The influence of joints on friction induced vibration in brake squeal
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Abstract

The effect of joints on flutter type friction induced oscillation in friction brakes is investigated. The work is based on a
small characteristic system with elementary joint models. Linear stability analysis is conducted and a harmonic balance
method is applied to determine limit cycle amplitudes and bifurcation diagrams. It turns out that in finite amplitude
oscillation the resulting dynamic state of the joints is dominated largely by the deflection shape of the underlying linear
instability. Both local and global bifurcations do exist and large limit cycle amplitudes may result for quite unexpected
parameters, depending on the kind of joints involved and related to their dynamical state.
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1. Introduction

Brake squeal is a problem that has been challenging engineers in industry for decades. It is commonly agreed that it
occurs due to a friction induced oscillation. Numerous works have analyzed the phenomenon of brake squeal, ranging
from basic studies on mechanisms up to the development of suitable measurement techniques [1, 2, 3]. Nowadays,
there is a strong research focus on numerical simulation [4, 5, 6, 7]. Some years ago stability studies in the form
of eigenvalue analysis of the linearized system became state of the art. This kind of linear stability analysis is now
used broadly in industry to analyze stability borders and to suggest measures against squeal. However, linear stability
analysis typically results in a large number of instabilities, while in testing there are way fewer squeal events. There
can be several reasons for this problem such as modelling errors or an insufficient implementation of damping effects.
Another reasons might be that the limit cycles at those frequencies are of small amplitude so that they are not noticed
or recorded in testing. It is obvious that progress can only be made by taking into account bifurcation structures and
limit cycle amplitudes [8]. Availability of tools for an analysis of bifurcation structures on industrial scale are still
limited though. One of the reasons for this is the numerical effort that would be involved in time-integration approaches.
Another reason is the still prevailing lack of knowledge about the nonlinearities actually involved in the systems.

There are definitely several possible sources of nonlinearity in brake systems which could determine finite amplitude
vibration levels: nonlinear material characteristics of all components such as the lining material [9], the nonlinearity of
the friction interface or the nonlinearity in the joints and contact interfaces of the system [10, 11]. Interestingly, the
latter has barely been looked at yet for the phenomenon of brake squeal even though the highly nonlinear behaviour of
joints and contact interfaces is well known [12, 13, 14, 15, 16, 17, 18]. As these studies suggest, mechanical joints can
generate a wide range of effects. Only recently some first studies based on a single- and a two-degree-of-freedom (DOF)
model including self-excitation and dry friction type joints have been conducted [19, 20, 21]. In these studies questions
with respect to the existence and characteristics of sets of solutions have been investigated from a discontinuous
systems perspective and the question of attractivity of such sets of equilibria has been analysed. Another source
of nonlinear system behaviour is thought to originate from stick-slip phenomena in the pad-disc friction interface
[22, 23, 24, 25, 26, 27]. Considering the comparably large rotational speeds of the brake disk during typical operational
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squeal conditions, these effects are however thought to be unlikely to play a significant role [28]. For numerical
modeling and simulation a number of techniques have been proposed to approximate limit cycles for brake oscillations
in large scale systems. A recent overview is for example given in [29]. From the point of view of numerical efficiency,
Harmonic Balance (HB) approaches [30] are now mostly adapted and can be used on large-scale finite element based
models if the number of nonlinear degrees of freedom in the model does not get too excessive [31].

At the moment one of the most pressing questions does still seem to be the lack of deeper insight about the
dynamics of friction self-excited vibrations with mechanical joints involved in the system. Thus, the aim of the present
study is to better understand how joints may affect bifurcations in such systems, and to find out how joints influence
limit cycle amplitudes. We analyze the influence of joints on friction induced vibrations with the help of so called
whole-joint models, i.e. the whole-joint is represented by a single dynamical equation [15], and a minimal model prone
to friction induced oscillation. We assume that the time-scales of processes in the frictional interface can be separated
from the time-scales of the structural dynamics, as it is usually done in studies focusing on flutter type instabilities
[32, 33, 34, 35]. Following up earlier work [19, 20, 21], we focus on the role that joint characteristics have on limit
cycle amplitudes and bifurcation structures. As a result, it will be shown subsequently how joints can be activated
or deactivated, depending on the dynamical state, and how this may lead to interesting bifurcations structures, i.e.
bifurcations from infinity, detached branches, i.e. isola, and unexpected limit cycle amplitudes in general.

The paper is structured as follows. First, the characteristic model under study is presented, the joint models to be
investigated are introduced, and the numerical approaches chosen are described. Then the findings on bifurcations in
the model are reported and discussed with respect to the interplay of friction-induced self-excitation and joint dynamics.
Finally, we draw conclusions and provide an outlook to future research.

2. Modeling and numerical approach

2.1. Model system with joint

In order to discuss the influence of joints on friction induced flutter a minimal model is analyzed. The system is
an extension of the one used in [36]: A simple substructure is added via a joint. The model thus comprises a module
showing friction induced flutter, a module with further structural components, and a joint in between. A graphical
interpretation is given in Fig. 1a and Fig. 1b, each including a different joint model.

a) b)
ST ST
d, Q%c‘.x—z d, Y €471
QY F., k8%

tat

| 4

- Kk, ©
1\/1 dln7dnl 1\/1

k,

a2 K y R y
Q O L'X Q O L'X
n

[

Figure 1: Model systems with polynomial stiffness type joint in a) and elasto-slip type joint in b).

So-called whole-joint models are a widespread approach to capture joint dynamics in numerical simulation of large
structures with small contact interfaces [15]. According to this, the dynamic behaviour of the whole joint is described
by an evolution equation. Following this approach the first joint model from Fig. 1 a) is chosen to capture elementary
properties of joints with smooth but nonlinear stiffness behaviour. For that purpose a simple nonlinear polynomial
stiffness characteristic is assumed. The constitutive equation of this joint model is given by

FnZ:kln'u+knl'u3+dln'u’ (1)
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where Fy, ki, dj, and k,; are the full nonlinear joint force, the linear joint stiffness coefficient, the linear joint
viscous damping coefficient, and the cubic joint stiffness coefficient, respectively. In the remainder of this paper this
polynomial nonlinearity, representing joint behaviour, will be referred to the polynomial type joint.

The second kind of joint from Fig. 1b is a simple elasto-slip model [13, 16]. This joint model consists of a linear
spring and a dry friction element in series. Thus, it basically behaves like a linear spring when small tangential forces
are applied to a stick state, whereas it acts like a Coulomb sliding friction damper when the forces on the joint exceed a
certain limit. Though oversimplifying, it may be taken as a representative for joints including dry friction.

Based on [13] the dynamics of this joint can be described by

ke u if Jul < 2
Fu = ) @)
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where u, i, Fg, k; are the deflection in the joint, its derivative, the threshold force and the tangential stiffness,
respectively. Following [16] this model will be referred to as elasto-slip joint. With these two elementary joint models
a wide range of joint types is covered for the following study of their effects on flutter type instabilities in systems with
frictional contacts.

Based on the description of the whole model and of the joints, altogether the resulting evolution equations for the
system can be written in the notation usually used in nonlinear dynamics as

M-X()+ D+ G)-x() + K+ N) - -x(5) + fa(X, X, 1) = fexe(?), 3)

where the vector of deflections x(f) € RY, the vector of nonlinear restoring forces f; € R" and the vector of
external forces fey € RY are defined as

X:[x y Z]T, fextz[o _Fstat O]T, fnlz[%i'Fn[ %-Fn[ Fn[ ]T

and N, Fy,, and F,; are the number of states, the static external force and the nonlinear force in the joint respectively.
The matrices M, D, G, K and N € RV<N resulting from the described model, and also the actually applied numerical
values, can be found in Appendix A. For simplicity, we assume non pre-stressed joints for the static or steady sliding
state equilibrium solutions of the model. In finite element analysis of systems subject to friction-induced vibrations
another notation of the equation of motion is commonly used, where the displacement-dependent terms are collected in
an elastic stiffness and a contact stiffness matrix derived by linearization of the contact forces in the pad-disc interface.
In this context, the elastic stiffness matrix is employed in the necessary model order reduction step. However, for the
studied system this notation is not more advantageous than the one used in equation (3).

2.2. Linear stability analysis

The stability of the equilibrium solution is investigated by an eigenvalue analysis. The linearized equations
of motion, based on equation (3), are treated as an eigenproblem with the eigenvalues A; and corresponding right
eigenvectors that represent modal shapes. The linearization of the nonlinear restoring forces results for both joint
models in an additional stiffness term ky;,. The equilibrium solution’s stability is determined by sgn(R(4;)). A positive
R(A;) leads to an unstable equilibrium solution and growing vibrational amplitudes, whereas a negative R(4;) leads to
a stable equilibrium solution.

The study of linear stability employs a set of parameters given in Appendix B. It is chosen such that for both joint
models the linearized equation of motion are identical and such that exactly one eigenvalue A; of the linearized system
shows a positive real part, i.e. the system’s equilibrium solution turns unstable. Fig. 2a shows the development of the
eigenvalues’ imaginary parts correlating with the system’s resonance frequencies for a variation of the friction level p.
Fig. 2b presents the real parts of the eigenvalues which indicate stability or instability. Fig. 2 shows that stability of the
equilibrium solution is lost for values of u > 0.45 = uyp, where uyp defines the critical friction level leading to an
oscillatory instability. Thus, ugp indicates a Hopf Point (HP).



12 w w w w 1

10¢
0.5r
8,
< < 0
o] &
6,
-0.5
4,
2 : : : : -1 : : : :
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
u u
(a) (b)

Figure 2: Development of eigenvalues with bifurcation parameter u for parameters given in Appendix B. Imaginary
parts (a), and real parts (b).

As already emphasized, HPs mark the linear border of stability. Consequently, the calculation of Hopf curves as
functions of different parameters delivers insight into regions of stable and unstable equilibrium solutions as well as
their growth or shrinkage depending on the parameters. Fig. 3 shows Hopf curves for different friction levels yu in the
ky-kii,-plane. k, represents a typical system parameter, whereas kj;, is a parameter which indicates the influence of
the linearized joint dynamics on the stability behaviour of the equilibrium solution. In this case, regions of unstable
equilibrium solutions are encircled by Hopf curves.

The results clearly reveal that the regions of unstable equilibrium solutions grow for higher friction levels. However,
even for high friction levels the instability region is finite. Thus, e.g. for suffiently high values of k, finite disturbances
should decay. This point will be challenged in this work. In addition, the results illustrate that both, system parameters
and joint parameters, influence the stability of the equilibrium solution.

2.3. Numerical approach for studying the bifurcation behaviour of periodic solutions

To study the post-flutter bifurcation behaviour of the model system with a joint, the nonlinear equation of motion
(3) has to be considered. Among the variety of analytical and numerical methods described in literature to calculate
periodic solutions of nonlinear systems few of them seem to be feasible for studying the bifurcation behaviour of
large-scale systems. Although in this contribution a minimal model is studied to establish understanding of the basic
effects, large-scale system will be studied in the future. Consequently, to make numerical experiments scalable for
future work based on large-scale systems a HB approximation technique is applied to determine periodic solutions. For
this purpose, the nonlinear restoring force fy, (X, X, f) from equation (3) is expressed as a Fourier series. This approach
is wide-spread in nonlinear dynamics and is presented in [30]. Coudreyras et al. applied it to self-excited vibrations
of nonlinear systems [31]. The scalability of approaches using the HB method with or without reduction techniques
(e.g. component mode synthesis [37]) is discussed and shown in [31, 38, 39, 40]. Besides the scalability of the HB
method, these works show the method’s ability to handle few, but arbitrary nonlinearities for large FE-models. This
aspect further motivates the choice of this method for the present work. Recent experimental studies suggest that there
may be only very few dominant or relevant joints in friction brake systems [10]. An extension of the HB method to
multi-instabilities in frictional excited systems can be found in [41]. An extension to multi-instabilities is, however, not
scope of this work and remains an open point for future analysis.

Applying the above discussed HB technique to the present system, the steady-state solution of the equation of
motion (3) can be approximated by
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Figure 3: Hopf curves in k,-kj;,-plane for different friction levels p. In addition, the projections on the k,-u-plane and
on the kj;,,-u-plane are displayed.
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where my, %y € RY, Xem € RN, Ksm € RY and w are the number of harmonics considered, the vectors containing
the Fourier coeflicients and the unknown limit cycle frequency, respectively. The implementation is described in detail
in Appendix C.

To reveal suitability of the employed HB approach, different approximation methods and choices for my, are
compared. For this purpose, the periodic solutions bifurcating from the HP detected in the linear stability analysis
with the friction level i as bifurcation parameter are studied. The solutions are approximated employing orthogonal
collocation in combination with well-established path following techniques (CL MatCont [42]) and the HB approach
presented in Appendix C. For the latter, the first harmonic (m;, = {1}) and the first three odd harmonics (m;, = {1, 3, 5})
are used. To visualize the dependency of solutions on the chosen bifurcation parameters, this work employs the
vibration amplitudes Xunp, Yamp and zamp being the amplitudes of the periodic solution in x,y,z-direction, respectively.
For the sake of completeness, we want to highlight that from an industrial application point of view considering
mechanical energies is also a promising choice to assess the numerical results. This idea will be pursued in future
when larger systems are studied. Fig. 4 shows the results of the study. Fig. 4b is a detail of Fig. 4a focusing on
the differences in results of the employed methods with a growing distance from the HP. The results reveal that in
the neighbourhood of the HP all three approaches are capable of describing the branching behaviour of the periodic
solution in a qualitatively and quantitatively satisfying manner. However, as also expected from a theoretical point of
view, with increasing distance to the HP the branch approximated with the HB approach using the first harmonic only
diverges from the other two. Nevertheless, a qualitative approximation of the branching behaviour seems feasible using
one harmonic only. Hence, in the remainder of this work, aiming to generate basic insights regarding the influence of
joints on friction induced vibrations, the HB method as presented in Appendix C using the first harmonic is employed.
This approach should moreover be sufficient for an extension to larger models with weak nonlinear character in future
work. One should note, however, that the employed approach might be limited with respect to quantitative accuracy if

5



results for parameter sets far away from a HP are of interest.
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Figure 4: (a) Comparison of the results of a harmonic balance using one harmonic (solid line), the first three odd
harmonics (dashed line) and orthogonal collocation (dashed-dotted line). The stability of the equilibrium solution is
indicated by a solid line for stable solutions and by a dashed line for unstable solutions at zero amplitude level. (b) is a
detail of (a) focusing on the comparison of the results for higher friction levels.

For a thorough bifurcation analysis not only the periodic solutions have to be calculated but also their stability has
to be determined. The HB approach does not directly allow to determine if the obtained periodic solution is stable
or unstable. Due to its nature the approach determines both stable and unstable periodic solutions. The stability of
periodic solutions can e.g. be determined by a Floquet analysis [30]. In this work, stability is estimated based on the
geometrical features of the periodic solution curves and on the direction in which the branch bifurcates from the HP. In
fact, in the neighbourhood of a HP stable periodic solutions encircle unstable equilibrium solutions and vice versa. In
addition, it is assumed that turning points separate stable solutions from unstable solutions.

2.4. Open questions

Revisiting Fig. 4a with a focus on the bifurcation behaviour reveals that the bifurcation diagram for the amplitudes
does not look like the typical super- or subcritical continuous bifurcation diagrams that one would expect. The
amplitudes do not seem to grow continuously with the distance from the stability border; rather, the largest amplitudes
seem to appear right next to the HP. The main purpose of the present study is thus to shed further light on this seemingly
unusual behaviour. Detailed studies will clarify what is actually happening and try to give answers to the following
questions:

e How well do the borders of linear stability agree with the parameter ranges in which nonlinear solutions, i.e.
limit cycles, exist?

e How may different types of joints influence the resulting limit cycle amplitudes?

o Can the bifurcation structure and limit cycle behaviour be understood in terms of some properties already inherent
in the linear stability analysis, like e.g. the eigenvectors?



3. Post-flutter bifurcation analysis

3.1. The dynamics of joints as the dominant factor for limit cycle amplitudes

First, the model introduced in Fig. 1a including the polynomial type joint is studied. The results from linear stability
analysis indicate that for a wide range of parameters two HPs can be found by a variation of k, , i.e. points from which
branches of periodic solutions bifurcate. Whether the bifurcation is supercritical or subcritical depends obviously on the
nature of the nonlinearity which is involved, in this case on the parameters of the polynomial type joint. For this reason,
a bifurcation study in the neighbourhood of a HP is conducted with k, as control parameter. Furthermore, the cubic
stiffness characteristic is assumed to vary from degressive via linear to progressive. The results are presented in Fig. 5.

a) b) )
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Figure 5: Transition from supercritical to subcritical Hopf-bifurcation triggered by k,,;. Stable equilibrium and periodic
solutions are plotted as solid lines, unstable solutions as dashed lines.

The central plot shows the linear behaviour of the model leading to unlimited amplitudes. A weakening behaviour
of the cubic joint with k,; < 0 produces the generic behaviour of a supercritical bifurcation, see Fig. 5a. A different
behaviour is observed for a stiffening joint characteristic. For a cubic joint with k,; > 0 a subcritical Hopf-bifurcation
arises. This causes areas in the parameter range where the equilibrium solution is stable, but a finite disturbance of that
state may lead to limit cycle oscillations. Fig. 6 gives results for k,; > 0 when k, varies over larger ranges to obtain a
more complete picture.

The linearized model shows two HPs, at around k, = 7.6 N/mm and k, = 32.3 N/mm. Between these HPs the
system is linearly unstable. For values of k, > 32.3 N/mm an unstable branch of periodic solutions bifurcates from the
HP describing a subcritical Hopf-bifurcation as shown in Fig. 6¢. This branch turns via a Fold Point (FP) at around
k., = 33 N/mm into a stable branch of solutions. This stable branch of solutions can be continued for decreasing values
of k.. For values of k, < 7.6 N/mm the second HP leads also to a subcritical Hopf-bifurcation as presented in Fig. 6a.
However, in this parameter range the unstable branch rises strongly in terms of x,,,, for decreasing values of k,. After
the steep rise of the unstable solution a fold bifurcation takes place at around k, = 7 N/mm at a comparatively high
Xamp, leading to a stable periodic solution. The stable branch of solutions decreases in x,,, with rising k, nearly as
fast as the unstable branch of solutions had been growing. For further increasing values of k, the stable branch of the
bifurcation diagram develops moderate amplitudes x,,,, and joins with the branch that originates at the second FP at
around k, = 33 N/mm.

The polynomial type joint with a progressive, or stiffening, character leads to subcritical Hopf-bifurcations on both
ends of the bifurcation diagram. Subcritical Hopf-bifurcations followed by a fold bifurcation are already well-known
for friction induced flutter and can be provoked by a number of different nonlinearities, as e.g. nonlinear material
properties [8]. However, an additional effect not discussed until now can be observed. In the subcritical regime for
low values of k, the amplitude x,,, of the stable periodic solution becomes extremely large, whereas for the most
part of the parameter space the amplitude remains moderate. Taking into consideration that this deflection quantity is
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Figure 6: Bifurcation diagram with k, as bifurcation parameter. Stable equilibrium and periodic solutions are plotted as
solid lines, unstable solutions as dashed lines. a) and c¢) show details of b) presenting the subcritical behaviour close to
the HPs.

directly related to the amplitude of the limit cycle, it becomes clear that in this region the size of the eigenvalue’s real
parts from the stability calculation of the linearized system does not correlate with the limit cycle size at all. It seems
that the nonlinear dynamics due to the joint properties dominate the amplitude development, and maximal limit cycle
amplitudes can even appear in parameter ranges with a linearly stable equilibrium solution.

The reason for the effect of very large amplitudes for certain parameter combinations is directly related to the
dynamics of the joint itself. Starting with small vibrational deflections, for which the linearized model should give
reasonable results, the eigenvectors of the linearized system can be taken as a good starting point for the analysis of
joint dynamics. A characteristic quantity capturing the dynamics of the joint in this linearized model system might be
defined by the relative displacement in the joint. It can be characterized most easily as

3o
-] — X + — y

2 2 ’ ®)
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where the displacement components x, y and z can be taken from the unstable eigenmode under consideration. The
quantity ugy is directly related to the strain and the strain energy of the joint. It will simply be referred to as joint strain
in the following.

Fig. 7a combines the amplitude of the periodic solutions in x-direction and the joint strain ugy as defined in (5) for
k. as the bifurcation parameter. The solutions show large amplitudes exactly for those parameters for which the joint is
not strained according to the analysis of the linearized model. The finding seems intuitively convincing, since a certain
level of joint strain is necessary in order to enable the joint nonlinearities to limit vibrational amplitudes. When the
nonlinear joint is not strained due to the overall system dynamics, the joint is deactivated and stops being the decisive
design element to limit the vibration amplitudes.

Following this observation, the results also mean that the parameter ranges for which large amplitudes appear can
already be predicted from a simple analysis of the linearized system’s vibration modes, since they seem to determine if
a joint becomes an active element which restrains vibration amplitudes strongly, or not. In that case an additional post
processing step in the analysis of the linearized model could be used to differentiate regions in the parameter space that
lead to rather small vibration amplitudes from regions leading to large ones.

Of course, such a predictive approach will only be successful if the system under investigation is only weakly
nonlinear in the sense that the nonlinear deflection shapes for finite amplitude vibration still resemble the linear modes.
Indeed, also for the small present model cases where the nonlinear deflection shape deviates from the linear one do
exist. However, even though the prediction based on the linear joint strain might then fail, the joint strain, now based
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Figure 7: Bifurcation diagram with k, in a) and k, in b) as parameters. Stable periodic solutions are plotted as solid
lines, unstable solutions as dashed lines. Additionally, the evolution of the normalized joint deflections ugy (dash-dot
line) and uyp (dashed line) are given.

on the deflection of finite amplitude oscillation, still plays the pivotal role. To show this, a nonlinear joint strain uyp
can be introduced as an extension of ugy into the nonlinear regime

e {0

2 YT ’ ©)

where %, § and Z are based on the limit cycle deflections of the corresponding degrees of freedom obtained from HB.
Hence, uyp represents the joint strain for the nonlinear deflection shape. This measure can differ significantly from the
linear one ugy, if the assumption of a system being weakly nonlinear is invalid. In this sense, the measure ugp is able
to capture the joint’s activity for a wider set of nonlinear systems than ugy. Its determination, however, generates a
larger numerical effort. Thus, the simpler measure for joint activity ugy based on the linear modes is advantageous in
terms of computational effort.

Fig. 7b shows a representative example, employing k, as introduced in Fig. 1a as a bifurcation parameter. It turns
out that again the parameter ranges of minimum joint strain, although now based on the deflections from HB, yield the
maximum vibration amplitudes. So it is again the joint strain that dominates the amplitude behaviour, although now a
nonlinear approximation is necessary to predict parameter ranges with large limit cycle amplitudes.

3.2. Limitations of linear stability: bifurcation from infinity and detached limit cycles

Now the model presented in Fig. 1b including the elasto-slip joint is studied. The variation of linear stiffness
k. generates a bifurcation diagram very similar to the one using the smooth joint from Fig. 6, but it is lacking the
amplitude maximisation. Hence, the presentation in this work directly starts out by varying the nonlinear parameter of
the nonsmooth joint represented by the tangential joint stiffness k; and the threshold force Fp in the joint as introduced
in equation (2). Beginning with a variation of the tangential joint stiffness, a low value of k; represents a joint with a
rather low tangential stiffness, corresponding to a sliping threshold at comparatively large displacements, whereas a
high value of &, can be interpreted as a stiff joint with a slipping threshold already at small displacements. With k;, — oo
the elasto-slip joint approaches the classical Coulomb-friction element leading to a differential inclusion of Fillipov
type [43, 19]. The results of this study are presented in Fig. 8.

The linearized model shows two HPs at around k; = 4 N/mm and k; = 32 N/mm. Between these points again the
system’s equilibrium solution is unstable, i.e. the linearized system has a positive real part for one eigenvalue. For
values k, < 4 N/mm and k;, > 32 N/mm the system’s equilibrium solution is stable. At k, = 4 N/mm a branch of unstable
periodic solutions arises from the HP representing a subcritical Hopf-bifurcation as already present in section 3.1. Via a
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Figure 8: Bifurcation diagrams with k; in a) and F in b) as bifurcation parameters. Stable equilibrium and periodic
solutions are plotted as solid lines, unstable solutions as dashed lines.

FP at around k, = 1 N/mm this unstable branch turns into a stable one which after an initial growth is nearly unchanged
in amplitude x,,, for larger k;. Atk, = 32 N/mm a similar scenario can be observed: an unstable periodic solution
emanates from the HP. In contrast to the previous case where the subcritical Hopf-bifurcation is followed by a fold
bifurcation, after an initial growth this branch of unstable periodic solutions remains at comparatively low levels of
Xamp and evolves parallel to the branch of stable periodic solutions for k; — co.

Discussing the limit of kK, — oo, i.e. the pure Coulomb friction joint, it seems that besides the equilibrium solution,
there exists an unstable periodic solution with small amplitudes, and a stable periodic solution with large amplitudes. In
fact, a similar behaviour has recently been observed for friction induced vibrations including a dry friction element in
[19, 20]. The present study thus complements this finding and confirms it also for the context of friction induced flutter.
Just for completeness one might note that the overall bifurcation structure could also be termed a global bifurcation
from infinity (see e.g. [44, 45, 46]), since the branches of the periodic solution may be thought to originate at infinite
values of k;.

To further investigate the dependence of the results on the second elasto-slip joint parameter F, Fig. 8b gives the
amplitude x,,,, of the solutions (at an arbitrary, but fixed value of k;, = 60 N/mm) vs. the threshold force F, which
controls the onset of slipping in the joint. Obviously, the amplitudes of the periodic solutions depend linearly on F,
which again confirms the finding of the periodic solutions bifurcating from infinity.

However, these results also raise the question, if some other parameter changes might transform the global
bifurcation from infinity into a standard fold bifurcation linking the two branches of periodic solutions. It seems that
this cannot directly be answered by a variation of k, or the elasto-slip joint parameters. Therefore, the level of damping
is varied. Fig. 9 shows that increased damping, d, and d,, can indeed destroy the bifurcation from infinity. Fig. 9a
shows where the FPs and the HPs can be found when damping varies. For vanishing damping there is a bifurcation
from infinity. For increasing values of d, and d,, first a FP appears, and then approaches the HP (at k, = 32 N/mm in
Fig. 8a). This indicates that the global bifurcation from infinity originates from the FP of a subcritical instability being
moved out to infinity when damping decreases. At about d, = d, = 0.6 Ns/mm the FP vanishes as it collides with the
HP, which corresponds to the subcritical bifurcation turning over into a supercritical one. Fig. 9b further clarifies this
by showing that the FP approaches the HP in both dimensions k; and x,,,,. Thus, the global bifurcation from infinity
turns via a subcritical bifurcation into a supercritical one for increased damping.

To summarise this part of the study, compared to super- and subcritical Hopf-bifurcations for the joint with nonlinear
stiffness characteristics in section 3.1, an additional effect makes its appearance with the elasto-slip joint including
dry friction: bifurcation from infinity. As a result an infinitely large area in the parameter space may exist where the
equilibrium solution is linearly stable but stable limit cycle oscillations may co-exist.
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Figure 9: Evolution of FP and HP for growing values of d, and d,, in terms of k, in a) as well as evolution of the FP
in terms of vibration amplitude x,,, and bifurcation parameter k; as a function of d, and d, in b). Small schematic
diagrams underline subcritical and supercritical bifurcation regimes.

But there is another remarkable effect: branches of isolated limit cycles, not bifurcating from the steady sliding
state, sometimes also called isola, may appear. They can e.g. be generated by varying the linear stiffness k,. For this
purpose Fig. 10 shows a bifurcation diagram for the vibration amplitude Xap, Yamp and zunp With k, as the bifurcation
parameter at fixed value of k, = 60 N/mm, situated clearly in the subcritical regime of Fig. 8a.
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k, [N/mm] at k, = 60 N/mm

Figure 10: Bifurcation diagram with k, as bifurcation parameter. Stable branches are plotted as solid lines, unstable
branches as dashed lines.

With this set of parameters the linearized model shows no unstable equilibrium solutions in the explored parameter
space at all. However, detached periodic solutions, i.e. branches which are not connected to the equilibrium solution
via HPs, coexist with stable equilibrium solutions. For values of k, < 7 N/mm the only existing solution is the stable
equilibrium. For values from k, = 7 N/mm to k, = 33 N/mm three solutions to the problem can be found: beside the
stable equilibrium solution there exist a stable and an unstable periodic solution. The branches of periodic solutions
are connected via two FPs at k, = 7N/mm and &, = 33 N/mm. Between the two FPs the stable solutions show larger
amplitudes Xgpp, Yamp and zum, while the unstable solutions show smaller amplitudes. For the symmetric case of
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k, = k, = 20 N/mm a resonance phenomenon in x-direction can be observed. For values of k, > 33 N/mm, again, only
the stable equilibrium solution exists.

Hence, for the analyzed minimal model including an elasto-slip joint detached periodic solutions, isola, may exist.
These solutions are detached in the sense that their branches are not connected with the equilibrium solution through a
bifurcation. Thus, a system with a steady sliding state that is linearly stable in the whole parameter range of interest
might still be driven into limit cycle oscillation through finite disturbances.

The results for the elasto-slip joint show that the stability and bifurcation behaviour is strongly affected by the joint
dynamics with its Coulomb characteristic. Linear stability analysis of the system may turn out to be of less significance
or, in the worst case, even of no significance. The non-existence of linear stability borders for the linearized system
when detached periodic solutions exist is the worst case scenario. In addition, hysteresis effects are likely to be expected
when parameter variations take place, jump phenomena might be expected in parameter ranges of bi-stability. Due to
the finite size of basins of attraction for solutions also background noise or other excitations might play a prominent
role in predicting squeal occurrence.

4. Summary, Conclusions and Outlook

This work explores the influence of joints on stability and bifurcation behaviour of a system subject to friction
induced flutter. It turns out that the dynamic state of the joints involved substantially decides about the size of the
resulting limit cycle amplitudes. Very large amplitudes may especially arise for parameters where the joints are
not active, either due to them being not activated already in the context of small amplitudes, i.e. the linearized
system perspective, or due to being deactivated in the finite amplitude vibration state. It is also shown that subcritical
Hopf-bifurcations, bifurcations from infinity and detached limit cycles, i.e. isola, may arise when joints including dry
friction or elasto-slip characteristics are involved.

The results clearly indicate the possibly severe limitations of linear stability analysis based on eigenvalue calculation
of a linearized model whenever joints are present. The size of the eigenvalues’ real parts of a stability analysis, does
usually not correspond in any sense to the size of the limit cycle amplitudes, when joints play a major role for the
system dynamics. Moreover, the borders of stability predicted by linear analysis can become nearly meaningless when
the nonlinear system dynamics are dominated by joints. This fact is exemplified by the possibility of bifurcations
from infinity coming with negligibly small basins of attraction of the linearly stable sliding state or, even more severe,
by detached periodic solutions. Hence, the application of linear stability analysis in the field of brake squeal and the
interpretation of results needs to be executed very carefully. The presented limits of the linearization approach need
especially to be kept in mind when dealing with joints. Nevertheless, deflection shapes based on the linearized system
may be used for a first prediction of parameter ranges in which the limit cycle amplitudes will be very large, when
the underlying system is weakly nonlinear as it seems to be the case quite often regarding brake squeal (e.g. [47]).
However, the predictions should better be verified by double checking either with an analogous consideration based
on HB methods, or a full limit cycle calculation. In that sense, and altogether, this study has thus presented further
evidence that nonlinear analysis techniques are inevitable in order to develop numerical simulation tools towards
predictive capabilities in brake vibrations and noise.

Definitely further analysis will be necessary to apply and extend the present findings to the large-scale models in
use today. First of all, it will be necessary to reliably identify those joints in the multi-component, large- and multi-scale
systems that dominate the nonlinear system behaviour and the amplitude of limit cycles. Second, the dynamics of joints
itself need to be described and modelled in an improved way. The approximation of limit cycles is obviously limited
by the quality of the joint models. The described techniques will only be successful if the models of joint dynamics
improve. Third, the results need to be extended to systems showing multi-instabilities, what will allow a discussion of
basins of attraction for distinct stable periodic solutions, as well as on the relevance of quasi-periodic solutions and
mixed modes. Fourth, the techniques for limit cycle approximation themselves need to improve in both efficiency and
accuracy, before they will be used in the day-to-day business of industrial engineering. Only when the methods of
nonlinear analysis for friction induced vibration have become much more usable, they will spread into industry.
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Appendix A. System matrices

o
3

[d. 0 0 ]
D=| 0 4, 0 |,
| 0 0 d.
ky —1kyep 0
K=| -1k u ky 01,
0 0 k.
0 1 kyop O
N=|L1k-u 0 0
0 0 0

Appendix B. Set of parameters

Table B.1: Set of parameters for simulation and parameter studies

Parameter M | ke | k | dody | n Faa | Fr| K
Value 1 11 20 0.02 0.65 0 5 10
Unit kg N/mm | N/mm | Ns/mm - N N | N/mm
Parameter | ky | dw | m | k| d | kn [ @]
Value 5 0.02 1 100 0.02 10 I
Unit N/mm | Ns/mm kg N/mm | Ns/mm | N/mm -

Appendix C. Limit cycle approximation approach

The limit cycle approximation is established in the frequency domain using a Harmonic Balance Method (HBM)
with a finite number of harmonics. Dealing with self-excited vibrations in the present case the methodology has to be
adapted to the fact that the frequency of the periodic solution in unknown. The employed approach is explained in the
next section.

Harmonic Balance Approach
Starting from the equations of motion presented in section 2,

M-xt)+(D+G) -x(1)+ (K+N)-x(2) + £;1(X, X, 1) = fox¢ (C.1)

13



a complex Fourier ansatz to approximate the solution x(#) with a finite number m,, of harmonics which has the form

my

x(1) ~ R( Z(&mef’"w’)) (C.2)
m=0

is used to describe the motion of the system. Here, the amplitudes Xy, are complex valued. Accordingly, the nonlinear
forces can be approximated by a Fourier ansatz containing the same number of harmonics,

mp

£ (%%, 1) & R( D (Fme™™). (C3)
m=0

The determination of the complex Fourier coefficients fnl,m for a higher harmonic approach is done by the Alternating
Frequency Time Domain method (AFT) [48]. The nonlinear forces are computed in the time domain using all
considered harmonics for one period and the coefficients are computed numerically by evaluating the Fourier integrals.
Inserting ansatz equation (C.2) into equation (C.1) the transition to the frequency domain can be accomplished and the
system can be arranged in the form

H 0 - 0 Xy fnl,l(fg w) f‘exl,l
. 5\‘2 fn1,2(ﬁ’ 6()) fex 2
D e el 50 (C4)
0o . 0 A : . : . :
0 s 0 Hm/, Xmy fnl,mh (ﬁv w) fexl,mh
\Af—’ ————— ————
H(w) X fu®w) fox
where the linear parts of the system are concentrated in the frequency dependent dynamic stiffness matrices
H,,(w) = (K +N) + imw(D + G) — mw*M. (C.5)

Note, that in the application of the HBM for self-excited vibrations, there is no periodic excitation on the right hand
side of the equation. The vector of the external forces f.y; only contains the static force, which is applied to the system
presented in section2. Since the nonlinear forces f (X, w) depend on the solution X, the problem is rearranged in an
implicit form
A p !

fi=Hwx +f, X w) 1., =0. (C.6)
For self-excited vibrations, the frequency of the system is a priori unknown and determined by the system itself. This
implies that the iterative problem, posed in equation (C.6), is under-determined and a numerical solution concludes
with the trivial solution for w = 0. For the additional unknown variable w an additional equation need to be stated.

Additional constraint equation
The additional equation must contain the information of a periodic closed limit cycle trajectory to be able to reject
the trivial solution in the iterative process. Following Coudeyras et al. [31], this can be achieved by arranging the

system in a state space form
Y = AY + fu(Y) (C.7)

with the vector of the variables Y and a system matrix A containing the linear matrices,

X 0 I
Y= [x} A= [—M-l(K +N) -MID+G)| (C8)
The nonlinear forces are separated from the linear part and can be added in the form
for = ’ (€9)
"M (e~ (X D) | ‘

14



A Jacobian of the system, containing the linear system matrix A and the Jacobian of the nonlinear force vector f,; can
be established as
J=A+]J.. (C.10)

A direct calculation of the Jacobian of the nonlinear forces is not straightforward. Hence, its determination is done
iteratively by minimizing the deviation A of the linear approximation of the nonlinear force for a periodic solution in
the iterative process at once. This can be written as

A = fu(Yy(8) = I Ys(r) =0, (C.11)

where Y(f) = Y(t + T') denotes a periodic solution, when the system exhibits limit cycles with the period T, depending
on the angular frequency w which is to be determined in the iterative process. The derivative of the nonlinear force
vector fy to receive the Jacobian of the nonlinear forces J, can be done numerically by a finite-difference method.
With the Jacobian matrix of the nonlinear forces Jy the eigenvalues of the Jacobian J can be solved. Using the fact that
the system performs limit cycles in the case that the real part of one eigenvalue is zero and all others are negative [31],
the additional constraint equation can be formulated as

f» = max(R(eig(J))) = 0, (C.12)

By minimizing functions f; and f, simultaneously towards zero in the iterative optimization process, the system is no
longer under-determined. The additional constraint equation avoids that the trivial solution is found and the amplitudes
of the considered harmonics can be computed. Since the frequency is a priori unknown special attention has to be paid
when choosing the initial conditions to achieve convergence.

Initial Conditions and Continuation

As proposed by Sinou et al. [49], the periodic solution of a dynamic system can be approximated by

Yo(t,p ) = p (q> AN D e7f), (C.13)

where ® denotes the eigenvector of the unstable mode and A its corresponding eigenvalue. The complex conjugates
are indicated by ® and 1. p is a scaling factor. To generate efficient intial conditions Y is decomposed into Fourier
coefficients. These coefficients and the imaginary part of the unstable eigenvalue are used as a set of initial conditions
to determine the first point on the branch of periodic solutions. Starting at the HP or in its vicinity this approach leads
to fast convergence.

However, isola, i.e. detached periodic solutions, in the linearly stable regime are also discussed in this contribution.
Thus, an additional approach to determine initial conditions is necessary. In this case, decomposition of stable periodic
solutions (obtained via time integration schemes for different initial conditions) into Fourier coefficients is used. The
unknown limit cycle frequency w is determined based on the period T'.

Having found the solution for one parameter set, the bifurcation paramater is varied and the next iteration loop is
started. The initial values for the subsequent step are estimated using natural continuation as depicted in Fig. C.11.
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Natural continuation

Optimization min{[f, f"}

q q
Initial condition ! '

Figure C.11: Natural continuation scheme for a bifurcation parameter q
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