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Abstract Impact-induced fracturing creates porosity that is responsible for many aspects of the
geophysical signature of an impact crater. This paper describes a simple model of dilatancy—the creation
of porosity in a shearing geological material—and its implementation in the iSALE shock physics code.

The model is used to investigate impact-induced dilatancy during simple and complex crater formation

on Earth. Simulations of simple crater formation produce porosity distributions consistent with
observations. Dilatancy model parameters appropriate for low-quality rock masses give the best agreement
with observation; more strongly dilatant behavior would require substantial postimpact porosity
reduction. The tendency for rock to dilate less when shearing under high pressure is an important property
of the model. Pressure suppresses impact-induced dilatancy: in the shock wave, at depth beneath the crater
floor, and in the convergent subcrater flow that forms the central uplift. Consequently, subsurface porosity
distribution is a strong function of crater size, which is reflected in the inferred gravity anomaly. The Bouguer
gravity anomaly for simulated craters smaller than 25 km is a broad low with a magnitude proportional to
the crater radius; larger craters exhibit a central gravity high within a suppressed gravity low. Lower crustal
pressures on the Moon relative to Earth imply that impact-induced dilatancy is more effective on the Moon
than Earth for the same size impact in an initially nonporous target. This difference may be mitigated by the
presence of porosity in the lunar crust.

1. Introduction

One of the most important collateral effects of impact cratering on planetary surfaces is fracturing and frag-
mentation of the target rocks surrounding the crater. Impact-induced fracturing increases the porosity and
permeability of the cratered target, which has important implications for postimpact hydrothermal activity
[Kirsimde and Osinski, 2012], fluid (e.g., hydrocarbon) migration [Grieve, 2005], and possible microbial col-
onization [Cockell et al., 2012]. In addition, fracturing and brecciation are responsible for many aspects of
the geophysical signature of an impact crater, including the most characteristic feature: a circular negative
gravity anomaly centered over the crater [Pilkington and Grieve, 1992].

Impact-induced fracturing and brecciation is caused by both the passage of the shock wave and the sub-
sequent shear-dominated cratering flow [Collins et al., 2004]. The fracturing and comminution processes
create pore space between fragments and within fractures, reducing the bulk density of the subcrater mate-
rial. The tendency of rocks and granular materials to change (typically increase) volume during shear failure
is known as dilatancy, after Reynolds [1885] who first introduced the term to describe shearing granular
materials. Calculation of fracturing—i.e., damage accumulation—is routine in modern numerical impact
simulations [e.g., Ivanov et al., 1997; Collins et al., 2004]; accounting for dilatancy is not. As a result, most
impact simulations do not predict correctly density changes beneath an impact crater, which has limited the
scope for comparison of model results with geophysical data.

O'Keefe et al. [2001] were the first to explore the effect of dilatancy on impact crater formation. Their numer-
ical simulations suggested that dilatancy may have a large influence on final crater morphometry. Artemieva
et al. [2004] used the empirical link between plastic shear strain and density reduction to estimate the
volume increase of target rocks beneath the 10.5 km diameter Bosumtwi impact crater, Ghana, as a post-
processing step. They estimated that the effect of dilatancy was to reduce the final crater depth by 20-30%.
However, since these pioneering studies, little attention has been paid to impact-induced dilatancy in
numerical simulations.
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This paper describes a simple, computationally efficient, semiempirical approach for including dilatancy

in numerical impact simulations. Model implementation and verification is presented in the supporting
information and in Appendix A. The model is applied in a suite of idealized simulations of terrestrial impacts,
spanning simple and complex crater formation. Predictions of the model are compared against drill-core
measurements and geophysical data and models from terrestrial simple craters. Model results are also used
to investigate the role of dilatancy in complex crater collapse and to predict density and gravity anomalies
over craters on Earth and the Moon.

2, Dilatancy Model

Dilatancy is a well-known property of many geologic materials and is often quantified from triaxial compres-
sion experiments using the observed postfailure ratio of volumetric strain to axial strain (—de, /de,) [Vermeer
and De Borst, 1984]. Nonporous rocks and dense sands typically exhibit a maximum value of this ratio of
order 1; the ratio is much lower (and may be negative) for loose sands, highly porous materials, clay-rich
soils, and poor-quality rock masses [Vermeer and De Borst, 1984; Bolton, 1986; Hoek and Brown, 19971].

Dilatancy is also often quantified by a dilatancy angle y that is defined as
siny = - & __1

. - b
€, — 2¢, 1_232
€y

m

where €, is the appropriate plastic strain rate [e.g., Vermeer and De Borst, 1984]. This particular definition
(using the sine function) is most appropriate for analysis of triaxial compression tests, where de, /de, is
the quantity measured, under the assumption of a Mohr-Coulomb strength model, where shear stress
7,,=(0, — 03)/2 is linearly proportional to the mean stress ¢,,, = (o7 + 03)/2. As the plasticity model in iSALE
is defined in terms of different measures of stress and strain, dilatancy will be quantified here by a “dilatancy
coefficient” g, given as

p=o s @)
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where y, is the accumulated plastic shear strain given by y, = f A /26"56"5 dt and e‘,’; is the deviatoric plastic
strain rate tensor. For triaxial deformation (¢, = ¢;), f and y are related by
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An alternative way to conceptualize dilatancy, described in detail by Reiner [1945], is to consider the change
in internal pressure in a closely packed granular material undergoing isochoric deformation. If the deform-
ing volume of granular material is not allowed to dilate to occupy a greater volume, then deforming grains
will exert a pressure on the boundary of the volume in an effort to move over one another: permanent shear
strain results in an increase in pressure. It is this concept that will be exploited here to account for dilatancy
in the iSALE shock physics code.

A simple approach to account for dilatancy during shear failure in impact simulations is to supplement
the pressure computed by the equation of state with a “dilatancy pressure,’ representing the outward
force of grains moving past one another, in cells where shear failure has occurred [Johnson and Holmaquist,
1994]. This additional pressure effectively shifts the pressure-density relationship for the dilatant material
up (to a higher pressure) so that if the material unloads to the reference pressure the density drops to a
(dilated) bulk density that is below the reference density of the pristine material. Johnson and Holmquist
[1994] defined the dilatancy pressure from energy considerations, such that a user-specified fraction of the
elastic strain energy released during permanent deformation is converted into potential hydrostatic energy
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12 ‘ ‘ ‘ ‘ ‘ through an increase in pressure.
O’Keefe et al. [2001] adopted a simi-
lar approach, but instead modified the
equation-of-state surface at low pres-
sure such that the reference density
of the material decreased linearly as

a function of plastic strain from

2800 kg/m?3 at the point of failure

to a minimum reference density of
2000 kg/m? at a plastic strain of 0.1.

10

Dilatancy angle (°)

In the approach proposed here the
supplemental dilatancy pressure

° results from an addition of distension «

. . . . ; f 11 — p1-1
0.0 02 oz oe 08 5 1o (related to porosity ¢ by @ = [1 — ¢]7")

Relative distension (a, ., )/ (e to cells undergoing shear failure (plas-

- . . i tic shear deformation). Distension is the
Figure 1. Maximum dilatancy angle (as defined by equation (1)) as a . ] R ) .
function of relative distension for a variety of sands, as measured in ratio of grain density to bulk density
triaxial compression tests in which the mean effective pressure was (@ = ps/p); hence, if the bulk density p
0.15-0.6 MPa. Data are taken from Bolton [1986], and references therein. remains constant, an increase in disten-
Relati\'/e disFension isa rr.measur'e of the state of compaction qf a gr.anular sion produces an increase in the grain
matgrlal. It is the norm{allzed distension betweer? mins the distension 'fzt density p, and an associated increase
maximum closest packing of the granular material, and a5y, the maxi- . Thi his f d
mum distension, which is often defined by the porosity that results from In pressure. This ap.proaTC. IS favore
quickly inverting a container of the granular material. It is equivalent to for three reasons: First, it is computa-
the more commonly defined relative density. Note that the trend is linear  tionally expedient as it does not require
and the dilatancy angle is zero at a relative density of approximately 0.25. 3 new field (dilatancy pressure) to be

advected and stored. Second, in antic-
ipation of later application to impact crater formation, this approach allows density changes owing to
dilatancy to be separated from density changes owing to heating, as the former is recorded as a change
in porosity whereas the latter is recorded as a change in material density. Third, it is readily combined with
the existing algorithm to account for compaction of pore space in iSALE (the e-a model) [Wiinnemann et al.,
2006]. The recent discovery that the Moon'’s crust has substantial (~10%) porosity suggests that both dila-
tancy and compaction were important processes in the evolution of the lunar crust, which provides strong
motivation for an approach that can account for both processes at the same time.

The equation used to update the distension in cells undergoing shear deformation is

d_“_d_“%% (5)
dt ~ de, dy, dt

The first term in this equation, ddif =7, = 4 /Ze'gég, is the plastic shear strain rate, which is computed in
iSALE from velocity gradients in the cell. The final term in equation (5), :—:V, relates the dilation to a change in
distension. It can be defined by considering the idealized case of a dilatant material that experiences simple
shear deformation at constant internal pressure; that is, for which the grain density p, remains constant.
From the definitions of distension and volume strain, e, = In(p,/p), where p, is the initial bulk density, it
follows that :—e{’v =p/p=a.

The second and most important term in equation (5) is the dilatancy coefficient, = :%, as described previ-
ously. A semiempirical approach is adopted to define this term, which rock and soil meéhanics experiments
indicate is dependent on porosity, strain, and confining pressure [Vermeer and De Borst, 1984; Bolton, 1986;
Hoek and Brown, 19971. Figures 1 and 2 show maximum dilatancy angle (defined using equation (1)) as a
function of relative distension and confining pressure, respectively, from a range of sources [Bolton, 1986;
Alejano and Alonso, 2005, and references therein]. Trends derived from these empirical data form the basis
of the dilatancy model described here: g is defined as a function of distension (porosity), pressure p, and

temperature T according to
a —a log(p/10°) T
= 1- h — -1
ﬁ ﬂmax <ac = ®min ) [ l()g(plim/’I OS) an g Tm ' (6)
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where f .« @cr Xmins Piims @Nd & are
constant model parameters described
in detail below and T,,, is the melt
temperature of the material at
pressure p.

Hence, the dilatancy coefficient has a

R maximum value (f,,.,) at zero porosity
S| (o = 1), pressure, and temperature and
2or RN | decreases as any of these three vari-
ables increase. Equation (6) is valid for
T < Toitmin < @ < Qe and 10°
Pa< p < pjm- The dilatancy coeffi-
N cient tends to zero as (i) the distension
10° 10° 107 108 approaches a critical distension a,;
Pressure (Pa) (ii) the pressure approaches the limiting
pressure py.,; or (iii) the temperature
reaches the melt temperature T,,,. Note
that T, is the melt temperature at pres-
sure p and not a constant. The form of
the distension term is supported by
dilatancy measurements for sand (see
Figure 1) [Bolton, 1986, and references
therein] and permits negative dilatancy
coefficients for a, < a < a,,,. The pressure term is supported by dilatancy measurements for rocks and sand
(see Figure 2) [Bolton, 1986, and references therein]. These functional forms are similar to the model of dila-
tancy proposed by Bolton [1986]. The efficacy of both these terms was also tested by comparing numerical
triaxial compression simulations against experimental data (see Appendix A). The form of the temperature
term has no direct empirical basis; it was chosen for consistency with the thermal softening function in the
strength model used in iSALE [Ohnaka, 1995; Collins et al., 2004].

Dilatancy angle (°)

Figure 2. Maximum dilatancy angle (as defined by equation (1)) as

a function of pressure for a variety of sands and rocks as measured

in triaxial compression tests. Data for sands are taken from Bolton
[1986], and references therein; data for rocks are taken from Alejano
and Alonso [2005], and references therein. The abscissa represents the
mean effective stress at the point of failure p for the sand data and
the confining pressure o5 for the rock data. The data are well fit by a
logarithmic function.

Equation (6) contains four material constants (., @/ Pjims @nd &). The last term, which is also a constant in
the strength model, can be found from experimental measurements of strength degradation as a function
of temperature [e.g., Ohnaka, 1995], which suggest & ~ 0.7-1.2 [Collins et al., 2004; Ivanov et al., 2010]. Mea-
surements of dilatancy in sand suggest that @, =~ 0.25a,,;, + 0.75a,,,, (see Figure 1), where a,,,, (typically
1.8-2.1) is the distension of the sand in its most distended state and a,,,;, (typically 1.45-1.6) is the distension
of the sand under maximum closest packing (cf. maximum and minimum voids ratio). Typical distension val-
ues for a variety of sands imply a. = 1.7-2. However, if distension is redefined relative to a,,, (i.e., the sand
is considered to have a distension of one at maximum closest packing), the same data imply &, = 1.15-1.25,
which corresponds to a density decrease of 15-20%. Although no empirical support for a value of «_ in this
range for nonporous rock is available, validation simulations conducted in this work are consistent with

a, ~ 1.2. We also note that bulking observed in the ejecta and the breccia lens at terrestrial craters is typ-
ically 15-20% [e.g., Pilkington and Grieve, 1992], consistent with this value representing the minimum bulk
density caused by impact-related dilatancy.

Measurements of dilatancy suggest that the confining pressure o5 required to suppress dilatancy is ~10 MPa
for sand and ~100 MPa for a range of sedimentary rocks (see Figure 2); the mean stress (pressure) associated
with this suppression will be somewhat higher. Simulations conducted to validate the dilatancy model as
part of this work suggest p;,, ® 50 MPa for sand and p;;,, & 800 MPa for rock (see Appendix A). It is also
noteworthy that the range of confining pressures p;;,, = 100-800 MPa is consistent with the depths at which
fractures in the crust are expected to close under lithostatic pressure [e.g., Pilkington and Grieve, 1992].

An estimate of the maximum dilatancy coefficient f,,,, as defined here can be derived from measurements
of the maximum dilatancy angle y obtained from shearbox and triaxial compression tests (see equation (3)).
The estimate is not perfect, however, as pressure is never zero in such experiments. Vermeer and De Borst
[1984] suggest that typical dilatancy angles for a range of geologic materials including sand, concrete, and
rocks are between 0 and 20°. Alejano and Alonso [2005] show peak dilatancy angles at the onset of failure
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Table 1. Material Model Parameters for Impact Cratering Simulations

Parameter Symbol (Units) Value
Reference density o (kg/m3) 2650
Poisson’s ratio v 0.25
Intact cohesive strength Yio (MPa) 10
Intact friction coefficient Hi 2
Intact strength limit Yiim (GPa) 25
Damaged cohesive strength Y40 (MPa) 0.01
Damaged friction coefficient Uy 0.7
Melt temperature (p = 0) T (K) 1673
Thermal softening coefficient & 1.2
Acoustic Fluidization decay time constant Vg 300
Ac. fluid. viscosity constant n 0.015
Maximum dilatancy coefficient - 0.045, 0.09,0.18
Dilatancy pressure limit Piim (MPa) 200.
Critical distension ac 1.2
Critical friction coefficient He 0.4
Initial distension ay 1.0
Minimum distension Xmin 1.0

as large as 50° for a range of sedimentary rocks under low-confining pressures (e.g., see Figure 2); how-
ever, in such cases the dilatancy angle drops rapidly to below 20° after less than 1% strain. Hence, a realistic
expected range of f,,,, & 0 — 0.5, although values of order 1 may be possible for some rocks. This range is
consistent with results of simulations of trixial compression tests described in Appendix A.

It is worth noting that when applying the present dilatancy model to the deformation of large rock masses,
it may not be appropriate to derive model parameters from measurements of centimeter-scale samples.
Although triaxial tests exploring the sensitivity of peak dilatancy angle to sample size suggest only a modest
(~10%) reduction in peak dilatancy angle over an order of magnitude range in sample diameter [Medhurst,
1997], if extrapolated to the kilometer scale, this would result in a factor of 2 reduction in dilatancy angle.
Moreover, experience from engineering assessments of rock mass strength and failure suggests that dila-
tancy angle varies between 0 and 12° and is a function of rock mass quality [Hoek and Brown, 1997]. A
dilatancy angle one quarter of the friction angle (~ 12°) is expected for a very good quality hard rock mass
with a Geological Strength Index (GSI) >75; an angle of 4° (1/8 of the friction angle) is expected for an aver-
age quality hard rock mass with a GSI ~50; and a zero degree dilatancy angle is expected for a very poor
quality rock mass with a GSI <30 [Hoek and Brown, 1997]. As will be demonstrated subsequently, impact
simulations that assume a maximum dilatancy angle of a few degrees generate density anomalies that are
most consistent with gravity data collected at terrestrial impact structures, suggesting that these represen-
tative values for rock masses are more appropriate for planetary cratering studies than those derived from
laboratory measurements.

3. Cratering Simulations

The dilatancy model described in section 2 was implemented in the iSALE shock physics code [Wiinnemann
et al., 2006; Collins et al., 2004], a multirheology, multimaterial extension to the finite-difference SALE
hydrocode [Amsden et al., 1980]. iSALE is well tested against laboratory experiments at low- and high-strain
rates [Wiinnemann et al., 2006], as well as other impact simulation codes [Pierazzo et al., 2008], and has been
widely used to numerically simulate terrestrial impact crater formation [e.g., Collins and Wiinnemann, 2005;
Collins et al., 2008; Wiinnemann et al., 2005; Goldin et al., 2006]. Dilatancy model implementation involved
modifying the “radial return” plasticity algorithm [Wilkins, 1964], which defines how deviatoric stresses that
exceed the yield envelope are mapped back to the yield surface during plastic deformation. A description of
these modifications is given in supporting information, and model verification and testing are described in
Appendix A.

To explore the role of dilatancy in impact crater formation, iSALE was used to simulate impacts on Earth at
a range of scales. Simulations considered a range of impactor diameters between 100 m and 20 km, which
produced a range in crater size that spans the known terrestrial impact crater record (for those impacts
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Figure 3. Impact-induced dilatancy during simple crater formation.
Porosity evolution from a simulation of a 250 m diameter asteroid
impact at 15 km/s into a crystalline target with a maximum dila-
tancy coefficient f,,, = 0.045, which results in a ~4 km diameter
simple crater. Thin solid lines show porosity contours of 0.1, 1, 5, 10,
and 15%; the dotted lines indicate target rock deformation.

not significantly affected by atmospheric
entry). A spatial resolution of 10-20 cells
per projectile radius was used for all sim-
ulations. For simplicity and computational
expediency, all impacts were treated as
vertical and assumed a constant impact
velocity of 15 km/s. The influence of impact
angle and velocity on impact-induced
dilatancy will be explored in future work.
As the principal aim of this work was to
explore trends in impact-related dila-
tancy with crater size, rather than replicate
specific impact events, most simulations
used a simple, uniform, nonporous crys-
talline rock material model (granite) to
represent the target and a constant grav-
itational acceleration g=9.81 m/s2. The
exceptions were the two largest impact sce-
narios where a mantle layer was included
below 35 km depth. The granite mate-

rial model was also used to represent the
impactor. To describe the thermodynamic
behavior of the material, equation-of-state
(EoS) tables generated using the ana-

lytic EoS (ANEOS [Thompson and Lauson,
1972]) software package were used, with
input parameters appropriate for the gran-
ite crust [Pierazzo et al., 1997] and dunite
mantle [Benz et al., 1989].

To describe the resistance of the material

to shear deformation, the strength and
damage models described by Collins et al.
[2004] and Ivanov et al. [2010] were used,

in conjunction with the modifications for
dilatancy. Note that the dilatancy modifica-
tions did not include changes to Poisson’s
ratio v, which is assumed to be constant (see
Table 1), implying a fixed ratio between the
shear modulus G and the bulk modulus K
(determined by the equation of state). As
Poisson’s ratio of most rocks depends on
porosity [Walsh, 1965], and can increase or
decrease with porosity depending on the
crack geometry [Shearer, 1988], it may be
important to account for this variation in
future refinements of the dilatancy model
(and the related porous compaction model).
For now, the assumption of constant Pois-
son’s ratio, which is widely employed in
numerical impact models, serves as a use-
ful first approximation. The strength model
modifications for dilatancy include a new
dependence of the coefficient of friction (for
the damaged material) on distension
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Figure 4. Porosity distribution beneath the final simulated ~4
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km diameter simple craters and the resultant Bouguer grav-
ity anomaly at the level of the preimpact surface. Simulation
results are shown for three different values of the maximum
dilatancy coefficient 5 = 0.045, 0.09 and 0.18, which
are appropriate for low-GSI, average-GSl, and high-GSI rock
masses, respectively. Thin solid lines represent porosity con-

tours of 0.1, 1, 5, 10, and 15%j; the dotted lines indicate target

rock deformation.

(supporting information), which was assumed
to drop linearly from pyata = 1to p, ata,

(. is the coefficient of friction in the critically
dilatant state and was taken to be 0.6, based
on the behavior of dense sand [Hettler and
Vardoulakis, 1984]. While this modification has
little effect on complex crater collapse, it

was found to be important to replicate the
observed thickness of breccia in terrestrial sim-
ple craters. For large impact crater formation the
strength model must include some form of tran-
sient target weakening model that facilitates
deep-seated gravitational collapse of the tran-
sient crater [Melosh, 1989; Melosh and Ivanov,
1999]. The physical rationale for this apparent
target weakening is still a matter of debate [e.g.,
Senft and Stewart, 2009]; in the models presented
here it is assumed that acoustic fluidization

of the target rocks is the primary weakening
mechanism [Melosh, 1979]. In the present ver-
sion of iSALE, the effects of acoustic fluidization
are incorporated using the “block (oscillation)
model” [Melosh and Ivanov, 1999; Ivanov and
Artemieva, 2002; Wiinnemann and Ivanov, 2003].
The choice of block model and other strength
model input parameters was based on previous
successful models of large crater formation on
Earth [e.g., Collins and Wiinnemann, 2005; Collins
et al., 2008; Wiinnemann et al., 2005; Goldin et al.,
2006] and the Moon [Wiinnemann and Ivanov,
2003]; however, it is noted that the choice of
block-model parameters is nonunique and the
present model parameters are not regarded

as definitive. All the important strength model
parameters used in the simulations presented
here are included in Table 1; the interested reader
is referred to Collins et al. [2004] and Ivanov et al.
[2010] for more detailed parameter definitions.

To explore the influence of dilatancy on
impact-generated porosity, simulations were
performed with three different values of the
most important model parameter, the maximum
dilatancy coefficient g,,,, = 0.045, 0.09, and 0.18.
These represent approximate values appropri-
ate for rock masses with a low, average, and high
Geological Strength Index (GSI), respectively,
following guidelines relating GSI to the ratio

of dilatancy angle and friction angle [Hoek and
Brown, 1997]. These and the remaining dilatancy
model parameters are presented in Table 1.
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Figure 5. Porosity as a function of depth beneath the preimpact target
surface as derived from numerical simulations of a ~4 km diameter crater
on Earth. Simulation results are shown for three different values of the
maximum dilatancy coefficient f,,, = 0.045, 0.09, and 0.18, which are
appropriate for low-GSI, average-GSI, and high-GSI rock masses, respec-
tively. Shown for comparison is the inferred porosity beneath the floor of
the Brent impact crater, Canada, based on density measurements from
drill-core sampling [Innes, 1961]. Solid symbols show the mean porosity

4, Results

4.1. Impact-Induced Dilatancy in
Simple Crater Formation

Impact simulations that used an
impactor diameter L of 100-250 m
produced simple craters. The crater
evolution and generation of porosity
by dilatancy for the L = 250 m impact is
depicted in Figure 3. In this simulation
Prax = 0.045, which is the assumed
value for a low-GSI rock mass; the effect
of maximum dilatancy coefficient on
the porosity distribution beneath the
final crater is shown in Figure 4. As illus-
trated by the 0.1% porosity contour

at 1 s after impact, propagation of the
shockwave through the target results
in only a minor porosity increase < 1%
that extends to a radius of ~1 km, apart
from very near the surface where dila-
tion is enhanced by the interaction
between the detached shock and the

over each sampling interval; the boxes delimit the full range of porosity free surface (Figure 3). Although the
(minimum to maximum) over the interval. A depth of 200 m was added plastic strain rate is high during shock

to the sampling depths to correct for postimpact erosion. . .
pling dep P P propagation, the elevated pressure in

the shock wave suppresses dilatancy
away from the surface. Dilation of the rocks surrounding the crater increases during the subsequent exca-
vation flow, particularly at shallow depths and in the ejecta curtain, where confining pressure is low. This
results in a porosity of a few percent in the wall and floor of the transient crater, which forms at around 10 s.
Finally, further dilation occurs during debris sliding as the unstable transient crater rim collapses back into
the crater. The final porosity of the breccia lens ranges from 5% at its base to the maximum porosity of 17%
defined by the critical dilatancy distension o, = 1.2. Simple crater formation in a more strongly dilatant
target (f.x = 0.09-0.18) results in higher-absolute porosities, but the spatial distribution of porosity is
qualitatively similar (Figure 4).

The final porosity distribution beneath the crater can be compared with observations and geophysical
models of terrestrial simple impact craters. Figure 5 shows porosity as a function of depth (relative to the
preimpact surface) for three impact simulations of a L = 250 m impactor that each assume a different max-
imum dilatancy coefficient f,,,, corresponding to nominal values for a low-GSI rock mass, an average-GSlI
rock mass, and a high-GSI rock mass [Hoek and Brown, 1997]. For comparison, porosity as a function of depth
beneath the Brent impact crater was inferred from density measurements of drill-core samples [Innes, 1961].
The well-studied Brent impact crater, Canada, is the type-example of a simple crater formed in a crystalline
target [Dence et al., 1977; Grieve et al., 1989]. It has an apparent crater diameter of 3 km; the estimated rim
diameter of the pristine crater is 3.8 km [Dence et al., 1977]. The present level of erosion is estimated to be
about 200 m below the preimpact target surface, the apparent crater floor is 260 m below the surface, and
the crater is filled with postimpact sediments [Grieve et al., 1989]. Density measurements (mean, min, max)
from ~30 m intervals of a ~1 km drill core near the crater center [Innes, 1961] were converted to porosity
assuming a nominal constant grain density of 2.7 g/cc. To adjust for postimpact erosion, sampling depths
were shifted down by 200 m. The porosity-depth profiles from all three impact simulations are broadly con-
sistent with the observed decrease in porosity with depth beneath the crater, particularly at the base of
the breccia lens (z ~ 1 km) and below. Within the breccia lens the model that assumed the lowest max-
imum dilatancy angle (low GSI) is most consistent with observations. More strongly dilatant behavior is

not supported by this comparison but might be accommodated by postimpact closure or filling of pore
space, in particular by water or other pore fluids not accounted for in the model. Interestingly, the numerical
simulations predict enhanced dilatancy at the base of the breccia lens caused by shear localization; this is
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consistent with the observed local
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- maximum in porosity at 1 km depth. It
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é is possible that higher-resolution sim-
> 4 | ulations would better capture shear
©
g localization at the base of the breccia
C
g -6 g lens, resulting in a more prominent
% ol Lo porosity high that is a better match to
@ High GSI the observations.
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—10% 05 1o 15 2.0 25 3.0 An alternative method to test the

veracity of the numerical simulation

: : results is to compare the Bouguer
\\““_._ gravity anomaly of the final simu-

: o lated impact structure with Bouguer
anomalies over terrestrial craters.
Figure 4 shows the relationship
between the simulated porosity

z [km]

1= ;‘\’,‘ggi: | anomaly beneath a ~4 km diame-
; High GSl || ter simple crater (forL = 250 m;
%0 05 10 15 2.0 25 3.0 low GSI, f.x = 0.045; Figure 3)
r [km] and the resulting Bouguer gravity
Figure 6. (top) Bouguer gravity anomaly and (bottom) final crater topog- anomaly. The method for calculating
raphy as derived from numerical simulations of a ~4 km diameter crater the Bouguer anomaly from the poros-

on Earth. Shown for comparison is the Bouguer gravity anomaly over
the Brent impact structure at the present level of erosion, including the
contribution of postimpact sedimentary fill [Innes, 1961; Grieve et al.,
1989]. For direct comparison with the Brent gravity anomaly, the Bouguer s reduced to the preimpact surface
gravity anomalies for the simulated craters were calculated at the level (i.e., the mass distribution above the
z = —0.2 km (mass differences above this level were neglected), to account preimpact surface is removed, and
for postimpact erosion, and assuming a relative density of —0.17 g/cc for
the sedimentary crater fill. Simulation results are shown for three differ- . ) A )
ent values of the maximum dilatancy coefficient §,,,,, = 0.045,0.09,and surface with material with a density
0.18, which are appropriate for low-GSI, average-GSl, and high-GSI rock equivalent to the preimpact target).

masses, respectively. The magnitude of the Bouguer

gravity anomaly is —3.6 mgals; the
equivalent anomaly magnitudes for impacts on the average-GSI and high-GSlI targets are —5.1 mgals and
—6.8 mgals, respectively. This range is within the spread of negative Bouguer anomaly magnitudes for large
terrestrial simple craters compiled by Pilkington and Grieve [1992]; for example, Brent has a Bouguer grav-
ity anomaly of —5 mgals. However, for many of these craters the Bouguer gravity anomaly is affected by
postimpact erosion and/or infill by low-density sediments. To more accurately compare numerical model
predictions with the observed gravity anomaly at Brent, the Bouguer gravity anomalies were recalculated to
account for postimpact erosion and sedimentary infill, by reduction to a datum 200 m below the preimpact
surface and by assuming a relative density of —170 kg/m? for the crater fill, consistent with drill-core mea-
surements [Innes, 1961]. Figure 6 compares the observed Bouguer gravity anomaly at Brent to the anomalies
produced by impact simulations that assumed a low-, average- and high-GSl target responses. While the
diameter of the anomaly is consistent with all three numerical results, the —5 mgal Bouguer anomaly magni-
tude is most consistent with impact on a weakly dilatant, low-GSI target. However, postimpact filling of pore
space by water or compaction by burial are not accounted for in the model and would reduce the synthetic
gravity anomaly magnitude.

ity distribution is described in the
supporting information: the anomaly

the crater is filled to the preimpact

Although the maximum dilatancy angle has a considerable effect on the gravity anomaly magnitude, it
has only a minor influence on transient crater dimensions and final crater topography (Figure 6). Transient
(precollapse) crater volume (below the preimpact surface) is less than 3% larger for g,,,, = 0.045 (low GSI)
compared with g, = 0.18 (high GSI), owing to a small (~1%) decrease in transient crater diameter with
Bmax- The effect of dilatancy on final crater dimensions is more pronounced, emphasizing the importance of
the collapse stage in porosity generation. Final crater depth is 20% larger and final diameter is 5% smaller
for fax = 0.045 compared with .., = 0.18 (Figure 6).
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Figure 7. Impact-induced dilatancy during complex crater forma-
tion. Porosity evolution from a simulation of a 3.2 km diameter
asteroid impact at 15 km/s, which results in a ~40 km diameter
complex crater. Thin solid lines represent porosity contours of 0.1,
1, 5, and 10%; the dotted lines indicate target rock deformation.

4.2. Impact-Induced Dilatancy in Complex
Crater Formation

Impact simulations that used an impactor
diameter L >500 m produced complex
craters. As shown in several previous numer-
ical studies [e.g., Melosh and Ivanov, 1999;
Wiinnemann and Ivanov, 2003], dynamic
weakening of the target material by acous-
tic fluidization facilitates deep-seated uplift
of the crater floor and collapse of the rim,
resulting in a crater evolution qualitatively
different to simple crater formation. With
increasing impactor diameter the extent and
longevity of weakening is increased, resulting
in more extensive collapse. In small complex
craters central uplift produces a central peak;
for larger impactor sizes the central uplift
overshoots the preimpact surface and then
collapses downward and outward to form

an annular topographic high (i.e., peak ring)
[Collins et al., 2002; Ivanov and Artemieva,
2002]. This size-morphology progression

is well documented in previous numeri-

cal impact modeling studies [e.g., O’Keefe
and Ahrens, 1999; Melosh and Ivanov, 1999;
Wiinnemann and Ivanov, 2003]. The new infor-
mation afforded by the present study is the
predicted generation of porosity by dilatancy
during complex crater formation. Figure 7
depicts the generation of porosity during a
simulation ofaL = 3.2 km impact, which
results in a crater approximately 40 km in
diameter (at an impact velocity of 15 km/s
and for f,,, = 0.045). The effect of maximum
dilatancy coefficient on the final porosity dis-
tribution and Bouguer gravity anomaly is
shown in Figure 8.

As for simple crater formation, porosity cre-
ated during the passage of the shock wave is
limited to <<1% because of the high pressure
in the shock. In addition, the higher over-
burden pressure suppresses shock-induced
dilatancy below a few km depth, as shown
by the extent of the 0.1% porosity contour
atT = 5s (Figure 7). Dilation of the rocks
surrounding the crater increases during the
subsequent excavation flow, particularly at
shallow depths and in the ejecta curtain,
where confining pressure is low, but high
pressure limits dilation beneath the crater
floor. This results in a porosity of a few per-
cent in the rim of the transient crater and
<1% beneath the crater floor, which forms at
around 40 s. Further dilation occurs during
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Figure 8. Porosity distribution beneath the final simulated
~40 km diameter complex craters and the resultant Bouguer
gravity anomaly at the level of the preimpact surface. Sim-
ulation results are shown for three different values of the
maximum dilatancy coefficient f,,, = 0.045, 0.09, and 0.18,
which are appropriate for low-GS|, average-GSl, and high-GSI
rock masses, respectively. Thin solid lines represent porosity
contours of 0.1, 1, 5, 10, and 15%; the dotted lines indicate
target rock deformation.

transient crater collapse, particularly in the sub-
siding shallow, near-rim area. More modest
dilation occurs in the central uplift, again owing
to the high pressures associated with the con-
vergent flow—only during outward (divergent)
collapse of the central uplift (T> 100 s) are condi-
tions in the central region conducive to dilation.
The consequence of dilatancy suppression in the
central uplift is that at a given depth, porosity
first increases with radial distance until it reaches
a maximum beneath the annular trough, before
decreasing again at greater distances. The higher
overburden pressure (compared to the simple
crater scenario) also implies that the maximum
porosity is <15%; the critical dilatant state is not
achieved in this simulation, although it is pos-
sible that higher-resolution simulations might
produce higher porosity in the highly strained
near-surface region.

The attenuation of porosity with depth beneath
the final craters in Figure 8 can be compared with
results from the deep drill core beneath the cen-
ter of the ~40 km diameter Puchezh-Katunkski
impact structure, Russia [Masaitis and Pevzner,
1999]. It is worth noting that the assumption of
a uniform crystalline target is not a good approx-
imation for the Puchezh-Katunkski preimpact
target, which comprised a thick sedimentary
sequence above a heterogeneous crystalline
basement. However, as the sedimentary layer
would have been almost entirely excavated
from the center of the crater, it is reasonable to
compare the present model results with data
from the drill core through the central uplift of
crystalline basement. At Puchezh-Katunkski,
porosity measurements of crystalline rock sam-
ples to depths exceeding 5 km [Masaitis and
Pevzner, 1999] show a decrease in mean poros-
ity from ~12% at the top of the impact-affected
sequence to 1-2% at 5 km depth. Figure 9 com-
pares the range of measured porosities (mean,
standard deviation, minimum, and maximum)
to porosity-depth profiles beneath the center

of the final crater for simulations that assumed
three different maximum dilatancy coefficients,
appropriate for low-, average-, and high-GSI rock
masses. The model results are broadly consis-
tent with observations for the range of dilatancy
model parameters used. At shallow depths the
model results for the strongly dilatant, high-GSI
target model are most consistent with the mea-
sured porosities; nearer the base of the drill core,
the more weakly dilatant target models (low-GSI
and average-GSl) give results that are more
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- T placed megablocks beneath the floor of the
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for in Figure 9. Hence, the inferred porosity

Figure 9. Porosity as a function of depth beneath the preimpact from drill-core samples may underestimate
target surface as derived from numerical simulations of a ~40 km the total subcrater porosity.
diameter crater on Earth (Figure 7). Simulation results are shown

Porosity [%]

for three different values of the maximum dilatancy coefficient Also shown in Figure 9 is the porosity-depth
ﬁmax = 0.045, 0.09, and 0.18, which are appropriate for low-GSl, proﬁle in the average_GS| model at a radius
average-GSI, and high-GSI rock masses, respectively. Shown for of 10 km (dot-dashed line), through the

comparison are the ranges of observed porosity beneath the . .
Puchezh-Katunkski impact crater in Russia, based on drill-core sam- annular trough where dilatancy is most
pling [Masaitis and Pevzner, 1999]. The grey boxes span 1 standard effective (see Figure 7). Porosities beneath
deviation about the mean sample porosity; the white boxes span the annular trough are slightly above

the minimum-maximum range of porosity. the maximum porosities observed in the

deep drill core at the center. A comparison
between this profile and the profile beneath the center of the crater in the same model (dashed line) is a
measure of the effect of the convergent flow in suppressing dilatancy in the central uplift.

The Bouguer gravity anomaly of the final simulated impact structure shown in Figure 7 is depicted in
Figure 8, together with the corresponding anomalies for simulations that assumed f,,,, = 0.09 and 0.18.
As with the simple crater scenario, the magnitude of the porosity and Bouguer gravity anomalies increases
with maximum dilatancy coefficient, but the qualitative distribution of porosity and associated character of
the Bouguer anomaly is the same. Figure 10 shows the final porosity distribution beneath other simulated
complex craters and their associated Bouguer gravity anomalies. Results are shown for impactor diameters
of L = 1 km, 2 km, 5 km, and 10 km, which produced craters with rim diameters D = 14 km, 24 km, 60 km,
and 110 km, respectively. The simplified target representation (uniform crystalline rock) precludes a detailed
comparison of numerical model results with observed anomalies at specific craters. However, the change in
anomaly character and magnitude with crater size can be compared with trends in terrestrial observations
[Pilkington and Grieve, 1992]. With increasing crater diameter the shape of the Bouguer anomaly changes
from a broad gravity low with no central anomaly (D < 24 km) to a broad low with a small, central (relative)
positive anomaly at D = 40 km. This is broadly consistent with the gravity signature of terrestrial craters:
most terrestrial craters larger than 30 km diameter exhibit a central gravity high, whereas most smaller
craters do not. The amplitude of this relative central high in the Bouguer gravity increases with increasing
crater diameter; it is almost equivalent in magnitude to the broad negative anomaly at a crater diameter of
D=110 km. In the numerical simulations, which almost all assume an approximately uniform density preim-
pact target, the cause of this central positive anomaly is the suppression of dilatancy in the central uplift: less
porosity is created in the central uplift than the annular trough, owing to elevated pressure in the conver-
gent uplift and higher temperatures beneath the crater floor. Only in the 110 km diameter crater simulation
does uplift of high-density rocks (in this case the mantle) contributes to the gravity anomaly, and even in
this case, the contribution is very small.

For each simulated impact crater, the magnitude of the broad negative Bouguer gravity anomaly Ag is
shown as a function of crater diameter D in Figure 11. Results are shown for the three suites of simula-
tions using different values for the maximum dilatancy coefficient, appropriate for low-, average-, and
high-GSI rock masses. Results from all three simulation suites show a consistent trend. For craters smaller
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Figure 10. Porosity distribution beneath the final simulated complex craters formed by impactor diameters of (a)
L=1km,(b)L = 2km,(c)L = 5km, (d) L = 10 km, and the resultant Bouguer gravity anomaly at the level of the
preimpact surface. All simulations used a low-GSI rock mass maximum dilatancy coefficient f,,x = 0.045. Thin solid lines
represent porosity contours of 0.1, 1, 5, 10, and 15 %; the dotted lines indicate target rock deformation.

than D ~ 24 km, negative gravity anomaly magnitude increases approximately linearly with crater diameter;
for larger craters, anomaly magnitude increases with diameter at a smaller rate. Intuitively, gravity anomaly
magnitudes are consistently larger (more negative) for models that assumed a more strongly dilatant mate-
rial response; negative anomalies are 2-3 times larger for the high-GSI target models than for the low-GSlI
target models.

The model results can be compared with the observed magnitude of the negative anomaly at terrestrial
impact structures in crystalline and mixed crystalline/sedimentary targets compiled by Pilkington and Grieve
[1992]. There is considerable scatter in the terrestrial gravity anomaly data, particularly at low crater diame-
ters. This is in part because many gravity anomalies include the contribution from low-density postimpact
crater fill, which can be the dominant cause of the anomaly in simple craters. For example, the large nega-
tive anomalies at Lonar (—3.6 mgals), Pretoria Salt Pan (—5 mgals), Tenoumer (—10 mgals), and Roter Kamm
(—=9.3 mgals) are all dominated by sedimentary infill (grey symbols in Figure 11). The residual contribution
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that the porosity distribution in the most
weakly dilatant, low-GSI target simula-
tions is most consistent with the gravity
anomalies at these craters.

Crater diameter (km)

Figure 11. Negative Bouguer gravity anomaly magnitude as a function
of crater diameter for various simulation suites. Shown for comparison

are Bouguer gravity anomaly magnitudes for terrestrial craters in crys-

talline f'md mixed sedlmentary and Frystallme ta.rgets after Pllkmgton Accounting for these corrections (which
and Grieve [1992]. The line Ag = D is shown to illustrate proportion- .

. . . . are not exhaustive), several aspects of
ality between gravity anomaly magnitude and crater diameter. The : . .
grey symbols denote the gravity anomalies discussed in the text that the terrestrial data are consistent with
include the effect of postimpact sedimentary infill; the corrected values  the model results. The spread in gravity

are shown in white. anomaly magnitude at a fixed crater size

is approximately a factor of 2-3; at small
crater diameters the negative anomaly magnitude is approximately proportional to crater diameter; and
there is an apparent reduction in the slope of log(Ag)-log(D) at a crater diameter of 10-20 km diameter. At
small crater sizes D < 24 km, simulated anomaly magnitudes produced in low- to high-GSI targets span the
range of observed negative gravity anomaly magnitudes, although a greater number of observed anomalies
are consistent with simulated impacts in low-GSI targets. At larger crater sizes, only the gravity anomalies
produced by impacts in low-GSI targets are consistent with observed anomaly magnitudes.

5. Discussion

Numerical simulations of terrestrial impacts in uniform crystalline targets, using the dilatancy model with
parameters appropriate for rock masses of varying degrees of quality, result in porosity and gravity anoma-
lies that are broadly consistent with observation. The impact simulations that assumed a low maximum
dilatancy coefficient, f,« = 0.045, appropriate for low-quality, low-GSI rock masses, appear to gener-
ate porosity distributions and gravity anomalies most consistent with observation. More strongly dilatant
behavior (i.e,, 0.045 < f,., < 0.18) cannot be ruled out (and indeed may be appropriate in some cases)
but would require some of the impact-induced porosity to be closed or filled after the impact to be gener-
ally applicable. At least partial pore filling is expected in environments where liquid water is stable, which
would reduce the density and gravity anomaly of the crater. A lack of correlation between impact crater age
and gravity anomaly magnitude [Pilkington and Grieve, 1992] suggests that postimpact pore closure is not
universal; however, a more detailed comparison between model predictions of postimpact porosity and
geophysical observations is required to better constrain the dilatancy model parameters.

Another factor that will influence gravity anomaly magnitude is the initial porosity of the target. In the
simulations presented here, for simplicity the preimpact target was assumed to be nonporous. The pres-
ence of initial pore space will have two effects. First, the impact will permanently compact pore space

in a proximal zone where pressures exceed the crushing strength [Wiinnemann et al., 2006], increasing
the relative density of the target near the crater center. Second, as the dilatancy coefficient is a decreas-
ing function of porosity, target rocks with a high initial porosity will be more weakly dilatant than those
with little-to-no porosity. Hence, it is likely that initial porosity will act to reduce the overall mass deficit
caused by impact-induced damage and may even result in a relative mass excess if pore space compaction
dominates pore space creation by dilatancy. The role of preimpact porosity is of particular importance for
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understanding impact-induced density changes
on the Moon, where the present average crustal
porosity is ~12% [Wieczorek et al., 2012].

The decrease in dilatancy coefficient with increas-
ing pressure is an important property of the
model and has three effects on impact-induced
10 : : : : dilatancy. First, while a small amount of dila-

arth tion occurs during shock wave propagation, in
general the high pressures in the shock wave
suppress the generation of porosity as it propa-
gates through the target rocks. The exception is
the shallow near-surface interference zone where
shock and release wave interactions shield the
material from high pressure. Second, at depths
exceeding about 10 km on Earth the confining
pressure is sufficient to suppress porosity gen-
eration at any stage during crater formation. As

r [km] a result, the majority of the impact-generated

10 ' ‘ ' " Moon pore space is created by shear deformation

55 1 near the surface and late in the crater forma-
tion process—during excavation and collapse.

It is this effect that results in the change in the
log slope of negative gravity anomaly magni-
tude versus crater diameter (Figure 11). Third, in
complex craters, where deep rocks are raised to
the surface in a central uplift, dilatancy is also
suppressed in the central region because of

the high pressure in the convergent flow. As a
consequence, the central gravity high in many
terrestrial complex craters may be caused, at least
in part, by suppression of dilatancy, rather than

Bouguer anomaly [mgals]

z [km]

z [km]

8 10 14 16
Porosity (%) (or in addition to) uplift of dense rocks [Pilkington

Figure 12. Porosity distribution beneath complex craters and Grieve, 1992].

formed by the same impact on Earth and the Moon and the .
h . The effect of pressure on dilatancy also suggests

resultant Bouguer gravity anomaly at the level of the preim- . X .

pact surface. The impact parameters are impactor diameter, that lmpact—lnduced dilatancy m.ay be more )

L = 5km; impact velocity, v; = 15 km/s; and maximum effective on planetary surfaces with lower gravity.

dilatancy coefficient, f,ax = 0.09. Thin solid lines represent
porosity contours of 0.1, 1, 5, 10, and 15%; the dotted lines
indicate target rock deformation.

To test this hypothesis, a numerical impact sim-
ulation of a 5 km diameter impactor striking the
lunar surface at 15 km/s was performed for com-

parison with the terrestrial impact simulations.
For simplicity and to aid direct comparison, the lunar impact simulation employed the same material models
for the impactor, crust, and mantle as the terrestrial simulations (with f,,,,, = 0.09); only the crustal thickness
(40 km) and gravitational acceleration (1.62 m/s?) were modified to represent the Moon. The porosity dis-
tribution beneath the final ~70 km diameter crater is compared with the corresponding terrestrial impact
simulation result in Figure 12.

Impact-induced dilatancy is dramatically more effective on the Moon than on Earth; equivalent porosity
contours are 2-3 times deeper beneath the lunar crater compared to the terrestrial crater. At this approxi-
mate crater size, that negative Bouguer gravity anomaly magnitude is a factor of 2 larger on the Moon than
on Earth (Figure 12). Moreover, while dilatancy is suppressed in the central uplifts in both craters, the charac-
ter of the Bouguer anomaly over each crater is very different. The terrestrial crater gravity anomaly exhibits
a broad gravity low with a relative high over the central region, whereas the lunar crater gravity anomaly

is a bowl-shaped low. The efficiency of impact-induced dilatancy on the Moon supports the idea that the
high-inferred porosity of the Moon's crust is the result of impact-induced fracturing and fragmentation
[Wieczorek et al., 2012]. However, as the lunar impact simulation assumed a nonporous preimpact target,
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the resultant porosity distribution probably represents an upper limit to what can be produced by a single
impact of this size. If impact fracturing progressively increased the porosity of the lunar crust over time, the
effectiveness of impact-induced dilatancy is likely to have diminished concomitantly.

The numerical simulations of terrestrial crater formation presented here provide new insight into
impact-induced density changes that accompany fracturing and fragmentation. However, several limita-
tions of the simulations remain. Principal among these is the nonunique choice of acoustic fluidization
model parameters (y, and y,) [Wiinnemann and Ivanov, 2003] which dictate the extent of target weaken-
ing in the simulations and hence the resultant size-morphology progression. The parameters used in this
work produce a range of final simulated craters that are broadly consistent with observational constraints,
such as the simple-to-complex transition, particularly given the simple assumption of a uniform crystalline
target. However, alternative parameter choices may produce a suite of simulated (different) craters that
are more consistent with observational constraints than those presented here. In particular, despite dila-
tancy shallowing the craters, the simulations produce complex craters that are systematically deeper than
is observed, which may suggest that the magnitude of target weakening in the present models is insuffi-
cient. However, tests using alternative acoustic fluidization model parameters resulted in very similar final
porosity distributions for the same final crater size, suggesting that the porosity predictions presented here
are robust. It is also noted that the effect of impact velocity, impact angle, initial target porosity, and the
remaining dilatancy model parameters (a, and p;;,,) on impact-induced dilatancy has not been investigated.
Impact angle and initial porosity, in particular, are expected to influence the spatial distribution of impact-
induced porosity.

6. Conclusions

A simple model to account for dilatancy during impact crater formation has been developed and imple-
mented in the iSALE shock physics code. The model accounts for the effects of pressure, temperature, and
distension on the tendency for geological materials to dilate, and has been tested and calibrated against tri-
axial experiments on rocks and dense sand. Numerical impact simulations of simple crater formation using
the new model produce porosity distributions consistent with drill-core sampling, as well as geophysical
modeling and observed gravity anomalies. Dilatancy model parameters appropriate for low-quality rock
masses (i.e., with a low Geological Strength Index; GSI) produce a porosity distribution most consistent with
observation; high-GSI behavior would require postimpact pore closure, healing or filling by water to explain
observed anomaly magnitudes. While dilatancy has a profound influence on the postimpact density distri-
bution beneath an impact structure, it has a relatively minor influence on topography, reducing crater depth
by ~20%.

The tendency for rock to dilate less when shearing under high pressure is an important property of the
model. Pressure suppresses impact-induced dilatancy: (i) in the shock wave, (ii) at depth beneath the crater
floor, and (iii) in the convergent flow that forms the central uplift. As a result, numerical impact simula-
tions predict differences in subsurface porosity distribution between simple and complex craters. In simple
craters, bulking in the debris lens is quite uniform and porosity decays exponentially both beneath the crater
floor and radially from the crater rim; whereas, in complex craters, porosity is greatest in the annular trough

and decays exponentially with depth and radial distance.

Simulation results predict that negative gravity anomaly magnitude is proportional to crater size for crater
radii less than the depth at which dilatancy is suppressed, broadly consistent with observed gravity anoma-
lies at terrestrial craters [Pilkington and Grieve, 1992]. At larger crater sizes, the increase in negative gravity
anomaly magnitude with diameter is less pronounced and dilatancy suppression in the central uplift results
in a relative central gravity high that increases in magnitude with increasing diameter.

The lower confining pressure at an equivalent depth on the Moon relative to Earth implies that impact-
induced dilatancy is dramatically more effective on the Moon than on Earth for the same size impact in an
initially nonporous target. This may be mitigated by the presence of substantial initial pore space in the
lunar crust, as is the case for the modern Moon [Wieczorek et al., 2012].

Future application of the dilatancy model in more refined numerical simulations of specific craters that more
faithfully represent preimpact target conditions will allow numerical predictions to be directly compared
with geophysical observations, such as gravity and seismic velocity anomalies. This will provide much
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Figure A1. (top) Distension and (bottom) pressure as a function of shear deformation, it is straightforward to

strain during isochoric simple shear deformation with no initial porosity  calculate the expected change in dis-
(ag="1). The solid lines show the expected behavior for a dilatant material ~ tension and pressure as a function of
with a constant dilatancy coefficient (f,,,c = 0.27); the dashed lines equivalent plastic strain Yo for sim-
show the expected behavior for a dilatant material that is fully dense in ple dilatancy models. For a constant
its initial state and tends toward a “critically dilatant state” (¢, = 1.33; dilatancy coefficient (8 = 8.._) a(r,) is
pc/Ko = 0.25) with increasing shear strain. The symbols show iSALE . max P
simulation results that verify correct implementation of these two simple ~ 9'V€N by

ilatancy models. a= aoe(ﬂmax}’p)’ (A1)

where q, is the initial distension; and for a distension-dependent dilatancy coefficient where

a —a
ﬂ = ﬂmax T R (A2)
e =~ Opin
a(y,) is given by
-1
acp

=a, |1+ (a, — ap) exp 4 ——=— . A3
a=a (o, — ap) €Xp { (@ —ap) Yp (A3)

Recall that «, is the distension of the critically dilatant material, and a,,;, is the minimum distension

permitted.

Assuming a simple porous material equation of state (p = p,/a;p, = Ky(ap/p, — 1), where p, and p,, are
the pressure and reference density of the solid component), isochoric deformation implies that pressure is
related to distension by

_ (1 _l). (A4)
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ically dilatant state is only approached
at an equivalent plastic shear strain ~2.
This contrasts with the model of O’Keefe
et al. [2001], which assumed maximum
dilatancy pressure was reached at a
plastic strain of only 0.1.

.- A2. Triaxial Compression

Simulations replicating triaxial strength

tests were performed using a single

computational cell in two-dimensional,

cylindrical geometry. Pressure bound-

‘ ‘ ‘ ‘ ‘ ary conditions were applied to the top

-2 5 1 A : o 1 and right boundaries to replicate con-
Axial strain, e, (%) ditions in typical triaxial strength tests:

a constant radial confining pressure
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Figure A2. (top) Differential stress and (bottom) volumetric

strain as a function of axial strain in a series of numerical triaxial (03; right boundary) and increasing
stress tests for dense sand. Experimental data were sourced from axial stress (o; top boundary). Free-slip
Hettler and Vardoulakis [1984]. boundary conditions were enforced on

the left (symmetry axis) and bottom
boundaries. The axial stress o, was increased at a constant rate from an initial stress equivalent to the con-
fining stress until an equivalent plastic strain of 2 was achieved. The initial state (density and internal energy)
of the material in the cell was set consistent with the isotropic initial confining pressure. Suites of numerical
experiments at various confining pressures were performed for both a rock-like material (marble) and dense
sand; the influence of initial distension was also examined for sand. Elastic and strength model parameters
for marble and dense sand were inferred from experimental results. A simple polynomial equation of state
relating pressure to density (p = An + Br?, where = p/p, — 1.) was combined with a Drucker-Prager
strength model (Y = min{up, Y}, }). Dilatancy model parameters (a,, pjim, Bmax) Were varied to achieve the
best overall fit to the appropriate triaxial experiment data.

Figure A2 shows an example of how the model fits experimental data for sand. Material parameters for these
simulations are given in Table A1. Note that although the dense sand considered in these experiments con-
tains some porosity at the reference density p,, for simplicity it was assumed that the minimum distension
dnin = 1.0 (i.e,, psy = po) and that only pore space added during shear resulted in an increase in disten-
sion (i.e, @ = p/p,). In other words, permanent porosity change owing to compaction was not considered
and, instead, a simple polynomial equation of state was used to relate pressure to density. Shown are stress
ratio (o, /o3) and volumetric strain versus axial strain for dense sand at three different confining pressures
(0.05 MPa, 0.6 MPa, and 1 MPa). The experimental data exhibit three regimes with increasing strain: an elas-
tic regime (< 1% strain) where stress rises linearly with strain and volume change is negative; a so-called
hardening regime (between < 1% and ~3% axial strain) where permanent failure begins and volume change
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transitions from negative to positive,
resulting in a strength increase; and a
plastic regime (>3% strain) where stress

Table A1. Material Model Parameters for Dense Sand Used in Triaxial
Test Simulations

Parameter Symbol (Units) Value L

and positive volume change approach
Reference density Po (kg/m3) 1715 .

approximately constant values. The
Zero-pressure bulk modulus A (GPa) 0.01 . . .
bulk compression constant B (GPa) 25 absence of a hardening model implies
Poisson’s ratio v 0.2 that the dilatancy model is unable
Friction coefficient u 1 to fit the data in the intermediate,
Limiting yield strength Yiim (MPa) 15 hardening regime. Accounting for the
M.ax. el coefﬁc',ent Pmax 047 dependence of porosity on the Pois-
Dilatancy pressure limit Piirm (MPa) 100 L . .
Critical dilatancy distension ac 1.2 son’s ratio would improve the model in
Minimum distension @pmin 1.0 this regime. However, the initial elas-
Initial distension ag 1.0 tic response and the large-deformation

(plastic) response is adequately
represented at the confining
pressures considered.
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