a velocity between v and v + dv and a solid angle in the range dω is

dN = nvxf(v)dv dS dt
dω

4π
(2.62)

= nv cos θf(v)dv dS dt sin θ
dθ dφ

4π
. (2.63)

Here vx = v cos θ is the x component of the atomic velocity, θ is the angle between

the atomic velocity vector and the x axis, and f(v)dv describes the normalised velocity

distribution of the atoms, which is just a Maxwell-Boltzmann distribution,

f(v)dv =

(
m

2πkBT

)3/2
4πv2e−mv

2/2kBTdv. (2.64)

Integrating equation (2.63) over all possible velocities, the full solid angle and the total

area of the oven aperture, we obtain an expression for the total number of atoms that
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exit the oven per second,

Φ =
nvA

4κ
(2.65)

=
2r

3l
nvA, (2.66)

where Φ is the atomic flux, v =
√
8kBT/πm is the mean atomic velocity, A is the area of

the aperture and κ = 3l/8r is a correction factor that arises because our oven aperture is a

tube with radius r and length l, where l� r, rather than a hole of negligible length [119].

Combining this with equation (2.61) we arrive at an expression for the number of atoms

that exit the oven per second as a function of temperature. This leads to an estimated

flux of 4.3 × 1015 atoms/second for our experiment when using an oven temperature of

500 ◦C.

The copper cup aperture at the oven exit ensures that only atoms with small θ can escape,

and we can assume a cos θ angular distribution for the atomic beam. By integrating npΦ

over the atomic velocity distribution and a suitable solid angle we can then determine a

value for the total number of photons scattered at any given temperature. By comparing

this to the number of photons in the probe beam, we can estimate how much absorption

to expect.

Figure 2.24: Measured peak absorption from the effusive lithium oven as oven tem-
perature is varied. The red curve shows the theoretically expected variation in peak

absorption as a function of temperature.

Figure 2.24 compares the expected amount of absorption, shown by the red curve, with

experimental data. The peak absorption was determined by fitting a Gaussian to the

absorption dip recorded by the photodiode, and extracting the peak height from the fit.
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As expected the amount of absorption increases with temperature, due to the presence of

more atoms. There is some disagreement between theory and experiment as we measure

a smaller amount of absorption at each oven temperature. This discrepancy is most likely

caused by an over-estimate of the temperature of atoms inside the oven. This could arise

if, for example, the thermocouple used to measure the temperature was sitting too close

to the band heater. By reducing the temperature assigned to each data point by only

10K, we are able to obtain good agreement between theory and experiment.

In figure 2.25(a) the variation in MOT atom number with oven temperature is shown.

These data were obtained by taking absorption images of the cloud after a loading time

of 13 s. The initial rise in atom number with temperature can be attributed to the

increase in atomic flux from the oven. We would expect this trend to continue with

increasing temperature, however at 780K the atom number clearly peaks at a value of

around 2.3 × 108. Referring back to equation (2.56) we see that the number of atoms in

the MOT depends on both the loading rate and the lifetime of the trap. As the oven

temperature and atomic flux increase, the loading rate also increases, which leads to more

atoms in the MOT. The peak in the data indicates that as the oven temperature rises, the

lifetime of the trap falls. At some point the decrease in the lifetime is sufficiently large

that, despite the increasing flux, the atom number in the MOT begins to drop.

Figure 2.25: In (a) the measured atom number in the MOT is shown as the oven
temperature is varied. In (b) the peak atomic density is shown as the oven temperature

is varied.

Figure 2.25(b) shows the variation in the peak cloud density with oven temperature. This

was determined by using the data in (a), measurements of the cloud size and equation

(2.26). Here we can see that as the temperature rises above 705K there is a small increase

in the density, though for higher temperatures it appears to saturate at a value of around

9×109 atoms/cm3. Although this is an order of magnitude smaller than the density limit

found for other MOTs, it indicates that our atom cloud has entered the multiple scattering
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regime and is therefore density limited. To increase the density beyond this limit, one of

the methods described in section 2.1.4 must be employed.

From these experiments we have found the parameters that lead to the largest number

of atoms in the MOT. In particular the atom number is maximised for beam powers

of 46mW, 8.4mW, 38.1mW and 11.4mW for the MOT, MOT repump, Zeeman and

Zeeman repump beams respectively. The biggest atom numbers were found for detunings

of −4.2Γ for the MOT beam, −2Γ for the MOT repump and −406MHz for the Zeeman

beam. In addition to this the largest atom numbers were found when using a magnetic

field gradient of 14.6G/cm and an oven temperature of 780K. The largest atom number

was found to be 2.3 × 108. For the rest of the experiments described in this thesis these

optimal MOT parameters have been used, with the exception of the MOT beam detuning

which is normally kept at −3.5Γ.

2.5.3 MOT temperature

In order to measure the temperature of atoms in the MOT we utilise the ballistic expansion

technique. This method involves releasing the atoms from the trap by switching off the

MOT beams and magnetic field. The atoms are left to expand freely for some period of

time and are then imaged. Using an identically prepared cloud, this process is repeated

so that a series of images showing the cloud at various stages of its expansion can be

obtained. Then by measuring the cloud width as a function of time, it is possible to infer

the temperature of the atoms. To see how this is possible we first have to determine how

the atomic density distribution varies with time once the cloud has been released from

the trap.

For simplicity, and because we only ever look at the expansion of the cloud along one axis

at a time, we will derive an expression for the density distribution along the x axis as a

function of time. This expression can be applied to any of the three cartesian axes, and

can be easily extended to the three dimensional case if required. Referring back to section

2.1.4, we know that the density distribution of atoms in the MOT along the x axis can
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be described by the Boltzmann distribution,

n(x0) = n0 exp

[

−
U(x0)

kBT

]

(2.67)

= n0 exp

[

−
x20
2σ20

]

, (2.68)

where x0 denotes the initial position of an atom and σ0 =
√
kBT/κx is the initial standard

deviation of the cloud.

The velocity of atoms in the MOT can be described by the Maxwell-Boltzmann distribu-

tion,

P (vx)dvx = A exp

[

−
mv2x
2kBT

]

dvx, (2.69)

where P (vx)dvx is the probability that an atom has a velocity between vx and vx + dvx,

and A is the normalisation constant. This can be re-written in terms of the initial position

of the atom by using vx = x − x0/t, where x represents the atom’s final position. This

produces,

P (x0, t)dx0 = A exp

[

−
m(x− x0)2

2kBTt2

]

dx0, (2.70)

where the 1/t factor has been absorbed into the normalisation constant A. This expression

describes the probability that an atom having an initial position x0 ends up at a final

position x.

As the density distribution at time t depends on both the spatial and velocity distributions

of the cloud, we multiply (2.68) and (2.70) together and integrate over all possible initial

positions,

n(x, t) =

∫ ∞

−∞
n(x0)P (x0, t)dx0 (2.71)

= B

∫ ∞

−∞
exp

[

−
x20
2σ20

]

exp

[

−
m(x− x0)2

2kBTt2

]

dx0 (2.72)

= B exp

[

−
x2

2σ20 + 2kBTt
2/m

]

. (2.73)

The exact form of B can be found through normalisation. This shows that the final

density distribution along one axis has a Gaussian form with a standard deviation, or

width of,

σ =

√

σ20 +
kBTt2

m
. (2.74)
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To measure the temperature of our atom cloud we fit a two dimensional Gaussian to each

absorption image. The fit is deemed adequate because the uncertainties on the fitting

parameters are much smaller than the variation between successive shots. From the fit

we extract values for the widths along the x and z axes, as shown in figure 2.10. In

the following discussion these axes are referred to as the radial and vertical directions

respectively. The width measurements are then plotted against time. With the initial

width σ0, and temperature T , left as floating parameters, we perform a weighted fit of

the data to the model of equation (2.74). From this a value for the cloud temperature

can be extracted.

Figure 2.26 shows the expansion of the cloud after release from the MOT, where the

optimal MOT parameters found in the previous section have been used. The data shown

here was obtained using coil 2, which switches of quickly enough that the residual magnetic

trapping force has a negligible effect on the free expansion of the cloud. In the figure, the

vertical cloud widths are represented by the red data points, and the radial widths are

shown by the blue points. As repeat measurements were taken, each data point represents

the mean value of σ, and the standard error of the mean has been used for each error bar.

The error bars are larger at longer times because the signal from the expanded cloud is

smaller, thus producing a less reliable fit.

Figure 2.26: Ballistic expansion temperature measurement of the MOT cloud. The
red data points represent width measurements in the vertical direction, whilst the blue
points represent the width in the radial direction. Fits to the data are shown by the solid

lines and from these temperature values are extracted.

Normally we would expect the vertical cloud width to be smaller than the radial width,

as the vertical magnetic field gradient is higher. However these results show that our
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cloud has a smaller radial width. This could be caused by an imbalance in the MOT

beam intensity, as this will alter the trapping force along the two axes, thus changing the

aspect ratio of the cloud. From our fit to the data, we find the temperature of the cloud

to be 1.47± 0.01mK in the vertical direction, and 1.12± 0.01mK in the radial direction.

This discrepancy could be caused by small diffraction effects that make smaller clouds

appear larger. If this is the case, the data at longer times should be more reliable, as

diffraction effects become smaller with increasing cloud size. At shorter release times,

although both width measurements will be affected, diffraction effects will be larger in

the radial direction as the cloud is smaller along this axis. This would lead to the blue

data points being higher than they should be, thus producing a larger underestimate of

the temperature in the radial direction. Using equation (2.40) along with our MOT beam

parameters, we find the temperature predicted by Doppler theory to be 0.5mK, which

does not agree well with our results. However, other lithium experiments which use similar

powers and beam detunings measure temperatures in the 1mK range [78]. This suggests

that a simple two level model cannot be used to accurately describe the temperature of

atoms in the MOT.

2.6 Cooling and compressing the cloud

In order to achieve our final experimental aims, ultimately we require a small, dense atom

cloud. This means we have to simultaneously maximise the atom number and minimise

the cloud width. As we have already found the parameters that produce the highest atom

number, we now concentrate on finding a way to compress the cloud. In general there

are two options available, either we can implement a compressed MOT (CMOT) phase

by briefly increasing the magnetic field gradient with the MOT light still on, or we can

alter the beam powers and detunings in order to decrease the cloud temperature. In an

attempt to produce the smallest possible cloud, we have combined these two methods.

For all the experiments detailed here coil 2 was used.

As we eventually want to have a large number of atoms in a magnetic trap with a steep

field gradient, we began by looking at how variations in the CMOT phase affect the

efficiency of transfer into the magnetic trap. Figure 2.27 shows the timing sequence used

for these experiments. First atoms were loaded into the MOT. At this point the magnetic

field gradient was equal to 14.6G/cm and the MOT beams, which are shown in purple,
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were on and had their usual power and detuning. To take an absorption image of the

MOT atoms, the probe beam, which is shown in yellow, was pulsed on. Next the coil

current was either linearly ramped (blue), or instantaneously switched (pink) to produce a

new magnetic field gradient given by y. This phase, where we have a MOT with increased

magnetic field gradient, is called the CMOT, and it lasted for some period of time, x.

By switching off the MOT beams the atoms were transferred into the magnetic trap,

and were held there for 50ms. After this the CMOT was reformed by switching on the

MOT beams, and the field gradient was again switched or linearly ramped back to the

original value. The cloud was then left for 20ms to allow it to equilibrate before being

imaged. Finally the percentage of retained atoms was calculated using the two cloud

images obtained. By only imaging the atoms whilst in the MOT, as opposed to imaging

after release from the magnetic trap, we are able to ensure that the imaging conditions

remain the same. This is important as changes in the magnetic field could lead to some

atoms becoming invisible.

Figure 2.27: Timing sequence used to optimise CMOT phase. Depending on the
experiment being carried out, either the coil current is ramped (blue), or switched (pink)
to a higher current, thus producing a CMOT. The length of the CMOT stage is given
by x. The magnetic field gradient in the MOT is 14.6G/cm, this is increased to some
value, y, during the CMOT stage. The timing sequence for the MOT beams (purple)

and probe beam (yellow) is also shown. All times are given in milliseconds.

Figure 2.28 shows how the percentage of atoms retained changes with the final axial

magnetic field gradient used during the CMOT phase. This value is represented by y

in figure 2.27. For the black, blue and red data points the magnetic field was linearly

ramped over x = 25ms, 50ms and 100ms respectively, whilst for the green data points

the magnetic field was instantaneously switched such that x = 25ms. We can see that

for field gradients below 50G/cm there is little difference between the various data sets,

and that higher gradients lead to an increase in the percentage of atoms retained. This
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is expected as the trap depth increases with magnetic field gradient, thus allowing hotter

atoms to be captured. We would expect the atomic percentage to keep rising until the

trap depth is large enough to capture the entire atomic velocity distribution, at which

point it should saturate. Given that only three of the eight ground state MF sub-levels

can be magnetically trapped, we would expect to retain a maximum of 3/8 ≈ 38% of the

atoms.

Figure 2.28: Percentage of atoms retained after transfer to and from the magnetic trap
via the CMOT phase as the final axial field gradient used during the CMOT phase is
varied. The black, blue and red data points use a linear ramp of the field over x = 25ms,
x = 50ms and x = 100ms respectively. For the green data points the field is rapidly

switched such that x = 25ms.

These results however, show a clear peak of around 30% at a gradient of 47.4G/cm

for all data sets. As the magnetic field gradient is increased above this point the atom

percentage begins to fall, with longer ramp times producing a bigger drop. This suggests

that shorter ramp times are better, and perhaps indicates that by rapidly switching the

field, the highest percentage of atoms can be retained. However this is not the case, as the

green points show the largest percentage drop of all four data sets. This can potentially be

explained by considering how losses from the CMOT change as the cloud density varies.

We know from section 2.5.1 that two-body collisions between atoms in the MOT can lead

to losses from the trap, and that this effect becomes significant when the cloud density

is high. Therefore the reduction in atom percentage at large field gradients could be

caused by an increase in the two-body loss rate due to the high density of the cloud.

This effect could also explain why longer field ramps produce a smaller atom percentage,
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as the atoms spend more time at high density, thus allowing more collisions to occur.

When the current is switched rather than ramped, the atoms spend even more time at

high density, thus producing an even greater loss of atoms. This suggests that the largest

percentage of atoms could be retained by switching the current immediately before transfer

to the magnetic trap. However temperature measurements have shown that this induces a

breathing mode, which causes the cloud width to initially decrease upon release from the

CMOT. Therefore, if reliable temperature measurements are to be obtained a linear ramp

of the magnetic field should be employed. To achieve a good balance between having a

large atom number and a small cloud, for all subsequent measurements we ramp the field

gradient to a value of 60G/cm over 65ms. From now on this will be referred to as the

CMOT field ramp.

Figure 2.29: Experimental results showing the variation of the (a) temperature with
MOT beam power, (b) percentage of atoms retained with MOT beam power, (c) tem-
perature with MOT repump power, (d) percentage of atoms retained with MOT repump
power, during the CMOT phase. In (a) and (c) the blue and red points represent tem-

perature measurements in the radial and vertical directions respectively.

Having found the optimal field gradient to use during the CMOT phase, we then moved on

to finding the beam powers and detunings that minimise the cloud temperature. Figure

2.29(a) shows how changing the power of the MOT beams during the CMOT stage affects

the temperature of the cloud. Here the blue and red data points represent temperature
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measurements in the radial and vertical directions respectively. As before the radial direc-

tion corresponds to the x axis in figure 2.10, whilst the vertical direction corresponds to

the z axis. For each measurement we employed the CMOT field ramp, whilst simultane-

ously ramping down the total MOT beam power to the various values given in the figure,

over a period of 65ms. All other beam powers and detunings were kept constant and the

temperature was determined via ballistic expansion measurements. Here the error bars

represent the error on the temperature fit. The figure clearly shows that lower MOT beam

powers lead to a corresponding reduction in the cloud temperature, which is in agreement

with simple Doppler theory.

To ensure that lower temperatures are not accompanied by a large loss of atoms, the atom

percentage retained after transfer to and from the magnetic trap was also measured.

These results were obtained using the same procedure as depicted in figure 2.27. As

shown in figure 2.29(b) for beam powers below 10mW, the atom percentage is reduced

by approximately 5%.

In figure 2.29(c) the temperature variation with MOT repump power is shown, whilst

figure 2.29(d) shows the change in atom percentage with MOT repump power. These

results indicate that a small reduction in the temperature can be achieved by using a

low MOT repump power, however this is accompanied by a small loss of atoms from the

trap. From this we conclude that the optimal powers to use during the CMOT phase are

2.5mW for the MOT beam, and 0.7mW for the MOT repump beam, as this produces a

lower cloud temperature without a large reduction in the percentage of atoms retained.

Figure 2.30(a) shows the variation in temperature as the detuning of the MOT beam is

linearly ramped from an initial value of −3.5Γ to a variety of different values over the

65ms CMOT phase. Again the blue and red points represent temperature measurements

in the radial and vertical directions respectively. As before the usual CMOT field ramp

was utilised. By altering the frequency of the beam, its power will also change. Therefore

to isolate the effects of detuning on the cloud temperature, the MOT and MOT repump

beam powers were ramped down during the CMOT phase to 11.7mW and 4.26mW

respectively, as this was the highest power that could be reached for every frequency in

the tested range. This means there is likely to be an additional cooling effect because of

the drop in power, however overall trends in the data should not be affected. All other

beam powers and detunings were kept constant at the usual MOT values throughout the
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CMOT phase. As expected the data shows a large drop in temperature as the frequency is

shifted closer to resonance. From Doppler theory, provided s0 � 1, we would expect the

minimum temperature to lie at a detuning of −Γ/2, however our data does not cover this

range. This is because, as can be seen in figure 2.30(b), for detunings below −3.5Γ there

is a drastic loss of atoms, making it impossible to measure the temperature at detunings

much smaller than −1Γ. This loss of atoms could be caused by an increase in the rate of

two-body losses, as smaller detunings will compress the cloud leading to a higher density.

Figure 2.30: Experimental results showing the variation of the (a) temperature with
MOT beam detuning during the CMOT phase, (b) percentage of atoms retained with
MOT beam detuning during the CMOT phase, (c) temperature with MOT repump
detuning during MOT loading and CMOT phase, (d) percentage of atoms retained with
MOT repump detuning during MOT loading and CMOT phase. In (a) and (c) the blue
and red points represent temperature measurements in the radial and vertical directions

respectively.

The variation in temperature with MOT repump detuning is shown in figure 2.30(c). For

these measurements the detuning was set to various values at the beginning of the MOT

loading sequence, and was kept constant throughout the CMOT phase. As shown in

section 2.5.2, the MOT atom number only changes slightly with MOT repump detuning.

Therefore it makes sense to optimise the detuning to produce the lowest possible tem-

perature. To ensure a constant beam power at each of the tested frequencies, the MOT

repump power was kept at 3.5mW throughout the MOT loading and CMOT phases.
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This data set shows that a small decrease in temperature can be obtained by increasing

the red detuning of the light. According to figure 2.30(d), there is a slight increase in the

percentage of atoms retained for larger detunings. From these results we conclude that, in

order to produce the lowest possible temperature we should use a MOT repump detuning

of −2.3Γ throughout the MOT loading phase. The MOT beam detuning on the other

hand should be kept constant at −3.5Γ as lower detunings lead to a large loss of atoms

from the trap.

Figure 2.31: Experimental results showing the variation of (a) radial temperature, (b)
vertical temperature, (c) percentage of atoms retained, with axial magnetic field gradient
during the CMOT phase. The blue data points were obtained using a linear field ramp
over 65ms. The black data points use the same field ramp, along with a reduction in
the MOT and MOT repump powers during the CMOT phase, and a switch of the MOT

repump detuning at the start of the the MOT loading phase.

Finally we investigated how changes in the magnetic field gradient affect the temperature

of the cloud. In figure 2.31(a) the radial temperature is shown, whilst figure 2.31(b) shows

the vertical temperature. In both figures the blue data points were obtained by ramping

the magnetic field to various values over 65ms. To obtain the black data points, the same

field ramp was used along with a reduction of the MOT and MOT repump beam powers to
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2.5mW and 0.7mW respectively over a 65ms time scale. Additionally the MOT repump

detuning was kept at −2.3Γ throughout the MOT loading sequence.

From the blue data we see that larger magnetic field gradients during the CMOT phase

lead to higher temperatures. By increasing the field gradient, energy is transferred to the

atoms, causing their temperature to rise. In general we would expect the MOT beams to

re-cool the atoms on a time scale given by the MOT damping rate. For our experiment

this is on the order of 0.3ms. Therefore we do not expect to see any significant change in

the temperature with magnetic field gradient. However these results could be explained

by an increase in density at high field gradients. As shown in figure 2.31(c), the atom

percentage drops with increasing magnetic field gradient. If this is due to an increase

in two-body collisions, then atoms at the centre of the cloud will be preferentially lost,

as they have the highest density. As these atoms also have the lowest temperature, this

would result in an increase in temperature with magnetic field gradient.

Looking at the black data we see that the temperature of the cloud is reduced by ∼ 0.5mK

at high field gradients, and only varies slightly across the entire range of gradients tested.

As the beam power during the CMOT phase is lower for these measurements, the cloud

density will not be as high, meaning that fewer of the low temperature atoms will be

lost. Looking at figure 2.31(c), we see that for the highest field gradients more atoms are

retained. This could occur if two-body losses have been reduced.

Figure 2.32: Ballistic expansion temperature measurement of the atoms released from
the CMOT, using the optimal cooling parameters. The red data points represent width
measurements in the vertical direction, whilst the blue points represent the width in the

radial direction. Fits to the data are shown by the solid lines.
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In figure 2.32 a measurement of the final cloud temperature given our optimal cooling

parameters is shown. To maintain a large atom number we linearly ramp the field to

60G/cm over 65ms. At the same time we ramp the MOT and MOT repump powers to

2.5mW and 0.7mW respectively, so as to reduce the temperature. In addition to this the

MOT repump detuning is kept at −2.3Γ throughout the MOT loading sequence. Fits

to the data produce a radial temperature of 0.63 ± 0.01mK, and a vertical temperature

of 0.86± 0.02mK. Comparing this to the temperatures quoted in section 2.5.3 there has

been a reduction of 0.49mK and 0.61mK in the radial and vertical directions respectively.

Given our magnetic field gradient, this leads to a minimum cloud size of around 4mm

in the magnetic trap, which is eight times larger than our ideal cloud size of 0.5mm. In

the long term this will be problematic as it means only a small fraction of atoms can

be placed between the high field electrodes. However by cooling further, via evaporative

cooling for instance, it should be possible to reduce the size of the cloud. For now we

want to maintain a high atom number to make characterisation of the atomic transport

easier, therefore we have made no further attempts to reduce the cloud size.

2.7 Chapter summary

In order to maximise the number of atoms trapped in the MOT we have carried out

experiments to measure how this varies with beam power, beam detuning, magnetic field

gradient and oven temperature. This has allowed us to trap up to 2.3 × 108 atoms with

an initial temperature of ∼ 1.3mK and a density of approximately 9 × 109 atoms/cm3.

As we eventually want our atomic sample to be cold and dense, we have implemented

and optimised a CMOT stage. By varying the duration of this stage, the magnetic field

gradient applied, the beam powers and detunings, we are now able to reduce the cloud

temperature to ∼ 0.75mK, and can recapture ∼ 28% of the atoms in the MOT after having

spent 50ms in the magnetic trap. This should be sufficient to allow us to characterise

the transportation setup, although for further experiments it will be beneficial to have a

colder cloud with a higher density.
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Magnetic trapping and transport

As the sympathetic cooling, and high electric field experiments will be carried out in

the science chamber, it is necessary to transport the atoms. In order to do this they

must first be transferred from the MOT to the magnetic trap. This chapter begins, in

section 3.1, with a brief introduction to the theory of magnetic trapping and the associated

mechanisms by which atoms are lost from the trap. The loss rate due to collisions with

background particles is measured and the effect of the oven temperature on this loss rate

is also studied. As the atoms will eventually have to be imaged in the science chamber,

section 3.2 describes the problems associated with imaging the atom cloud after release

from the magnetic trap. The source of these problems is identified through measurements

of the atomic line shape. Finally section 3.3 discusses the transportation method used to

move atoms from the MOT chamber to the science chamber. The optimisation procedure

is described, and measurements of the magnetic trap lifetime in the science chamber are

presented.

3.1 Magnetic trapping

In this section a brief overview of the theory of magnetic trapping is given. The main loss

mechanisms from the magnetic trap are described and the loss rate due to collisions with

background particles is measured. In addition to this the variation in the magnetic trap

lifetime with oven temperature is investigated.

95
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3.1.1 Theory of magnetic trapping

When an atom with a permanent magnetic moment is subjected to a static magnetic

field, an interaction occurs that shifts the atomic energy levels and lifts degeneracy. This

is known as the Zeeman shift. If the applied magnetic field is inhomogeneous, the atom

will experience a force that causes it to move to a position where the interaction energy is

minimised. It is this phenomenon which allows atoms to be trapped by a magnetic field.

If the applied magnetic field is low, the shift of the atomic energy level is given by

E = gFMFμBB, (3.1)

where gF is the Landé g-factor, MF is the projection of the total angular momentum onto

the magnetic field axis, μB is the Bohr magneton and B is the applied magnetic field. The

direction of this shift determines whether or not an atom can be trapped. If the energy

level is shifted towards higher energies with increasing B the state is low-field seeking, as

the energy is minimised at low magnetic fields. Conversely if the energy level is shifted

downwards the state is high-field seeking. With the use of DC fields only relative minima

can be produced [120], meaning that only low-field seeking states can be magnetically

trapped. For lithium only three of the eight Zeeman sub-levels of the 2S1/2 ground state

are low-field seeking. These are the MF = 2 and MF = 1 levels of the F = 2 state for

which gF = 1/2, and the MF = −1 level of the F = 1 state for which gF = −1/2. Atoms

in the MF = 2 state experience the full trapping force and are more tightly confined than

atoms in the MF = 1 and MF = −1 states. Assuming an equal population of all Zeeman

sub-levels in the MOT, we can expect to transfer at most 3/8 ≈ 38% of the atoms to the

magnetic trap.

Although a number of different geometries have been used to magnetically confine atoms,

for our experiment we use the simplest configuration which is a quadrupole field. It is

produced by a pair of anti-Helmholtz coils which means that, as long as high currents can

be used, both the MOT and magnetic trap can be formed by the same coil pair. As well

as this the trap is easy to construct, provides good optical access, and due to the linear

field gradient close to the trapping centre, the atom cloud is tightly confined. The main

disadvantage of this design is that atoms close to the zero field point can be lost from the

trap, as they are able to make transitions to untrapped states.
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As an atom moves through the trap, the local magnetic field vector will change. If the

atom is to remain in a particular MF sub-level, the adiabaticity condition must be met.

This can be written as [112]

dθ

dt
< ωL =

gFMFμB |B|
~

, (3.2)

where θ is the angle between the magnetic moment and the magnetic field vector and ωL

is the Larmor frequency. This condition simply states that an atom will remain trapped

if its magnetic moment precesses around the magnetic field vector faster than the rate at

which the field direction changes. Close to the zero field point this condition is not met,

meaning that transitions to untrapped states are possible. These are known as Majorana

transitions.

To estimate the size of the low field region where Majorana transitions can occur, we

consider an atom with velocity v and mass m moving in a circular orbit of radius ρ around

the zero field point. The angular velocity of the atom is ωvel = v/ρ, which means the rate

of change of the magnetic field direction can be written as dθ/dt = v/ρ. Inserting this

into equation (3.2) and setting the two sides equal to each other, we find the approximate

radius, ρ0, of the “hole” through which atoms can be lost,

ρ0 ≈

√
v~

gFMFμBB′
. (3.3)

Here we have used B = B′ρ0. The loss rate ΓM is then given by the flux of atoms through

this region and is found to scale as [121]

ΓM ∝
~
m

(
gFMFμBB

′

kBT

)2
. (3.4)

The proportionality constant has been determined for both rubidium [121–123] and sodium

[124], however no such measurement has been carried out for lithium. Therefore in order

to estimate whether Majorana transitions are significant, we insert the typical parameters

for our magnetic trap into equation (3.3). Given our maximum field gradient of 60G/cm

and a temperature of ∼ 0.75mK, which equates to a speed of v =
√
2kBT/m = 1.3m/s,

the radius of the hole is 5μm for atoms in the F = 2, MF = 2 state. Compared to our

cloud radius of 2mm, this is negligibly small, which indicates that Majorana losses are

insignificant. However if at some later stage a colder cloud is required, they may become
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problematic as cold atoms are tightly confined to the trapping centre and as such spend

more time in the low field region. If this becomes an issue a variety of different trap ge-

ometries could be incorporated into the setup. These include the time-averaged orbiting

potential (TOP) trap [121], or the Ioffe-Pritchard trap [125].

3.1.2 Lifetime of the trap

In order to transport atoms to the science chamber, it is necessary to have a long magnetic

trap lifetime. Just like the MOT, atoms in the magnetic trap are predominantly lost by

colliding with background gas particles. This leads to an exponential decay of the atom

number which can be written as,

N(t) = N0e
−t/τ , (3.5)

where N(t) describes the number of atoms as a function of time, N0 is the initial atom

number and τ is the lifetime of the trap.

To estimate the trap lifetime we have to determine the number of collisions that occur

between background gas particles and an atom as it moves through the vacuum chamber.

This depends on three parameters which are the number density, nbg, and velocity, vbg, of

the background gas, as well as the collision cross section between the background gas and

the lithium atoms, σLi. Consider an atom as it moves through the chamber. In a time t it

will sweep out a volume of size σLivbgt. If this same volume is occupied by a background

gas atom, a collision will occur. Therefore the total number of collisions Ncoll, will be

equal to the number of atoms in this volume. This is given by Ncoll = nbgσLivbgt = Rcollt,

where Rcoll = 1/τ is the collision rate and τ is the trap lifetime. Using the ideal gas

equation, n = P/(kBT ), and the fact that the mean velocity of the Maxwell-Boltzmann

distribution is v = 2
√
2kBT/(πm), the lifetime can be written as

τ =
1

nbgσLivbg
=
1

σLiP

√
πmkBT

8
. (3.6)

Although the exact composition of the background gas is unknown, we can obtain a

rough estimate of the expected lifetime by using the value found in [119] for the collision

cross section between lithium and helium, σLi = 1.06 × 10−18m2. Given our measured
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MOT chamber pressure of 1.7× 10−9mbar, and assuming the background atoms are at a

temperature of 20 ◦C, we expect the magnetic trap lifetime to be τ ≈ 18 s.

In order to determine the actual lifetime of the magnetic trap we measure how the atom

number decays as a function of time. The results of this measurement are shown in figure

3.1. To obtain this data set the atoms were first imaged in the MOT after a loading time

of 10 s. Then they were cooled and compressed using the CMOT phase, which involved

ramping the field gradient to 60G/cm whilst simultaneously reducing the power in the

MOT and MOT repump beams over a 65ms time period. Next the atoms were loaded

into the magnetic trap and were held there for various lengths of time. After this the

CMOT was reformed by switching on the MOT beams, and all parameters were ramped

back to the usual MOT values. Finally the atoms were left to equilibrate for 20ms before

being imaged. The percentage plotted in the figure is calculated by comparing the atom

number of the reformed MOT with the initial atom number. For this data set an oven

temperature of around 793K was used.

Figure 3.1: Measured loss of atoms from the magnetic trap with time. The red line
is an exponential fit to the data. From this the lifetime and percentage of atoms loaded

into the trap are extracted.

An exponential fit to the data is shown by the red line. From this we find the magnetic trap

lifetime in the MOT chamber to be τMC = 1.53± 0.01 s, which is an order of magnitude

smaller than the theoretically predicted value. This discrepancy is most likely due to the

background pressure in the MOT being substantially different to the pressure measured

at the gauge. This is because the gauge is attached to the MOT chamber via two four-

way crosses and it is close to the ion pump. In this position it is likely to measure a
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lower pressure than in the actual MOT region. From our measured lifetime we expect the

pressure in the MOT chamber to be around 2.7× 10−8mbar.

Figure 3.1 also shows that the atomic percentage at time t = 0 has a value of 22.8 ±

0.2%. This represents the percentage of atoms that are successfully loaded into the

magnetic trap. For these measurements atoms are only recaptured if they remain within

the recapture volume of the MOT. The radius of this volume is equal to the MOT beam

radius, which is 0.96 cm. By finding the magnitude of the magnetic field at this position,

the effective trap depth is found to be just under 4mK in the axial direction. Using this

value and assuming that the cloud has an average temperature of 0.75mK, it is possible to

predict the percentage of retained atoms by finding the fraction of the Maxwell-Boltzmann

distribution that has a velocity below the trap depth. Atoms in the F = 2, MF = 2 state

will see the full trap depth and as such we expect to retain 82% of them. Atoms in the

F = 2, MF = 1 and F = 1, MF = −1 states however see only half of the total trap depth,

which means 52% of these atoms will be retained. Assuming an equal population of all

Zeeman sub-levels, in total we expect to load around 23% of the MOT atoms into the

magnetic trap. This agrees well with our results.

Figure 3.2: Lifetime of the magnetic trap as the oven temperature is varied.

In figure 3.2 the effect of oven temperature on the lifetime of the magnetic trap is shown.

The procedure used to measure the lifetime again involved loading the atoms into the

magnetic trap for varying amounts of time, before recapturing them in the MOT. However

for this set of data no CMOT stage was used. Although this affects the percentage of

atoms loaded into the trap, it should not affect the lifetime measurement itself. The error

bars on each data point come from the errors on the exponential fit. The fitting errors
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are smaller at higher temperatures because this gives more atoms. This figure clearly

shows that higher oven temperatures lead to a lower trap lifetime. This is because after

repeated cycling of the temperature, the oven developed a small leak. By increasing the

oven temperature, the leak worsens leading to an increase in the background pressure and

a corresponding decrease in the magnetic trap lifetime. Ultimately this requires fixing,

however for now the trap lifetime is sufficient to allow the transport procedure to be

tested. Therefore to benefit from the increase in atom number that comes with higher

temperatures, the cloud must be transported quickly to the science chamber where the

background pressure should be lower.

3.2 Imaging the released cloud

Before testing the atomic transportation setup it is important to make sure that we are

able to obtain reliable images of the atom cloud upon release from the magnetic trap.

This is required because ultimately atoms will have to be imaged in the science chamber.

A number of factors can affect the images obtained, including the presence of repump

light, the length of the probe beam pulse, the polarisation of the probe beam and stray

magnetic fields that persist after the coils have been switched off. In this section we

investigate the effects of each of these factors and find the conditions that maximise the

measured optical depth of the cloud.

3.2.1 Duration of the probe beam pulse

In figure 3.3 measurements of the peak optical depth are shown as the probe beam pulse

duration is varied. These data sets were obtained by releasing the atoms from the usual

CMOT and leaving them to expand for 0.7ms, after which they were imaged. For the

blue data points the MOT repump light was flashed on during imaging, whilst for the red

data points no repump light was used.

Both data sets show a clear reduction in the peak optical depth as the probe beam pulse

duration increases. To understand this trend we have to consider the effect of the probe

light on the speed of the atoms being imaged. When an atom absorbs a photon from the

probe beam, it will receive a momentum kick in the propagation direction of the light.

This changes the velocity of the atom and creates a Doppler shift. If the atom is initially
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Figure 3.3: Measured peak optical depth as the probe beam pulse duration is varied.
For the blue data points the MOT repump light was flashed on during imaging, whilst

the red data points used no repump light.

resonant with the probe beam then, as the number of scattered photons goes up, the

detuning of the light will increase. This means that the average scattering rate will be

lower for longer interaction times. As a result we expect to measure a smaller peak optical

depth as the probe beam pulse duration increases. If this effect is not taken into account

then long probe beam pulses will produce an underestimate of the total atom number.

For sufficiently long interaction times the atom will be shifted out of resonance with the

probe beam. To produce a Doppler shift of half a linewidth, the velocity of our lithium

atoms must increase by 2m/s. This requires 23 photons to be scattered. Given our probe

beam has a detuning of approximately 0.6MHz, it should take around 100μs to scatter

23 photons. Therefore it is best to use a pulse duration of less than 100 μs.

By comparing the blue and red data points we find that a higher optical depth is obtained

when the repump light is used. This is because the repump excites atoms out of the F = 1

state, thus allowing them to be imaged. Assuming an equal population of all Zeeman sub-

levels, we would expect the red data points to be 38% lower than the blue data points.

This is in good agreement with our results where, for short pulses, the red data points are

around 40% lower. As the pulse duration increases, the two data sets appear to diverge

slightly. When the repump light is used to image the cloud, all of the atoms are visible, so

the decrease in signal is caused only by the increasing Doppler shift, as already discussed.

However when no repump light is used, atoms can decay to the F = 1 state where they

no longer interact with the probe beam. As the interaction time increases more atoms
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will decay to this dark state, thus producing an additional loss of signal that increases

with time. This is the most likely cause of the divergence of the two data sets.

As fewer atoms are present in the magnetic trap, it is beneficial to have as large an

optical depth as possible. These results indicate that the optical depth can be maximised

by utilising a short probe beam pulse. The shortest pulse we are able to produce is 58 μs.

Therefore we expect to see a 26% reduction in the peak optical depth due to this Doppler

shift effect. These results also highlight the fact that it is best to turn on the repump

light when imaging the cloud, so as to obtain the most accurate measurement of the atom

number. It is worth noting that about a third of the atoms in the magnetic trap will be

in the F = 1 state, so without any repump light the signal from the magnetic trap will

be reduced by approximately 33%.

3.2.2 Cancelling stray fields and controlling the polarisation

Next we consider the effect of the probe beam polarisation on the measured optical depth.

From equation (2.51) we know that the absorption cross section depends on the branching

ratio, and that to maximise the interaction all atoms must cycle on the stretched state

transition. Therefore the polarisation of the light has to be chosen to excite either a σ+

or σ− transition. As atoms in the magnetic trap only reside in the positive MF sub-levels

of the F = 2 state, light that excites a σ+ transition is required in order to maximise

the interaction. To achieve this experimentally, a small uniform magnetic field must be

applied parallel to the propagation direction of the probe beam, and circularly polarised

light of the correct handedness must be used. By maximising the absorption cross section,

each atom will scatter more photons, thus producing a higher peak optical depth and an

improved signal.

In order to create a magnetic field pointing along the y direction as defined in figure

2.10, a pair of Helmholtz coils was installed. The first coil was wound around the MOT

chamber flange through which the probe beam enters and the second was placed around

the flange leading to the connecting tube. This should produce a roughly uniform field at

the atom cloud position. To make sure that only a small field is required, stray magnetic

fields should be cancelled. At the MOT position, in addition to the Earth’s magnetic field,

stray fields are also generated by the ion pump and pressure gauge which both contain

permanent magnets. To cancel these fields two additional pairs of Helmholtz coils were
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positioned around the MOT chamber in perpendicular directions. The first pair, which

cancels fields in the z direction, were wound around the top and bottom flanges of the

MOT chamber. The second pair, which are used to cancel stray fields in the x direction,

were positioned around the Zeeman beam viewport and the flange that connects to the

Zeeman slower. Once atoms have been transported to the science chamber this process

of stray field cancellation will have to be repeated if good quality absorption images are

to be obtained.

Ideally the correct cancellation field to apply would be determined by measuring the back-

ground field at the atom cloud position using a magnetometer. As no such measurements

were made during the assembly of the chamber, a different approach must be used. For

magnetically trapped atoms, the cloud position is determined by the location of the zero

field point. If no background fields exist, the position of the cloud centre will remain

constant as the magnetic field gradient is increased. However if stray fields are present,

the cloud centre will shift. Assuming a constant background field, the size of the shift

will depend on the gradient of the trap. In particular for high field gradients the shift

in position will be small. Therefore by measuring the cloud position as the trap gradient

and cancellation fields are varied, it is possible to determine when the stray field has been

nulled, as the cloud position will remain constant at all field gradients.

Figure 3.4: Position of the cloud along the x axis as the x axis cancellation field is
varied. The red, black and green data points show the position of magnetically trapped
atoms when using a field gradient of 33G/cm, 57G/cm, and 99G/cm respectively. The
blue data points show the position of atoms in the MOT. A linear fit to each data set is

represented by the appropriately coloured solid line.

Figure 3.4 shows the variation in the x position of the atom cloud as the x axis cancellation

field is changed. The red, black and green data points were obtained by loading atoms
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into the magnetic trap, where the field gradient used was 33G/cm, 57G/cm and 99G/cm

respectively. In each case the atoms were held in the magnetic trap for 0.1 s, and imaged

0.2ms after release. The blue data points show the position of the MOT atoms as the

cancellation field is varied. As the MOT position is influenced by both the magnetic

field and the MOT beam powers, this data set cannot be used to cancel the stray field.

However, it shows how well overlapped the MOT is with the centre of the magnetic

trap. The solid lines are a linear fit to each of the data sets and the values given for

the x axis cancellation field are calculated from the coil dimensions and current used.

Here a magnetic field pointing away from the Zeeman slower is represented by a positive

cancellation field value, and lower values for the cloud centre position represent atoms

that are shifted towards the Zeeman slower.

The intersection points of the three magnetic trap fits vary slightly, so we take the average

of the three intersection points as the best estimate of the required cancellation field, and

use the spread of values as the uncertainty. This produces a value of +0.32 ± 0.12G for

the x direction. The data also shows that the MOT is not completely centred on the

magnetic trap, as the blue fit does not overlap with this mean intersection point. To

determine the final cancellation field to use, this procedure was applied to the z direction

and was subsequently iterated over. From this the final field values were found to be

+0.37G in the x direction and −0.49G in the z direction. Note that a negative value in

the z direction corresponds to a magnetic field that points downwards and that this shifts

the cloud centre in the same direction.

Having cancelled the background field, the next step was to control the polarisation of

the probe beam. The pink oval in figure 2.18 shows the additions that were made to the

setup at this point. By introducing a PBC and quarter-wave plate into the probe beam

path, the polarisation could now be varied through rotation of the wave plate. Prior to

this the probe beam polarisation was not well defined.

Figure 3.5 shows the variation in the peak optical depth of the cloud as the quarter-wave

plate is rotated. These data sets were taken by imaging the atoms 0.7ms after release

from the CMOT. For each measurement a field of around 1G was applied parallel to

the probe beam, and the cancellation fields were used. The blue data in the figure was

obtained by flashing on the MOT repump light during the image, whilst the red points

used no repump light. The solid lines are fits to the data of the form a + b cos(cθ + φ),
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where a, b, c and φ are left as floating parameters and θ is the angle of the wave plate.

This fitting function is used because there is a periodic variation in the peak optical depth

as the wave plate is rotated. The period of the fit is expected to be close to 90 ◦, as this

is the angle required to go from one orientation of circular polarisation to the other.

Figure 3.5: Variation of the peak optical depth of atoms released from the CMOT as
the probe beam polarisation is changed. The blue data used the MOT repump light
during imaging, whilst the red data used no repump light. The blue and red solid lines

are fits to the data, and the dashed lines mark the peaks of these two fits.

Looking at the blue data points there are two clear peaks at angles of 34.5 ± 0.5 ◦ and

125.0 ± 0.5 ◦. These positions are indicated by the blue dashed lines. For the red data,

again two peaks occur, this time at 36.1 ± 0.5 ◦ and 127.0 ± 0.5 ◦. These positions are

depicted by the red dashed lines. As the approximate position of the wave plate’s fast

axis is known, we can predict the angles at which circularly polarised light is produced.

We find these angles to be 39 ◦ and 129 ◦ for the two states of circular polarisation, thus

showing that the peaks in the data correspond to having circularly polarised light.

If all atoms in the F = 2 state occupy either the MF = 2 or MF = −2 sub-level, then it

is clear that circularly polarised light of the correct handedness will produce an increase

in the optical depth. However when atoms are distributed evenly amongst all MF sub-

levels, which is close to the situation in the MOT, then the average transition strength

is the same for all polarisations. Therefore the optical depth should remain constant.

If optical pumping is taken into consideration, then some variation in the optical depth

with polarisation is expected. In particular when the light is circularly polarised, after

the first few photon scatters, the atoms will be pumped towards the sub-level with the

largest transition strength. When the light is linearly polarised, the population of each
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Zeeman sub-level will remain unchanged. Therefore when the light is circularly polarised

the optical depth should be higher. This effect can perhaps explain the variation in the

red curve as the angle of the wave plate is changed. Optical pumping could also explain

the large difference between the blue and red curves when the probe beam is circularly

polarised. With the repump light on, atoms in the F = 1 state are likely to be transferred

to the F = 2 state, where they will be pumped towards the sub-level with the largest

transition strength, thus producing an increase in the observed optical depth. However,

optical pumping cannot explain why there is almost no difference between the two curves

when the light is linearly polarised. We would expect the repump light to make visible

atoms that occupy the F = 1 state, therefore the difference between the two curves should

be at least 3/8, assuming all Zeeman sub-levels are equally populated. This clearly does

not agree with our data. In addition to this we have found that different results are

obtained when the experiment is repeated using atoms released from the magnetic trap.

This can be seen in figure 3.6. Therefore we conclude that some other process is taking

place. As we shall see in section 3.2.6, when the cloud is imaged 0.7ms after release

from the CMOT, a large magnetic field is present which shifts the resonance frequency.

Additionally the line shape changes with polarisation, as shown in figure 3.15 of section

3.2.7. This effect is the most likely cause of the variation in optical depth that we see in

figure 3.5.

Figure 3.6: Variation in the peak optical depth of atoms released from the magnetic
trap as the probe beam polarisation is changed. The blue data used the MOT repump
light during imaging, whilst the red data used no repump light. The blue and red solid
lines are fits to the data, and the dashed lines mark the peaks of these two fits.

Figure 3.6 shows the variation in peak optical depth with polarisation for atoms released

from the magnetic trap. In this case the atoms were loaded into the magnetic trap via
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the usual CMOT phase. They were then held for 0.2 s, before being imaged 0.2ms after

release from the trap. Again a 1G field was applied parallel to the probe beam, along with

the cancellation fields. As before the blue data was obtained by using the MOT repump

light during imaging, whilst the red data used no repump light. Both data sets show

two clear peaks at roughly the same positions as that of the CMOT data. The biggest

difference here is that the red data is consistently around 32% lower than the blue data.

This is roughly what we expect to see due to the anticipated population distribution of

the ground state. Due to optical pumping, we expect circularly polarised light to produce

the highest optical depth. This agrees well with our results.

3.2.3 Imaging atoms released from the trap

For the majority of experiments discussed so far, atoms have been recaptured in the

MOT. The main reason for using this method is that it provides a reliable measure of the

percentage of retained atoms, as the cloud is always imaged under the same conditions.

However as we eventually want to image atoms in the science chamber, it is important

that we are able to obtain reliable images of the cloud after release from the magnetic

trap. To check this, a series of cloud images was taken after release from the CMOT and

for each image the atom number was calculated.

Figure 3.7: A selection of false colour images of the atom cloud taken at various times
after release from the CMOT. The colour index on the right hand side shows that an

optical depth of one or more is coloured red.

Figure 3.7 shows a selection of false colour images of the expanding cloud. From this the

spatial distribution of the optical depth can be seen. The large circle that appears in each

image is created by the circular aperture of the connecting tube, whilst the small circle

is the atom cloud. In order to enhance the visibility of the cloud at long release times,

the image colours have been scaled so that an optical depth greater than one is shown as

red. This means that the image taken at 0.2ms actually has a much greater peak optical

depth than that of the other pictures. From these images we can see that the peak optical
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depth quickly drops below one, although there is no great increase in the width of the

cloud. This suggests that the observed atom number is not constant.

Figure 3.8: Measurements of the atom number at various times after the cloud has
been released from the CMOT.

From these images the atom number was calculated. The results are shown in figure

3.8. This data set shows a clear reduction in the observed atom number with time. In

particular a large drop in the atom number is seen initially. Following this the atom

number levels off at around 20% of the original value. From the images it appears that

the cloud has not expanded sufficiently for atoms to escape from the field of view of the

camera, therefore atoms must be disappearing from the image for some other reason. This

could be caused by stray fields that persist after the coils have been switched off, as this

can shift the resonance position thus making some atoms invisible to the probe beam. In

order to determine if this is the case, line shape measurements were taken.

3.2.4 Predicting the line shape

Before carrying out line shape measurements it is important to know what we expect to

see. In particular it is useful to know how a magnetic field might affect the measured line

shape, as this will allow us to determine whether or not stray fields are causing the atoms

to disappear from our images. As a full calculation of the anticipated absorption signal

is rather involved, we adopt a simplified approach. For this we require only two pieces

of information. These are the frequency shift of each of the allowed transitions and the

transition strength in an arbitrary magnetic field.
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We start by looking at the Zeeman shift of the atomic energy levels as the magnetic field is

varied. Since the hyperfine and Zeeman splittings are much smaller than the fine structure

splitting of the 2P excited state over the range of magnetic fields that we are interested

in, we can consider each fine structure state separately. The total Hamiltonian, Ĥtot, for

an alkali atom in a magnetic field is given by

Ĥtot = AÎ ∙ Ĵ + μB(gLL̂+ gSŜ) ∙B + μNgI Î ∙B, (3.7)

where A is the hyperfine coupling constant, Î is the nuclear spin operator, Ĵ is the total

electronic angular momentum operator, L̂ is the electronic orbital angular momentum

operator, Ŝ is the electron spin operator, B is the applied magnetic field, μN is the nuclear

magneton, and gL = 1, gS ' 2 and gI are Landé g-factors. The first term in equation (3.7)

describes the hyperfine interaction, which will be referred to as Ĥhfs. It occurs because of

the coupling between the nuclear spin and the total electronic angular momentum. The

second and third terms describe the Zeeman interaction, ĤZ . As μN � μB, we are able

to ignore the third term.

Considering either the high or low magnetic field cases in isolation is relatively straight-

forward as time independent perturbation theory can be used. A good explanation of the

method can be found in [126]. For the intermediate regime however, a different method

must be adopted. Instead we write down a matrix representation of Ĥtot, and find the

energy eigenvalues and eigenstates through diagonalisation. To construct the matrix we

must first choose a basis. For convenience we use the field free basis, which are the eigen-

states of Ĥhfs. These states are written as |I, J, F,MF 〉. The eigenvalues of the hyperfine

interaction can be calculated using [76],

Ehfs =
1

2
hA1K + hA2

3/2K(K + 1)− 2I(I + 1)J(J + 1)
2I(2I − 1)2J(2J − 1)

, (3.8)

where K = F (F +1)− I(I +1)−J(J +1) and A1 and A2 are experimentally determined

parameters that vary depending on the state being considered. For lithium these constants

are A1 = 401.752MHz and A2 = 0 for the
2S1/2 state, and A1 = −3.055MHz and A2 =

−0.221MHz for the 2P3/2 state [76]. From this we can construct a matrix representation

of Ĥhfs.
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Next we consider ĤZ . Taking the external magnetic field to be in the z direction means

that ĤZ = μB(L̂z + 2Ŝz)B. By defining gJ as

gJ = 1 +
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
, (3.9)

we can rewrite the Zeeman interaction Hamiltonian as ĤZ = μBgJ ĴzB. The eigenstates

of the Zeeman interaction are given by |I, J,MI ,MJ〉 and the eigenvalues are EZ =

μBgJMJB. As the states |I, J, F,MF 〉 are not simultaneous eigenstates of ĤZ , the Zeeman

interaction is not diagonal in our chosen basis. Therefore to find the matrix representation

of ĤZ we have to express the |I, J, F,MF 〉 states in terms of the |I, J,MI ,MJ〉 eigenstates.

For this we make use of the following transformation

|I, J, F,MF 〉 =
∑

MI

∑

MJ

C|I,MI〉|J,MJ〉, (3.10)

where C are the Clebsch Gordan coefficients, and the summations are carried out over all

possible MI and MJ values. The only non-zero terms in the summation occur when the

condition MF =MI +MJ is fulfilled. Using this it is possible to write down a matrix for

ĤZ and by adding this to Ĥhfs, we are finally able to construct Ĥtot. By diagonalising

this final matrix we find the energy eigenstates and eigenvalues in an arbitrary magnetic

field. The result of the diagonalisation procedure in the case of the ground state where

J = 1/2 is [127],

E = −
ΔEhfs
2(2I + 1)

±
ΔEhfs
2

√

1 +
2MF
I + 1/2

x+ x2, (3.11)

where ΔEhfs is the separation between the states F = I + 1/2 and F = I − 1/2 in

zero magnetic field and x = μBgJB/ΔEhfs. This expression is known as the Breit-Rabi

formula. For the 2P3/2 excited state there is no closed-form expression and so the matrix

is diagonalised numerically.

Figure 3.9 shows how the energy levels of the 2S1/2 and
2P3/2 states shift as the magnetic

field is increased. Using this we can calculate the frequency shift of each transition.

Next we have to determine how the transition strength varies with magnetic field. From

section 2.1, we know that the strength of the transition between a ground state |g〉 and

excited state |e〉 is described by the dipole matrix element, D = e〈e|ε ∙ r̂|g〉, where ε is a

unit vector defining the polarisation of the light. As the radial part of the dipole matrix
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Figure 3.9: Energy level diagram for the 2S1/2 and
2P3/2 states as a function of magnetic

field. The colour of each Zeeman sub-level corresponds to its MF quantum number.

element is the same for all states of interest, it can be ignored. Applying this to the current

situation we replace |g〉 and |e〉 with |fg,mg〉 and |fe,me〉 respectively, where these are

used to represent the ground and excited states in the presence of an external magnetic

field. These are then expanded on the basis of field free states, which are labelled |Fg,Mg〉

and |Fe,Me〉 for the ground and excited states respectively. We call the desired quantity
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the transition matrix element and write it as

〈fe,me|ε ∙ r̂|fg,mg〉 =
∑

Fe,Me

〈fe,me|Fe,Me〉〈Fe,Me|ε ∙ r̂
∑

Fg ,Mg

|Fg,Mg〉〈Fg,Mg|fg,mg〉

(3.12)

=
∑

Fe,Me

∑

Fg ,Mg

〈fe,me|Fe,Me〉〈Fg,Mg|fg,mg〉〈Fe,Me|ε ∙ r̂|Fg,Mg〉.

(3.13)

The first and second terms on the last line are obtained by using the eigenstates that were

calculated previously, whilst the last term is obtained from standard angular momentum

algebra.

Having finally calculated the transition matrix element up to some constant of propor-

tionality, we are now able to predict the expected shape of the spectrum for any given

magnetic field. First we assume that each transition has a Lorentzian line shape, where

the amplitude is set by the square of the transition matrix element, the line centre is set

by the frequency shift of the transition and the width is set equal to the natural linewidth.

The square of the transition matrix element is used because the absorption cross section

is proportional to the line strength which is defined as the square of the dipole matrix

element. Each transition excited by a particular polarisation of light is represented in this

same manner and is assumed to have an equal share of the population. The contributions

from the various transitions are then added together to form the predicted spectrum for

a given magnetic field. It is important to note that this does not predict the measured

optical depth of the cloud, and so cannot be used as a fit to our data. However if changes

in the spectrum are being caused by a magnetic field, we can expect the overall shape of

our data to follow the trends shown in the calculation. Therefore it provides a useful tool

to determine whether or not stray fields are affecting our results.

Figure 3.10 shows an example of the predicted spectrum when a magnetic field of 0.01G

is present. The zero frequency position has been chosen to coincide with the frequency

of the F = 2 to F ′ = 3 transition, and for all other line shape plots this is used as our

reference point. As this same line shape is calculated whether σ+, σ− or π transitions are

being excited, we expect our measured spectra to have this overall shape in all situations.

If a magnetic field is present the predicted line shape varies dramatically depending on

the type of transition that is being excited. Figure 3.11 shows an example of this, where
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Figure 3.10: Theoretical line shape for a 0.01G magnetic field. The peaks that corre-
spond to the F = 2 to F ′ = 3, 2, 1 transitions are labelled.

a magnetic field of 5G has been used. The blue, red and black lines show the line shape

predicted for σ+, π and σ− transitions respectively. Therefore, not only are we able to

determine the approximate size of any stray fields that are present, we can also ascertain

in which direction the field is pointing by seeing which transitions are excited. In the

following sections these results are compared to our measured data.

Figure 3.11: Theoretical line shape for a 5G magnetic field. The blue, red and black
curves show the line shapes for σ+, π and σ− transitions respectively.
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3.2.5 Line shape for atoms released from the MOT

The first line shape measurements were carried out using atoms trapped in, and released

from, the MOT. The results, which are presented in the left hand column of figure 3.12,

show the variation in the peak optical depth of the cloud as the frequency of the probe

beam is scanned. All data points were obtained by utilising a probe beam that was linearly

polarised along the x direction as defined in figure 2.10, and by imaging the cloud using

MOT repump light. No cancellation fields were applied during these measurements and

as always a negative frequency value represents light that is red detuned.

The right hand column of figure 3.12 shows the theoretical spectra that best represent our

measurements. As a fit to the data cannot be performed, this is determined by identifying

the applied magnetic field value that most accurately produces the frequency separation

of the various peaks. It was found that the data did not agree well with theory if only

one type of transition was excited. However the results were fairly well reproduced by

combining the plots for σ+ and σ− transitions. Therefore all of the theoretical plots

show an equal combination of these two transitions. As our data was obtained using light

that was polarised along the x direction, we conclude that the largest components of the

magnetic field must lie either parallel to the probe beam, that is in the y direction, or in

the z direction.

Figure 3.12(a) shows the spectrum from atoms in the MOT. Two partially overlapped

peaks can be seen in the data. Here the larger peak corresponds to the F = 2 to F ′ = 3

transition, whilst the smaller peak is due to the F = 2 to F ′ = 2 transition. By fitting two

Lorentzians to the data, the separation between the peaks is found to be 1.6Γ = 9.5MHz.

This is in good agreement with theory, which says the field free separation should be

9.2MHz. The peak widths are found to be 1.4Γ = 8.3MHz for the larger peak and

2.2Γ = 13MHz for the smaller peak. The lines have been broadened beyond the natural

linewidth. For the F = 2 to F ′ = 2 transition, this is expected because the F = 2 to

F ′ = 1 transition forms a shoulder. Additionally some Zeeman broadening is likely to

occur. Comparing this to figure 3.12(b) which shows the predicted line shape for a 1G

magnetic field, there appears to be reasonable agreement, although the peak widths, and

relative peak heights aren’t precisely reproduced in the theoretical plot. Note that the

zero frequency position of figure 3.12(a) has been chosen to coincide with the F = 2 to
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Figure 3.12: Comparison between line shape measurements and theoretical spectra.
Measurements are presented in the the left hand column where (a) was taken using
atoms trapped in the MOT, (c) was taken 0.2ms after release from the MOT, and (e)
was taken 0.7ms after release. The red curve in (a) represents a double Lorentzian fit to
the data. The right hand column shows theoretical line shapes for magnetic field values

of (b) 1G, (d) 2G, and (f) 4.7G.

F ′ = 3 transition. We use this as our reference point for all subsequent measurements as

it should be close to the field free resonance position.

Figures 3.12(c) and (e) show the measured spectra 0.2ms and 0.7ms after release from

the MOT. From figure 3.12(c) we can see that the spectrum has changed slightly. In

particular the large peak has shifted towards the red by just under a linewidth, and the
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smaller peak is less well defined. In figure 3.12(e) the line shape appears to have changed

significantly. Two clear peaks, which have a separation of just over 2 Γ, are visible and

the larger peak is now located at approximately −1.7Γ. Figures 3.12(d) and (f), show

the theoretical curves for an applied magnetic field of 2G and 4.7G respectively, as these

are the theoretical spectra that best match the measured ones.

These measurements clearly show that there is a time dependent shift of the line shape.

As the data agrees well with the theoretical spectra, we conclude that these changes are

generated by a time varying magnetic field, that is uniform over the size of the cloud. This

indicates that measurements of the atom number for release times greater than 0.7ms are

unreliable as the resonance frequency has shifted significantly, meaning that some atoms

will become invisible.

3.2.6 Line shape for atoms released from the CMOT

In order to further investigate the results of section 3.2.3, line shape measurements were

also carried out using atoms released from the CMOT. As before measurements were

performed at various times after release, and by comparison with theory a magnetic field

value was assigned to each line shape. The variation of this magnetic field with time is

shown in figure 3.13. The relatively large error bars reflect the fact that the measured

spectra does not follow the theoretical curve exactly, thus making it difficult to precisely

estimate the magnitude of the magnetic field. These results show that after release from

the trap the atoms are subjected to a magnetic field that increases with time. At longer

times this field begins to saturate. When releasing atoms from the MOT we found that

after 0.7ms a field of approximately 4.7G was present. Here the field reaches a value

of about 10G after 0.6ms, thus indicating that the coil current used prior to switch off

affects the size of the magnetic field that is produced.

To determine the cause of this increasing magnetic field the coils were moved half way

between the MOT and science chambers. By placing a magnetometer close to the small

tube that connects the two chambers, the z component of the magnetic field close to

the atoms was measured. The reason for measuring only the z component of the field

is discussed in the following section. The results are shown in figure 3.14. For negative

times both coils were run at the usual CMOT current. They were then switched off

simultaneously at time t = 0. The large magnetic field spike, which has a magnitude
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Figure 3.13: Variation in the magnitude of the induced magnetic field with time after
release from the CMOT.

of 5.5G and occurs at approximately 0.3ms, results from a slight difference between the

rate at which the current in the two coils dissipates. This means the coil currents are

not completely balanced during the switch off, thus producing a relatively large transient

field. After this the magnetic field drops to around −1G and slowly decays away.

Figure 3.14: z component of the magnetic field measured close to the trap centre, after
both coils have been simultaneously switched off.

Clearly these results are not consistent with the increasing magnetic field shown in figure

3.13. This suggests that the field measured halfway along the connecting tube is not

representative of the field at the MOT position. To verify this position dependence,

additional line shape measurements were performed at various points along the transport.

Despite being taken at the same time after release, each spectrum was different, thus

confirming the presence of a time and position dependent magnetic field. This field is
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most likely caused by the formation of eddy currents in the chamber which persist after

the coils have been switched off. The magnetic field generated by these eddy currents

will decay away slowly, and the size of the field will depend on the environment that

surrounds the coils. This suggests that the largest fields will be produced in the vicinity

of the two chambers, and that imaging problems will also occur in the science chamber.

To determine the extent of the problem, line shape measurements should be carried out

in the science chamber, once a suitable imaging system has been installed. Alternatively,

when the chamber is opened up to install the microwave trap or high field electrodes, the

magnetic field could be measured directly. As there is no simple way of removing this

induced field, the transportation setup was tested by using the MOT recapture method.

3.2.7 Variation of the line shape with probe beam polarisation

From the results of section 3.2.5 we found that the induced magnetic field has to lie parallel

to the probe beam, that is in the y direction or perpendicular to it, in the z direction.

From these data sets alone it was not possible to determine the exact orientation of

the magnetic field. However different transitions will be excited in these two situations

if other polarisations of light are used. Therefore it is possible to distinguish between

these two cases by measuring the line shape for different probe beam polarisations. Table

3.1 summarises the different transitions that occur for the two possible magnetic field

orientations. As before the y and z directions are defined in figure 2.10.

Quantisation axis
orientation

Probe polarisation Transition
excited

y Linear σ+, σ−

y Right hand circular σ+

y Left hand circular σ−

z Linear along z axis π

z Linear along x axis σ+, σ−

z Circular σ+, σ−, π

Table 3.1: Summary of the transitions that occur given two orientations of quantisation
axis, and various polarisations of light. The probe propagates along y and z is the vertical

direction.

Figure 3.15 shows the measured line shape for various probe beam polarisations. In each

case the spectrum was taken 0.6ms after the atoms were released from the CMOT. In

figure 3.15(a) the probe beam is polarised along the x axis, whilst in figure 3.15(b) the
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probe is polarised along the z axis. Figures 3.15(c) and (d) show the line shapes for the

two orientations of circular polarisation.

Figure 3.15: Line shape measurements taken 0.6ms after atoms were released from the
CMOT, where the probe beam polarisation was (a) linear, aligned the x axis, (b) linear,

aligned the z axis, (c) circular with λ/4 = 39 ◦, (d) circular with λ/4 = 129 ◦.

Figure 3.16 shows the theoretical line shapes assuming a 10G field is present. Here the

blue, red and black curves represent the spectra for σ+, π and σ− transitions respectively.

Comparing this to the data we find that figure 3.15(a) has a similar shape to the blue

and black curves added together, whilst figure 3.15(b) is similar to the red curve. This

indicates that the magnetic field must be aligned with the z axis. According to table 3.1

this should result in identical spectra for the two states of circular polarisation and we do

indeed see nearly identical spectra in figures 3.15(c) and (d). Therefore we conclude that

the magnetic field is predominantly in the z direction.

3.3 Transporting the atoms

As the induced magnetic field discussed above makes it difficult to reliably image the

released atom cloud, the transport setup was tested by returning the atoms to the MOT
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Figure 3.16: Theoretical line shape in a 10G magnetic field. The blue, red and black
curves show the line shapes for σ+, π and σ− transitions respectively.

chamber and imaging them in the recaptured MOT. This section describes the results of

initial transportation experiments and details the method used to improve the transport

efficiency. Having successfully transported the atoms to and from the science chamber,

the lifetime of the magnetic trap in the science chamber was also measured.

3.3.1 First transport attempts

In order to transport atoms from the MOT chamber to the science chamber the trapping

coils are attached to a Parker 404XR translation stage. It has a total track length of

600mm and uses an SMB60 servo motor to drive a ballscrew mechanism. One revolution

of the ballscrew moves the coils a distance of 20mm. The translation stage has a maximum

velocity of 1.08m/s and a maximum acceleration of 20m/s2. It also has a bi-directional

reproducibility of ±3μm, and an absolute positioning accuracy of 40 μm. To control the

motor, a ViX500IE servo drive is used. Code describing the required move sequence

is uploaded to the drive and executed upon receipt of a TTL pulse. The acceleration,

deceleration and velocity of the stage can be varied by the user. Depending on the values

chosen for these three parameters, the motion profile will either have a triangular or

trapezoidal shape, as shown in figure 3.17 by the blue and red lines respectively. For

the triangular motion profile, the stage goes through a period of constant acceleration,

followed by a period of constant deceleration. The trapezoidal profile has an additional

period of constant velocity in between the acceleration and deceleration phases.
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Figure 3.17: Translation stage motion profiles. The blue line shows the triangular
motion profile and the red line shows the trapezoidal motion profile.

During the transport procedure it is important to maintain a deep trap so that the max-

imum number of atoms can be retained. However as the trap accelerates, the atoms gain

energy. This leads to a reduction of the effective trap depth on one side, which can be

modelled as a tilting of the trap. Therefore during any period of acceleration, the trap

depth will decrease. To ensure that this reduction is small, the transport acceleration

should always be much lower than the trap acceleration. By using F = −dU/dx = ma,

where U is equal to the energy from equation (3.1), the trap acceleration, atrap can be

determined,

atrap =
gFMFμBB

′

m
. (3.14)

For our magnetic trap this produces a maximum value of aztrap = 479m/s
2 in the z

direction, and ax,ytrap = 239m/s
2 in the x and y directions. To transport the cloud to

the science chamber in just over 1 s, we use an acceleration of only atrans = 2m/s
2. As

atrans � a
x,y
trap, the reduction in trap depth is negligibly small, meaning that no atoms

should be lost during transport.

Initially the translation stage was aligned to the connecting tube by ensuring that the

coils were roughly centred on both the MOT and science chambers. To test the efficacy of

this alignment procedure, the percentage of retained atoms was measured as the transport

distance was increased. Figure 3.18 shows the results of these measurements. To obtain

this data set, the MOT atoms were first imaged and then loaded into the magnetic trap

via the usual CMOT phase. After holding the atoms for 10ms, the cloud was transported

using a velocity of 0.5m/s and an acceleration of 2m/s2. Two seconds after loading the
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magnetic trap, the atoms were transported back to the MOT chamber, and the CMOT

was reformed. Finally all parameters were ramped back to the usual MOT values and

the cloud was imaged again. Given the acceleration used here, it takes 0.25 s for the

translation stage to reach a velocity of 0.5m/s. In this time the coils travel 62.5mm,

which means for transport distances less than 125mm, the motion profile is triangular.

For each of the transport distances tested, the atoms spent in total 3.335 s in the magnetic

trap.

Figure 3.18: Preliminary transportation results showing recaptured atomic percentage
as transport distance is varied. The gray dashed lines show the approximate positions of

the two ends of the connecting tube.

The vertical axis in figure 3.18 is the fraction of atoms originally in the MOT that are

finally recaptured back in the MOT. Therefore it includes all the loss processes, including

the loss in transferring to the magnetic trap and the losses due to background collisions.

The data shows that if the atoms are left at the MOT position for 3.335 s, around 2.5%

of the MOT atoms are retained. Comparing this with figure 3.1, we find good agreement

with the expected loss due to the lifetime of the trap. When the atoms are moved a

distance of 70mm, a small drop in the atomic percentage is seen. This is followed by a

massive drop at a distance of around 100mm. The dashed lines in the figure show the

approximate positions of the two ends of the connecting tube. Therefore this large drop

in atomic percentage is almost certainly due to the atoms colliding with the chamber wall.

Upon further transport of the cloud, the atomic percentage begins to rise. This might

seem strange, however it can be explained if the background pressure in the connecting

tube is lower than in the MOT chamber. As the atoms spend differing amounts of time

at each transport position, losses occur not only because of the transport procedure itself,
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but also through collisions with background gases. Therefore if the cloud is held at a

position where the pressure is lower, fewer atoms will be lost. This results in a relative

increase in the atomic percentage as the cloud moves from the higher pressure region

to the lower pressure region. As a large percentage of atoms are lost at the entrance

of the connecting tube, it is necessary to alter the alignment of the translation stage to

improve the transport efficiency. From this data set alone it is not possible to calculate

the absolute transport efficiency as the atoms are not immediately transported back to

the MOT chamber after reaching the science chamber.

3.3.2 Optimising the transport

There are three possible explanations as to why atoms are lost at the entrance of the

connecting tube. The first possibility is that the cloud is too large to fit through. The

second is that the cloud is not well aligned with the centre of the tube, and the third is

that stray magnetic fields, particularly at the welds of the connecting tube, perturb the

atoms as they are transported. According to the temperature measurements of section

2.6, we expect the magnetically trapped cloud to have a 1/e2 diameter of 4mm in the

z direction, and about 8mm in the x and y directions. Comparing this to the 9mm

inner diameter of the tube, most of the atoms should be able to pass through unimpeded,

provided the cloud is perfectly centred. Therefore we attribute the loss of atoms either to

stray magnetic fields, or to poor alignment of the cloud. In order to optimise the position

of the cloud along the x axis, the magnetically trapped atoms were imaged at transport

distances of 70mm and 220mm. As the outline of the connecting tube can be seen in the

absorption images, it was possible to manoeuvre the translation stage so that the cloud

was well centred at these two positions.

Figure 3.19 shows the position of the cloud at a variety of transport distances after

realignment of the translation stage. To obtain these data sets the atoms were loaded into

the magnetic trap as usual, transported some distance, and then imaged whilst still in

the trap. The red dashed lines in both figures represent the approximate positions of the

centre of the connecting tube. In figure 3.19(a) the x position of the cloud is shown. Here

higher numbers correspond to a position that is further away from the Zeeman slower.

Looking at the data we see that within the first 100mm of transport the cloud position

oscillates by about 0.5mm. Upon entering the tube the cloud slowly drifts, covering a
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distance of 1.5mm. Then after exiting the tube the cloud jumps back to its initial x

position. This erratic behaviour is most likely caused by stray magnetic fields pushing

the cloud as it travels through the connecting tube. To produce a shift of 0.5mm given

the 30G/cm field gradient in the x direction, a 1.5G stray field is required. Despite these

fluctuations in position, overall the cloud is reasonably well centred. However we are likely

to see some loss of atoms at the two ends of the tube as the cloud is displaced by more

than 0.5mm from the tube centre, thus providing an opportunity for the atoms to collide

with the tube walls.

Figure 3.19: Cloud position during transport, after alignment of the translation stage,
(a) shows the x axis cloud position whilst (b) shows the z axis cloud position. The red

dashed lines indicate the approximate position of the tube centre.

Figure 3.19(b) shows the position of the atoms along the z axis. In contrast to the x axis

data, the cloud position does not fluctuate erratically, thus indicating that there are no

sizable stray fields orientated in this direction. Looking at the data in more detail we

see an initial drop of 0.7mm in the position. This represents a downwards shift of the

cloud. As the atoms are transported further they continue to drop, ending up around

1.1mm below the tube centre. Given a constant current, the z axis cloud position is

fixed relative to the coils. Therefore the downwards drift of the cloud indicates that there

is a relative tilt between the coils and the connecting tube. In order to keep the cloud

vertically centred throughout the transport, this tilt must be removed. Unfortunately this

is not straightforward to achieve. When considered in isolation this tilt is not necessarily

a problem as the cloud has a maximum displacement of about 1mm from the tube centre

and a predicted width of 4mm. However when coupled with the deviations in the x

direction, it may lead to an increase in the number of atoms that are lost.

In an attempt to improve the transfer efficiency further, atoms were transported to and

from the science chamber using unbalanced coil currents. In particular the bottom coil



Chapter 3. Magnetic trapping and transport 126

current was varied to shift the position of the cloud in the z direction. This was kept

constant throughout the transport. By measuring the percentage of atoms recaptured in

the MOT, the optimal cloud position was determined. Figure 3.20 shows the results of

these measurements. The gray dashed line represents the coil current that is normally

used, and higher currents correspond to an upwards shift of the cloud. This data set

was obtained by loading the MOT atoms into the magnetic trap via the CMOT phase.

The unbalanced trap was formed by ramping the bottom coil current to different values

during the CMOT phase. It is worth noting that this procedure leads to small changes

in the trap gradient. As shown in figure 2.28, this can affect the number of atoms that

are loaded into the magnetic trap. However as the change in the gradient is less than

±5G/cm, the variation in atom number should be small. Looking at the results of figure

3.20, we see a peak of 1.8% is reached when the current is set equal to 63.4A. Therefore

by using unbalanced coils we are able to increase the transport efficiency slightly.

Figure 3.20: Variation in the percentage of atoms retained after transport to and from
the science chamber as the bottom coil current is varied. The gray dashed line indicates

the current that is normally used. The top coil also uses this current.

Having optimised the position of the cloud in both the x and z directions, the recaptured

percentage was again measured as the transport distance was increased. In figure 3.21

these results are represented by the red data points. The blue points show the original

transport data taken from figure 3.18 and the dashed gray lines represent the approximate

positions of the ends of the tube. As expected the two data sets initially overlap when

no transport occurs. For all subsequent points however the red data shows an increased

atomic percentage. This indicates that the realignment procedure has been successful,

although there is still a large loss of atoms at the entrance of the connecting tube. Further
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improvements to the transport efficiency could be obtained by eliminating the fluctuations

of the x axis cloud position, or by reducing the size of the atom cloud through further

cooling, using a technique such as evaporative cooling.

Figure 3.21: Transportation results showing recaptured atomic percentage as the trans-
port distance is varied. The blue points repeat the preliminary transport data shown in
figure 3.18. The red points show the results after aligning the cloud with the connecting
tube. The gray dashed lines show the approximate positions of the two ends of the tube.

3.3.3 Lifetime in the science chamber

Having reduced some of the losses during transport, it became possible to measure the

lifetime of the magnetic trap in the science chamber. In order to do this, atoms were loaded

into the unbalanced magnetic trap via the CMOT phase. They were then transported to

the science chamber and held there for varying amounts of time. Upon return to the MOT

chamber, the atoms were recaptured in the MOT. The results of these measurements are

shown in figure 3.22. The red line represents an exponential fit to the data. From this

we find the lifetime of the magnetic trap in the science chamber to be τSC = 18.5± 0.7 s,

which corresponds to a background pressure of around 2.2×10−9mbar. This trap lifetime

is ten times longer than the lifetime in the MOT chamber.

The maximum percentage of 2.36% represents the maximum number of MOT atoms that

are successfully returned to the MOT chamber when an acceleration of 2m/s2 and a veloc-

ity of 0.5m/s are used. Using this value it is possible to estimate the transport efficiency,

η, of our system. In order to obtain a reliable value, the losses from background gas

collisions must be taken into account. This loss rate is dependent on the local background

pressure, which in turn varies with position. To simplify the situation we assume that the
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Figure 3.22: Measurement of the magnetic trap lifetime in the science chamber. The
red line represents an exponential fit to the data.

lifetime of the trap is τMC = 1.53 s for the first 80mm of the transport, and is τSC = 18.5 s

for the remaining 360mm. To travel these two distances of 80mm and 360mm, it takes

0.285 s and 0.845 s respectively. Therefore we estimate that 20% of the atoms are lost due

to background collisions. We also know that 22.8% of the atoms are transferred from the

MOT to the magnetic trap. The remaining losses are then due to the transport procedure

itself. This produces a value of around η = 41% for the transport efficiency of our system.

When compared to other experiments this value is quite low. For example, by utilising

a similar setup, rubidium atoms have been transported with an efficiency of 100% [108].

Given the transport efficiency of our system, 7% of the MOT atoms are successfully trans-

ported to the science chamber, giving an absolute atom number in the science chamber

of about 1.7× 107.

3.4 Chapter summary

Before testing the transportation setup, the lifetime of the magnetic trap in the MOT

chamber was measured to ensure that a detectable signal would be produced after trans-

port. From these measurements the magnetic trap lifetime in the MOT chamber was

found to be τMC = 1.53 ± 0.01 s. This rather short lifetime resulted from a small leak

in the oven chamber which worsened with increasing temperature. As the lifetime was

deemed sufficient to test the transportation system, experiments were carried out to de-

termine whether reliable images could be obtained after the cloud was released from the
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trap. This highlighted the fact that atoms were disappearing from the images. To in-

vestigate this problem, line shape measurements were performed at a variety of times,

using atoms released from both the MOT and CMOT. By comparing these results to the

predicted spectra, it was found that a time and position dependent magnetic field was

present. This was attributed to eddy currents that persist in the chamber after the coils

switch off. As it was not possible to remove this magnetic field, the transportation system

was tested using the MOT recapture method.

Preliminary transportation experiments produced a low transfer efficiency, which was

thought to be caused by poor alignment of the atom cloud with the connecting tube.

Therefore the cloud position was optimised, resulting in a final transport efficiency of

η = 41%. This enabled lifetime measurements to be carried out in the science chamber,

producing a value of τSC = 18.5± 0.7 s. Although transportation has been demonstrated

it should be possible to further improve the efficiency by reducing the cloud temperature

or reducing the fluctuations of the cloud position. We find that about 7% of the MOT

atoms, that is approximately 1.7× 107 atoms, are successfully transported to the science

chamber, so it should now be possible to directly image the cloud here by installing a

suitable imaging system. Once this has been achieved the microwave trap, or high field

electrodes can be incorporated into the setup and tested.



Chapter 4

Towards atoms in high electric

fields

The aim of our experiment is to produce an ultracold dipolar gas. To create such a gas

we plan to electrically polarise the lithium atoms by using a very large electric field. This

means that the atoms must be placed between two high voltage electrodes which will

have a separation of approximately 0.5mm. In order to produce substantial dipolar inter-

actions, electric fields of up to 1MV/cm are required. This chapter describes the setup

that has been developed to produce these large electric fields. Section 4.1 gives a brief

overview of the process that leads to emission of electrons from a low temperature metal-

lic surface. The mechanisms which lead to electrical breakdown are also discussed, along

with the surface conditioning techniques that are commonly used to improve electrode

performance. Section 4.2 discusses the design constraints that the electrode mount must

satisfy. In particular the electrodes must be almost perfectly parallel, and they must be

able to withstand large forces. With this in mind, an electrode mount design is presented.

This mirror mount based design utilises glass electrodes that are coated with indium tin

oxide (ITO), thus allowing interferometric techniques to be used to measure the angle be-

tween the electrodes. In section 4.3 this design is tested. In particular the angle between

the plates and their separation is determined using optical methods, and the results of

high voltage tests are presented. The ITO coated electrodes produced a relatively low

electric field so they were replaced with super-polished stainless steel electrodes, which

are described in section 4.4. The results of high voltage tests are also presented in this

section. As these metal electrodes cannot be aligned using interferometric techniques,

130
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a different alignment procedure is required. Therefore the electrode mount has recently

been redesigned by Devin Dunseith. A brief overview of this new design is given in section

4.5.

4.1 Producing high electric fields

In order to produce high electric fields, it is important to understand the processes that

lead to electrical breakdown of the electrodes. Here breakdown is characterised by a large,

persistent current flow between the plates. This section starts by describing the mecha-

nism which leads to electron emission, and therefore current flow, from a low temperature

metallic surface. From this theoretical description we find that it should be possible to

generate very large electric fields before any measurable current is produced. However,

this does not agree with the results of the numerous experiments that utilise broad area

electrodes. In practice, currents often flow between the plates at much lower electric fields.

Therefore this section also describes the mechanisms which lead to enhanced current flow

between the electrodes. This section concludes with an overview of the surface prepara-

tion and surface conditioning techniques that have been developed in order to increase

the electric field at breakdown.

4.1.1 Electric field limits

Classically, electrons are emitted from a metallic surface when their kinetic energy exceeds

the binding potential of the metal. For this to occur in the absence of an applied field, the

temperature of the metal must be increased. This process, which is known as thermionic

emission, becomes significant for temperatures over 1000K. If an electric field is applied,

electron emission can also occur from low temperature metallic surfaces. In this case

emission is caused by quantum mechanical tunnelling of the electrons and is known as

cold field emission. For our room temperature electrodes this second process is important,

as it limits the maximum field that can be sustained.

An expression describing the current density produced during cold field emission was first

derived by Fowler and Nordheim in 1928 [128]. Here they use the Sommerfeld free-electron

model to represent the metal, and assume a temperature of T = 0K. Initially when no

electric field is applied, the atoms see a finite potential barrier at the surface of the metal.



Chapter 4. Towards atoms in high electric fields 132

Figure 4.1: Potential barrier at the surface of a metal. In (a) the potential is modelled
as a step function with height C. In (b) the potential has been modified by the presence

of an electric field.

As shown in figure 4.1(a), this is modelled as a step function at x = 0, where the barrier

height, C, is dependent on the strength of the Coulomb interaction between the electron

and the positive ions close to the surface. As shown in figure 4.1(b), when an electric field

with magnitude E is applied perpendicular to the surface, the potential is altered, thus

allowing electrons to tunnel through the barrier. To find the probability of transmitting

an electron with kinetic energy W , the wave equations,

d2ψ

dx2
+ κ2(W − C + Ex)ψ = 0 (x > 0) (4.1)

d2ψ

dx2
+ κ2Wψ = 0 (x < 0), (4.2)

must be solved subject to the conditions that ψ, which represents the electronic wave-

function, and dψ/dx are continuous at x = 0, and that for x > 0, ψ represents a stream

of particles moving to the right only. Here κ is a constant given by κ = 8π2me/h
2, where

me is the mass of an electron. For the full details of this calculation see [128].

Having found an expression for the transmission probability, the authors then write down

an equation, taken from [129], that describes the number of electrons, N(W ), with kinetic

energy W that are incident on the surface per unit area per unit time. The current

density, J , is then found by multiplying together N(W ), the transmission probability and

the charge of an electron, e, and integrating over all possible energies. This results in,

J =
e

2πh

μ1/2

(χ+ μ)χ1/2
E2e−4κχ

3/2/3E , (4.3)

where χ = C−μ is the work function of the metal and μ is the chemical potential. Strictly
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speaking this formula only applies when the metal temperature is zero, however it is still

a valid approximation provided μ � kBT . Given that μ is typically between 5 − 10 eV

for most metals, this condition is easily met for room temperature electrodes. Therefore

we are able to use this equation to model the field emission from the circular stainless

steel electrodes that are used in later experiments. These electrodes have a diameter

of 25.4mm, and should have a work function that lies somewhere between 4.7 eV and

5.6 eV [130]. Taking the average value of the work function we find that an electric field

of 1MV/cm produces a negligibly small current, whilst a 1 μA current is generated for

an electric field of around 13MV/cm. These values do not agree well with experimental

data, as it is common to observe currents of ∼ 1μA for fields of ∼ 100 kV/cm. This

indicates that additional processes lead to increased current flow between the electrodes,

thus making fields above 100 kV/cm hard to obtain experimentally.

4.1.2 Breakdown mechanisms

Upon application of a sizeable voltage to a pair of electrodes, experiments have shown

that there is often a measurable current flow between the two plates. As the voltage is

increased, the current becomes unstable and is superimposed with spikes. These spikes

are known as micro-discharges. Eventually at some critical voltage, a large and persistent

current will suddenly flow between the electrodes. At this point electrical breakdown is

said to have occurred. The event appears as an initial spark, followed by the formation of

a glowing arc between the two electrodes. It is important to avoid electrical breakdown

because it is an irreversible process that often has catastrophic effects and causes the sub-

sequent performance of the electrodes to deteriorate. Therefore it is useful to understand

the processes which lead to breakdown so that it can be avoided, and higher electric fields

can be generated.

In general breakdown is initiated by the presence of ionisable material within the electrode

gap. Due to the high vacuum typically attained in atomic physics experiments, residual

gas plays no part in the breakdown process. Instead the primary causes of breakdown

are mechanisms which lead to vaporisation of the electrode material itself. There are two

such processes, the first of which is cathode initiated breakdown. Here micro-protrusions

on the surface of the cathode enhance the local electric field, resulting in a larger field

emission current and resistive heating of the protrusion. At some critical current density,
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this resistive heating causes the micro-protrusion to vaporise, thus initiating electrical

breakdown. Using a point-to-plane electrode geometry it was found that a current density

of 108A/cm2 was required for cathode initiated breakdown to occur [131]. The second

mechanism is anode initiated breakdown. For a short, dull cathode protrusion that is

thermally coupled to the cathode surface, the likelihood of vaporisation due to resistive

heating is reduced. In this case the electron beam emitted by the protrusion can have a

large enough power density that anode material is instead vaporised. This again initiates

electrical breakdown.

Many experiments have been carried out in order to gain insight into the factors which

affect the size of pre-breakdown currents, and the onset of full electrical breakdown.

In particular it was found that the current flow between electrodes in a point-to-plane

geometry was well described by equation (4.3) [131], whilst for broad area electrodes, the

current flow was larger than expected [132]. This increase in current was attributed to

the local field enhancement at micro-protrusions on the cathode surface. In order to bring

these results in line with equation (4.3), a new electric field Eβ = βE was introduced.

Here β is the field enhancement factor and E is the average field between the plates, which

is given by,

E =
V

d
, (4.4)

where V is the applied voltage and d is the distance between the electrodes. Theoretical

analysis has predicted that the size of β compared to some critical value, β0, will determine

whether cathode or anode initiated breakdown is dominant [133]. These authors show that

the size of β0 depends on whether a pulsed or DC voltage is applied. For pulsed voltages β0

is smaller, and this results in a higher probability of cathode initiated breakdown. However

for DC voltages, anode initiated breakdown should be prevalent. The experimental results

presented in [134] confirm these predictions.

In addition to this the variation in the size of the breakdown field with gap spacing has

also been investigated in [132]. Their results show that, whilst Eβ is independent of gap

spacing, β rises as the gap length is increased. Therefore if a high average field is to

be generated a small gap spacing should be employed. Also as both anode and cathode

initiated breakdown are caused by the presence of micro-protrusions, it is important to

ensure that the electrode surface is as smooth as possible. As a result, a number of
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different surface treatments and electrode conditioning techniques have been investigated

over the years. A brief overview of them is given in the next section.

4.1.3 Electrode surface preparation and conditioning techniques

As the electrode surface has a major effect on the average field that can be obtained prior

to breakdown, a wide range of surface preparation and surface conditioning techniques

have been developed and tested. Most experiments use solid metal electrodes, thus allow-

ing various polishing techniques to be employed. These include electro-polishing, which

removes surface protrusions via chemical etching, and machine polishing, which utilises

various grades of abrasive paste and polishing cloths to produce a smooth surface. Ul-

timately the surface finish depends on the exact details of the applied technique, and

because of this neither of the above processes has been shown to consistently produce

superior results. However experiments confirm that polished plates support higher volt-

ages before breakdown than non-polished plates [135], thus highlighting the importance

of having a smooth electrode surface. It is worth noting that polishing techniques cannot

be applied to the ITO coated glass electrodes as this would remove the thin film coating.

Therefore the surface finish will be dictated by the surface quality of the glass substrate,

and the process used to apply the ITO coating.

Even if the electrode surface has been carefully prepared, micro-protrusions, adsorbed gas,

and loosely adhering micro-particles are still likely to be present. Therefore to further

improve the performance of the electrodes, additional in situ conditioning techniques

are often employed. The most commonly used technique is called current conditioning

[136]. This is done at high vacuum and involves increasing the voltage of the electrodes

incrementally until micro-discharges occur. The voltage is then held constant to allow

these to dissipate. After this the voltage is increased and the process is repeated. This

leads to improved performance of the electrodes because micro-protrusions and loosely

adhering micro-particles are removed from the surface of the plates.

Another commonly used technique is gas conditioning [137, 138]. In this case a high

voltage of > 20 kV is applied to the electrodes, so that a field emission current of a few

microamps is produced. Next a gas such as argon, krypton or helium is introduced into the

vacuum chamber via a leak valve, to produce a background pressure of anywhere between

10−6mbar and 10−3mbar. At this gas pressure ions form close to the micro-protrusions
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on the cathode surface, where field emission is highest. These ions are accelerated back

towards the emitter, blunting the protrusion and reducing field emission. In addition

to this, gas conditioning also results in ion implantation [139]. This again reduces field

emission as the work function of the metal increases.

A similar technique, known as glow-discharge conditioning, also uses ions to remove micro-

protrusions. In this case the pressure in the chamber is increased to somewhere between

10−3mbar and 10−2mbar. Then by applying a low voltage to the electrodes, a 50Hz, AC

glow discharge is struck between the plates. Typically treatment lasts for up to an hour,

as running for longer times can degrade the performance of the electrodes. Investigations

have shown that the effectiveness of this technique is dependent on the gas species used,

with nitrogen producing the best results [140].

By using various combinations of these surface preparation and conditioning techniques

many experiments have shown that the performance of metal electrodes can be improved.

For example by baking the setup and then using current conditioning, polished plane-

parallel stainless steel electrodes, with a diameter of 7mm and a gap spacing of 0.5mm

have been shown to support an average breakdown field of E = 1.4MV/cm [141]. A

number of other experiments have reached lower field values by using broad area electrodes

made from other metals. For example tungsten plates with a gap spacing of 0.254mm

were measured to have an average breakdown field of E = 0.816MV/cm [132], copper

electrodes with a separation of 0.5mm had an average breakdown field of E = 0.36MV/cm

[142], whilst titanium plates at a gap spacing of 0.42mm had a breakdown field of E =

1.3MV/cm [141]. This shows that by using metal electrodes it should be possible to reach

the high electric fields that we ultimately require.

A breakdown study for ITO coated glass electrodes has shown that they can also generate

high electric fields without the use of surface conditioning techniques. In this case the field

at breakdown was found to be approximately E = 1MV/cm [143]. However it is worth

noting that these ITO electrodes were formed by first depositing a single strip of ITO

onto a glass substrate. This was then split into two, thus forming two planar electrodes

with a gap spacing of 10μm. As this geometry is significantly different to that of our ITO

electrodes, these results are not necessarily a good indicator of the maximum electric field

that will be produced in our setup.
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4.2 Designing the electrode mount

Given our final aim is to study atoms under high electric fields, some care has to be

taken when designing the electrode mount so that it is fit for purpose. In particular it is

important to think about the forces that will act on both the electrodes and the atoms

when large electric fields are applied. This section begins by discussing the effects of these

forces, and the implications that this has on the design of the electrode mount. Having

found that the plates will be subjected to large forces, and that the electrodes need to

be very parallel, an electrode mount design is presented. To allow the angle between the

electrodes to be varied, the design has been based on a mirror mount. In addition to this

ITO coated glass electrodes are utilised, so that interferometric techniques can be used

to accurately measure the angle between the electrodes.

4.2.1 Design constraints

Before designing a mount for the high field electrodes, it is important to consider the size

of the attractive force between the plates. This force is due to the opposite charge of the

electrodes, and when high voltages are used it can be substantial in size. Therefore the

electrode mount must be designed to withstand this. To calculate the size of this force

we start with two parallel plates that each have an area A, are separated by a distance d

and have opposite total charges of Q and −Q. Here the force is labelled as Felec and the

electric field as E. The electric field at the negatively charged plate due to the positively

charged plate is simply E+ = σ/2ε0, where σ = Q/A is the surface charge density. The

force is then given by,

Felec = −QE+ = −
Q2

2ε0A
. (4.5)

By using Q = V C, and C = ε0A/d, where V is the potential difference between the plates,

and C is the capacitance, this can be re-written as

Felec = −
1

2
ε0AE

2. (4.6)

The ITO coated glass electrodes which are used in later experiments, have an area of

10.08 cm2. Substituting this into the above equation and setting E = 1MV/cm, results

in a force of 45N acting on each plate. Therefore the electrode mount will have to be
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designed to withstand large forces, and will also have to hold the electrodes securely in

place.

Next we have to consider the forces that act on the atoms themselves. Due to the DC

Stark shift, any inhomogeneity in the electric field will produce a force that pushes the

atoms to a position where the interaction energy is minimised. Therefore atoms in the

2S1/2 ground state will be attracted to high field regions, as this state is high-field seeking.

To produce a perfectly uniform electric field everywhere, the electrodes must be infinitely

large and perfectly parallel. In reality neither of these conditions will be satisfied, so we

must determine the effect that this has on the atoms. This in turn will influence the

design of the electrode mount.

The finite size of the electrodes leads to an inhomogeneous electric field at the plate edges.

To ensure that the field is uniform over the extent of the atom cloud, the plates need to

be much larger than the cloud. As the axial field gradient of the magnetic trap is higher

than the radial gradient, the cloud is smaller in the z direction. Therefore to retain the

largest number of atoms between the plates, the electrodes should lie in the x − y plane

so that the gap between them is in the z direction. This means that we have to compare

the width of the cloud in the x and y directions to the width and length of the electrodes

in order to determine whether fringe fields at the plate edges are likely to have an effect.

If we take a cloud that has been cooled to the Doppler temperature and assume that

the maximum radial field gradient of approximately 69G/cm can be applied, the cloud

will have a diameter of around 0.6mm in the x and y directions. Therefore, it should be

possible to position the cloud between the electrodes with no loss of atoms, provided the

temperature can be further reduced from its current value of 0.75mK.

In order to determine whether the electric field is uniform over the size of the atom

cloud, the fringe field at the plate edges must be calculated. To do this, we consider two

semi-infinite electrodes, which extend from x = −∞ to x = 0. The plates are held at a

potential of ±V0 and have a separation in the z direction of d. As the equation for the

electric field is derived in a number of textbooks, for example [144] and [145], the details

of the calculation are not repeated here. The final expression for the electric field is

E(u, v) =
2V0
d

1
√
1 + e2u + 2eu cos(v)

, (4.7)
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where u and v are related to x and z by x = d(1 + u + eu cos(v))/2π and z = d(v +

eu sin(v))/2π. Using this equation the electric field at the edge of the electrodes can be

calculated.

Figure 4.2: Electric field along the centreline of a semi-infinite capacitor. The capacitor
plate edges are positioned at x = 0.

Figure 4.2 shows the variation in the electric field along the centreline of the capacitor as

the edge of the electrode is approached. Here the applied voltage is ±V0 = ±25 kV, and

the electrode separation is d = 0.5mm. This shows that by moving only 1mm away from

the edge of the electrode, the electric field is essentially uniform and has the expected

value of 1MV/cm. As the ITO coated electrodes have a width of 24mm and a length

of 42mm, the cloud, with its radial diameter of 0.6mm, can be easily positioned many

millimetres away from the plate edges. Therefore the electric field over the extent of the

cloud will be uniform and fringe fields can be neglected.

Figure 4.3: A pair of electrodes where one is tilted along the x direction only. The
angle between the plates is φ, the gap spacing is d, and the displacement of the top plate

is h(x).
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Finally we consider the force that acts upon the atoms if the electrodes are not completely

parallel. Consider two plates that are separated along z and tilted along x only, as show

in figure 4.3. The angle between the two plates is labelled φ, and the vertical displacement

of the top plate is h(x). The tilt between the plates produces an electric field gradient

and a force along x. The size of this force is given by F = −dES/dx. Here the Stark shift

of the atomic energy levels is ES =
1
2αE(x)

2, where E(x) is the electric field, and α is

the polarisability of the atom. The value of α for the 2S1/2 ground state of lithium can

be found in table 2.1. For atoms to remain trapped, the magnetic trapping force must be

larger than the force produced by the electric field. This condition can be written as

gFMFμB
dB

dx
> αE

dE

dx
. (4.8)

Although we are only considering the x direction here, this condition must be satisfied

along all three cartesian axes. In addition to this, because the atom cloud has a finite

temperature, a minimum trap depth must be maintained, otherwise atoms will be lost. As

the force from the electric field gradient produces an acceleration, the trap is effectively

tilted, which reduces the magnetic field gradient on one side. By calculating the magnetic

field gradient as the angle φ is varied, we can place an upper limit on φ.

Figure 4.4: Variation in the radial magnetic field gradient as the angle between the
electrodes is increased. The blue line represents a trap with a magnetic field gradient of
28.4G/cm, the red line represents a trap with a gradient of 69G/cm. In both cases a

1MV/cm electric field is applied.

Figure 4.4 shows the variation in the radial magnetic field gradient as the angle φ is varied.

The blue line represents a trap with a magnetic field gradient of 28.4G/cm, whilst the

red line represents a trap with a gradient of 69G/cm. In both cases an electric field of
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E = V/d = 1MV/cm is applied. For the blue line we see that the field gradient drops as

the angle is increased, eventually reaching zero at an angle of 0.049mrad. The red line

shows that by utilising the maximum field gradient that our coils can produce, a larger

angle between the plates can be tolerated. This is because the magnetic trapping force is

larger. In particular the field gradient drops to zero when φ reaches a value of 0.118mrad.

It is worth noting that a reduction of the electric field will also relax the constraint on

φ. From this we conclude that the angle between the plates must be well below 0.1mrad

if the atoms are to remain trapped. For plates with a width of 24mm this means that

the displacement, h(x) in figure 4.3 must be less than 2.4μm. In practice achieving such

a high degree of parallelism through machining of the electrode surface is challenging.

Therefore it is necessary to design an electrode mount that allows fine adjustments of φ

to be made. In addition to this the mount must also be able to withstand large forces so

that the parallelism of the plates can be maintained.

4.2.2 Final design

As the angle between the electrodes needs to be smaller than 0.1mrad, it is necessary to

have an accurate method of determining how parallel the plates are. Once atoms have

been positioned between the electrodes, they can be used to verify whether the plates

are tilted, as the atoms are drawn to regions of high electric field. However, unless the

position of the plates can be adjusted whilst under vacuum, this method of alignment will

be slow and cumbersome. Therefore it is important to ensure that the plates are parallel

before placing them under vacuum. By using interferometric techniques the parallelism

of the plates can be measured to a high level of accuracy. For this reason we have chosen

to use glass electrodes, as they can be used as a Fabry-Pérot interferometer. To make the

glass electrically conductive, a transparent, 150 nm thick coating of ITO has been applied.

These plates were bought pre-coated from Torr Scientific. They are made from float glass

and have dimensions of 42mm× 24mm× 3mm. To reduce field enhancement from sharp

protrusions at the plate edges, all edges have been rounded with a 0.5mm radius, whilst

all corners have been rounded using a 1mm radius. As the ITO coating covers all but the

two shortest sides, electrical contact can be made by simply pressing high voltage probes

onto the back surface of the plate.
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To allow the plates to be tilted we have based the electrode mount design on a typical

mirror mount. As shown in figure 4.5, the mount is separated into two pieces. The inner

surface of the bottom piece is shown in (a), whilst the inner surface of the top piece is

shown in (b). In (c) a cross-sectional view of the top mount is depicted. Each mount has

dimensions of 95mm × 80mm × 15.5mm and both parts are machined out of polyether

ether ketone (PEEK). To provide optical access to the plates so that they can be used

as an interferometer, a hole with dimensions of 32mm × 15mm has been cut into the

centre of each mount. As can be seen in (c) the glass electrode sits within a 1mm deep

recess, and protrudes from the surface of the mount. To hold the electrode in place,

vacuum compatible glue is used. Once both electrodes are in position, as shown in (b),

the two mounts are placed face to face. Four 1/4 inch diameter, 100 threads per inch,

ball-tipped stainless steel screws (Thorlabs F25US100) are then inserted into the holes

that contain a horizontal blue line. To hold the mounts together two stainless steel springs

(RS components part number: 0821419) are inserted into the holes containing a purple

vertical line. By turning just three of the screws the separation and tilt between the

electrodes can be adjusted. The fourth screw is used to add extra support once the angle

between the plates has been optimised.

Figure 4.5: Inner surfaces of the (a) bottom electrode mount and (b) top electrode
mount. In (c) a cross-sectional view of the top mount is shown. The horizontal blue lines
indicate the holes through which screws are placed, whilst the vertical purple lines show

where springs are positioned.
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To discourage surface currents from flowing, a series of 4mm deep trenches have been

positioned around each glass plate. These increase the path length between the two

electrodes, and have been cut into the inner and outer surfaces of both the top and

bottom mounts. Electrical contact is made by positioning a high voltage probe in the

small hole that sits just above the central cut out. In order to attach the electrode mount

to the vacuum chamber, two pairs of threaded holes have been drilled into the bottom

and right hand sides of the top plate, as shown in (b). Looking at the bottom plate, two

indents can be seen on its inner surface. These are used to accommodate the ball tips

of the adjustment screws. Specifically, the circular indent in the top left hand corner is

used to locate the top screw, whilst the elongated channel in the bottom left hand corner

restricts the horizontal motion of the bottom screw. The third screw is able to move freely,

thus allowing the correct pivoting motion to be achieved. This type of setup is known

as a Kelvin clamp. Figure 4.6(a) shows a photograph of the fully assembled mount, and

(b) shows a side view of the mount. Here the glass electrodes have been attached to the

mount by using EpoTex H74 UHV compatible epoxy, which was left to cure overnight in

an oven at 80 ◦C.

Figure 4.6: Photographs of the assembled electrode mount. In (a) the mount is attached
to the vacuum flange ready to be placed in the test chamber. In (b) a side view of the

mount is shown.

As the electrodes will be subjected to a large force, it is important to check that they are
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able to withstand this without breaking. The deflection of each plate can be determined

by solving the Euler Bernoulli equation [146]. Figure 4.7 depicts the situation being

modelled. Here the top plate is held in place at both ends but is free to move over the

unsupported length L. Rather than look at the deflection of the top and bottom plates

individually, we instead assume that the bottom plate is fixed along its entire length. By

doubling the expected deflection we can then find the total displacement of the plates.

The position along the electrode is labelled by x, the initial distance between the plates

is given by d, the electrode deflection is w(x) and both the top and bottom plates have

a width in the y direction of W , and a thickness, t. Initially the force that acts on the

top plate is uniform. However as the electrode deflects, the force will increase as the gap

spacing decreases, thus causing the plate to deform further. As a result the force is a

function of the deflection which is in turn a function of position x. Here we denote the

force per unit length by Fz(x).

Figure 4.7: Model used to calculate the expected deflection of the electrode when an
electric field is applied. One plate is fixed along its whole length whilst the other is fixed
at both ends and is free to move in the centre. The top plate has a width of W in the y
direction, a thickness t and an unsupported length L. The gap spacing is d, the deflection

of the plate is labelled w(x), and the force per unit length is Fz(x).

Given this situation the Euler Bernoulli equation becomes

YMI
d4w(x)

dx4
= Fz(x) =

ε0LWV 2

2(d− 2w(x))2
, (4.9)

where YM is the Young’s modulus of the electrode material, I =
∫ ∫
A z
2dydz = t3W/12 is

the moment of inertia of the area, and V is the potential difference between the electrodes.

To obtain the expression on the right hand side, equation (4.6) has been used. This

equation is then solved subject to the boundary conditions for an electrode fixed at both
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ends, which are w(0) = w(L) = 0 and dw(0)dx =
dw(L)
dx = 0. For our electrodes L = 32mm,

W = 24mm, t = 3mm and YM = 72GPa [147]. Note that here we are ignoring the fact

that the plate is actually supported along some parts of its 24mm width. As a result the

calculated deflection will be an overestimate of the actual value. From this we find that

the maximum deflection of the plates is 24 nm when a 1MV/cm electric field is applied.

This corresponds to an angle of 1.5μrad. As the deflection is small, we conclude that

the glass electrodes can easily withstand the applied force without breaking. It is worth

noting that fringe fields at the ends of the plates can result in forces parallel to the plate

surface. These forces are small compared to the forces that act in the direction normal to

the plate surface. Nevertheless, they could potentially distort the plates, or the mounts

that hold them. These effects have not yet been investigated.

4.3 Testing the ITO electrodes

As it is important to ensure that the angle between the electrodes is as small as possible,

we have decided to use interferometric techniques to align the plates. This section begins

by describing the setup that was used to measure and reduce the angle between the

electrodes. In order to prevent damage of the delicate electrode surface, contact with the

plates should be avoided. Therefore this section also describes the optical methods that

were used to measure the separation of the electrodes. Next, the equipment used during

the high voltage test is described, and finally the results of these tests, which were carried

out using ITO coated glass electrodes, are presented.

4.3.1 Measuring the parallelism and separation of the electrodes

Before carrying out high voltage tests, the plate alignment was optimised and the gap

spacing was measured. Figure 4.8 shows the setup that was used in order to reduce

the angle between the electrodes. First the beam from a diode laser was expanded and

collimated. The electrode mount was then positioned in the path of the laser beam,

and angled so that the reflected light could be imaged on to a screen. This produced

four spots on the screen, each one corresponding to light reflected from one of the four

electrode surfaces. By using the adjustment screws the plate separation was reduced,

causing the two central spots to overlap and form an interference pattern.
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Figure 4.8: Setup used to reduce the angle between the electrodes.

If the light source is not well collimated we would expect perfectly parallel plates to

produce circular fringes. This is because the rays within the beam will have different

angles of incidence, which introduces a path length difference between the light rays, and

results in the formation of fringes. If the plates are tilted, the centre of the circular

fringes will move towards the edge of the interference pattern, thus producing curved

fringes. For a very large tilt these will become straight line fringes. However, if the

light source is collimated, then perfectly parallel plates will produce a single interference

fringe that covers the entire overlap region of the beams. This is because all of the

light rays have the same angle of incidence, so the path length difference between the

interfering beams is dependent only on the separation of the electrodes. This means that

if the distance between the electrodes were to be scanned, the interference pattern would

alternate between light and dark. Tilted plates would then produce a series of straight line

fringes, with each fringe corresponding to an increase in the path length of λ/2. Therefore

if N fringes are present over the length of the interference pattern x, the change in the

gap spacing, Δl, must be equal to Δl = Nλ/2. The angle between the plates φ can then

be written as

φ =
Δl

x
=
Nλ

2x
. (4.10)

In order to observe any fringes, N must be at least two. For our setup, x is equal to

the region of overlap between the two central spots, which was approximately 10mm.

Therefore the smallest angle that can be measured between the plates is 67 μrad, which

is just below our 0.1mrad upper limit. In practice we found that circular fringes were

formed, thus indicating that the laser beam was not perfectly collimated. Given that two

circular fringes were visible, and that the radius of the interference pattern was 5mm,
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we conclude that the angle between the electrodes is 0.13mrad at most. Although this is

higher than our upper limit, it is still much better than can usually be achieved through

machining of the electrode surface, and with more careful collimation of the beam, this

angle could be reduced even further.

In order to measure the plate separation, ideally the setup shown in figure 4.8 would again

be used. For this to work the diameter of the collimated laser beam would have to be

reduced, so that the two central spots no longer overlap. The four reflected spots would

then be imaged onto a camera, and the distance between them would be measured. As

the plate thickness is already known, the distance between each spot in the image could

be calibrated, thus allowing the plate separation to be determined. It was not possible

to use this method for the ITO coated electrodes as the beams reflected from the front

and back surfaces of a single plate were not parallel. This indicates that the plates are

wedged, and means that the distances in the image cannot be calibrated.

Figure 4.9: Photographs of the electrodes that were used to determine the separation
of the plates. In (a) a collimated laser beam is directed between the electrodes onto the

camera. In (b) a torch is used to illuminate the glass plates.

Therefore the plate separation was instead determined by taking an image of the electrode

gap directly and comparing it to an image of a pair of vernier calipers set to a known

distance. Figure 4.9 shows two images of the same electrode gap. In (a) a collimated laser

beam is directed through the electrode gap and onto the camera, whilst in (b) a torch is

positioned at the top of the image and is used to illuminate the glass plates. From these
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two images the plate separation was measured to be 0.62± 0.05mm and 0.59± 0.05mm

respectively. The quoted errors represent the uncertainty in determining where the edge

of the plate is, and so are relatively large. As a result the two values agree within errors,

and produce a mean gap spacing of 0.605mm.

4.3.2 High voltage setup

In order to test the ITO electrodes a separate vacuum chamber was constructed. This

consisted of a 4 1/2 ′′ four way cross with two DN40CF flanges welded at the junction.

The electrode mount was inserted into the bottom flange of the four way cross, the high

voltage probes were connected to the two horizontal flanges and a viewport was attached

to the top flange. To allow images of the plates to be obtained during testing, an AVT

Marlin F-033B CCD camera was positioned above the viewport. The smaller flanges

were used to attach an additional viewport and a 65 litre/second turbo pump (Leybold

TurboVac TW 70H). This was backed by a diaphragm pump (Leybold DiVac 2.5VT).

To monitor the pressure, a Pirani gauge was used. Due to its low measurement range of

5 × 10−4mbar to 1000mbar, it was not possible to determine the exact pressure in the

chamber, however it was expected to be somewhere in the region of 10−7mbar.

In order to make electrical contact to the plates, a 30 kV feedthrough (Caburn FHV30-1S-

C40) was pushed onto the back of each electrode. The two electrodes were each connected

in series with an ammeter and a high voltage power supply. The ammeters are designed

to measure currents in the nanoamp to microamp range, whilst floating at high voltage.

The full details of the design can be found in [148]. The signals from the ammeters

were recorded by a computer using a simple LabView program to allow real time current

measurements for both electrodes to be made simultaneously. To supply the high voltage,

two Spellman SL600 supplies were used. They have fixed and opposing polarities and can

produce voltages of up to ±30 kV at a current of 20mA. Given the 0.605mm separation

of the ITO electrodes, this enables us to produce a maximum electric field of 0.99MV/cm.

4.3.3 Testing and results

During the electric field tests, voltage was applied symmetrically to the electrodes. This

means that the voltage on one electrode was increased by a variable amount until current
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spikes were measured by the ammeters. At this point the voltage was held constant,

allowing the current spikes to dissipate. Next the voltage of the second electrode was

increased by the same amount. After another pause, the voltage of the first electrode

was increased further. This process was repeated until a large, persistent current was

measured, thus signifying breakdown of the electrodes. When this occurred the voltage

was recorded, and the value of the electric field at breakdown was determined.

Figure 4.10: Example of the current spikes that were seen during the high voltage test.
These data sets were obtained using stainless steel electrodes held at a voltage of ±2.5 kV,
which equates to an electric field of 0.1MV/cm. The blue and red lines represent the

currents measured by the two ammeters.

Figure 4.10 shows an example of the current spikes that were seen during the experiment1.

Here the blue and red lines represent the currents that were measured by the two amme-

ters. From this we can see that each discharge event creates a spike in the current of a

few hundred nanoamps. Additionally as each current spike in the blue data is matched

by a current spike of opposite sign in the red data, the current flow must be between the

two electrodes, rather than to ground. It was found that after the voltage was increased

the current spikes became more frequent. However if the applied voltage was low and was

held constant, the spikes would eventually die away. This behaviour is typical of current

conditioning, where the surface quality of the electrode improves due to the occurrence

of micro-discharges. As higher voltages were reached this behaviour ceased. Instead the

current spikes became more frequent and would not dissipate when a particular voltage

was maintained.

1These data sets were actually taken using the stainless steel electrodes which are described in the
following section, however the general behaviour of the ITO electrodes was the same.
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Figure 4.11: Photographs of sparks between the electrodes. The two diagonal rectan-
gles are the 24mm sides of the glass electrodes.

Images of the electrodes show that as the applied voltage increases, intermittent sparks

begin to appear between the plates. In figure 4.11 a small selection of photographs show

these sparking events. Here the electrodes are imaged through the top viewport of the

vacuum chamber and are illuminated by a torch through the side viewport. The 24mm

sides of the glass electrodes appear in the images as two diagonal rectangles. From these

photographs we can see that sparks often occur simultaneously at a variety of positions.

However towards the end of testing, the sparks were mostly confined to the central region

of the electrodes. At breakdown the two electrodes were held at ±6 kV. Given the

measured gap spacing, this equates to an electric field of just under 0.2MV/cm, which is

well below our 1MV/cm target.

Figure 4.12: Photograph of one of the glass electrodes after testing. Two patches of
the ITO coating have come away from the front surface of the plate.

In order to determine the cause of breakdown, the electrode surface was examined. Figure

4.12 shows a photograph of one of the plates after it was removed from the electrode

mount. Just visible in the image is a border that runs around the entire electrode. Here

some of the ITO coating has come away from the back of the plate. This damage was

caused by removing the plate from the mount, thus indicating that the weakest point in
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the structure is between the ITO coating and the glass substrate. In addition to this there

are two patches on the front of the electrode where the coating has been stripped away.

These lie roughly in the centre of the plate, thus indicating that the sparks in figure 4.11

were caused by removal of the ITO coating.

Figure 4.13: Images of the ITO coated glass electrodes after testing, obtained using
an optical microscope. In (a) an undamaged region is shown at 20× magnification. In
(b), (c) and (d) an area which has sustained damage is shown using 10×, 20× and 50×

magnification respectively.

In figure 4.13 magnified images of the electrode surface are shown. These were obtained

using an optical microscope. In (a) an undamaged section of the coating can be seen.

This shows that even at 20× magnification the surface looks smooth and has few defects.

In (b), (c) and (d) an area that has sustained damage is imaged using different levels of

magnification. These images show that large sections of the coating have been ripped

away from the glass surface. In addition to this the area is littered with debris from the

damaged coating. This indicates that once part of the coating has been removed, the

surface quality quickly deteriorates, ultimately leading to more damage in that particular

region. Without knowing what the surface quality was like before testing it is not possible

to determine what causes the initial removal of the ITO. However it is most likely produced

by small imperfections in the coating, or by pieces of dirt that are trapped beneath the

coating being ripped out by the force of the electric field.

These results show that ITO coated glass electrodes, set up in this particular geometry, are

not capable of producing the large electric fields that we require. Therefore we decided

to replace them with metal electrodes, as it should be possible to reach much higher

fields. Of course, the main disadvantage of this is that interferometric techniques can no

longer be used to determine the angle between the plates. Therefore a different method of

alignment is needed. However before tackling this problem it is important to verify that

metal electrodes can indeed produce the large electric fields that we require.
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4.4 Stainless steel electrodes

In order to produce the highest electric field possible, it is important to make sure that

the electrode surface is very smooth. Rather than try to manufacture this ourselves, we

instead bought super-polished pure metal mirrors from Valley Design. One of these is

shown in figure 4.14. These circular stainless steel mirrors have a diameter of 25.4mm,

a thickness of 6.35mm and a mean surface roughness, Ra, approaching 0.5 nm. Valley

Design also produce super-polished mirrors made from other metals, such as molybdenum

and copper. This is useful because it allows the performance of other electrode materials

to be investigated in the future.

Figure 4.14: Photograph of a super-polished stainless steel electrode.

Instead of making a new mount, recesses were cut into the existing ITO mounts in order

to accommodate the stainless steel electrodes. The plates were then glued into position

and a feeler gauge was used to set the gap spacing at 0.5mm. The electrodes were placed

inside the high voltage test chamber, and using the same method as before, the breakdown

voltage was determined. In this case breakdown occurred when the two electrodes were

held at ±9.5 kV. This equates to an electric field of 0.38MV/cm, which is almost twice

as high as the field produced by the ITO electrodes. Although this is still relatively low

compared to our ultimate target, it is approaching the 0.54MV/cm field value at which

a shape resonance is predicted for lithium [69].

Figure 4.15 shows a photograph of an electrode after testing. Here we can see that the

surface is covered in a large number of fine scratches. These were most likely caused by

the plates coming into contact with the feeler gauge that was used during the alignment

procedure. Due to the extent of the damage we expect the performance of the plates to

have been affected. Therefore with more careful treatment of the electrode surface, it

should be possible to reach even higher field strengths.
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Figure 4.15: Photograph of a stainless steel electrode in the PEEK electrode mount,
after high voltage testing has been carried out. A large number of fine scratches can be

seen on the surface of the electrode.

4.5 Outlook

In order to accommodate the stainless steel plates, the electrode mount has recently

been redesigned by Devin Dunseith. Overall, the design is essentially the same as that

used for the ITO electrodes, as it utilises three screws to vary the angle between the

plates. However a number of important changes have been made so that the stainless

steel electrodes can be aligned without relying on interferometric techniques. The first

major change is that the new mount will be made from Macor, which is a machineable

glass ceramic. By using Macor it is possible to make the inner surface of each mount

parallel to within at least 25 μm. Therefore by ensuring that the distance between the

mounts is constant everywhere, they can be positioned roughly parallel to each other.

This means that the electrodes will also be approximately parallel, provided the plates lie

flat against the mount after being glued into position. As this alignment technique does

not require direct contact with the surface of the electrode, damage should be prevented,

thus allowing higher electric fields to be produced.

It is clear that by using this method of alignment, the angle between the electrodes

will almost certainly be larger than 0.1mrad. As we require the angle to be well below

0.1mrad, two piezo actuators have been incorporated into the design of the electrode

mount. This means that once the plates are under vacuum, the atoms can be used to
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determine whether the electrodes are parallel, and adjustments to the angle can be made

accordingly. The low voltage piezo actuators (Piezomechanik FPSt 150/5/20) consist of

a piezo stack mounted within a metal casing. They have a length of 20mm, a maximum

stroke of 27μm, and a casing that is threaded on the outside. This means that we can

replace two of the three adjustment screws with these piezo actuators. Coarse alignment

of the plates is then achieved by rotating the actuator, whilst fine adjustments of the tilt

can be made by applying voltage to the piezo stack. It is worth noting that since optical

access to the electrode is no longer required, the mounts do not have a large hole in the

centre. As a result the steel electrodes will be fully supported over their entire area.

By making these modifications to the design of the electrode mount, it should be possible

to study the atoms under high electric fields in the near future. Once the electrodes have

been installed into the science chamber, and atoms have been successfully positioned

between the electrodes, initial measurements will involve recording the line shape as the

applied electric field is varied. In accordance with the results of [149], the position of the

F = 2 to F ′ = 3 resonance should shift to higher frequencies. By modelling the expected

line shape, using a method similar to that described in section 3.2.4, it should be possible

to verify the size of the applied electric field. Provided the electrodes are able to produce

the high fields that are required, the presence of the predicted shape resonance can then

be investigated, and eventually an ultracold dipolar gas can be created.

4.6 Chapter summary

As one of our experimental aims is to study lithium atoms under electric fields of up

to 1MV/cm, we have developed a setup that should be capable of producing fields that

approach this value. Calculations have shown that when the maximum field is applied,

the electrodes will experience a 45N force. In addition to this, if a sufficient magnetic

field gradient is to be maintained, the angle between the electrodes must be well below

0.1mrad. In response to these design constraints we have developed an electrode mount

that allows the angle between the plates to be varied. By choosing to use ITO coated

glass electrodes we were able to employ interferometric techniques to measure the angle

between the plates. This angle was found to be 0.13mrad. To avoid damage of the

electrode surface, optical methods were used to measure the gap spacing, which was

found to be 0.605mm. From high voltage tests the breakdown field of these electrodes
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was measured to be just under 0.2MV/cm. By visually inspecting the electrode surface

after testing it was found that large areas of the thin film coating had been removed, thus

indicating that these electrodes cannot be used to produce the large electric fields that

we ultimately require.

As a result, these plates were replaced with super-polished stainless steel electrodes. The

performance of these electrodes was substantially better as the breakdown field was found

to be 0.38MV/cm. After testing we discovered that the electrode surface was covered in a

number of fine scratches. These are thought to have been caused by contact with the feeler

gauge that was used during the alignment procedure. As this is likely to have marred

the performance of the electrodes, it is thought higher electric fields can be generated

with more careful treatment of the electrode surface. The main disadvantage of these

metal electrodes is that interferometric techniques can no longer be used to measure the

angle between the plates. Therefore a different method of alignment is required. In

response to this, the electrode mount has recently been redesigned to incorporate piezo

actuators. This will allow the tilt of the electrodes to be adjusted whilst under vacuum,

thus enabling us to use the atoms to determine the parallelism of the plates. Currently

this new electrode mount is being built. Once constructed and tested it will be placed

inside the science chamber, allowing us to investigate atoms under high electric fields in

the near future.



Chapter 5

Conclusions

This chapter summarises the work described in this thesis, and outlines the steps that

must be taken in the future if an ultracold dipolar gas is to be realised.

5.1 Summary

The aim of our experiment is to create an ultracold dipolar gas. To achieve this, we plan

to use two distinct methods. Either we sympathetically cool polar molecules using lithium

atoms as a refrigerant, or we electrically polarise the atoms by using a large electric field,

thus inducing dipolar interactions. In both cases a source of ultracold lithium is required.

This thesis has described the work that has been carried out to cool, trap and transport

such a cloud. It also details the setup that has been developed in order to generate the

large electric fields that are required to electrically polarise the atoms.

In order to form an ultracold cloud of atoms, first lithium is heated in an oven to a

temperature of approximately 790K. The atoms leave the oven through a small aperture,

thus creating an effusive beam. Next they are decelerated to a velocity of approximately

50m/s by using a decreasing field Zeeman slower and are subsequently loaded into a

MOT. By optimising the oven temperature, magnetic field gradient, MOT beam powers

and detunings, we were able to trap up to 2.3× 108 atoms with an initial temperature of

∼ 1.3mK and a density of approximately 9×109 atoms/cm3. To further cool and compress

the cloud, we have implemented a compressed MOT (CMOT) phase. By varying the
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magnetic field gradient, the laser beam powers and detunings during the CMOT phase,

we were able to reduce the temperature of the cloud to ∼ 0.75mK.

As both the sympathetic cooling, and high electric field experiments will be carried out

in the science chamber, the atoms must be transported to this chamber. Before this can

be done, the atoms need to be transferred from the MOT to the magnetic trap. By using

internally water cooled trapping coils we are able to form both the MOT and magnetic

trap using the same coil pair. As high field gradients led to a loss of atoms during the

CMOT phase, the magnetic trap has an axial field gradient of 60G/cm. It is worth

noting that this is well below the maximum steady state field gradient of 137G/cm that

our system is capable of producing. By ramping down the MOT beam intensity and then

switching the beams off, we are able to transfer approximately 23% of the MOT atoms

into the magnetic trap. The lifetime of the trap was found to be τMC = 1.53 ± 0.01 s in

the MOT chamber.

After the atoms have been transported, it is important that we are able to reliably image

them. Therefore images of the cloud were taken after release from the magnetic trap.

These highlighted the fact that atoms were disappearing from the images. In order to

determine the source of this problem, line shape measurements were carried out at a va-

riety of times after release from the MOT and CMOT. These results were compared to

the predicted line shape, and from this we concluded that a time and position dependent

magnetic field was present. This was attributed to eddy currents that persist in the cham-

ber after the coils have been switched off. As it was not possible to remove this magnetic

field, the transport procedure was tested by returning atoms to the MOT chamber and

imaging them in the recaptured MOT.

In order to transport the magnetically trapped atoms, the trapping coils are physically

moved from the MOT chamber to the science chamber by using a motorised translation

stage. Preliminary tests of the transport procedure indicated that a large fraction of

atoms were lost at the entrance of the connecting tube. To minimise this loss, the cloud

position was optimised. This resulted in a final transport efficiency of η = 41%. Having

successfully demonstrated transport, we were able to measure the magnetic trap lifetime

in the science chamber. Due to the low background gas pressure in this chamber, the

lifetime was found to be τSC = 18.5±0.7 s. In the future this will be particularly useful for

sympathetic cooling experiments, as the atoms and molecules will have more time to reach
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thermal equilibrium. Given our current transport efficiency, we expect approximately 7%

of the MOT atoms, that is around 1.7× 107 atoms, to be successfully transported to the

science chamber. This should allow us to directly image the cloud in the science chamber,

provided a suitable imaging system has been installed. As measurements indicate that

atoms are still lost as they enter the connecting tube, the transport efficiency could be

further improved by reducing the size of the cloud through an additional cooling stage,

such as evaporative cooling.

To electrically polarise the lithium atoms, electric fields of up to 1MV/cm are required.

Generating such a large field is generally quite challenging. However, we have developed

a setup that should be capable of producing fields that approach this value. Calculations

have shown that if a 1MV/cm electric field is generated, the electrodes will have to

withstand a 45N force. Additionally, if a trapping potential is to be maintained, the angle

between the plates must be smaller than 0.1mrad. In response to these design constraints

we have developed an electrode mount that allows the tilt of the plates to be adjusted.

By using ITO coated glass electrodes, we were able to utilise interferometric techniques

to determine the angle between the plates. This angle was found to be 0.13mrad. As

contact with the delicate electrode surface can lead to damage, which tends to reduce

the voltage at breakdown, optical methods were used to measure the separation of the

electrodes. This produced a value of 0.605mm for the gap spacing. High voltage tests

were then performed, and the breakdown field was found to be just under 0.2MV/cm.

A visual inspection of the plates after testing uncovered the fact that large portions of

the ITO coating had been removed. The initial removal of the ITO is likely to be caused

by small imperfections in the coating, or by dirt trapped underneath the coating that

is subsequently ripped out by the force of the electric field. As a result it is difficult to

prevent damage from occurring. Therefore we conclude that ITO coated glass electrodes,

in this particular geometry, are not capable of producing the large electric fields that we

ultimately require.

In light of this, these plates were replaced with super-polished stainless steel electrodes.

These performed much better under high voltage tests, producing a breakdown field of

0.38MV/cm. However after testing it was found that the electrode surface had again

suffered damage. This time a number of fine scratches were visible. These were most

likely created by the plates coming into contact with a feeler gauge that was used during

alignment. As this is likely to have had an adverse effect on the performance of the plates,
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with more careful treatment of the electrode surface, it should be possible to reach higher

electric fields. In order to align these metal electrodes, interferometric techniques can

no longer be employed. As a result the electrode mount has recently been redesigned

to incorporate piezo actuators. This will allow the angle between the plates to be ad-

justed whilst under vacuum, thus enabling us to use the atoms themselves to measure

the parallelism of the electrodes. With this improved mount design, and by using super-

polished stainless steel electrodes, it should be possible to reach the high fields necessary

to electrically polarise the lithium atoms.

Several aspects of the work detailed in this thesis are novel. The first of these is the design

of the apparatus itself. As the atoms must eventually be transported into a microwave

trap, a number of design constraints are imposed. By specifically constructing apparatus

that meets these constraints, we have produced a novel experimental setup. Additionally

this thesis describes the first demonstration of atomic transportation of lithium-7 using

a motorised translation stage. The detailed modelling of the effect of magnetic fields

on atomic spectra is also novel and by utilising this we have been able to use measured

spectra to give information about how stray magnetic fields are changing in time. Lastly

the comparison of the high field capabilities of ITO coated glass plates and stainless steel

electrodes is also novel, as is the mounting arrangement of the plates themselves.

5.2 Outlook

The next steps that must be taken in order to create an ultracold dipolar gas are rea-

sonably well defined. As atomic transport has been successfully demonstrated, it should

now be possible to image the cloud in the science chamber. To obtain good quality pho-

tographs, an imaging system as described in section 2.4.2 must be installed. Once this

is in place, further optimisation of the transport procedure will be straightforward, as

the transport efficiency can be measured directly. One way in which the transport effi-

ciency could be improved is by using evaporative cooling to decrease the size of the cloud,

thereby reducing atom loss at the entrance of the connecting tube. Additionally some

improvement might also be achieved through more careful adjustment of the horizontal

cloud position. Another way in which more atoms could be transported to the science

chamber is by optically pumping the MOT atoms into the F = 2,MF = 2 state. This will

increase the fraction of atoms that are successfully loaded into the magnetic trap, and will
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result in a larger sample of atoms in the science chamber, even if the transport efficiency

remains the same. Also the lithium oven has recently been replaced and we expect this

to give much larger atom numbers in the MOT.

Once the new electrode mount has been built, the super-polished stainless steel electrodes

will be glued into position, roughly aligned and then placed inside the science chamber. In

order to do this, as there is only one gate valve which separates the lithium oven from the

rest of the setup, the majority of the vacuum system will have to be let up to atmosphere.

Therefore, at this point, it will be incredibly useful to directly measure the magnetic field

produced at the atom cloud position after the trapping coils switch off. This will enable

us to verify the conclusions presented in section 3.2 and will perhaps allow a magnetic

field cancellation system to be installed. By repeating this measurement at a number of

different positions, it will be possible to map out the magnetic field profile along the entire

transport path. This information will be particularly useful when the cloud is eventually

imaged in the science chamber.

With the electrodes positioned inside the science chamber, high field testing can begin.

First the atoms will be positioned between the electrodes, thus allowing the parallelism of

the plates to be determined. In particular the atoms will be attracted to regions of high

electric field. Therefore by monitoring the position of the atom cloud, it will be possible

to reduce the angle between the plates, eventually making them completely parallel. After

the electrodes have been aligned, line shape measurements will be taken for increasing

electric field. By modelling the line shape and comparing it to these measurements, it

should be possible to verify the size of the applied field. Once this has been completed, the

presence of the shape resonance predicted at 0.54MV/cm for lithium atoms in the F = 2,

MF = 2 state can be investigated. If higher fields can be reached, an electrically polarised

gas can be generated, and dipolar interactions will become increasingly apparent. This

dipolar gas can then be used to explore many interesting phenomena, such as quantum

phase transitions.

In order to sympathetically cool polar molecules, in addition to ultracold atoms, a molec-

ular source and molecular trap are also needed. To date, much progress has been made

towards fulfilling these requirements. For example, molecular sources of both SrF and

CaF have already been developed in our laboratory and direct laser cooling has been

demonstrated for both these species. In addition to this, a UHV compatible version of
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the microwave trap is currently under construction. Once built, it will be placed into the

science chamber where preliminary tests will involve trapping lithium atoms. Provided

these tests are successful, the molecular source will then be combined with the atomic

setup, thus making it possible to investigate sympathetic cooling of either SrF or CaF

molecules, using lithium atoms as a refrigerant.
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