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Multiple length/time-scale simulation of localized damage in composite
structures using a Mesh Superposition Technique

L.Gigliotti∗, S.T. Pinho

Department of Aeronautics, South Kensington Campus, Imperial College London, SW7 2AZ, London, UK

Abstract

A Mesh Superposition Technique (MST) for the progressive transition between differently-discretized

subdomains is proposed and implemented in an FE code. The interfaces between these subdomains are

replaced by transition regions where the corresponding meshes are superposed. The MST is applied to the

multiple length/time-scale analysis of a low-velocity impact of a projectile on a composite plate. Unlike

using a sudden discretization-transition approach, the use of the MST eliminates the undesirable stress

disturbances at the interface between differently-discretized subdomains and, as a result, it correctly captures

the impact-induced damage pattern at a lower computational cost. Finally, the MST is coupled with an

implicit/explicit co-simulation technique for a multiple time/length-scale analysis. The results indicate

that, if the length-scale transition is performed using the proposed MST instead of a sudden discretization-

transition, the CPU time can be nearly halved.

Keywords: Composite structures, Finite element analysis (FEA), Multiple length/time-scale simulation,

Damage, Mesh Superposition Technique (MST)

1. Introduction

1.1. Motivation

Numerical simulation of the mechanical response of large composite components often requires that

different parts of the structure are modelled at different scales, eventually even using different physics.

Multiscale modelling techniques can achieve the required level of accuracy in each part of the model while

maintaining the computational time to a minimum. Within this framework, the development of suitable

techniques for coupling areas of the structure discretized using different element types is crucial.

However, the coupling of subdomains discretized with finite elements of different physical dimension/formulation

can introduce artificial stresses at the shared boundaries [1, 2]. Therefore, the stress field within the struc-

ture and its mechanical response may not be correctly simulated; as a result, in problems involving failure,

the damage pattern might not be faithfully replicated. Additionally, in dynamic problems, the interfaces

between differently-discretized subdomains may artificially reflect stress waves [3, 4].
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1.2. 3D solid elements and 2D shell elements for laminated composites

The typical finite elements used for modelling composite structures can be gathered into three categories:

(i) three-dimensional solid elements, (ii) two-dimensional shell elements and (iii) three-dimensional shell

elements.

To correctly capture the bending response, when using 3D solid elements, several elements are required

through-the-thickness of the laminate, typically one per ply. Furthermore, due to their propensity to shear-

locking, their aspect-ratio must be kept close to the unity. From these two considerations, it follows that

models relying only on 3D solid elements are often computationally unaffordable.

Two-dimensional shell finite elements, based on Equivalent Single Layer Theories (ELST) [5, 6], represent

a computationally more convenient alternative for modelling thin-walled structures. However, the simplifying

assumptions of ELST are, often, too restrictive for the analysis of laminated composites (for instance, the

continuity assumption made for the displacement field and its derivatives leads to continuous out-of-plane

shear strains). To overcome this limitation, 2D shell elements based on Layer-wise theories [7] might be

considered. For the latter, a piecewise continuous through-the-thickness displacement field is assumed and,

therefore, strain-discontinuity at the plies interfaces can be modelled.

An intermediate approach between 2D shell elements and 3D solid elements is represented by the degen-

erated three-dimensional shell elements whose formulation is based on two-dimensional kinematic constraints

[8, 9]. This type of elements represents a compromise between the computational efficiency of 2D shell ele-

ments and the modelling flexibility of 3D solid elements. Moreover, being shear-locking free, the aspect-ratio

limitations of the 3D solid elements are overcome. Nonetheless, the underlying two-dimensional formulation

does not provide an accurate description of the out-of-plane displacement and interlaminar stress fields,

critical for delamination evaluations.

1.3. Multi-dimensional finite elements coupling

From the the previous section, it follows that 3D solid elements should be used for discretizing the area

of the structure, denoted as local subdomain, where significant three-dimensional stress fields are likely to

occur, e.g. indentation/impact locations and where interlaminar damage ought to be modelled. For the

remaining portion of the structure, referred to as global subdomain (generally the largest portion), either

3D or 2D shell elements are preferable.

Several local/global approaches for coupling differently-discretized subdomains have been proposed, such

as mixed-dimensional coupling approaches based on multi-point constraint (MPC) [1]. The MPC equations

can be obtained by equating the work done by the local and global subdomains at the shared interface;

a perturbation solution can be then exploited to determine the stress distribution across the thickness of

the lower-dimension elements [1]. Compared to the Shell-to-Solid coupling option available in the finite

element software Abaqus [10], the method is shown to eliminate the undesirable stress disturbances at the

interface between differently-discretized subdomains in the case of isotropic elastic material. However, the

local/global coupling must be carried at a sufficient distance from boundaries and/or discontinuities in the

model [11]. In addition, the accurate derivation of the MPC equations for composite materials may become

impracticable [12].

An alternative approach hinges on the use of ad-hoc transition elements as suggested by Dávila [2]. In

this work, two transition elements have been formulated, i.e. one based on the Mindlin-Reissner [13, 14]
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kinematic assumptions and a second one based on a higher-order theory similar to that developed by Tessler

[15]. The stiffness matrices KTr of the transition elements are constructed from the stiffness matrices K of

traditional three-dimensional elements and a restraint matrix R. Results show that, using the lower-order

transition elements, it is possible to accurately model the stress fields within both the local and global models.

However, within the transition elements themselves, a stress boundary layer where the interlaminar normal

and shear stresses are largely overestimated, is obtained. Transition elements based on an higher-order shell

theory strongly mitigate such spurious stresses [2].

Alternatively, the global and local subdomains can be coupled using an uncoupled global/local approach

where the displacement fields computed using the global model produce the boundary conditions for the local

one. The mechanical responses of the local and global models are simulated separately and the sequence of

global/local analyses can be either run once (see, as an example, the Submodelling procedure implemented

in Abaqus [16]) or iteratively, until the force/momentum convergence is reached at the global/local interface.

Reinoso et al. compared the Submodelling technique to Shell-to-Solid coupling [17, 18]. Here, the two

approaches have been applied to the global/local FE analysis of debonding failure at the skin-stringer joint

within an aeronautical component. The analysis was limited to the first stages of damage propagation, and

the size of the local models was chosen to be sufficiently larger than the final expected damaged zone. As

the applied load and therefore the damage area grow, stress disturbances were observed at the local/global

boundaries for both approaches.

The computational advantage provided by generic global/local approaches is enhanced if the size of

the three-dimensional local model is kept to a minimum. However, the transition between subdomains

discretized using finite elements with different dimension/formulation should be located such that the stress

field in the local subdomain has decayed to the form assumed in the formulation of the finite elements

used in the global subdomain. Further, the global/local transition should be sufficiently distant from any

perturbation such as boundaries or damaged zones.

The influence of the distance of the global/local transition from the delamination front was investigated

by Krueger et al. for the cases of delaminated test specimens [19, 20] as well as skin/stringer debonding

in an composite aircraft component [21, 22]. Results, provided in terms of the mixed-mode strain energy

release rates computed using the VCCT, demonstrate that, for an acceptable agreement with the reference

solution, a minimum length of which the local subdomain needs to be extended, both ahead and in the wake

of delamination front, can be identified.

Bridging methods for coupling continuum models with atomistic models [23, 24], as well as discrete

element models and finite element models [25–27], have been presented in the literature. In the approach

described by Belytschko and Xiao [23, 24], coupled subdomains overlap at the shared interface as in the

method presented here.

In this paper, we propose a new local/global coupling approach based on a Mesh Superposition Technique

(MST). The interfaces between subdomains whose FE discretizations consist of different element types are

replaced by transition regions where the corresponding discretizations are superposed.

The theoretical details of the MST, as well as the key aspects of its FE implementation, are presented

in Section 2. The MST is applied to the multiple length/time-scales analysis of a low-velocity impact on a

composite plate [28, 29] in Section 3. Results of this analysis are presented and discussed, respectively, in

Section 4 and Section 5. Finally, conclusions are drawn Section 6.
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2. Mesh Superposition Technique

2.1. Theory

In the literature, techniques involving superposed elements occupying the same physical space have

been used to address problems in which meshing is challenging, such as in meso-scale modelling of woven

composites [30–33]. In the MST we propose here, we also make use of superposed elements, albeit in a more

generic way.

Let us consider a deformable body B occupying the domain ω(t) ∈ R3, where with R3 we denote the

three-dimensional euclidean space, for any instant of time t > 0 (Figure 1). The domain occupied by the

deformable body at instant t= 0 is indicated with Ω and, the position vector of each point P ∈B in the

reference configuration is denoted as X.
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Figure 1: Mesh Superposition Technique. In the reference configuration, domain Ω is decomposed into
the subdomains ΩA and ΩB which overlap over the subdomain Ωs. Dirichlet and von Neumann boundary
conditions are applied over specific portions of the boundary Γ=∂Ω.

Let the boundary of Ω be Γ =∂Ω, and assume that Dirichlet boundary conditions are applied over the

subset Γu⊂Γ, while von Neumann boundary conditions are applied over the subset Γt⊂Γ.

We consider domain Ω to be subdivided into subdomains ΩA and ΩB, whose intersection is Ωs≡ΩA∩ΩB 6=
∅. Additionally, the subdomains ΩA and ΩB can be conveniently decomposed, as shown in Figure 1, into an

overlapping portion Ωs and a non-overlapping one defined as

Ω̂i =Ωi\Ωs for i=A,B. (1)

Let ρ(X) and ρ(X)ü(X,t) be, respectively, the material mass density and the inertia forces per unit

volume. The applied body force and the Piola traction vector are denoted by B(X,t) and T(X,t) respectively.

Given the applied Dirichlet and von Neumann boundary conditions, the principle of virtual work can be

expressed as ∫
Ω

S :δEdΩ +

∫
Ω

ρü·δudΩ=

∫
Ω

B·δudΩ +

∫
Γt

T·δudΓ , (2)
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where δE(X,t) is the virtual variation of the Green-Lagrange strain tensor, and S(X,t) is the second Piola-

Kirchhoff stress tensor.

Within subdomain Ωs, where univocal definitions of the second Piola-Kirchhoff stress tensor S(X,t) and

of the material density ρ(X) do not exist, the terms of the principle of virtual work can be expressed as the

linear combination of the contributions of the overlapping subdomains. These contributions are scaled by

non-negative scalar-valued weighting factors ψi(X), continuous over the subdomain Ωs.

The internal virtual work δWint, the external virtual work δWext and the inertial virtual work δWkin

can, therefore, be expressed as:

δWint(u,δu) =

∫
Ωs

∑
i∈{A,B}

[
ψi(X)Si

]
:δEdΩ +

∑
i∈{A,B}

[ ∫
Ω̂i

Si :δEdΩ

]
,

δWext(u,δu) =

∫
Ωs

∑
i∈{A,B}

[
ψi(X)Bi

]
·δudΩ +

∑
i∈{A,B}

[ ∫
Ω̂i

Bi · δudΩ

]
+

∫
Γt

T·δudΓ ,

δWkin(u,δu) =

∫
Ωs

∑
i∈{A,B}

[
ψi(X)ρi

]
ü·δudΩ +

∑
i∈{A,B}

[ ∫
Ω̂i

ρiü·δudΩ

]
,

(3)

with Si and ρi being the second Piola-Kirchhoff stress tensors and the material mass densities of subdomains

Ωi; the applied body forces to subdomains Ωi are denoted by Bi.

From Equation 3 it follows that, within the subdomain Ωs, an equivalent second Piola-Kirchhoff stress

tensor Ss and and equivalent material mass density ρs can be defined as

Ss(X,t)=
∑

i∈{A,B}

ψi(X)Si(X,t) and ρs(X) =
∑

i∈{A,B}

ψi(X)ρi(X). (4)

Similar considerations hold for the applied body forces Bi. To satisfy the conservation of energy principle,

the collection of weighting factors ψi(X) must be a partition of unity of subdomain Ωs, i.e.∑
i∈{A,B}

ψi(X)=1 ∀ X∈Ωs. (5)

2.1.1. Weighting factors computation

The weighting factors ψA(X) and ψB(X) are computed for every point P (X) :X∈Ωs as function of the

relative distance from two generic surfaces SA and SB, see Figure 2, that do not necessarily coincide with

Γ̂A and Γ̂B, i.e. the interfaces shared by Ωs with Ω̂A and Ω̂B, respectively.

The procedure to compute ψA(X) and ψB(X) consists of the following steps:

(i) Using the Level Set Method [34], evaluate the signed distances dA and dB of point P (X) from surfaces

SA and SB. Letting the closest points to P (X) on SA and SB be denoted, respectively, as A(XA) and

B(XB) (see Figure 2), dA and dB can be expressed as

dA =‖XA−X‖ and dB =‖XB−X‖ . (6)
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Figure 2: Distances used for the computation of the weighting factors ψA and ψB.

(ii) Compute distances d, a and b, shown in Figure 2, as

d=‖XB−XA‖ , a=
|(XB−X) · (XB−XA)|

d
, b=

|(XA−X) · (XB−XA)|
d

(7)

(iii) Assign weighting factors ψA(X) and ψB(X) as:

ψA(X)=


0 ⇐ dA>d
a

d
⇐ dA, dB<d

1 ⇐ dB≥d
and ψB(X)=


0 ⇐ dB>d
b

d
⇐ dA, dB<d

1 ⇐ dA≥d

(8)

From the definitions provided in Equations 6-8, we infer that ψA(X) and ψB(X) are continuous over Ωs,

and that the Partition of Unity condition (see Equation 5) is automatically satisfied.

2.2. Finite Element implementation

To derive the finite element equations associated to the problem formulated in Equation 2, let subdomains

ΩA and ΩB be discretized with elements ej
A

and ej
B

, respectively, and let the corresponding integration

domains be ΩejA
and ΩejB

, such that

⋃
ejA∈EA

ΩejA
≡ ΩA and

⋃
ejB∈EB

ΩejB
≡ ΩB , (9)

where EA =
{
ej
A

}
and EB =

{
ej
B

}
indicate the sets of elements with support in subdomains ΩA and ΩB as

shown in Figure 3.
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Figure 3: FE meshes of the superposed subdomains ΩA and ΩB. Within the MST region, the two meshes
are superposed and the corresponding stiffness and mass matrices scaled, in order to satisfy the conservation
of energy principle.

Proceeding as in Section 2.1, EA and EB can be further decomposed as EA = ÊA∪Es
A and EB = ÊB ∪ Es

B,

where ÊA and ÊB are the sets of elements whose support is, respectively, in subdomains Ω̂A and Ω̂B. In

addition, Es
A ⊂ EA and Es

B ⊂ EB denote the sets of elements which of overlap over the transition region

(indicated in Figure 3 as MST region), i.e.⋃
ejA∈ÊA

ΩejA
≡ Ω̂A ,

⋃
ejB∈ÊB

ΩejB
≡ Ω̂B and

⋃
ejA∈EsA

ΩejA
≡

⋃
ejB∈EsB

ΩejB
≡ Ωs. (10)

From Equation 3, the stiffness matrices of elements within the MST region, i.e. ej
A
∈Es

A and ej
B
∈Es

B, are

given by

Ks
ejA

=

∫
Ω

e
j
A

[
BT

ejA
: ψA(X)

(
I⊗ SA + FCAF

T
)

: BejA

]
dΩejA

and

Ks
ejB

=

∫
Ω

e
j
B

[
BT

ejB
: ψB(X)

(
I⊗ SB + FCBF

T
)

: BejB

]
dΩejB

.

(11)

where BejA
and BejB

are the shape functions derivatives matrices of finite elements ej
A

and ej
B

, respectively. In

addition, Ci is the fourth-order material elasticity tensor associated to subdomains Ωi, F is the deformation

gradient and I identifies the identity matrix.
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The values of ψA(X) and ψB(X) can be assigned to each element through suitable nodal values, and

the element’s shape functions may be used for their evaluation at every internal point. Alternatively, if

the variation of ψA(X) and ψB(X) inside each element is neglected, then the centroid value can be used to

scale the constitutive properties uniformly for the entire element. Since ψA(X) and ψB(X) are computed

as function of the elements’ coordinates in the undeformed configuration, their values do not change as the

body deforms.

Following a similar approach to the one used to define the stiffness matrices in Equation 11, the mass

matrices of elements ej
A
∈ÊA and ej

B
∈ÊB are computed as

Ms
ejB

=

∫
Ω

e
j
A

ψA(X)ρAN
T
ejA

NejA
dΩejA

and

Ms
ejB

=

∫
Ω

e
j
B

ψB(X)ρBN
T
ejB
NejB

dΩejB
.

(12)

3. Application: Multiple length/time-scale analysis of low-velocity impact on a composite

plate

3.1. Problem description

The MST is applied for simulating the low-velocity impact response of [0◦3/90◦3]s cross-ply laminates made

of HS160/REM graphite/epoxy [28, 29]. The specimens were rectangular with a 65.0 mm×87.5 mm in-plane

area and a nominal thickness h of 2.0 mm. The specimens were impacted with a 2.3 kg hemispherical impactor

12.5 mm in diameter and were simply supported on a steel plate with a rectangular (45.0 mm × 67.5 mm)

opening.

An impact energy of 3.1 J was used in the experiments [28, 29]; the impact-induced damage consists of

an initial tensile matrix crack in the distal 0◦ layers, followed by a two-lobe shaped delamination at the

bottom 0◦/90◦ interface as shown in Figure 4.

3.2. Finite Element models

Composite structures subjected to low-velocity impact of small objects experience localized damage

confined within the area surrounding the impact location [35]. Therefore, to accurately simulate such

localized damage, while maintaining the required computational cost to a minimum, different parts of the

structure need to be modelled at different lenght-scales. More precisely, the area surrounding the impact

location can be conveniently modelled at the meso-scale while the remaining of the structure being modelled

at the macro-scale [36]. In the following, we will refer to the area modelled at the meso-scale, either as

meso-scale region or local region, as opposed to the remaining area, referred to as the macro-scale region or

global region. The in-plane area of the meso-scale region will be denoted as Ameso =Lmeso×Wmeso while,

Atot =L×W is the panel’s in-plane area, see Figure 5a. In the work presented here, the panel’s in-plane area

Atot was kept constant, while the width Wmeso and the length Lmeso of the meso-scale region were varied.

Within the meso-scale region, the differently-oriented sublaminates are individually modelled, as well as

the interfaces between them. To correctly capture the three-dimensional stress field at the impact location,
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Figure 4: Impact-induced damage pattern on [0◦3/90◦3]s laminate. X-rays analysis shows that the main
failure modes are represented by a tensile matrix cracking of the distal 0◦3 sublaminate (green) and by a
two-lobe shaped delamination at the bottom 0◦/90◦ interface (red), after [29].

3D solid elements are used in this region. The remaining of the structure, modelled at the macro-scale, is

conveniently discretized using either 3D or conventional 2D shell elements.

FE models of the impacted composite plates were built using the finite elements software Abaqus (6.12-

1) [16], through the in-built Python scripting facilities [37]. Because of the symmetry, only one quarter

of the specimen was modelled and only the portion of the specimen within the rectangular opening was

considered, as schematically shown in Figure 5a. The impactor’s deformations were assumed negligibly small

and, therefore, it was modelled using rigid surface elements (R3D4); the impactor-plate contact interaction

was simulated by surface-to-surface contact elements between the impactor surface and the top surface of

the plate.

The reference solution of the problem in Section 3.1 was obtained with a fully local model, denoted as

FL model and shown in Figure 5b. Here, the plies are uniformly discretized using eight-noded reduced-

integration solid elements (C3D8R) and cohesive elements were inserted at the bottom 0◦/90◦ interface over

the entire plate’s in-plane area Atot.

The MST was applied for both a 3D/3D coupling and a 3D/2D coupling. In total, four multi-scale

models were built: (i) two models with a sudden discretization-transition between the meso-scale and the

macro-scale region, denoted as 3D/3D ST (Figure 6a) and 3D/2D ST (Figure 7a) and (ii) two models where

the sudden discretization-transition of the ST models is replaced by a transition region over which the

discretizations are superposed, and referred to as 3D/3D MST (Figure 6b) and 3D/2D MST (Figure 7b). A

constant width of four elements in the laminate’s plane was considered for the MST region.

To model interlaminar failure, a layer of cohesive elements (COH3D8) was inserted at the bottom 0◦/90◦

9
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Figure 5: Schematic of the impacted specimens with definition of the meso-scale region (a) and the FL

model used to obtain the reference solution (b).

interface while two rows of cohesive elements, placed at the symmetry plane parallel to the 0◦-plies direction,

were used to simulate tensile matrix cracking (see Figures 5b-7b). A mixed-mode bilinear traction-separation

law was used to simulate the softening and fracture response [38, 39]. A quadratic stress-based criterion and

a linear energy-based criterion were assumed, respectively, for damage initiation and propagation.

The material properties used by Aymerich et al. [28] in their simulations are shown in Table 1. Although

they did not use the typical assumption of transverse isotropy, we used the same properties in our simulations

so that meaningful comparison can be drawn. The cohesive properties of the interfaces were calibrated

against experimental data from static Mode I (DCB) and Mode II (ENF) fracture tests on unidirectional

laminates [28].

3.2.1. Multiple length-scale analysis

Within the meso-scale region (see Figure 5a), composite plies were discretized using eight-noded reduced-

integration solid elements (C3D8R) and delamination initiation/propagation at the bottom 0◦/90◦ interface

was taken into account using cohesive elements. Within the macro-scale region, for the 3D/3D models, eight-

noded reduced integration 3D shell elements (SC8R) were used; the latter were replaced by conventional

four-noded reduced-integration 2D shell elements for the 3D/2D models. Both 3D and 2D shell elements
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Figure 6: ST and MST models used for the 3D/3D meso/macro coupling. 3D solid elements and 3D shell
elements are displayed, respectively, in blue and green, while the cohesive elements are shown in red.
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(b) 3D/2D MST model.

Figure 7: ST and MST models used for the 3D/2D meso/macro coupling. 3D solid elements and conventional
2D shell elements are displayed, respectively, in blue and green, while the cohesive elements are shown in
red.
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Table 1: Elastic properties of the plies, cohesive properties of the interfaces, and density used by Aymerich
et al. [28].

E11 E22 =E33 G12 = G13 = G23 ν12 = ν13 = ν23 ρ
93.7 GPa 7.45 GPa 3.97 GPa 0.261 1600 kg/m3

kN N GIc

120 GPa/mm 30 MPa 520 J/m2

kS = kT S = T GIIc = GIIIc

43 GPa/mm 80 MPa 970 J/m2

were not integrated though-the-thickness during the analysis; therefore, no additional integration points

were needed.

For all models, a constant in-plane element length `e = 0.25 mm was adopted for the entire structure

and, a thickness hcoh
e =20µm was used for the cohesive elements. Each of the 0◦3 and 90◦3 sublaminates were

discretized with two elements through their thickness when three-dimensional (solid or shell) elements were

used.

Simply supported boundary conditions were enforced either by constraining the z-displacement of the

nodes initially lying on the edges of rectangular supporting opening (3D/3D models), or through specific

MPC equations prescribed at the shell elements’ nodes on the outer edges of the panel (3D/2D models).

Further MPC equations were prescribed at the shell-to-solid interfaces including, for the 3D/2D MST model,

the nodes within the MST regions.

Simulations were performed using Abaqus/Explicit with a constant time step ∆t = 10 ns (∆tstable ≈
16.22 ns) and the total analysis time was equal to 4 ms. No mass scaling was considered during the simulations

and enhanced hourglass control was used for reduced-integration elements.

3.2.2. Multiple length and time-scale analysis

In addition to the multiple length-scale approach introduced in Section 3.2.1, a multi-solver technique

can be exploited. In the latter, different solvers can be used to simulate the mechanical response of different

portions of the structure, depending on where they are expected to provide the most computationally

efficient solution. Considering the problem in Section 3.1, material failure and complex contact interactions

at the impact location are best analysed using FE solvers based on explicit time-integration schemes, e.g.

Abaqus/Explicit, while the elastic behaviour of light and stiff components can, more efficiently, be simulated

with FE solvers using implicit time-integration schemes, e.g. Abaqus/Standard.

The use of different solvers leads to the definition of multiple time-scales at which the structural response

is simulated, i.e. an explicit/micro time-scale and an implicit/macro time-scale. The former is characterized

by a high number of short and relatively inexpensive time-steps, while a reduced number of larger time-steps

are required when implicit integrators are used, due to their unconditional stability.

Within this framework, the 3D/2D ST and MST models were decomposed into an explicit and an implicit

sub-model as shown in Figure 8. The 3D/2D coupling, either using a sudden discretization-transition

(Figure 8a) or the proposed MST (Figure 8b), is carried out within the explicit sub-model.

Simulations were performed using Abaqus/Explicit for the explicit sub-model with a constant time-

step ∆tXpl =10 ns (∆tstable≈16.22 ns) while Abaqus/Standard was used for the implicit sub-model, with a

constant time-step of ∆tImp =1 ms; the total analysis time was also equal to 4 ms. Enhanced hourglass control

was considered for reduced-integration elements and no mass scaling was used within Abaqus/Explicit.
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(a) ST multi time/length-scale model.
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(b) MST multi time/length-scale model.

Figure 8: Multiple length/time-scale models. The 3D/2D ST and MST models are decomposed into an
explicit and an implicit sub-model which interact through the interface nodes displayed in red.

The explicit and implicit analyses are coupled using the GC method [40, 41], a staggered method built

within the framework of the FETI method [42, 43] and implemented in Abaqus [16] in the form of a Co-

Simulation Engine (CSE). The velocity continuity is prescribed at the interface nodes (displayed in red1 in

Figure 8) by means of Lagrange multipliers. Although the detailed description of the GC method is beyond

the purpose of this paper, it is worth noting that its computational efficiency is primarily dependent on the

number of degrees of freedom (DOFs) belonging to the explicit sub-model and on the number of interface

nodes.

4. Results

4.1. Damage prediction

The interlaminar damage pattern at the bottom 0◦/90◦ interface, simulated with the FE models detailed

in Section 3.2.1, and using Ameso =28.25× 6.00 mm2, is shown for t=2.0 ms and t=4.0 ms, in Figure 9a and

Figure 9b, respectively.

1For interpretation of the references to colors, the reader is referred to the web version of this article.
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Figure 9: Interlaminar damage evolution at the bottom 0◦/90◦ interface. On the left, the evolution of
the damage variable d as function of the horizontal distance from the impact location; the x1 -coordinate
corresponds to the height where the delamination attains its maximum extension (3.375 mm for (a) and
4.875 mm for (b)). On the right, the delamination pattern for the five FE models considered.
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4.2. Computational efficiency

4.2.1. Multiple length-scale analysis

The CPU time t associated to the 3D/2D ST and to the 3D/2D MST models as function of the normalized

meso-scale area
Ameso

Atot
, is provided in Figure 10a. Results are normalized with respect to the CPU time of

the FL model t[FL].
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(a) Normalized CPU time as function of the normalized
meso-scale area for the 3D/2D ST and MST models. The
extension of the meso-scale region is progressively reduced
and the data point indicated with the red cross represents
the first configuration for which artificial damage at the
discretization-transition is observed.
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(b) On the left, the comparison between the smallest
meso-scale areas required to correctly capture the damage
pattern, with the ST model and the MST model; on the
right, the comparison between the corresponding CPU
times required by the optimal ST and the optimal MST

model.

Figure 10: Computational efficiency of the MST. The MST models allow the use of smaller meso-scale areas
and, thus, lower CPU times. For the proposed example, using the MST the meso-scale area is reduced by
nearly 60%, while the CPU time by nearly 23%.

Starting from the reference configuration (FL model), the extension of the meso-scale region was progres-

sively reduced until interlaminar damage was observed at the meso/macro-scale interface. The minimum

meso-scale areas required to correctly replicate the damage pattern when using either the ST or the MST

model, denoted in Figure 10a respectively as Â
[ST]
meso and Â

[MST]
meso, are compared in Figure 10b, together with

the corresponding CPU times t̂
[ST]
min and t̂

[MST]
min . Additionally, in Figure 10b we evaluated the benefits of the

MST through the reduction of meso-scale area ∆Ameso and the resulting reduction of CPU time ∆tmin

achieved when using the MST instead of a sudden discretization-transition as:

∆Ameso =
Â

[MST]
meso − Â[ST]

meso

Â
[ST]
meso

and ∆tmin =
t̂
[MST]
min − t̂

[ST]
min

t̂
[ST]
min

. (13)
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4.2.2. Multiple length/time-scale analysis

The ST and MST models used for the multiple length/time-scale analysis have, respectively, a meso-scale

area equal to Â
[ST]
meso and to Â

[MST]
meso, i.e. the smallest meso-scale areas for which damage is correctly replicated

with the sudden-discretization transition approach and using the proposed MST, respectively. The number

of DOFs in the explicit sub-model and the number of interface nodes for the ST model and for the MST model

are compared, respectively, in Figures 11a and 11b.
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(a) Number of DOFs in the explicit
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Figure 11: Computational efficiency of the MST model coupled with an implicit/explicit co-simulation
technique.

In Figure 11c, the absolute CPU time reductions |∆tmin| achievable with the MST are compared for the

cases of multiple length-scale analysis and of multiple length/time-scale analysis.

5. Discussion

5.1. Multiple length-scale analysis

The stress field disturbances resulting from the local/global coupling can lead to unrealistic interlaminar

failure at the meso/macro-scale interface, particularly when a sudden discretization-transition approach is

adopted (ST models), see Figure 9.

From the evolution of the damage variable d at t=2.0 ms (Figure 9a), it follows that, the stress distur-

bances are more pronounced in the case of 3D/2D coupling rather than for the 3D/3D case. Moreover, when

compared to the 3D/3D models, the extension of the lobe-shaped delamination is slightly underestimated

when using the 3D/2D models (Figure 9a). This characteristic is probably related to the different bending

response of 3D solid elements and 2D shell elements.
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If the discretization-transition is sufficiently close to the impact location, as the two lobe shaped de-

lamination grows, the latter interacts with the artificial failure at the discretization-transition, resulting in

excessively large delamination areas (see Figure 9b). The delaminated area predicted with the 3D/3D ST

model is much larger than that obtained using the 3D/2D ST model.

The CPU time associated to the ST and MST models decreases linearly with the extension of the meso-scale

region (see Figure 10a) and, as a result of the higher number of elements and of MPC equations required

at the global/local coupling, for equal values of Ameso the CPU time associated to the ST models is always

lower than that of the MST models. However, as the distance of the discretization-transition from the impact

location decreases, the damage pattern is not correctly replicated and failure at the global/local interface

is simulated when using the ST models. In Figure 10a, the first configuration for which the delamination

pattern is not correctly predicted with the ST models is marked with a red cross. With the proposed MST,

it is possible to use smaller meso-scale regions (∆Ameso ≈−60%) while accurately modelling the damage

pattern, as well as lower CPU times (∆tmin≈−23%) as shown in Figure 10b.

Although these specific values are, admittedly, dependent on the model’s size and on the specific analysis

performed, they confirm the capabilities of the approach proposed in this paper. The apparently large

discrepancy between the reduction of the meso-scale area and the corresponding computational gain (60%

v.s 23%) is justifiable by the higher number of finite elements and of MPC equations required when using

the MST.

5.1.1. Multiple length/time-scale analysis

The GC co-simulation technique has been successfully applied to study the response of reinforced concrete

structures subjected blast [44] and earthquake loading [45]. Additional applications include the simulation

of tire/road interaction during full vehicle durability tests [46, 47]. Recently, Brun et al. [48] analysed a flat

composite stiffened panel subjected to localised loads. In Brun et al.’s work [48], damage was not modelled

and the time-scale transition was not combined with an effective coupling between different length scales.

To the best of the authors’ knowledge, the example proposed in this paper represents the first attempt

towards the multiple length/time-scale modelling of composite structures experiencing localized damage.

When the MST is combined with the implicit/explicit co-simulation for a multiple length/time-scale

analysis, the possibility to minimize the meso-scale area becomes even more attractive. Interestingly, within

the framework of a multiple length/time-scale analysis, the meso-scale area reduction provided by the MST,

as opposed to a sudden discretization-transition approach, allows to decrease of the number of DOFs in the

explicit sub-model and of interfaces nodes, by about 43% and 20%, respectively (see Figures 11a and 11b).

As a result, the CPU time reduction achieved when using the MST increases, from the 23% obtained for

the multiple length-scale analysis, to about 49% in the case of multiple length/time-scale analysis.

6. Conclusions

In this paper, a Mesh Superposition Technique (MST) for a progressive element-type transition between

differently-discretized subdomains is proposed.

The MST is applied to the multiple length/time-scale analysis of a composite plate subjected to low-

velocity impact. The area of the structure that, in order to correctly capture the damage pattern, needs

to be modelled at the smallest length-scale can be significantly reduced when compared to a local/global
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model with a sudden discretization-transition (approximately 60% for the proposed example) and, therefore,

a computational cost saving might be achieved (approximately 23% CPU time reduction).

Finally, the MST was coupled with an implicit/explicit co-simulation technique for a multiple time/length-

scale analysis. The results indicate that, if the length-scale transition is performed using the proposed MST

instead of a sudden discretization-transition, the CPU time can be approximately halved (49%).
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