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Abstract

The cryosphere impacts global climate in various ways. Snow and ice have

a higher albedo than land or the open ocean and therefore affect the total

reflectivity of the earth. Sea ice forms an insulating layer over the polar oceans

controlling both heat and water vapour fluxes between the atmosphere and

polar ocean. Ice sheets hold around 77% of Earth’s freshwater reserves, and

recent increases in ice loss from the Earth’s ice sheets are cause for concern.

This thesis develops numerical tools that can be used for the study of various

ice processes such as ocean – sea ice interaction, ice sheet and glacier dynamics.

A coupled ocean – sea ice model is developed, using the open source, unstruc-

tured, adaptive ocean model Fluidity and a finite element sea ice model devel-

oped at the Alfred Wegener Institute of Polar and Marine Research, FESIM.

The tightly coupled model is verified and validated through a series of tests,

demonstrating its dynamical capabilities. The sea ice dynamics are a model of

Elastic–Viscous–Plastic rheology, as described in Hunke and Dukowicz [1997].

The thermodynamic parameterisation is similar to the 1D simplest model of

Parkinson and Washington [1979] which is based on the zero–layer approach

of Semtner [1976].

Furthermore, a new computational framework for carrying out ice sheet sim-

ulations is presented. A thermo–mechanical, non–linear, full–Stokes model is

used to carry out the exercises of the Ice Sheet Model Intercomparison Project

for higher–order models (ISMIP–HOM). The results presented here show that

Fluidity compares favourably with other ice sheet models. Further tests are

performed to demonstrate the use of dynamic adaptive remeshing in lowering

the computational cost of models compared to their structured, fixed–mesh

counterparts, by focusing resolution only where and when required. Finally,

initial simulations of the full Greenland ice sheet are performed demonstrating

the potential utility of adaptive meshes for large–scale, full–Stokes modelling.
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CHAPTER 1

INTRODUCTION

1.1 The Cryosphere

The cryosphere is an important and interesting part of the Earth.

Definition 1.1 (Cryosphere). from the Greek cryos meaning cold and sphaira,

meaning globe, describes the parts of the Earth where water is in solid form,

frozen into ice or snow.

The term encompasses sea ice, lake ice, snow cover, glaciers, frozen ground, ice

caps and ice sheets. Its effect on climate and weather, its inhabitants and the

ever increasing worry of the effects of a changing climate make it an important

component of the Earth to study.

In this thesis, we discuss the modelling of sea ice, glaciers and ice sheets.

17
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1.1.1 Where is the Cryosphere?

The cryosphere can largely be found in the Arctic, Antarctic and high elevation

regions.

1.1.1.1 The Arctic

A large part of the cryosphere can be found in the Arctic. The Arctic Ocean

is cold enough such that the surface freezes into solid sea ice. Sea ice grows

in the winter and shrinks during the summer months. The lands surrounding

the Arctic Ocean, such as Alaska, the Canadian Arctic Archipelago, northern

Siberia and Greenland, are also part of the cryosphere as the soil is cryotic (has

temperatures below 0◦, such soil is called permafrost) and is usually covered

in ice or snow. One such land is Greenland, home to one of two ice sheets on

Earth. The Greenland ice sheet is simulated in this thesis (see chapter 4).

1.1.1.2 The Antarctic

The Antarctic is a land mass covered by an ice sheet, surrounded by an ocean

that is covered by sea ice. Shelves of floating ice (ice shelves) extend from the

ice sheet into the ocean. Some portions of these break off (a process known

as calving), forming icebergs which float in the ocean and melt as they drift

into warmer waters. Although the Antarctic ice sheet is not simulated in this

thesis, techniques developed here could be applied to the modelling of the

Antarctic ice sheet, or the sea ice covered Southern Ocean.

1.1.1.3 High elevations

Glaciers and snow covered regions atop of mountain ranges across the world,

also form part of the cryosphere. One such place, modelled in this report, is

the Arolla Glacier in the Pennine Alps of Valais in Switzerland.
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1.2 Modelling and the Finite Element Method

1.2.1 Importance of Modelling

Numerical models are of paramount importance in the study of the cryosphere.

The various spatial and temporal scales of geophysical phenomena means that

reproducing the dynamics in a laboratory setting is very challenging. Obser-

vations are limited and often hard to obtain. Measured data is sometimes

only available at scattered points. Numerical modelling may be able to fill in

missing data, aid observation and interpretation. In addition, it may be used

to predict paleo or future states of the cryosphere.

Furthermore, numerical modelling may be able to isolate specific dynamics

to provide insight and understanding of particular processes separate from

the biases of the complete dynamical, geophysical system. For example, a

model with only the ocean and sea ice may be able to provide insight into

the dynamical coupling between the two components without the feedbacks

of a changing atmosphere. Although such simplified models are not necessar-

ily realistic, they are, potentially, able to aid the scientific understanding of

specific, dynamical processes.

Simplifying and modifying particular parameters of an experiment is easier in

a numerical study than the comparable experimental study. For example, deep

water gravity currents are thought to be highly affected by the slope of the

bathymetry of the domain in which they propagate. Simplifying, modifying

and comparing different bathymetries to analyse the sensitivity of currents

to such parameters is potentially much easier in a numerical experiment. In

addition to changes to the bathymetry, sensitivities to other parameters may

be investigated with numerical studies, such as the bottom friction coefficient.

Scientists make use of various tools to study a large range of scales of sea ice

processes. These range from brine pocket formation at a microscopic scale,

to the evolution of sea ice extent, concentration and thickness monitored via
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satellite imaging at a macroscopic scale. The use of a relatively modern tool,

that of numerical simulation, has a very large and important role to play in

the analysis and prediction of this key component of the Earth’s system. Nu-

merical simulations are not bidding to replace traditional means of scientific

study, but are undertaken in addition to theoretical, experimental and obser-

vational studies. The aim is for numerical studies to complement, rather than

replace, such scientific endeavours.

1.2.2 The Finite Element Method and Unstructured

meshes

The finite element method is a discretisation technique used to transform con-

tinuous differential equations with boundary constraints into a linear system

of equations (see example in section 1.2.2.1). The linear system can then be

solved either directly or iteratively (most common for large systems). The

solver strategies employed for solving the linear systems obtained when solv-

ing the problems described in this thesis are outlined in each chapter, but not

discussed in detail. Fluidity makes use of the PETSc library for solving linear

systems of equations, and does not employ solvers of its own.

When modelling a system numerically, a domain decomposition is required

that separates the domain into non-overlapping subdomains, called elements

(or cells). This decomposition is called a mesh and may be structured or

unstructured.

A structured mesh is one that has regular connectivity, and the neighbour-

hood relationship is known implicitly. This is in contrast to an unstructured

mesh, where the element connectivity needs to be explicitly provided. An un-

structured mesh is usually stored in a vector, as a two– or three–dimensional

array is not generally suitable.

Unstructured meshes offer significant advantages over their structured coun-

terpart in regards to representing irregular features such as coastlines and
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bathymetry, as well as any sharp or anisotropic features of the solution fields.

For example, an unstructured mesh may be able to better represent the edge

of a sea ice covered region by smoothly increasing the resolution in the re-

gions where the sea ice boundaries occur. Structured meshes can also have

varying resolutions by nesting grids, but special treatment of such regions is

usually required to maintain the correctness of the solution fields. In return,

unstructured meshes come with a significant computational overhead, due to

the indirect addressing of memory. It has been shown that varying the mesh

resolution through the domain, either in a fixed or adaptive simulation, as

well as running in parallel, can compensate for the computational overhead

associated with such meshes.

1.2.2.1 Example: The Steady Advection Diffusion equation

Let us consider the transport (advection) and diffusion of a scalar property

c = c(x), in a domain Ω with smooth boundary Γ. The boundary Γ is com-

posed of a part ΓD, where the value of c(x) is prescribed as in (1.2), and a

complementary part ΓN , where the flux of c(x), dc
dn

, is prescribed, as in (1.3).

The conditions specified on ΓD and ΓN are called Dirichlet and Neumann

boundary conditions, respectively.

The equations associated with the above advection diffusion problem and

boundary constraints are the following:

∂c

∂t
= u · ∇c−∇ · (ν∇c) + s′ in Ω, (1.1)

c = cD on ΓD, (1.2)

ν
∂c

∂n
= h on ΓN , (1.3)

where u(x) is the prescribed advection velocity, ν > 0 is the coefficient of

diffusivity and s′(x) = −s(x) is a sink term.
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For simplicity, with no loss in appropriateness of the example, we assume

steady state (∂c
∂t

= 0) and unit diffusivity (ν = 1). (1.1) hence reduces to:

u · ∇c︸ ︷︷ ︸
advection term

− ∇2c︸︷︷︸
diffusion term

= s︸︷︷︸
source term

. (1.4)

The finite element discretisation begins by identifying the associated weak

form (or variational form) of (1.4). This is obtained by multiplying by a test

function, w, and integrating over the domain of interest:

∫
Ω

w (u · ∇c) dΩ−
∫

Ω

w∇2c dΩ =

∫
Ω

w s dΩ. (1.5)

Using the divergence theorem on the diffusion term and specifying w = 0

on the Dirichlet portion of the boundary allows us to write the above in the

following form:

∫
Ω

w (u · ∇c) dΩ +

∫
Ω

∇w · ∇c dΩ =

∫
Ω

w s dΩ +

∫
ΓN

w
∂c

∂n
dΓN . (1.6)

Note that having used the divergence theorem allows us to apply the Neumann

boundary condition (1.3) in a very natural way:

∫
ΓN

w
∂c

∂n
dΓN =

∫
ΓN

w h dΓN . (1.7)

The continuous weak form (1.6) forms the basis of the finite element discreti-

sation for this example problem.
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Before proceeding with the Galerkin method of discretising the above system,

we must discretise the domain Ω into elements Ωe, 1 ≤ e ≤ nel, where nel

is the number of elements (non-overlapping sub-domains) in Ω. This domain

discretisation is called a mesh. The mesh is then equipped with a finite ele-

ment interpolation space, which associates nodes and shape functions to each

element of the mesh. Common spaces include the Pm space, which associates

linear polynomials of order ≤ m to the reference triangle (in two dimensions;

tetrahedron in three dimensions), and space Qm which associates bilinear

polynomials of order ≤ m to the reference square (in two dimensions; cube in

three dimensions).

For example, consider the P1 finite element interpolation space on a one di-

mensional element, illustrated in 1.1. This places two nodes, n1 and n2, on

each corner of the element and each node is associated with one basis function,

Ni(x), and one nodal unknown, φi.

n1 n2
x

N1 N2

Figure 1.1: The P1 interpolation space on a one dimensional element.

The basis functions are chosen such that they have a value of unity at the

nodes for which they are defined, and a value of zero at all other nodes. An

unknown, φ(x), thus takes the value of φi at the coordinates of the ith node,

and can be reconstructed, given the nodal unknowns, for any location in the

domain Ω by:

φh(x) =
∑
A∈nel

NA(x)φA (1.8)

We use the notation superscript h, to indicate that this is a finite element

approximation to the continuous unknown, φ.
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Now that we have derived the continuous weak form (1.11) and have discussed

the process of Galerkin approximation to functions, we have all the neces-

sary tools to proceed and discretise the advection diffusion system introduced

above. We begin by approximating the unknown function c(x):

ch(x) =
∑

A∈η\ηD

NA(x)cA +
∑
A∈ηD

NA(x)cD(xA), (1.9)

where η is the set of all nodes and ηD is the set of nodes on the Dirichlet portion

of the boundary, ΓD. We not that cD represents the prescribed Dirichlet

boundary condition. The test function w can be approximated in a similar

fashion:

wh(x) =
∑

B∈η\ηD

NB(x)wB, (1.10)

noting that wB = 0 on the Dirichlet boundary. Replacing the unknowns c(x)

and w(x) in (1.11) with their corresponding Galerkin approximations we have:

∫
Ω

wh
(
u · ∇ch

)
dΩ +

∫
Ω

∇wh · ∇ch dΩ =

∫
Ω

wh s dΩ +

∫
ΓN

wh h dΓN

(1.11)

and after substituting (1.9) and (1.10):
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∑
i

{∫
Ω

NA (u · ∇NB) ci +

∫
Ω

∇NA · ∇NBci

}
=

∑
i

{∫
Ω

NA si +

∫
ΓN

NAhi

−
∫

ΓD

NA(u · ∇NB)cD −
∫

ΓD

∇NA · ∇NB cD

}
. (1.12)

In matrix form, we can write (1.12) as:

(A(u) + K) c = f , (1.13)

where A(u) is the advection matrix, K the diffusion matrix, c the vector of

nodal unknowns (ci), and f the r.h.s vector containing source and boundary

forcing terms. (A(u)+K) is sometimes collectively named the stiffness matrix.

This concludes the introduction to the finite element discretisation, which is

the method with which all equations studied in this thesis are discretised. In

the rest of this thesis, equation discretisation will be described assuming the

level of knowledge described in this Introductory chapter.

1.2.3 Dynamic Adaptivity of Unstructured meshes

Dynamic adaptivity is the process of adapting the mesh during the simulation,

to obtain a new mesh that is numerically more optimal, by placing resolution

where the simulated field of interest requires it. In Fluidity, the libmda2d library

is used for 2D mesh adaptivity [Y.Vasilevskii and K.Lipnikov, 1999], and the

libadaptivity library is used for 3D mesh adaptivity [Pain et al., 2001].

The adaptivity process takes place by first calculating element quality. The

mesh is then refined with the use of various topological processes, before the

solution fields are interpolated from the original mesh to the new, refined

mesh. Each of these processes are briefly outlined below:
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Measure element quality. In 3D, the quality of each element in a mesh is

obtained using the quality functional Qe:

Qe|M =

(
1

2
√

6re|M
− 1

)2

+
1

2

∑
k

(le,k|M − 1) , (1.14)

where the notation |M indicates that the parameter is measured with

respect to a metric tensor M . re is the radius of the largest sphere that

can occupy a tetrahedral element e. k indexes each edge of the element

and le,k represents the length of each edge k. This quality functional is

minimal (Qe = 0) when the tetrahedron has edge lengths of unity in the

metric space. The metric, M , is computed using the Hessian matrix of

a field, |H| and a user defined weighting, εu:

M =
1

εu
|H| . (1.15)

This is the form of the metric M , used for the adaptive simulations in

this thesis, and is named the absolute metric. In Fluidity, an alternative

form, named the p–metric, is also available:

M =
1

εu
det |H|−

1
2p+n |H| . (1.16)

Both metrics have been shown to be robust. The absolute metric tends

to focus resolution on the dynamics with the largest magnitude, whilst

the p–metric does a better job of resolving dynamics of lesser magni-

tude [AMCG, 2014].

Refine mesh. Once the Hessian, metric and finally the quality functional

are computed, the mesh refinement operation can begin. The process

used in Fluidity involves looping over all elements (starting from the

element with the worst quality) and performing the following topological

operations in the locality of the element:
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• Edge splitting. The edge of a tetrahedron is split and new elements

that share this vertex are created. This operation increases mesh

resolution.

• Edge collapse. An edge collapses to a vertex at its midpoint, and

the associated zero–volume tetrahedrons are removed. This opera-

tion decreases mesh resolution.

• Face–edge and edge–face swapping. This operation manipulates

edge connections between adjacent elements, potentially increasing

or decreasing the resolution.

• Node movement. A vertex can be moved within the space spanned

by the elements which contain it. This operation can increase or

decrease the resolution.

The operations which cause an improvement to element quality are ac-

cepted and a new mesh is obtained.

Transfer field data to new mesh. Once a new mesh is obtained, transfer-

ring data from the old mesh to the new mesh is required. This process

is performed through interpolation. Fluidity includes various interpola-

tion methods, the two most commonly used are consistent interpolation

and Galerkin projection. Consistent interpolation involves computing

the value of a field, c, at the location of the nodes of the new mesh,

using the basis functions, Ni, of the old mesh:

cnew(x) =
∑
i

ciNi(x), (1.17)

where i indexes all nodes of the element containing the new node, ci is

the known nodal values on the old mesh and Ni the basis functions on the

old mesh. Consistent interpolation is bounded [Farrell et al., 2009] and

computationally inexpensive [Hiester, 2011], but is not conservative and

can be dissipative. It is, unless otherwise stated, the interpolation used

for the problems in this thesis. Galerkin projection [Farrell, 2009], on the
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other hand, is a conservative interpolation, but is non-bounded. Fluidity

also offers a bounded–Galerkin projection algorithm, which diffuses the

projection until boundedness is achieved [Farrell et al., 2009].

1.3 Statement of contributions

Great care has been taken in the writing of this thesis to ensure that work

done by others has been marked as such and acknowledgements were rightly

attributed. This section lists my main achievements, which are described in

detail in the remaining chapters of this thesis.

A feasibility study of providing Fluidity (a model developed by the Applied

Modelling and Computation Group and its partners) with a coupling interface

was undertaken. The use of the OASIS coupler was first investigated, by

performing three tasks:

• Coupling sample models: short programs ( 30 lines) that investigate the

use of the OASIS API.

• Coupling festa and OASIS: Model initialisation and appropriate send/re-

ceive calls.

• Coupling Fluidity and OASIS:

– On–the–fly exchange mesh generation.

– Consistent interpolation between unstructured Fluidity mesh and

structured exchange mesh before and after data exchange.

The next contribution was the coupling of Fluidity to the FESIM sea ice

model. This involved:

• Converting stand–alone FESIM to a module.
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• Extracting a two dimensional surface mesh from Fluidity’s three dimen-

sional mesh on the sphere. The surface mesh is then transformed from

the Cartesian to the spherical coordinate system.

• Implement atmospheric forcing reader and NCAR fluxes calculator.

• Interpolate data from the ocean mesh to the sea ice mesh and the other

way around.

The coupled model was then subjected to a series of tests. A sea ice test was

devised using the method of manufactured solutions, and further tests found

in the literature were used. Where available, the results were compared to

those obtained by other models or with analytical solutions.

Finally, simulations for the modelling of ice sheets and glaciers were set up.

This involved prescribing the interaction between the viscosity and velocity

(and temperature, where required) terms, done via the interface provided in

diamond. No further development work was required or performed. Fluidity’s

ability to solve the full–Stokes equations was demonstrated in a test devised

using the method of manufactured solutions. The usefulness of unstructured,

dynamically adaptive meshes for modelling glaciers was shown in a test of an

idealised ice stream. Tests of the ice sheet modelling intercomparison study

were also performed and results were compared and contrasted with those

of other models. Finally, a preliminary simulation of Greenland was carried

out, indicating that Fluidity is able to solve problems on realistic domains of

continental scale.



CHAPTER 2

SEA ICE MODELLING

2.1 Introduction

2.1.1 Motivation

Sea ice is frozen seawater, which grows at the surface of the oceans as tem-

peratures drop below approximately −1.8◦C, the salinity–dependent freezing

temperature typical in the polar oceans. As the surface waters of the ocean

cool, small ice crystals (called frazil ice) form that float to the surface. As

these crystals accumulate, sea ice is formed. Figure 2.1 shows an aerial view

of sea ice.

Sea ice covers up to 7% of the Earth’s oceans. It acts as an insulating layer,

notably altering the transfer of heat, mass and momentum between the ocean

and the atmosphere. Furthermore, sea ice affects the reflectivity of the region

to solar radiation. The proportion of radiation reflected by a surface is termed

albedo. Sea ice has a higher albedo than the open ocean.

30
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Figure 2.1: Aerial view of summer sea ice, with ponds of meltwater
(turquoise) covering the Arctic ocean (dark blue). (Credit: Don Perovich)

Surface Albedo
Open ocean 0.06
Bare sea ice 0.5–0.7
Snow covered sea ice 0.9

Table 2.1: Typical albedo values for various surfaces.

Typical albedo values are given in Table 2.1. As indicated in the table, sea ice

can reflect up to 90% of incident solar radiation, preventing the cool surface

waters of the ocean from warming. However, once increased temperatures

lead to a decrease in sea ice cover (and hence a decrease in albedo), more solar

radiation can be absorbed by the oceans, an effect that amplifies warming and

further reduces sea ice cover. This is known as the ice–albedo effect.

Sea ice also acts as a thin blanket over the surface of the winter ocean. During

the winter months, temperatures in the overlying atmosphere fall below those

of the warmer ocean. The presence of this insulating layer prevents the large

heat fluxes one would expect from the ocean to the atmosphere, thus ensuring

the atmosphere is not warmed by the ocean.

Global ocean circulation is also affected by the behaviour of sea ice. The

global “conveyor belt” (depicted in figure 2.2) is driven by the difference in
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density between the various water masses.

Figure 2.2: A highly idealised schematic of the global thermohaline circu-
lation. Blue paths represent cooler, deep water currents, red paths represent

warmer surface currents.

The thermohaline circulation is driven by the temperature (from the Greek

heat, thermos) and salinity (Greek salt, hals) of the water. Sea ice forma-

tion and melt both contribute to the salinity of the underlying ocean. During

the formation of frazil ice, the salinity of the surface layers of the ocean is

increased. Despite the ice crystals not containing any salt, salty water (brine)

is trapped inside the lattice of the sea ice, which is then discharged (a process

known as desalination) through various processes. The primary processes of

desalination are gravity draining (surface cooling causing convective overturn-

ing which draws ocean water from the underlying ocean to replace the brine

inside the sea ice) and flushing (surface meltwater flushing through the ice

lattice, expelling the brine).

The surface waters, now cooler and denser than their underlying water, sink

to form bottom waters. These are illustrated in figure 2.2 by paths changing

from red to blue, and marked with the label “deep water formation”. It is
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believed that changes in sea ice cover and the amount of sea ice that forms

each winter will have significant effects on the global thermohaline circulation.

Such changes have the potential to impact the weather and climate in regions

of the Earth which currently enjoy more temperate climates.

In summary, sea ice is an important component of the global climate system,

due to its effect on solar reflectivity, its properties as an insulator of heat and

mass exchange between the ocean and atmosphere and its importance in the

formation of bottom waters.

2.1.1.1 Changing Arctic

In recent years, headlines of accelerated melting rates and decreasing sea ice

thicknesses have led to the belief that rapid climate change is underway. This

alone has led to an increased interest in the study of ocean processes in high

latitude regions and their relative impact to the global climate.

Figure 2.3 shows the 30 year daily average (years 1981–2010) sea ice extent of

the Arctic, as well as daily Arctic sea ice extent for years 2012 and 2014. This

data was provided by the National Snow and Ice Data Center, which compiles

data from three satellite sources. In September 2012, the sea ice reached its

lowest ever recorded extent, at 3.41 million square kilometres, confirming the

downward trend in sea ice extent.

2.1.1.2 Effects on ecosystems

The changes in sea ice cover also have consequences on the ecosystem of po-

lar regions. For example, Adélie penguins in Antarctica rely on sea ice for

migration [Ballard et al., 2010] as well as for their main food source. In the

Arctic, polar bears rely on the sea ice to hunt and breed, and a changing

Arctic will have consequences on polar bear population [Durner et al., 2009].

The changes of animal habits also affects the indigenous people of the Arctic,

who rely on traditional hunting methods for survival.
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Figure 2.3: The daily average Arctic sea ice extent from years 1981–2010
is plotted in solid black. The shaded area denotes ±2 standard deviations.
Sea ice extent for years 2014 (solid green line) and 2012 (dashed green line)
is also plotted. Data obtained from the Sea Ice Index [Fetterer et al., 2002,

updated daily].

2.1.1.3 Rewards of a warming north

A warming north also has the potential to have a large economic impact on the

world. The opening of shipping routes along the Canadian Arctic Archipelago

(ice–free for the first time in memory in 2005) cuts the shipping distance

between western Europe and east Asia by one third. Shipping companies

in China and other east Asian countries are already investing in ice–capable

freighter ships.

In addition, countries in the region of the Arctic are looking to claim the po-

tentially large oil and gas reserves that may be exploited when the sea ice has

receded. For example, Russia’s president was recorded as saying “Offshore
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fields, especially in the Arctic, are without any exaggeration our strategic re-

serve for the 21st century”. Shortly afterwards, a deal worth $500 billion

was signed between ExxonMobil and Russia’s Rosneft, to invest in developing

offshore reserves [Economist, 2002].

2.1.1.4 Current modelling effort

Several modelling efforts have been made to forecast future sea ice extent.

Although all climate models are in agreement that sea ice levels will decline

in the 21st century [Zhang and Walsh, 2006], none have been able to capture

the extent of the current rate of decline [Stroeve et al., 2007]. This is shown in

Figure 2.4, where the inset shows clearly that the mean of all models (labelled

the ensemble mean and plotted using a solid black line) severely underestimate

the rate of decline in the two decades preceding the end of observations (solid

red line). This suggests that there is currently no model capable of accurately

predicting future sea ice trends.

2.2 Notes on Model Coupling

2.2.1 Motivation

Model coupling enables specialised knowledge that has been channelled into

component models to be used in a collaborative modelling effort. Coupled

models are potentially better suited to addressing a wide variety of complex,

multi–physics problems more effectively than standalone component models.

Model coupling has been used successfully in many fields, including nuclear

transport, chemical engineering and CFD. It is also a key component of

weather or climate forecasting and Earth system modelling, whereby it fa-

cilitates the building of more complete general circulation models.
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Figure 2.4: Arctic September sea ice extent from observations (thick
red line) and 13 IPCC AR4 climate models, together with the multi-model
ensemble mean (solid black line) and standard deviation (dotted black line).

Inset shows 9-year running means. Taken from [Stroeve et al., 2007]

2.2.2 What is model coupling?

Coupling refers to the process of making two originally independent compo-

nent models interact. Two models are coupled when data calculated from one

model is used as forcing data or boundary constraints on another model. In its

simplest form, a coupler involves data transfer between the two components.

Couplers can also be responsible for:

Data restructure. Very often component models use different array struc-

tures such that fields are stored differently in memory. Given that each

component model should not concern itself with the component model

that it is being coupled to, it is the responsibility of the coupler to re-

structure data for the exchange. For example, one model may store

data in an m× n 2–dimensional array, whilst the component model be-

ing coupled to it stores the field data in a 1–dimensional array of length
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N , where N = m×n. The coupling layer is responsible for restructuring

data for the exchange.

Interpolation. Very often, component models will use different meshes and/or

function spaces, that best suit the particular physics of the model. The

process of transferring data from one mesh to another is called interpo-

lation and is the responsibility of the coupling layer. Said interpolation

often needs to adhere to several constraints: for example, it may need

to preserve maxima and minima constraints, or to be volume or mass

conserving. The constraints placed on the interpolation depend on the

desired physics of the coupled model, as well as numerical method limi-

tations.

Time management and synchronisation. The coupler will be responsi-

ble for synchronising the two component models, by blocking component

models from processing whilst computation from the other component

model is completed. In addition, as different models solve for differ-

ent physics, it is likely that different temporal and spatial scales are

involved, requiring the use of different timesteps. The coupler may need

to integrate quantities over time and exchange data only at the required

frequency.

Calculation. The coupler may be responsible for various calculations, rang-

ing from simple unit conversion to more complicated flux calculations.

An example of this would be to convert wind speeds from an atmosphere

component to surface drag on the ocean.

2.2.3 Coupling architecture

Coupling can generally be achieved in two different ways. One is the multiple

executable architecture, in which component models maintain their modularity

and a separate piece of software, the coupler, is used to channel communica-

tion across the components. In the multiple executable framework, data flow
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is usually organised in a spoke and wheel fashion, as demonstrated in Fig-

ure 2.5a. In this scenario, data is communicated between the models using

the message passing interface (MPI). Alternatively, the integrated (also known

as bespoke) approach can be used, where the component models are integrated

in a common executable and memory is readily shared between the models

(see Figure 2.5b). In large coupled simulations, a hybrid of both architecture

types may be used.

Coupler

Component 1 Component 2

Component 3

(a) Mutiple executable, spoke and wheel framework, where com-
munication is controlled by the coupler and each component is a

separate executable.

Component 1 Component 2Coupler

(b) Bespoke model coupling, where a single executable exists with
a coupling layer controlling component communication.

Figure 2.5: Coupling architectures

The multiple executable architecture is more appropriate for the coupling of

two distinct component model codes, where development is carried out by

different groups and the coupling infrastructure abides by a protocol that

the coupling software stipulates. In theory, minimal code invasion would be

necessary for this type of coupling, with just send and receive commands

placed as necessary, in addition to the initialisation routine. Ideally, this

coupling framework would be implemented in such a way that an array of

other component models can be used in a plug’n’play fashion, without needing
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a priori knowledge of the details of the component model with which each

model will couple.

2.2.3.1 Parallel vs sequential processing

When coupling two component models, a framework decision that needs to

be made is whether the component models will perform timesteps in parallel,

or in sequence (see Figure 2.6). This has the potential to alter the overall

runtime of a coupled model.

initialise
timestep

coupler

component 1 component 2

finalise
timestep

(a) Parallel.

initialise
timestep

component 1

coupler

component 2

finalise
timestep

(b) Sequential.

Figure 2.6: Parallel and sequential execution models.

Component models that are timestepped in parallel exchange information at

the end of each timestep. They are usually parallelisedwith the use of MPI.

The component model that completes its operation first will need to pause and

wait until processing in the slower of the two component models is completed.

This difference in processing times for timesteps can sometimes be offset by

running the more costly model on more processors. In contrast, component

models that are run sequentially do not require calls to MPI for between model
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communication. From a model development perspective, sequential processing

is more straightforward to develop while parallel operation requires the set up

of specific MPI communicators for each component model.

As a general rule, it is suggested that models with similar runtimes are

timestepped in parallel, whilst models that vary greatly in runtime may be

run in sequence.

2.2.3.2 Tight vs loose coupling

Two models are said to be tightly coupled when they share the same mesh

and timestep. Tight coupling only requires one set of inputs from the user

(mesh, timestep) when setting up a simulation. However, this particular setup

should only be applied to component models that exhibit dynamics of similar

spatial and temporal scales, where sharing the same mesh and timestep is a

reasonable compromise.

Loose coupling, on the other hand, refers to coupling of component models in

which each component model has its own mesh and timestep. In this setup,

more care is required at the time of data exchange, in particular ensuring

that data that has been integrated over several timesteps is exchanged at

a common, appropriate timestep and that the data is interpolated from the

mesh of one component model to the other.

2.2.4 Fluidity and FESIM

2.2.4.1 Initial investigation

The initial plan for this work was to implement a multiple executable frame-

work, where both the ocean and sea ice model would be driven by the coupler.

Ideally, the coupling framework would be at a level of abstraction such that the

Fluidity ocean model would be able to couple to different sea ice models with
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little to no changes required by the user. The coupler of choice was OASIS

version 4.0 [Valcke, 2013], henceforth only referred to as OASIS1. Theoreti-

cally, and ideally, the coupling layer would be abstract and component models

could be chosen in a ’plug-n-play’ fashion, allowing simulations to be run with

a variety of other models that have also coupled to OASIS, or to seamlessly

switch from a coupled simulation to a forced simulation, where data is read

from a file. The initial investigation had three stages:

Sample models. Short, sample codes were tested that transferred data across

OASIS. These small codes were written in order to learn and better un-

derstand the OASIS protocol interface.

festa – OASIS. A finite element model, festa, was coupled to OASIS.

Fluidity – OASIS. The initial investigation led to a prototype version of

Fluidity coupled to OASIS.

2.2.4.2 Festa – OASIS

Festa, a finite element model written by Dr Candy at Imperial College, was

coupled to OASIS for the purpose of investigating the coupling capabilities of

OASIS. Festa was chosen due to its similarity with Fludity in terms of common

data–structures and order of operation. Once coupled to OASIS, a forcing file

was used that contained inflow boundary condition data. The OASIS coupler

was responsible to transfer the forcing data from the file to festa. These tests

were successful.

2.2.4.3 Fluidity – OASIS: The exchange mesh

During the development of the coupled Fluidity–OASIS two main limitations

of OASIS were encountered. Firstly, the mesh over which the exchange would

1It must be noted, the OASIS coupler has been rewritten and released as version OASIS-
MCT. The comments made in this thesis are not applicable to the new release, but rather
refer specifically to OASIS version 4.0, which was the latest version available at the time of
this work.
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take place had to be defined as a structured grid (either regular, rectilinear or

curvilinear) and secondly the mesh had to be defined at the initialisation stage

of the simulation. The support for unstructured meshes was not implemented

in OASIS and this feature did not look like it would have been delivered within

the timescale of this project. For users of Fluidity, this meant that coupled

simulations could not be run on unstructured meshes or adapt during the

simulation, two key features of Fluidity.

Figure 2.7: Consistent interpolation of a test tracer field from Fluidity’s
P1 mesh (left) to the automatically generated exchange mesh (right), a Q0

grid.

The solution to the above two constraints was the introduction of the exchange

mesh, a structured mesh automatically generated at initialisation to which the

Fluidity fields were interpolated on, before they are communicated with the

OASIS coupler. The algorithm for the automatically generated mesh is given

in appendix A. This allows Fluidity to solve for dynamics on meshes that do

not comply with the OASIS coupler, but could still be communicated with

other models through the exchange mesh. Figure 2.7 shows the generated

exchange mesh being used in a test simulation, for the transfer of a tracer

field defined as a step function. In this simulation, Fluidity was successfully

coupled to OASIS, which retrieved the tracer field and dumped it to a file. In

addition, Fluidity could be forced from a file, via the OASIS coupler.

After the initial investigation, it was decided to discontinue working with the

OASIS coupler. The exchange mesh was a feasible workaround for Fluidity
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coupling to OASIS, however introducing such an interpolation step in the cou-

pling process can only be justified when coupling to a structured model, in

which case the interpolation performed by Fluidity is only replacing the inter-

polation that would have been performed by the coupler. Given that the final

objective of this project was to also couple with unstructured models, such as

FESIM, the interpolation step to the exchange mesh introduced errors that

could be avoided if the exchange occured over a more suitable, unstructured

mesh.

2.2.4.4 How is Fluidity coupled to FESIM?

Fluidity and FESIM are instead coupled using a bespoke coupling architec-

ture. The two models are restricted here to share the same topological mesh

and timestep. The component models are run sequentially, with the sea ice

model timestepping before the ocean model. Figure 2.8 describes the order of

processes.

With reference to the processes of Figure 2.8, we make the following clarifica-

tion on the purpose of each stage:

Fluidity initialisation. During Fluidity’s initialisation, Fluidity reads in the

Fluidity configuration file (FLML file) and the mesh generated by the

user, it allocates fields that belong to Fluidity and applies any prescribed

data, such as boundary conditions or prescribed field data. The mesh

supplied by the user must be a 3–D mesh of the ocean domain, or a 2–D

surface mesh with an extrusion to a given bathymetry specified in the

Fluidity config file. The coupled ocean – sea ice model does not support

a 2–D ocean mesh.

FESIM Initialisation. During FESIM initialisation, the coupler extracts

the 2–D surface mesh from Fluidity and transforms it from the Cartesian

coordinate system [x, y, z] used by Fluidity to the spherical coordinate
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Fluidity initialisation

FESIM initialisation

Update FESIM
(T,S,u,H)

Compute
NCAR fluxes

FESIM solve Timestep loop

Update Fluidity
(u,a,stress, heat, salt)

Fluidity solve

New
timestep?

End simulation

Figure 2.8: Flowchart outlining order of operations of the coupled
Fluidity–FESIM model.

system used by FESIM [φ, θ]:

φ = arctan

(
x

y

)
, (2.1)

θ = arccos

(
z√

x2 + y2 + z2

)
, (2.2)

where φ and θ are the longitude and latitude, respectively. The coupler

then prescribes this as a mesh for the sea ice model. The meshes are

topologically similar, but may vary in degrees of freedom as the user has

the ability to choose the function space in which the ocean model solution

is obtained. The sea ice model is restricted to a piecewise linear (P1)
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function space, whilst the ocean model allows for more flexibility. For

example, the user may choose to solve for the ocean using a P1DGP2

mixed finite-element function space. Note that the use of the above

transformation for specifying the sea ice model mesh, constrains the

ocean model mesh to be on a sphere. Other transformation functions

can be implemented which would alleviate this constraint.

Update FESIM. During this step, the coupler populates fields required by

the sea ice model. In particular, the surface temperature T , surface

salinity S, sea surface ocean velocity u = [u, v] and sea surface elevation

H are transferred to the sea ice model. On the first timestep, values are

obtained from the model’s prescribed boundary and initial conditions,

thereafter they are prescribed from the output of Fluidity.

Update atmospheric forcing. In addition to the oceanic forcing, the sea

ice model requires atmospheric forcing, which needs to be prescribed.

Prescribed fields are the wind velocities [ms−1], shortwave and long-

wave radiation [Wm−2], the atmospheric temperature [C] and pressure

[hPa = 100Pa], dew point temperature [C], precipitation rate [ms−1],

cloudiness and specific humidity. This data can be obtained, for exam-

ple, from reanalysis data such as ERA-40. Details of how this data is

used to compute atmospheric forcing can be found in section 2.3.1.2.

FESIM solve. The FESIM solve is where the sea ice model is stepped for-

ward in time. This process can be separated into three main stages:

1. Dynamics computation. In this stage of the FESIM solve, we

compute for the sea ice velocity, in directions parallel to lines of

constant latitude (zonal) and longitude (zonal). An overview of

the equations and discretisation used is located in section 2.3.1.

2. Scalar advection. Given the sea ice velocity from the previous

stage, the sea ice mass, concentration and snow mass are advected.

These scalars are advected using a flux–corrected transport scheme,

as described in Löhner et al. [1987]
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3. Thermodynamics computation. The thermodynamics stage is

where the thermodynamic source and sink terms are accounted for

by increasing or decreasing the mass of sea ice and snow. The

freshwater flux to the ocean is also computed at this stage. More

information can be found in section 2.3.2.

Update Fluidity. Once the sea ice model FESIM is stepped forward in time,

the coupler is responsible for updating Fluidity with the newly computed

data. In addition to any data that is used for forcing, fields of the sea ice

model (such as sea ice velocities and concentration) are also transferred

to Fluidity, for I/O and visualisation purposes. The overhead of storing

the sea ice data in memory twice is considered a small price for being

able to output both model’s results in a consistent format.

Fluidity solve. During this stage, Fluidity is stepped forward in time, solv-

ing for the temperature, salinity, and velocity of the ocean.

End simulation. The simulation ends when the simulation time has reached

the end time or a steady state criterion is reached.

2.3 Equations of Motion and Thermodynam-

ics

2.3.1 Dynamic model

In reality, the ice pack consists of discrete, rigid plates of ice called ice floes

which are either closely packed together or drift freely in open waters. To make

the modelling of such a system more tractable on a large scale, we consider

the ice pack as a two–dimensional continuum which lies on the surface of the

ocean, consisting of continuous fields of ice mass and concentration. We begin

by considering the momentum equation:
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F = m
Du

Dt
, (2.3)

where m represents the total mass of sea ice and snow, u is the velocity of the

ice pack and D
Dt

is the material derivative, defined as:

Dφ

Dt
=
∂φ

∂t
+ u · ∇φ. (2.4)

F represents the forces that are applied to the ice pack, and consists of the

following terms:

Wind and ocean stresses. The wind stress, τa, is the main driving force in

the sea ice momentum equation. An analogous term is the ocean stress,

τw, that originates from the shear of the underlying oceanic currents.

Both these terms are calculated using the bulk formula:

τ = ρ Cd |urel|urel, (2.5)

where ρ is the density of the atmosphere or ocean, Cd is a representa-

tive drag coefficient and urel is the relative velocity of the sea ice and

atmosphere or ocean. It must be noted that each stress computation is

normalised by the sea ice concentration, which has been demonstrated

by Connolley et al. [2004] to be more accurate in regions of low sea ice

concentrations. The applied stress is therefore the product of the stress

as computed above, multiplied by the sea ice concentration.

Coriolis effect. This is a pseudo force applied due to the rotation of the

Earth.
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Surface elevation. The ice pack moves from regions of high elevation to

regions of low elevation, and this term accounts for that tendency. It is

proportional to the slope of the ocean surface elevation.

Ice interaction. The ice interaction term, Fi, represents the stresses from

within the ice itself.

The sea ice momentum equation can thus be written as:

ρ
∂ui
∂t︸ ︷︷ ︸

acceleration

=
∂σij
∂xj︸︷︷︸

ice interaction

+ τai + τwi︸ ︷︷ ︸
wind/ocean stress

+ εij3mfuj︸ ︷︷ ︸
Coriolis

−mg∂H0

∂xi︸ ︷︷ ︸
tilt

, (2.6)

where the terms are as described above, and εij3 is the Levi–Civita symbol

(in this case εij3 = 0 if i = j, 1 if i = 1, j = 2 and −1 if i = 2, j = 1).

Unlike in Hibler [1979], but in line with other studies [Oberhuber, 1993] we

have neglected the non–linear term u · ∇u. It can be shown that this term

is an order of magnitude smaller than typical wind–stresses and therefore has

negligible contribution.

The dynamics of a sea ice model are highly dependent on the rheology model

chosen, that is, the choice of constitutive expression for evaluating the internal

stress term, Fi. The rheology model determines the deformation and flow of

sea ice under various load conditions. As related to the physical world, the

rheology model controls the buildup of ice and ridging or the formation of

leads, for example.

2.3.1.1 On the choice of Sea Ice Rheology

The evaluation of the stress tensor, σ, is given by the constitutive expres-

sion. In this section, we look at a representative sample of such constitutive

expressions relevant to climate simulations:

• Viscous Plastic model (VP)
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• Cavitating Fluid model (CF)

• Compressible Newtonian Fluid model (CNF)

• Free drift (with velocity correction) model (FDC)

A more thorough analysis of the above constitutive models was presented

in Kreyscher et al. [2000], as part of the sea ice model intercomparison project,

for the purpose of demonstrating that using a physically founded rhelogy

(such as the VP model) gives more realistic results that agree better with

observations.

The viscous–plastic (VP) model, based on Hibler [1979] is shown to be the

most suitable for modelling sea ice, and is given by:

σij = 2η ˙εij + (ζ + η) ε̇kkδij −
P

2
δij, (2.7)

where the non–linear shear and bulk viscosities (ζ and η) are given by:

ζ =
P

2∆
, (2.8)

η =
P

2∆e2
, (2.9)

where e is the eccentricity of the yield surface of sea ice, and ∆ is given by:

∆ =
[(
ε̇211 + ε̇222

) (
1 + e−2

)
+ 4e−2ε̇212 + 2ε̇11ε̇22

(
1− e−2

)] 1
2 . (2.10)

where ˙εij = 1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
.

P is a pressure, a measure of sea ice strength that depends on both thickness

and concentration, and is calculated using:



Sea Ice Modelling 50

P = P ∗cHe−c
∗(1−c), (2.11)

where P ∗ and c∗ are empirically calibrated constants. The viscosities increase

with pressure, but decrease with increasing strain rates, ε. At the limit of

zero strain rate, the viscosities tend to infinity. This behaviour is regulated

by setting limits to the maximum value of the viscosity parameters.

The cavitating fluid model allows pack ice to diverge freely but deform plas-

tically in compression. The internal ice force, F , is given by:

F = −∇p

where the internal ice pressure, p, is given by:

p = P for ∇u < 0,

p ∈ [0, P ] for ∇u = 0,

p = 0 for ∇u > 0.

P , also used in the Viscous Plastic model, is a measure of ice strength and is

given by (2.11).

The compressible Newtonian fluid model is included in the discussion as a

linear–viscous approach. In this model, the sea ice behaves as a film of

“honey”, whereby convergent and divergent forces are resisted by equal in-

ternal stresses, linearly proportional to the deformation rate. This behaviour

is achieved by removing the dependence of the bulk and shear viscosities (ζ

and η) on the strain rate.

The free drift with velocity correction model, the simplest of the rheology

models, sets the internal stress to zero, F = 0. In regions of convergent forces,

however, excessive ice thickness buildup is observed and thus a “correction”

is applied to compensate for this; ice velocities are set to zero where the ice
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thickness exceeds a specified maximum or where ice would flow from a lower

to a higher thickness.

The non–linear viscous–plastic rheology suggested by Hibler [1979] has become

the standard sea ice dynamics model due to its ability to accurately represent

sea ice dynamics. However, it does exhibit some unfortunate numerical prop-

erties. The viscoplastic rheology becomes singular when the strain rate is zero.

To overcome this, Hibler suggested a bounding value for the non–linear bulk

and shear viscosities, ζ and η. Stability analysis of explicit discretisations

of the VP rheology, even with bounded viscosities, leads to very stringent

stability criteria, such that, for example, for a resolution of about 10km the

timestep would need to be on the order of a hundredth of a second. Many im-

provements were suggested to address this, including the use of semi-implicit

discretisation schemes.

A significant improvement was presented by Hunke and Dukowicz [1997], in

the elastic–viscous–plastic (EVP) rheology model. The elastic term controls

the behaviour as the bulk and shear viscosities get larger and approach the

singular point. The elastic term vanishes in steady state and the VP rheology

is recovered. The EVP formulation does not suffer from the stringent stability

conditions of the VP model, while maintaining the viscous-plastic balance.

The EVP model has been shown to be more efficient [Bouillon et al., 2009]

and more accurate [Hunke and Zhang, 1999].

2.3.1.2 FESIM rheology model

The finite element sea ice model (FESIM) was developed at the Alfred Wegener

Institute for Polar and Marine Research (AWI) and is used as part of the

FESOM global circulation model [Timmermann et al., 2009]. Both the VP

and EVP rheology models have been implemented in FESIM but only the

EVP model is available in the coupled Fluidity–FESIM model.

The force balance implemented in the FESIM sea ice model is given by:
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ρ
∂ui
∂t

= Fi + τai + τwi + εij3mfuj −mg
∂H0

∂xi
, (2.12)

where the main component is the wind stress, τa. The ocean stress, τw, and

the effect of sea surface elevation, H0, on sea ice velocity, u , have been shown

to be significant over long time scales. ρ is the density of ice and snow, and f

and g are the Coriolis parameter and the magnitude of the acceleration due

to gravity, respectively. The ice interaction term is essential in balancing the

stress terms. For modelling the ice interaction term, the EVP constitutive law

is used, which is composed of the viscous–plastic formulation given by:

1

2η
σij +

η − ζ
4ηζ

σkkδij +
P

4ζ
δij = ε̇ij. (2.13)

modified by introducing an elastic term, proposed by Hunke and Dukowicz

[1997]:

1

E

∂σij
∂t

= ε̇ij (2.14)

where E corresponds to the Young’s modulus. In combination with (2.13), we

have the EVP constitutive model of FESIM:

1

E

∂σij
∂t

+
1

2η
σij +

η − ζ
4ηζ

σkkδij +
P

4ζ
δij = ε̇ij, (2.15)

where η and ζ are as defined previously.
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2.3.2 Thermodynamic model

Sea ice models vary in complexity. State–of–the–art models, such as the struc-

tured mesh CICE [Hunke and Lipscomb, 2010] for example, or the LIM [Van-

coppenolle et al., 2009] model, are capable of dealing with several important

parameters such as age, layering and growth rate of sea ice that influence

the thermodynamic properties of sea ice. The thermodynamic component

deals with the exchange of heat and salt at the ocean surface in response to

atmospheric and oceanic forcing, as well as sea ice growth and melt.

The thermodynamic parameterisation used in Fluidity–FESIM is similar to

the simplest model of Parkinson and Washington [1979]. It is based on energy

balance principles, described below, with prognostic snow and ice layers.

Figure 2.9: Schematic diagram showing the major divisions within an
element of the sea ice model in the 3 layer configuration. A 4 layer con-
figuration would include snow over the ice, whilst a 2 layer configuration

would consist of the atmosphere and ocean only.

Figure 2.9 shows the major divisions within an element of the sea ice model.

A layer of sea ice is situated between the atmosphere and ocean (3 layers).

The model has the capability of dealing with situations where there is snow

(4 layers) covering the sea ice or no snow and no ice (2 layers).

In the case of no ice, the net energy flux to the sea ice element is given by:

Qnet = H ↓ +LE ↓ +εwLW ↓ +(1− αw)SW ↓ +Fw ↑ −εwσT 4
w (2.16)

where the arrows indicate whether the flux is atmospheric (down arrow) or

oceanic (up arrow). Each term is explained in Table 2.2.
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Term Name Description
H ↓ Sensible Heat Sensible heat is energy exchanged due to a change

in temperature. It is given by the formula H ↓=
ρacpCHVwg(Ta − Tsfc). ρa is the atmospheric density,
cp is the specific heat of air, CH the transfer coefficient
for sensible heat, Vwg the magnitude of sea level winds.
(Ta − Tsfc) is the temperature difference between the at-
mospheric and surface temperatures.

LE ↓ Latent Heat Latent heat is energy exchanged due to a change of phase.
It is given by the formula LE ↓= ρaLCEVwg(q10m − qs).
CE is a latent heat transfer coefficient and (q10m − qs) is
the difference in specific humidities at 10m elevation and
sea level.

LW ↓ Longwave Radiation Longwave radiation is the energy exchanged from in-
frared radiation. In the model, it is parameterised
by F ↓= σT 4

a {1− 0.261 exp[−7.77× 10−4(273− Ta)2]},
modified by a cloud factor. In (2.16) it is also modified
by a longwave emissivity factor, εw.

SW ↓ Solar Radiation Solar radiation is parameterised according to latitude, so-
lar time and cloud cover. In (2.16) it is also modified by
the surface albedo coefficient, aw.

Fw ↑ Upward Heat Flux The upward heat flux has been shown to be directly pro-
portional to the temperature difference of the water and
ice. In this model, it is considered a constant.

Table 2.2: Table describing terms of (2.16)

The temperature balance determines the change in ocean temperature

dI

dt
= Qnet (2.17)

where I is the ocean’s internal energy, and I ∝ T . Given the ocean’s heat

capacity, the change of temperature can be calculated. If the temperature

falls below 271.2K(−1.95oC), ice forms. The ice thickness is chosen to be

0.01m and the extent is calculated using the heat of fusion coefficient, such

that the temperature of the water remains at freezing. (2.16) is illustrated

in Figure 2.10a. Figures 2.10b and 2.10c illustrate the 3-layer and 4-layer

thermodynamics.
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(a) 2 layer

(b) 3 layer

(c) 4 layer

Figure 2.10: Illustration of sea ice model thermodynamics, for cases of
no ice, ice only and ice with snow, from [Parkinson and Washington, 1979]

2.4 Model verification and validation

2.4.1 Method of Manufactured Solutions

The method of manufactured solutions [Roache, 2001] is used here to ver-

ify correctness of the sea ice dynamics numerical model implementation in

Fluidity–FESIM. This is done by manufacturing an analytical solution to the

problem to which the model output can be compared. Once an error metric

is obtained for each simulation, a convergence analysis can be performed, a
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check on whether the error decreases at the expected rate as the resolution of

the simulation increases. This is a very strong check of the correctness in the

implementation of a model.

We begin by considering the sea ice momentum equation:

ρ
∂ui
∂t

=
∂σij
∂xj

+ τa + τo + εij3mfuj −mg
∂H0

∂xi
, (2.18)

and proceed by making the following simplifications:

• Coriolis parameter, f = 0;

• Ice–ocean drag coefficient, Cdo = 0, therefore τo = 0;

• Sea surface elevation, H0 = 0;

• The wind–forcing, τa will be explicitly prescribed.

These simplifications, although not necessary, allow us to concentrate on the

ice–interaction term. Considering, temporarily, the wind–forcing τa = 0, the

momentum equation reduces to:

ρ
∂u

∂t
= ∇ · σ, (2.19)

which can be cast in terms of a linear operator L(u) = 0, where:

L(u) = ρ
∂u

∂t
−∇ · σ. (2.20)

We then choose a manufactured solution u = Um, such that:
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L(Um) = ρ
∂Um

∂t
−∇ · σ = Qm, (2.21)

where Qm is the remainder. We expect Qm = 0 when Um is a solution

to (2.19). Since our manufactured, arbitrary choice of Um is not based on

any physical consideration of the dynamics of sea ice, it is unlikely that we

have Qm = 0, but rather we expect Um to be a solution to the modified

problem statement:

ρ
∂u

∂t
= ∇ · σ + Qm. (2.22)

where Qm = L(Um) and can be prescribed in the model by setting τa = Qm.

For this test, we choose the manufactured solution:

Um =

sin(4x)

0

 , (2.23)

which gives us:

Qm1 = ρ
∂(sin(4x))

∂t
− ∂σ11

∂x
− ∂σ12

∂y
(2.24)

= −∂σ11

∂x
− ∂σ12

∂y
, (2.25)

and
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Qm2 = ρ
∂(0)

∂t
− ∂σ12

∂x
− ∂σ22

∂y
(2.26)

= −∂σ12

∂x
− ∂σ22

∂y
, (2.27)

where subscripts 1 and 2 refer to the x and y directions respectively, and the

wind forcing, τai , can be used to apply the source term Qmi
in the model

setup. The components of the stress tensor σ (from 2.15) can be calculated,

as in the CICE model [Hunke and Lipscomb, 2010], by:

∂σD
∂t

+
σD

2TEV P
+

P

2TEV P
=

P

2TEV P∆
εD, (2.28)

∂σT
∂t

+ e2 σT
2TEV P

=
P

2TEV P∆
εT , (2.29)

∂σ12

∂t
+ e2 σ12

2TEV P
=

P

2TEV P∆
ε12, (2.30)

where we have defined:

σD = σ11 + σ22, (2.31)

σT = σ11 − σ22, (2.32)

and similarly for the strain rate, εD = ε11 + ε22 and εT = ε11 − ε22. In this

testcase, we only consider the limited scenario of ∆ = ∆min is a constant.

The simulation covers the region [0, 45◦] × [0, 45◦] in longitude, latitude, and

the spherical mesh is produced by first generating a flat, two–dimensional mesh

with limits [0, 45]× [0, 45]. This mesh is generated using Gmsh [Geuzaine and

Remacle, 2009]. This is then fed through a script that applies the following



Sea Ice Modelling 59

projection:

x =R cos(φ) cos(λ), (2.33)

y =R sin(φ) cos(λ), (2.34)

z =R sin(λ), (2.35)

(a) Mesh before projection, in spheri-
cal coordinates of dimension [0, 45◦]×

[0, 45◦].

(b) Mesh after projection, in
3–D Cartesian coordinates within
[2, 637100]×[0, 4504984]×[0, 4504984]

Figure 2.11: Preprocessing step: Mesh projection for sea ice simulations.

where R is the radius of the Earth and φ, λ are the longitude and latitude,

respectively. We have thus transformed the mesh from the spherical coordinate

system to the Cartesian coordinate system of a two–dimensional mesh on the

sphere. The two–dimensional spherical mesh in Cartesian coordinates is used

in Fluidity and extruded to an appropriate ocean depth with a single layer.

Five simulations are performed on meshes of progressively higher resolution,

ranging from 4◦ node separation in the lowest resolution run, to 0.25◦ node

separation in the highest resolution, doubling the resolution for each simula-

tion.
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The result of each simulation is compared with the analytical manufactured

solution in the infinity–norm:

Error = ‖ui − Umi
‖∞ = max

i
(ui − Umi

) , (2.36)

where the subscript i indexes each node location and u and Um represent the

calculated and analytical solutions, respectively.

(a) Chosen manufactured velocity
field, Um, plot of (2.23).

(b) Absolute error in velocity field,
for highest resolution mesh.

Figure 2.12: MMS simulation results, on a spherical domain with limits
[0, 45◦]× [0, 45◦].

A plot of the absolute error, |ui − Umi
|, in the sea ice velocity field (Fig-

ure 2.12b) shows the error is spread across the domain and not dominated by

the boundaries or any particular feature of the flow.

The error is plotted against the characteristic element edge length in Fig-

ure 2.13. The sea ice model is discretised on a P1 function space, and thus

we expect second–order error convergence. The plot shows successful second–

order convergence and we can thus safely deduce that the Fluidity–FESIM

model correctly implements and solves the sea ice dynamical equations.
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Figure 2.13: Error in the infinity norm (blue line) for the MMS test
described in section 2.4.1. A line (green) showing second–order convergence

is also plotted for comparison.
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2.4.2 Pseudo one–dimensional test

We proceed with the model testing by considering a one–dimensional domain

of length L, with solid boundaries on either side, as illustrated in Figure 2.14.

This testcase was first proposed by Hunke and Dukowicz [1997] for the purpose

of comparison between the viscous–plastic and elastic–viscous–plastic rheology

models. Further, it was used by Gao et al. [2011] in the validation of their

finite–volume, unstructured grid sea ice model ug–CICE.

Figure 2.14: Illustration of pseudo one–dimensional testcase. Sea ice of
constant thickness and concentration in a domain of length L, subjected to

a stress τ .

The sea ice is subjected to a constant total stress τ . The solid boundaries do

not allow flow of ice across the domain boundaries.

Considering equations (2.12) and (2.15) in their one–dimensional form, and

lumping all external forcing in a single term, τ , we have:

m
∂u

∂t
=
∂σ11

∂x
+ τ (2.37)

and

1

E

∂σ11

∂t
+
σ11

2η
+
η − ζ
4ηζ

(σ11 + σ22) +
P

4ζ
=
∂u

∂x
, (2.38)

1

E

∂σ12

∂t
+
σ12

2η
= 0, (2.39)

1

E

∂σ22

∂t
+
σ22

2η
+
η − ζ
4ηζ

(σ11 + σ22) +
P

4ζ
= 0. (2.40)

Considering the equations during steady state, and solving the system of si-

multaneous equations for σij, we are left with:
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∂σ11

∂x
= −τ, (2.41)

and

σ11 = (ζ + η)
∂u

∂x
− P

2
, (2.42)

σ12 = 0, (2.43)

σ22 = (ζ − η)
∂u

∂x
− P

2
. (2.44)

Substituting (2.42) into (2.41) and noting that η = ζ
e2

= ζ
4

for an eccentricity

e = 2 and P is constant, we have:

∂

∂x

(
5ζ

4

∂u

∂x
+ τx

)
= 0, (2.45)

where ζ = P
2∆

and ∆ = [(ε211 + ε222) (1 + e−2) + 4e−2ε212 + 2ε11ε22 (1− e−2)]
1
2 .

Considering that only ε11 = ∂u/∂x is non–zero in one–dimension, we have:

∆ =

√
5

2

∣∣∣∣∂u∂x
∣∣∣∣ . (2.46)

The viscosity ζ can therefore have one of three values, ζmin, ζmax or:

ζ =
P√

5
∣∣∂u
∂x

∣∣ . (2.47)
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For the cases where ζ = ζmin or ζmax, integrating (2.45) gives:

5ζ

4

∂u

∂x
+ τx = C ′, (2.48)

where C ′ is a constant of integration. We can rearrange for ∂u
∂x

:

∂u

∂x
=

4

5ζ
(C ′ − τx) . (2.49)

Given τ is a constant, we can define a new constant C such that:

∂u

∂x
=

4τ

5ζ
(C − x) . (2.50)

Given the symmetry of the problem, we know that ∂u
∂x

∣∣
x=L/2

= 0 and therefore

C = L/2:

∂u

∂x
=

4τ

5ζ

(
L

2
− x
)
, for ζ = ζmin or ζ = ζmax (2.51)

We now consider the case when ζ = P√
5| ∂u∂x |

, from (2.51):

∂u

∂x
=

4τ
∣∣∂u
∂x

∣∣
√

5P

(
L

2
− x
)
, (2.52)

i.e. we now have an implicit relationship for ∂u
∂x

.

Defining P ′ = P/
√

5 and G = 4τ√
5P

(
L
2
− x
)
, we can write:
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∂u

∂x
=


GP ′/ζmax if ζ > ζmax

G
∣∣∂u
∂x

∣∣ if ζmin < ζ < ζmax

GP ′/ζmin if ζ < ζmin

(2.53)

Since the above is an implicit relationship, we can solve using a fixed–point

iteration:

∂un+1

∂x
=


GP ′/ζmax if ζ > ζmax

G
∣∣∂un
∂x

∣∣ if ζmin < ζ < ζmax

GP ′/ζmin if ζ < ζmin

(2.54)

where n represents the iteration level in an iteration to convergence.

The ‘analytical’ expression (2.54) can be integrated using a simple finite dif-

ference script, to produce a solution to (2.41), under the one–dimensional,

steady state conditions prescribed in this testcase. ∂u
∂x

can then be numeri-

cally integrated to yield the solution u. The analytical solution is plotted in

green in figure 2.15a.

For this simulation, a full three–dimensional domain is used, spanning 12◦ in

longitude and latitude (in the region [6◦, 14◦]), and 1km depth (in a single

layer). This equates to approximately 508km in the x–direction. A charac-

teristic element edge length of 12.7km is used, equivalent to approximately

40 elements across, in line with other studies. The sea ice mesh is extracted

from the surface of the ocean. Note that the boundaries in the y–direction

are far enough to have minimal effect on the result. Increasing or decreasing

this distance showed insignificant changes to the result obtained. A constant

forcing τ = 0.9 is applied to sea ice of thickness 0.6m and concentration 0.1.

The forcing is applied from the wind forcing term. ζmin and ζmax are set to
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4 × 108 and 4 × 106P , respectively. P is calculated as in (2.11) using con-

stants P ∗ = 27500 and c∗ = 20. The solution to the problem is visualised

in figure 2.16a. For comparison, the viscous–plastic result from Hunke and

Dukowicz [1997] is also shown.

The sea ice velocity across the centreline is extracted and plotted (blue line)

in figure 2.15a. The solution is inherently two–dimensional and this accounts

for the discrepancy in the magnitude of the sea ice in the middle section.

Furthermore, the simulation is unable to capture the sharp changes of the an-

alytical result that are present when changing from regions where ζ = ζmin and

ζ = ζmin, as the simulation changes slowly from one region to the other. The

result obtained with Fluidity–FESIM is in line with other studies [Gao et al.,

2011, Hunke and Dukowicz, 1997]. In particular, the Fluidity–FESIM result

matches very closely with the results obtained in the original paper of Hunke

and Dukowicz [1997] (shown in figure 2.15b for comparison). It must be noted

that the dotted line marked ‘1D’ is equivalent to the line marked ‘Analyti-

cal’ in figure 2.15a, however, the result plotted is from (2.54) integrated up

to iteration level 30, before the iteration reaches steady state as is suggested

(which requires approximately 140 iterations). The two analytical results are

therefore different. However, we note that the results simulated with Fluidity–

FESIM reach the same maximal value as the results in Hunke and Dukowicz

[1997], and also deviate from the analytical solution at approximately the

same location (distance index 8, velocity magnitude 37.5). We therefore con-

sider this a successful comparison and are confident that the sea ice model

implemented in Fluidity–FESIM is up to the standard of sea ice models used

in climate studies.

2.4.3 Current – Ice interaction test.

As has been alluded to previously (section 2.3.1.1), one feature of a realistic

rheological model is to allow the ice to drift freely in regions of open water,

yet introduce internal stresses that resist such motion in regions of high sea
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ice concentration, due to interactions of the ice pack with itself. This test is

designed to investigate the interaction between currents and sea ice in regions

of different sea ice concentrations.

We consider a square domain of length 1.28 × 103km, and specify sea ice

concentration as varying linearly from 0.0 at the western boundary to 1.0 at

the eastern boundary. The origin (coordinates [0,0]) is at the centre of the

domain. The ocean velocity is prescribed by:

uw = 0.1
( y
R

)
, (2.55)

vw = −0.1
( x
R

)
, (2.56)

where R =
√
x2 + y2, is the distance from the origin. This produces con-

centric ocean currents, centred around the origin and of magnitude linearly

proportional to the distance from the origin (figure 2.17). The wind is constant

throughout the simulation and is set to blow from a southwestern direction,

with ua = va = 5ms−1.

The sea ice momentum equations can be written as:

m
∂u

∂t
=
∂σ1j

∂xj
+ τx, (2.57)

m
∂v

∂t
=
∂σ2j

∂xj
+ τy, (2.58)

(2.59)

where τ represents the ocean (τw) and wind (τa) forcing terms. These terms

are given by:

τax = cCaρa |ua| (ua cosφ− va sinφ) , (2.60)

τay = cCaρa |ua| (ua sinφ+ va cosφ) , (2.61)
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and

τwx = Cwρw |uw − u| [(uw − u) cos θ − (vw − v) sin θ] , (2.62)

τwy = Cwρw |uw − u| [(vw − v) cos θ + (uw − u) sin θ] , (2.63)

where φ = θ = 25◦ are the wind and ocean turning angles.

Under steady–state (∂u
∂t

= 0) and free–drift (
∂σij
∂xj

= 0) conditions, the sea ice

velocity, u, is balanced only by the wind and ocean stresses. We can therefore

solve for it by considering:

τax + τwx = 0, (2.64)

τay + τwy = 0. (2.65)

Manipulating the above system allows us to write an analytical expression for

the steady–state, free–drift sea ice velocity as:

u = uw +
1

V
[τax cos θ + τay sin θ] ,

v = vw −
1

V
[τax sin θ − τay cos θ] , (2.66)

where V 2 = Cwρw
(
τ 2
ax + τ 2

ay

)1/2
.

Given the ocean and wind forcing conditions specified above and the parame-

ters specified in table 2.3 the steady–state, free-drift ocean velocity computed

using (2.66) is illustrated in subfigures A, C and E of figure 2.18.

On the right hand side of figure 2.18 the result of the problem simulated using

Fluidity–FESIM is shown. The analytical result is computed on a grid of 320×
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Parameter Value
Ca 5.0× 10−4

ρa 1.2
Cw 5.5× 10−3

ρw 1026.0

Table 2.3: Parameters used in simulation of testcase described in sec-
tion 2.4.3.

320 equidistant points. The Fluidity–FESIM simulation was on a triangular

mesh with a characteristic element edge length of 12km, but the result is

probed at the same points. Note that within Fluidity–FESIM, we solve the full

system of equations and have not made the assumption of free–drift flow. The

difference between the two results is therefore proportional to the discrepancy

between the result of the full system and the free–drift solution. Figure 2.19

shows the difference in the x–component of the two solutions. The large error

in the bottom left of the figure is due to the boundary condition affecting the

result. In the rest of the domain, we observe that the discrepancy is minimal

towards the western boundary and increases towards the eastern boundary.

This indicates that the model exhibits free–drift behaviour in regions of low sea

ice concentration, but deviates from free–drift as the concentration increases,

as is expected from a realistic sea ice rheology model.

2.5 Conclusions

The coupled Fluidity–FESIM model was developed as part of this thesis. Re-

sults of using this model on idealised, small–scale problems has been demon-

strated. The model is shown to be capable of performing such coupled ocean

– sea ice simulations.

It must be noted that despite the two–way coupling interface being fully de-

veloped, all tests described in this thesis have been run with the oceanic state

being fully prescribed. As a consequence, dynamical feedback from the ice
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to the ocean has not been shown and therefore effectively only the one–way

coupling functionality has been fully demonstrated.

As part of verifying the model, two tests were performed. The first was a test

using the method of manufactured solutions. The test showed that the error

in our simulations decreases at second–order, matching the theoretical order

of convergence of the P1 discretisation used in the sea ice model, indicating

that the model is correctly implemented.

The sea ice rheology was further validated using a pseudo–one dimensional

test. Despite an analytical solution to the full, non–linear, sea ice momentum

equations not being available, a solution may be obtained for one–dimensionalised

simplifications of these equations. One such solution, described above (sec-

tion 2.4.2) and originally proposed by Hunke and Dukowicz [1997] is used

here to verify the implementation of the rheological model in Fluidity–FESIM.

The model exhibits good agreement with the analytical solution, to the de-

gree expected given the simplifications in deriving the analytical expression.

Furthermore, Fluidity–FESIM’s result is in line with other models, such as

CICE [Hunke and Lipscomb, 2010] and ug–CICE [Gao et al., 2011].

Finally, a validation testcase is implemented, showing the interaction between

the sea ice and ocean/wind currents in regions with different sea ice concen-

trations. In this model, we demonstrate that the sea ice exhibits free–drift

behaviour in regions of low sea ice concentration, while the internal stresses

resist free–drift behaviour in regions of higher sea ice concentration.

The extent of testing the coupled model is only as described in this thesis,

although the development is complete. It is necessary that more tests are put

in place to investigate other aspects of the coupled model before Fluidity–

FESIM can be used for investigations of ocean – sea ice dynamics, or forecast

studies. In particular, the implemented sea ice thermodynamics need to be

tested, as well as the fluxes of heat and salt between the sea ice and ocean

components. Despite the need for further testing, it has been demonstrated
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here that the foundations have been laid towards building a fully–capable,

coupled ocean – sea ice model.
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(a) Analytical expression (green line) computed from (2.54) and sim-
ulated sea ice velocity (blue line) in the x–direction, simulated using
Fluidity–FESIM. The sea ice velocity plotted is along the centreline of

the domain.

(b) This is figure 4 of Hunke and Dukowicz [1997], comparing the
various rheological models.

Figure 2.15: Results of test problem described in section 2.4.2
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(a) Visualisation of steady–state solution for the pseudo 1–D prob-
lem described in section 2.4.2. The colours indicate the magnitude of
the u–component of velocity. For ease of visualisation, and for better
comparison with 2.16b, the domain has been warped according to the

magnitude of the sea ice velocity component

(b) Figure 5 of Hunke and Dukowicz [1997]

Figure 2.16: x–component of sea ice velocity at steady–state.
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(a) Specified sea ice concentration
(b) Ocean velocity specified accord-

ing to (2.56).

Figure 2.17: Figures illustrating the setup of test problem described in
section 2.4.3
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(a) Analytical x–component. (b) Simulated x–component.

(c) Analytical y–component. (d) Simulated y–component.

(e) Magnitude of analytical sea ice
velocity.

(f) Magnitude of simulated sea ice ve-
locity.

Figure 2.18: Results of test problem described in section 2.4.3. The left
hand side presents the analytical results of the steady–state, free–drift sea
ice velocity computed using (2.66). On the right hand side, the steady–state

sea ice velocity simulated using Fluidity–FESIM is presented.
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Figure 2.19: Difference in the x–component of sea ice velocity between
the simulated and analytical solutions of problem 2.4.3, measured using

|usimulated − uanalytical|.



CHAPTER 3

ICE SHEET MODELLING

3.1 Introduction

Ice sheets are masses of glacial ice, defined as covering an area greater than

50,000 square kilometres. The two ice sheets currently on the Earth are the

Greenland and Antarctic ice sheets, which hold a volume of water equivalent

to more than 65 metres of sea level rise. Considering the magnitude of their

possible contributions to sea level rise in a changing climate, and the recently

observed acceleration of mass loss rate, a thorough understanding of ice sheet

processes and feedback mechanisms is required.

The three–dimensional, non–linear, non–Newtonian Stokes (Stokes) equations

have been shown [Cuffey and Paterson, 2010] to provide the most accurate and

complete description of momentum balance for modelling the flow of land ice.

Due to the large computational cost of solving the full Stokes equations

in large, three–dimensional domains, several approximations have previously

77
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been employed. These approximations primarily seek to exploit the large as-

pect ratio of the domain. One such approximation is the shallow ice approxi-

mation (SIA). More recently, depth-integrated approximations of higher–order

have been used, such as the Blatter–Pattyn model [Blatter, 1995, Pattyn, 2003]

or the so–called L1L1 and L1L2 models [Hindmarsh, 2004]. These models ne-

glect the longitudinal deviatoric stress components from the stress matrix and

thus their validity breaks down in regions where this component is important,

such as regions of steep topography [Meur et al., 2004]. More recently, an

unstructured mesh, full Stokes, finite element model has been used to model

the Greenland ice-sheet for a period of a century [Seddik et al., 2012].

The finite element method lends itself naturally to the use of unstructured

meshes which can more accurately represent bottom topography, as well as

take advantage of recent advances in spatial resolution of ice sheet boundaries,

as compared to structured meshes.

This thesis presents a new computational framework for carrying out ice sheet

simulations. We use Fluidity, a state–of–the–art finite element model that

offers important potential benefits for the modelling of ice sheets:

• It uses unstructured meshes, which allows us to represent the compli-

cated bedrock topography of ice sheets more accurately than structured

models, as well as focus resolution, and hence computational resources,

in regions where the dynamics of the ice sheet are more complicated.

• It offers dynamically adaptive, anisotropic mesh refinement, allowing the

model to focus resolution in regions of dynamic importance and hence

optimise the use of computational resources, without the user’s a priori

knowledge of where these regions may be.

We concentrate in this chapter on verifying and validating the isothermal

dynamics of the model. The model is first verified by the method of manufac-

tured solutions [Roache, 2001]. The anisotropic adaptive meshing technology
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is then demonstrated in a test of the formation of an idealised ice stream. Fi-

nally, we validate the model by carrying out the experiments laid out in the Ice

Sheet Model Intercomparison Project for Higher–Order ice sheet Models [Pat-

tyn et al., 2008] (ISMIP–HOM). The performance of this model is analysed

and discussed.

Following this, in the next chapter preliminary results of isothermal simula-

tions of Greenland are presented, which attempt to make use of mesh adap-

tivity to minimise the error due to spatial discretisation and to optimise use

of computational resources.

3.2 Equations and numerical methods

3.2.1 Governing equations

Ice sheets may be modelled using the non–linear, non–Newtonian, incompress-

ible Stokes equations:

∇ · σ + ρg = 0, (3.1)

∇ · u = 0, (3.2)

where u is the 3–D velocity vector of the ice sheet, σ is the stress tensor, ρ is

the ice sheet density, and g is the acceleration due to gravity.

3.2.2 Constitutive law

We begin by decomposing the full stress tensor σ in terms of the deviatoric

stress τ and the isotropic pressure p:
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σ = τ − pI, (3.3)

where p = −1
3
tr(σ) and tr(σ) is the sum of the elements on the main diagonal

of σ. I is the identity tensor.

Glen’s flow law relates the deviatoric stress τ [Cuffey and Paterson, 2010], to

the strain rate ε̇u. This states that:

τ = 2ηuε̇u, (3.4)

where the strain rate tensor is given by:

(ε̇u)ij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (3.5)

and the effective viscosity ηu is defined as:

ηu =
1

2
A−1/nε̇(1−n)/n

e , (3.6)

where n is the empirically determined Glen’s flow law exponent that varies

with temperature, crystal orientation and debris content, but is typically pre-

scribed as a constant n = 3. ε̇e is the effective strain rate given by the second

invariant of the strain rate:
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ε̇e =

√
1

2
ε̇u : ε̇u (3.7)

=

√
1

2

(
(ε̇u)2

11 + (ε̇u)2
22 + (ε̇u)2

33 + 2 (ε̇u)2
12 + 2 (ε̇u)2

23 + 2 (ε̇u)2
31

)
, (3.8)

and A, the deformation rate factor, is strongly dependent on temperature and

is given by an Arrhenius relation:

A = A0e
(−Q

RT ), (3.9)

where A0 is termed the pre–exponential factor, Q an activation energy, R is

the gas constant and T the temperature relative to the melting point of ice at

depth. In the simulations in this chapter, a constant deformation rate factor,

A, is used, as all simulations are considered for simplicity to have a spatially

and temporally invariant temperature. The full Arrhenius expression is used

for the simulations of Greenland in the following chapter.

3.2.3 Boundary conditions

3.2.3.1 Surface boundary

At the top surface (Γs) of the domain, the normal stress component is balanced

by atmospheric pressure:

σ · n = −patm · n on Γs . (3.10)

Since atmospheric pressure is very small compared to the stresses of the ice

mass, we make the common assumption patm = 0, thus applying:



Ice Sheet Modelling 82

σ · n = 0. (3.11)

This is commonly referred to as the natural boundary condition.

3.2.3.2 Free Surface

In the cases where the response of the surface elevation is of interest, a prog-

nostic free-surface algorithm can be used, as described in Kramer et al. [2012].

This boundary condition is not used in the work in this thesis, but would form

an important aspect of potential future work.

3.2.3.3 Bottom boundary

Two types of boundary conditions may be applied to the ice–bedrock inter-

face. The no–slip boundary condition is applied on the fixed portion of the

boundary, Γb,fix,

u = 0 on Γb,fix, (3.12)

or the linear Rayleigh friction law prescribed on the portion of the boundary

where the ice can slide, Γb,sld

u · n = 0 and

n · σ · t = −β2u · t on Γb,sld (3.13)



Ice Sheet Modelling 83

where β2 is the friction or sliding coefficient and t denotes a tangential direc-

tion.

3.2.3.4 Lateral boundaries

The lateral boundaries can be prescribed using the natural boundary con-

dition (3.11) or the no–slip boundary condition (3.12). In cases where pe-

riodicity is required, as for example in the exercises of the ice sheet model

intercomparison study, periodic boundary conditions can also be used. As

will be seen later, care needs to be taken when periodic boundary conditions

are prescribed.

The no–slip condition applied to the lateral boundary physically represents

ice that is fastened to the side wall, for example a glacier that is constrained

laterally by mountains. On the other hand, the natural boundary condition

can physically be understood as a calving front, where any ice that flows out

from the boundary is assumed to calve off or melt. The periodic boundary

conditions are unnatural, but depending on usage, can emulate a domain that

can be extended to infinity in the direction of periodicity, where the domain

simulated forms the ‘unit cell’ which can be tiled in either direction.

3.2.4 Finite element formulation

Considering the momentum, (3.1) and continuity, (3.2) equations, now in Ein-

stein notation:

∂i [ηu (∂jui + ∂iuj)]− ∂ip+ ρgi = 0, (3.14)

∂juj = 0, (3.15)
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the Galerkin finite element discretisation begins by taking the weak form of

the equations, where we use the vector valued function w, and scalar function

m to test the momentum and continuity equations, respectively:

∫
Ω

[wi ∂i (η (∂jui + ∂iuj))− ∂ip+ ρgi] dΩ = 0, (3.16)∫
Ω

m ∂juj dΩ = 0, (3.17)

where we have integrated over the domain Ω. We discretise the test functions:

∫
Ω

Ni ∂i (η (∂jui + ∂iuj)) dΩ−
∫

Ω

Ni ∂ip dΩ +

∫
Ω

Ni ρgi dΩ = 0, (3.18)∫
Ω

M ∂juj dΩ = 0. (3.19)

The viscosity term in (3.18) can be integrated by parts:

∫
Ω

Ni ∂i (η (∂jui + ∂iuj)) dΩ =−
∫

Ω

∂iNiη (∂jui + ∂iuj) dΩ+

+

∫
Γ

Niη (∂jui + ∂iuj)nj dΓ, (3.20)

where n represents the outward normal. The continuity equation can also be

integrated by parts:

∫
Ω

M ∂juj dΩ = −
∫

Ω

(∂jM)uj dΩ +

∫
Γ

Mujnj dΓ, (3.21)

Substituting (3.20) into (3.18) now yields:
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∫
Ω

∂iNiη (∂jui + ∂iuj) dΩ +

∫
Ω

Ni ∂ip dΩ =

∫
Γ

Niη (∂jui + ∂iuj) dΓ+

+

∫
Ω

Ni ρgi dΩ, (3.22)∫
Ω

(∂jM)uj dΩ = 0, (3.23)

where we have neglected the boundary integral of the continuity equation:

∫
Γ

Mujnj dΓ. (3.24)

For no–slip boundary conditions we set both normal and tangential velocity

components to zero, thus the term (3.24) disappears. Similarly, if a drag

boundary condition is applied, this is coupled with a no–normal flow condition

and thus ujnj = 0, thus (3.24) again disappears.

The above system of equations can be written in matrix form:

K G

GT 0

u

p

 =

f
0

 (3.25)

where:

Kbicj =

∫
Ω

(∂jNb) η (∂iNc) + (∂kNb) η (∂kNc) δij (3.26)

Gabj =

∫
Ω

Na∂jNb (3.27)

f =

∫
Ω

Niρgi + potential boundary forcing terms (3.28)
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3.2.5 Solving the discretised system

The system (3.25) is indefinite (i.e. has both positive and negative eigenvalues)

and thus requires specialised solution algorithms (for an overview of various

such methods, see May and Moresi [2008]). The method used in Fluidity

for solving the discretised system is based upon a full–projection / pressure–

correction approach [AMCG, 2014, Davies et al., 2011], which is equivalent to

the Schur Complement Reduction method described in the study by May and

Moresi [2008].

We note that the discretised system of equations (3.25) is only defined im-

plicitly, given that the viscosity η = η(u) is a function of velocity. At each

moment, the viscosity is constructed using the current best estimate of veloc-

ity:

K(un−1) G

GT 0

un

pn

 =

f
0

 (3.29)

This creates a fixed–point iteration problem, which is iterated to conver-

gence. For steady–state problems in Fluidity, the simulation can be pseudo–

timestepped to convergence. For time–varying problems (such as the case

with a prognostic free–surface or temperature evolution), inner non–linear

iterations may be used, to solve the system before moving forward in time.

3.3 Verification and performance

3.3.1 Method of Manufactured Solutions

Model verification is the process of error evaluation based on a known solu-

tion. This is a mathematical analysis that does not require consideration of
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ice sheet physical laws. Model verification is a test of the implementation,

in contrast to model validation which validates the model’s ability to simu-

late reality. In this thesis, we present model verification conducted via the

method of manufactured solutions [Roache, 2001] (MMS). Using the MMS,

an analytical solution to a slightly altered problem is constructed and used

to calculate a simulation error. The manufactured solution is an analytical

solution to the full–Stokes equations modified by a source term. A conver-

gence analysis was performed, indicating the rate at which the error decreases

with increasing resolution. A convergence analysis is an excellent indicator

of model correctness, that is, the model is able to correctly solve the system

described by the equations. This is in contrast to accuracy, which depends on

numerous other factors, including domain discretisation convergence and how

well the equations model the real system.

Symbol Description Value Units
A Deformation rate factor 3.16887646154× 10−4 Pa−n s−1

n Glen’s flow exponent 3 none
ρ Ice sheet density 910 kg m−3

g Gravity acceleration 0.0 m s−2

Table 3.1: Constants used for the MMS convergence test.

The simulation parameters used in this verification exercise are detailed in

table 3.1. Note that, for simplicity, non–realistic deformation rate factor and

gravity values are used for this experiment, but with no loss of appropriateness

of the test.

We choose a manufactured solution (u, p) = (Um, Pm) where:

Um = (sin(x) cos(y),− cos(x) sin(y)) , (3.30)

p = cos(x) cos(y). (3.31)



Ice Sheet Modelling 88

Note that although the chosen solution, Um, need not take ice-sheet physics

into account, we ensure here that it satisfies ∇·Um = 0, i.e. is divergence free.

This is to avoid the need for adding a source term to the continuity equation.

The domain was a square of edge–length 1m with 0.0 ≤ x ≤ 1.0 and 0.0 ≤

y ≤ 1.0. The analysis was conducted on meshes with characteristic element

edge lengths varying from 0.16m down to 0.02m. The manufactured solution

was applied as a Dirichlet boundary condition for velocity on all sides of the

domain.

Two separate tests were performed. A linearised case where the viscosity is

prescribed (η = 1) and a non–linear case where the viscosity is diagnosed as

a function of the second invariant of the strain rate of velocity, according to

Glen’s flow law, as in (3.6). The results of the convergence analysis are shown

in Figure 3.1. The finite element pair used in these simulations is P2P1

(i.e. we use a piecewise continuous quadratic representation for velocity and

a piecewise continuous linear representation for pressure) and therefore we

expect 3rd–order convergence for velocity and 2nd–order for pressure. The

results presented in figure 3.1 indicate model correctness and the expected

orders of convergence.
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(a) Linearised case: Velocity x-direction (b) Non linear case: Velocity x-direction

(c) Linearised case: Velocity y-direction (d) Non linear case: Velocity y-direction

(e) Linearised case: Pressure (f) Non linear case: Pressure

Figure 3.1: Convergence plots for linearised (left column) and non–linear
(right column) Stokes, for x–direction (top row), y–direction (second row)

velocity components and pressure(bottom row).
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3.4 Adaptive modelling of ice streams

Finite element modelling of the full Stokes system is, numerically, very costly.

Unstructured meshes have recently been used to mitigate these costs by fo-

cusing resolution only in regions where the dynamics require it. However,

generating such unstructured meshes requires a priori knowledge of where the

regions of important dynamics are located. Dynamically adaptive, unstruc-

tured meshes offer the potential of optimally adjusting the domain discreti-

sation in response to evolving solution fields, such that higher resolution is

placed in regions where it is required, without the user’s a priori knowledge

of where these regions are located.

This test uses dynamic adaptivity to model an idealised ice stream. In partic-

ular, emphasis is placed on showing that the simulations converge with spatial

resolution and that the adaptive simulations are superior to their fixed, struc-

tured mesh counterparts.

Consider an ice sheet of 1 km thickness and size 160 km × 160 km in a domain

that is periodic in the x–direction. The ice sheet is placed on a bed inclined

in the x–direction, with the bedrock elevation, b, given by:

b = −x sin(θ), (3.32)

where θ = 0.5◦. A linear bottom friction is applied, where the friction coeffi-

cient, C, is given by:

C(x, y) = C0

{
1 + ε+ sin

[
2πy

R
+m sin

(
2πx

R

)]}
, (3.33)

with parameters C0 = 1.0 × 105 Pa m−1 a, ε = 5.0 × 10−5, R = 160 km and

m = 0.25. These parameters are in line with Cornford et al. [2013], who also
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demonstrated their structured adaptive mesh refinement technology on this

testcase.

Figure 3.2: Bedrock friction coefficient for idealised ice stream setup,
given by (3.33).

Figure 3.3: Result of simulation described in section 3.4. The result
shown is from the fixed mesh of 4 km resolution. The colourmap indicates
the magnitude of velocity vectors in ms−1 and the arrows the velocity direc-
tion. Arrows are proportional in size to the magnitude of velocity. Small
arrows away from the ice stream indicate the whole ice sheet is drifting
along the domain. A sinusoidal region of higher velocity ice flow indicates

the formation of an ice stream.

Equation (3.33) produces the bottom friction illustrated in figure 3.2. It pro-

duces a sinusoidal region of lower friction closer to the top of the domain, in
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which the ice sheet is allowed to accelerate and form an idealised ice stream.

The simulation was performed on both fixed and adaptive meshes of varying

resolutions. An example result is shown in figure 3.3. At steady–state, the full

ice stream drifts along the x–direction of the domain, whilst a higher velocity

sinusoidal stream forms in the region of lower bottom friction coefficient.

The problem was run on both fixed and dynamically adaptive meshes. The

fixed, tetrahedral meshes were structured, with element edge lengths varying

from 16 km (resulting in 600 elements in the domain) down to 0.25 km (ap-

proximately 2.5 million elements) (figure 3.4a), with a mesh refinement ratio

of 2, i.e. the element edge lengths were halved for each structured grid gener-

ated. The vertical resolution remained constant at a single 1km layer, for all

simulations. The element edge lengths controlled were the short–edges of the

triangular face aligned in the horizontal. For the adaptive meshes, the number

of nodes was controlled using the interpolation error bound parameter, as in-

troduced in section 1.2.3, with minimum edge length in the vertical direction

set to 1km, to maintain a single 1km layer of elements in the vertical.

(a) Fixed mesh with 4 km edge
length. Total number of nodes:

96,000

(b) Adaptive mesh. Total num-
ber of nodes: 38,030

Figure 3.4: Meshes for idealised ice stream test problem. Notice that far
smaller (and larger) element sizes are used in (B) while overall the number

of nodes is far less than (A).
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The order of convergence is best estimated by comparing to the exact solu-

tion, as shown in the previous test using the method of manufactured solu-

tions. However, in the case of the idealised ice stream, an exact solution is

not available. Therefore, following Roache [1998], we estimate the order of

convergence by considering the error, E:

E = f(h)− fexact = Chp + higher–order terms, (3.34)

where f(h) and fexact are approximate and exact solutions to the problem. h is

a measure of node distance such as the characteristic element edge length, C a

constant and p the order of convergence. A model which exhibits second–order

convergence would therefore have p = 2.

If we neglect higher–order terms and take the logarithm of (3.34) we get:

log(E) = log(C) + p log(h). (3.35)

We note that an approximation for the order of convergence, p, can be obtained

from the slope of the curve log(E) versus log(h). As stated above we do

not know fexact and hence also E, for this problem. However, given three

approximations to the solution on three consecutive meshes with constant

refinement ratio, we can estimate the order of convergence using:

p =
ln
(
f3−f2
f2−f1

)
ln(r)

, (3.36)

where f1, f2 and f3 are a functional representing the result of each simulation

performed on consecutively finer resolution, and r represents the refinement
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ratio between the meshes. For each simulation, the function f was evaluated

as the l2–norm of the x–component of velocity, u:

f = |u| =

√√√√ n∑
k=1

x2
k, (3.37)

where k indexes nodes of a uniform, regular grid on which the solution of all

fixed mesh simulations is interpolated on. This results in the functional f

being a consistent measure of the root–mean–square error of each simulation.

The theoretical order of convergence of velocity in the full–Stokes model, using

the P2P1 element pair, is third–order, as seen in section 3.3.1. In practice,

however, boundary conditions, computer round–off errors and iterative conver-

gence errors result in a value that is often smaller. Using the method described

above (equation 3.36) and calculating f for three fixed resolution meshes, we

calculate p = 1.7 as the convergence order, indicating model convergence at a

good order.

For the adaptive simulations the mesh adapts every 20 iterations, and the

simulation is run to steady–state, checked by computing the relative change

of the velocity field in the l∞ norm, evaluated as:

|un+1 − un|∞
1
2

(|un+1|∞ + |un|∞)
< ε, (3.38)

where ε = 1× 10−9, is a constant ε� 1.

Figure 3.5 shows the evolution of the solution and mesh during a dynamically

adaptive simulation. The initial input mesh is a medium resolution (8 km edge

length) structured mesh made up of tetrahedra. The medium resolution mesh

was chosen to demonstrate Fluidity’s capability of both mesh refinement as
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well as coarsening. At the first adapt, Fluidity increases the resolution in the

locality of the stream. As the simulation progresses and the stream accelerates,

the node density along the stream increases even further. In contrast, outside

of the ice stream where the ice sheet is slowly drifting and no particularly

interesting dynamics are observed, the resolution is decreased.

To compare the adaptive and fixed mesh results, we plot the velocity on a

line within the domain at x = 80km, traversing the domain laterally from

the points y = 110km to y = 130km, at a depth of 12m. This section was

chosen as it crosses the ice stream in the transverse direction and extracts

what is considered to be the most significant information from the simulation,

the maximum velocity of the ice stream. The choice of depth was arbitrary,

and results at different depths or at the surface produce equivalent figures.

These results are shown in figure 3.6. The cyan line is the result obtained

using the highest resolution fixed mesh, with a 0.25km element edge length.

The other solid lines (red, yellow and green) are progressively lower resolution

and produce a progressively lower peak velocity. At the lowest resolutions,

spurious behaviour can also be observed. The dashed lines represent adaptive

simulation results. It is important to note that both the adaptive simulations

(with approximately 16 and 80 thousand elements) produce results that are

better than the 1km resolution structured mesh (with ∼ 150 thousand ele-

ments). The 80,000 element adaptive simulation produces a result nearly as

good as the highest resolution fixed mesh which uses 30 times more elements.

A further interesting feature of the adapted mesh, is the region along the

midsection of the ice stream where a lower node density is observed. This can

be seen if one looks closely at figures 3.5f and 3.7a. As can be seen in the

velocity profile plotted in figure 3.6, a ‘flat top’ is observed in the midsection

of the ice stream. In this region, fewer nodes are required to capture the

dynamics and therefore resolution is placed only on either side of this flat

section. This is a result of the metric being generated based on the curvature

of the solution field at the time of the adapt.
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(a) Initial condition of velocity, u =
0.

(b) Initial mesh.

(c) Magnitude of velocity u, t = 20. (d) Mesh after first adapt.

(e) Magnitude of velocity u, t = 200 (f) Mesh after tenth adapt.

Figure 3.5: Simulation of ice stream problem (section 3.4) using adaptive
mesh technology. Each row of images corresponds to a particular iteration
level (timesteps 0, 20 and 200, respectively from top to bottom). The
images on the left show the solution of the velocity field, whilst the images

on the right correspond to the mesh at each iteration level.
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Figure 3.6: x–component of velocity for various mesh resolutions, plotted
along a line at x = 80km, traversing the domain laterally from y = 110km
to y = 130km, at a depth of 12m. The legend also specifies the number of

elements at the end of each simulation, in square brackets.

Previous studies of dynamically adaptive meshes applied to ice streams [Corn-

ford et al., 2013] were performed using the BISICLES model. The BISI-

CLES model uses adaptive mesh refinement (AMR) technology on structured

rectangular grids and solves the vertically–integrated momentum equations

of [Schoof and Hindmarsh, 2010]. The AMR technology of BISICLES adapts

meshes based on a scalar metric, limiting the adapted meshes to isotropic el-

ements. Fluidity, however, is able to produce anisotropic meshes because the

metric produced is in the form of a three dimensional tensor, which has been

shown [Piggott et al., 2009] to be even more efficient in the use of computa-

tional resources. Fluidity offers an advantage over previous studies, in this

regard.

This thesis is the first to present anisotropic, dynamically adaptive, unstruc-

tured mesh refinement of the full–Stokes equations for the modelling of ice
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sheets.

An example isotropic mesh, obtained using Fluidity, is shown in figure 3.7b.

This mesh is obtained by restricting the permissible element aspect ratio.

We can see that with isotropic meshes, a larger node density is required for

the same effective transverse resolution. It should be noted that the overall

number of nodes in the two examples shown in figure 3.7 can not be directly

compared, because the isotropy is controlled in all three dimensions with this

constraint. Given the high aspect ratio of the domain (160km wide, 1km

deep), the extent of an element in the horizontal plane is severely restricted

by engaging isotropic adaptivity. In a deeper domain, or a two dimensional

example, the isotropic example of figure 3.7b would be coarser in the regions

away from the ice stream.
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(a) Anisotropic.

(b) Isotropic.

Figure 3.7: Meshes of adaptive simulations showing the difference be-
tween isotropic and anisotropic meshes. The isotropic meshes are obtained

by restricting the maximum permissible element aspect ratio to 2.
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3.5 Scaling

The simulations in this thesis were performed on a mixture of single and multi–

processor configurations. The highly idealised, two–dimensional simulations

were usually run on a single core, whilst the more numerically demanding cases

were run on multiple nodes on the Imperial College clusters [HPC]. Therefore,

reliable and comparable timing data is not readily available for most of the

simulations presented in this thesis. However, a limited scaling analysis has

been performed to demonstrate a) Fluidity’s ability to solve the full–Stokes

equations on multiple cores and b) the scaling performance of said model.

The simulation used for the scaling analysis was the three–dimensional ISMIP–

HOM experiment A (see section 3.6.1 for more details on the model setup),

with aspect ratio 40 and with a resolution of Nx = Ny = 80, Nz = 10. This

resolution was chosen, as it provides a number of nodes that can be used for

both the serial and 32–core parallel configuration. The choice of resolution is

important because choosing a resolution that is too fine will result in not being

able to run the problem in a reasonable amount of time with the smaller core

counts, and choosing too coarse a resolution will result in too few nodes per

processor being available in the parallelised case, making the communication

overhead of parallelisation even greater. The case used has a total of 38,400

tetrahedral elements.

Cores Time (hh : mm) Speedup Factor
1 03 : 58 1 -
2 02 : 50 1.39 1.39
4 01 : 31 2.59 1.86
8 00 : 59 3.97 1.5
16 00 : 40 5.85 1.48
32 00 : 21 11.25 1.92

Table 3.2: Timing and speedup for scaling analysis described in sec-
tion 3.5. The Speedup column represents the speedup with respect to the
serial run, whilst the Factor column is the speedup obtained from doubling

the number of cores used for each simulation.
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Figure 3.8: Scaling plot of Fluidity running simulation described in sec-
tion 3.5.

The results of the scaling analysis are plotted in figure 3.8 and also tabulated

in table 3.2. The table tabulates the time, calculated by taking the average

time per timestep of ten timesteps for each simulation. The speedup is the time

of each parallel simulation normalised by the time of the serial simulation and

is computed by Ti/T1, where Ti represents the time of each parallel simulation

and T1 the time of the serial run. The factor parameter is the speedup obtained

by doubling the number of cores and was calculated using Ti/Ti/2, where Ti

represents the time of each parallel simulation and Ti/2 represents the time

of the parallel simulation run on half the number of cores. This number is

significant because it is a measure of the efficiency of doubling the number of

cores.

The results of this analysis are only indicative of the Stokes model’s scaling

performance. For a thorough analysis, several factors need to be considered

including a) memory bandwidth, b) processor affinity, c) multi–threading, d)

I/O performance and e) other users also on the cluster. Given as there was
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no scope for controlling the above factors in this study, the results are not

presented as conclusive, but rather as an indication of approximate scaling

performance.

3.6 Ice sheet model intercomparison project

The ice sheet model intercomparison project for higher–order models, here-

after simply ISMIP–HOM, represents a suite of test experiments that form

a benchmark for model development [Pattyn et al., 2008]. Fluidity is used

to carry out these experiments and the results are reported in an attempt to

document its performance and suitability for ice sheet modelling.

ISMIP–HOM is formed of six testcases, named Experiment A to Experiment

F . All testcases are isothermal with no effect of temperature on the viscosity.

All except one of the problems are solved on simplified, idealised geometries.

Experiment E is the exception, a model of Haut Glacier d’Arolla, and forms

the one and only realistic testcase.

3.6.1 Experiment A – ice flow over a bumpy bed

This experiment simulates a slab of ice over a sloped, bumpy bed. The slope

is maximal in the x–direction and zero in the y–direction. The top surface

elevation, zs, is defined as:

zs(x, y) = −x tan(α), (3.39)

where α = 0.5◦ is the slope angle.

The slab of ice has a mean ice thickness of 1000m. The topography is a series

of sinusoidal bumps with an amplitude of 500m, resulting in an ice sheet that
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varies in thickness from 500m at its thinnest to 1500m at maximal depth. The

bottom topography, zb, for Experiment A, is defined as:

zb(x, y) = zs − 1000 + 500 sin(ωx) sin(ωy). (3.40)

The frequency of the basal bumps is ω = 2π/L with 0 ≤ x, y ≤ L, where L

represents the length of the domain in both the longitudinal and transverse

directions. The experiments are run for horizontal domain sizes ranging from

5km to 160km, with L = 5km, 10km, 20km, 40km, 80km and 160km.

The thickness of the ice slab does not increase with different values of L. The

aspect ratio of the domain thus changes from 5 to 160 as the domain length,

L, is increased. This allows an investigation on how different models behave

in regions of different aspect–ratios, as the aspect–ratio is thought to be a

control of ice sheet dynamics. The domain is illustrated in Figure 3.9.

Figure 3.9: Illustration of the top and bottom surfaces of the domain
for experiment A, with normalised longitudinal and transverse directions.

Colouring represents surface depth, indicating the domain is inclined.

Ice is considered frozen at the base, so a no–slip boundary condition, u(zb) = 0,

is prescribed at the bottom. The lateral boundaries are periodic in both the

longitudinal (x) and transverse (y) directions. Physically, this is equivalent

to simulating an ice sheet that is infinitely long and wide resting on a sloping

plane whose topography is repeated (tiled) in the same fashion as the topogra-

phy of the domain we are simulating. One requirement of periodic boundary

conditions is that the solution fields, and therefore the bounding and forcing

constraints applied, are continuous along the periodic edges. For Fluidity to
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run with periodic boundary conditions, a mapping must exist between corre-

sponding nodes on each periodic face. This imposes two restrictions on the

periodic faces. a) The number of nodes on the original and aliased face must

be equal and b) there must exist a mapping function for each node. These

restrictions need to be considered in the preparation stage of the simulation,

because the mesh needs to be designed appropriately. All periodic ISMIP–

HOM examples run with Fluidity have been run with faces that share the

same mesh (i.e. the mesh of the boundary along the plane x = L is identical

to the mesh of the boundary on the plane x = 0, and similarly for y = 0 and

y = L).

The periodic mapping for experiment A in the longitudinal direction is given

by: 
x′

y′

z′

 =


x− L

y + L tan(α)

z

 (3.41)

A similar mapping, that excludes the jump term tan(α), is used for the peri-

odicity in the transverse direction.

The parameters for experiment A are given in the ISMIP–HOM specifica-

tions [Pattyn and Payne, 2006], and are shown in table 3.3. It is noted that

for all experiments in this thesis, Fluidity is set up to follow the international

system of units (SI), despite Fluidity as a model being unit agnostic and the

user having the freedom to choose the system in which to solve the equations.

For example, although the deformation rate factor is commonly given in units

of Pa a−1 in glaciology, this is converted to Pa s−1 as the input to Fluidity.

Correspondingly, the timestep is also set in seconds, rather than years.

The results of experiment A are given in two forms:

• Maximum and minimum values of surface velocities for domains with

different aspect ratios are plotted against the aspect ratio, figure 3.10;
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Symbol Value Units
A 3.16887646154× 10−24 Pa−n s−1

n 3 none
ρ 910 kg m−3

g 9.81 m s−2

Table 3.3: Parameters used for experiment A of ISMIP–HOM.

• Contours of surface velocity are drawn as a function of normalised hor-

izontal displacements x and y, figures 3.11, 3.12 and 3.13.

The results are presented here and discussion of these results is deferred to

the end of the chapter (section 3.7).
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(a) x–component of velocity

(b) y–component of velocity

(c) z–component of velocity

Figure 3.10: Maximum and minimum values of surface velocity compo-
nents as computed with Fluidity, in metres per year, plotted against domain

aspect ratio, for ISMIP–HOM experiment A.
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(a) x–component, aspect ratio 5. (b) x–component, aspect ratio 10.

(c) y–component, aspect ratio 5. (d) y–component, aspect ratio 10.

(e) z–component, aspect ratio 5. (f) z–component, aspect ratio 10.

Figure 3.11: Contour plots of velocity components for domain with aspect
ratios 5 (left column) and 10 (right column), for ISMIP–HOM experiment
A, as computed with Fluidity. The indices 0 to 200 represent the normalised

distance x, y = 0 and L respectively.
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(a) x–component, aspect ratio 20. (b) x–component, aspect ratio 40.

(c) y–component, aspect ratio 20. (d) y–component, aspect ratio 40.

(e) z–component, aspect ratio 20. (f) z–component, aspect ratio 40.

Figure 3.12: Contour plots of velocity components for domain with aspect
ratios 20 (left column) and 40 (right column), for ISMIP–HOM experiment
A, as computed with Fluidity. The indices 0 to 200 represent the normalised

distance x, y = 0 and L respectively.
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(a) x–component, aspect ratio 80. (b) x–component, aspect ratio 160.

(c) y–component, aspect ratio 80. (d) y–component, aspect ratio 160.

(e) z–component, aspect ratio 80. (f) z–component, aspect ratio 160.

Figure 3.13: Contour plots of velocity components for domain with aspect
ratios 80 (left column) and 160 (right column), for ISMIP–HOM experiment
A, as computed with Fluidity. The indices 0 to 200 represent the normalised

distance x, y = 0 and L respectively.
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3.6.2 Experiment B – ice flow over a rippled bed

Experiment B varies from A in the form of the bottom topography used. The

topography of this testcase does not vary in the transverse direction, it is given

by (3.42) and illustrated in Figure 3.14.

zb(x, y) = zs − 1000 + 500 sin(ωx). (3.42)

Figure 3.14: Illustration of the three–dimensional domain for experiment
B.

Given the homogeneity of the domain in the transverse direction, this simula-

tion was run in two–dimensions. Results are shown in figures 3.15, 3.16 and 3.17.

Discussion of results is deferred until section 3.7.
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(a) Horizontal component of velocity

(b) Vertical component of velocity

Figure 3.15: Maximum and minimum values of surface velocity compo-
nents as computed with Fluidity, in metres per year, plotted against domain

aspect ratio, for ISMIP–HOM experiment B.
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(a) Aspect ratio 5. (b) Aspect ratio 10.

(c) Aspect ratio 20. (d) Aspect ratio 40.

(e) Aspect ratio 80. (f) Aspect ratio 160.

Figure 3.16: Profile of horizontal surface velocity, plotted against nor-
malised longitudinal distance, for simulations with aspect ratios from 5 to

160, for ISMIP–HOM experiment B, as computed with Fluidity.
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(a) Aspect ratio 5. (b) Aspect ratio 10.

(c) Aspect ratio 20. (d) Aspect ratio 40.

(e) Aspect ratio 80. (f) Aspect ratio 160.

Figure 3.17: Profile of vertical surface velocity, plotted against normalised
longitudinal distance, for simulations with aspect ratios from 5 to 160, for

ISMIP–HOM experiment B, as computed with Fluidity.
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3.6.3 Experiments C and D – ice stream flow

For experiments C and D, consider a slab of glacial ice, with a thickness of

1km on an inclined plane. These experiment vary from experiment A in two

significant ways:

• The bottom topography is flat, rather than bumpy;

• The ice is no longer fastened to the bottom, but allowed to slide.

A linear Rayleigh friction is applied at the bottom boundary (as described by

equations (3.13)). For experiment C, the friction coefficient, β2, is specified

as:

β2(x, y) = 1000 + 1000 sin(ωx) sin(ωy), (3.43)

where ω = 2π
L

is the frequency of the basal bumps and L is the length of the

domain, which varies similarly to experiment A, such that domains of aspect

ratios 5 to 160 are used. Experiment D is similar but removes the bottom

friction variation in the transverse direction, the bottom friction thus specified

as:

β2(x, y) = 1000 + 1000 sin(ωx). (3.44)

Figure 3.18 shows the friction coefficient for experiments C and D.

Given the similarity between experiments C and D, only the two–dimensional

experimentD was performed, the results to which are presented in figures 3.19, 3.20 and 3.21,

and discussed in section 3.7.
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(a) Experiment C.
(b) Experiment D.

Figure 3.18: Bottom friction coefficient, β2, for linear Rayleigh friction
law, as used in ISMIP–HOM experiments C and D.

(a) Horizontal component of velocity

(b) Vertical component of velocity

Figure 3.19: Maximum and minimum values of surface velocity compo-
nents as computed with Fluidity, in metres per year, plotted against domain

aspect ratio, for ISMIP–HOM experiment D.
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(a) Aspect ratio 5. (b) Aspect ratio 10.

(c) Aspect ratio 20. (d) Aspect ratio 40.

(e) Aspect ratio 80. (f) Aspect ratio 160.

Figure 3.20: Profile of horizontal surface velocity, plotted against nor-
malised longitudinal distance, for simulations with aspect ratios from 5 to

160, for ISMIP–HOM experiment D, as computed with Fluidity.
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(a) Aspect ratio 5. (b) Aspect ratio 10.

(c) Aspect ratio 20. (d) Aspect ratio 40.

(e) Aspect ratio 80. (f) Aspect ratio 160.

Figure 3.21: Profile of vertical surface velocity, plotted against normalised
longitudinal distance, for simulations with aspect ratios from 5 to 160, for

ISMIP–HOM experiment D, as computed with Fluidity.
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3.6.4 Experiment E – Haut Glacier d’Arolla

Experiment E forms the only realistic example in the ISMIP–HOM suite of

experiments. It is an experiment along the central flowline of a glacier in the

Swiss Alps, the “Haut glacier d’Arolla”, shown in figure 3.22.

Figure 3.22: The d’Arolla glacier in Switzerland. A section along the cen-
tre of this glacier was used as the domain for the ISMIP–HOM experiment
E. [”Arollagletscher”. Licensed under Creative Commons Attribution-

Share Alike 3.0 via Wikimedia Commons]

A digital elevation model (DEM) with elevations for the top and bottom sur-

faces was made available by the organisers of the ISMIP–HOM testcases [Pat-

tyn and Payne, 2006]. The DEM provided elevations to the nearest centimetre,

but had a horizontal resolution of 100m. The total extent of the glacier in

the longitudinal direction is 5km. A python script was written to read in

the DEM and construct the geometry of the domain in the Gmsh geometry
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format, which was then meshed using the Gmsh meshing algorithm [Geuzaine

and Remacle, 2009]. One such mesh, in relatively low resolution (40m element

edge length) and scaled in the vertical, is shown in figure 3.23.

Figure 3.23: Low resolution (40m edge length) mesh of the domain for
ISMIP–HOM experiment E, generated from digital elevation map. The
vertical dimension has been scaled by a factor of 2, for illustration purposes

only.

The same parameters were used for this simulation as the simulation of ex-

periment A, and are tabulated in table 3.3. The glacier is considered frozen

to the ground and therefore the no–slip boundary condition (3.12) is applied.

Results for experiment E are presented in figures 3.24, 3.25.

Figure 3.24: Results of ISMIP–HOM experiment E, computed with Flu-
idity, along the long profile of glacier Haut d’Arolla. The glacier colourmap
represents the pressure, whilst the arrows represent the glacier velocity at
steady state. The magnitude of the arrows represent the magnitude of

velocity and the direction of the arrowhead the velocity direction.

3.6.5 Experiment F – Free surface relaxation

The final experiment of ISMIP–HOM, experiment F , requires a prognostic,

periodic free–surface, a capability that Fluidity does not currently have. This
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(a) Horizontal component of velocity

(b) Vertical component of velocity

Figure 3.25: Surface velocity of the glacier Haut d’Arolla as computed
with Fluidity (ISMIP–HOM experiment E) at steady–state, with no–slip
bottom boundary condition. Figures shown velocity component, in metres

per year, plotted against the normalised longitudinal distance.

experiment could therefore not be undertaken.
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3.6.6 Mesh generation

The preparation phase of running the ice sheet models described in the previ-

ous section, required the generation of appropriate meshes. For an illustration

of the process of producing the meshes for experiments A to D, we will use

the example of a 2–D mesh for exercise B.

The domain to be modelled is shown in figure 3.26:

Figure 3.26: Domain for experiment B. The domain is inclined at an
angle α and has a sinusoidal bottom topography.

The desired geometry can be obtained with a series of extrusions and trans-

formations, beginning from a single node:

Extrude node in y–direction. This operation produces a line of length 1.

Extrude line in x–direction. The operation produces a square of length 1.

Mesh the square domain. The square domain is passed to Gmsh [Geuzaine

and Remacle, 2009], which produces a mesh of the unit square. This is

illustrated in figure 3.27.

Transform the domain. This lengthens the domain and produces the sinu-

soidal topography. While the above described extrusions are performed

using the Gmsh geometry module, this step is performed with a python

script.

Skew or rotate the domain. The domain is inclined at an angle α by skew-

ing the nodes, or by applying a rotation. The result of this is shown in

figure 3.28.

A more detailed description of how the layered and unstructured meshes were

obtained can be found in appendix B.
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Figure 3.27: Structured 2–D mesh, an intermediate step in the production
of the mesh of the domain shown in figure 3.26.

Figure 3.28: Transformed and skewed mesh of desired geometry.

We note that the mesh obtained in the above scenario has the following fea-

tures:

• Constant number of σ–layers, resulting in a higher effective resolution

in regions of thinner ice sheet depth and lower resolution in the regions

of maximum depth.

• The leftmost and rightmost boundaries have been scaled by the same

factor and thus can be related by a simple translation, ensuring there

are no issues introducing periodic boundaries in Fluidity.

• The vertically aligned nodes of the original cube have been preserved.

It must be noted that Fluidity is not restricted to domains that are vertically

aligned or that have the structure of the mesh in figure 3.28. In particular,

unstructured meshes can also be produced, as in figure 3.29. The mesh il-

lustrated in figure 3.29 is produced by altering the sequence of operations of
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Figure 3.29: Illustration of unstructured mesh for ISMIP–HOM experi-
ment B.

producing a mesh, in particular the geometry of the mesh is obtained before

being passed to the Gmsh library for triangulation. Alternatively, an unstruc-

tured mesh can be produced and then transformed. This results in a mesh

that is unstructured similar to the mesh in figure 3.29 but has the resolution

varying in the same manner as the mesh in figure 3.28 (i.e. node density

proportional to depth). Finally, Fluidity’s adaptivity library can be used to

produce meshes that conform to the solution field. Experiment B has been

run on all the different meshes that have been described in this section, with

results consistent with the results presented in section 3.6.2.

Experiment E, the only realistic case described in this chapter, was produced

by parsing a digital elevation model which contained the elevation of the top

and bottom boundaries along the centerline of the glacier. The mesh produced

was shown previously in figure 3.23. It is noteworthy that due to the unstruc-

tured nature of the mesh, Fluidity does not suffer from issues due to layers

of the mesh converging in regions of very shallow glacier depth. ‘Pinched’

regions can therefore easily be represented and modelled using Fluidity.

3.6.6.1 Mesh resolution for presented results

The results presented in this thesis for the ISMIP–HOM experiments A to D

were all run on meshes of the form shown in figure 3.28.

Meshes were generated by transforming a square (or cubic) domain. The

square is initially meshed by splitting it into Nx(×Ny)×Nz layers and further

splitting it into triangles (or tetrahedra). Table 3.4 describes the number of

layers for each aspect ratio:
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AR Nx, Ny Nz

5 40 10
10 40 10
20 40 10
40 60 10
80 90 10
160 135 10

Table 3.4: Table of number of layers for simulations of ISMIP–HOM
exercises.

The number of layers for each aspect ratio was chosen such that the two

conditions were met:

• The solution was accurate yet the computational cost was not pro-

hibitive. Mesh convergence was ensured by checking that increasing

the mesh resolution did not result in significantly different results.

• The element aspect ratio did not exceed approximately 15. It was ob-

served during initial runs that meshes with element aspect ratios exceed-

ing approximately 20 result in poorly conditioned matrices that were

harder to solve, and thus more computationally expensive.

For the glacier Haut d’Arolla, results presented were produced on a mesh with

10m resolution.

3.7 Discussion

The aim of this chapter is to describe and demonstrate the methods with

which Fluidity solves the three–dimensional, non–linear, non–Newtonian, full–

Stokes equations, using Glen’s flow law. The equations and their discretisation

as implemented in Fluidity are described in section 3.2, along with a brief

description of the solvers employed in Fluidity. The model is subjected to a

vigorous verification and validation process, by first performing a test using

the method of manufactured solutions, in section 3.3.1. This demonstrates
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that the Stokes model for ice sheet modelling is correctly implemented within

Fluidity, as both velocity and pressure converge at their theoretically expected

order.

Furthermore, the use of Fluidity’s dynamic, adaptive remeshing technology

is presented in a simulation of an idealised ice stream. This demonstrates

that Fluidity is capable of dynamically optimising the mesh by increasing the

resolution in regions of interesting dynamics, whilst lowering the resolution in

areas where it is not needed. Furthermore, it was shown that the anisotropy

of the adapted mesh offers the potential for even further reduction in overall

number of degrees of freedom compared to isotropic, unstructured meshes.

A scaling analysis was performed (section 3.5), which indicates that Fluidity

can successfully be run in parallel. The scaling performance demonstrated

that the scaling performance, although good, is far from ideal and falls below

the near–linear speedup expected of a state–of–the–art ice sheet model. We

note, however, a very promising result when doubling the core–count from

16 to 32, where a near double speedup was realised. Several reasons have

been identified for why the scaling analysis may have fallen short of expected

performance, primarily related to the non–exclusive use of the cluster on which

the analysis was performed.

Following this, a rigorous study was undertaken that presents Fluidity’s results

to the exercises of the Ice Sheet Model Intercomparison Study. Figure 3.30

offers one such comparison, showing the results of Fluidity in tandem with the

equivalent plot of the Elmer/Ice ice sheet model [Gagliardini and Zwinger,

2008]. The Elmer/Ice model is chosen, as it is a full–Stokes, unstructured

mesh, finite element model that took part in the original study. The use of a

similar discretisation method makes the comparison with Elmer/Ice the most

appropriate.

In figure 3.30 we observe that Fluidity exhibits both the same trends as

Elmer/Ice, as well as good quantitative agreement for experiment A. Similarly
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Figure 3.30: Comparison of Fluidity (left plot) with Elmer/Ice (right
plot) for maximum and minimum values of velocity x–component plotted
against the aspect ratios used in ISMIP–HOM experiment A. The right
plot is used here for comparison purposes and was taken from Gagliardini

and Zwinger [2008]

Figure 3.31: Comparison of Fluidity (left plot) with mean value of mod-
els that took part in ISMIP–HOM (right plot), for surface velocity x–
component plotted against the normalised longitudinal distance for exper-
iment B aspect ratio 80. The data for the plot on the right was extracted

from Pattyn et al. [2008].

good agreement is observed in the other tests (see figures 3.31 and 3.32), par-

ticularly in terms of trends. We do, however, make note the following caveat:

some of the high aspect ratio domains (with L = 80 and L = 160) are not

fully converged, based on the convergence criterion (3.38) with ε = 1× 10−9.

This is due to the increasing computational cost for the higher aspect ratio

domains. The cost is increased due to the increasing number of degrees of

freedom as well as the increase in element aspect ratio. It has been observed

that the larger the element aspect ratio, the harder the system is to solve (the
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Figure 3.32: Comparison of Fluidity (left plot) with mean value of mod-
els that took part in ISMIP–HOM (right plot), for surface velocity x–
component plotted against the normalised longitudinal distance for exper-
iment D aspect ratio 20. The data for the plot on the right was extracted

from Pattyn et al. [2008].

matrix is less well–conditioned) and thus the more computationally expensive.

In general, however, very good agreement was observed between Fluidity and

other ISMIP–HOM models.

A notable observation from a closer inspection at the results of experiments

A and B, is the influence of the aspect ratio on the maximum horizontal (x–

component) velocity (see figures 3.10 and 3.15). The larger the aspect ratio

(L/H) of the domain, the higher the maximum horizontal velocity at the sur-

face is. As the aspect ratio of the domain gets closer to unity (towards the

AR = 5 side of the abovementioned figures), the velocity profile along the

flowline appears smoothened. This is illustrated more clearly in figure 3.33.

The longitudinal profile of these experiments is such that the shallow ice ap-

proximation (SIA) predicts a surface velocity independent of the longitudinal

span of the domain [Pattyn et al., 2008] (and hence independent of the aspect

ratio). The surface velocity, according to SIA theory, is given by:

vx(zs) = vx(zb) +
2A

n+ 1
(ρg tanα)nHn+1, (3.45)

where vx(zb) is the velocity in the x–direction at the bottom of the domain
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(0 in this experiment), A is the ice–flow parameter, n = 3 is the Glen’s flow

exponent, α the domain inclination and H the height along the domain. The

surface velocity obtained by SIA theory is plotted in figure 3.33, and reaches a

maximal velocity of approximately 119ms−1. We note that all of the higher–

order models, including Fluidity, showed results that were dependent on the

aspect ratio of the domain. This behaviour is caused by the longitudinal stress

gradients arising from topographic features. These stress gradients have the

effect of ’smoothing’ the velocity profile, with the maximum velocity ranging

from around 100ms−1 at the highest aspect ratios to 10ms−1 at the lower

aspect ratios (where longitudinal stress terms become even more dominant).

At the lowest aspect ratio (AR = 5), the profile is almost flat, suggesting that

topographic features have minimal effect on the maximal velocity along the

domain.

Figure 3.33: Maximum surface velocity (x–component) plotted against
normalised longitudinal distance for experiment B. The solid lines indicates
the numerically obtained profile for the simulations of varying domain as-
pect ratio (5, 10, 20, 40, 80, 160). The dashed line indicates the result

obtained by shallow ice approximation (SIA) theory.



Ice Sheet Modelling 129

A second notable feature of the results of experiment B is the difference in

the tendency observed between the velocity profiles of AR = 5 and the rest

of the simulations. In AR = 10 to 160 the ice sheet decelerates when passing

over the bump and accelerates through the topographic trough; the opposite

behaviour is observed in the domain of AR = 5. The difference is easier to

see in figure 3.16 rather than 3.33, due to the range of the vertical axis. As

described in Pattyn et al. [2008], this difference is explained by the principle

of conservation of mass. Pattyn et al. [2008] argues the horizontal ice flux

can not be balanced by the vertical flux at the free surface, as the required

vertical velocity would be too large for the given depth. It must be noted that

this behaviour is an artefact of the diagnostic nature of these experiments, and

the behaviour would not be evident if the free–surface was allowed to respond.

Also notable is the fact that in the three–dimensional experiment A, where the

topography is rippled in the transverse, the flow is able to accelerate around

the bump, thus allowing the AR = 5 simulation to behave similarly to the sim-

ulations in domains with higher aspect ratios. We remind the reader that all

other full–Stokes models participating in the ice–sheet model intercomparison

study exhibited the same behaviour as Fluidity.

As a further example of good agreement between Fluidity and the benchmark

results, figure 3.34 shows a result obtained with Fluidity for the glacier Haut

d’Arolla, next to the equivalent result derived using the Elmer/Ice model,

from Gagliardini and Zwinger [2008].

A further observation regarding the use of Fluidity for ice sheet modelling is

the ability to choose between different meshing strategies for ice sheet sim-

ulations. We note that results for experiment B of ISMIP–HOM have been

obtained with a) fixed, layered, vertically aligned meshes (as those presented

for the ISMIP–HOM), b) fixed, unstructured meshes as well as c) dynamically

adaptive, unstructured meshes. Figure 3.35 shows a comparison of represen-

tative results from simulations with two different meshing setups. We can see

that despite the two simulations being run on different meshes, the result is

indistinguishable. We can therefore argue that for the purpose of modelling
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(a) Fluidity

(b) Elmer/Ice

Figure 3.34: Comparison of Fluidity result for ISMIP–HOM experiment
E with Elmer/Ice.

idealised ice sheets and glaciers, layering and/or vertically aligned nodes are

not essential, but rather that fully unstructured meshes can be used success-

fully.

The experiments described in this chapter lay the foundations for simulations

of more complicated, realistic simulations of Greenland that can be used for

glaciological purposes.
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Figure 3.35: Fluidity results of ISMIP–HOM experiment B using dynam-
ically adaptive (top two) and fixed, unstructured meshes (bottom two). The
colourmap relates to the magnitude of the x–component of velocity, in me-
tres per second. The colourplots, as well as their corresponding meshes are
from the 10th timestep of a simulation initialised with an ice sheet at rest.



CHAPTER 4

MODELLING OF THE

GREENLAND ICE SHEET

4.1 Introduction

Numerical modelling of ice sheets is a subject of growing interest due to the

potential role ice sheets could have on sea level rise in a changing climate [Gre-

gory and Huybrechts, 2006]. The full–Stokes equations have been shown to

offer the most accurate and true representation of ice sheet flow [Meur et al.,

2004]. The fourth assessment report of the Intergovernmental Panel on Cli-

mate Change made a statement that a poor understanding of the importance

of dynamic changes has limited the ability to put an upper bound on the

contribution of ice sheets to sea level rise by the year 2100 [IPCC, 2007]. It is

therefore essential that further investigations are undertaken in understanding

the dynamics and thermodynamics of these changes. Numerical modelling has

an important role in furthering our understanding of ice sheet dynamics.

132
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This chapter furthers the development of the full–Stokes modelling framework

described in chapter 3, by attempting preliminary idealised simulations of

Greenland, on a realistic domain.

4.2 Model setup

The three–dimensional, non–linear, non–Newtonian Stokes equations, discre-

tised with the finite element method as described in chapter 3 are used for

modelling the Greenland ice sheet.

A range of simulations of increasing complexity are performed, beginning with

a highly idealised simulation of a domain with the outline of Greenland and

a flat surface and bottom topography, and progressively moving to a realistic

domain of Greenland. Beginning from the flat domain, we introduce a realistic

hypsometry for the bottom surface only, and introduce the full Greenland

domain (with realistic top and bottom surfaces) after that. The meshes used

are described in section 4.3.

The model uses Glen’s flow law (3.4), as introduced in the previous chapter,

with ηu given by:

ηu =
1

2
A−1/nε̇(1−n)/n

e , (4.1)

where unlike previously (where a constant deformation rate factor was used)

we now use the temperature–dependant deformation rate factor:

A = A(T ) = A0e

(
−Q

R(T0+T ′)

)
, (4.2)
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where T0 is the melting temperature at low pressure (273.16K) and T ′ is the

temperature relative to the melting temperature and is given by T ′ = T −Tm.

T is the absolute temperature, and the melting temperature, Tm, is given by

the relationship Tm = T0−βp, where β is the Clausius–Clapeyron constant and

p the pressure. We note that Fluidity only uses the hydrostatic pressure for the

computation of the pressure melting temperature, a simplification justified by

the fact that the hydrostatic component forms the largest part of the pressure.

The other parameters (A0, Q,R) are as introduced previously. Parameters

used for the simulations of Greenland in this chapter are detailed in table 4.1.

We also make note that the pre–exponential factor is commonly found in

literature multiplied by a constant flow enhancement factor, E. This term

has been absorbed in the pre–exponential factor, as presented here.

Symbol Value Units
ρ , Density of ice 910 kg m−3

g , Gravitational acceleration 9.81 m s−2

n , Power law exponent 3
A0 , Pre–exponential factor 1.2× 10−12, if T ′ ≤ −10◦C s−1 Pa−3

5.748× 103, if T ′ > −10◦C
Q , Activation energy 60, if T ′ ≤ −10◦C kJ mol−1

139, if T ′ > −10◦C
β , Clausius–Clapeyron constant 9.8× 10−8 K Pa−1

R , Universal gas constant 8.314 J mol−1 K−1

Table 4.1: Physical parameters used for Greenland simulations described
in chapter 4.

4.3 Mesh generation

Full three-dimensional meshes of Greenland were generated, with a realistic

surface and bottom topography. The Shingle [Candy, 2014] library was used

to generate these meshes. The process of mesh generation requires a netCDF

file of the bathymetry of the region. Here the RTopo [Timmermann et al.,

2010] global bathymetry dataset has been used. A contour that traces the

coastline can be obtained by calculating the contour at elevation zero, within

Shingle. From the contour, a representation of the coastline is obtained. The
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(a) Plan–view of a three–dimensional
mesh of Greenland. The elements
have a characteristic edge length of

10km.

(b) Magnified region of the Green-
land mesh. The scale indicates a dis-

tance of 100km.

Figure 4.1: Mesh of realistic Greenland domain, at 10km resolution.
Meshes provided by Dr. Adam Candy.

coastline representation is then converted to a Gmsh geometry file outlining

the boundary of the region to be meshed. This geometrical boundary is in a

UTM projection of the Greenland boundary. From this, a two–dimensional

flat mesh is produced in the shape of Greenland. A uniform resolution mesh

is obtained (at 5km, 10km and 20km resolutions), with no refining near the

boundaries or based on the depth, although such meshes could also be gen-

erated. The final step in 3–D mesh generation involves extruding the mesh

to the top and bottom surfaces, to produce the meshes shown in figure 4.1.

These meshes have vertically aligned nodes, terrain following layers (σ–layers)

and are composed of three elements in the vertical. The realistic meshes of 5,

10 and 20km resolution of Greenland were generated with the support of Dr.

Adam Candy, of Imperial College London.
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(a) Mesh of Greenland, coloured by
the thickness of the ice sheet.

(b) Same as image on the left, pitched
at 60◦ and vertically scaled by a factor

of 100.

Figure 4.2: Mesh of a realistic Greenland domain, vertically scaled by a
factor of 100.

These meshes are fully–three dimensional and align with the surface of the ice

sheet and the Greenland topography. This is illustrated in figure 4.2, which

colours the domain according to ice sheet depth, and shows the domain at an

incline.

Prior to modelling the ice sheet on a realistic Greenland domain, simplified

domains with a flat top surface and progressively less smoothed topography

representation were used. One such mesh is shown in figure 4.3. The 2–D

flat mesh for these domains was obtained in a similar fashion to the tech-

nique described above, but using the GMT library. The extrusion to the bot-

tom was performed with Fluidity’s extrusion functionality and the topography

was smoothed using the multi–dimensional image processing library ndimage,

which is used to apply a Gaussian filter. The script that performs the smooth-

ing and provides Fluidity with the depth is described in appendix B.3.
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Figure 4.3: Domain with flat top (left) and smoothed Greenland topog-
raphy (right). The top surface is shown in blue and the bottom surface in
red. The topography was smoothed by applying a Gaussian filter with a
standard deviation, σ = 2.5. The meshes are scaled in the vertical by a

factor of 100.

4.3.1 Initialisation.

Due to the numerical cost of running a full–Stokes model in 3–D, the spin–

up period of a simulation the scale of Greenland is prohibitively expensive.

Initialising the model from rest (i.e. u = 0) results in transient waves that

could take up to 100 thousand years to be removed (one glacial cycle). This

presents a problem for modellers of ice sheets solving the full–Stokes system.

There are generally two accepted workarounds:

• Establish an initial condition by assimilating available information of

the present state.

• Perform a spin–up cycle using a model that is less computationally ex-

pensive, for example a model that uses the Shallow Ice Approximation.

The result of the spun–up simulation can then be used as the initial

condition for the more expensive model.

For Fluidity, we obtain the result of a 125 thousand year spin–up cycle, per-

formed using the SICOPOLIS [Greve, 1997] model. SICOPOLIS is based on

the Shallow Ice Approximation (SIA) and is therefore numerically much more
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efficient. The results of the spin–up were kindly provided by Dr. Hakkime

Seddik, postdoctoral researcher at the Glacier and Ice Sheet research group of

Hokkaido university. The data was provided in netCDF format and contained

both the temperature and velocity distribution of the ice sheet, at 200 years

before present.

4.3.2 Boundary conditions

The natural boundary condition (3.11) is applied to both the lateral and top

surfaces of the ice sheet. For the lateral sides, this is equivalent to a calving

front, where any ice that flows past the domain boundary is disregarded and

assumed to have calved off. This means that no special consideration is taken

for boundaries that extend into the ocean (ice shelves). For the top boundary,

this is equivalent to atmospheric pressure being applied to the top of the ice

sheet, where the pressure of the atmosphere is considered negligible compared

to the internal pressure of the ice. The prognostic free–surface, although

available in the Fluidity codebase, is not used in these simulations.

4.3.2.1 Bedrock boundary condition

A no–slip, or Rayleigh drag law is applied to the bottom boundary. In the

case of no–slip, the ice sheet is assumed frozen and fastened at the bottom.

With the Rayleigh drag law, the ice sheet is allowed to slip.

The drag applied to the ice sheet by the bedrock is a strong controlling factor

of the velocity of the ice sheet. The friction coefficient can vary by several

orders of magnitude in different regions of the ice sheet, depending on bedrock

roughness and basal lubrication [Jay-Allemand et al., 2011]. Recent studies

have used inverse methods to determine bedrock friction coefficients from sur-

face velocities [Gillet-Chaulet et al., 2012, Jay-Allemand et al., 2011]. This

capability is not available in Fluidity, we therefore use a constant friction

coefficient for the ice sheet.
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The effects of isostatic compensation are also neglected, i.e. the bedrock

hypsometry is static and rigid throughout the simulations.

4.3.3 Temperature

The temperature is initialised from the netCDF data containing the spun–up

data from SICOPOLIS. As we attempt to establish the velocity field of the

current state of the ice sheet, we do not solve for temperature evolution during

our simulations i.e. it is kept fixed. There is also, therefore, no geothermal heat

flux specified at the bottom boundary, where the temperature is prescribed

directly from the initialisation dataset. The temperature field is important in

our simulations, however, as it affects the non–linear viscosity term through

the temperature dependent deformation rate factor.

4.4 Model runs

The simulations began by running scenarios with a flat top surface and a

bedrock topography of progressively higher granularity. This was achieved

by progressively lowering the stencil of the Gaussian kernel in the filtered

topography. These simulations were necessary in order to investigate whether

there was a limit to the detail of the topography that could be represented

in the domain before the solvers were unable to solve the matrices. The

results are visually and glaciologically uninteresting as the ice sheet remains

primarily static, apart from ice at the lateral boundaries which is forced to

flow outwards. It is, however, a useful step in building up to the simulation

of Greenland using a realistic domain.

Following the simulations with a flat top, a realistic top surface was intro-

duced and simulations were run on the realistic meshes. These meshes were

illustrated in figure 4.1. The results are presented in figure 4.4c. The results

are visually indistinguishable, and the maximum value of velocity magnitude
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are the same. The simulations were run with a no–slip boundary condition at

the bedrock and on the fixed, uniform mesh with resolution of 10km.

(a) Serial. (b) Parallel.
(c) Domain decomposi-

tion for parallel run.

Figure 4.4: Comparison of serial (left) and parallel (center) runs, coloured
by the magnitude of the computed ice sheet velocity. The image on the right

shows the domain decomposition of the parallel run into 8 subdomains.

Following the comparison of serial and parallel runs, we proceed to run sim-

ulations of Greenland, with both fixed, uniform resolution meshes as well as

with mesh adaptivity.

The fixed mesh simulations were performed with various Rayleigh friction drag

coefficients. One such result is shown in figure 4.5. As was mentioned earlier,

the use of a constant, uniform bottom friction coefficient is unrealistic and

highly idealised. Studies have previously shown that simple parameterisations

of basal friction of ice sheets do not produce realistic velocity fields [Schäfer

et al., 2012]. We are therefore not able to perform a reasonable quantitative

comparison of the obtained results with field measured data. However, we

are able to comment on the trends of the solution. Considering figure 4.5 we

are able to capture the Greenland discharge network, where the ice streams

(high velocity flows shown with a red colouring) are prevalent. These are very

encouraging first results as the flow pattern is mostly accurate and all the
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Figure 4.5: Preliminary result of Fluidity on fixed, uniform, 10km reso-
lution mesh. The figure is coloured by the magnitude of velocity, with a
logarithmic scale (in units of [m s−1]). Linear Rayleigh friction applied to

the bottom boundary with friction coefficient 2× 108.

major features of Greenland are captured. The results show that reducing

basal lubrication (by increasing the bedrock friction coefficient) results in the

ice sheet flowing more slowly. Initial results also potentially suggest that at

these resolutions, the solution is mesh dependant. This is due to the 20km

resolution result varying from the 10km resolution. However, we can not state

conclusively that the solution is not mesh–converged, as further analysis would

be required. This could be performed by also running on the 5km resolution

meshes.

Finally, in an attempt to capture the dynamics of Greenland more accurately,

adaptive simulations were performed. A mesh of the simulation, after an

adapt, is shown in figure 4.6. We emphasise that the mesh shown in figure 4.6
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was obtained solely by Fluidity’s adaptivity library and based on the solution

after a few iterations on a uniform, 10km resolution mesh. Many of the

interesting regions of Greenland were captured and are now highly resolved,

whilst no user interaction was necessary to do so, and no prior knowledge of

where these regions may be.

Labelled on the mesh, are some selected Greenland glaciers. In particular, we

note that the Jackobshavn Isbrae (glacier), on the west of the domain marked

with the initials JG, one of Greenland’s fastest flowing outlet glaciers and

responsible for up to 6.5% of Greenland drainage to the ocean [Joughin et al.,

2004], has been identified as a region of interest and has therefore an increased

node density. East of JG, two other glaciers are noted. First, the Helheim

glacier (marked HG), which was subject to scientific interest in recent years

due to it’s rapid acceleration [Joughin et al., 2008] and also the Kangerlugssuaq

glacier (marked KG) have had resolution increased in their vicinity.

On the north eastern front, the Zacharia Isstrom (ice stream, marked ZI)

is not particularly well captured. Although we notice a small increase in

node density near the edge of the front, the high velocity ice stream is not

captured, as is evident in figure 4.5, where the ice sheet seems to slow down,

rather than accelerate and form an ice stream. This is similarly the case

for the icefjord Nioghalvfjersbrae (marked N). Although the reasons for this

should be further investigated, a possible explanation is that the surface and

bedrock hypsometry necessary for these two regions to be resolved, may have

been filtered and smoothed in the initial, 10km resolution mesh. In addition,

it may be that the friction coefficient used for the drag on the ice base is too

high to capture the ice stream.

4.5 Conclusions

Fluidity has been applied to idealised simulations of Greenland in a realistic

domain. Although further development is required before a realistic simulation
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can be undertaken with Fluidity (see section 5.1), several key model features

have been presented that can improve the state of current ice sheet modelling

efforts. These features include:

• The use of unstructured meshes that can better represent bedrock to-

pography and surface elevation, as well as the lateral boundaries of the

ice sheet.

• Dynamically adaptive meshing technology, which increases node density

in dynamically relevant areas, allowing for accurate, efficient simulations

across multiple scales.

Ice streams are narrow bands of ice within an ice sheet that flow much faster

than their surroundings. For most (but not all) ice sheets, ice streams are re-

sponsible for discharging the greatest amount of ice and sediment from within.

Their occurrence, but also their spatial and temporal stability, is central to

the dynamic behaviour of past, present and future ice sheets [Bennett, 2003].

Accurately resolving these critical ice streams requires resolutions higher than

those required for the rest of the domain, a problem to which unstructured

meshes offer the greatest benefit. Furthermore, as many significant ice streams

are not constrained by topographic features (these ice streams are also called

pure ice streams in the literature) predicting their location prior to a sim-

ulation is difficult. The ability, offered by dynamic adaptivity, to increase

resolution in the locality of ice streams whose location is unknown, is also

potentially significant. Pure ice streams, which are often the largest contribu-

tors to ice and sediment flux, usually exhibit patterns of instability, by either

shifting location (spatial) or undergoing cycles of flow activity (temporal). It

is with these dynamical processes in mind that we emphasise the potential

benefits of dynamic adaptivity to long–term ice sheet modelling.

One overlying question remains: Is Fluidity ready to be used for ice sheet mod-

elling from a glaciologists perspective? To answer this, a balanced overview of

the Fluidity model is required. Chapters 3 and 4 have presented a preliminary
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application of the Fluidity framework for modelling ice sheets, which has the

ability to generate and solve on realistic meshes. Its solvers are capable of run-

ning in parallel and solving the matrices that are obtained from discretising

continental scale glacial ice, whilst adapting the domain to ensure accuracy

and computational efficiency. The ability of unstructured, adaptive meshes to

accurately resolve ice streams has been demonstrated, and an overview of the

potential utility of such technology in large scale, long–term ice sheet mod-

elling has been outlined. However, several drawbacks hinder the confident

adoption of Fluidity as an ice sheet model. The Fluidity model solves the

full–Stokes equations, which although have been shown to be the most accu-

rate in determining the flow of ice sheets, are also the most computationally

expensive. For ice sheet scale simulations where the dynamics of interest occur

at time scales of a full glacial period (thousands of years), a model that solves

an approximation of the full–Stokes is likely to be more appropriate. Fluidity

is still in its early stages of development as an ice sheet model, and thus lacks

some other important features for ice sheet modelling. Namely, the choices for

lateral and basal boundary conditions are limited. For the lateral boundaries,

the ice sheet can either be considered constrained by a wall (with either a fixed

or friction boundary condition) or it can be considered as a calving–front. In

either case, Fluidity does not currently have the ability for lateral boundaries

to grow and retreat in response to forcing. Finally, Fluidity does not have any

inversion methods by which friction coefficients can be determined by sensi-

tivity studies. A technique that is becoming increasingly popular in ice sheet

modelling lately, is to use satellite inferred surface velocities to determine the

basal friction coefficients. This technique is not currently available in Fluid-

ity, where either a rough approximation of basal friction has to be used, or

the values of basal friction need to be obtained from a separate source. An

overview of the work required for addressing these drawbacks of Fluidity is

presented in section 5.1, which details the future work of this development

work.
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Figure 4.6: Mesh of Greenland after an adapt of the mesh in Fluidity.
The pre–adapt mesh was a uniform, 10km resolution mesh, as illustrated
in figure 4.1. Labelled are some notable glaciers of the Greenland ice sheet.
Clockwise from the topmost label: N , Nioghalvfjersbrae; ZI, Zacharia Is-
brae; KG, Kangerlugssuaq glacier; HG, Helheim Gletscher; JG, Jackob-

shavn isbrae.



CHAPTER 5

CONCLUSIONS

This thesis has described the development of coupling strategies for the ocean

– sea ice Fluidity–FESIM model (chapter 2). The development process first

involved a feasibility study where the use of the OASIS coupler was investi-

gated by coupling to festa, a simple FE model, prior to a prototype version of

Fluidity coupled using OASIS via an automatically generated exchange mesh

(section 2.2.4.3). Finally, Fluidity was coupled to FESIM using a bespoke

architecture, where the coupling subroutines were developed in–house.

The coupled model was then subjected to a series of verification and valida-

tion tests, in which successful second–order convergence was shown using the

method of manufactured solutions (section 2.4.1) and good agreement with

other models was found in a pseudo one–dimensional stress test (section 2.4.2).

Finally, in a test of the interaction of sea ice with currents in regions of dif-

fering sea ice concentrations, we demonstrate the realistic behaviour of the

coupled model. The development of the coupled model thus far, has laid the

foundations for further testing and development to produce a model that is

potentially as good as current state–of–the–art unstructured models.

146
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In chapter 3 we describe and demonstrate Fluidity’s ability to solve the full–

Stokes equations with non–linear viscosity, as applied to the modelling of ice

sheets and glaciers. The linearised and non–linear equations are shown to

converge at the correct order (section 3.3.1) and a simulation of an idealised

ice–stream (section 3.4) is used to demonstrate the usefulness of anisotropic

adaptivity in maintaining the accuracy of a simulation while substantially

decreasing the number of degrees of freedom and hence computational cost.

Fluidity’s results of performing a series of exercises taken from the ice sheet

modelling intercomparison project (ISMIP–HOM) were also presented (sec-

tion 3.6), showing good agreement with established ice sheet models. Idealised

simulations in realistic domains of Greenland are carried out in chapter 4. We

demonstrate the feasibility for Fluidity to undertake continental scale ice sheet

simulations and produce reasonable results where the trends of observed sur-

face velocities are in agreement.

Fluidity is very different to most current ice sheet models, as those models

typically employ lower order approximations of the Stokes and are solved on

structured grids. Although the full Stokes system is harder to solve, and

thus computationally more expensive, Fluidity’s dynamic, anisotropic mesh

adaptivity can potentially go a long way to offset these costs.

5.1 Future Work

5.1.1 Sea ice modelling

The coupling interface of the ocean – sea ice coupled Fluidity–FESIM model is

fully developed, yet the coupled model lacks the refinement of an operational

coupled model.

In particular, only one map projection is applied, restricting the meshes that

can be used for the ocean model to a three–dimensional domain on the sphere.

A potentially useful extension would include a generalisation of the sea ice
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model mesh definition algorithm to include ocean domains on flat surfaces, by

implementing other spherical projections.

Furthermore, the sea ice thermodynamics of the model remain largely untested.

As part of developing a coupled ocean – sea ice model, it is required for the

thermodynamics modules, including heat fluxes between the ocean and sea

ice, to be tested and validated. Only then can Fluidity–FESIM be released

to the scientific community for simulations that may lead to understanding of

coupled ocean – sea ice dynamics, or forecast studies.

5.1.2 Ice sheet modelling

The model described in chapter 4 uses a temperature–dependent viscosity

term. However, the temperature field is prescribed, rather than prognostic,

and thus heat is not advected or diffused across the domain. For the steady–

state simulations undertaken in this thesis, this is an acceptable compromise.

It is also a reasonable compromise for forecast studies on decadal scales, as

the temperature does not change rapidly enough to have significant impact

on the flowfield in a few decades, and the numerical cost of solving for tem-

perature advection is not always justified. Longer forecast studies, however,

on the scale of centuries and longer, require a prognostic temperature field

and geothermal heat fluxes specified at the bedrock. Although Fluidity has

the ability to implement a prognostic temperature field, the method would

require validating first.

Furthermore, all testcases demonstrated in this thesis have been with a static,

non–moving free surface. Future work should concentrate on testing the im-

plicit, prognostic free–surface methods described in Kramer et al. [2012], al-

ready implemented in Fluidity.

The flow of ice sheets is strongly controlled by the boundary conditions be-

ing applied. Correctly estimating bottom friction coefficients is therefore a

crucial component of successful studies of Greenland. One method recently
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used for estimating bottom friction coefficients involves an inversion study,

where an optimisation method is used to calculate the bottom friction co-

efficients [Gillet-Chaulet et al., 2012, Jay-Allemand et al., 2011]. Currently,

Fluidity does not have the ability to perform these inversion methods, and thus

only simplistic approximations of bottom friction coefficients can be used.

Further to correctly measuring the friction coefficients, various bottom friction

laws can be used to model the sliding of ice sheets. Currently only three

options are available in Fluidity: a) no–slip boundary condition where the ice

is fastened to the ground, b) linear Rayleigh friction law, which was applied

to all simulations described in this thesis that required a friction law and c)

quadratic Rayleigh friction law. A Weertman type friction law can also be

implemented and compared to other drag laws. A Weertman type friction law

is given in the form:

τ = Cum−1 · u, (5.1)

with m = 1
3

being the Weertman exponent. This friction law is commonly

used for modelling the flow of ice sheets and glaciers.
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APPENDIX A

STRUCTURED GRID
GENERATION

In the OASIS configuration file (CML file), information regarding the resolu-
tion (number of elements in each direction, num x, num y) and extent (mini-
mum and maximum) of longitude and latitude (lon min, lon max, lat min,

lat max) of the coupled domain are requested from the user. This informa-
tion is enough to fully define a structured grid and thus we eliminate the
need for the user to supply a structured mesh generated in gmsh. Instead,
the structured grid is generated automatically by Fluidity. This is done in
the gen def grid subroutine of <trunk>/main/test coupler.F90 of the cou-
pling development branch.

The algorithm is outlined and explained below:

1. Create Q1 element shape.

Each element is a quadrilateral (4 vertices, 2 dimensions) with linear
(degree=1) shape functions. The quadrature type associated with this
element is thus also to be accurate for degree one basis functions.

shape = make_element_shape (4,2,1,quadrature , stat=stat)

2. Allocate Q1 mesh.

From the extent information, the number of nodes and number of ele-
ments is known:

nodes = (num_lon +1) * (num_lat +1)

elements = num_lon * num_lat

159



Exchange mesh algorithm 160

(a) Element and node numbering convention.

(b) Node numbering for ith element.

Figure A.1: Element and node numbering convention for automatically
generated structured grid.

Along with the shape generated in the previous step, there is enough
information to allocate a mesh type. In steps 3 and 4 we set the con-
nectivity and coordinate locations for the mesh.

3. Set element nodes.

For each element in the mesh, we need to specify the node numbers
that consitute it’s vertices. This is done by looping over each element
and specifying it’s corresponding node numbers. For each element, the
corresponding node numbers are as illustrated in Figure A.1b.

Having set the element nodes, we have specified the mesh topology, but
the mesh geometry is yet undefined.

4. Set node locations.

To set the mesh geometry, the node locations (coordinates) need to
be specified. This is done by looping over each node, and setting its
coordinates.

This is done with the following code algorithm:

• Displacement between nodes is calculated:

disp1 = (lon_max - lon_min) / num_x

disp2 = (lat_max - lat_min) / num_x
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• Bottom left corner longitude value of each node in ascending lon-
gitude order is stored in corners lon(:,1), and bottom left corner
latitude value of each node in ascending latitude order is stored in
corners lat(:,1):

do i = 1, num_x

corners_lon(i,1) = lon_min + disp1 * (i-1)

enddo

do i = 1, num_y

corners_lat(i,1) = lat_min + disp2 * (i-1)

enddo

• Bottom right corner longitude value of each node in ascending lon-
gitude order is stored in corners lon(:,2), and top left corner lon-
gitude value of each node in ascending latitude order is stored in
corners lat(:,2):

corners_lon (:,2) = corners_lon (:,1) + disp1

corners_lat (:,2) = corners_lat (:,1) + disp2

• The coordinates of each ith node can therefore be specified by:

do i = 1, nodes

i1 = mod(i,( num_x +1))

i4 = 1

if (i1 == 0) then

i1 = num_x

i4 = 2

end if

i2 = floor ((i-1) / (num_x +1) ) + 1

i5 = 1

if (i2 == num_y +1) then

i2 = num_y

i5 = 2

end if

call set(coord ,i,(/ corners_lon(i1,i4), corners_lat(i2 ,i5) /) )

end do

5. Extract Q0 mesh from Q1 mesh.

To generate a Q0 femtools mesh type, the Q0 mesh needs to be extracted
from the Q1 mesh (defined above). This is done using:

shape = make_element_shape (4,2,degree=0,quadrature , stat=stat)

Mesh_Q0 = make_mesh(Mesh_Q1 , shape=shape , &

continuity=-1, name=’’StructuredMeshQ0 ’’)

where this time we specify a different element shape, that of discontin-
uous elements (degree = 0).

6. Specify node locations of Q0 mesh, at the center of the elements.

This is done similarly to step 4, shifted half a displacement, disp, such
that the new node is located in the center of the element.



APPENDIX B

ICE SHEET MESH GENERATION

B.1 Layered mesh generation

This section describes in more detail the process overviewed in section 3.6.6.
It describes a process of producing meshes for ISMIP–HOM experiments A
to D. It produces layered meshes and can be used for both two– and three–
dimensional meshes.

We first generate the two extrusions, by processing the following script with
the Gmsh geometry module:

dy=YY;

dx=XX;

Point (1) = {0, 0, 0, 1.0};

Extrude {0, -1, 0} {

Point {1}; Layers{dy};

}

Extrude {1, 0, 0} {

Line {1}; Layers{dx};

}

//LEFT

Physical Line (1) = {1};

//RIGHT

Physical Line (2) = {2};

// BOTTOM

Physical Line (6) = {4};

//TOP

Physical Line (8) = {3};

// meshed surface

Physical Surface (10) = {5};

where YY and XX represents the number of layers in the vertical and horizontal
directions, respectively. At this stage we also specify the physical boundary
IDs that are used in Fluidity to specify the appropriate boundary conditions.
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We can then invoke the Gmsh meshing module on the above domain to obtain
the mesh illustrated in figure 3.27.

The mesh, now in Gmsh format, is tranformed to the Triangle mesh format
using the gmsh2triangle tool, available in the Fluidity trunk.

The Triangle file that contains node locations is then read in by a python
script that applies a transformation to the node locations. The section of the
script that applies the transformation is included:

for line in cubefile:

if counter:

hold_S = line.strip (). split ()[0]

X0,X1 = line.strip (). split ()[1:3]

X = float(X0)

Y = float(X1)

X = domain_extent*X #Horizontal transformation

Y = 1000.0 * Y #Vertical transformation

Y = -X*tan_alpha + Y - (Y/2.)* sin(omega*X) # Skew operator

line = hold_S +’ ’+str(X) +’ ’+ str(Y) + ’\n’

counter -= 1

if search_nodes:

counter = int(line.strip (). split ()[0])

search_nodes = False

print counter , ’nodes.’

meshfile.write(line)

B.2 Unstructured mesh generation

This method can be used for two–dimensional meshes only, and produces
meshes that are unstructured. It involves generating the geometry of the
meshed region by looping around the boundary. This method was used for
the two dimensional meshes of exercises B, D, as well as the realistic glacier
simulation of the long profile of Haut d’Arolla, exercise E.

The method involves generating a geometry representation of the mesh, which
can be passed to Gmsh Geuzaine and Remacle [2009] for meshing:

The 2–D ISMIP–HOM experiment B mesh will be used here as an example.
We begin by writing points along the sinusoidal bottom boundary:

while x>0:

writepoint(x, -x*tana - 1000 + 500* math.sin(omega*x), 0.0, id_count)

id_count += 1

x -= sep

where the sep variable holds the point resolution and x is the horizontal
displacement. The writepoint function writes a point in the Gmsh geometry
definition format, and is defined as:

point_temp=’’’

Point(PID) = {XX ,YY,ZZ,dd};’’’

def write_point(X,Y,Z, pid):

meshfile.write(point_temp

.replace(’PID ’,str(pid))
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.replace(’XX ’,str(X))

.replace(’YY ’,str(Y))

.replace(’ZZ ’,str(Z)))

The whole domain can be traced in a similar manner. For a copy of the full
scripts used to generate the unstructured meshes for ISMIP–HOM experi-
ments B, D and E, readers are asked to contact the author.

B.3 Topography smoothing for Greenland

The process involves applying a Gaussian filter to the topography of the
RTopo [Timmermann et al., 2010] netCDF file. This is applied with the
appended script, where the get_depth function returns the smoothed depth at
the coordinates [x, y]. Gaussian filter is applied using the multi–dimensional
image processing library ndimage.

from scipy.io import netcdf

import scipy.interpolate

from scipy import ndimage

nc = netcdf.netcdf_file(’grl.nc ’,’r’)

ex = nc.variables[’xi ’][:]

why = nc.variables[’eta ’][:]

values = nc.variables[’zm ’][:][:]

filtered_values = ndimage.filters.gaussian_filter(values , 1.0)

max_depth = filtered_values.max()

interpolator = scipy.interpolate.RectBivariateSpline(ex, why , filtered_values)

def get_depth(X):

return interpolator(X[0], X[1]) - max_depth - 40.0
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