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Summary 

In this thesis, we explore the use of graphene incorporated onto indium tin oxide (G/ITO) as a 

structural template to modify the orientation of copper phthalocyanine (CuPc) molecules for 

organic photovoltaic (OPV) device applications. We also investigate the effectiveness of 2,3,5,65

tetrafluoro57,7,8,85tetracyanoquinodimethane (F45TCNQ) as a work function modifier for G/ITO 

without compromising the templating properties of graphene. Photoemission spectroscopy (PES) 

is employed to assess the electronic properties at the anode5CuPc interface, while X5ray 

diffraction (XRD) and near5edge X5ray absorption fine structure (NEXAFS) are used to 

determine the molecular orientation of CuPc. OPV devices are fabricated to attempt to correlate 

the observations at the microscopic level with the macroscopic device performance. 

First, we investigate the electronic properties of CuPc deposited on G/ITO and ITO using PES. 

While the interaction between CuPc molecules and ITO and G/ITO is similar, the hole injection 

barrier (HIB) is ~0.9 eV for CuPc/G/ITO as compared to 0.5 eV for CuPc/ITO. Therefore, further 

modification of G/ITO to reduce the HIB is required. The XRD spectrum of CuPc molecules 

deposited onto graphene grown on copper foil (G/Cu) verifies that graphene is an effective 

structural template, causing CuPc molecules to ‘lie’ on the substrate. NEXAFS data shows that 

the orientation of CuPc molecules changes from ‘standing’ on ITO to ‘tilted’ on G/ITO.  

Next, the effectiveness of F45TCNQ deposited on ITO and G/ITO as a work function modifier is 

assessed. A thin layer of F45TCNQ is able to increase the substrate work function to ~5 eV, which 

is close to the ionization potential of CuPc molecules. This suggests that barrierless extraction of 

holes from CuPc into F45TCNQ modified ITO or G/ITO may be possible. F45TCNQ molecules 

are found to be predominantly tilted on G/ITO, suggesting that the templating property of 

graphene may be propagated through F45TCNQ molecules. CuPc molecules deposited onto F45

TCNQ/G/ITO attain a ‘lying’ configuration, confirming that the templating property of graphene 



 

xi 
 

is preserved despite the inclusion of a layer of F45TCNQ. The HIB is dramatically reduced to ~0.2 

eV for CuPc/F45TCNQ/G/ITO, and ~0.1 eV for CuPc/F45TCNQ/ITO. Optical absorption of 

templated CuPc molecules over the visible range is enhanced by over 40% as compared to the 

non5templated molecules. Therefore, the structure of F45TCNQ/G/ITO appears to be a potential 

anode design to improve OPV device performance. Our test cells however do not show an 

improvement in OPV parameters due to the poor quality of transferred graphene, and the high 

series resistance in our unoptimized OPV device. 

Finally, the diffusion of F45TCNQ through a CuPc film is studied using time5of5flight secondary 

ion mass spectrometry (TOF5SIMS). The F5 depth profiles establish that a higher quantity of F45

TCNQ molecules diffuse into CuPc on the G/ITO sample. This is attributed to the weaker 

interfacial adhesion between F45TCNQ and graphene, and the crystallinity of the templated CuPc 

film. The quantity of diffused F45TCNQ in the G/ITO sample is only about 0.2 mol%. At this 

dopant concentration, the conductivity of the film should increase; thus doping of the whole 

organic film may be favourable for OPV devices. 
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Chapter 1 : Introduction 

This chapter serves to provide an overview of the key areas relevant to this thesis. To begin with, 

an introduction to organic solar cells and its basic working principles will be briefly presented. 

Following which, structural templating as a method to control the molecular orientation of the 

donor molecules, and the importance of energy level alignment in an organic solar cell will be 

discussed to provide a background for the work in this dissertation. Lastly, the structure of copper 

phthalocyanine (CuPc) molecules, which will be used extensively in this investigation, will be 

described. 

1.1 Organic Photovoltaics Devices 

The harvesting of energy directly from sunlight using photovoltaic devices (PV) is an essential 

component in renewable energy production. PV using organic semiconducting (OSC) materials, 

or organic photovoltaic (OPV) devices, have attracted much attention since Tang demonstrated a 

~1% power conversion efficiency (PCE) in 1986 using a single donor/acceptor (D/A) 

heterojunction.1 Coupled with the potential for low cost production, low weight, increased device 

lifetimes, and tuneable electronic and structural properties, OPV devices are increasingly popular 

as an energy source.2–7  Although rapid improvements have been made in OPV devices over the 

past three decades with the PCE up to ~8% for single heterojunction solar cells,6–8 and ~10% for 

tandem solar cells,9 these values fall well short of the 24% achieved for crystalline silicon5based 

PV.10 Therefore, considerable research has to be undertaken to improve the performance of OPV 

devices to make them commercially viable. To design strategies for device improvement, it is 

necessary to understand the basic working principles and intrinsic limitations of OPV devices. 

For this dissertation, we will focus on phthalocyanine5based small molecule OPV devices as they 

have well5defined molecular structures, easily achieved chemical purity and better batch5to5batch 

reproducibility.6 In particular, they serve as well defined systems and are compatible with 
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vacuum based deposition systems for the investigation of fundamental interface energetics and 

structural properties.  

1.1.1 Basic Properties of OPV Devices 

A basic OPV device consists of a transparent front anode through which light enters the device, 

an active layer of p5type donors and n5type acceptor OSC materials, a back cathode, and optional 

intermediate layers such as electron or hole blocking layers (Figure 151). The materials used for 

each layer in this dissertation are labelled in Figure 151. The ability of OSC materials to absorb 

visible light and transport charges is due to the hybridization of the carbon atoms, leading to the 

formation of π5conjugated electron systems.11,12 The main (idealized) processes for converting 

light into energy can be described in the following steps: 1) Absorption of photons by the active 

layer, leading to the formation of excitons. 2) Diffusion of the excitons towards the D/A interface, 

3) separation of the excitons into Coulombically bound electron5hole pairs, and subsequently into 

free charges due to an energetic offset. 4) Subsequently, charge transport to the electrodes with 

the aid of a built5in electric field that originates from the different work functions of the chosen 

electrodes and 5) collection of the charges at the electrodes.13–15 

There are several challenges involved with OSC materials16 that limit the current efficiency of 

OPV devices as compared to inorganic PV. OSC materials have low dielectric constants ε (ε 

~4.5),2,17,18 resulting in exciton binding energies (Eb) of up to 1 eV.19 Therefore excitons are 

unable to dissociate immediately into free charges upon formation. The excitons have to diffuse 

to the D/A interface, without recombining, where a sharp potential drop at the interface results in 

charge separation.1 This process is limited by the exciton diffusion length of around ~10 nm,20 

which is smaller than the thickness of the film required for efficient light absorption.2,17,21 OSC 

materials are associated with low carrier mobilities typically between 1055 – 1051 cm2/Vs due to 

the limited π5orbital overlap and numerous defects in the (poly)crystalline film. 
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Over the years, strategies have been developed to enhance the absorption strength and the exciton 

diffusion length, the efficiency of charge separation at the D/A interface and charge carrier 

mobility. These strategies include the chemical synthesis of new materials, improving the design 

architecture of OPV devices, controlling the structure and crystalline order, and optimizing the 

interface electronic properties.2,6,7,9,15,18,21–25 For example, using small molecules with the donor 

and acceptor groups incorporated in a single unit has shown to be an efficient method to increase 

device performance through efficient exciton transport and separation.6,9 In terms of design 

architecture, bulk heterojunction PV which consists of an interpenetrating network of  donor and 

acceptor materials in the active layer, reduces the distance between an exciton and a D/A 

interface without compromising the optical absorption of the film.22,23 Tandem solar cells are able 

to capture a wider spectrum of light by utilizing two complementary stacked solar cells.26 

Interface layers may also be introduced at the electrodes (Figure 151). These layers may serve 

several purposes, including limiting charge recombination at the electrodes, adjusting the 

energetic barrier height and preventing physical and chemical damage between the electrodes and 

the active layers.15 They can also improve OPV devices performance by controlling the molecular 

Figure 1-1 A schematic drawing showing the typical layers in an OPV device. The materials used in this dissertation 
are annotated in the diagram; for the intermediate layers, the front layer is graphene and F45TCNQ, and the back layer 
is BCP. A planar heterojunction is shown for simplicity. Light enters the cell from the anode side.  
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orientation of the organic film through structural templating.27–29 More details regarding structural 

templating in planar heterojunction OPV devices (Figure 151), which will form the backbone of 

this thesis, are presented in the next section. 

1.1.2 Structural Templating in OPV Devices 

Structural templating in OPV devices refers to the control of molecular orientation and 

crystallinity of the active layer film by altering the surface property of the substrate, such as 

through the introduction of an interfacial (template) layer. OSC films are made up of individual 

molecules held together by weak Van der Waals interactions; therefore, their physical properties 

are dependent on the coupling between adjacent molecules. Furthermore, the anisotropy inherent 

to planar OSC molecules implies that charge and exciton transport depends on the orientation of 

the molecules. For example, the peak charge mobility in planar copper phthalocyanine (CuPc) 

thin films is found along the one5dimensional stacking axis (Figure 152) due to enhanced 

intermolecular orbital overlap. High hole mobility of around ~1 cm2/Vs has been observed along 

the stacking direction,30,31 while that between stacks is estimated to be 1053 cm2/Vs.32 The works 

by Rand et al.
28 and Irkhin et al.

33 reveal that exciton diffusion is also enhanced along the 

stacking axis of planar molecules. Furthermore, the relative orientations of the donor and acceptor 

molecules in OPV devices affect the coupling at the D/A interface which has direct impact on the 

charge separation efficiency.28,34 Optical absorption by planar organic molecules is likewise 

anisotropic since it depends on the overlap between the transition dipole moment and the electric 

field vector. For planar phthalocyanines, stronger optical absorption in the visible range is 

observed when the molecules are perpendicular to the incident beam as the transition dipole lies 

in the plane of the molecule.28,29,35 Therefore, the thickness of the active layer required to absorb 

the incoming photons can be reduced, consequently reducing the distance between the excitons 

generated and a D/A interface. In view of the simultaneous enhancement of these properties by 
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controlling the molecular orientation of the active layer, structural templating is a promising route 

to improving OPV device performance. 

For planar heterojunction OPV devices, it is desirable for the planar donor molecule within thin 

films to stack with their molecular planes parallel to the substrate, i.e. ‘lie flat’ on the substrate 

[Figure 152 (b)]. In this orientation, exciton and charge transport is favoured in the vertical 

direction (perpendicular to the electrodes), charge separation at the D/A interface is enhanced, 

and the light absorption strength is increased. However, phthalocyanines as the donor layer tend 

to pack with their molecular planes perpendicular to the electrode [typically indium tin oxide 

(ITO)] substrate, or ‘standing’ orientation as shown in Figure 152 (a), due to stronger 

intermolecular than interfacial interactions.36 Examples of structural template that have been used 

to modify the orientations of phthalocyanines such that the molecules lie parallel to the substrate 

include perylene53,4,9,105tetracarboxylic dianhydride (PTCDA),24,37–39 pentacene,40 copper(I) 

iodide (CuI),28,29 and graphene.32,41–43 Regardless of the template layer, the underlying principle 

that bestows the templating ability originates from the stronger template layer5molecule 

interaction.  

Figure 1-2 Schematic drawings showing the effect of structural templating on planar molecules. Individual 
molecules are shown and the direction of the stacking axis is indicated by the dashed arrow. (a) ‘Standing’ 
orientation of the molecules before templating, and (b) the ‘lying’ orientation with the inclusion of a template layer. 
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While templating the donor layer in OPV devices has several advantages as detailed in the 

preceding paragraphs, it should be noted that this may not translate directly into improved device 

performance. This is because 1) the interfacial energetics may be disrupted with the insertion of 

the template layer, 2) the optical absorptivity by the template layer may be too high, or the layer 

is opaque, 3) the crystallinity or morphology of the donor layer is modified, and 4) unfavourable 

chemical interaction between the template and active layers (or substrate and template layer) may 

occur. Using a PTCDA structural template for a CuPc5fullerene OPV device, Sullivan et al. 

observe an increase in short circuit current (Jsc) for the templated (lying) CuPc molecules as 

compared to a reference unmodified OPV device.24 This has been attributed to the improved 

charge mobility perpendicular to the substrate. However, an insulating PTCDA layer with a deep 

HOMO level hinders effective charge extraction at the anode by introducing a ~1.5 eV barrier, 

consequently reducing the open5circuit voltage (Voc). Separately, Lassiter et al. note that the RMS 

roughness of CuPc increased by a factor of more than two by introducing a PTCDA layer, and the 

surface becomes more uneven.37 The absorption spectrum of PTCDA overlaps with the 

absorption of phthalocyanine molecules, thereby reducing the amount of reaching the active layer 

in organic solar cells by ~20% for 10 nm thick PTCDA templating layer.38 Pentacene structural 

template has a more favourable energy level as compared to PTCDA, but causes the morphology 

of H2Pc to change dramatically from elongated crystallites of ~200 nm in length, to ~30 nm 

spherical crystallites with numerous grain boundaries.40 Thus there was no improvement in the 

overall PCE of the device. In the past two years, CuI has been discovered as a potential structural 

template layer. To date, reports have shown that it can simultaneously raise the work function of 

ITO, enhance light absorption, and smooth the rough surface of ITO.28,29 A drawback however is 

that slow growth rates of ~0.05 Å/s is required for the deposition of CuI, or undesirably large 

crystals may form which can cause shorting in OPV devices.44 These examples indicate that in 

order for structural templating to realise its full potential, the layers have to be carefully chosen, 

or further modifications (e.g. annealing, surface functionalization etc.) may be required. 



 

7 

 

More recently, graphene has been used as a structural template.32,41–43,45 Graphene is a two5

dimensional single layer of carbon atoms arranged in a honeycomb structure. It is chemically 

inert and thermally stable,46 absorbs only ~2.3% of visible light per layer and has uniformly high 

transmittance in both visible and IR regions.47 Furthermore, graphene sheets show low interfacial 

contact resistance with organic materials46 and similar work function range as ITO.42,45 These 

properties suggest that graphene is well5suited as a template layer in OPV devices without 

introducing high resistance charge injection barrier and reducing the amount of  light transmitted 

to the active layer. Using graphene as a template layer will be the focus of this thesis. 

An important consideration concerning the change in orientation of the donor molecules is the 

modification of the energy level of the molecules. The dependence of the ionization potential (IP) 

energy on the orientation of molecules has been reported.48,49 For CuPc molecules, a difference of 

up to 0.4 eV between the lying and standing orientations have been observed due the oriented C5

H dipoles at the exposed surface for the standing orientation.50,51 This directly affects the 

energetic offsets at the D/A interface,52 and can contribute to a build5up of holes at the electrode. 

The importance of the energy level alignment in OPV devices will be briefly covered in the next 

section. 

1.1.3 Energy Level Alignment in OPV Devices 

An OPV device is made up of several interfaces between materials that have different electronic 

energy levels. The respective energy levels are crucial in determining the efficiency of charge 

separation and collection. Here we briefly mention some of the essential energetic considerations. 

The difference in work functions between the front anode and the back cathode creates an internal 

field in an OPV devices which aids in the separation of the photoinduced charges at the D/A 

interface.25,53 The work function of the front (back) electrode is usually larger (smaller) than the 

back (front) electrode so that holes (electrons) are collected at the front (back) electrode. A 
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reverse order in the magnitude of the work functions would cause charges to flow in the opposite 

direction, such as in an inverse OPV device. The built5in electric field from the electrodes alone is 

insufficient to overcome Eb; therefore an additional potential drop at the D/A interface is required 

for exciton separation as shown in Figure 153. If Eb is smaller than the lowest unoccupied 

molecular orbital (LUMO) offset between the donor and acceptor (LUMOA 5 LUMOD), exciton 

separation at the D/A interface is favoured (Figure 153).53 The difference in HOMOD 5 LUMOA is 

also correlated to the maximum Voc attainable.3,54
 

After the charges have separated and diffused to the electrodes, the energy offset between the 

organic layer and the electrode can limit the charge collection efficiency and recombination of 

charges. Ideally an ohmic contact between the work function of the anode (cathode) and the 

HOMO (LUMO) of the donor (acceptor) molecule is desirable for barrierless charge extraction. 

The anode (ITO) portion of an OPV device will be investigated in this thesis. We propose that 

complementary strategies may apply to the cathode to reduce the barrier for charge extraction. 

For phthalocyanines and commonly used polymers in OPV devices, the HOMO level is usually 

>5 eV55 while the work function of ITO ranges from 3.7 eV – 5.1 eV.56–60 To reduce the energy 

Figure 1-3 Schematic drawing showing the energy levels in an OPV. Eex and Eb refer to the Coulombically bound 
exciton energy and exciton binding energy respectively. The HOMO and LUMO positions of the donor (subscript D) 
and acceptor (subscript A) materials, and the HIB are also shown. The dashed arrows in the donor and acceptor bands 
indicate the directions of the hole and electron diffusion respectively. 
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gap between the HOMO of the donor and the work function of the anode, or hole injection barrier 

(HIB), high ITO work function is desirable. The significant variability in the anode work function 

necessitates that, to be commercially viable, consistent and reliable methods of adjusting the 

substrate work function to ~5 eV are required to ensure reproducibly high performance between 

different batches of OPV devices. This can be accomplished by exposing the ITO surface to 

plasma or acid treatments,56,57,61 or by coating the ITO with high work function materials 62 

including, but not limited to, the polymer poly(ethylenedioxythiophene) doped with 

poly(styrenesulfonate) (PEDOT:PSS),63 metal oxides64,65 such as MoOx and V2O5, and small 

molecules to manipulate the surface dipole66 like 2,3,5,65Tetrafluoro57,7,8,85

tetracyanoquinodimethane (F45TCNQ).67 While these interfacial materials may be successful at 

increasing the effective sample work function, they may also suffer from some drawbacks. For 

example PEDOT:PSS is highly acidic and has been reported to corrode ITO and organic layers68 

and it has non5uniform conductivity throughout the film.69 The work function of the metal oxide 

MoOx is reported to be unstable in air and moisture, decreasing by over 1.2 eV due to exposure to 

air,70 while F45TCNQ is found to be able to diffuse through organic small molecule active 

layers.71 Thus, careful selection of these materials is crucial to minimize the detrimental effect on 

the OPV device system. 

As a concluding statement, it should be noted that the energy levels discussed in this short section 

assume an idealised case of flat band energy levels. However, this is often not the case due to 

electronic coupling and band bending at the D/A interface,34,42 the formation of surface or 

interface dipoles72,73 etc. for the organic5organic heterojunction interfaces.50 Comprehensive 

insights into the processes at the various interfaces can be found in the literature.74,75 
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1.2 Structural Properties of CuPc  

CuPc (chemical formula C32H16CuN8) is a planar, highly symmetrical small molecule with lateral 

dimensions of around 1.4 nm76 as shown in Figure 154 (a). They are π5conjugated systems with 

electrons delocalised around the aromatic structure. CuPc molecules belong to a class of metal5

organic molecules which possess semiconducting properties.77 Chemical flexibility of this class 

of molecules allows tailoring of the physical, electronic and optical properties by altering the 

central metal ion or periphery atoms.78 CuPc and other phthalocyanine molecules absorb strongly 

in the range of 620 – 720 nm with high extinction coefficient in the range of 105 Lmol51cm51.79 

Therefore these molecules were used as dyes and pigments due to their intense blue colour prior 

to the discovery of their semiconducting properties.78 Since then, research into phthalocyanines 

has progressed to find applications in optoelectronic devices and field effect transistors to name a 

few examples.1,27,80–84 These molecules have great potential in organic semiconductors since they 

are low cost, easy to purify and deposit, and are thermally and chemically stable.85 

CuPc molecules pack cofacially to form a one5dimensional columnar structure as shown in Figure 

154 (b), held together by intermolecular Van der Waals and π5π interactions. The π5π orbital 

Figure 1-4 (a) Chemical structure of a CuPc molecule. The structure consists of carbon atoms (grey), nitrogen atoms 
(blue) and a central Cu (red). (b) Geometric illustration of a CuPc column, and (c) a brick5stack arrangement of the 
one5dimensional CuPc column as proposed by Hoshino.86 The grey shaded area in (c) represents a 25dimensional unit 
cell. 
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overlap between adjacent molecules enables electron delocalization along the stacking axis of the 

column. There is more than one crystalline form of CuPc (polymorphism), but only the α5

polymorph, which is the most common form for room temperature deposition,86 will be discussed 

since this is the condition used in this thesis. The most acceptable form of the α5polymorph is that 

determined by Hoshino et al. 
38,86,87 which defines a brick5stack arrangement of the CuPc one5

dimensional columns such as that shown in Figure 154 (c). The stacking axis is parallel to the 

substrate when CuPc is deposited on non5chemically interacting substrates such as ITO, SiO2 and 

glass,36 concomitantly suggesting that the π5π interaction dominates over the interfacial 

interactions. However on substrates such as HOPG49 and PTCDA,24 the crystal structure is 

maintained but the whole brick5stack structure is rotated by nearly 90o so that the stacking axis is 

perpendicular to the substrate, similar to the schematic illustrations in Figure 152 (b). 

1.3 Thesis Overview 

While small molecule OPV devices have been researched intensively over the past decade, their 

performance is still unable to match that of their inorganic counterparts. Hence, it is of interest to 

understand the physical limitations of these devices and to develop strategies to overcome them. 

In particular there is an intimate structure5function relationship of planar donor molecules since 

the physical properties of the film depend strongly on the degree of orbital overlap between 

adjacent molecules. As discussed in Section 1.1.2, light absorption, the exciton diffusion length 

and charge mobility may be simultaneously enhanced by controlling the orientation of the 

molecules in the donor layer. This can be achieved through the use of a structural template layer. 

However, the introduction of a template layer and the change in molecular orientation will alter 

the energy levels of the OPV devices. It is therefore beneficial to study the structural and 

electronic properties of the donor layer at the anode interface in tandem. This will enable us to 

control and tailor the interfacial energetics according to the requirements of the modified donor 

layer. 
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In this thesis, we focus on understanding the processes at the anode side of a planar 

heterojunction OPV device, in particular the energy level alignment at interfaces and structural 

properties of the thin film. The materials and experimental investigations are selected to impact 

an actual OPV device configuration. We select the widely used CuPc as the planar donor layer 

due to its well defined structure5function relationship. The isomorphous nature across planar 

phthalocyanines means the results from this thesis can be readily extended to other planar 

phthalocyanines. ITO will be used as the anode as it is readily and commercially available, and 

also widely used in solar cell devices. Our focus will be on the CuPc/ITO region in a well5studied 

OPV device architecture of aluminium/Bathocuproine (BCP)/Fullerene C60/CuPc/ITO.  

The aim of this thesis is to use a combination of structural templating using graphene, and 

simultaneous modification of the work function using F45TCNQ, to control both the orientation 

and electronic properties of CuPc in an OPV device. We perform step5wise modification of the 

CuPc/ITO structure by first focussing on the control of the orientation of CuPc using graphene 

transferred onto ITO (G/ITO) in Chapter 3. The associated electronic properties of the samples 

are investigated concurrently, especially since we predict unfavourable energy level alignment at 

the CuPc5G/ITO interface based on literature data for graphene and CuPc. In Chapter 4, we 

address the energy level misfit between CuPc and G/ITO by proposing to use F45TCNQ to 

increase the substrate work function. It is essential that the work function modifier does not 

disrupt the templating property of graphene. Therefore, the work function modification ability of 

F45TCNQ and its thin film properties are examined in this chapter to determine its suitability. 

Chapter 5 investigates the effect of combining the strategies proposed in Chapters 3 and 4 to 

simultaneously control the orientation of CuPc and substrate work function, and to assess the 

effectiveness of interface doping of graphene with F45TCNQ on CuPc. The electronic, structural 

and optical properties of the resulting structure CuPc/F45TCNQ/G/ITO are investigated. We 

finally attempt to fabricate OPV devices based on this structure to understand the limitations of 
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our proposed system. The experimental investigation concludes in Chapter 6 with an 

investigation and discussion concerning the diffusion of F45TCNQ through CuPc film. A 

summary of the flow and cohesion of the chapters is shown in Figure 155. 

The key techniques that are employed to study the organic molecule5anode systems are 

photoemission spectroscopy (PES), near edge X5ray absorption fine structure measurements 

(NEXAFS), and X5ray diffraction (XRD) measurements. NEXAFS and XRD enable us to study 

the structural properties of the donor film on ultra5thin and bulk films respectively on ITO and 

G/ITO, and to elucidate the efficacy of transferred graphene as structural template. The effects of 

physical modification of the anode and structural modifications of CuPc on the electronic 

properties are mapped out via PES measurements. OPV devices are fabricated to correlate the 

phenomena observed at the microscopic level with macroscale device performance. Finally time5

of5flight secondary ion mass spectrometry (TOF5SIMS) is used to gain an understanding of F45

TCNQ diffusion as a function of distance from the anode interface, and to determine if diffusion 

has a detrimental effect on our proposed system. The working principles of these experimental 

techniques will be explained in Chapter 2, followed by a description of the transfer of graphene 

onto ITO substrates which will be a key substrate used for all subsequent experiments carried out.  

The thesis concludes with a summary of the key findings and proposes areas which can be 

explored in more detail or techniques that can be improved. 
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Chapter 2 : Experimental Methodology 

The different experimental techniques used in this dissertation will be presented in this chapter. 

The chapter begins with thin film growth in an organic molecular beam deposition (OMBD) 

chamber, followed by several thin film characterization techniques, and finally the chapter 

concludes with the preparation of samples. 

2.1 The OMBD Growth System 

The deposition technique of organic molecular beam deposition (OMBD) is used for the growth 

of all the thin films used in this dissertation. In OMBD, organic film growth is attained by 

subliming a solid source to produce a molecular beam which impinges on and may interact with a 

substrate placed within its path. This process takes place under (ultra) high vacuum (pressure < 

1057 mbar). Using an OMBD system to grow organic thin films affords a good degree of control 

over the deposition parameters, and also reduces airborne contaminants during film deposition 

due to the low pressure of the system. The vacuum system is also required to reduce collision 

between the molecular beam and residual gas molecules in the chamber. The mean free path of a 

gas molecule (λgas) is related to the pressure P of the system by: 

���� = �	

√�
����� �	    (251) 

where kB is the Boltzmann constant, T is the temperature of the gas molecule (Kelvin) and ������  

is the cross section area of molecular collision. Therefore low pressure systems are required to 

increase λgas to obtain a straight and uniform path between the source and the substrate. 
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A typical setup of an OMBD system consists of a polished stainless steel chamber, a series of 

vacuum pumps (roughing pumps, turbo or cryogenic pumps for high vacuum, ion pumps for 

ultra5high vacuum), Knudsen cells consisting of tantalum coils wrapped around ceramic 

crucibles, and a sample holder. Some of the components are shown in Figure 251. Other 

accessories may include resistive or radiative heaters to alter the sample temperature, and sputter 

guns for in6situ sample cleaning. A quartz crystal microbalance (QCM) is commonly included to 

monitor the growth rate and thickness of the film by measuring the changes in frequency of its 

quartz crystal resonator. Powdered source materials are placed in the ceramic crucibles which are 

heated by applying a current through tantalum coils around the crucibles. A thermocouple is 

attached to the bottom of the crucible to measure the source temperature. The flux of the 

Figure 2-1 (a) Experimental setup of an OMBD system with a glove box. The positions of the sample holder and 
organic sources within the OMBD chamber are shown by the dashed boxes marked (b) and (c) respectively. Images of 
(b) the sample holder and (c) several sources for organic materials. A QCM is highlighted in (c). Figures (b) and (c) are 
obtained from the Kurt J. Lesker website.29 
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molecular beam (growth rate) can be controlled by adjusting the temperature of the source. The 

well5controlled OMBD environment enables this technique to be used for both ultra5thin film 

preparation for surface science experiments, as well as the deposition of thicker films for 

macroscopic characterization and even device fabrication. 

The OMBD system used for the preparation of our thin films consists of a 10 cm x 10 cm sample 

plate which is loaded into a sample holder shown in Figure 251 (b), six sources for the deposition 

of organic materials [similar to the image in Figure 251 (c)] and two metal sources. The 

parameters used for the deposition of thin films for this dissertation will be presented in Section 

2.3.3. 

2.2 Characterization Techniques 

In this section, a brief introduction to the working principles of the characterization techniques 

used in this thesis will be presented, followed by the experimental details and configurations 

employed. The main techniques used are photoemission spectroscopy (PES) including near5edge 

X5ray absorption fine structure (NEXAFS), time5of5flight secondary mass ion spectrometry 

(TOF5SIMS) and X5ray diffraction (XRD), while secondary characterization techniques include 

atomic force microscopy (AFM), secondary electron microscopy (SEM), ultraviolet5visible light 

(UV5Vis) absorption spectroscopy and current5voltage (J5V) characterization. 

2.2.1 Working Principle of PES Measurements 

PES is a powerful technique to determine the electronic properties of samples. Depending on the 

energy of the incident radiation, energy levels of atomic core electrons or valence levels can be 

studied. For instance, in X5ray photoelectron spectroscopy (XPS), high energy X5ray photons 

excite electrons in the core level of atoms, while lower energy ultraviolet photons excite electrons 

from shallow valence states near the Fermi level to probe the valence band of solid films in 

ultraviolet photoelectron spectroscopy (UPS). The sources of radiation may range from 
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monochromatized synchrotron radiation which is capable of delivering tuneable photons in the 

range of 50 eV to 1200 eV, noble gas discharges such as helium for UPS (21.2 eV or 40.8 eV) , 

or Mg (1253.6 eV) or Al Kα (1486.6 eV) radiation for XPS. All these processes are carried out 

under ultra5high vacuum (< 1059 mbar) to minimize inelastic scattering of the photoelectrons by 

gas molecules while traveling to the analyser. 

During PES measurement, the sample is irradiated with a photon beam of a specific energy (hν) 

which excites electrons within the sample. If the energy of the incoming photon beam is sufficient 

to overcome both the binding energy (BE) and the work function of the sample (ϕs), the electrons 

can escape from the sample to the vacuum in a process similar to the photoelectric effect.1 The 

kinetic energy of the ejected electrons is (KE’) and is dependent on the incident photon energy 

and the BE of the electron according to the equation below 

��′ = ℎ� −  � − !�     (252) 

The process is shown schematically on the left hand side in Figure 252 (a). However, the kinetic 

energy (KE) measured by the analyser may not be equal to KE’ due to the difference in work 

functions between the sample and the analyser (ϕa) as shown in Figure 252 (a). When the sample 

and the analyser are in good electrical contact, Equation (252) can be rewritten as  

 � = ℎ� − �� − !�     (253) 

This equation eliminates the need for prior knowledge of ϕs, and allows direct comparison of the 

BE for the various samples. 
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For organic thin films, UPS is often used to measure ϕs and the ionization potential (IP) of the 

sample. A typical UPS spectrum showing the kinetic energy distribution of photoelectrons for 

organic films is shown in Figure 252 (b). The secondary electron cutoff (SECO) provides 

information about the position of the vacuum level as it corresponds to electrons with minimum 

energy required to overcome the ϕs. For samples with ϕs < ϕa, the low KE photoelectrons cannot 

be detected by the analyser, thus giving erroneous values of ϕs or IP. Therefore, a small bias of 

between 53 V to 510 V is applied to the sample when measuring the SECO in order to facilitate 

the detection of low energy electrons and to eliminate influence of the analyser. ϕs can be 

determined using the following equation:  

!� = ℎ� − "�# − ��$%&'(   (254) 

The high kinetic energy features in the UPS spectrum correspond to spectroscopic features in the 

valence band such as the HOMO, HOMO+1 etc. The position of the HOMO onset (KEHOMO) is 

determined by extrapolating the leading slope of the HOMO feature to the background intensity. 

The IP of the system is thus determined by 

)* = 	!� + "�# − ��,'-'( = 	!� +.)    (255) 

Figure 252 (a) Energy level alignment between the sample and analyser when they are in good electrical contact. (b) A 
typical UPS spectrum of organic molecular thin films. 
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where HIB is the hole injection barrier as denoted in Figure 252 (b). 

Due to the higher excitation energies of X5rays, core level electrons of atoms can be excited in 

XPS. Using Equation (253), the BE of the detected electrons can be determined. Since the BE of 

core level electrons are unique and element specific, the associated element from which the 

electrons are detected from can be identified. Furthermore, changes in chemical environment, 

such as charge transfer or bond formation, can be detected through shifts in BE or the 

introduction of new peaks. Finally, the intensity of the detected photoelectrons is proportional to 

the concentration and the atomic sensitivity of the element within the area probed, thereby 

providing semi5quantitative analysis of the elemental species present. 

An advantage of using PES to study surfaces and interfaces is that it can provide surface 

sensitivity. For our synchrotron based PES system with a maximum photon energy of up to 1200 

eV, the KE of the ejected electrons must be <1200 eV according to Equation (252). In this range 

of energy, the escape depth of an electron in solid, or its inelastic mean free path, is related to its 

KE as shown in the universal curve2 in Figure 253. When the KE of electrons are in the range of 

30 to 100 eV, the escape depth is very short (of the order of a few monolayers or angstroms), 

indicating that PES probes only the photoelectron from the top few layers of the sample. 

Using the attenuation of the substrate signal, the nominal thickness of the molecular film 

deposited on the substrate can be deduced. Assuming a simple case of layer5by5layer growth 

mode,  

)� = )�exp	"− �
23456 789:(     (256) 

where Id is the intensity of the photoelectron after deposition of a film of thickness d, Io is the 

photoelectron intensity of the bare substrate, γ is the angle between the analyser and substrate 

normal. λIMFP (in nm) is the inelastic mean free path of electrons in the molecular film and is 
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related to the KE of the detected electron and  density of the film (ρ) (in g/cm3) according to the 

equation for organic molecules:2 

�;-#� = <=	>%?�@A.CC	>%D.E
F      (257) 

2.2.2 NEXAFS Measurements 

The underlying principle behind NEXAFS is similar to the photoemission process. However, 

while PES measurements probe electrons ejected from occupied states to the vacuum (free 

electron state) where they are directly detected, NEXAFS measurements involve the transitions of 

photoexcited electrons from a core level to an unoccupied state3–5. The energy of the primary 

photoelectron itself is not detected in NEXAFS. In addition, during NEXAFS measurements, the 

photon energy is scanned over the range of transitions from the core level to the unoccupied 

molecular orbitals near the transition edge (between 10 – 50 eV), while PES utilizes fixed photon 

beam energy within a measurement. NEXAFS monitors resonant electronic transitions from the 

inner shell of specific atomic species (eg. C 1s, O 1s or N 1s) to unoccupied molecular orbitals or 

states (eg. to π* and σ* orbitals) governed by dipole selection rule. It is generally accepted that 

Figure 2-3 ‘Universal curve’ showing the typical electron escape depth (attenuation length) in monolayers as a 
function of the electron kinetic energy. Reproduced from Reference [2]. 
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the resonant intensity is enhanced when the electric field vector �GGH of synchrotron light 

polarization is parallel to the direction of the molecular orbital, and the intensity of the resonance 

is suppressed when �GGH is perpendicular to the orbital direction. For planar π5conjugated molecules 

such as PTCDA, the σ* and π* orbitals are orthogonal to each other, being respectively polarised 

parallel or normal to the molecular plane. Therefore, the molecular orientation within a layer can 

easily be derived from the relationship between the resonant intensities and incident angle of 

light.3 Synchrotron radiation, with its highly polarized beam, and the ability to vary the energy of 

Figure 2-4 Polarization dependent NEXAFS spectra showing the ability of this technique to differentiate different 
orientations of the chemical bonds. For a molecule lying flat on a substrate, the σ* transitions are maximized at 
normal incidence to the substrate (θ = 90o) (a), while π* transitions are maximised at grazing incidence (θ = 20o)
(b).  



 

29 

 

the incident photon energy is used as the excitation source in NEXAFS measurements. 

Figure 254 (a) and (b) show an example of NEXAFS N K5edge performed on planar aromatic 

molecules containing nitrogen (e.g. CuPc) which are almost lying flat on the substrate. As shown 

in the schematic drawings in Figure 254 (a) and (b), when the molecules are lying flat on the 

substrate, the σ* orbitals are in5plane or parallel to the substrate surface, while the π* orbitals are 

out5of5plane. When the varying incident photon energy is sufficient to cause photo5excitation 

from the C 1s core level to the unoccupied σ* or π* anti5bonding orbitals, a core hole is formed in 

the C 1s state. The core hole is then filled by an electron from a higher energy state either 

radiatively through the emission of fluorescent photons, or non5radiatively through the 

subsequent ejection of an Auger electron. The detection of the electron flux from a particular 

Auger process as a function of the incident photon energy is termed Auger electron yield mode 

(AEY). This mode has excellent surface sensitivity as only elastically scattered Auger electrons 

from the surface of the sample are recorded. There are other modes such as fluorescence yield 

mode which does not require conductive sample but have low yield; total electron yield (TEY) 

mode that has high signal5to5noise ratio but is not as surface sensitive etc. For probing the 

changes in orientation at the top few monolayers, AEY is the preferred mode. 

 Figure 254 (b) and (c) exemplify the angle dependence resonant transitions on the incident beam 

at normal incidence (θ = 90o) and grazing incidence (θ = 20o) respectively. The tilt angle between 

the molecular plane and the substrate plane (α) is related to the intensity, I, of the resonant 

transition at θ incident angle by the equation 

I"θ( ∝ 1 + C
� "3 cos� Q − 1("3 cos� R − 1(	  (258) 

Therefore, by conducting NEXAFS measurements at two or more angles, the orientations of anti5

bonding orbitals and thus the molecular orientation of the absorbed molecules with respect to the 

substrate can be determined.3 
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2.2.2.1 Experimental 

All PES and NEXAFS experiments were carried out at the Surface, Interface and Nanostructure 

Science (SINS) beamline of the Singapore Synchrotron Light Source (SSLS).7 Two UPS 

experiments in Chapter 5 were carried out using He I (21.2 eV) excitation source in a separate 

custom built UPS chamber. The SINS beamline has a fixed endstation which consists of a 

preparation chamber for molecular deposition, connected to an analysis chamber where PES and 

NEXAFS measurements are performed via a gatevalve. Synchrotron radiation in the range of 50 

eV to 1200 eV is available for surface science measurement at the SINS beamline. The photon 

energy for each experiment is calibrated using Au 4f7/2 core level binding energy (84.4 eV) of a 

sputtered gold foil which is electrically connected to the sample holder. The BE of all the PES 

spectra are therefore referenced to the Fermi level of the gold foil. The total incident photon flux 

of the monochromated beam is measured by a Keithley at the gold coated re5focussing mirror 

placed in the path of the incoming beam, and is used to normalise the intensities of all the 

collected spectra. A VG Scienta hemispherical electron analyser detects the KE of the 

photoelectrons. The energy resolution for PES is 0.05 eV while that for NEXAFS is 0.3 eV. The 

base pressure in the analysis chamber is 1 x 10510 mbar. Figure 255 describes a typical PES setup 

and also shows the relevant components in the analysis chamber used in PES and NEXAFS 

measurements. 
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All the thin films that were prepared for PES and NEXAFS measurements were grown and 

measured in6situ. Detailed growth parameters are presented in Section 2.3.3. The chemically 

cleaned substrates were degassed for about one hour in the vacuum chamber using resistive 

heating prior to measurement and film growth. The photon energy used for UPS valence band and 

SECO measurements at the SINS beamline is 60 eV, while the C 1s core level spectra were 

obtained using 350 eV incident photon energy. A 57 V sample bias is applied during SECO 

measurements. For UPS measurements using He I source, the excitation energy is 21.2 eV and a 5

5 V bias is applied for SECO measurements. During NEXAFS N K5edge measurements, the 

photon energy is scanned over 40 eV from 390 eV to 430 eV. Angle5dependent NEXAFS 

measurements were carried out at θ = 90o (normal incidence) where the incident beam is 

perpendicular to the substrate surface, and θ = 20o (grazing incidence). All the spectra were 

analysed using IGORPro software. 

2.2.3 Time-of-Flight Secondary Ion Mass Spectrometry Working Principles 

Secondary ion mass spectroscopy (SIMS) is a technique used to analyse the chemical 

composition of samples by bombarding the sample with a high energy focused primary ion beam, 

and collecting the emitted secondary ions. Information regarding the chemical composition of the 

Figure 2-5 Schematic drawing showing a typical PES experimental setup, specifically for XPS in this example. For 
UPS, the incident beam is changed to ultraviolet light. Reproduced from Reference [28] 
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target can be obtained from the resulting mass spectrum. Since the surface layers are sputtered 

away during primary ion bombardment, the variation of chemical composition with depth can 

also be determined. The sputtering process by the primary ion beam leads to the emission of a 

variety of particles ranging from electrons, neutral species of atoms and molecules, to ionized 

atomic and molecular fragments. Only the ionized fragments are detected and measured by the 

mass spectrometers. 

SIMS measurements which use a time5of5flight (TOF) mass analyser, or TOF5SIMS, form mass 

spectra of secondary ions from the target during a single incident ion pulsed beam. Upon sample 

bombardment with the primary ion beam, the resulting ionized particles emitted from the surface 

are accelerated through an applied electric field into a TOF5SIMS mass analyser. The equation 

that relates the time5of5flight, t, to the mass to charge ratio (m/e) of each secondary ion fragment 

is given by  

S = T U
√�VWX

�
Y 	     (259) 

where L is the length of the TOF analyser column and U is the applied voltage within the 

analyser. Since the term in the parenthesis depends only on the experimental setup, mass 

spectrometers separate ions according to their 	�Y  ratio, or flight time to the detector. The pulsed 

primary ion beam on the target generates the full mass spectrum of the surface; however the yield 

per pulsed beam is low. Therefore, secondary ions from several pulses are accumulated to 

generate a mass spectrum. The main advantages of using TOF5SIMS mass analyser compared to 

the traditional hemispherical magnetic sector and quadrupole analysers is the high mass 

resolution and parallel detection of all ions.8 

Secondary ion mass spectrometry can be carried out in two modes: Static SIMS in which the 

primary ion beam interacts with and ionizes only the top few layers of the samples, and dynamic 
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SIMS which sputters material away, forming a crater in the sample. For surface mass 

spectrometry, static SIMS is carried out. Low primary ion beam doses are used (<1013 ions/cm2) 

to ensure that less than 1% of the analysis area is irradiated by the ion beam and no significant 

surface erosion occurs. During dynamic SIMS, a sputter ion beam erodes the sample, forming a 

sputter crater. The intensity of the ionized species of interest can be plotted as a function of crater 

depth to obtain a depth profile. The sputter beam is operated at low energies to enhance depth 

resolution and minimise ion beam induced mixing of the sample.9  

2.2.3.1 Experimental 

All the TOF5SIMS investigations were carried out in an Ion5ToF TOF5SIMS V. The base 

pressure of the system was 10510 mbar. A schematic drawing of the setup showing the main layout 

of the instrument is shown in Figure 256 (a). An electron flood gun which is used for charge 

compensation is not shown in the schematic. Separate ion guns for sputtering and analysis enable 

the system to be operated in dual5beam mode. To erode the surface for depth profiling, caesium 

(Cs) and oxygen sources are available, and are used to enhance electronegative and 

electropositive ions respectively. The energy of the sputter beam can vary from 0.25 – 10 keV 

and the beam spot size of the order of several µm. Bismuth ions (Bi3
+) are used as the analysis 

Figure 2-6 Schematics showing (a) the main instrumental layout, and (b) the timescales of the analysis and sputter 
guns, and the detection of the secondary ions in dual5beam interlace mode. Reproduced from Reference [27]. 
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beam due to the high secondary ion yield for organic materials.10 The spot size is several hundred 

nanometers, and the current applied may range from 0.1 pA to 25 nA. 

The TOF analyser column is located vertically above the target sample and has a total drift length 

of 2 m. Secondary ions emitted from the sample are accelerated towards the analyser by applying 

an extracting voltage between the sample and the analyser. The accelerating voltage applied 

within the analyser is 2 kV. The mass resolution m/jm is approximately 6000 which is sufficient 

for our analysis. 

When TOF5SIMS measurements are carried out in dual beam interlaced mode, the analysis and 

sputter beams are pulsed separately with different durations and at different times. An example of 

the timescales of the analysis and sputter beams is shown schematically in Figure 256 (b). This is 

performed to ensure that only secondary ions generated by the analysis beam are detected to 

preserve surface sensitivity of the detected ions. The primary analysis beam pulse is extremely 

short with duration of less than 1 ns to ensure that all the secondary ions are sputtered within a 

very short time interval. This ensures that the spectral resolution, which depends on the spread of 

time jt over which the secondary ions are generated and detected, is not degraded. During the 

pulse of the analysis beam and up to 10 µs after, a voltage is applied between the analyser and the 

sample to extract the secondary ions. As the secondary ions move towards the analyser column, 

the extraction voltage is turned off. An opposite bias may be applied, or beam blanking may be 

used, to prevent secondary ions from the subsequent sample erosion from entering the analyser. 

The sputter gun is subsequently turned on to erode the surface, creating a crater in the process. 

During this cycle, the electron flood gun may simultaneously be turned on to compensate for 

sample charging which may deflect the low energy primary ion beams. The erosion area is larger 

than the analysis area to ensure that secondary ions are ejected from the same uniform depth, and 

the sloping edge of the crater does not interfere with the analysis.  



 

35 

 

In our TOF5SIMS experiments, negative ions were detected and analysed. The samples were 

bombarded with a 1 keV Cs+ primary ion beam with a pulsed current of 75 nA, interlaced with a 

Bi3
+ analysis beam at ~1 pA. For each analysis, the sputter beam scanned an area of 400 µm x 

400 µm while the analysis beam was centred in the crater with a size of 100 µm x 100 µm. The 

sputter time within the organic layer was converted to crater depth by considering the point at 

which the intensity of one of the stable fragments (CH5) decreased to half its value compared to 

that within the thickness of the film. 

 2.2.4 X-ray Diffraction 

X5ray diffraction (XRD) is a technique that is used to study crystallographic structures of 

materials. This technique is non5destructive and no special sample preparation is required before 

measurement. Monochromatic, collimated X5rays are directed onto a sample at an angle θ as 

shown in Figure 257. The X5rays are diffracted and scattered by the periodic arrangement of 

atoms and molecules in a crystal structure. Depending on the phase of the scattered X5rays, they 

may interfere destructively (out5of5phase) or constructively (in5phase). Constructive interference 

occurs when the optical path difference between parallel beams of rays is an integer multiple of 

the X5ray wavelength λ. For a crystal with interplanar spacing of d such as that shown 

schematically in Figure 257, constructive interference occurs when the equation 

2	� sin Q = ]	�     (2510) 

is satisfied. This is also known as Bragg’s law. 

The width of the diffraction peak in an XRD spectrum can be used to determine the average grain 

size, t, perpendicular to the substrate according to Scherrer’s equation.11 The equation takes the 

form of  

S = �2
^ 789_     (2511) 
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where λ is the wavelength of the of the X5ray, B is the full width at half maximum (FWHM) of 

the diffraction peak (in radians), θ is the Bragg angle and k is a constant depending on the shape 

of the grains. The value of k is close to unity but can vary by 20%.12 In this thesis, k is assumed to 

be 1 and an error of 20% is included. 

A unit cell is the simplest repeating unit of atoms, molecules or motifs that is used to construct a 

crystal when it is arranged spatially in three dimensions. It is defined by three vectors a, b and c 

in real space, and a*, b* and c* respectively in reciprocal space. The planes in a unit cell can be 

described by a set of integers h, k and l which is referred to as Miller indices. Crystallographic 

planes are represented as (h k l), while [h k l] refers to a direction perpendicular to the (h k l) 

plane. These notations will be used to describe the planes in our thin film crystals.  

2.2.4.1 Experimental 

All XRD measurements were carried out in ambient conditions using a Panalytical X’Pert PRO 

MPD X5Ray diffractometer with a Cu Kα X5ray source (λ = 1.54 Å). XRD scans were operated 

in symmetrical θ52θ mode with a step size of 0.33o and in the range of 2θ = 5o to 30o. The 

substrate signal was subtracted prior to the presentation of the data.  

Figure 2-7 A schematic drawing showing X5ray diffraction from a crystal lattice. The X5ray beam is depicted as the 
black solid lines and forms an angle θ with the sample. The blue circles are scattering centres and the interplanar 
lattice spacing is d.  
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2.2.5 Atomic Force Microscopy 

Atomic force microscopy (AFM) provides three5dimensional topography information by using a 

very sharp tip attached to a cantilever to scan the surface of the sample being analysed. AFM 

measurements may be performed on a variety of substrates without the need for additional special 

treatments (such as metal coating of the sample) that may irreversibly alter the sample. This 

technique may be performed in ambient or under ultra5high vacuum. The basic AFM setup is 

shown schematically in Figure 258. A laser beam is directed onto the back of a cantilever which is 

in turn attached to a piezoelectric scanner. The position of the deflected beam is detected by 

photodiodes. Weak interactions between the sample and tip change the position of the deflected 

beam on the photodiodes. A feedback mechanism adjusts the position of the cantilever to 

maintain the tip5to5sample distance, or the amplitude of oscillations of the tip, depending on the 

mode it is operated in.  

AFM can operate in contact or tapping mode. In the former, the tip is ‘dragged’ across the scan 

area of the sample and the deflection of the cantilever, or the feedback signal require to maintain 

a constant tip5sample distance, is recorded to map out the contours of the surface. This technique 

might damage fragile samples due to the close contact between the tip and sample. Tapping mode 

is more commonly used for soft organic and biological samples as it contacts the sample 

Figure 2-8 Schematic drawing of a basic AFM setup. 
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intermittently and thus causes less sample damage. In this mode of operation, the cantilever 

oscillates close to its resonance frequency. When the tip approaches the sample during 

oscillations, forces such as Van der Waals interaction and electrostatic forces alters the amplitude 

of the oscillation. A feedback signal adjusts the height of the tip above the sample to maintain a 

constant oscillation amplitude. The feedback signal maps out the topography of the surface. 

2.2.5.1 Experimental 

AFM images were obtained in ambient conditions from a Veeco Dimension 3100 AFM. All the 

measurements were performed in tapping mode using Silicon tips with 8 nm radius and Al back 

coating on the cantilever from MikroMasch (NSC15/ Al BS). The resonant frequency of the 

cantilever was ~325 Hz. 

2.2.6 Scanning Electron Microscopy 

Scanning electron microscopy (SEM) is a technique to image the surface morphology (and 

indirectly composition) of samples. Electrons are generated at the top of an electron gun and 

accelerated towards the sample with high energy between 1 – 30 keV. The beam is focused onto 

the sample by using a series of electromagnetic lenses. Scanning coils raster the electron beam in 

two dimensions across the sample surface. The interaction of the high energy primary electron 

beam with the sample induces the emission of secondary electron from the surface. Backscattered 

electrons and X5rays may also be produced during the process. Depending on the signals 

detected, information regarding surface morphology, chemical composition, and electrical 

conductivity of the sample can be determined. 

For sample imaging, secondary electrons are most commonly detected to form an image as they 

are most sensitive to topography. Secondary electrons originate from the near surface region, thus 

providing surface sensitive information, and are also very abundant which gives rise to high 

signal level.13 A small positive bias is applied around the detector to enhance the detection of low 
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kinetic energy secondary electrons. The sample has to be conductive, or sample charging, which 

may distort the morphology of surface features, may occur.  

2.2.6.1 Experimental 

A LEO GEMINI 1525 FEG5SEM, which uses a field emission gun to generate electrons, is used 

in this dissertation for the investigation of surface morphology. The system operates at high 

vacuum of 1055 mbar. The images are formed by collecting the secondary electrons using an in5

lens detector. An operating voltage of 5 kV was used for all investigations. Chromium coating of 

approximately 15 Å were deposited on all the substrate before measurement to minimize sample 

charging. 

2.2.7 Ultraviolet-Visible Spectroscopy 

In ultraviolet (UV) (280 – 400 nm) and visible (Vis) light (400 – 700 nm) spectroscopy 

(collectively abbreviated UV5Vis), the incident radiation may be absorbed by molecules, resulting 

in electronic transitions from a ground state to an unoccupied state. Organic materials such as 

phthalocyanines absorb radiation in the UV5Vis range.14 

A typical UV5Vis spectrometer has a dual5beam system consisting of a UV light source 

(deuterium lamp) and a visible tungsten or tungsten / halogen lamp. The beam of light passes then 

through a monochromator and is split into two parallel beams. One beam passes through the 

sample to be measured, while the other through a reference sample. The intensity of the 

transmitted beam through the reference (Io) and the sample (I) are detected by separate photo5

detectors. The absorbance of radiation by the sample is defined by the equation15 

     ` = logCA ;�;     (2512) 

The intensity of the absorbance spectra is related to the concentration of substance present in the 

sample through the Beer5Lambert law. This law relates the absorbance of light at a given 
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wavelength to the concentration, c, of the absorbing species, the optical path length b, and the 

molar extinction coefficient ε. The equation for solutes in a non5interacting solvent is expressed 

as  

` = 	εde     (2513) 

For thin films deposited on transparent materials, Equation (2513) is slightly modified such that 

the absorbance of the molecular thin film is related to the thickness of the film (L) and the 

absorption coefficient of the material (χ) via the equation 

` = fg     (2514) 

2.2.7.1 Experimental 

The absorption spectrum of thin films and solutions used in this thesis were obtained from UV5

Vis spectroscopy performed using a Perkin Elmer Lambda 25 UV/VIS spectrometer. The 

absorbance spectra were recorded from 300 nm to 1000 nm. CuPc thin films and graphene 

transferred onto ITO were measured as5deposited, while F45TCNQ molecules and films were 

dissolved in dichloromethane and measured in a quartz cuvette which has an optical path length 

of 1 cm. 

2.2.8 Current-Voltage Characterization 

The current5voltage (J5V) relationship of OPV devices measures the output current of solar cells 

as a function of the external applied voltage. From this, the power and efficiency of the solar cell 

can be extracted. The two main parameters that are of interest are the open circuit voltage (Voc) 

and the short circuit current density (Jsc) (short circuit current is denoted as Isc). A schematic 

drawing showing a J5V response curve for solar cells is presented in Figure 259. Voc is measured 

at the point when the drift current, IR, which is due to the overall electric field in the solar cell 

(external applied field and internal electric field), is balanced by the diffusion current, IF, which is 
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due to the chemical potential difference. Jsc is the current density measured in the absence of an 

external field as shown in Figure 259.  

The fill factor, FF, which is a measure of how ‘square’ the shaded region in Figure 259 is, is given 

by the equation 

hh = ��
i�j	k	lmj	     (2515) 

where Pm is the is the maximum power density in the OPV device. The power conversion 

efficiency η is the ratio between Pm and Pin, the input power density. 

n = ��
�op =

i�j	lmj	##
�op     (2516) 

 

 

Figure 2-9 A typical J5V response curve for a solar cell device under illumination. Jsc is measured  the external 
voltage is 0 V; Voc corresponds to the point where the drift current in a solar cell is balanced by the diffusion 
current. 
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2.2.8.1 Experimental 

Device efficiencies and J5V characterization in this thesis were measured using a Keithley Source 

meter. The solar cells were illuminated using a 300 W xenon arc lamp solar simulator. The 

illumination intensity was 100 mW/cm2 at 1 sun AM 1.5 as calibrated with a silicon photodiode. 

The voltage was typically varied from 51 V to 1 V and the solar cell device area was 0.12 cm2. All 

the measurements were performed immediately after device fabrication. The solar cells were 

measured in a nitrogen environment in a custom made solar cell measurement chamber [Figure 

2510 (a)]. All the samples were loaded into the measurement chamber in a glove box to minimize 

exposure to oxygen and moisture. The solar cell chamber is interfaced to a switch box [Figure 

2510 (b)] which allows for independent measurement of up to six solar cell devices fabricated on 

a single substrate. All the devices were measured under illumination and in the dark. 

2.3 Sample Preparation 

2.3.1 Sample Cleaning 

Commercially available silicon oxide <1 0 0> (SiO2) [Virginia semiconductor] and indium tin 

oxide 100 nm thick deposited on glass (referred to as ‘ITO’ henceforth) (Psiotec) substrates were 

Figure 2-10 (a) Top view of the solar cell device chamber used in the experiment. (b) The solar cell device 
chamber is interfaced with a switch box that allows for independent measurement up to six solar cell devices 
fabricated on a single substrate. 



 

43 

 

cleaned by sequential sonication twice each in fresh acetone and isopropyl alcohol (IPA) for a 

duration of 20 minutes for each step, and dried with compressed air. The substrates that were used 

for graphene transfer were additionally exposed to UV5ozone plasma for 5 minutes immediate 

after they were dried in order to make the surface hydrophilic for ease of transferring graphene 

from deionized water to the surface, and in ‘spreading’ graphene out uniformly on the surface16 

(details are found in the next section). Graphene is transferred onto the clean substrate within 10 

minutes of UV5ozone exposure. Predominantly monolayer graphene on copper foil (G/Cu) 

(Graphene Supermarket) were cut to the desired size and used as5received. 

2.3.2 Transfer of Graphene to ITO 

Graphene was transferred to SiO2 and ITO via a wet transfer technique using 

polymethylmethacrylate (PMMA) as a support for graphene. This technique is described in detail 

in References [17 & 18]. As5grown graphene on Cu foil was cut into squares of at least 10 mm x 10 

mm and spin coated with PMMA (Microchem, 950k, 4% by volume dissolved in anisole) at 3000 

rpm and cured on a hot plate at 180 oC for 2 minutes to remove the solvent and to allow PMMA 

to harden. Graphene grown on the side of Cu foil not protected by PMMA was removed using O2 

plasma at 60 W for 2 minutes as it tends to interfere with the transfer process.16,19 The edges of 

the PMMA/G/Cu samples were trimmed down by about 1 mm each before floating the stack in in 

0.05 M ammonia persulfate (Sigma Aldrich, ACS reagent, ≥98% purity) to etch the Cu foil. The 

remaining PMMA/graphene was floated in three cycles of deionized water for 20 minutes each to 

remove residual ammonia persulfate before transferring it to the UV5ozone treated SiO2 or ITO 

substrates. The ozone treatment is required as the intrinsically hydrophobic surfaces of SiO2 and 

ITO before UV5ozone treatment cause the thin film of water under the PMMA/graphene stack to 

coalesce and drag graphene along with it in the process, resulting in crumpling of graphene. The 

sample was dried slowly at room temperature for 30 minutes before baking on a hotplate at 120 

oC for 30 minutes to remove any excess liquid. After cooling to room temperature, a few drops of 
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anisole (FCC, ≥98% purity, Sigma Aldrich) were placed on the PMMA surface for 5 minutes to 

solubilize PMMA before exposing the sample to acetone vapour for 1 hour and subsequently 

immersing it in a clean beaker of acetone overnight to remove PMMA. The sample was then 

removed from acetone and submerged in IPA for 2 minutes before being carefully blown dry with 

purified nitrogen gas. The resulting graphene samples transferred onto ITO were ~ 8 mm x 8 mm 

in size, which covers the width of the exposed ITO on the ITO/glass substrate. 

2.3.2.1 Characterization of Graphene Films 

As5grown and transferred graphene films were characterized using Raman spectroscopy and 

SEM. For graphene transferred onto ITO (G/ITO) which will be one of the main samples used in 

the subsequent experiments in Chapters 3 to 6, AFM imaging was further carried out to identify 

the topography of the substrates. The characterization of G/Si can be found in Appendix A. 

Raman spectroscopy is a non5contact and non5destructive technique routinely used to probe the 

quality of the as5grown or transferred graphene.20 There are two peaks associate with pristine 

graphene, the 2D peak at ~2680 cm51 and G peak at 1580 cm51; an additional D peak at ~ 1350 

cm51 associated with defects in graphene such as dislocation, cracks and vacancies.20–22 Raman 

measurements were performed at room temperature and pressure using a Renishaw spectrometer 

system using a 514 nm laser as the excitation source. The laser power was kept below 0.5 mW to 

prevent laser5induced damage of the sample. A 50x objective lens was used to image the sample 

and also focus the probe in the Raman experiment. Raman data was collected with the WIRE2.0 

software and processed using IGORPro software. Figure 2511 shows the typical Raman spectra 

for as5received G/Cu (top) and transferred G/ITO (bottom). Both G/Cu and G/ITO spectra show 

the typical 2D and G peaks of graphene located at around 2680 cm51 and 1585 cm51 respectively. 

The FWHM of the symmetrical 2D peaks in both spectra is around 40 cm51, and the ratios of the 

peak intensities of G:2D is between 0.4 – 0.5, suggesting that the samples consist of 
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predominantly mono5 to bi5 layer graphene23,24. The D peak at ~1347 cm51 in both spectra 

indicates that the as5received and transferred graphene sheet contain defects. Using the intensity 

ratio of the D:G peak,25 the density of defect is estimated to be 4.5 x 1010 cm52 for G/Cu and 7.7 x 

1010 cm52 for G/ITO. The increase in defect density by over 50% for the latter sample as compared 

to the former suggests that the transfer process introduces additional defects in the graphene 

sheet.  

SEM is used to visualize the quality of G/Cu and G/ITO in order to determine the coverage of 

defects (wrinkles, residues, tears, holes etc.) which may hamper the templating of the subsequent 

organic molecules.30 Figure 2512 (a) shows the SEM image of G/Cu, and reveals that the 

graphene sheet is not continuous over the whole Cu foil surface. The absence of graphene is seen 

from the brighter areas in the image, in which the underlying Cu substrate is revealed. The 

absence of graphene represents not more than 5% of the whole image. Figure 2512 (b) and (c) 

show the SEM images of G/ITO at two areas close to the centre of the graphene sheet, revealing 

residues and wrinkles in the former image, and tears and/or holes in the graphene sheet in the 

Figure 2-11 Average Raman spectrum of as5received G/Cu foil (top) and transferred G/ITO (bottom) after 
subtracting their baseline, using 514 nm laser excitation. The characteristic 2D and G peaks of graphene, and the 
defect induced D peak are shown. The peak at ~2330 cm51 in the top spectrum comes from the Raman mode of N2 
gas.26 
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latter.  The tears in graphene cover ~15% in Figure 2512 (c). These images clearly show that the 

graphene transfer process introduces defects such as wrinkles, residues, and a higher percentage 

of tears. The fraction of defects may vary between samples and with the location of the graphene 

sheet imaged. The effects of these imperfections and unreliable coverage of graphene on the 

templating of organic molecules and device performance will be investigated in detail in Chapters 

3 and 5. The topographies of ITO and G/ITO are shown in the AFM images in Figure 2513 (a) 

and (b) for ITO and (c) for G/ITO respectively. Figure 2513 (b) which is a 35dimesional view of 

ITO surface shown in Figure 2513 (a) reveals that the surface is extremely rough with height 

variations up to 30 nm. This poses a problem for the wet transfer of graphene as described in the 

Section 2.3.2 since water is trapped between the PMMA supported graphene and the substrate 

after graphene is lifted out of the deionized water. When water evaporates rapidly upon heating, it 

might cause the impermeable PMMA/graphene stack to tear; therefore it is important to allow the 

sample to dry slowly at room temperature. Figure 2513 (c) shows the AFM image of G/ITO 

substrate with the middle area devoid of graphene, which may have been torn during the transfer 

process or might be due to incomplete growth of graphene on Cu foil [Figure 2512 (a) and (c)]. 

Graphene masks the distinct grains of the underlying substrate but does not form a smooth and 

uniform layer on ITO. Instead it appears crumpled and its topography is mediated by the variation 

in grain heights of ITO. Therefore, while the local RMS roughness of the substrate decreases 

Figure 2-12 SEM images of (a) G/Cu (x5000 magnification), and (b) and (c) G/ITO at two different areas (x3000 
magnification). (a) Bright contrast areas and spots correspond to holes in the as5grown graphene and residues 
respectively; (b) bright streaks and spots correspond to wrinkles and residues respectively; (c) brighter areas are due to 
tears in the graphene sheet, thus revealing the underlying substrate. Scale bars are 5 µm for all the images. 
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from 5.0 nm for ITO to 4.0 nm for G/ITO (the latter is less undulating), both surfaces have 

similar height variations as seen from the corresponding line scans in Figure 2513 (c) and (d).  

2.3.3 Thin Film Deposition 

Clean substrates of ITO and G/ITO were loaded into the OMBD chamber immediately after 

preparation. Organic molecules were deposited on the various substrates via thermal evaporation 

from separate Knudsen cells in an OMBD system with base pressure of better than 1057 mbar. All 

the depositions were performed at room temperature. The organic molecules used in this 

dissertation are CuPc (Sigma5Aldrich, twice purified using gradient sublimation), 2,3,5,65

Tetrafluoro57,7,8,85tetracyanoquinodimethane (F45TCNQ) (Nichem, 99% purity), Fullerene C60 

Figure 2-13 1 Um x 1 Um AFM images of (a) bare ITO in plane view and (b) 35dimensional view, and (c) G/ITO 
with the central area devoid of graphene to show the contrast in surface features. (d) Line profiles of the solid and 
dashed line in (c) indicate that while the variation in z5height is similar on G/ITO and ITO, the surface features 
become indistinct. RMS surface roughness is (a) 5.0 nm, and (c) 4.0 nm excluding the bright feature and the 
uncovered region.  
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(Alfa Aesar, 99% purity), Bathocuproine (BCP) (Sigma5Aldrich, 96% purity) and Perylene5

3,4,9,105tetracarboxylic dianhydride (PTCDA) (Sigma5Aldrich, 97% purity), while metal 

aluminium pellets (Sigma5Aldrich, >99.99% purity) were used for solar cell devices. The organic 

sources were degassed for an hour prior to deposition. The growth rates and deposition 

temperatures for the various organic molecules used in this dissertation are tabulated in Table 251 

(unless otherwise stated within the text). Several samples were prepared within a single growth to 

ensure repeatability of results and to allow for direct comparison between substrates under 

identical growth conditions. 

For in5situ PES and NEXAFS measurements of film growth on ITO, the growth rates and 

nominal film thicknesses were calculated by following the attenuation of the In 3d5/2 signal using 

Equations (256) and (257). For all other films, the deposition rates were monitored by QCM that 

are placed in the path of the beam but not obstructing the sample holder. A tooling factor is used 

to correct for the geometric offset between the locations of the QCM and sample holder. All the 

materials except for F45TCNQ have been calibrated prior to thin film deposition in this 

dissertation; the thickness calibration of F45TCNQ will be addressed in Chapter 4. The error in 

determining the thickness of the film is approximately 5%. The samples were stored in a glove 

box before characterization, with the exception of organic solar cells and thin films for PES and 

NEXAFS measurements which were measured immediately after deposition.  
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Chapter 3 : Controlling the Molecular Orientation of CuPc 

Using Graphene Interlayer on ITO 

3.1 Introduction 

The importance of the molecular orientation in the active layer of OPV devices has been 

discussed in Chapter 1. For planar heterojunction OPV devices, vertical π5π stacking of the 

aromatic molecules is highly desirable. One of the methods to control the molecular orientation is 

to use a structural template layer. 

In this experiment, we use CVD graphene transferred onto ITO as the interface template layer due 

to its excellent optical transparency1 and its similarity in work function2,3 with ITO.4,5 The 

advantages of choosing graphene over the well5studied PTCDA structural template layer has been 

detailed in Section 1.1.2. Briefly, the similarity in work functions between graphene and ITO 

suggests that there may not be additional barriers for hole extraction at the interface due to the 

inclusion of graphene on ITO, while the high optical transparency of graphene minimizes light 

attenuation through the templating layer in an OPV device. In contrast, the PTCDA layer traps 

charge at the interface due to the 1.5 eV HIB, thus lowering the open circuit voltage in organic 

solar cells, and the optical absorption of PTCDA (~20%) overlaps with CuPc.6 Finally, 

conductive graphene itself can be used as a flexible electrode in OPV (on a non5conducting 

flexible support) without the ITO layer.7–10 While this is beyond the scope of this thesis, the 

investigations concerning the structural and electronic properties of organic films deposited on 

G/ITO in this thesis have the potential to be extrapolated for commercial applications in flexible 

electronics using only graphene as the anode. 

A hole injection barrier (HIB) between CuPc and ITO of up to 1 eV has been reported.11 For 

organic semiconductor devices utilizing ITO as a transparent electrode, the magnitude of the HIB 
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can affect charge accumulation or injection.12–15 This implies that both ITO and the graphene 

interlayer require work function modification in order to attain near ohmic contact with the 

HOMO of CuPc for efficient charge extraction. While a few groups have used graphene as an 

interlayer to template CuPc,16–18 their focus was mainly on the control of orientation of CuPc. 

Furthermore, the reports reveal some ambiguity concerning the effectiveness of graphene as a 

structural template at room temperature deposition since there appear to be two competing 

molecular orientations.2,16–18 Detailed investigations of the electronic properties of CuPc 

deposited on graphene transferred onto ITO have not been previously reported. 

In this chapter, we use PES to perform a comprehensive study of the electronic properties of 

CuPc films of varying thicknesses deposited on two different substrates, ITO and graphene 

covered bare ITO (G/ITO). This will allow us to determine the barrier to charge extraction at the 

interface and to propose strategies to overcome this issue. NEXAFS and XRD are used to confirm 

the molecular orientation of CuPc on both substrates to determine the efficacy of CVD graphene 

transferred onto rough ITO as a structural template. These substrates will form the anode portion 

in an organic photovoltaic device which will be fabricated in the last section. The PES 

investigation begins with sub5monolayer coverage to understand the processes at the interface, 

and progresses gradually to the bulk properties of CuPc which will mimic the OPV systems more 

closely.  

3.2 Energetic Properties of CuPc on ITO and G/ITO 

Figure 351 presents the data obtained by synchrotron based PES measurements for CuPc 

molecules sequentially deposited onto ITO. Figure 351 (a) shows the evolution of the low kinetic 

energy region of the PES spectra as a function of CuPc thickness on ITO. The sample work 

function is determined from the kinetic energy cutoff position. All the PES measurements have an 

error of ±0.05 eV. The work function of clean bare ITO was determined to be 4.56 eV which is 
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within the range of reported values from 4.20 eV to 4.85 eV depending on the preparation 

conditions.4,5 Deposition of 1 Å CuPc on ITO results in a downward shift in vacuum level by 0.10 

eV, corresponding to a decrease in work function by the same amount, as shown in Figure 351 (a). 

Beyond this initial change at low coverage, the work function continues to decrease gradually by 

another 0.10 eV at 10 Å CuPc, and finally saturates at 4.26 eV for bulk CuPc. While the total 

change in work function of 0.3 eV is small, it is non5negligible and larger than the error 

associated with the measurement (±0.05 eV). We propose that the change of work function for 

CuPc deposited on ITO up to 10 Å arises from the polarization and charge redistribution of the 

organic molecule upon deposition.19 This may also be attributed to morphological and orientation 

disordering at the interface of the rough ITO substrate.20,21 The latter can also be invoked to 

address the subsequent but more gradual change in work function beyond 10 Å CuPc. Band 

bending induced by charge transfer between ITO and CuPc is unlikely as the substrate work 

function (4.56 eV) is smaller than the ionization energy of CuPc 5 4.80 eV for standing CuPc,22,23 

5.15 eV for lying CuPc.22 The corresponding electron affinities are 2.60 eV and 2.95 eV 

Figure 3-1 Synchrotron based PES spectra evolution of CuPc on ITO. (a) Low kinetic energy region, (b) valence 
band spectra at low binding energy and (c) near the Fermi level region. The thickness of the CuPc film in (a) – (c) 
is denoted as θCuPc and increases from (i) 1 Å to (vi) 100 Å. The peak position in (b) indicated by ‘ * ’ is formed 
by the  overlap between the HOMO54 and HOMO55 orbitals of CuPc;27 their respective intensities depend on 
orientation of the molecules. The arrow in (b) marks another spectra feature (HOMO51) of CuPc that depends on 
molecular orientation.  
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respectively with respect to the vacuum level.24 Based on previous results, the CuPc molecules 

are predominantly standing on weakly interacting substrates such as ITO.6,25,26 This will be 

discussed in detail in the next section. Assuming vacuum level alignment, the Fermi level (EF) of 

ITO lies within the HOMO5LUMO gap of CuPc, thus excluding the possibility of spontaneous 

interfacial charge transfer.  

Figure 351 (b) shows the CuPc coverage dependent valence band features on ITO. The broad and 

featureless spectrum of clean ITO is presented as (i) at the bottom of the plots. The intensity of 

the ITO valence band signal is gradually attenuated with increasing CuPc deposition, and the 

spectra are almost entirely dominated by CuPc valence band features 27,28 beyond 10 Å [(iv) in 

Figure 351 (b)]. All the spectra features of CuPc do not exhibit any shift in binding energy with 

increasing CuPc thickness up to 20 Å; however they shift by ~0.09 eV to higher binding energy 

when the thickness is increased from 20 Å to 100 Å. This observation is consistent with the lack 

of significant shift in the vacuum level excluding the minor fluctuations due to morphological 

disordering which have been previously explained. More information regarding the highest 

occupied molecular orbital (HOMO) derived state of CuPc can be found in the close5up of the 

valence band region close to the Fermi level in Figure 351 (c). All the values of binding energy 

are referenced to EF. The peak position of the CuPc HOMO state located at about 0.97 eV first 

becomes visible at 5 Å CuPc and increases in intensity with thicker CuPc films.  

The position of the HOMO onset can be determined by extrapolating the leading edge of the 

HOMO peak at the lower binding energy portion to the background intensity. This position is 

useful in specifying the hole injection barrier (HIB) in organic solar cells which is defined as the 

difference between the HOMO onset and Fermi level.29–33
 For the 5 5 100 Å thick CuPc film, the 

HIB is determined to be around 0.51 eV. Indeed this large barrier precludes strong charge transfer 

at the CuPc5ITO interface. It should be pointed out that values of HIB ranging from 0.5 eV to 1.0 

eV have been reported, depending on the work function of ITO.11,14,15,33,34 Therefore, the HIB can 
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be tuned by modifying the initial work function of the ITO substrate through surface 

modifications.12–15,34 Finally, the ionization potential (IP) of CuPc is calculated using Equation (25

5) and is determined to be 4.77 eV. This value is close to the 4.80 eV obtained for standing 

CuPc,22,27,35 suggesting that the CuPc molecules in our sample are oriented likewise.  

C 1s photoemission core level spectroscopy for different CuPc film thickness shown in Figure 352 

is performed to confirm that there is no observable chemical interaction between the ITO and 

CuPc. A linear background subtraction is introduced before fitting each spectrum. The spectrum 

for clean ITO [plot (i) in Figure 352] reveals surface carbon contaminants despite oxygen plasma 

treatment before loading the sample into the measurement chamber and degassing the sample in 

ultra high vacuum. The constituent spectrum of the surface carbon contaminant on the ITO 

substrate is presented as black dotted lines in Figure 352. The substrate signal is gradually 

attenuated with increasing CuPc deposition and disappears fully above 10 Å. This agrees well 

with the CuPc valence band spectra in which the substrate signal is almost completely attenuated 

beyond 10 Å CuPc [Figure 351 (b)]. The C 1s peak of pristine CuPc is displayed as orange solid 

lines and consists of three distinct features around 284.2 eV, 285.6 eV, and 287.6 eV. These 

peaks are attributed to the aromatic C5C bond of the benzene ring, the C5N bonded pyrrole carbon 

and a π5π* shake5up of the C5N peak respectively.36–39 There is also a shake5up peak 

corresponding to the C5C bond which is mostly obscured by the C5N bonded feature and is not 

well resolved in our spectra.37–39 The ratio of the aromatic to pyrrole carbon is approximately 3:1 

which agrees well with the stoichiometric ratio of the 24 C5C and 8 C5N bonded carbons in 

CuPc.37 The intensities of the C5C and C5N peaks increase with thicker CuPc films, whereas the 

binding energy of each feature remains unchanged. Since no new states are observed in the C 1s 

core level spectra, this suggests that CuPc interacts very weakly with the ITO substrate. The weak 

chemical interaction is further supported by the absence of gap states close to the Fermi level in 

the valence band spectra shown in Figure 351 (b) and (c).  
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The electronic structures, chemical interaction and energy level alignment of CuPc thin film on 

graphene modified substrate (G/ITO) are similarly investigated using synchrotron based PES. The 

interfacial energetics of CuPc on this inert modified G/ITO surface are not expected to differ 

significantly from the results obtained in Figure 351 as the work function of graphene is within 

the range of ITO work function.40–42 However, graphene has been reported to be able to change 

the orientation of planar molecules from standing on weakly interacting substrates such as SiO2 

and ITO, to a tilted or lying configuration when deposited on graphene modified substrates at 

room temperature deposition.2,3,16,17 Therefore, the electronic structure and interfacial properties 

which are orientation5dependent will be changed accordingly.22,27,43 Detailed discussions 

regarding the molecular orientations of CuPc on ITO and G/ITO will be presented in Section 3.3. 

Figure 353 shows results of PES measurements for CuPc dependent thickness series on G/ITO. 

The evolution of the low kinetic energy region of the PES spectra as a function of CuPc thickness 

on G/ITO is presented in Figure 353 (a). The work function of the G/ITO substrate is found to be 

Figure 3-2 C 1s core level spectra for different film thicknesses of CuPc deposited on ITO. Dashed black lines 
represent the signal originating from the substrate, whereas the solid orange lines are attributed to CuPc. 
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4.24 eV. While this value is slightly lower than the work function of free5standing single layer 

graphene (4.5 eV),40–42 similar observations for graphene transferred on ITO2,3 and SiO2
44 have 

been previously reported. It has been suggested that the underlying substrate can affect the 

electronic properties of graphene; for instance, graphene transferred to SiO2 is doped due to the 

formation of a dipole at the graphene/SiO2 interface, resulting in a lowering of the substrate work 

function to 4.12 eV.44,45 A dipole induced by charge transfer between graphene and ITO may also 

be present at the G/ITO interface, causing a similar decrease in the work function. 

Upon depositing 1 Å CuPc on G/ITO, the substrate work function is reduced by 0.08 eV [Figure 

353 (a)] at the interface. The work function remains almost constant up to 20 Å CuPc on G/ITO, 

but decreases by about 0.09 eV when the thickness of CuPc is increased to 100 Å, resulting in a 

final work function of 4.05 eV. The mild change in work function may be attributed to the 

morphological disordering of CuPc,20,21 or to the weak interaction between graphene and CuPc.46 

Strong charge transfer between CuPc and G/ITO is unlikely to take place as the work function of 

G/ITO is located in the middle of CuPc bandgap.  

CuPc thickness dependent valence band features are shown in Figure 353 (b) and a close5up of the 

spectral features near Fermi level in Figure 353 (c). Spectrum (i) in Figure 353 (b) of G/ITO 

before CuPc deposition reveals the characteristic 2p π peak of graphene at around 3.25 eV.40,44,47 

The spectrum also shows a non5zero sloping signal at low binding energy which extends to the 

Fermi level due to the absence of a bandgap and a distinct HOMO level in pristine monolayer 

graphene.48 This is consistent with the linear dispersion relation of graphene where filled states 

can be found all the way to the Fermi level. Following the deposition of 1 Å CuPc, the HOMO 

derived feature of CuPc with peak position located at around 1.30 eV below EF becomes visible. 

The intensity of this feature increases with thicker CuPc films, and the peak positions remain 

constant within the margins of error. The position of the HOMO onset can be resolved from the 

valence band region close to the Fermi level as shown in Figure 353 (c) using the method 
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described in the preceding paragraphs. We find that the positions of HOMO onset does not vary 

with CuPc thickness up to 20 Å. Beyond this thickness, there is a shift of the HOMO onset and 

HOMO peak position to higher binding energy by 0.06 eV, which is of similar magnitude to the 

shift in vacuum level. The large HIB of 0.94 eV makes this setup unsuitable for use as the anode 

in an organic solar cell as it creates a large barrier to hole extraction at the donor5electrode 

interface. The IP calculated from the HIB and work function of CuPc on G/ITO is found to be 

4.99 eV, which is 0.22 eV higher than CuPc deposited on ITO. The difference in IP may be 

assigned to a change in molecular orientation of CuPc from standing to tilted or lying when 

deposited on ITO as compared to G/ITO respectively, concomitantly changing the direction of 

surface dipole which originates from the C5H bonds at the periphery of the CuPc molecules. The 

difference in IP obtained in this experiment is smaller than the 0.4 eV change observed by Chen 

et al. for CuPc molecules in a standing versus lying orientation on a self5assembled monolayer 

terminated Au substrate and HOPG respectively.22 This suggests that CuPc molecules on our 

G/ITO substrate acquire a spread of orientations, or are tilted at an intermediate angle to the 

Figure 3-3 Synchrotron based PES spectra evolution of CuPc deposited on G/ITO. (a) Secondary electron 
cutoff region at low kinetic energy, (b) valence band spectra at low binding energy and (c) near the Fermi level 
region. ‘ * ’ in (b) corresponds to the same symbol in Figure 351(b).  
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substrate, as opposed to the uniform flat lying layers reported by Chen et al.. Detailed 

investigation on the molecular orientation of CuPc will follow in Section 3.3. 

C 1s core level spectroscopy was performed to study the interaction between CuPc and G/ITO. 

The resultant spectra are shown in Figure 354. A linear background was subtracted from the 

spectra prior to decomposing the spectra into their respective contributions from the substrate 

(black dashed lines) and the CuPc molecules (solid orange lines). The C 1s spectrum for G/ITO 

substrate can be fitted by 3 peaks at 284.4 eV, 285.1 eV and a shoulder at 286.2 eV. The most 

intense peak at 284.4 eV is unambiguously attributed to the C5C bond in graphene; while the 

285.1 eV peak corresponding to C5O bonded carbon and the 286.2 eV shoulder to C=O bond may 

arise from residual PMMA.40,49 For the fitted peaks of CuPc molecules, the peak positions and 

their ratios are the same as the core level spectra for the CuPc/ITO sample (Figure 352). Since the 

binding energies of the CuPc fitted peaks are invariant with increasing /film thickness, and there 

Figure 3-4 C 1s core level spectra CuPc deposited on G/ITO. Dashed black lines represent the signal 
originating from the substrate, whereas the solid orange lines are attributed to CuPc. 

 



 

61 
 

are no new peaks observed in the C 1s spectra in Figure 354, we conclude that CuPc molecules 

does not undergo chemical interactions with G/ITO.  

The energy level diagrams of CuPc/ITO and CuPc/G/ITO are illustrated in Figure 355 (a) and (b) 

respectively. The position of the HOMO onset (HIB), sample work function and IP are derived 

from PES measurement, while the position of the LUMO was defined using the transport gap of 

CuPc molecules (2.2 eV).24 The energy level diagrams of both samples show near vacuum level 

alignment and flat energy band conditions. The Fermi level of ITO and G/ITO lies within the 

bandgap of CuPc, and there is a large energy offset between the substrate work function and the 

HOMO or LUMO positions. Therefore charge transfer between the substrates and CuPc is 

energetically unfavourable. Both the IP and the HIB are larger for CuPc deposited on G/ITO as 

compared to ITO. In particular, the HIB is nearly twice as large for the former sample; hence the 

graphene interface layer by itself is energetically unfavourable to be used at the anode portion in 

an OPV device. 

Figure 3-5 Schematic drawings showing the energy level diagrams of CuPc deposited on (a) ITO and (b) G/ITO. 
The work function, HIB and IP values are derived from PES measurements while the transport gap  (2.20 eV) 
which defines the position of the LUMO is obtained from literature.24 The position of EF is denoted by the blue 
dashed line, while the HOMO and LUMO positions are represented by the pink and blue bands respectively. 

EF 
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The valence band features of CuPc on ITO and G/ITO in Figure 351 (b) & Figure 353 (b) 

respectively, together with the calculated IP of CuPc on the two substrates, can provide insights 

about the molecular orientation of CuPc.23,27 The larger ionization energy of CuPc on G/ITO may 

be indicative of a change in orientation from standing on ITO to a more tilted configuration on 

G/ITO. Toader et al. has also reported that features in the valence band of CuPc can provide 

information about the average orientation of CuPc molecules.27 First, the band encompassing 

HOMO52 to HOMO55 of CuPc [marked ‘ * ’ in Figure 351 (b) & Figure 353 (b)] is found to vary 

the most with CuPc molecular orientation. The centroid of this band, together with the dominant 

orbital within the band, have been observed to shift to higher binding energy when the angle that 

CuPc molecules makes with the substrate increases (i.e. CuPc adopts a standing configuration on 

the substrate).22,27 This band also has a smooth curvature near the apex when the molecules are in 

the lying configuration but appears as split features when the molecules are standing. Second, the 

HOMO51 orbital, identified by an arrow in Figure 351 (b), is present for standing CuPc but almost 

absent for the tilted orientation due to the overlap with the HOMO52 molecular orbital from the 

band marked ‘ * ’. From our PES results, we observe a shift in the centre of gravity of the ‘ * ’ 

band from 3.58 eV on ITO [Figure 351 (b)] to 3.38 eV in G/ITO [Figure 353 (b)]. Near the peak 

position of this band, the spectra for CuPc/ITO show split features while a singular feature is 

observed for CuPc/G/ITO. Finally, the HOMO51 feature is absent in the former sample. These 

evidences from PES suggest that CuPc molecules have changed from a standing configuration on 

ITO to a tilted or lying orientation on G/ITO. However, these observations only provide 

qualitative inferences regarding the molecular orientation. Specific characterization techniques 

such as XRD and NEXAFS are additionally employed to provide direct evidence of the molecular 

orientation of CuPc.  
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3.3 Molecular Orientation of CuPc on ITO and G/ITO 

Xiao et al.
16 and Mativetsky et al.

18 have previously used graphene transferred onto SiO2 and 

glass substrates to control the orientation of CuPc molecules deposited on its surface. Their XRD 

results showed a mixture of standing and lying orientations of CuPc are present on the graphene 

modified substrates. Zhong et al. performed NEXAFS investigation on similar planar 

phthalocyanine molecules, F16CuPc, deposited on G/ITO. The resultant average molecular angle 

(38o ± 5o) suggest that the molecules are tilted, but not lying, on the substrate.2 Based on these 

data, there is ambiguity concerning the structural templating effectiveness of graphene since the 

CuPc molecules do not appear completely templated. We propose that these observations are due 

to the partial coverage of the substrate by graphene due to the wet transfer process.51 Furthermore, 

the graphene sheet may be damaged during the transfer.52 This problem may be further 

exacerbated if the incident photon beams are larger than the substrate especially at low angle of 

incidence. Therefore, the resultant data for both XRD and NEXAFS measurements is a sum of 

the signals from the different orientations of CuPc on graphene and the exposed substrate.a In 

order to confirm the templating ability of graphene, we deposit CuPc directly onto as5received 

graphene on copper foil (G/Cu) to ensure nearly full coverage of the substrate by graphene, and to 

eliminate defects which arise during graphene transfer. In Chapter 5, we will perform detailed 

XRD analysis of CuPc deposited on pristine and transferred graphene. 

The XRD spectra for CuPc powder, CuPc deposited on G/Cu, Cu foil, and a well5known 

structural template PTCDA,6,53 are shown in Figure 356 (a). PTCDA is able to control the 

molecular orientation of CuPc from standing on bare ITO, to lying on PTCDA modified ITO.6,53 

By comparing the diffraction peaks between CuPc on PTCDA and on G/Cu, we can ascertain if 

graphene has similar structural templating ability as PTCDA.  

                                                           
a These scenarios apply to all the G/ITO samples used in this thesis unless otherwise stated.  
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The CuPc powder diffraction pattern showing all possible diffraction peaks from the α5

polymorph of CuPc (i.e. randomly oriented crystals) is shown in Figure 356 (a) (bottom plot). The 

first peak at 2θ = 6.8o is due to the diffraction form the (1 0 0) plane. This peak is observed for 

CuPc deposited on weakly interacting substrates such as SiO2 and ITO,6,16–18,25,53 and corresponds 

to an orientation in which the CuPc molecules are standing almost perpendicular to the 

substrate.54 The XRD spectrum for CuPc deposited on PTCDA/ITO is also shown in Figure 356 

Figure 3-6 (a) XRD spectra of (blue spectrum) CuPc powder showing all possible diffractions from α5CuPc 
crystals (scaled for clarity), (black) 30 nm CuPc deposited on 20 nm PTCDA pre5covered ITO, (green) 100 nm 
CuPc on G/Cu and (red) 100 nm CuPc/Cu. The dashed grey line indicates the diffraction peak at 27.6o. (b) 
Close5up spectrum of the diffraction peaks of the 100 nm CuPc/G/Cu sample showing details of the fitted peaks 
(in black). These peaks correspond to the (0152) and (1152) planes at 26.6o and 27.6o respectively for α5CuPc. 
Schematic drawings showing (c) the angle α between the molecule and the substrate, (d) the ‘lying orientation’ 
on PTCDA or graphene covered substrates, and (e) the ‘standing’ molecular orientation of CuPc on weakly 
interacting substrates such as ITO. 
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(a) (black spectrum). A single diffraction peak at 27.6o, shown by a grey dashed line in Figure 356 

(a), implies that CuPc crystallites in the film are textured with respect to the substrate. This peak 

is due to diffractions from the (1 1 52) plane of CuPc, and a small contribution from the (0 1 52) 

plane of PTCDA. The molecular tilt plane of CuPc is 7.5o with respect to the substrate (lying 

orientation) when the (1 1 52) plane is preferentially parallel to the substrate. The absence of the 

CuPc (1 0 0) peak, and the emergence of a single diffraction peak at 2θ = 27.6o in the 

CuPc/PTCDA/ITO spectrum indicates that CuPc molecules are lying parallel to the substrate. 

Finally, XRD is performed on CuPc/G/Cu and Cu foil [Figure 356 (a), green and red plots 

respectively]. Cu foils were prepared by exposing a piece of G/Cu substrate to oxygen plasma to 

remove the graphene layer. The systematic absence of peaks compared to a fully randomly 

oriented powder [bottom spectrum, Figure 356 (a)] implies that the crystallites in CuPc films are 

textured with respect to the substrate. The CuPc/Cu spectrum shows a single diffraction peak at 

6.8o, indicating that (1 0 0) plane of CuPc is parallel to the substrate, and consequently the CuPc 

molecules are standing on the substrate. In marked contrast, the spectrum for CuPc/G/Cu 

resembles the spectrum of CuPc/PTCDA/ITO more closely. This suggests that graphene, like 

PTCDA, is able to control the molecular orientation of CuPc. A zoomed scan around the 

prominent peak of the CuPc/G/Cu spectrum [Figure 356 (b)] reveals two peaks centred at 2θ = 

26.6o and 27.6o. These peaks are due to diffraction from the (0 1 52) and (1 1 52) planes of CuPc 

respectively.54 Defining α to be the angle subtended by the molecular plane and the substrate 

plane [Figure 356 (c)], α = 9.0o and 7.5o when the (0 1 52) and (1 1 52) planes of CuPc respectively 

are preferentially parallel to the substrate. These results verify the effectiveness of graphene as a 

structural template for CuPc since all the molecules are nearly lying parallel to the substrate. 

Schematic diagrams illustrating the packing and orientation of CuPc molecules on PTCDA or 

graphene structure templates, and on substrates such as Cu foil or ITO, are shown in Figure 356 

(d) and Figure 356 (e) respectively. 
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The preferred orientation of CuPc molecules on various substrates is due to the subtle interplay 

between intermolecular and interfacial interaction energies. On ITO substrates, the intermolecular 

interaction between CuPc molecules dominates over the molecule5substrate interaction, hence a 

standing geometry of CuPc molecules is observed.25 Conversely on graphene, the π5π molecule5

substrate interaction of CuPc on graphene dominates, resulting in a lying adsorption geometry of 

CuPc.17,18,55 This lying geometry has also been observed on a similar substrate of graphite 

(HOPG).20,56,57 Yin et al. previously calculated that the adsorption energy of CuPc on HOPG is 

significantly stronger than the intermolecular interaction between CuPc molecules. Although the 

absorption energies for CuPc on G/Cu are likely to be different from CuPc/HOPG due to the 

influence from the underlying substrate,44 we propose that surface energies are similar to HOPG17 

since the orientation and crystallinity of CuPc on graphene and HOPG are similar.23  

Next, the orientation of CuPc molecules in ultra5thin films in the range of Å is probed by 

NEXAFS. The capability of standard XRD is limited in this regime as diffraction from nano5

sized crystallites might be too weak to be detected above the background substrate signal. 

NEXAFS on the other hand does not require crystallization of molecules as it records the 

transitions of all the molecules present within the beam size of the film. NEXAFS monitors the 

resonant transitions of electrons from the core level of an atomic species to the unoccupied 

molecular orbitals, such as the π* or σ* orbitals in aromatic molecules. As described in Section 

2.2.2, angle dependent NEXAFS can be performed to determine the orientation of planar 

aromatic molecules such as CuPc on the various substrates. Two angles are used in all our 

NEXAFS measurement viz. θ = 20o (grazing incidence) and θ = 90o (normal incidence) where θ is 

defined according to the schematic in Figure 357 (a). Figure 357 (b) depicts a scenario during 

NEXAFS measurement where the incident photon beam probes a mixture of orientations of CuPc 

molecules. A similar situation has been previously described for XRD measurements.   
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Figure 357 (c) and (d) show the results obtained from NEXAFS N K5edge measurements on 

CuPc/ITO and CuPc/G/ITO respectively at θ = 20o and θ = 90o for two different film thicknesses. 

The sharp absorption peaks in the range of 397 – 404 eV are assigned to the resonant transitions 

from the N 1s core level into different π* states of CuPc whereas the broad absorption peaks at 

higher photon energies are attributed to the transition from N 1s to the σ* orbitals.58 For the 

Figure 3-7 (a) Schematic diagram defining the incident beam angle θ in a NEXAFS setup. (b) Illustration 
showing graphene transferred onto ITO and the relative the size of the incident photon beam (8 mm x 1 mm) at θ 
= 20o (grazing incidence). At this angle the beam is larger than the graphene sheet, therefore the calculated CuPc 
molecular angle is an average of graphene covered areas and the bare substrate. Graphene sheet also tears during 
the transfer process and forms holes which reveal the underlying substrate. The sizes of the holes are exaggerated 
for clarity. Angle5dependent NEXAFS N K5edge spectra for 10Å and 100Å CuPc deposited on (c) ITO and (d) 
G/ITO at θ = 90o (red) and θ = 20o (black). 
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CuPc/ITO sample [Figure 357 (c)], the spectra for the 10 Å (top) and 100 Å (bottom) thick CuPc 

films reveal that the maximum intensity for the N 1s → π* transition is observed at normal 

incidence, while the transitions to the σ* orbitals are greatly enhanced at grazing incidence. The 

angular dependence of the NEXAFS confirms that the CuPc film is well5ordered on ITO and the 

molecules adopt a standing configuration. The average molecular tilt angle (α) can be estimated 

from the intensity ratio of the lowest energy π* transition at θ = 90o and θ = 20o [q"� ∗( =
;"_	s	=A�(
;"_	s	�A�(]. The expression for I(θ) is found in Equation (258). For CuPc/ITO, α = 70o ± 5o for both 

low and high coverages of CuPc. 

The same analysis is repeated for the NEXAFS spectra of CuPc/G/ITO shown in Figure 357 (d). 

The intensity of the π* resonant transitions varies with the incident angle, implying that the film 

is likely to be ordered. The angle α is estimated to be 63o ± 5o which is slightly lower than that of 

CuPc/ITO. This value is close to a random orientation (~54.7o) for CuPc molecules.59 Related 

experiments of the deposition of planar molecules on pristine graphene,60 transferred 

graphene2,3,16,18 and HOPG35,61,62 reveal a well ordered film with molecules lying almost flat on 

the substrate. We propose that the larger than expected tilt angle (63o 
versus nearly flat lying 

molecules) is mediated by 1) the roughness of the G/ITO substrate surface (cf. Figure 2513) 

causing the molecules to attain a spread of orientations, and 2) the averaging effect of the beam 

over different orientations of CuPc as depicted in Figure 357 (b). These scenarios result in an 

apparent average random orientation of CuPc molecules on G/ITO. Using cross5section 

transmission electron microscopy (TEM), Gilchrist et al.63 observed that CuPc molecules form 

nano5sized grains with a range of orientations on rough substrates such as ITO and even 

PTCDA/ITO. We propose that a similar situation occurs for CuPc deposited on the rough G/ITO 

substrate.  
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We have demonstrated in this chapter that control of the molecular orientation can be achieved by 

using a graphene template layer. However, the energy level diagrams shown in Figure 355 

indicate that there is a trade5off of a significantly larger HIB when a layer of graphene is inserted 

between CuPc and ITO. Hence the anode structure of G/ITO requires further modification before 

the beneficial effects of a graphene template can be fully realised. To assess the impact of 

graphene5templated growth of CuPc on OPV device characteristics, a planar heterojunction OPV 

using a well5studied CuPc/C60
6,64–66 active layer is fabricated. The results are referenced to 

devices using unmodified ITO substrates. The results are discussed in detail in the following 

section. 

3.4 OPV Device Characterization using ITO and G/ITO as Anode Layer 

A schematic drawing of the OPV structure that is used for device characterization is presented in 

Figure 358 (a) and (b). In our devices, the optional intermediate layer in the schematic ranges 

from PTCDA and graphene in this section, to a work function modifying layer (F45TCNQ) in the 

Chapter 5. The purpose of device fabrication and characterization is to compare the effects of 

modifying the molecular orientation of the donor layer against a reference unmodified OPV 

device. We commence the investigation by characterizing well5studied CuPc/C60 devices6,64–66 

with the donor CuPc layer in different stacking orientations: a standing CuPc layer in a reference 

device of 100 nm Al/12 nm BCP/40 nm C60/30 nm CuPc/ITO (simplified as A/ITO where ‘A’ 

refers to ‘100 nm Al/12 nm BCP/40 nm C60/30 nm CuPc’) and a lying CuPc generated by 

inserting a 5 nm PTCDA interlayer (A/5 nm PTCDA/ITO) as structural template for CuPc.6 It 

must be stressed that our results differ from the best published data due to an unoptimized 

deposition system and a large Al contact mask (0.12 cm2 versus 0.08 cm2 commonly used) which 

increases the series resistance and highlights non5uniformity and defects in our device 

architecture due to a large sampling area.67,68 Furthermore, we record that the solar cell 

parameters vary between growth batches but show the same general trend. For comparison 
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purposes, we report the representative averaged data of several devices grown within the same 

batch, and include the rest of the data in Appendix B.  

The effects of structural templating on the short5circuit current (Jsc) and open5circuit voltage (Voc) 

parameters in our OPV device configuration 5 assuming an idealized defect5free case for both 

types of OPV 5 are predicted as follows 1) an enhancement in Jsc due to an improved charge 

transport as a consequence of a modified stacking direction and increased absorption efficiency of 

the CuPc,6,17,64,69 and 2) Voc that is dependent on the trade5off between the HIB and the offset 

between the HOMO of the donor molecule (HOMOD) and LUMO of the acceptor molecule 

(LUMOA). Voc has been found to scale almost linearly with the difference between HOMOD 5 

LUMOA,70,71 but at the same time is also affected by charge carrier losses at the interface due to 

large HIB.72 For tilted or lying CuPc molecules, the enhancement in IP results in charges being 

trapped at the CuPc5G/ITO interface due to a larger HIB, yet simultaneously enhances the 

energetic offset between the acceptor and donor molecules (i.e. larger HOMOD 5 LUMOA).73 

Figure 358 (c) shows J5V curves under AM 1.5 solar illumination at 100 mW cm52 for OPV cells 

with device structures A/ITO and A/5 nm PTCDA/ITO in red and black respectively. Their 

corresponding dark J5V curves are shown in the inset, and show good diode rectifying 

characteristics. As compared to the reference cell, the device with the PTCDA interlayer shows 

noticeable improvement in Jsc from 0.28 mA cm52 to 0.40 mA cm52 whilst their fill factors (FF) of 

0.27 and Voc of ~0.15 V remains essentially the same.  

Both PTCDA and graphene interlayers on ITO share some similarities : they are able to modify 

the orientation of CuPc, but at the same time cause charges to build up at the anode interface due 

to an appreciable HIB (~0.9 eV for CuPc/G/ITO and 1.5 eV for CuPc/PTCDA/ITO6). In view of 

these similarities, we expect that our subsequent device of A/G/ITO should have the same trend 

as A/PTCDA/ITO, showing an improvement in Jsc while a possible loss in Voc.  
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J5V curves of the reference device on ITO (red) and G/ITO (black) are shown in Figure 358 (d) 

together with their dark current in the inset. Diagnostics of the dark current J5V curves reveal that 

the A/ITO shows good diode rectifying characteristics in the dark, while significant leakage 

current in reverse bias, or low shunt resistance Rsh, is associated with the A/G/ITO device. Rsh is 

estimated from the gradient of the curve at 0 V external bias and is determined to be 1.4 kr cm2 

for in the A/G/ITO device and 600 kr cm2 for A/ITO. The low value of Rsh for A/G/ITO is most 

Figure 3-8 (a) Schematic diagram of the solar cell structure used in all solar cell characterization experiment. ‘ A ’ 
refers to the structure 100 nm Al/12 nm BCP/40 nm C60/30 nm CuPc while the intermediate layer is either 5 nm 
PTCDA or graphene in this chapter; 5 Å F45TCNQ or 5 Å F45TCNQ/graphene in Chapter 6; or entirely absent. (b) 
Top view drawing of G/ITO solar cell with Al top contacts (8.0 mm x 0.15 mm) in blue. The contacts overlap 
areas where graphene has torn and the underlying ITO substrate is revealed. Current density as a function of cell 
voltage (J5V) curves under 100 mW/cm2 illumination for (c) red: A/ITO & black: A/5nm PTCDA/ITO, and (d) 
red: A/ITO & black: A/G/ITO. Inset: J5V curve of the devices under dark. Current leakage is very pronounced for 
the substrate modified by graphene interlayer in (c). 
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likely attributed to the very rough surface morphology of graphene transferred onto the ITO 

substrate at areas where graphene is torn and scrolled up, providing an alternative route for the 

current to flow. In addition to the large leakage current, the A/G/ITO device also suffers from 

large series resistance Rs. While the value of Rs should ideally be calculated at high forward bias 

at 2 V, the slopes of the J5V curve close to 1 V74  can be used to compare Rs for the A/ITO and 

A/G/ITO. Rs for A/ITO is approximately 63 r cm2 while that for A/G/ITO is 160 r cm2. For both 

devices, the large surface contact area has a deleterious effect on Rs.
67 The large energy level 

mismatch at the CuPc5graphene interface and the high sheet resistance of graphene (~kr)9,75,76 

further contribute to increasing Rs for A/G/ITO devices.  

The J5V curves under illumination [Figure 358 (d)] record a decrease in Voc from 0.41 V to 0.31 V 

when a graphene interface layer is added to the anode. The loss in Voc might stem from charge 

accumulation and recombination at the CuPc5G/ITO interface, or might be caused by large 

leakage current.77,78 Structural templating by the graphene layer should result in an increase in Jsc 

due to improved hole mobility through CuPc. Instead we register a 30% reduction in Jsc from 1.06 

mA cm52 for the A/ITO device to 0.71 mA cm52 for the A/G/ITO device. We attribute this to the 

larger Rs present in the A/G/ITO device, thereby reducing the photogenerated current flowing 

through the device. In fact, both A/G/ITO and A/ITO devices suffer from high Rs which is 

evident from the nearly linear J5V curve under illumination up to Voc,
67 but Rs for A/G/ITO is 

more pronounced as the graphene interlayer adds to the series resistance present in the OPV 

device. In their simulation, Servaites et al. determined that the maximum FF attainable for 

samples with high Rs beyond a critical threshold is constant since it is limited by the straight line 

curve at values below Voc.
67 We observe similar values of FF for A/G/ITO (FF = 0.25) and A/ITO 

(FF = 0.27) in our experiment despite obtaining smaller values for Jsc and Voc  and a larger Rs for 

the former sample. This implies that the value of Rs for intrinsic A/ITO is already larger than the 
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threshold value as suggested by Servaites et al., therefore increasing Rs in A/G/ITO results does 

not cause a significant variation in FF despite lower Jsc and Voc  values.  

The effect of reducing Jsc and Voc in the G/ITO device halved the power conversion efficiency 

when compared against the reference cell on ITO. It is noteworthy that large leakage current and 

high Rs are usually associated with transferred graphene (without further modification) used 

either as an anode or transferred onto substrates,2,76 suggesting that this is an inherent difficulty 

associated with graphene. This may arise from the large sheet resistance compared to ITO (for a 

graphene only anode), and also the roughness and imperfection of the graphene surface. The latter 

is evident as coating the surface of graphene with a layer of MoOx or PEDOT:PSS to planarize 

and uniformly cover the surface can significantly reduce current leakage.9,76 

3.5 Conclusion and Future Work 

We have confirmed the remarkable ability of single to bi5 layer graphene to control the 

orientation of CuPc deposited on its surface using NEXAFS and XRD techniques, further 

complemented by inferences from photoemission data. While CuPc molecules ‘stand’ on the non5

interacting ITO, subtending an angle of around 82o between the molecular plane and the 

substrate, the tilt angle is reduced to around 10o when deposited on G/Cu, adopting a ‘lying’ 

configuration. The latter orientation of CuPc has the potential to improve Jsc in OPV devices due 

to enhanced orbital overlap leading to higher charge mobility between adjacent molecules. PES 

studies show negligible chemical interactions between CuPc and ITO or G/ITO surfaces. 

However, the change in orientation of CuPc molecules comes at a cost of a larger HIB which has 

a detrimental effect on charge extraction at the electrode. The test OPV devices with G/ITO at the 

anode side performed poorly due to the large HIB leading to high Rs, and also due to large 

leakage currents in the G/ITO devices. In view of these drawbacks with using graphene alone as a 

template layer, it is desirable to select a work function modifier layer to lower the HIB, 
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simultaneously reduce the Rs by increasing sheet conductivity through doping, while maintaining 

the templating ability of graphene. This study will be the focus for the subsequent two chapters.   

Looking forward, the strategy of using graphene to control molecular orientation can be extended 

to a variety of poly5aromatic planar molecules in other organic semiconductor devices such as 

OLED. The ability to synthesize large scale roll5to5roll graphene75 coupled with improvement in 

CVD graphene transfer techniques to a variety of substrates with different properties7 makes it 

possible to scale up this templating strategy on technologically important substrates for 

commercial applications.  
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Chapter 4 : F4-TCNQ Thin Film Properties 

4.1 Introduction 

The work in the previous chapter assessed the potential of using graphene as an interlayer on 

ITO. Whilst graphene has been shown to be an effective structural template to control the 

orientation of the donor layer CuPc in an OPV device, the low work function of G/ITO substrate 

as compared to the IP of the CuPc results in an unfavourable hole extraction and consequently 

large series resistance at the anode interface. Potential strategies to reduce the hole injection 

barrier include coating the substrate with high work function materials such as polymer 

poly(ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT:PSS),1–3 transition 

metal oxides4–7 such as MoO3 and V2O5, or small molecules such as tetrafluoro5

tetracyanoquinodimethane (F45TCNQ)8–11 to increase the substrate work function. While these 

strategies can also be applied to the G/ITO anode to ensure energetically favourable contact with 

CuPc, the work function modifying interface layer should be carefully chosen such that the 

structural templating property of graphene is not affected, as for instance by covering graphene 

surface with several nanometers of PEDOT:PSS or transition metals. Instead its templating effect 

should propagate beyond the interface layer to the subsequent CuPc donor layer. 

F45TCNQ is a planar π5conjugated molecule [molecular structure shown in Figure 451 (a)] with 

strong electron accepting properties and is widely used to dope the hole transport or donor layers 

in organic semiconductor devices such as OLED with much success.12–15 This is achieved through 

reduction of the HIB between the electrode and active layer, narrowing of the space charge 

region, and also through increasing hole conductivity.12,13,16,17 More recently, a thin layer of F45

TCNQ independently evaporated onto ITO demonstrated improved hole injection from the 

organic layer to the anode by lowering the energetic barrier at that interface through the formation 
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of dipoles.9–11,18 P5doping of epitaxial graphene on silicon carbide (G/SiC) with F45TCNQ results 

in significant increase in work function due to the formation of surface dipoles as established 

experimentally by PES.19,20 These experimental results on G/SiC were also reproduced by 

theoretical simulations by Pinto et al.
21 The relaxed structure of monolayer F45TCNQ on 

graphene grown on / transferred onto relatively flat substrates such as G/SiC and G/Si 

respectively is reported to be flat5lying.19,21,22 Our motivation for selecting F45TCNQ as a work 

function modifier for G/ITO stems from the results of the experiments in Refs [19522]. These 

experiments suggest that F45TCNQ may simultaneously increase the substrate work function 

while propagating the templating property of graphene beyond the F45TCNQ interlayer. The latter 

may be achieved through π5π interactions between the flat lying F45TCNQ molecules and the 

subsequent CuPc donor layer. 

It is important to highlight that the results obtained in Refs [19522] may not be directly 

translatable to our G/ITO anode. While F45TCNQ is able to significantly increase the work 

function of an atomically flat and clean model system of G/SiC as investigated in Refs [19521], 

its effect on our rough (cf. Figure 2513) and inherently impure (cf. Figure 354) G/ITO solar cell 

anode is unknown and may differ from G/SiC. G/SiC has limited commercial applications in 

organic semiconductor devices as compared to G/ITO due to its high cost. Structurally, although 

the orientation of monolayer F45TCNQ molecules on relatively flatter G/SiC and G/Si substrates 

has been determined through NEXAFS, XRD and simulation,19,21,22 information concerning 

structural analysis of F45TCNQ thin film on rough G/ITO (and ITO) anode is not available in 

literature. Most importantly, Refs [19522] did not study the effect of interface doping of graphene 

with F45TCNQ on the electronic and structural properties of the subsequently deposited organic 

layers (CuPc in our case) in a solar cell device configuration. The absence of this information 

means that the effectiveness of interface doping of graphene using F45TCNQ remains unproven.  
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In this chapter, we perform a systematic in5depth investigation of the electronic properties of F45

TCNQ deposited on ITO and G/ITOb to determine if F45TCNQ is potentially a suitable work 

function modifier for our substrates from the energetics point of view. We also investigate the 

molecular orientation and morphology of the F45TCNQ molecules on both substrates. We begin 

the study by calibrating the film thickness of F45TCNQ deposited in an OMBD system, followed 

by PES studies of the interface electronic structures. A combination of NEXAFS and XRD 

measurements will provide information about the molecular orientation, while the imaging 

techniques such as SEM and AFM will be used to uncover the morphology and topography of the 

F45TCNQ crystals. The effect of pre5covering ITO and G/ITO with F45TCNQ on the electronic 

and structural properties of CuPc will follow in Chapter 5. 

4.2 Calibration of F4-TCNQ Film Thickness  

Prior to thin film studies of F45TCNQ, it is crucial to calibrate the film thickness by tuning the 

tooling factor of the QCM in the OMBD chamber to compensate for the distance between the 

QCM and substrate. Since F45TCNQ molecules do not follow a layer5by5layer growth mode but 

instead form islands when deposited on ITO8,23 (and also on G/ITO as will be seen from the SEM 

analysis in Figure 455 and backed up by PES data which will be discussed in Section 4.3), 

techniques to measure the average film height using AFM or step profilometer prove to be 

inadequate for determining the thickness of the film deposited. Hence a solution5based method 

was used to determine the actual amount of F45TCNQ deposited by dissolving the film and 

comparing to a calibration curve established with solutions of known concentration. This was 

then used to calibrate the QCM.   

Figure 451 (b) plots the absorbance spectra of a series of known concentrations of F45TCNQ 

dissolved in dichloromethane (DCM) as a function of wavelength. The absorbance spectra can be 
                                                           
b The data (electronic and structural) obtained for all G/ITO samples will be an average of the graphene covered ITO 
area and also bare ITO unless otherwise stated. This is due to the incomplete coverage of ITO by graphene, and defects 
in the transferred graphene sheet (cf. Chapter 3 for details). 
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fitted with three peaks: the most prominent and intense peak (i) at 391 nm, a less intense peak (ii) 

at 368 nm and a shoulder peak (iii) at 346 nm. The separation between adjacent peaks is ~0.2 eV 

which corresponds to the most prominent vibration in F45TCNQ molecules.24 Therefore, peak (i) 

is assigned to an intramolecular π5π* transition of a neutral molecule;25 while peaks (ii) and (iii) 

are vibronic progressions. The optical band gap derived from this data is 3.1 eV which within the 

range of reported values between 2.9 – 3.2 eV.26–28  

The integrated area of peak (i) has a linear relationship with the mass concentration of F45TCNQ 

according to Beer5Lambert law [Equation (2513)] and is exemplified by the plot shown in the 

inset in Figure 451 (b). The overall error associated with the calculations is approximately ±5.9 x 

1055 mg/ml which originates mainly from estimation of the mass of the F45TCNQ powders and 

instrumental errors when measuring out the volumes of the solutions. 

Figure 4-1 (a) Chemical structure of F45TCNQ. UV5Vis absorbance spectra as a function of  versus wavelength for (b) 
varying concentrations of powdered F45TCNQ dissolved in DCM and (c) 80 nm nominal thickness F45TCNQ deposited 
on glass and dissolved in DCM. Inset in (b): Plot of best fit line for the integrated area of the main peak (i) of F45TCNQ 
absorbance spectra (centred at 391 nm) as a function F45TCNQ concentration. Position of the red marker on the line 
(highlighted by an arrow) indicates the integrated area of the major peak of the dissolve film in (c). 
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Figure 451 (c) shows the absorbance spectra for F45TCNQ films grown in an OMBD chamber and 

subsequently dissolved in DCM. F45TCNQ films with a nominal thickness of 80 nm were grown 

together on identical substrates [‘Substrate 1 5 4’ in Figure 451 (c)] which have an area of 3.1 ± 

0.3 cm2. These substrates were subsequently dissolved in 20 ± 2 ml DCM and the absorbance 

spectra are plotted in Figure 451 (c). The average integrated area of the peak centred at 391 nm in   

Figure 451 (c) is plotted as a red marker on the straight line in the inset Figure 451 (b). The 

corresponding concentration of the dissolved film can be determined from the graph. From the 

density of F45TCNQ, back calculations indicate that the actual thickness is 14% less than the 

nominal thickness. The tooling factor was varied by the same amount for all subsequent 

depositions to account for the difference. 

4.3 Electronic Structure of F4-TCNQ on ITO and G/ITO 

Figure 452 (a) shows the evolution of the UPS spectra in the low kinetic energy region for 

increasing thickness of F45TCNQ film deposited on ITO. All the spectra in Figure 452 were 

measured using He I (21.2 eV) excitation and the corresponding error with measurement is ±0.05 

eV. The work function of the substrate is determined from the linear cutoff position of the low 

kinetic energy spectrum, and the value of the sample work function as a function of film 

thickness is shown in Figure 452 (b). The magnitude of the change in work function depends on 

the thickness of the absorbed film. Following the deposition of 0.5 Å F45TCNQ, the vacuum level 

shifts to higher kinetic energy, corresponding to an increase in work function of 0.65 eV. The 

overall increase in sample work function is 1.28 eV when the F45TCNQ coverage is 2 Å. For F45

TCNQ coverage greater than 5 Å, the work function saturates at 5.12 eV and remains constant up 

to the film thickness investigated in this experiment. The large change in work function at the 

interface is due to electron transfer from ITO to the electronegative F45TCNQ molecules, thereby 

creating a dipole at the interface.9,29 The magnitude of the dipole is 1.37 eV. Charge transfer at the 

substrate5F45TCNQ interface has been reported on a variety of substrates.20,30 The transferred 
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charge(s) are thought to be distributed around the cyano groups of the molecules,19,31,32 and reside 

in new states that appear within the bandgap.29,30 These new states are investigated by studying 

the valence band spectra of F45TCNQ/ITO. 

The UPS spectra of F45TCNQ deposited on ITO at the valence band region are shown in Figure 

452 (c), and its corresponding close5up spectra near the Fermi level in Figure 452 (d). The 

spectrum of 2 Å F45TCNQ/ITO shows the emergence of a broad feature located within the 

Figure 4-2 UPS spectra evolution of F45TCNQ deposited onto ITO. (a) UPS spectra at low kinetic energy region, and 
(b) plot of sample work function with increasing F45TCNQ thickness. (c) Valence band spectra at low binding energy 
and (d) near the Fermi level region of spectra from (c). θF45TCNQ refers to the thickness of the F45TCNQ film. 
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binding energy range of 1 eV to 2.5 eV below EF. While this feature is not clearly defined, it is 

not derived from the neutral F45TCNQ molecule as there is no density of states at this energy 

range for the neutral form.29 The location of this feature is consistent with the charge transfer 

features (between 0.3 – 2.5 eV) reported experimentally by Koch et al.
30 and Chen et al.

20 for F45

TCNQ on Au and epitaxial graphene respectively, and also agrees with DFT calculations of the 

density of states of anionic F45TCNQ.29 These observations suggest that this feature corresponds 

to the new states that are formed within the band gap of neutral F45TCNQ and originates from the 

strong electron transfer from ITO to F45TCNQ molecules.  

In order to better resolve this charge transfer feature, the experiment was repeated using 

synchrotron based PES utilizing 60 eV polarised light to improve surface sensitivity (cf. Figure 25

3). The valence band spectra shown in Figure 453 (a) clearly reveal the emergence of features 

between 0.1 – 2.2 eV binding energy upon deposition of 1 Å of F45TCNQ on ITO. With 

increasing F45TCNQ film thickness, the intensity of the features decrease but their position 

remain unchanged. Following subtraction of the substrate signal, the features can be fitted with 2 

Gaussian curves centred at 1.61 eV and 0.80 eV as shown in Figure 453 (b). These peaks have 

been assigned to the relaxed state of the HOMO and the partially filled LUMO state of the 

molecules respectively.30 The weakening intensity of these features with increasing film thickness 

[Figure 453 (a)] indicates that charge transfer takes place exclusively at the substrate5molecule 

interface, and that additional molecules adsorb on interfacial layer in their neutral form.   

Despite significant change in the sample work function with F45TCNQ coverage, few changes 

take place at the valence band region [Figure 452 (c)]. The lack of clear (bulk, neutral) F45TCNQ 

features in the valence band spectra and minimal attenuation of the substrate signal has also been 

reported by Fehse et al..9 We propose that this can be ascribed to two reasons: first, the valence 

band spectrum of bare ITO which extends to low binding energy may overlap with and mask the 

valence band features of the neutral molecule. Second, dipole5dipole repulsion between ionized 
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F45TCNQ molecules may hinder complete wetting of the substrate at low coverage.33 Incomplete 

coverage of the surface by F45TCNQ may also be caused surface contaminants and absorbed 

carbon (cf. Figure 352) which ultimately limits the number of ‘clean’ sites which F45TCNQ can 

favourably bind to and carry out charge transfer with. For the submonolayer coverage of F45

TCNQ used in their experiment, Fehse et al. proposed that F45TCNQ molecules preferentially 

adsorb on these limited clean sites. Once these ‘clean’ sites are saturated with F45TCNQ 

molecules, additional F45TCNQ molecules may bind to the interfacial F45TCNQ molecules 

resulting in an increase of the island height; or to the ‘contaminated’ sites resulting in higher 

surface coverage.8,23 In these scenarios, further charge transfer with the substrate is reduced,34 and 

thus both the surface dipole contribution to the substrate work function and interface states near 

the Fermi level would be diminished. This model is able to explain the initial large change in 

work function due to interfacial charge transfer, followed by the saturation of the work function at 

higher film coverage since charge transfer is greatly reduced. The lack of distinct F45TCNQ 

valence band features when deposited on ITO implies that much of the substrate remains 

Figure 4-3 (a) PES spectra of F45TCNQ on ITO at low binding energy near the Fermi level measured with 60 eV 
synchrotron radiation. Distinct charge transfer features centred around 0.6 eV and 1.6 eV below the Fermi level are 
visible at this photon energy.  (b) Fitted charge transfer peaks from the 5Å F45TCNQ spectrum in (a) following 
subtraction of the substrate signal. 
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exposed, suggesting that severe islanding of F45TCNQ molecules has taken place. This type of 

growth mode is termed Volmer–Weber in which molecular islands start appearing without 

completely wetting the substrate.35 It occurs when the intermolecular interaction is stronger than 

the interfacial interactions. This growth mode has been reported for F45TCNQ deposited on 

ITO8,23 and on epitaxial graphene.19 

The UPS spectra of F45TCNQ deposited on G/ITO are shown in Figure 454. Figure 454 (a) shows 

the secondary electron cutoff position with increasing F45TCNQ film thickness and (b) plots the 

change in work function as a function of film thickness. The work function of the bare G/ITO 

substrate (spectrum (i)) before F45TCNQ deposition is 4.26 eV. As seen from the sample of F45

TCNQ deposited on ITO, the vacuum level across the interface is very sensitive to the formation 

of interface dipoles. An upward shift in vacuum level or an increase in work function by 0.48 eV 

was observed within the first 2 Å of F45TCNQ deposited. Further increasing the film thickness 

results in a gradual increase in work function and a maximum value of 4.88 eV is obtained for the 

65 Å film. The increase in sample work function indicates p5doping of the underlying graphene 

layer through electron transfer from graphene to F45TCNQ molecules. Consequently, an interface 

dipole of 0.62 eV is formed between F45TCNQ and G/ITO. 

The magnitude of the vacuum level shift obtained in this experiment is significantly lower than 

the experimental values reported by Chen et al.
20 for F45TCNQ deposited on epitaxial graphene 

on silicon carbide (SiC) and calculations by Pinto et al.21. Both groups recorded a larger relative 

change in substrate work function, and also a larger maximum work function attained. The 

difference between our results and theirs may be caused by the organic impurities, including 

residual PMMA, present on our G/ITO substrate [cf. C 1s spectra in Figure 354], and also the 

roughness of G/ITO substrates (Figure 2513). As mentioned in the preceding paragraphs, surface 

contaminants diminish charge transfer at the interface, resulting in lower values of work function.  



 

89 
 

The roughness of the substrate influences the direction of the dipole moment which in turn affects 

the degree of charge transfer and the sample work function.38–40 On rough substrates such as 

G/ITO and ITO the direction of the dipoles is non5uniform thus giving an average effect on the 

work function.23 In comparison, Chen et al. and Pinto et al. results were based on relatively 

cleaner and smoother substrates. Finally, the electronic properties at the F45TCNQ5graphene 

Figure 4-4 UPS spectra evolution of F45TCNQ deposited on graphene transferred onto ITO (G/ITO). (a) Spectra at 
low kinetic energy region, (b) plot of sample work function against F45TCNQ thickness. (c) Valence band spectra at 
low binding energy and (d) near the Fermi level. The characteristic 2p π feature of graphene at about 3.2 eV below 
Fermi level is circled in (d). Inset in (d) shows the high resolution spectra of 1 Å F45TCNQ/G/ITO (green) and G/ITO 
(black) obtained using 60 eV synchrotron radiation. All other spectra were measured with photon energy of 21.2 eV. 



 

90 
 

interface may also be affected by the underlying substrate.41 Therefore, differences between F45

TCNQ deposited on epitaxial graphene on SiC and graphene transferred onto ITO are expected 

since the electronic properties of the underlying substrate might not be fully screened by a layer 

of graphene. 

The valence band spectrum of bare G/ITO in the vicinity of the Fermi level shows the 

characteristic 2p π state of graphene located around 3 eV below EF [Figure 454 (d)]. This signal 

from graphene does not appear to attenuate with increasing F45TCNQ thickness possibly because 

large areas of the substrate are uncovered at low molecular coverage as explained in the 

preceding paragraphs. Furthermore, the neutral F45TCNQ molecules have a photoemission signal 

that overlaps with the 2p π state at around 3 eV.20,30,42 Similar to F45TCNQ deposited on ITO, the 

charge transfer features for F45TCNQ deposited on G/ITO (between 0.3 – 2.0 eV) can be resolved 

using synchrotron radiation as shown in the inset in Figure 454 (d). Those features provide 

evidence for strong charge transfer between F45TCNQ and G/ITO. 

The difference in wettability and adhesion of F45TCNQ molecules on ITO as opposed to G/ITO 

can be deduced by comparing the absolute values of work function and their relative change for 

the same film thickness [Figure 452 (b) and Figure 454 (b)]. Smaller values obtained for both 

parameters on G/ITO substrate suggest poorer surface coverage by F45TCNQ. This is because the 

interface area has direct implications on the electron transfer between the molecule and 

substrate.20,29,30 The difference in coverage is visualised through SEM images of 50 nm F45TCNQ 

films grown on ITO and G/ITO shown in Figure 455. Figure 455 (a) and (b) which are the lower 

magnification SEM images for F45TCNQ on ITO and G/ITO respectively reveal that F45TCNQ 

crystallites pack more densely on ITO as compared to G/ITO. The projected area, or total surface 

coverage, of F45TCNQ crystallites on G/ITO is approximately 50% of the substrate, which is 10% 

lower than the 60% coverage on ITO as determined from the higher magnification images [Figure 
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455 (c) and (d)]. This reveals that F45TCNQ molecules preferentially wet ITO as compared to 

G/ITO, and suggests that the interfacial interaction is stronger in the previous sample.  

Figure 455 (c) and (d) also reveal differences in the morphology of the crystallites deposited on 

different substrates in more detail. Firstly, the crystallites on G/ITO have a spread of 

morphologies, with a significant fraction of crystallites that have approximately square lateral 

sizes, together with some elongated crystallites. On the other hand, the crystallites on ITO appear 

predominantly more elongated. Secondly, the F45TCNQ crystallites on G/ITO have sharper edges, 

while on ITO the edges are sloping. These observations could suggest that F45TCNQ has different 

preferred growth directions on the two substrates. This is further investigated in the next section 

which focuses on structural analysis.  

4.4 Structural Analysis of F4-TCNQ on ITO and G/ITO 

The molecular orientations of F45TCNQ on ITO and G/ITO are determined by NEXAFS for thin 

films at the substrate interface, and XRD for thicker films to probe the bulk orientation. The 

Figure 4-5 SEM images of 50 nm F45TCNQ on (a) & (c) ITO and (b) & (d) G/ITO imaged at (top row) x10000 and 
(bottom row) x50000 magnification. Higher surface coverage of ITO by F45TCNQ as compared to G/ITO indicates 
better wettability of F45TCNQ on ITO. Scale bars are (a) & (b) 2 Um and (c) & (d) 1 Um respectively. 
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collated results for both NEXAFS and XRD investigations are shown in Figure 456. The 

NEXAFS N K5edge spectra for 10 Å F45TCNQ films on ITO and G/ITO as a function of 

synchrotron light incidence angle θ are shown in Figure 456 (a) and (b) respectively. The first 

three absorption peaks between 395 – 405 eV are assigned to the resonance transitions from the N 

1s core level to π* states, while the higher energy broad absorption features between 405 – 425 

eV are due to the transitions to the σ* states. The first (i) and third (iii) absorption peaks which 

are located at 397.3 eV and 400.6 eV respectively are attributed to transitions to distinct out5of5

plane π* molecular orbitals.19,43–45 The second (ii) peak centred at 399.5 eV is reported to be an 

overlap of two orthogonal π* orbitals of the cyano group – one orbital lies perpendicular to and 

the other parallel to the molecular.19,43,44 The latter is termed ‘σ5like π* resonance’ due to the 

orientation of the molecular orbital rather than the electronic transition involved.19 On both 

G/ITO and ITO substrates, peaks (i) and (iii) both show similar angular dependency indicating 

that the molecular orientation is similar on both substrates. In order to evaluate the angle α 

subtended by the molecular plane and the substrate, we determine the ratio of absorption 

intensities at grazing and normal incidence for peak (i) [q"� ∗( = ;"_	s	=A�(
;"_	s	�A�(]. F45TCNQ molecules 

adopt a tilted orientation on G/ITO with α = 36o ± 5o while on ITO α = 44o ± 5o. We use XRD to 

relate the crystal packing of F45TCNQ with the observed tilt angle. 

The results of the XRD spectra for 50 nm F45TCNQ films are collated in Figure 456 (c) – (e). The 

symbol ‘#’ denotes the peak derived from the (2 1 1) plane of the ITO substrate.46 At the first 

glance, the spectra of F45TCNQ deposited on ITO (red scan) and G/ITO (green scan) in Figure 

456 (c) look almost identical with a diffraction feature around 19o. However zoomed scans about 

the diffraction feature which are shown in Figure 456 (d) and (e) reveal that it comprises two 

peaks at 18.8o and 19.0o; the ratio of the peaks vary on the different substrates. (This separation is 

larger than the instrumental broadening of 0.08o.)47 The lower angle Bragg peak is due to the 

diffraction from the (2 1 1) plane and the higher angle peak is from the (0 2 0) plane parallel to 
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the substrate.48 On ITO, it appears that the diffraction peak from the (2 1 1) plane is more 

prominent, while the (0 2 0) diffraction peak is more prominent for G / ITO. For the (2 1 1) plane 

aligned preferentially parallel to the substrate, four molecular orientations are present, forming 

angles of 61.1o, 71.1o, 83.5o and 22.9o (an average of 59.7o) with respect to the substrate; for the 

Figure 4-6 Angle dependent NEXAFS N K5edge spectra for 10Å F45TCNQ on (a) ITO and (b) G/ITO, with α = 
44o ± 5o and α = 36o ± 5o respectively. Peaks (i) – (iii) corresponds to resonant transitions to the π* orbitals. (c) 
XRD pattern of F45TCNQ thin film on (top, red) ITO and (bottom, green) G/ITO. ‘#’ denotes the peak derived 
from ITO substrate. The diffraction peak ~19o in (c) corresponds to the overlap of the (2 1 1) plane at 18.8o and 
(0 2 0) plane at 19.0o. The fitted peaks (black) are shown in (d) for ITO and (e) for G/ITO.  
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(0 2 0) plane, the molecular tilt angle is 36.9o with respect to the substrate plane for all the 

molecules. Schematic drawings of the orientation of molecules along the (2 1 1) plane on ITO 

and (0 2 0) plane on G/ITO are shown in Figure 457 (a) and (b) respectively. 

The fitting results for XRD agree with NEXAFS data which reveal a larger α for ITO as 

compared to G/ITO. On G/ITO, the molecules are oriented to maximize the total projection of 

their π5plane on the substrate, thereby enhancing π5π interfacial interaction with graphene. The 

tilted orientation on graphene has also been observed by Chen et al.
19 and Pinto et al. 21. In 

addition, the geometry of molecules in the (0 2 0) plane appears to maximize interaction between 

the aromatic ring, cyano group and/or fluorine atoms, and the substrate. On the other hand, F45

TCNQ molecules on ITO substrate form large angles, suggest repulsion between the 

electronegative cyano groups and/or fluorine atoms and the exposed oxide surface. The ‘standing’ 

geometry of F45TCNQ may reduce the overall interaction between the molecular side groups by 

limiting its projected area on ITO. Next we attempt to quantify the percentage contribution of 

each of the plane to the final diffraction pattern and to relate it to the NEXAFS N K5edge results.  

Figure 4-7 Schematic drawings showing the molecular orientations of F45TCNQ with (a) the (2 1 1) plane parallel to 
to ITO and (b) the (0 2 0) plane parallel to the ITO. The angles that the molecules make with the plane are detailed 
in the images. The unit cell axes are shown as red for the a5axis, green for b5axis and blue for c5axis. The c5axis in 
(b) projects into the plane of the paper. 
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The preferred orientation of the film can be estimated by calculating the texture coefficient 

(TChkl) using the equation49 

tuv�� =
3"wx�(
3�"wx�(

y
p∑ 	 3"wx�(o3�"wx�(o

po 	     (451) 

where I(hkl) is the diffraction intensity of the (h k l) plane from the sample in an XRD spectrum, 

Io(hkl) is the diffraction intensity of the (h k l) plane in a fully randomly oriented F45TCNQ 

powder and n is the total number of diffractions considered. For TChkl greater than unity, the 

corresponding (h k l) plane of F45TCNQ films has preferential orientation with respect to the 

substrate. The values of I(hkl), Io(hkl) and TChkl for F45TCNQ films on ITO and G/ITO are 

summarized in Table 451. The proportion of grains textured along a particular plane parallel to the 

substrate can also be determined by comparing the relative normalized intensities of the peaks 

[I(hkl)/I0(hkl)] using the following equation: 

%"ℎ	|	}( =
3"wx�(
3�"wx�(
∑ 3"wx�(o3�"wx�(o	

     (452) 

For the F45TCNQ/ITO sample, 86% of the grains are textured with their (2 1 1) plane parallel to 

the substrate, and the remaining 14% with their (0 2 0) plane parallel to the substrate. For the F45

TCNQ on G/ITO, the values are 34% for the (2 1 1) plane, and 66% for the (0 2 0) plane 

preferentially parallel to the substrate.  

The relative abundance of each of these diffraction planes in the F45TCNQ films on ITO and 

G/ITO, together with the angle subtended by the molecular and substrate planes (Figure 457) 

allow us to estimate the average molecular angle that should be detected in NEXAFS 

measurements. The calculated angles from the XRD specta are αXRD = 56o ± 5o and αXRD = 44o ± 

5o for F45TCNQ/ITO and F45TCNQ/G/ITO. These angles are systematically larger than the actual 

angles obtained by NEXAFS measurements, namely αNEXAFS = 44o ± 5o and αNEXAFS = 36o ± 5o for 
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F45TCNQ/ITO and F45TCNQ/G/ITO respectively. This may be due to the presence of nano5size 

crystallites with other planes preferentially parallel to the substrate other than the (2 1 1) and (0 2 

0) planes, but the signals are too weak to be determined in our XRD spectrum. Furthermore, there 

may be other planes that are tilted away from the parallel to the substrate, and their diffraction 

peaks are therefore not visible in the θ52θ geometry of XRD.  

Finally, we relate the observed morphology of F45TCNQ crystallites to the preferred orientation 

of the crystal planes on ITO and G/ITO. Previously in the SEM images in Figure 455 (b) and (c), 

the shape of F45TCNQ crystallites on ITO and G/ITO appear different, especially at the edges 

where the F45TCNQ crystallites on G/ITO appear sharper and steeper as compared to of F45

TCNQ/ITO. In order to quantify the angle that the edge of the crystallite makes with the substrate 

plane (edge angle), we used AFM to probe the topography of the sample. The AFM images of 50 

nm F45TCNQ/ITO and 50 nm F45TCNQ/G/ITO, prepared in the same deposition as the samples 

used previously for SEM imaging, are shown in Figure 458 (a) and (b). Figure 458 (c) shows an 

example of a line profile drawn across a crystallite [yellow dashed line in Figure 458 (a)] and the 

Table 4-1 Summary of the peak intensities of the (2 1 1) and (0 2 0) in the F45TCNQ/ITO and F45TCNQ /G/ITO 
films, as well as F45TCNQ powder diffraction.  
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determination of an edge angle. The average angle is 45o ± 3o for F45TCNQ/ITO and 62o ± 3o for 

F45TCNQ/G/ITO. The steeper angle for F45TCNQ/G/ITO agrees well with the SEM results in 

Figure 455 that showed sharper and less sloping angles for F45TCNQ/G/ITO as compared to F45

TCNQ/ITO. 

We attempt to rationalize the edge angles based on our knowledge of crystal orientations from 

XRD (Figure 456). For the (0 2 0) crystal plane parallel to the substrate, both the {1 0 0} and {0 0 

1} planes form right angles with respect to the substrate [Figure 457 (a)]. Therefore the edge of 

the crystallite is expected to be a sharp 90o. On the other hand, for the (2 1 1) plane, the {1 0 0}, 

{0 1 0} and {0 0 1} planes form angles of around 50o, 60o and 55o respectively. Therefore the 

average edge angle of the crystallite should be 55o when the (2 1 1) plane is parallel to the 

Figure 4-8 4 µm x 4 µm AFM images of (a) 50 nm F45TCNQ/ITO and (b) F45TCNQ/G/ITO. The angles that the 
crystal edge makes with the substrate were extracted from the line profiles (an example given in (c)) drawn across and 
perpendicular to the edge of the crystal as shown by the yellow dashed lines in the images. The average angles are (a) 
45oand (b) 63o averaged over 70 measurements each. 
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substrate. The edge angles obtained by AFM, 45o ± 3o and 62o ± 3o for F45TCNQ/ITO and F45

TCNQ/G/ITO respectively, are smaller than the predicted values most probably due to three5

dimensional growth of smaller crystallites on the existing crystallites.50,51 The F45TCNQ 

crystallites on ITO and G/ITO substrates also have two planes preferentially parallel to the 

substrate and therefore their crystallites show a spread of angles. This spread of angles can be 

observed visually in Figure 455, and from the collection of angles measured from the AFM 

images (Appendix C). The standard deviation for edge angles is about 12o for F45TCNQ films on 

ITO and G/ITO. Finally, the AFM tip may not be able to measure steep angles accurately due to 

several factors such as the tip geometry, scan rate, and the creep of the piezoelectric motor.52 

4.5 Conclusion  

In this chapter, we study the electronic and structural properties of F45TCNQ deposited onto ITO 

and G/ITO. By pre5covering ITO and G/ITO with ultrathin layers of F45TCNQ (several  Å), the 

substrate work function increases significantly due to electron transfer from the substrate to the 

molecules. Since charge transfer takes place only at the substrate5molecule interface, the substrate 

work function depends on the wetting of F45TCNQ on the substrate. SEM images show that F45

TCNQ molecules wet ITO 10% more than on G/ITO, corroborating the larger work function in 

the former sample. 

XRD measurements reveal that F45TCNQ films are textured on ITO and G/ITO with the (2 1 1) 

and (0 2 0) planes preferentially parallel to the substrate. The predominant plane of the grains 

parallel to the substrate is the (2 1 1) plane for ITO, and the (0 2 0) plane for G/ITO. In the (0 2 0) 

plane, all the molecules form an angle of around 37o with the substrate and appear to maximize 

the projection of the π5plane onto the substrate. On the other hand, the molecules along the (2 1 1) 

plane adopt a variety of high angles, probably suggesting repulsion between the electronegative 

groups on F45TCNQ and the substrate. These results are in good agreement with NEXAFS 
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measurement that reveal a larger tilt angle for F45TCNQ molecules on ITO as compared to 

G/ITO. Finally, the edges of the F45TCNQ crystallites are steeper on G/ITO, forming an angle of 

around 63o, while on ITO it is 45o as determined by AFM. We relate this observation to the 

relative angles that the unit cell of F45TCNQ crystals forms with the substrate in its preferred 

orientation on ITO or G/ITO. 

Increase in the substrate work function to about 4.9 eV (close to the ionization potential of 

phthalocyanine molecules of ~5 eV) can be achieved with only 5 Å F45TCNQ deposited on 

G/ITO. The ultrathin layer of F45TCNQ interlayer required to modify the work function, together 

with the predominantly tilted orientation of F45TCNQ molecules on G/ITO, may enable the 

propagation of the structural templating property of graphene beyond F45TCNQ. Therefore, F45

TCNQ is a potential interface layer to increase the low work function of the G/ITO (cf. Chapter 

3) substrate without compromising the structural templating property of graphene. Details of this 

will be investigated in Chapter 5.  
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Chapter 5 : Modification of ITO and G/ITO Anodes with F4-

TCNQ 

5.1 Introduction 

In the preceding chapters, it has been shown that graphene can be used as a structural template in 

small molecule organic photovoltaic devices to control the stacking orientation of molecules on 

its surface. Such ordered packing with the stacking axis perpendicular to the substrate has the 

potential to enhance anisotropic properties in the active layer such as charge mobility and optical 

absorption which are beneficial for OPV devices.1 However photoemission studies reveal that the 

modification of ITO with a thin layer of graphene has a deleterious effect on the interfacial 

energetics by creating an unfavourably large barrier that is nearly twice that of the unmodified 

ITO (cf. Section 352). In the previous sections we have highlighted that this problem may be 

addressed by including a thin layer of F45TCNQ to modify the surface. On the G/ITO substrate, a 

mere 5 Å of F45TCNQ is able to cause a significant change in work function, thus potentially 

reducing the charge injection barrier between the anode and CuPc. The predominant orientation 

of F45TCNQ on G/ITO at low coverage is facilitated by interfacial π5π interactions such that all 

the molecules are orientated at the same tilt angle with respect to the substrate. This strongly 

suggests that the templating property of graphene may be propagated beyond the F45TCNQ layer 

to the subsequent CuPc deposited on top. 

In this chapter, we combine the work of the previous two chapters to show that molecular 

modification of G/ITO substrate is able to reduce the hole injection barrier at the anode5CuPc 

interface as predicted, yet without affecting the desirable orientation of CuPc. This will be studied 

in parallel with a reference structure utilizing unmodified ITO. Finally OPV devices based on the 

ITO and G/ITO anodes are fabricated to determine if these fundamental improvements at the 
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microscopic level can translate into improved device performance. To our knowledge, 

investigations concerning the simultaneous control of the structural and electronic properties of 

the active layer on device performance have not reported before.  

5.2 Structural Properties of CuPc  

The structural properties of CuPc films are studied using XRD and NEXAFS in this section. For 

XRD investigations, we begin by using a ‘model’ substrate of G/Cu due to the almost full 

coverage of the substrate by graphene, and the absence of defects introduced during the transfer 

process as mentioned in Chapter 3. Next, we continue the investigations of CuPc films on G/Si 

and G/ITO to show that surface roughness can affect the interpretation of XRD results. The 

corresponding bare substrates of Cu, Si and ITO will be studied in parallel to compare the effect 

of a graphene interlayer. The section concludes with NEXAFS investigations of CuPc on our 

target substrates of G/ITO and ITO. 

5.2.1 CuPc Deposited on F4-TCNQ Pre-covered G/Cu and Cu 

From the outset of the project, we determined that the purpose of graphene in organic solar cell 

devices is as a structural template layer to modify the orientation of CuPc. Therefore it is 

imperative to ensure that this property is preserved even with the inclusion of a thin layer (5 Å) of 

F45TCNQ on its surface. For reliable comparison of the orientation, we performed XRD 

characterization of a 100 nm CuPc film deposited on F45TCNQ pre5covered G/Cu so that the 

results are directly comparable with Figure 356 (a). The rationale for using as5received G/Cu 

instead of transferred graphene is to ensure almost full coverage of the surface by graphene so 

that molecules interact with only one type of surface (as opposed to G/ITO in which part of the 

ITO is exposed while the other part is modified by graphene), and to limit variations between 

substrates caused by the graphene transfer process.  
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For our XRD data, we use the structure of α5CuPc reported by Hoshino et al.
2
 to interpret the 

diffraction pattern. The α5phase of CuPc is formed when the molecules are deposited on weakly 

interacting substrates at room temperature.3 Figure 551 (a) shows the results of the XRD 

measurements operated in θ52θ configuration. G/Cu foil does not contribute any peaks within this 

range as the foremost Bragg diffractions occur above 2θ = 35o. Therefore, the diffraction peaks 

obtained from the measurements are unambiguously attributed to diffractions from the CuPc 

molecular film. Regardless of the inclusion of F45TCNQ, both films appear to satisfy identical 

diffraction conditions. A close5up slow scan around the vicinity of the diffraction peaks for 100 

nm CuPc/5 Å F45TCNQ/G/Cu is shown in Figure 551 (b). It confirms that the peak positions are 

at 26.6o and 27.6o which correspond to diffraction from the (0 1 52) and (1 1 52) planes 

respectively, and indicates that the molecules lie nearly parallel to the substrate. These peaks are 

the same as the diffraction peaks for 100 nm CuPc/G/Cu [cf. Figure 356 (b)]. To confirm that the 

templating effect originates from the graphene interlayer, samples of 100 nm CuPc and 5 Å F45

TCNQ deposited directly on Cu foil were prepared. Cu foils were prepared by exposing a piece of 

G/Cu substrate to oxygen plasma to remove the graphene layer. The spectrum of 100 nm CuPc/5 

Å F45TCNQ/Cu foil is plotted in Figure 551 (a). There are no contributions from the (0 1 52) and 

(1 1 52) planes but instead a new diffraction feature at approximately 7o is observed for the film 

grown on Cu foil, thus providing clear indication that a single layer of graphene is able to alter 

and control the molecular orientation of CuPc even in the presence of 5 Å F45TCNQ. The 

diffraction feature marked (c) in Figure 551 (a) can be fitted by two peaks at 6.9o and 7.3o which 

arises from the (1 0 0) and (0 0 1) planes satisfying the diffraction conditions respectively [Figure 

551 (c)]. Molecules that stack along the (1 0 0) and (0 0 1) planes are considered ‘standing’ on the 

substrate since the angles subtended by the substrate and molecular plane are 82o and 67o 

respectively and are a consequence of intermolecular interaction dominating over the less 

favourable interaction with the substrate [cf. Figure 356 (e)]. 
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Depositing CuPc on the idealized substrate of G/Cu allows us to draw conclusions regarding the 

effectiveness of graphene as structural template for CuPc regardless of whether a thin layer of F45

TCNQ is present. On technological important substrates such as G/Si and G/ITO, we expect that 

the XRD results will not be identical due to an incomplete coverage of graphene over the whole 

substrate. Since the XRD beam is larger than the substrate and samples the whole substrate area, 

the resultant XRD spectra for CuPc film deposited on G/Si and G/ITO is expected to show 

Figure 5-1 XRD spectra of CuPc deposited on various substrates to confirm that the templating effect of graphene is 
unaffected by the inclusion of 5 Å F45TCNQ. (a) Wide scan spectra of 100 nm CuPc/G/Cu (top) and 100 nm CuPc/5 
Å F45TCNQ/G/Cu (middle) show similar diffraction peaks; 100 nm CuPc/5 Å F45TCNQ/Cu (bottom) indicates that 
the change in orientation of CuPc arises from the graphene interlayer. (b) & (c) Details of the fitted diffraction peaks 
for 100 nm CuPc/5 Å F45TCNQ/G/Cu and 100 nm CuPc/5 Å F45TCNQ/Cu respectively.  
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contributions from both the graphene modified and bare ITO areas. In addition, surface roughness 

of the ITO substrate increases complexity through disordering of the crystallites giving rise to less 

well textured films. In the following section, we explore the effects of surface roughness and 

partial coverage of the surface on XRD measurements. 

5.2.2 CuPc Deposited on F4-TCNQ Pre-covered Si & G/Si, and ITO & G/ITO 

Figure 552 shows the results of XRD spectra for a series of film thicknesses on (a) Si and 

graphene transferred onto Si (G/Si) substrates, and (b) ITO and G/ITO. Diffraction peaks from 

the substrates are marked ‘ ^ ’ for Si and ‘ # ’ for ITO. A diffraction peak at 6.9o 5 associated with 

the standing orientation of CuPc on the substrate 5 is present in all the spectra, including the 

graphene modified Si and ITO samples. However, this peak is absent from the CuPc/F45

TCNQ/G/Cu sample as seen in Section 5.2.1, thus indicating that the additional defects 

introduced during the transfer of graphene (cf. Section 2.3.2) interfere with the templating 

property of graphene. In other words, the peak at 6.9o for CuPc deposited on the graphene 

modified samples can be attributed as arising from the defective regions of the graphene sheet 

(including tears, holes, residues etc.). The detrimental effect that such defects have on graphene’s 

templating property has been previously observed, but not interpreted.4 Indeed, Figure 552 (a) 

shows that comparing between films of the same thickness on Si and G/Si, there is an additional 

diffraction peak on the graphene modified samples that is derived from the lying geometry of 

CuPc on graphene. Furthermore the intensity of the (1 0 0) peak is attenuated for both the 30nm 

and 100 nm thick CuPc films on 5 Å F45TCNQ/G/Si as compared to their unmodified silicon 

substrate counterparts.  



 

109 
 

Increasing the film thickness from 30 nm to 100 nm CuPc results in an enhancement of the (1 0 

0) and (1 1 52) diffractions for the G/Si sample, accompanied by a decrease in full width half 

maximum (FWHM) of both diffraction peaks. Using Scherrer’s equation5 [Equation (2511)] 

which relates the particle size to the inverse of the diffraction peak FWHM, the sizes of the 

Figure 5-2 XRD spectra of 30 nm and 100 nm CuPc on 5 Å F45TCNQ  pre5covered (a) Si and G/Si, (b) ITO and 
G/ITO, to show the effectiveness of transferred graphene as a structural template. Templated α5CuPc diffraction peak 
at ~27o is present on all graphene modified surfaces except 30 nm CuPc/5 Å F45TCNQ/G/ITO. The presence of this 
feature on G/Si in (a) at the same molecular coverage indicates that the rough ITO surface results in a greater 
distribution of crystal orientation, resulting in weak diffraction intensity. All spectra show a diffraction peak centered 
~6.8o as the incident beam is significantly larger than the graphene modified area at all 2θ angles, hence diffraction 
from the unmodified areas are also detected. ‘ # ’ denotes diffraction peaks originating from the ITO substrate and ‘^’ 
from the Si substrate. 
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Figure 5-3 500 nm x 500 nm AFM images of (a) 30 nm and (b) 100 nm thick CuPc/5 Å F45TCNQ/G/Si showing the 
larger crystallite size with thicker films. The average grain size is approximately (a) 30 nm ± 5 nm and (b) 42 nm ± 7 
nm. The RMS roughness is (a) 3.6 nm and (b) 6.2 nm respectively. 

crystallites are found to be 25 ± 5 nm and 31 ± 6 nm for the 30 nm CuPc/5 Å F45TCNQ/G/Si and 

100 nm CuPc/5 Å F45TCNQ/G/Si films respectively. Although Scherrer’s equation probes sizes 

normal to the substrate as compared to lateral sizes measured by AFM, we assume that the 

crystallites are nearly spherical,6 therefore the relative difference in the calculated sizes should be 

representative of the difference in the lateral sizes. This observation correlates with the AFM 

images (Figure 553) which reveal an average grain size of 30 nm ± 5 nm for the 30 nm thick CuPc 

film as compared to the 42 nm ± 7 nm grain size for the 100 nm CuPc film. 

The effect of surface roughness on the molecular orientation can be deduced by contrasting the 

XRD spectra for the 30 nm thick CuPc films on G/Si with G/ITO. Without the spectra of the 100 

nm CuPc/5 Å F45TCNQ/G/ITO sample shown in Figure 552 (b), and the 30 nm and 100 nm 

CuPc/5 Å F45TCNQ/G/Si samples for comparison [Figure 552 (a)], the diffraction spectrum for 

the 30nm CuPc/5 Å F45TCNQ/G/ITO sample by itself may be incorrectly interpreted. This is 

because the spectra of 30 nm CuPc/5 Å F45TCNQ/G/ITO and 30 nm CuPc/5 Å F45TCNQ/ITO 

appear identical i.e. the graphene interlayer appears ineffective at templating CuPc molecules. 

However from the data of the 30nm CuPc/5 Å F45TCNQ/G/Si film described earlier, we know 

that this is not the case. Furthermore, when the thickness of CuPc is increased to 100 nm on F45
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TCNQ pre5covered G/ITO, the emergence of diffraction peaks at 26.6o and 27.6o, which are 

similar to those observed on the G/Cu substrate [Figure 551 (a)], provide direct evidence of the 

templating property of graphene. Dissimilarity between diffraction spectra for the 30nm CuPc/5 

Å F45TCNQ film on G/Si and G/ITO is attributed to the roughness of the underlying substrate, 

which prevents effective crystallisation of the thinner films. 

The difference in substrate roughness between Si and ITO is clearly visualized in the high 

resolution cross5section TEM images7 shown in Figure 554 (a) and (b) respectively.c Whereas the 

Si substrate forms a sharp and flat interface with the molecular film, the ITO substrate shows 

local height variations of 10 – 15 nm. The rough ITO substrate has also previously been imaged 

by AFM and is shown in Figure 2513. In the CuPc film on Si, fringes with spacing of 1.3 nm 

appear parallel to the substrate as shown in the zoom5in image in Figure 554 (c). These fringes are 

formed from diffraction of the (1 0 0) plane of the α5CuPc film and confirms the crystallinity and 

texture of the film. On the Si substrate, they show good continuity and are well ordered with 

respect to the substrate. On the other hand, while fringes with the same spacing are also resolved 

on the ITO substrate [Figure 554 (d)], it is apparent that they are less well defined and attain a 

greater range of orientation which appears to be mediated by the substrate grains. In other words, 

the CuPc film is not as well textured on the ITO film as on the Si film and is likely 

nanocrystalline on the former substrate. We propose that this loss of texture and the formation of 

nanocrystals also apply to CuPc deposited on G/ITO since the substrate is also very rough (cf. 

Figure 2513), resulting in indiscernible diffraction from the (1 1 52) plane parallel to the substrate 

at 30 nm film thickness. 

Finally we perform NEXAFS measurement on thin CuPc films deposited on ITO and G/ITO pre5

covered with 5 Å F45TCNQ to uncover the orientation of CuPc on the substrates. As ascertained 

in Section 3.3, the data obtained for the orientation of CuPc on G/ITO must be treated with 

                                                           
c All the TEM images were taken by James Gilchrist 
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caution since there are defects or holes within the graphene sample, resulting in an average 

orientation of the molecules deposited directly on G/ITO and those on ITO. In addition, the beam 

size at grazing incidence (θ = 20o) is 1 mm x 8 mm which is larger than our graphene sheet.  

The NEXAFS N K5edge data for 5 Å F45TCNQ pre5covered ITO and G/ITO are subtracted from 

the CuPc spectra prior to analysis since N 1s transitions can occur for both F45TCNQ and CuPc 

molecules. The spectra originating from the CuPc films only are shown in Figure 555 after 

subtracting the contributions from F45TCNQ [cf. Figure 456 (a) and (b)]. A simple direct 

subtraction of the F45TCNQ signal is performed under the assumption that the F45TCNQ 

molecules do not diffuse significantly into CuPc, and the orientation of F45TCNQ molecules are 

not affected by the subsequent deposition of CuPc molecules. Therefore, we treat the N 1s 

transitions to the unoccupied orbitals in CuPc and F45TCNQ as separate entities. However the 

Figure 5-4 High resolution TEM images of 100 nm Al/12 nm BCP/40 nm C60/30 nm CuPc on (a) Si and (b) ITO. 
Lattice fringes of CuPc are clearly visible on Si but not as distinct on ITO. (c) and (d): Details of the CuPc (1 0 0) 
fringes with lattice spacing of 1.3 nm on Si and ITO respectively. Greater spread of orientation of the fringes in (d) is 
due to substrate roughness. Scale bars are 20 nm for (a) and (b), 5 nm for(c) and (d). Images taken by James Gilchrist. 



 

113 
 

resultant spectra at grazing incidence (θ = 90o) for thin film (10 Å) CuPc on ITO and G/ITO 

shown in red in the top graphs of Figure 555 (a) and (b) deviate from the pure CuPc film (cf. 

Figure 357 (c) and (d) of bulk CuPc/ITO and G/ITO) implying that the assumptions are incorrect. 

We propose that molecular mixing of F45TCNQ and CuPc has taken place near the substrate 

interface due to diffusion of the F45TCNQ molecules, resulting in an overlap of the resonant 

transition signals. When the thickness of CuPc is increased, the NEXAFS plots revert to the pure 

CuPc resonance transition characteristics,8,9 indicating that molecular mixing of CuPc and F45

TCNQ occurs strongly only near the substrate interface. The diffusion of F45TCNQ molecules 

into a CuPc film will be studied in more detail in the next chapter. 

The intensities of N 1s transitions to individual π* and σ* orbitals for CuPc film deposited on F45

TCNQ pre5covered ITO show angle dependence as revealed in Figure 555 (a). Intensity of 

Figure 5-5 Angle dependent NEXAFS N K5edge spectra for 10 Å (top) and 100 Å (bottom) CuPc deposited on 5 Å 
F45TCNQ pre5covered (a) ITO and (b) G/ITO. The F45TCNQ N K5edge signals have been subtracted and only the 
spectra of CuPc films are shown. The angle that the molecular plane makes with the substrate is (a) α = 72o ± 5o and 
(b) α = 51o ± 5o at both low and high CuPc molecular coverages.  
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resonance transitions to π* orbitals is greatly enhanced at normal incidence and diminished at 

grazing incidence, while the converse is observed for the N 1s → σ* transitions. By comparing 

the ratio of I(90o)/I(20o) for the first peak, the average molecular tilt angle is determined to be α = 

78o ± 5o for both thin film and bulk coverage of CuPc on 5 Å F45TCNQ/ITO. This in good 

agreement with NEXAFS data for CuPc of the same thickness deposited directly on ITO which 

has an approximate tilt angle of 70o. The intensities of the π* and σ* transitions for CuPc 

deposited on 5 Å F45TCNQ/G/ITO vary with the angle of incident radiation in a manner contrary 

to the film deposited on ITO – transitions to the π* orbitals are diminished at normal incidence 

and enhanced at grazing incidence. Accordingly, CuPc molecules have a smaller tilt angle on 5 Å 

F45TCNQ/G/ITO compared to the ITO substrate. The calculated average tilt angle is α = 51o ± 5o. 

This value is an average angle between the lying (templated) and standing (non5templated) 

orientations of CuPc molecules which co5exist on the G/ITO sample as revealed by the XRD 

diffraction spectra shown previously in Figure 552 (b). Similar results were obtained for the 

CuPc/G/ITO sample in Section 3.3. Collectively, NEXAFS and XRD measurements confirm that 

pre5covering G/ITO with 5 Å F45TCNQ before subsequent deposition of CuPc does not have a 

deleterious effect on the templating property of graphene. 

5.3 Optical Absorption of CuPc on F4-TCNQ Pre-Covered ITO and 

G/ITO 

Optical absorption of CuPc is highly anisotropic as the probability of optical transitions (Iopt) 

scales with the square of the scalar product of the transition dipole moment �GGGH of the molecule 

and the electric field vector �GGH of the incident light according to Equation (551). 

)�~� ∝ ��GGH · �GH��    (551) 
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For the planar CuPc molecule, the dipole moment lies along the plane of the molecule in the 

direction of the N5Cu5N axis.10,11 Therefore an associated benefit of the graphene5templated lying 

orientation of CuPc is the larger absorption strength of light at normal incidence due to the larger 

overlap between �GGH and �GH vectors depicted schematically in Figure 556 (b). The absorbance 

spectra for CuPc deposited on 5 Å F45TCNQ pre5covered ITO and G/ITO shown in Figure 556 (a) 

display two main peaks centred at around 620 nm and 690 nm (Q5band) which is typical of CuPc 

films.3,6,12 The Q5band of CuPc has been assigned to the first and second π5π* transitions in the 

CuPc macrocycle.13,14 

The optical absorption for 30 nm CuPc/5 Å F45TCNQ/G/ITO (black spectrum) is significantly 

higher than for the 30 nm CuPc/5 Å F45TCNQ/ITO sample (red spectrum). The difference in 

absorption cannot be attributed solely to the additional light absorbed by the graphene interlayer 

which theoretically absorbs ~2.3% of the visible light for a monolayer of graphene,15 since our 

Figure 5-6 (a) (left axis) UV5Vis spectra of absorbance versus wavelength for 30 nm CuPc on 5 Å F45TCNQ pre5
covered ITO and G/ITO substrates and graphene; (right axis) the difference in absorbance between the two samples. 

(b) Maximum light absorption occurs when the electric field vector of the incident light (�GGH) and transition moment of 

the molecule (�GGGH) are parallel. 
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graphene is predominantly mono5 to bi5 layer as determined in Section 2.3.2.1. The 

experimentally determined value of graphene absorbance in our experiment is ~2% as shown in 

Figure 556 (a) (green spectrum), which is similar to values obtained by other groups for graphene 

transferred onto transparent substrates.16–18 While this observation is in direct conflict with the 

theoretical lower limit of 2.3% absorption per layer of graphene,15 no attempts have been made to 

explain the observation. A simple reason for the lower than expected absorbance, or conversely 

higher transmission, through graphene may be attributed to holes introduced in the graphene sheet 

during the transfer process of graphene (Figure 2512 and Figure 2513), or that the beam size is 

slightly larger than the graphene sheet. Therefore, the resultant absorption has contributing 

components from graphene and bare ITO. Regardless of the exact absorption strength of 

graphene, it is clear that the difference in absorption between the two organic samples on ITO and 

G/ITO is primarily due to the different orientations of CuPc molecules on the different substrates. 

Using the predominant molecular tilt angles determined for CuPc on 5 Å F45TCNQ/ITO (α = 82o) 

and 5 Å F45TCNQ/G/ITO (α = 10o), we determine that ~50% increase in absorbance is expected 

for the latter sample if all the molecules are lying on the substrate [Equation (551)]. This value is 

larger than the 43% enhancement calculated from the integral areas of the absorbance spectra in 

Figure 556 (a). This is because CuPc molecules are not fully templated over the whole beam area 

as explained previously.  

Ultimately, the choice of pre5covering G/ITO with a layer of F45TCNQ is to reduce the 

unfavourably large HIB of nearly 1 eV (cf. Section 3.2) in a solar cell device without detrimental 

modification to graphene’s structural template property. Promising data from these orientation 

studies encourage pursuing F45TCNQ as a work function modifier for G/ITO. In the next section, 

the interfacial energetics between CuPc and G/ITO anode pre5covered with F45TCNQ are 

explored to assess the effectiveness of F45TCNQ in reducing the HIB. The results are compared 
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against our reference sample of CuPc/5 Å F45TCNQ/ITO to determine how graphene affects the 

energy levels at interfaces. 

5.4 Interfacial Energetics of CuPc on F4-TCNQ Pre-Covered ITO and 

G/ITO 

The energy level alignment at the organic5organic and organic5substrate interfaces are determined 

by PES upon sequential deposition of F45TCNQ and CuPc onto ITO and G/ITO. Figure 557 (a) 

shows the evolution of the PES spectra in the low kinetic energy region for increasing thickness 

of CuPc deposited on 5 Å F45TCNQ pre5covered ITO. The substrate spectrum is denoted as (i), 

and the spectrum of 5 Å F45TCNQ/ITO is denoted (ii) 0+. Labels (iii) to (vii) correspond to 

increasing thickness of the CuPc film deposited on 5 Å F45TCNQ/ITO. The valence band spectra 

of the CuPc/5 Å F45TCNQ/ITO film is shown in Figure 557 (b), and its corresponding close5up 

spectra near the Fermi level is shown in Figure 557 (c). Upon deposition of 5 Å F45TCNQ on ITO, 

a large increase in work function is observed as seen by the upward shift in vacuum level from 

Figure 557 (a). This is due to the transfer of electrons from ITO to the electronegative F45TCNQ 

molecules. An interface dipole with a magnitude of 1.08 eV pointing from F45TCNQ to the 

substrate is formed. Valence band features at low binding energy near the Fermi level [labelled 

(ii) in Figure 557 (b) and (c)] which appear following the deposition of F45TCNQ are attributed to 

the partial filling of the LUMO and the relaxed HOMO in F45TCNQ.19,20 These results are 

consistent with F45TCNQ thin film studies by PES and UPS in Section 4.3. 

Upon depositing 1 Å CuPc onto 5 Å F45TCNQ/ITO, the sample work function decreases by 0.30 

eV from 5.33 eV to 5.03 eV at the CuPc/F45TCNQ interface; a further 0.32 eV decrease in work 

function is recorded when an additional 4 Å CuPc is deposited. Beyond this thickness, the work 

function begins to decrease more gradually and almost plateaus beyond 10 Å CuPc film. The 

sample work function finally saturates at 4.53 eV for the bulk film. These results are unlike the 
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near vacuum level alignment observed for CuPc/ITO in Section 3.2, suggesting that the 

difference in observation may be due to interaction at the CuPc5F45TCNQ interface.  

Upon evaporating CuPc molecules onto 5 Å F45TCNQ/ITO, the valence band spectra in Figure 

557 (b) reveal the emergence of CuPc derived features. Similar to the spectra for CuPc/ITO in 

Figure 351 (b), the feature marked ‘ * ’ in the valence band plot [Figure 557 (b)] can be interpreted 

Figure 5-7 Synchrotron based PES spectra evolution of CuPc on 5 Å F45TCNQ pre5covered ITO. ‘ 0+ ’ denotes 5 Å 
F45TCNQ pre5covered ITO. (a) Low kinetic energy region, (b) valence band spectra at low binding energy and (c) 
near the Fermi level region. ‘ * ’ in (b) shows orientation dependence as is the case for Figure 351 (b). (d) Plot of 1 Å 
CuPc/5 Å F45TCNQ/ITO, after subtracting the background signal, shows that CuPc HOMO extends to the Fermi edge 
at this molecular thickness. (e) Plot of work function (Φ), energy of the HOMO onset and HOMO peak positions with 
respect to the Fermi level at 0 eV as a function of CuPc thickness. 
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as the CuPc molecules adopting a predominantly standing orientation.21 The HOMO onset for the 

spectrum of 1 Å CuPc/5 Å F45TCNQ/ITO appears to extend to EF as shown in Figure 557 (c). To 

visualize this more clearly, the valence band spectrum of 5 Å F45TCNQ/ITO is subtracted from 

the spectrum of 1 Å CuPc/5 Å F45TCNQ/ITO and the resultant spectrum is plotted in Figure 557 

(d). Clearly, the HOMO onset at this CuPc thickness extends to 0 eV (EF), in other words, the 

Fermi level is pinned at the HOMO onset.22 At higher CuPc coverage, the HOMO onset appears 

to gradually move away from the Fermi level towards higher binding energy before saturating at 

0.12 eV. Concomitant variations in the HOMO peak positions with CuPc film thickness are also 

observed. Figure 557 (e) summarises the changes in work function, HOMO peak position and 

HOMO onset as a function of CuPc thickness. It reveals that there are two contributions to the net 

change in work function – first, a dipole of 0.68 eV at the CuPc/F45TCNQ interface; second, a 

mild band bending of 0.12 eV away from the interface. 

To interpret the observations at the vacuum level and valence band regions for the system of 

CuPc/5 Å F45TCNQ/ITO, we invoke the gap state model that has been used to explain Fermi 

level pinning at the interface and the gradual band bending5like change in HOMO onset position 

away from the interface.22,23 It has been proposed that the HOMO (and consequently LUMO) 

band tails into the  HOMO5LUMO gap by several hundred meV due to intrinsic structural defects 

and imperfect crystal packing24,25 with their density of states (DOS) decaying away from the 

HOMO (or LUMO) into the band gap.26 These states are termed ‘gap states’ according to their 

location within the band gap. Although the density of these gap states are small, they are able to 

participate in charge transfer and are therefore involved in determining the final positions of the 

HOMO and LUMO with respect to the Fermi level.22,26–30 The origin of band bending due to the 

gap states can be explained in terms of space5charge accumulation at the interface. To achieve 

thermal equilibrium between two interfaces (e.g. CuPc and 5 Å F45TCNQ/ITO for this case) at 

the Fermi level upon contact, charge transfer can take place at the interface resulting in excess 
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positive charges accumulating in the gap states of the CuPc organic film. A built5in potential is 

formed across the interface and displaces the frontier orbitals of the organic film further from the 

Fermi level, thus limiting the magnitude of charge transfer.29,30 We expect that defect induced gap 

states are intrinsic to our samples prepared on ITO and G/ITO due to imperfect crystallinity and 

numerous grain boundaries, which are evident from the TEM images shown previously in Figure 

554 (b) and (d). 

Near the interface between CuPc and F45TCNQ/ITO, the work function of 5 Å F45TCNQ/ITO is 

5.33 eV which is significantly larger than the IP of standing CuPc (~4.77 eV). Assuming simple 

vacuum level alignment, the position of CuPc HOMO and its gap states lie above the Fermi level 

of the F45TCNQ/ITO substrate. Upon contact, electron transfers spontaneously from the gap 

states and HOMO of CuPc to F45TCNQ, resulting in a dipole moment pointing from F45TCNQ to 

CuPc. With only 1 Å CuPc deposited, depletion of all the electrons from the occupied gap states 

of CuPc alone is insufficient for the system to attain thermodynamic equilibrium due to the large 

initial energy offset. Therefore electrons from the HOMO are also transferred to F45TCNQ, 

resulting in the Fermi level being pinned at the HOMO leading edge as shown in Figure 557 (d). 

At this point however, the substrate work function is still 0.26 eV larger than the IP of standing 

CuPc due to the low coverage of the latter. Consequently, increasing the CuPc film thickness to 5 

Å results in further electron transfer to F45TCNQ via the depletion of the gap states electrons. 

Since the energy offset at this thickness is half the initial difference, depletion of the electrons 

from the gap state alone is sufficient to satisfy thermodynamic equilibrium and the Fermi level is 

located within the gap states instead of being pinned at the HOMO onset as seen in Figure 557 

(d). 

Beyond 5 Å CuPc deposited on 5 Å F45TCNQ/ITO, the energy misfit between CuPc and the 

underlying substrate is small; therefore, the magnitude of charge transfer is greatly reduced as 

assessed from the smaller change in work function shown in Figure 557 (e). Thermodynamic 
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equilibrium can therefore be achieved via electron transfer from a narrower energy range within 

the gap state, and the Fermi level is located at the top of the gap state. Beyond 10 Å CuPc, charge 

transfer almost ceases as the newly deposited CuPc molecules are not in direct contact with F45

TCNQ. The minor change in work function of 0.07 eV may be attributed to disordering in the 

bulk film which has been also observed for CuPc deposited directly on ITO31 (cf. Section 352). 

The positions of the HOMO onset and HOMO peak position also remain invariant beyond 10 Å 

CuPc, in good agreement with the lack of interaction with the underlying substrate. 

The degree of charge transfer at the interface can be estimated from the Helmholtz equation27 

given as  

Δ� = 	� 789_�	�D	     (552) 

where jV is the interface dipole measured from the vacuum level shift, µ is the dipole density, θ 

is the angle subtended by the dipole and the surface normal, ε is the dielectric constant of CuPc, 

and ε0 is the dielectric constant of vacuum. The dielectric constant of CuPc is approximated to be 

3.4,32 θ is estimated from thin film NEXAFS results to be 12o, and the dipole density is 1 per 12.1 

Å x 3.8 Å.2 Using the observed shift in vacuum level at the interface of 0.68 eV, the induced 

dipole density is 0.60 e Å. We estimate the length of the dipole to be approximately 5 Å, thus 

yielding a charge transfer of 0.12 electrons per molecule at the interface. Ultimately, the HIB of 

the system is 0.12 eV which is a significant reduction from the 0.51 eV originally obtained for 

CuPc deposited directly onto ITO (cf. Section 3.2). The dominant mechanism in lowering HIB is 

the increase in substrate work function through the formation of interface dipoles.19 The lower 

HIB has implications on charge accumulation and recombination in the CuPc active layer when 

this structure is used in an OPV device.  

Energy level alignment between CuPc and F45TCNQ pre5deposited on G/ITO is likewise 

investigated and the results are presented in Figure 558. The effect of depositing a thin layer of F45
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TCNQ is to increase the sample work function to 4.95 eV as shown in Figure 558 (a). This places 

the Fermi level of the 5 Å F45TCNQ/G/ITO sample at approximately the same energy as the IP of 

lying CuPc molecules (4.99 eV); therefore, the HOMO onset position at low CuPc coverage 

[spectrum (iii) in Figure 558 (b)] appears to extend to the Fermi level which is a reasonable 

scenario. The smaller energy offset at the CuPc5F45TCNQ/G/ITO interface implies that charge 

transfer is not as strong as between CuPc5F45TCNQ/ITO since thermodynamic equilibrium is 

nearly attained. The PES spectra for CuPc/5 Å F45TCNQ/G/ITO show an apparent vacuum level 

alignment and invariant HOMO positions up to 10 Å CuPc film. Beyond this thickness, 

downwards band bending5like change in both vacuum level and HOMO positions are observed.  

We propose that the observed behaviour of the vacuum level and HOMO features is mainly 

attributed to the diffusion of F45TCNQ into the CuPc film. This has been previously inferred from 

the NEXAFS data. Details concerning the diffusion of F45TCNQ through CuPc films will be 

presented in Chapter 6. Low molecular weight F45TCNQ diffusion through similar 

phthalocyanine molecules such as ZnPc has been reported.33–36 Due to a concentration gradient, 

the diffused species is the highest at the CuPc5F45TCNQ interface.37 The spectral features and 

energy levels of the CuPc film close to the F45TCNQ interface may therefore originate from the 

doped F45TCNQ:CuPc film. PES data obtained for ZnPc intentionally doped with F45TCNQ show 

similar behavior at low molecular coverage where the vacuum level and valence band features of 

the film are nearly invariant in energy.38 The PES features farther from the interface are derived 

only from the CuPc film due to reduced intermolecular doping away from the interface. 

Alternatively, the observed behaviour of the PES spectra may be ascribed to CuPc molecules not 

following a layer5by5layer growth mode on the substrate,39 resulting in the incident electron beam 

probing a mixture of F45TCNQ/G/ITO areas in addition to CuPc clusters on the surface. 

In these scenarios, the positions of the vacuum level can be interpreted as an average of neutral 

and ionized molecules. This effect diminishes at higher CuPc coverage when 1) the doping of 
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CuPc by F45TCNQ is reduced away from the interface, and/or 2) the size of the CuPc clusters 

increases and thus masks the contributions from the underlying F45TCNQ/G/ITO. Close to the 

Fermi level, the HOMO feature up to 10 Å CuPc film appears broader and asymmetrical in 

comparison to the 100 Å film. We assume that the latter is representative of CuPc films since it is 

at a considerable distance from the substrate interface and looks similar to the PES spectrum for 

Figure 5-8 Synchrotron based PES spectra evolution of CuPc on 5 Å F45TCNQ pre5covered G/ITO. 5 Å F45TCNQ 
pre5covered substrate is denoted ‘ 0+ ’ (a) Low kinetic energy region, (b) valence band spectra at low binding energy 
and (c) near the Fermi level region. ‘ * ’ in (b) has the same meaning as in Figure 353 (b). (d) 1 Å CuPc/5 Å F45
TCNQ/G/ITO spectra near the Fermi level after background subtraction showing a broad asymmetrical HOMO 
feature, and a feature marked by an arrow that neither originates from neutral CuPc or F45TCNQ. (e) Plot of work 
function (Φ), energy of the HOMO onset and HOMO peak positions as a function of CuPc thickness. 
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CuPc/G/ITO in Figure 353(b). The spectrum of 1 Å CuPc/5 Å F45TCNQ/G/ITO, following 

background subtraction, is shown in Figure 558 (d) and clearly reveals the asymmetrical HOMO 

feature, and the appearance of an additional valence band feature (marked by an arrow). These 

features cannot be accounted for by neutral CuPc and F45TCNQ molecules alone, and therefore 

indicate that the spectrum may be a superposition of neutral and ionized molecules.34 The feature 

at 1.3 eV may be attributed to the relaxed HOMO of ionized F45TCNQ molecules,19 or derived 

from the formation of hybrid HOMO and LUMO levels upon the formation of a charge transfer 

complex40 as suggested by Jäckel et al.. 

Beyond 10 Å thickness, the HOMO onset and HOMO peak shift to higher binding energy, 

accompanied by a downward shift in vacuum level by ~0.2 eV. The cause of this band bending5

like shift due to formation of a space5charge layer has been explained for the CuPc/F45TCNQ/ITO 

sample, and can possibly extend to several nanometers into the bulk film.28 The HIB for the 

thicker CuPc film is determined to be 0.17 eV, over a five5fold decrease from the unmodified 

G/ITO anode (cf. Section 3.2). This result asserts the potential of using F45TCNQ as a work 

function modified for G/ITO since successful reduction in HIB is obtained without compromising 

the templating ability of graphene. Finally, the energy diagrams for CuPc deposited on 5 Å F45

TCNQ/ITO and 5 Å F45TCNQ/G/ITO are illustrated schematically in Figure 559 (a) and (b) 

respectively. The LUMO position is obtained from literature.41 In Figure 559 (b) for CuPc 

deposited on 5 Å F45TCNQ/G/ITO, the CuPc region close to the F45TCNQ interface is depicted as 

dashed lines due to the uncertainty of the HOMO, and hence LUMO, positions. 
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5.5 Morphology of CuPc on F4-TCNQ Pre-Covered ITO and G/ITO 

The effect of modifying ITO with a layer of graphene on the resulting CuPc crystallites and 

overall topography is revealed by AFM in Figure 5510. CuPc forms nano5size grains on the order 

of around 30 nm on both substrates which is typical of polycrystalline films.6,42 The grains of 

CuPc appear spherical or elliptical on 5 Å F45TCNQ/G/ITO which is similar to CuPc grown on Si 

in Figure 553 (a); however when deposited onto ITO, the morphology of the grains looks 

Figure 5-9 Energy level diagrams for CuPc on pre5covered F45TCNQ on (a) ITO and (b) G/ITO. The direction of hole 
extraction in an organic solar cell is indicated by the horizontal arrow in (a) on the HOMO onset band (pink). The 
magnitudes of the band bending (BB), work function and HIB are shown. The position of the LUMO (blue band) is 
obtained from literature.41 (b) Uncertainty in the HOMO (and correspondingly LUMO) onset position at low CuPc 
coverage is marked by the dashed boxes.  
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distinctly different and instead appears to be mediated by the substrate’s morphology (cf. Figure 

2513). CuPc grains appear different on F45TCNQ pre5covered ITO and G/ITO substrates as the 

undulating grains of the ITO substrate are ‘smoothed out’ or masked by graphene as seen from 

Figure 2513. Several pinholes that appear as dark patches are observed within the CuPc films. 

Detailed analysis indicates that the vertical height variation across these trenches is over 15 nm as 

shown in the line scan profiles in Figure 5510 (c) and (d) (insets). These pinholes may give rise to 

leakage current when an OPV device is fabricated using this design. The root mean square (RMS) 

roughness of CuPc deposited on 5 Å F45TCNQ/ITO and 5 Å F45TCNQ/G/ITO are comparable at 

5.5 nm and 5.4 nm respectively averaged over several 1 µm x 1 µm images. Finally, the total 

Figure 5-10 (a) 1 Um x 1 Um and (c) 500 nm x 500 nm topographic AFM images of 30 nm CuPc/5 Å F45TCNQ/ITO. 
(b) & (d) is similar to (a) & (c) respectively but for 30 nm CuPc/5 Å F45TCNQ/G/ITO. Insets in (c) and (d) show line 
profiles across the image. The RMS roughness (a) 5.5 nm, (b) 5.4 nm, (c) 5.1 nm and (d) 5.0 nm. [The high islands in 
(b) were excluded during RMS calculations]. Height (z5axis) scale bar is shown besides each image. 
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surface area that the CuPc film presents to the subsequent C60 film in an OPV device, in other 

words the D/A interface area, is an important parameter in determining the photogenerated 

current – larger areas imply more accessible sites for exciton dissociation at the interface. The 

ratios of the total surface area of CuPc normalized to the flat scan area are comparable at 1.17 and 

1.15 for CuPc/5 Å F45TCNQ/ITO and CuPc/5 Å F45TCNQ/G/ITO respectively. Overall, the 

topography, total surface area and morphology of CuPc films grown on both substrates are 

similar and therefore these parameters may be neglected when comparing the solar cell 

parameters for these devices.  

An important caveat is that the AFM images and the parameters derived from the images shown 

in Figure 5510 (b) and (d) for CuPc/5 Å F45TCNQ/G/ITO are for the ideal case when graphene is 

continuous and have few visible defects under an optical microscope. In OPV devices which 

utilize electrodes that are 7 orders of magnitude larger than the imaged area (0.12 cm2 versus 1 

µm2), it is inevitable that some areas will contain graphene damaged during the transfer process 

resulting in scrolling and buckling of graphene film at the edges such as shown in the SEM 

images in Figure 5511 (a) and (b) (after CuPc and 5 Å F45TCNQ deposition). Although the RMS 

roughness close to the ‘damaged’ area is comparable with the ‘pristine’ areas as determined from 

the AFM image in Figure 5511 (c), the vertical height variation of the former is on average larger 

and extends up to 30 nm as indicated by the line profile [Figure 5511 (d)] drawn across the Figure 

5511 (c). Such situation is not ideal for OPV devices using graphene as a template later: first, we 

are unable to measure the intrinsic solar cell parameters due solely to pristine graphene since 

there will be areas of ITO that are not modified by graphene prior to molecular deposition. 

Second, large variation in vertical height may cause shorting by providing a conducting path 

between both cathode and anode. Finally scrolled up graphene, which is unable to serve its 

original templating purpose, might have the same effect as surface contaminants by acting as 

charge traps, thereby hindering the efficient extraction of photogenerated charges. The following 
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section confirms that these effects indeed limit solar cell performance for devices fabricated on 

G/ITO anode. 

5.6 Device Characterization of OPV 

To probe the effect of molecular orientation of CuPc and lowering of the HIB on OPV device 

performance, we fabricated planar heterojunction OPV devices according to the schematic 

illustration in Figure 358 (a) : 100 nm Al/12 nm BCP/40 nm C60/30 nm CuPc/5 Å F45

TCNQ/G/ITO (or A/5 Å F45TCNQ/G/ITO following the notation in the schematic) and 100 nm 

Figure 5-11 (a) and (b) SEM images of 30nm CuPc/5Å F45TCNQ/G/ITO at x1000 and x100000 respectively. Scale 
bars are (a) 2 Um and (b) 200 nm. The purple loop encloses an area where graphene is absent due to the tearing of 
graphene during transfer, i.e. CuPc and F45TCNQ are grown directly on ITO. (b) Corresponding magnified image of 
the area marked in (a) showing the scrolling of graphene and subsequent deposition of CuPc and F45TCNQ at the 
‘damaged’ interface. (c) 1 Um x 1 Um AFM image of CuPc/5 Å F45TCNQ/G/ ITO near a ‘damaged’ interface as 
described in (a) & (b). Black surface line profile indicates height variations of up to 30 nm at certain areas (d).  
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Al/12 nm BCP/40 nm C60/30 nm CuPc/5 Å F45TCNQ/ITO (or A/5Å F45TCNQ/ITO). These 

devices are characterized by J5V measurements and their parameters are compared against each 

other, and also to their counterparts previously evaluated in Section 3.4 which lack the F45TCNQ 

layer i.e. devices with larger HIB. All growth parameters being equal, we propose that the device 

A/5 Å F45TCNQ/G/ITO should perform better than the reference cell A/ITO based on the 

modification of the CuPc molecular orientation and also the more favourable energy level 

alignment in the former. Templating of CuPc molecules is caused by the graphene interlayer, 

while interfacial doping with 5 Å F45TCNQ causes a reduction in HIB at the anode. However the 

drawback of including graphene is the high surface roughness and aggregation of graphene sheets 

at areas where graphene is damaged during the transfer process, an effect that we first proposed in 

Section 3.4 to account for the unexpectedly poor Jsc of A/G/ITO device, and confirmed via SEM 

and AFM images in Section 5.5. 

The physical properties of CuPc films, including carrier mobility, charge transfer and optical 

absorption are highly anisotropic.1,3,12,43,44 As mentioned in Section 1.1.2, for small molecule 

based OPV, it is desirable that the stacking axis is perpendicular to the substrate (i.e. CuPc 

molecules are lying on the substrate) to maximize charge transport and optical absorption. 

Therefore, graphene OPV devices (A/5 Å F45TCNQ/G/ITO) should have an enhanced Jsc as 

compared to the non5templated devices (A/5 Å F45TCNQ/ITO). For planar OPV devices, 

potential loss (Voc) at the D/A interface is inevitable due to their energy offset. Further losses at 

the electrodes occur when a large barrier of extraction is present, resulting in charge accumulation 

and recombination at the active layer5electrode interfaces.45 Five5fold reduction of the HIB at the 

anode is successfully achieved by pre5covering G/ITO with 5 Å F45TCNQ while four5fold 

decrease is obtained for the ITO substrate. While the near ohmic contact between the HOMO of 

CuPc and the modified anode should enhance charge extraction leading to lower recombination 

losses, we are cautious in predicting an improvement in Voc since it is also directly related to the 
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offset between the HOMO of the donor and the LUMO of the acceptor. Doping the anode with 

F45TCNQ modifies the electronic properties and energy levels of the CuPc thin film; this may 

affect the subsequent energy level alignment between CuPc and C60 acceptor molecule at the D/A 

interface. Thus the overall Voc recorded in a device will be a balance of these two related factors. 

Figure 5512 (a) shows the average J5V curves in the dark and (b) illuminated for OPV with device 

structures A/5 Å F45TCNQ/G/ITO in black and A/5 Å F45TCNQ/ITO in red. Dark current 

characteristics provide information about series (Rs) and shunt resistance (Rsh) of the devices. 

Whereas A/5 Å F45TCNQ/ITO device exhibits the typical diode rectifying characteristics, large 

leakage current (low Rsh) is observed for A/5 Å F45TCNQ/G/ITO device as seen from significant 

current density in reverse bias [Figure 5512 (a)].45 The Rsh recorded for A/5 Å F45TCNQ/G/ITO is 

0.9 kr cm2 which is ~35% smaller than the 1.4 kr cm2 for A/G/ITO, an effect which we attribute 

to different quality of transferred graphene rather than of physical origin. Low Rsh provides an 

alternate path for current to flow from one electrode to the other, thereby reducing Voc across the 

OPV device. We correlate this observation with AFM and SEM data from Figure 5510 and Figure 

5511 which reveal pinholes within the CuPc film, and additional high features attributed to 

damaged graphene. Current leakage may also originate from the deposition of hot metal cathode 

that can penetrate the film to reach the anode thus forming a conducting path between the 

electrodes. However we rule this out as the dominant factor for the large leakage current observed 

for A/5 Å F45TCNQ/G/ITO and A/G/ITO since it should similarly affect the cells fabricated on 

ITO anode as they were prepared in the same growth. Rs for A/5 Å F45TCNQ/G/ITO and A/5 Å 

F45TCNQ/ITO, which is calculated from the gradient of the dark curves near 1 V external bias, 

are 58 r cm2 and 59 r cm2 respectively. Significant improvement in Rs is for A/5 Å F45

TCNQ/G/ITO compared to A/G/ITO (Rs = 160 r cm2) can be attributed to the lowering of sheet 

resistance of graphene by doping with F45TCNQ.46 
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Despite improvements to Rs, HIB and the optical absorption, these results fail to translate into 

better device parameters for A/5 Å F45TCNQ/G/ITO. 40% decrease in Jsc and 30% decrease in 

Voc are observed for A/5 Å F45TCNQ/G/ITO (Jsc = 0.7 mA cm52
 , Voc = 0.26 V) in comparison to 

A/5 Å F45TCNQ/ITO device (Jsc = 1 mA cm52
 , Voc = 0.41 V). The A/5 Å F45TCNQ/G/ITO device 

also underperformed when compared against A/G/ITO in terms of Voc. Both A/ITO and A/5 Å 

F45TCNQ/ITO devices have similar figures of merit despite the lowering of the HIB in the latter 

through molecular modification. Taking our cue from A/ITO and A/5 Å F45TCNQ/ITO devices, 

we suggest that the hole injection at the anode may not be the limiting factor in our (unoptimized) 

devices. For instance, the FF is limited by the high Rs in all the devices.47 The situation is worse 

for devices fabricated on G/ITO as they have further variability of the quality of graphene and 

areas of non5uniformity i.e. damaged graphene or areas without graphene. We correlate the effect 

of current leakage current on the recorded Voc by comparing A/5 Å F45TCNQ/G/ITO device with 

A/G/ITO in which the former which experiences larger leakage current also has a simultaneous 

lowering of Voc. These issues associated with our devices mask the full potential that could have 

Figure 5-12 Current density as a function of cell voltage (J5V) curves under (a) dark and (b) 100 mW/cm2

illumination for red: A/5 Å F45TCNQ/ITO and black: A/5 Å F45TCNQ/G/ITO. Graphene device shows large current 
leakage and poorer performance as compared to the device without graphene. 
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been achieved by our modified device structure, and do not provide a fair platform for 

comparison of key device parameters. 

5.7 Conclusion and Outlook 

We have analysed the effect of modifying G/ITO and ITO with a thin layer of F45TCNQ on the 

orientation and energy level alignment on CuPc, as well as OPV device performance using 5 Å 

F45TCNQ/G/ITO as the anode. Templating of CuPc molecules such that they are ‘lying’ almost 

parallel to the substrate is achieved by G/ITO even with the inclusion of F45TCNQ, while CuPc 

on F45TCNQ/ITO still retains its standing configuration as on ITO. UV5Vis investigation reveals 

that an additional benefit associated with templating of CuPc molecules is the enhancement of 

light absorption normal to the substrate by over 40% as compared to the CuPc molecules standing 

perpendicular to the substrate. This is especially beneficial for solar cell devices since more 

energy can be harvested for the same active layer thickness. Small HIB of 0.17 eV and 0.12 eV 

are obtained for CuPc deposited on F45TCNQ modified G/ITO and ITO respectively, a notable 

decrease from 0.94 eV and 0.51 eV for the unmodified CuPc/G/ITO and CuPc/ITO samples 

respectively. These results suggest that F45TCNQ is a suitable work function modifier for G/ITO 

without having any measurable deleterious effect on the templating property of graphene. All 

these improvements however fail to translate into improved solar cell device performance. 

Conversely the device fabricated on 5 Å F45TCNQ/G/ITO perform worse than our reference 

device deposited on ITO in all aspects of Voc, Jsc, FF and ultimately power conversion efficiency. 

We attribute the poor performance to the difficulty of obtaining continuous pristine graphene over 

the active areas probed, resulting in large leakage currents and due to the high roughness caused 

by damaged graphene. The latter may potentially act as charge traps hindering charge collection 

at the anode. Similar OPV parameters obtained for devices fabricated on ITO and 5 Å F45

TCNQ/ITO in which the latter has a smaller HIB suggest that the HIB may not be the limiting 

factor in our (unoptimized) setup.  
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In order to identify the actual effect that CuPc templating and lowering of the HIB has on solar 

cell device parameters, it is imperative that the device structure is first optimized and the active 

areas only measure the effect from pristine graphene. The latter may be achieved by reducing the 

size of the active area (top contact mask size) or by increasing the area of pristine graphene. The 

roughness of ITO indirectly plays a part in damaging graphene since it allows water to be trapped 

between graphene and ITO during the wet transfer process. Evaporation of the trapped liquid 

pushes against graphene that is delicately balanced on protruding ITO grains separated by troughs 

of water and causes it to break. Alternatively, a modified method of graphene transfer such as the 

soft5transfer method proposed by Song et al.
46 can be considered. Only when these issues have 

been addressed can a fair assessment of the devices be made. 

To elucidate the interaction between F45TCNQ and CuPc on G/ITO, controlled sub5monolayer 

growth of F45TCNQ and CuPc on atomically flat HOPG substrate can be investigated via STM. 

STM allows imaging of individual molecules and information about the DOS of the molecules 

can be determined through dI/dV plots as a function of tip bias. This allows us to map the 

variation of the DOS of individual molecules upon interaction between F45TCNQ and CuPc, as 

opposed to PES measurements which averages over several clusters of molecules. Alternatively, 

ultrahigh precision and low background PES22,24,25 can be used for more accurate determination of 

surface states near the substrate interface at low CuPc coverage. Coupled with theoretical 

calculation of the actual relaxation energy of CuPc to determine the position of the ionized 

valence states, the spectrum of CuPc deposited on F45TCNQ/G/ITO near the substrate interface 

can be decomposed into its respective components to understand the contributions from the 

various DOS near the Fermi level. 

Looking forward, we propose that with slight variation of the experimental methodology, the use 

of ITO electrodes can be eliminated in organic solar cells. Patterned graphene can be transferred 

to flexible polymers such as PET before sequential deposition F45TCNQ and the subsequent solar 
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cell active layers and contacts. While the concept of graphene5based electrodes to replace ITO in 

organic solar cell devices has been widely explored,46,48–50 to our knowledge no group has 

simultaneously utilized the templating property of graphene and work function modification 

using 5 Å F45TCNQ in small molecule organic solar cell devices. Furthermore, the high sheet 

resistance of graphene electrodes (kr/□) can be reduced by doping with F45TCNQ.46 Therefore, 

our proposed simple modification of the anode design might have potential in enhancing the 

performance of flexible organic solar cells utilizing planar polyaromatic molecules with similar 

electronic properties as the active layer. 

5.8 References 

1. Rand, B. P. et al. The Impact of Molecular Orientation on the Photovoltaic Properties of a 
Phthalocyanine/Fullerene Heterojunction. Adv. Funct. Mater. 22, 2987–2995 (2012). 

2. Hoshino, A., Takenaka, Y. & Miyaji, H. Redetermination of the crystal structure of alpha5
copper phthalocyanine grown on KCl. Acta Crystallogr. B. 59, 393–403 (2003). 

3. Sullivan, P., Jones, T. S., Ferguson, a. J. & Heutz, S. Structural templating as a route to 
improved photovoltaic performance in copper phthalocyanine/fullerene (C60) 
heterojunctions. Appl. Phys. Lett. 91, 233114 (2007). 

4. Lee, W. H. et al. Surface5directed molecular assembly of pentacene on monolayer 
graphene for high5performance organic transistors. J. Am. Chem. Soc. 133, 4447–54 
(2011). 

5. Scherrer, P. No Title. Göttinger Nachrichten Gesell. 2, 98 (1918). 

6. Heutz, S., Sullivan, P., Sanderson, B. M., Schultes, S. M. & Jones, T. S. Influence of 
molecular architecture and intermixing on the photovoltaic, morphological and 
spectroscopic properties of CuPc–C60 heterojunctions. Sol. Energy Mater. Sol. Cells 83, 
229–245 (2004). 

7. Gilchrist, J. B., Basey5Fisher, T. H., Chang, S. C’ E.*, Scheltens, F., McComb, D. W. & 
Heutz, S. Uncovering the Buried Interface in Molecular Photovoltaics. Adv. Funct. Mater. 
24, 647356483 (2014). 

8. De Oteyza, D. G. et al. Inversed linear dichroism in F K5edge NEXAFS spectra of 
fluorinated planar aromatic molecules. Phys. Rev. B 86, 075469 (2012). 



 

135 
 

9. Nardi, M. V. et al. Electronic properties of CuPc and H2Pc: an experimental and 
theoretical study. Phys. Chem. Chem. Phys. 15, 12864–81 (2013). 

10. Foweraker, A. R. & Jennings, B. R. Orientation of the electronic transitions in crystalline 
copper phthalocyanine by means of electric dichroism. Spectrochim. Acta Part A: Mol. 

Spectrosc. 31, 1075–1083 (1975). 

11. Kadish, K., Guilard, R. & Smith, K. M. The Porphyrin Handbook: Phthalocyanines : 

properties and materials. (Elsevier Science, 2003). 

12. Cheng, C. H. et al. Organic solar cells with remarkable enhanced efficiency by using a 
CuI buffer to control the molecular orientation and modify the anode. Appl. Phys. Lett. 97, 
083305 (2010). 

13. Farag, A. A. M., Optical absorption studies of copper phthalocyanine thin films. Opt. 

Laser Technol. 39, 728–732 (2007). 

14. Davidson, a. T. The effect of the metal atom on the absorption spectra of phthalocyanine 
films. J. Chem. Phys. 77, 168 (1982). 

15. Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 
320, 1308 (2008). 

16. Reina, A. et al. Large area, few5layer graphene films on arbitrary substrates by chemical 
vapor deposition. Nano Lett. 9, 30–35 (2009). 

17. Wang, Z. et al. Technology ready use of single layer graphene as a transparent electrode 
for hybrid photovoltaic devices. Physica E: Low6dimensional Syst. Nanostructures 44, 
521–524 (2011). 

18. Pirruccio, G., Martín Moreno, L., Lozano, G. & Gómez Rivas, J. Coherent and broadband 
enhanced optical absorption in graphene. ACS Nano 7, 4810–7 (2013). 

19. Koch, N., Duhm, S., Rabe, J., Vollmer, A. & Johnson, R. Optimized Hole Injection with 
Strong Electron Acceptors at Organic5Metal Interfaces. Phys. Rev. Lett. 95, 237601 
(2005). 

20. Romaner, L. et al. Impact of Bidirectional Charge Transfer and Molecular Distortions on 
the Electronic Structure of a Metal5Organic Interface. Phys. Rev. Lett. 99, 256801 (2007). 

21. Toader, T., Gavrila, G., Braun, W., Ivanco, J. & Zahn, D. R. T. Valence band fine 
structure of copper phthalocyanine thin films: Effect of molecular orientation. Phys. Status 

Solidi B 246, 1510–1518 (2009). 

22. Mao, H. Y. et al. Mechanism of the Fermi level pinning at organic donor–acceptor 
heterojunction interfaces. Org. Electron. 12, 534–540 (2011). 

23. Zhong, S. et al. The role of gap states in the energy level alignment at the organic–organic 
heterojunction interfaces. Phys. Chem. Chem. Phys.  14, 14127 (2012). 



 

136 
 

24. Sueyoshi, T., Fukagawa, H., Ono, M., Kera, S. & Ueno, N. Low5density band5gap states 
in pentacene thin films probed with ultrahigh5sensitivity ultraviolet photoelectron 
spectroscopy. Appl. Phys. Lett. 95, 183303 (2009). 

25. Sueyoshi, T. et al. Band gap states of copper phthalocyanine thin films induced by 
nitrogen exposure. Appl. Phys. Lett. 96, 093303 (2010). 

26. Yogev, S. et al. Fermi Level Pinning by Gap States in Organic Semiconductors. Phys. 

Rev. Lett. 110, 036803 (2013). 

27. Fukagawa, H. et al. The Role of the Ionization Potential in Vacuum5Level Alignment at 
Organic Semiconductor Interfaces. Adv. Mater. 19, 665–668 (2007). 

28. Lange, I. et al. Band Bending in Conjugated Polymer Layers. Phys. Rev. Lett. 106, 216402 
(2011). 

29. Hwang, J. et al. Photoelectron Spectroscopic Study of the Electronic Band Structure of 
Polyfluorene and Fluorene5Arylamine Copolymers at Interfaces. J. Phys. Chem. C 111, 
1378–1384 (2007). 

30. Tang, J. X., Lau, K. M., Lee, C. S. & Lee, S. T. Substrate effects on the electronic 
properties of an organic/organic heterojunction. Appl. Phys. Lett. 88, 232103 (2006). 

31. Fukagawa, H. et al. Origin of the highest occupied band position in pentacene films from 
ultraviolet photoelectron spectroscopy: Hole stabilization versus band dispersion. Phys. 

Rev. B 73, 245310 (2006). 

32. Shi, N. & Ramprasad, R. Dielectric properties of Cu5phthalocyanine systems from first 
principles. Appl. Phys. Lett. 89, 102904 (2006). 

33. Gao, W. & Kahn, A. Controlled p5doping of zinc phthalocyanine by coevaporation with 
tetrafluorotetracyanoquinodimethane: A direct and inverse photoemission study. Appl. 

Phys. Lett. 79, 4040 (2001). 

34. Gao, W. & Kahn, A. Controlled p doping of the hole5transport molecular material N, N′5
diphenyl5N, N′5bis (15naphthyl)51, 1′5biphenyl54, 4′5diamine with 
tetrafluorotetracyanoquinodimethane. J. Appl. Phys. 94, 359–366 (2003). 

35. Dong, M.5S., Wu, X.5M., Hua, Y.5L., Qi, Q.5J. & Yin, S.5G. Highly Efficient Simplified 
Organic Light5Emitting Diodes Utilizing F45TCNQ as an Anode Buffer Layer. Chinese 

Phys. Lett. 27, 127802 (2010). 

36. Duhm, S. et al. Interdiffusion of molecular acceptors through organic layers to metal 
substrates mimics doping5related energy level shifts. Appl. Phys. Lett. 95, 093305 (2009). 

37. Wang, J., Liu, J., Huang, S. & He, G. Enhancing the Hole Injection and Transporting of 
Organic Light5Emitting Diodes by Utilizing Gradient Doping. Mol. Cryst. Liq. Cryst. 574, 
129–134 (2013). 



 

137 
 

38. Gao, W. & Kahn, A. Electronic structure and current injection in zinc phthalocyanine 
doped with tetrafluorotetracyanoquinodimethane: Interface versus bulk effects. Org. 

Electron. 3, 53–63 (2002). 

39. Witte, G. & Wöll, C. Growth of aromatic molecules on solid substrates for applications in 
organic electronics. J. Mater. Res. 19, 1889–1916 (2004). 

40. Jäckel, F. et al. Investigating Molecular Charge Transfer Complexes with a Low 
Temperature Scanning Tunneling Microscope. Phys. Rev. Lett. 100, 126102 (2008). 

41. Zahn, D. R. T., Gavrila, G. N. & Gorgoi, M. The transport gap of organic semiconductors 
studied using the combination of direct and inverse photoemission. Chem. Phys. 325, 99–
112 (2006). 

42. Mativetsky, J. M., Wang, H., Lee, S. S., Whittaker5Brooks, L. & Loo, Y.5L. Face5on 
stacking and enhanced out5of5plane hole mobility in graphene5templated copper 
phthalocyanine. Chem. Commun. 50, 5319–5321 (2014). 

43. Singha Roy, S., Bindl, D. J. & Arnold, M. S. Templating Highly Crystalline Organic 
Semiconductors Using Atomic Membranes of Graphene at the Anode/Organic Interface. 
J. Phys. Chem. Lett. 3, 873–878 (2012). 

44. Lunt, R. R., Benziger, J. B. & Forrest, S. R. Relationship between crystalline order and 
exciton diffusion length in molecular organic semiconductors. Adv. Mater. 22, 1233–6 
(2010). 

45. Park, H., Brown, P. R., Bulović, V. & Kong, J. Graphene as transparent conducting 
electrodes in organic photovoltaics: studies in graphene morphology, hole transporting 
layers, and counter electrodes. Nano Lett. 12, 133–40 (2012). 

46. Song, J. et al. A general method for transferring graphene onto soft surfaces. Nat. 

Nanotechnol. 8, 356–62 (2013). 

47. Servaites, J. D., Yeganeh, S., Marks, T. J. & Ratner, M. A. Efficiency Enhancement in 
Organic Photovoltaic Cells: Consequences of Optimizing Series Resistance. Adv. Funct. 

Mater. 20, 97–104 (2010). 

48. Kim, K. S. et al. Large5scale pattern growth of graphene films for stretchable transparent 
electrodes. Nature 457, 706–10 (2009). 

49. Wang, Y., Tong, S. W., Xu, X. F., Ozyilmaz, B. & Loh, K. P. Interface engineering of 
layer5by5layer stacked graphene anodes for high5performance organic solar cells. Adv. 

Mater. 23, 1514–8 (2011). 

50. Gomez De Arco, L. et al. Continuous, highly flexible, and transparent graphene films by 
chemical vapor deposition for organic photovoltaics. ACS Nano 4, 2865–73 (2010).  

 



 

138 
 

Chapter 6 : Diffusion of F4-TCNQ Molecules 

6.1 Introduction 

F45TCNQ molecules have been used successfully as a p5dopant of hole transport and active 

layers in OLED and OPV devices.1–6 However, low molecular weight F45TCNQ is volatile 

and has low sticking coefficient thus increasing its propensity to diffuse through organic 

layers due to a concentration gradient.3,7–9 This can lead to unintentional and uncontrolled 

doping of the subsequent layers which might have detrimental effects on the device. For 

instance, F45TCNQ diffusion to the emissive layer in OLED devices may lead to exciton 

dissociation due to the strong electron accepting property of F45TCNQ thereby quenching 

light emission.4,10 Gao et al. probed the diffusion of F45TCNQ through polycrystalline ZnPc 

and amorphous α5NPD film using XPS by following the evolution of F 1s signal at the 

surface of the film to show the effect of crystallinity on diffusion.3 They found that diffusion 

in polycrystalline ZnPc film occurs very rapidly and the intensity of the F 1s signal appears to 

saturate within tens of minutes from the onset of diffusion, while no diffusion was detected 

through the amorphous α5NPD film even after heating the film close to the sublimation 

temperature of F45TCNQ. More recently, Tyagi et al. used TOF5SIMS to determine the 

diffusion length of F45TCNQ in the presence of an external electric field through α5NPD as a 

function of F45TCNQ interlayer thickness.11 They found that F45TCNQ diffuses through α5

NPD at room temperature and the diffusion length is even larger than the film thickness used 

by Gao et al. regardless of the application of an external electric field. The conflicting 

observations may be due to the sensitivity of the two techniques used, where TOF5SIMS is 

able to detect in the parts per million (ppm) range while XPS is usually limited to parts per 

thousands (ppth) range.12 It is further noted that both groups deposited F45TCNQ on different 

substrates, suggesting that the strength of the molecule5substrate interaction might have an 

effect on the diffusion of molecules. While F45TCNQ diffusion through organic materials has 

been extensively mentioned,3,6–10,13 in5depth investigations concerning the various factors 
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which may exacerbate the quantity of the diffused species or the rate of diffusion have not 

been carried out. 

In the organic systems fabricated on ITO and G/ITO in Chapter 5, we utilized F45TCNQ to 

modify the work function of the underlying substrate. A concentration gradient of F45TCNQ 

is set up between the ITO interface and the exposed CuPc surface. Therefore, the diffusion of 

the volatile F45TCNQ molecule through the CuPc bulk film, which might result in gradient 

doping of the films rather than only interface doping,14 is a concern. PES data from Section 

5.4 suggests that diffusion of F45TCNQ into CuPc has taken place close to the substrate 

interface. If the diffusion of F45TCNQ in CuPc films extends to the D/A interface in an 

organic solar cell device, it may modify the energy levels at that interface, resulting in 

inefficient exciton separation. We propose that the enhanced π5π interaction between the 

planar F45TCNQ molecules and underlying graphene film (cf. Section 4.4) may result in 

stronger interfacial adhesion, thus impeding the diffusion of F45TCNQ through the film as 

compared to structures deposited onto ITO. On the other hand, the vertical columnar packing 

of CuPc molecules on F45TCNQ/G/ITO (cf. Section 5.2) may enhance molecular diffusion of 

F45TCNQ as proposed by Gao et al..3 Therefore, there are two main competing factors in our 

samples, namely substrate5F45TCNQ interaction and the packing of CuPc molecules, which 

can govern the rate and quantity of the diffused species.  

In this chapter, we use TOF5SIMS to investigate the diffusion profiles of F45TCNQ into CuPc 

films when the films are deposited onto ITO, G/ITO and G/Cu. By comparing their profiles, 

we present a qualitative analysis of 1) the rate of F45TCNQ diffusion through CuPc films 

which have different packing orientations, and 2) an investigation of the effect of substrate5

molecule interaction on the quantity of the diffused species. In addition, we also attempt to 

quantify the concentration of F45TCNQ molecules that diffuse into the bulk CuPc in the 

absence of calibration standards. This is performed by co5depositing a known amount of F45

TCNQ in a CuPc matrix and comparing the intensity of the F5 signal of the fully diffused 

sample. 
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To ascertain if the concentration of F5 is sufficiently high to be detected by TOF5SIMS, we 

estimate the number of F5 fragments per unit volume in a uniformly and fully diffused sample. 

Based on the density of F45TCNQ molecules (1.65 g/cm3) and the thicknesses of the F45

TCNQ (5 Å) and CuPc (100 nm) films, the concentration of F45TCNQ in a CuPc film is 

approximately 2 x 1019 atoms/cm3. This value is above the detection limit of F5 ions15 in TOF5

SIMS (~1016 atoms/cm3) and therefore we regard this as a suitable technique for our 

investigation. The advantage of using TOF5SIMS for depth profiling is its high sensitivity; yet 

it is still challenging to use this technique on soft organic samples due to the ease of sample 

damage upon bombardment by the primary ion beam16 and the need to probe molecular rather 

than elemental composition. However, optimization and control of the operating conditions of 

current and accelerating voltage,17 and the development of cluster ion sources18 have made it 

possible to extend this technique to organic and even biological samples in recent years.19–21 

6.2 Diffusion of Interface F4-TCNQ into Bulk CuPc Film Deposited 

on ITO, G/ITO and G/Cu 

Figure 651 (a) shows a representative SIMS raw data plot of selected negative secondary ion 

fragment counts as a function of sputter time. Sputtering of the films was performed from the 

exposed side of CuPc films as shown by the direction of the arrow in the schematic in Figure 

651 (b). The area shaded in grey in Figure 651 (a) marks the region where the TOF5SIMS 

detector is saturated by ion counts; C5 and C4
5 fragments which have their counts in this 

saturation regime are deemed too high to be accurately included in subsequent analysis due to 

detector saturation effects. To convert the x5axis from sputter time into depth in the absence 

of secondary physical measurements (eg. contact profilometer), we consider the point at 

which the CH5 signal drops by half its average value over the maximum plateau region, as the 

point at which the ion beam has just reached the substrate surface.17 From the calibration of 

the thickness of the molecular film using QCM, this should correspond to a depth of 100 nm 

± 5 nm. The total crater depth in Figure 651 (a) is therefore approximately 100 nm. The 
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horizontal axis on the top of Figure 651 (a) shows the diffusion profiles as a function of crater 

depth. According to the schematic in Figure 651 (b), x = 0 nm is designated as the exposed 

CuPc surface while 100 nm corresponds to the organic film5substrate interface. The CH5 

fragment is chosen due to its stability in counts over a long sputter time, significantly high 

counts yet well below the detector saturation regime, and also the narrow deviation in CH5 

counts between all the samples measured. The profile of the substrate ‘marker layer’ (In5 

counts for ITO and Cu5 counts for Cu foil) is used as a secondary check to determine the 

accuracy of depth estimation.22 The sputter time at which the CH5 counts are halved should 

coincide with the end of the prominent rising slope of the In5 or Cu5 counts before it plateaus 

out, which signals that the sputter beam has reached the bulk interface of the ITO substrate.  

We note that this method of determining the sample thickness may suffer from poor accuracy 

due to 1) the knock5on effect by the primary ion beam which degrades depth resolution,23 and 

2) microscopic roughness of the surfaces especially for ITO (cf. Figure 2513). Using a silicon 

substrate which has a sharp interface, the SIMS instrumental depth resolution is estimated to 

be approximately 3 nm (Appendix D). This is significantly smaller than the observed width of 

the slopes in the In5 and CH5 profiles near the substrate interface which is approximately 25 

nm [Figure 651 (a)]; this slope is therefore attributed primarily to substrate roughness. The In5 

signals are detected when the top of the ITO clusters are exposed to the sputter ion beam. The 

signal becomes more intense with increasing crater depth until it saturates beyond the ITO 

interface at x = 100 nm at which point a uniform film of ITO is present.24  

Since slight changes in experimental conditions such as the beam energy might affect the 

absolute counts detected, the F5 counts of each sample are scaled relative to the CH5 counts 

(which is in turn adjusted to an average of 104 counts at the plateau region for all the 

samples). The adjusted F5 counts allow for more reliable comparison of the fluorine content 

present between samples. This procedure is verified against the C3H2NCu5 counts, which are 

scaled in the same manner as F5. The C3H2NCu5 is a fragment that originates from CuPc. Due 

to the similar packing density of CuPc films (i.e. same matrix) and the same mass of the film 
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deposited regardless of the substrate, the C3H2NCu5 counts should be the same across all the 

samples.  

At the start of each depth profile, there is a transient, or ‘pre5equilibrium’, region due to the 

non5steady state sputter yield.23,25,26 In this region, it appears that the F5 signal is enhanced, 

while the CH5 signal is depleted as compared to their bulk signal [Figure 651 (a)]. From the 

CH5 signal in Figure 651 (a), this region is estimated to be approximately 10 nm. During the 

pre5equilibrium region, it is impossible to extract quantitative information about the target’s 

Figure 6-1 (a) Representative raw data plot of negative secondary ion counts as a function of  sputter time (bottom 
axis) and crater depth (top axis) for 100 nm CuPc/5 Å F45TCNQ/ITO fully diffused sample. The grey shaded areas 
mark the region where the detector is saturated by ion counts. CH5 fragment shows significantly high and very stable 
counts for all the measured samples, hence the F5 counts will be normalized to the respective CH5 counts in each 
measurement. (b) Schematic diagram showing the direction of sputter as indicated with a bold arrow.   
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composition. Due to this difficulty, the region between x = 0 to 10 nm will not be discussed in 

all subsequent profiles.  

To investigate the diffusion of F45TCNQ through CuPc, it is important to establish the 

baseline fluorine contaminant present in our samples within the CuPc films and also at the 

substrate interface. This will help to eliminate confusion in subsequent measurements and 

distinguish between counts arising from intrinsic fluorine impurities and those due to actual 

F45TCNQ diffusion. Samples of 100 nm CuPc deposited onto clean ITO, freshly prepared 

G/ITO and as5received G/Cu substrates were prepared for this investigation. Figure 652 (a) 

shows the F5 depth profile for 100 nm CuPc prepared on ITO, G/ITO and G/Cu. The 100 nm 

CuPc/G/Cu sample shows a very low level of F5 counts of ~10 throughout the bulk CuPc and 

at the interface, indicating an insignificant amount of fluorine containing compounds both 

within the sublimation5purified CuPc powder and at the organic5substrate interface. Close to 

the substrate interface, there is a very slight enhancement of F5 counts which may be caused 

by surface fluorine contamination15 or interface enhancement effect.27 Both the 100nm 

CuPc/G/ITO and 100nm CuPc/ITO samples also show very low F5 counts in the bulk CuPc, 

but a steep increase in intensity near the substrate interface from around x = 70 nm. The shape 

and position of this slope coincides with the In5 profile, shown as a red curve at the bottom of 

the graph in Figure 652 (a). Since this trend is specific to ITO and G/ITO samples, we propose 

that the F5 ions originate from the intrinsic fluorine impurity in the commercial ITO substrate 

(Appendix E). The F5 profiles of 100 nm CuPc/ITO and 100 nm CuPc/G/ITO appear similar 

despite the inclusion of graphene, indicating that neither graphene nor the graphene transfer 

process introduced significant amounts of fluorine contaminants.  

6.2.1 Influence of CuPc Molecular Packing on F4-TCNQ Diffusion 

Dynamics 

Having determined the baseline fluorine contamination in our samples, we probe the F5 

profiles for the samples containing 5 Å F45TCNQ. Figure 652 (b) – (d) compare the F5 
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diffusion profiles for 100 nm CuPc/5 Å F45TCNQ deposited on (b) G/Cu, (c) G /ITO and (d) 

ITO. All the samples were prepared together but analysed by TOF5SIMS at two different 

sessions. The ‘fresh’ samples were measured immediately after deposition (with a lapse of 

about 90 minutes to load the samples and to attain the required pressure), while the ‘diffused’ 

samples were kept in a glove box for one month before measurement. The lapse in time of 

about a month at room temperature is to ensure that the F45TCNQ molecules are fully diffused 

into the CuPc matrix and the systems have ideally reach diffusion equilibrium. We commence 

our analysis by comparing the F5 profiles for the ‘fresh’ and ‘diffused’ samples to determine 

the effect of time on the depth distribution of F5 fragments.  

By comparing the TOF5SIMS profiles between the F45TCNQ containing samples and their 

controls, we observe that the diffusion of F45TCNQ has clearly taken place through the CuPc 

film. This is evident from the F5 fragments which are detected throughout the bulk film at a 

significantly higher level than the baseline count. The F5 counts are almost constant in the 

bulk CuPc film up to x = 70 nm, and the F5 counts increases steeply close to the substrate. 

This suggests that there are at least two distinct regions of F45TCNQ diffusion, 1) F45TCNQ 

molecules that are influenced by the substrate5molecule interaction near the surface and 2) the 

highly diffusive F45TCNQ species in the bulk CuPc film. The effect of the substrate will be 

analysed in more detail in the next section. 
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‘Fresh’ F5 profiles of 100 nm CuPc/5 Å F45TCNQ/G/Cu, 100 nm CuPc/5 Å F45TCNQ/G/ITO 

and 100 nm CuPc/5 Å F45TCNQ/ITO shown in Figure 652 (b) 5 (d) respectively reveal that 

diffusion has taken place at room temperature in the CuPc film within 90 minutes of growth. 

These results corroborate previous findings that F45TCNQ fully diffuses through a similar 

Figure 6-2 Intensity of F5 counts as a function of depth, with x = 0 nm referring to the exposed CuPc surface. (a) 
‘Control’ samples without F45TCNQ to determine the concentration of F5 present at the substrate interface and in 
CuPc. (b) – (d) 100 nm CuPc/5 Å F45TCNQ on (b) G/Cu, (c) G/ITO and (d) ITO. ‘Fresh’ samples which were
measured immediately after deposition are compared against similar samples that were measured one month after 
deposition (‘diffused’ samples), thus allowing the fluorine containing molecules to be fully diffused in the CuPc 
matrix. (c) and (d) are plotted on the same y5scale for ease of comparison. 
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host matrix of ZnPc within 80 minutes of growth.7,9 From previous XRD studies in Section 

5.2 and cross5section TEM,24 we infer that CuPc films form nano5sized crystals. Therefore F45

TCNQ molecules are able to diffuse rapidly through the grain boundaries of CuPc.  

For the ‘diffused’ F5
 spectra, there is an obvious enhancement of F5 counts at the exposed 

CuPc surface for the 100 nm CuPc/5 Å F45TCNQ/G/Cu and 100 nm CuPc/5 Å F45

TCNQ/G/ITO samples as compared to the ‘fresh’ samples. This data suggests that migration 

of F45TCNQ within the CuPc films on graphene modified surfaces is a dynamic process. The 

exposed surface of the film is a region of higher energy; therefore the fluorine molecules are 

preferentially drawn towards the surface with increasing time. On the other hand, both ‘fresh’ 

and ‘diffused’ F5 plots for the 100 nm CuPc/5 Å F45TCNQ/ITO sample appear almost 

identical indicating that diffusion equilibrium is rapidly achieved. We have excluded 

additional surface fluorine contamination as the cause of the increase in F5 counts since all 

three samples prepared on G/Cu, G/ITO and ITO were stored in the same manner in a glove 

box, but only the samples grown on graphene show an enhancement of surface fluorine 

[Figure 652 (b) and (c)]. Furthermore the F5 profiles for the films on G/Cu and G/ITO are 

affected up to approximately x = 40 nm and not solely at the exposed CuPc surface.  

Nabok et al. has calculated that the exposed surface energy of π5conjugated molecules differs 

for various crystal planes and has related it to the preferential packing direction of the 

molecules.28 In Section 5.2, we have determined that CuPc molecules are oriented differently 

on F45TCNQ pre5covered ITO and graphene modified surfaces – whereas they pack with their 

(1 0 0) plane parallel to the substrate in the former, it is the (1 1 52) plane that is parallel to the 

substrate for the latter. The exposed (1 0 0) plane of CuPc has minimum surface energy as 

inferred from the preferred packing orientation of CuPc molecules on weakly interacting 

substrates.29–31 We propose that the higher surface energy of the (1 1 52) plane may be the 

driving force for continual dopant diffusion to the surface to minimize surface free energy of 

CuPc deposited on G/ITO and G/Cu substrates.32 Hu et al. recently determine that the 

diffusion pathways and corresponding energy barriers vary between crystal planes, 
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particularly so at the exposed interface where the film may become distorted by the diffused 

dopants.33 Therefore the diffusion profile of F45TCNQ in CuPc film depends on the strength 

of the diffusion barriers presented to F45TCNQ when going from the bulk phase to the 

substrate and vice versa. Complementary theoretical calculations would be required to verify 

the actual energy of the individual surfaces of CuPc and its effect on F45TCNQ diffusion.  

6.2.2 Effect of Interfacial Interaction on F4-TCNQ Diffusion 

Next we compare the effect of interfacial interaction on F45TCNQ diffusion by examining the 

profiles for 100 nm CuPc/5 Å F45TCNQ/G/Cu and 100 nm CuPc/5 Å F45TCNQ/G/ITO in 

Figure 652 (b) and (c) respectively. The orientation of CuPc molecules on F45TCNQ pre5

covered G/Cu and G/ITO is similar; hence the difference in their diffusion profiles can be 

attributed to the interaction between F45TCNQ and G/Cu or G/ITO. Despite both substrates 

being modified by a layer of graphene, the potential of the underlying substrate may not be 

fully screened by a layer of graphene.34 For instance, the interaction between metals and π5

conjugated molecules such as F45TCNQ can be enhanced by the overlap between the d5

orbitals of the metal and π5orbitals from the molecules.35,36  

Since the normalized background of F5 counts for the 100 nm CuPc/G/Cu film is about 10 

counts throughout the CuPc film, any enhancement in F5 counts in the F45TCNQ containing 

sample is due to molecular diffusion of F45TCNQ. The Gaussian shaped F5 profile is typical of 

diffusion where the concentration gradient is low.11,37 The diffusion length, LD, of F45TCNQ is 

related to the FWHM of the Gaussian fitted profile of F5 counts by the following equations: 

� = √2	g�    (651) 

h�.� = 2.355	�   (652) 



 

148 
 

where σ and FWHM are the standard deviation and the full width half maximum of the fitted 

(half) Gaussian distribution respectively as shown in Figure 653.37 LD is calculated to be 5.6 

nm ± 0.2 nm for 100 nm CuPc/5 Å F45TCNQ/G/Cu. It must be noted that a single Gaussian 

curve is unable to fit the F5 profile adequately between x = 60 nm to 80 nm as shown by the 

shaded yellow portion in Figure 653 (a). While we did not investigate the origin of this 

observation in this report,d the F5 profile suggests that diffusion of F45TCNQ may be 

influenced by, or involves, at least three different mechanisms for the sample of 100 nm 

CuPc/5 Å F45TCNQ/G/Cu – 1) tightly bound F45TCNQ near the substrate interface from x = 

80 to 100nm; 2) weakly bound F45TCNQ from x = 60 to 80 nm, and 3) highly diffusive F45

TCNQ in the bulk CuPc (Figure 654).  

Interpretation of the results for 100 nm CuPc/5 Å F45TCNQ/G/ITO shown in Figure 652 (c) 

on the other hand is not as straightforward as that for 100 nm CuPc/5 Å F45TCNQ/G/Cu since 

the substrate contains appreciable amounts of fluorine and it is therefore difficult to decouple 

the origin of fluorine from the substrate or the molecular film. The F5 counts for 100 nm 

CuPc/5 Å F45TCNQ/G/ITO however are significantly higher than the background counts by at 

least one order of magnitude in the bulk CuPc film and nearly 2 orders of magnitude near the 

                                                           
d The F5 profiles may be a convolution of a Gaussian curve and non5steady state Fickian diffusion.  

Figure 6-3 Curve fitting (black curve) for the various F5 profiles for 100nm CuPc/5 Å F45TCNQ on (a) G/Cu, (b) 
G/ITO and (c) ITO. The (half) Gaussian curve fitting does not fit the profiles of (a) and (c) well between x = 60 –
80nm as shown by the yellow shaded area. 
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substrate surface. Therefore we can approximate the F5 counts in 100 nm CuPc/5 Å F45

TCNQ/G/ITO sample to originate almost exclusively from the F45TCNQ molecules. This 

approximation may also be extended to the sample prepared on ITO. 

 F45TCNQ diffusion in the 100 nm CuPc/5 Å F45TCNQ/G/ITO sample is more severe as 

compared to the sample on G/Cu since the normalized fluorine counts in the bulk CuPc film 

is about five times higher for the former as compared to the latter sample. The F5 counts near 

the substrate interface for the 100 nm CuPc/5 Å F45TCNQ/G/ITO sample can be fitted with a 

single (half) Gaussian curve [Figure 653 (b)] and the calculated diffusion length is 

approximately 7.6 nm ± 0.2 nm. For F45TCNQ in the 100 nm CuPc/5 Å F45TCNQ/G/ITO 

sample, there appears to be only two distinct regions, namely the bound F45TCNQ molecules 

at the substrate interface, and the fully diffused species, as indicated in Figure 654.  

The longer LD and higher concentration of diffused species for the sample on G/ITO indicate 

that the interfacial interaction between F45TCNQ and G/Cu is stronger than with G/ITO. This 

enables F45TCNQ to diffuse from the substrate into the bulk film more readily and in higher 

quantities on G/ITO. Still, the majority of the F45TCNQ molecules appear to be ‘held’ in the 

vicinity of the substrate interface for both substrates. The high concentration of F45TCNQ 

molecules close to the G/ITO substrate enables it to participate in charge transfer with CuPc 

molecules, resulting in the formation of new electronic states near the Fermi level at low 

Figure 6-4 Schematic drawing showing F45TCNQ molecules at different distances from the substrate. F45TCNQ 
molecules are tightly bound at the substrate interface, and fully diffused in the bulk CuPc film. On G/ Cu and ITO 
substrates, there may be an intermediate region, shown by the dashed outline, where F45TCNQ molecules are weakly 
bound. 
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CuPc coverage as detected by PES (cf. Figure 558). Further from the interface, the 

concentration of F45TCNQ decreases and therefore charge transfer with CuPc is diminished. 

6.2.3 Diffusion of F4-TCNQ through CuPc Deposited on ITO versus 

G/ITO 

Finally, we compare the diffusion profiles of F45TCNQ through a CuPc matrix when 

deposited on ITO as compared to G/ITO. Their spectra from Figure 652 (c) and (d) are plotted 

together and presented in Figure 655. There are two major parameters which differ between 

the samples, namely the orientation of the CuPc molecules and the substrate5F45TCNQ 

interaction, both of which can affect the diffusion profiles of F45TCNQ. The shape of the F5 

profiles of  100 nm CuPc/5 Å F45TCNQ/ITO and 100 nm CuPc/5 Å F45TCNQ/G/ITO appear 

similar with relatively constant F5 counts in the bulk CuPc film, and a steady increase in 

counts beyond x = 70 nm up to the substrate interface.  

The slope of the F5 counts appears to increase more rapidly near the substrate (from x = 70 to 

100 nm) for the sample on ITO as compared to the sample on G/ITO. LD is calculated to be 

6.8 nm ± 0.2 nm for 100 nm CuPc/5 Å F45TCNQ/ITO which is smaller than the 7.6 nm ± 0.2 

Figure 6-5 F5 depth profiles for fully diffused samples on ITO (blue circles) and G/ITO (purple triangle) 
respectively.  
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nm previously obtained for 100 nm CuPc/5 Å F45TCNQ/G/ITO sample. Similar to the sample 

deposited on G/Cu sample, the F5 profile for 100 nm CuPc/5 Å F45TCNQ/ITO is not fitted 

well by a single curve as shown in Figure 653 (c), indicating that different diffusion 

mechanisms are present for the ITO and G/ITO samples. Collectively, the smaller LD and the 

more rapidly rising F5 profile near the substrate interface for 100 nm CuPc/5 Å F45TCNQ/ITO 

imply that the interaction between F45TCNQ and ITO is stronger than F45TCNQ with G/ITO. 

This is in good agreement with the previously inferred substrate5F45TCNQ interaction 

strength from PES spectra of F45TCNQ thin films deposited on ITO and G/ITO in Section 4.3, 

and the SEM image in Figure 455.  Both PES data and SEM images reveal that F45TCNQ 

molecules preferentially wet ITO as compared to G/ITO, implying that there is a preferable 

interaction between F45TCNQ and ITO. 

Clearly the quantity of the diffused F45TCNQ in CuPc is higher for the organic films prepared 

on G/ITO as compared to ITO. In addition to the weaker interfacial adhesion between G/ITO 

and F45TCNQ, several other factors such as 1) numerous grain boundaries originating from 

nanocrystallites (cf. Section 5.2.2); 2) the less textured templated CuPc film (Figure 552); and 

3) the columnar stacking of CuPc molecules almost perpendicular to the substrate3 may 

facilitate diffusion of F45TCNQ through CuPc film deposited on G/ITO. Therefore the 

simplistic view of π5π interaction between graphene and F45TCNQ itself is inadequate to 

predict the relative quantity of F45TCNQ that diffuse from the G/ITO interface into the bulk 

film as compared to ITO, as the diffusion depends on a myriad of factors. It appears that the 

majority of the F45TCNQ molecules are restricted near the substrate interface for the 100 nm 

CuPc/5 Å F45TCNQ/ITO sample, resulting in a low concentration of diffused species detected 

in the bulk CuPc film. Although interfacial adhesion with F45TCNQ is deemed to be weaker 

for the 100 nm CuPc/5 Å F45TCNQ/ITO, the F5 profile indicates that a significant quantity of 

F45TCNQ molecules are still found close to the substrate interface.  

There are currently no calibration standards for F45TCNQ which may allow us to directly 

quantify the amount of F45TCNQ molecules that have diffused into CuPc. In the next section, 
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we present a method to provide an estimate of the quantity of the diffused species. The values 

obtained should be treated with caution as there are several assumptions involved in the 

methodology and calculations. Our objective is to provide an estimate of the concentration 

which may allow us to comment on the effect of bulk doping on solar cell performance, and 

to relate it to the observed PES data for G/ITO and ITO samples. 

6.3 Co-deposition of F4-TCNQ and CuPc as a Method to Estimate 

Dopant Diffusion 

A ‘calibration standard’ to estimate the dopant concentration in CuPc was prepared by co5

depositing a known quantity of F45TCNQ into a CuPc host matrix. This sample was kept aside 

for between one and four months before measurement to allow the F45TCNQ molecules to be 

fully, and possibly uniformly, diffused in the CuPc matrix. The average F5 counts in the CuPc 

matrix should correspond to the mol% of the deposited F45TCNQ. We make the following 

assumptions in this section: first, F45TCNQ molecules have a sticking coefficient of unity 

during deposition in CuPc, and second, the matrix effects are similar in both sets of samples. 

6.3.1 Preparation of Co-deposited Films 

The concentration of F45TCNQ used for all the previous experiments detailed in Section 6.2, 

in mol%, can be calculated using the following considerations: there are 4 F45TCNQ 

molecules per unit cell volume of 1120 Å,38 while there is 1 CuPc molecule per unit cell 

volume 582 Å.39 The mol% for 5 Å F45TCNQ in 100 nm CuPc is 
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In order to emulate these samples as a co5deposited mixed film, a growth rate of ~0.005 Å/s is 

required which is not detectable by the QCM. Therefore, a higher concentration of F45TCNQ 

was used for the preparation of the sample. For this experiment, 5 nm of F45TCNQ was co5
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deposited in a matrix of 95 nm CuPc to achieve a total thickness of 100 nm on ITO. The 

concentration of F45TCNQ in this sample is ~11 mol%. 

ITO substrates were chemically cleaned ex situ before loading them into the high vacuum 

OMBD chamber as described in the experimental section (Section 2.3.1). The base pressure 

of the system was 7 x 1057 mbar and increased only marginally during film deposition. CuPc 

and F45TCNQ molecules were evaporated onto the substrates from separate Knudsen cells 

with growth rates of 0.95 Å/s and 0.05 Å/s respectively as monitored by separate QCMs. The 

variation in growth rates as a function of time was also recorded and plotted in Figure 656 (a). 

The samples were kept in a glove box and measured after one month and four months to 

allow the F45TCNQ molecules to be uniformly diffused in CuPc and to reach a state of 

diffusion equilibrium. The data obtained from the TOF5SIMS analysis were scaled in a 

similar manner as described in Section 6.2.  

6.3.2 F
-
 Profiles for Co-Deposited Samples 

Figure 656 (b) plots the F5 counts as a function of crater depth for the co5deposited sample 

measured one month and four months after deposition of the thin film. 

Even after a lapse of four months, the measured F5 profiles appear similar to the sample 

measured after one month within 10% fluctuation which may be due to slight variation in 

instrumental parameters. This implies that a state of F45TCNQ diffusion equilibrium along the 

x5axis (depth) is already attained within one month. This is in good agreement with the 

observation that F45TCNQ molecules diffusion through CuPc occurs on a timescale of below 

~90 minutes. Contrary to our initial expectation of homogeneous molecular diffusion that 

should result in a relatively flat F5 depth profile [dashed pink line in Figure 656 (b)], we obtain 

a non5uniform profile which implies that F45TCNQ molecules are not evenly distributed in the 

three dimensional film. However, the variation in F5 counts is not random but instead follows 

the fluctuations of the F45TCNQ deposition rate as indicated by the arrows between Figure 

656 (a) and (b). In other words, the fully diffused F5 profile in CuPc appears to have a strong 
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correlation with the initial concentration of F45TCNQ. It should be pointed out that the 

fluctuations in F5 profile with depth [Figure 656 (b)] is much less (~ ±30% around the average 

value of F5 counts) as compared to the fluctuations in the growth rate (~ ±60% around 0.05 

Å/s) [Figure 656 (a)]. This suggests that only around 50% of the F45TCNQ molecules remain 

‘pinned’ at their initial deposited positions while the rest of the molecules have diffused away 

from their initial positions. 

To estimate the relationship between F5 counts and the concentration of F45TCNQ in the film, 

we average the total number of F5 counts from x = 10 nm to 90 nm (to exclude the pre5

equilibrium region and substrate effects) for the 11 mol% F45TCNQ sample measured after 

one month of growth, and obtain a value of 1.3 x 104 counts. We repeated this for another co5

Figure 6-6 (a) Plot of deposition rate as a function of deposition time for F45TCNQ molecules in a CuPc matrix. 
(b) F5 profile of co5deposited sample consisting of 11 mol% F45TCNQ : 89 mol% CuPc measured after (green) 1 
month, (blue) 4 months. The dashed pink line is the expected F5 profile for uniform diffusion. The region of the 
graph between the arrows marked in (a) and (b) identify that the variation in F5 intensity with depth in (b) is 
related to the deposition rate of the F45TCNQ in the CuPc matrix. 
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deposited sample with 6.5 mol% F45TCNQ concentration and the average F5 counts is 7.3 x 

103 (Appendix F). From the control samples shown in Figure 652 (a), we ascertain that the 

average background F5 counts in the absence of F45TCNQ molecules (0 mol% F45TCNQ) is 

about 10 counts. By performing a linear fit of the average F5 counts (y) as a function of F45

TCNQ concentration (x), and constraining the y5intercept (average counts) to the background 

counts of ~10 counts,e  we obtain a calibration equation of 

� = 1165� + 10   (654) 

For the 100 nm CuPc/5 Å F45TCNQ/G/ITO sample, the average F5 counts in the bulk CuPc 

film is 1.9 x 102 which corresponds to a F45TCNQ concentration of 0.2 mol% that has doped 

the film. The average F5 counts for 100 nm CuPc/5 Å F45TCNQ/ITO sample on the other hand 

is only 41, hence the total diffused F45TCNQ concentration is 0.03 mol%. We estimate that 

the errors are in excess of 20% of the calculated value due to the fluctuations in F5 counts 

[(Figure 656 (b)], and due to the limited number of points used to plot the calibration curve. 

These values indicate that diffusion of F45TCNQ molecules is almost one order of magnitude 

higher for 100 nm CuPc/5 Å F45TCNQ/G/ITO as compared to 100 nm CuPc/5 Å F45

TCNQ/ITO. About 20% of the deposited F45TCNQ molecules diffused from the interface of 

G/ITO to bulk CuPc while only 3% of the molecules diffused from ITO when compared to 

the expected total F45TCNQ concentration (1 mol%). The vast difference in diffused quantity 

is the result of poorer interfacial adhesion of F45TCNQ with G/ITO, and is further aided by 

the structure and morphology of CuPc films on G/ITO, as explained in Sections 6.2.2 and 

6.2.3. 

The higher concentration of the diffused species in the G/ITO sample corresponds well with 

PES data previously obtained in Section 5.4 which reveals that CuPc and F45TCNQ form a 

new mixed state close to the G/ITO substrate. On the other hand, only interface charge 

                                                           
e We constrained the y5intercept to be approximately 10 counts during curve fitting as the best fit line 
of the points in the absence of limits will intercept the y5axis at a negative value which is physically not 
possible 
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transfer is observed for the films deposited on ITO substrate due to lower quantities of the 

diffused F45TCNQ species. In terms of solar cell device performance, the doping levels for 

CuPc in both 100 nm CuPc/5 Å F45TCNQ/G/ITO and 100 nm CuPc/5 Å F45TCNQ/ITO 

samples are lower compared to samples which are intentionally doped in organic 

semiconductor devices.7,40This suggests that the diffused species should not have a detrimental 

effect on the performance of the solar cell. On the contrary, F45TCNQ molecular doping on 

the order of three tenth of a percent has been shown to increase conductivity,7,41 hence the 

unintentional doping within the whole organic film may be favourable in organic solar cells. 

6.4 Conclusion and Outlook 

We have investigated the diffusion of F45TCNQ through CuPc when deposited at the 

interfaces of G/Cu, G/ITO and ITO. Molecular diffusion of F45TCNQ through CuPc occurs 

within 90 minutes of deposition at room temperature on all samples. The diffusion profiles of 

F45TCNQ in CuPc deposited on graphene modified substrates change within one month, but 

the profiles of the film deposited on ITO remains nearly invariant over the same period of 

time. This suggests that the surface energy of the exposed CuPc film affects the diffusion 

profile over time as there is an additional driving force to lower surface energy. The surface 

energy is likely to be higher for the exposed (1 1 52) CuPc plane (on G/Cu and G/ITO 

substrates) as compared to the (1 0 0) plane (on ITO). We also investigate the interfacial 

interaction between the substrate and F45TCNQ on the diffusion of F45TCNQ. Comparing the 

F5 profiles between the 100 nm CuPc/5 Å F45TCNQ/G/ITO and 100 nm CuPc/5 Å F45

TCNQ/G/Cu sample, F45TCNQ diffusion is lower in the latter sample due to the stronger 

metal5F45TCNQ interaction, even through a layer of graphene. 

The more pronounced F45TCNQ molecular diffusion in 100 nm CuPc/5 Å F45TCNQ/G/ITO 

as compared to 100 nm CuPc/5 Å F45TCNQ/ITO is consistent with our findings of weaker 

interfacial interaction in the former sample (cf. Section 4.3). Nano5sized crystals which form 

numerous grain boundaries for CuPc deposited on G/ITO, further aid the molecular diffusion. 
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By co5depositing a known amount of F45TCNQ in CuPc, and correlating the molecular 

concentration with average F5 counts, we are able to estimate the quantity of F45TCNQ 

diffused. Almost 20% of the deposited F45TCNQ in the sample 100 nm CuPc/5 Å F45

TCNQ/G/ITO diffuses into the bulk CuPc resulting in an average F45TCNQ concentration of 

0.2 mol% in CuPc. The concentration of F45TCNQ in CuPc is 0.03 mol% for the 100 nm 

CuPc/5 Å F45TCNQ/ITO which is 3% of the F45TCNQ deposited. The dopant concentrations 

for both films are low, and therefore should not have a detrimental effect on solar cell device 

performance. On the contrary, the mild doping of CuPc may enhance charge carrier mobility 

which may constitute an improved short circuit current in organic solar cell devices. 

In this work we have presented a qualitative macro5scale description of F45TCNQ diffusion 

based on the inferences from the SIMS diffusion profiles. To confirm our interpretation of the 

systems, computational studies are required to calculate the energy of the various CuPc planes 

in the bulk film and at the exposed surface. In addition, the diffusion barrier energy for each 

of the CuPc orientations can be theoretically calculated to determine the preferred pathway 

for diffusion. Furthermore, complementary molecular dynamic simulations would be able to 

detail the evolution of F45TCNQ diffusion as a function of time and interaction forces in the 

system. This would enable us to understand the diffusion process from a molecular level. 

In order to gain a better understanding regarding the evolution of F45TCNQ diffusion as a 

function of time, the deposition of the organic films should ideally be interfaced with the 

TOF5SIMS measurement chamber. This will reduce the time lapse between sample growth 

and measurement, thus the diffusion profiles can be investigated almost immediately 

following the onset of diffusion. Finally, we have probed the diffusion of F45TCNQ under 

static as5deposited conditions. However, for the proposed use of our structure in organic solar 

cells, the increase in sample temperature due to prolonged exposure to the sun has to be 

accounted for. This is because the diffusion constant varies as a function of temperature42 and 

hence is more pronounced at elevated temperatures. This can be simulated in situ during 

TOF5SIMS measurement through radiative or resistive heating of the sample. Furthermore, 
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the built5in field in organic solar cells can also be simulated by application of an external field 

since ionized F45TCNQ molecules will be affected by the strength of the field leading to a 

change in depth profile.  
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Chapter 7 : Thesis Summary 

7.1 Thesis Summary 

In this thesis, we aim to control the orientation of CuPc molecules in the donor layer of an 

OPV device, and to minimize the hole injection barrier between CuPc and the anode. We 

have presented a systematic modification of the anode ITO, by first overlaying graphene onto 

ITO as a structural template layer, and subsequently using an ultra5thin layer of F45TCNQ 

molecules to raise the substrate work function. Using a combination of PES, NEXAFS, XRD 

and J5V measurements, we attempted to relate the physical and electronic structure5function 

relationship of a CuPc small molecule based OPV device utilizing F45TCNQ/G/ITO as the 

anode. We show that using a combination of graphene template layer pre5covered with F45

TCNQ is able to simultaneously able to cause CuPc molecules to nearly parallel to the 

substrate and reduce the hole injection barrier between CuPc and the anode. 

In Chapter 3, successful templating of CuPc molecules deposited on as5received G/Cu is 

confirmed through XRD. Diffraction peaks originating from the (0 1 52) and (1 1 52) planes 

lying preferentially parallel to the substrate, in which the molecular plane of CuPc forms an 

angle of 9.0o and 7.5o with respect to the substrate respectively are observed. On the bare Cu 

foil, CuPc molecules are textured along the (1 0 0) plane, where the molecules are ‘standing’ 

on the substrate. These results provide definitive proof of the templating ability of graphene. 

It also suggests that ambiguity surrounding the templating property of transferred graphene 

for CuPc at room temperature deposition is attributed to the damage sustained by the 

graphene sheet during the transfer process, and the incomplete coverage of the substrate by 

graphene. This is been confirmed by our NEXAFS spectra that suggest that CuPc deposited 

on G/ITO adopts on average a tilted orientation, rather than the expected ‘lying’ orientation, 

due to the averaging effect of the beam. PES measurements reveal that inserting a graphene 

template layer on ITO lowers the substrate work function and leads to an increase in HIB 
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from 0.51 eV for CuPc/ITO to 0.94 eV for CuPc/G/ITO. Therefore, the G/ITO anode alone is 

not an ideal structure for OPV devices; further modification of the substrate is required to 

reduce the HIB. 

In Chapter 4, we investigate F45TCNQ as a work function modifier for the G/ITO anode 

system, and compare the results against ITO. The work function of G/ITO increases to ~4.9 

eV with 5 Å F45TCNQ deposited, while that of ITO is raised to ~5.1 eV. This is due to the 

transfer of electrons from the substrate to F45TCNQ molecules, resulting in the formation of 

dipoles at the substrate5molecule interface. PES data and SEM images reveal that F45TCNQ 

molecules have better wettability, or interfacial interaction, with ITO as compared to G/ITO. 

Structurally, on G/ITO, the F45TCNQ thin film appears textured along the (0 2 0) plane. 

Along this plane, the projection of the molecular plane, the fluorine and the cyano groups of 

F45TCNQ molecules onto graphene are maximized. In contrast, F45TCNQ molecules 

deposited onto ITO form large angles with the substrate, indicating that repulsion between the 

electronegative cyano and fluorine side groups of F45TCNQ with ITO surface may be the 

driving factor for this orientation. The orientation of the F45TCNQ molecules on G/ITO 

suggests that the templating property of graphene may be propagated through the F45TCNQ 

layer. 

The strategies of using graphene as a template layer, and an ultra5thin F45TCNQ film to raise 

the work function of G/ITO are combined in Chapter 5. First, we confirm that inserting the 

F45TCNQ film does not interfere with the orientation of CuPc deposited on our model system 

G/Cu. Next we show that CuPc films are similarly textured on G/ITO, although the (1 0 0) 

diffraction observed in non5templated CuPc films is present. This observation is due to the 

issues addressed previously in Chapter 3. In addition, we discuss the effect of substrate 

roughness on the resulting crystallite size, and how this can lead to erroneous interpretation of 

graphene structural template. The optical absorptivity of CuPc is ~43% higher following 

templating due to the larger overlap between the transitional dipole moment of CuPc and the 

electric field vector of light. Through PES, we determine that raising the effective substrate 
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work function using F45TCNQ is able to reduce the HIB to 0.17 eV and 0.12 eV for CuPc/F45

TCNQ/G/ITO and CuPc/F45TCNQ/ITO respectively. Collectively, the templated CuPc 

molecules, which have been shown to enhance charge and exciton transport perpendicular to 

the substrate, the enhanced optical absorptivity and the low HIB for CuPc/F45TCNQ/G/ITO 

should translate into superior OPV device performance. However, this is not observed in our 

OPV devices due primarily to the poor quality of the transferred graphene, and the high series 

resistance of the unoptimized cells. However, we rationalize that if these issues can be 

overcome, there should be a significant improvement in OPV device performance based on 

this design strategy. 

The diffusion of F45TCNQ molecules through the CuPc matrix is studied in Chapter 6. This is 

motivated by reports of the propensity of F45TCNQ molecules to diffuse through organic 

materials. Using TOF5SIMS to perform depth profiling, we investigate the effect of the 

packing order of CuPc on the rate of diffusion of F45TCNQ, and the interfacial interaction 

between F45TCNQ and the substrate (G/ITO, G/Cu and ITO) on the quantity of the diffused 

species. Molecular diffusion of F45TCNQ through CuPc occurs within 90 minutes of 

deposition at room temperature on all the samples. The diffusion profiles of F45TCNQ in 

CuPc deposited G/ITO and G/Cu show an enhancement in surface counts after one month. 

The surface energy of the exposed CuPc film deposited on these substrates may be the 

additional driving force for F45TCNQ diffusion. Diffusion of F45TCNQ molecules on G/ITO 

is more pronounced than that on G/Cu, revealing the role of interfacial interaction on the 

quantity of diffused F45TCNQ. Similarly, F45TCNQ diffusion is more pronounced for the film 

on G/ITO as compared to ITO, corroborating the findings of poorer interfacial adhesion 

between F45TCNQ and G/ITO in Chapter 4. The columnar one dimensional structure of CuPc 

in the latter is suggested to enhance diffusion through the bulk film. Finally, we fabricated a 

‘characterization standard’ to determine the concentration of the diffused species. We find 

that the majority of F45TCNQ molecules are still tightly bound close to the substrate interface, 

while the dopant concentration of F45TCNQ in CuPc is only 0.03 mol% and 0.2 mol% for the 
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ITO and G/ITO samples respectively. At these concentrations, F45TCNQ does not appear to 

have any deleterious effect on the OPV device.  

7.2 Future Work 

Presently one of the biggest issues that we face in this dissertation is the poor quality of 

transferred graphene. This problem may be addressed by using a new method of graphene 

transfer proposed by Song et al.
1 that allows for controllable and precise placement of 

graphene on a variety of substrates, with minimum residue from the transfer process. This is 

required to fully elucidate the impact of our anode modification on OPV device performance. 

We propose that by transferring pre5patterned graphene to a flexible substrate, our design 

strategy may be extended to a flexible OPV small molecule device to simultaneously template 

planar polyaromatic molecules with similar electronic properties as the active layer, reduce 

the HIB barrier, and dope graphene sheet to reduce sheet resistance. 

Concerning the valence band spectra of CuPc/F45TCNQ/G/ITO in Chapter 5, the mixed CuPc 

– diffused F45TCNQ phase close to the G/ITO substrate interface is still not well explained. 

Techniques such as dI/dV characterization using in6situ STM at sub5monolayer coverage can 

be employed to provide information regarding local density of states of individual CuPc and 

F45TCNQ molecules before and after interaction. This technique can help to clarify if the 

mixed state observed in PES is a result of the formation of charge5transfer complexes, or 

otherwise due to averaging effect of the PES beam over ionized and neutral molecules, or 

both. In addition, TOF5SIMS reveals that F45TCNQ diffuses into the bulk CuPc film, and 

there are two distinct regions, namely, a tightly bound region of F45TCNQ close to the 

substrate interface which extends ~20 nm into CuPc, and diffused F45TCNQ in the bulk CuPc. 

The interactions between CuPc and F45TCNQ molecules over these distinct regions may vary, 

giving rise to evolving electronic properties of CuPc across the 100 nm thick CuPc film. The 

evolution of CuPc electronic properties over this thickness cannot be probed by PES alone 

due to limitation of sample charging at thicker films.2 Instead, Kelvin probe force microscopy 
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(KPFM) which can measure the electronic properties of thick films over 100 nm, may be 

utilized to examine the degree of charge transfer between CuPc and F45TCNQ at increasing 

distances from the substrate interface. The evolution of the HIB and work function with 

increasing CuPc film thickness can also be studied. This technique may also be employed to 

study the band bending in the system of CuPc/F45TCNQ/ITO as the space charge region can 

extend several tens of nanometers.2 Investigating the electronic properties of the CuPc film at 

the thickness used in solar cell devices (ie, 30 nm CuPc) will allow for more accurate 

assessment of pre5covering the substrate with a thin layer of F45TCNQ on device 

performance. 

Finally, while preliminary TOF5SIMS work has provided much qualitative insights into the 

macroscopic diffusion of F45TCNQ into CuPc, quantitative data is still lacking. As explained 

in Chapter 6, theoretical calculations of the surface energy and diffusion barrier for each plane 

of CuPc molecules, together with molecular dynamic simulation showing the evolution of F45

TCNQ diffusion through CuPc, is required for a more comprehensive understanding of the 

system. More sets of ‘calibration standards’ will help to reduce the uncertainty in the 

calculation of the concentration of diffused species. Finally, to relate the diffusion data 

directly to OPV devices, the effect of the temperature and internal electric field on the F45

TCNQ diffusion profile has to be considered. 
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Appendix A – Characterization of G/Si 

Graphene was first transferred onto SiO2 (G/Si) before it was transferred onto ITO. As SiO2 is flatter 

and G/SiO2 has been well characterized, it was used as a model substrate to practice the transfer 

process. G/Si was characterized with (a) and (b) optical microscopy, (c) and (d) AFM, (e) SEM and (f) 

Raman spectroscopy as shown in Appendix A. The scale bars are 50 µm for the optical images, 500 nm 

for the AFM images, and 1 µm for the SEM image. Arrows in (a) – (d) reveal holes, tears or 

incomplete coverage in the graphene sheet, dashed circles highlight defects or residues and brighter 

streaks correspond to wrinkles. Similar observations have been made for G/ITO. The increasing dark 

contrast patches in (e) correspond to multilayer graphene. Raman spectroscopy in (f) reveals that the 

defect density of G/Si is significantly lower than G/ITO, indicating that the inherently rough ITO 

substrate is probably the main cause of the poor quality of graphene transfer. 
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Appendix B – Solar Cell Data 

The table shown in Appendix B summarises the solar cell device parameters for the different 

batches of solar cells fabricated. The cell structure is shown in Figure 358 (a).  

  

 

 

 

 

 

 

 

Non5

templated

With 

Graphene

Non5

templated

With 

Graphene

With 

PTCDA

1 � 2.92E504 2.36 0.39 0.35 0.33

� 1.52E504 1.22 0.30 0.10 0.10

2 � 3.44E505 0.28 0.13 0.27 0.01

� 4.92E505 0.40 0.15 0.27 0.02

3 � 1.05E504 0.84 0.25 0.26 0.05

� 6.63E505 0.54 0.22 0.23 0.03

4 � 6.91E505 0.86 0.32 0.27 0.07

� 4.41E505 0.64 0.29 0.24 0.05

5 � 2.40E504 1.00 0.41 0.27 0.11

� 8.25E505 0.66 0.20 0.24 0.04

� 1.32E504 1.06 0.41 0.27 0.12

� 9.50E505 0.77 0.31 0.24 0.05

Ave Voc 

/V
Ave FF PCE / %

Batch 

No.
With F45TCNQ Without F45TCNQ

Interlayer(s)
Ave Jsc 

/mAcm52

Ave Isc / 

A
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Appendix C – Edge Angles of F4-TCNQ Crystallites 

The tables in Appendix C show the values of the measured edge angles (in degrees) of F45

TCNQ crystallites on G/ITO and ITO from AFM images. 

Edge Angles of F4-TCNQ/G/ITO in degrees 

76 53 61 53 67 76 42 53 61 

74 61 84 62 31 66 61 66 62 

53 67 45 59 80 73 74 52 60 

78 81 55 84 81 72 75 54 51 

67 58 50 84 54 71 71 52 66 

50 71 58 66 86 55 79 58 57 

68 50 48 44 44 54 76 76 64 

73 44 72 76 80 54 53 50 65 

44 71 52 86 50 77 49 61 62 

56 59 58 57 61 60 74 54 64 

Average angle/ deg 62 

Standard deviation 12 

Edge Angles of F4-TCNQ/ITO in degrees 

53 54 55 34 54 47 34 25 43 

37 41 66 49 53 47 39 33 43 

32 38 40 21 34 47 62 63 45 

51 46 44 44 46 42 44 50 43 

35 47 50 36 36 45 45 48 72 

50 55 79 40 42 38 32 76 69 

38 50 50 54 45 45 42 26 55 

35 53 26 38 45 60 49 45 52 

34 55 31 54 50 42 31 45 34 

42 67 40 30 38 49 39 44 80 

Average angle/ deg 45 

Standard deviation 12 
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Appendix D – Depth Resolution for TOF-SIMS 

The knock5on effect by the primary ions degrades the depth resolution in TOF5SIMS. 

According to the International Union of Pure and Applied Chemistry (IUPAC), the depth 

resolution jz is given as the distance over which the change between 16% and 84% of the 

intensity of the profile at a sharp interface is measured. Using a co5deposited sample of CuPc 

and F45TCNQ molecules on Si as shown in Appendix D, jz is estimated to be approximately 

3 nm. 
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Appendix E – TOF-SIMS Depth Profile of ITO 

The graph in Appendix E shows a TOF5SIMS profile as a function of sputter time through a 

clean ITO substrate. Significant F5 counts is detected at ITO surface and extends into the bulk 

ITO sample. 
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Appendix F – TOF-SIMS Depth Profile of 6.5mol% F4-

TCNQ Co-deposited with CuPc 

The F5 depth profile of a co5deposited sample with 6.5 mol% F45TCNQ in CuPc deposited on 

ITO is shown in the graph Appendix F. 

 

 

 


