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Modes of structurally chiral lasers
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We employ coupled wave theory to enumerate the lasing modes of structurally chiral lasers. The elliptical modes
are shown to be fundamentally distinct from those of a scalar distributed feedback laser. High threshold modes are
shown to lase with the opposite chirality as the active medium, in contrast to their low-threshold counterparts that
lase with the same chirality as the active medium. The lasing mode structure suggests the intriguing possibility
of dynamically changing the polarization handedness of a chiral laser, as well as the possibility of lasing within
the forbidden band-gap region. These observations arise from the fundamental interplay between the distributed
chirality-preserving reflections within the active medium and the localized chirality-reversing reflections at the
medium’s boundaries.
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I. INTRODUCTION

Photons, the mediating bosons of the electromagnetic field,
are inherently chiral, carrying a spin of ±�. Understanding
chiral lasing sources is therefore a natural objective that
can influence several photonic fields, from single-photon
quantum information processing [1] to RealD 3D digital
stereoscopic projection technology [2]. Moreover, ultrathin,
highly versatile, wideband-tunable chiral sources [3,4] are
promising candidates for replacing vertical-cavity surface-
emitting lasers and dye lasers in applications such as medical
imaging and display technology [5–7].

Micrometer-sized chiral sources are being inkjet printed
onto plastic films to produce cheap, disposable, tunable,
flexible laser arrays that can emit RGB and white light for
use in displays and hologram projection. Low-cost, compact,
widely tunable chiral laser prototypes have been created, which
are continuously tunable from 450 to 850 nm and have a
slope efficiency of 60%–70% [5,8–10]. Self-assembling chiral
fiber lasers are being created, which range in size from a
couple of micrometres to about 100 μm in diameter and
can grow several centimeters long. These fiber lasers can be
manipulated with laser tweezers in order to build soft photonic
circuits [7].

A clear understanding of the modes issued by structurally
chiral sources is necessary for the continued development of
these promising devices. In this paper we develop the vector
coupled wave theory (CWT) of structurally chiral lasers and
predict a class of polarized modes that are contrahanded to
the active medium’s structural chirality. These modes enrich
the lasing structure of chiral lasers, as they can lase inside the
chiral photonic band gap and open up the possibility for fast
polarization switching.

Scalar distributed feedback (DFB) lasers were first analyzed
by Kogelnik and Shank [11]. Kopp et al. observed chiral
DFB lasing at the band edge [12] (where the photon dwell
time is largest) in dye-doped cholesteric liquid crystals,
a gain enhancement technique first proposed by Dowling
et al. [13]. It has since been demonstrated that chiral lasers
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can combine microcavities with large output powers, large
coherence areas, and high tunability throughout the visible
spectrum [14,15].

II. CHIRAL LASER THEORY

In contrast to scalar DFB lasers, the active medium of
a structurally chiral laser is a birefringent dielectric with a
spatially periodic rotation of the transverse principal axes,
as depicted in Fig. 1. Structurally chiral media (SCMs),
such as chiral sculptured thin films [16] or cholesteric liquid
crystals [17], provide polarization-specific DFB; circularly
polarized light copolarized with the medium helicity expe-
riences an index modulation of amplitude equal to the local
birefringence δn, whereas the orthogonal circular polarization
propagates as if through a uniform medium of average
refractive index n̄. For simplicity, we consider a right-handed
structure for the remainder of the paper.

Axial propagation of the transverse electric field E⊥ is
described by the Helmholtz equation

d2E⊥/dz2 + k2
0ε⊥ · E⊥ = 0, (1)

where ε⊥ is the transverse permittivity tensor and k0 is the free
space wave number. Coupled wave theory is used to rewrite
the Helmholz equations as first-order coupled differential
equations of the axially propagating forward and backward
waves, resolved on a circular basis as
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with the real coupling constant κ ≈ πδn/λ0 and p = 2π/Lp.
Solving Eq. (2) provides [18]⎡
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Here k = n̄k0, n̄ is complex, and δk = 2(k − p). In Eq. (3)
left circular polarization (LCP) propagates as if in a uniform
medium of index n̄, while right circular polarization (RCP)
propagates as if through a DFB structure of pitch Lp/2.

Coupled wave theory has been tested in passive lossy
SCMs [18] against the exact analytic solution [16] and was
found to be in excellent agreement [11] for our regime,
where δn � |n̄|. Further calculations show that the agreement
also holds with the introduction of isotropic gain. The exact
analytic solution for axial propagation in SCMs involves
matrix exponentiation and is not suitable for deriving simple
expressions that determine the lasing modes as wave number
and gain vary.

The DFB reflection and transmission coefficients of the
SCMs at z = 0 are rc = −Q−(L)/P−(L) and tc = [P−(L)]−1

and correspond to the DFB coefficients for a Bragg grat-
ing [19]. Note that tc(L) = tc(0), but that due to phase
differences rc(L) = e2ipLrc(0). The Bragg wavelength, given
by λBr

0 = n̄Lp, is half that of an equivalent scalar DFB
structure, since optically SCMs repeat every half twist, as seen
from the dashed arrow in Fig. 1.

We place the SCM between two uniform media character-
ized by refractive indices n1 and n2 (see Fig. 1), so reflections
at the interfaces are characterized by Fresnel reflection
coefficients r1 = (nc − n1)/(nc + n1) and r2 = (nc − n2)/
(nc + n2), where nc = Re(n̄). These reflections are chirality
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FIG. 1. (Color online) Right-handed SCM with surrounding me-
dia of indices n1 at z = 0 and n2 at z = L. The transverse principal
axes are aligned with the coordinate axes at z = 0 and rotate around
the z axis with period Lp . We show that such right-handed SCMs can
support both right-handed and left-handed lasing modes.
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FIG. 2. The four round-trip light paths for circularly polarized
light: (a) aLL = r1r2e

ikLtc, (b) aLR = r1rc, (c) aRL = e2i(k+p)Lr1r
2
2 rc,

and (d) aRR = eikLr1r2tc. Vertical lines represent the SCM boundaries
and curved arrows represent the light paths. The letters denote circular
polarization state.

reversing and provide a second coupling mechanism that
contrasts with the chirality-preserving distributed reflection.

These two coupling mechanisms determine the four pos-
sible round-trip paths of circularly polarized light, which are
illustrated schematically in Fig. 2. The complex round-trip
amplitude aLR [Fig. 2(b)], for example, which represents the
amplitude for initial RCP to become LCP after one round-trip,
begins with a chirality-preserving distributed reflection rc,
followed by a chirality-reversing interface reflection r1 at
the z = 0 interface. Likewise, aLL [Fig. 2(a)] begins with
propagation of LCP through a uniform medium eikL, followed
by a chirality-reversing interface reflection r2 at z = L,
followed by RCP transmission tc through the chiral medium,
followed by a chirality-reversing interface reflection r1 at
z = 0. All round-trip coupling pathways can be constructed
from those depicted in Fig. 2.

Using a complex refractive index in CWT enables poles to
be determined in the DFB reflectivity as wave number and gain
vary [19]. For an index-matched scalar DFB laser the modes
were analyzed by Kogelnik and Shank [11] and when boundary
reflections were accounted for by Agrawal and Dutta [20].

The modes of a chiral laser are found by setting z = L

in Eq. (3), applying the Fresnel equations, and imposing
chirality reversal at each boundary. The boundary conditions
are therefore
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−
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+
R (L),

E+
R (0) = r1E

−
L (0), E−

R (L) = r2E
+
L (L). (5)

The resulting equations are reduced to the following system
for the forward going fields at z = 0:

[
r1r2e

ikL − P− −r1Q−

eikLr2Q+ eikLr1r2P+ − 1

] [
E+

L (0)

E+
R (0)

]
= 0. (6)

A chiral laser mode must therefore satisfy

(r1r2e
ikL)2P+ − 2r1r2e

ikL + P− = 0, (7)
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TABLE I. Data used for calculations.

Structural period of SCM Lp 300 nm
Depth of SCM L 6 μm
Number of half periods L/Lp 20
Bragg wavelength λBr

0 530.4 nm
Average refractive index of SCM (Re) nc 1.7680
Chiral birefringence at λBr

0 (Re) δn 0–0.1126
Refractive index of surrounding media n1 = n2 1.0000

where P+P− − Q+Q− = 1. In the absence of boundary re-
flections this reduces toP− = 0, or rc,tc → ∞, the established
lasing condition for an index-matched DFB laser [11,19].
The lasing condition for a scalar DFB laser with boundary
reflections can be determined from the last two rows of Eq. (3):

P− + r1Q− − r2Q+ − r1r2P+ = 0, (8)

which also reduces to rc,tc → ∞ when r1 = r2 = 0.
In order to determine where novel modes may occur, we

can explicitly exclude rc,tc → ∞, or P− → 0, to find from
Eq. (6) that[

r1r2e
ikLtc r1rc

e2i(k+p)Lr1r
2

2 rc eikLr1r2tc

] [
E+

L (0)

E+
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]
=

[
E+

L (0)

E+
R (0)

]
. (9)

Equation (9) is an eigenmode equation with matrix elements
corresponding to the light paths in Fig. 2. It represents the
replication of the propagating electric field every round-trip.

III. RESULTS

Given the real parameters κL, n1, n2, and nc, Eq. (7)
can be solved numerically for the lasing modes in order to
determine the complex detuning δkL. For a fixed distributed
coupling strength κL = 4 and setting r1 = r2 = 0.278 and
λBr

0 = 530.4 nm (see Table I), we plot the absolute reciprocal
of the left-hand side of Eq. (7) over a range of detuning
[Re(δkL/2)] and gain [Im(δkL/2)] in Fig. 3, so diverging
peaks correspond to lasing modes.

Within the range plotted, seven lasing peaks are observed
that can be divided into a group with high-gain thresh-
olds (0L,1L,2L,3L) and a group with low-gain thresholds
(1R,2R,3R) (see Fig. 3). The labeling scheme relates to the
chirality of the modes, as discussed below.

In order to determine the physical origin and characteristics
of the modes, their movement is traced as the coupling strength
κL is reduced to zero, as seen in Fig. 4. At zero coupling the
only feedback mechanism is reflection from the boundaries, so
the modes are Fabry-Pérot (FP) modes spaced �(δkL/2) = π

apart. It is seen that six of the modes split into paired branches
from the degenerate FP modes and can thus be paired up as
(1L,1R), (2L,2R), and (3L,3R), leaving a lone 0L mode. The
dashed lines identify constant values of κL.

Once a lasing mode has been identified, the forward
propagating field at z = 0 is determined from Eq. (6). While in
general there are a number of eigenmode solutions to Eq. (6),
we found that for the lasing modes, when κL �= 0,[

E+
L (0)

E+
R (0)

]
=

[ −r1Q−

P− − r1r2e
ikL

]
. (10)
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FIG. 3. (Color online) Lasing modes for a chiral laser as (a) a
surface plot and (b) a contour plot. The lasing modes appear as
poles that occur in two groups, one group with high-gain thresholds
(0L,1L,2L,3L) and a group with low-gain thresholds (1R,2R,3R).

All lasing polarizations are elliptical, becoming more circular
as κL increases. When κL = 0 the chiral laser becomes a
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FIG. 4. (Color online) Movement of the lasing modes with re-
spect to varying κL. The solid lines trace the evolution of the
modes of Fig. 3 (red dots) as κL is reduced to zero (black crosses).
The dashed lines connect modes of constant κL. The superimposed
ellipses represent the lasing output polarization when κL = 4.
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FIG. 5. (Color online) Intracavity intensity envelopes for the
seven modes in Fig. 3 of the total (green solid line), LCP (red dashed
line), and RCP (blue dash-dotted line) electric fields for a SCM cavity.

pure FP laser and the modes become polarization independent.
The output polarization [E+

L (L),E+
R (L)]T is determined from

Eq. (5). From Fig. 4 we note that the high-gain threshold modes
lase LCP (dashed red ellipses) while the low-gain threshold
modes lase RCP (solid blue ellipses).

In Fig. 5 we plot the total intensity envelope
I (z) = |E+

L (z)|2 + |E−
R (z)|2 + |E−

L (z)|2 + |E+
R (z)|2, as well

as the LCP and RCP intensity envelopes IL,R(z) =
|E+

L,R|2 + |E−
L,R|2. The total energy of the higher modes is

concentrated at the boundary, whereas for the lower modes
the total energy is concentrated within the gain medium.
In the higher modes RCP remains concentrated at the
boundary and the FP mechanism generating LCP provides
the majority of the laser power. The opposite is true for
the lower modes, where the DFB mechanism generating

RCP dominates the FP mechanism generating LCP. There
is therefore a clear distinction between the higher modes
lasing LCP, which rely on the FP mechanism to lase, and the
conventional, lower modes lasing RCP, which rely on the DFB
mechanism [11].

The DFB mechanism in the lower modes allows lasing at
a lower threshold than the degenerate FP modes at κL = 0.
However, for the higher modes, intracavity LCP experiences a
homogeneous medium, for which chirality reversing boundary
reflections represent a loss mechanism into RCP. Introducing
a right-handed SCM therefore increases the lasing threshold
for the FP mechanism powering the high-gain threshold
modes. When such a medium is introduced, the polarization
degeneracy of the FP modes is lifted, so the modes bifurcate
as shown in Fig. 4.

The lone status of the 0L mode results from lasing within
the photonic band gap for all κL. For this mode the photon
density of states is zero for RCP and it can therefore only lase
via the FP mechanism. We see the intriguing possibility that
a chiral laser can operate within the photonic band gap. The
unique properties of the chiral laser ensure that this isolated
mode occurs with opposite polarization to the principal modes
of the DFB structure.

In Fig. 6 the boundary reflections are gradually reduced
in order to examine the effect that decreasing the FP lasing
mechanism has on the chiral lasing modes. We establish that
as the boundary reflections approach zero the gain threshold for
the higher modes diverges and only the lower modes remain.
When the facet reflectivities are eliminated [Fig. 6(d)], the
remaining modes agree with the scalar DFB modes enumerated
by Kogelnik and Shank [11].
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FIG. 6. (Color online) Evolution of chiral modes as the facet reflectivies are reduced by the given factor: (a) r , (b) 0.1 × r , (c) 0.01 × r , and
(d) 0 × r . (a) corresponds to Fig. 4, while in (d) the purely RCP modes correspond exactly to the scalar DFB modes enumerated by Kogelnik
and Shank [11].
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IV. CONCLUSION

This paper has derived the lasing condition for a chiral laser
[Eq. (7)] and has characterized the modes in terms of their
polarization as wave number and gain vary. We have shown
that the mode structure of a chiral laser reflects the competition
between the FP and DFB mechanisms. This suggests a simple
means of achieving integrated polarization switching. One
possible method involves modulating the frequency spectrum
of the gain in order to target specific modes. Alternatively,
tuning the laser modes into and out of the static gain spectrum
would also allow for highly specific targeting of desired lasing
modes. We have also shown that a chiral laser can lase within
the photonic band gap.

The practical interest in using SCMs as laser hosts stems
from their compact, simple construction [7,21], tunability
via external stimuli [3], high slope efficiency, and circular
polarization selectivity. They make good candidates for display
technology [5], where their cavity length and polarization
properties allow for higher resolutions than current lamp
projectors. In spectroscopy [6] the broad tunability of a single

source can be utilized to vary the penetration depth and for
noninvasive medical treatment. The mode structure developed
in this paper will facilitate continued development of these
promising devices.

The analysis of this paper is restricted to the steady state.
In further work, numerical integration of first-order pulse
propagation equations [22,23] will enable a study of the
dynamics, turn-on, and stability properties of chiral lasers.
A local stability analysis of the lasing modes will prove
particularly interesting, as it will demonstrate which of the
lasing modes can realistically be used to lase. The methods
employed in this paper can also be used to analyze a chiral
laser in which there exists a twist defect [24]. Such a laser is
the chiral analog of the λ/4-shifted DFB laser, in which a very
narrow defect mode exists at the center of the band gap. These
topics will form the basis of future studies.
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