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� We develop a mathematical model for study designs aimed to detect TB mixed infection.
� We obtain Bayesian posterior estimates of the prevalence of mixed infection.
� The bias between the posterior estimate and the observed prevalence is discussed.
� The posterior estimate can be substantially higher than the raw percentage.
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a b s t r a c t

High resolution tests for genetic variation reveal that individuals may simultaneously host more than
one distinct strain of Mycobacterium tuberculosis. Previous studies find that this phenomenon, which we
will refer to as “mixed infection”, may affect the outcomes of treatment for infected individuals and may
influence the impact of population-level interventions against tuberculosis. In areas where the incidence
of TB is high, mixed infections have been found in nearly 20% of patients; these studies may
underestimate the actual prevalence of mixed infection given that tests may not be sufficiently sensitive
for detecting minority strains. Specific reasons for failing to detect mixed infections would include low
initial numbers of minority strain cells in sputum, stochastic growth in culture and the physical division
of initial samples into parts (typically only one of which is genotyped). In this paper, we develop a
mathematical framework that models the study designs aimed to detect mixed infections. Using both a
deterministic and a stochastic approach, we obtain posterior estimates of the prevalence of mixed
infection. We find that the posterior estimate of the prevalence of mixed infection may be substantially
higher than the fraction of cases in which it is detected. We characterize this bias in terms of the
sensitivity of the genotyping method and the relative growth rates and initial population sizes of the
different strains collected in sputum.
& 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Tools for the genetic analysis of Mycobacterium tuberculosis, the
causative agent of human tuberculosis (TB), have fundamentally
altered our understanding of the natural history of this pathogen.
The ability to distinguish isolates has shown that individuals can be
re-infected with M. tuberculosis, and this poses clear challenges for
vaccine development since even natural infection at best provides
partial immunity. Furthermore, the advent of high resolution tests for
genetic variation has revealed that individuals may simultaneously

harbor infections with more than one distinct strain ofM. tuberculosis
(Warren et al., 1999; Sola et al., 2003; Kremer et al., 1999; van
Embden et al., 1993; Imaeda, 1985). This phenomenon, which we will
refer to as “mixed infection”, has been linked with poor treatment
outcome when the co-infecting strains differ with respect to drug
susceptibility (van Rie et al., 2005; Hingley-Wilson et al., 2013) and is
predicted to influence the impact of population-level interventions
against tuberculosis (Cohen et al., 2008; Rodrigues et al., 2007; Colijn
et al., 2009; Sergeev et al., 2011; Mills et al., 2013).

Accurate estimates of the frequency with which mixed infec-
tions occur are therefore critical to understand how mixed infec-
tions impact both the natural history and the dynamics and
control of this infection. However, the detection of mixed infec-
tions is challenging (Hingley-Wilson et al., 2013), even with tools
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that have high sensitivity for detecting minority strains and
adequate resolution to discriminate between closely related (but
genetically distinct) pathogens. As discussed in detail in a recent
review (Cohen et al., 2012), there are many opportunities to fail to
detect a mixed infection that is actually present in a host, because
a minority strain might not be harvested in the collected clinical
specimen, might be lost during the process of specimen transport
and handling, and might fail to be detected by the particular
genotyping method employed.

Despite these clear opportunities to miss the detection of true
mixed infections, among the several dozen studies available, it has
been found that mixed infections were often detected in as many
as 10–20% (Cohen et al., 2012; Hanekom et al., 2013; Huang et al.,
2010; Navarro et al., 2011) of cases in areas where the incidence of
TB is high (Cohen et al., 2012). Since we believe that this statistic
may underestimate the prevalence of mixed infections, we have
developed a mathematical model to understand the potential
sources of bias in estimates of the prevalence of mixed infection
and to provide bounds for reasonable uncertainty as to the actual
prevalence of mixed infections given the observed prevalence and
knowledge of the laboratory protocol employed to detect mixed
infections.

2. Methods

Although the designs of previous studies for detecting mixed
strains have differed in important ways (Cohen et al., 2012), for the
purposes of this analysis, we have generalized the study design to
include several steps common to nearly all of these investigations:

1. Specimen collection from the patient (samples of 0.25 mL).
2. Specimen growth in culture.
3. Sampling of bacterial isolates from culture and extraction of

mycobacterial DNA.
4. Analysis of mycobacterial DNA (see Fig. 1).

Here we focus our analysis on bias that might arise in the detection
of mixed infections related to steps 2–4 above. That is, we do not
consider the bias that might result from failing to collect a minority
strain from an individual, and instead we focus here on the bias that
arises from failing to detect a minority strain after it has actually been
collected from a patient. This is not meant to indicate that we think
failing to collect a minority strain from a patient does not contribute
to the underestimation of the prevalence of mixed infection. Rather,
this approach allows us to provide estimates on the bias that is
associated with the laboratory procedures that are distal to specimen
collection. We comment further on this issue in the discussion. The
probability that mixed infection is detected can be decomposed as

PðdetectÞ ¼Pðdetectjmixed infection presentÞPðmixed infection presentÞ: ð1Þ

We define the prevalence of mixed infection to be the fraction of
individuals with TB disease that are simultaneously infected by more
than one distinct strain. Here we define strains by their ability to be
discriminated from each other by the particular genotyping test used.
Our aim is to estimate the prevalence of mixed TB infection in a
population, ρ≔Pðmixed infection presentÞ, from a set of data con-
sisting of measurements aiming to detect mixed infection in indivi-
duals. To do this, we characterize m≔Pðdetectionjmixed infection
presentÞ by modelling laboratory handling and subsequent growth of
bacilli in culture. We use a stochastic model of specimen handling
and growth where cell numbers are small, and a deterministic model
otherwise. The model inputs are the distributions of the numbers of
cells in the samples, and the growth rates of minority- and majority-
type bacilli. We apply a Bayesian approach to find the posterior
distribution of ρ, the prevalence of mixed infection, given data from
genotyping analysis of mycobacterial DNA collected after division of
sputum and subsequent solid culture.

Specimen handling: The mathematical framework developed in
this section is based on three assumptions regarding the handling
protocol and the specimen – i.e. the sputum sample – from an
individual:

1. Each specimen contains at least one strain of M. tuberculosis,
and may contain more (but we only model detection of two at
most). The strain with more bacilli in the specimen is called the
majority strain, and the other the minority strain.

2. Each specimen is handled similar to any other and in two phases:
sub-division and growth. Sub-division consists of dividing the
sputum sample into d groups (only one of which is then cultured).
Growth refers to the culture of one of the portions of the sputum
sample, over a fixed time T.

3. In both sub-division and growth, the majority and minority
strains are assumed to behave independently.

We use X and Y to indicate the number of minority and majority
strain cells, respectively; if X and Y are indexed, the index specifies
the time. For example, X0 is the initial number of minority strain
cells and YT is the number of majority strain cells at time T, after
sub-division and growth.

2.1. The minority strain

When the sample is collected, we assume that it contains X0

minority strain cells. During sub-division, to select a portion 1=d of
the sample, each cell is chosen with probability 1=d or rejected
with probability 1�1=d. Therefore the total number of bacteria
after sub-division follows the binomial distribution BinðX0;1=dÞ.
Growth is modelled with a birth-only process with birth rate λX
over a time T. We choose a birth-only process because the death
rate is believed to be negligible in comparison to the birth rate in

Fig. 1. Schematic of the process of sampling, culture and genotyping.
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culture, and because it is preferable to minimize the complexity of
the model. Birth processes are characterized by a negative bino-
mial distribution (Bailey, 1964, p. 87); in this case, as the process
starts with BinðX0;1=dÞ cells from the sub-division phase, it follows
that the distribution of XT is NegBinðBinðX0;1=dÞ;2�λXT Þ. Using the
law of total probability, the explicit distribution for the number of
minority cells after time T is found to be

PðXT ¼ kjX0Þ ¼
XminðX0 ;kÞ

i ¼ 1

k�1
i�1

� �
X0

i

� �
1
d

� �i d�1
d

� �X0 � i

piX ð1�pXÞk� i; ð2Þ

where pX ¼ 2�λXT , with λX being the growth rate and T the growth
time; we refer to the supplement for the derivation. Eq. (2) can be
rather impractical because it presents computational challenges
due to the size of the binomial coefficients. For this reason, we
found an asymptotic approximation:

PðXT ¼ kjX0Þ � Cð1�pXÞkðk�1ÞlðX0 �1Þ for k-1; ð3Þ
where l and C are constant with respect to k. Interestingly l is also
independent from λX , X0, and T, hence it is specific to the handling
protocol (see Supplement for details).

2.2. The majority strain

The majority strain is sub-divided and cultured along with the
minority strain; following the same reasoning as in Section 2.1, the
distribution of YT is found to be

PðYT ¼ kjY0Þ ¼
XminðY0 ;kÞ

i ¼ 1

k�1
i�1

� �
Y0

i

� �
1
d

� �i d�1
d

� �Y0 � i

piY ð1�pY Þk� i; ð4Þ

where pY ¼ 2�λY T and λY is the growth rate of the majority strain.
As in the previous section, Eq. (4) is impractical, but here because
Y0 is assumed to be large (Core Curriculum for Disease Control;
Palaci et al., 2007) – O(1000) – it is possible to use the Weak Law of
Large Numbers to approximate the distribution (4) with a normal
distribution (see the Supplement for details):

PðYT ¼ kjY0Þ �N ðk;μ;σ2Þ; ð5Þ
where

μ¼ Y0

6
2λY T and σ2 ¼ Y0

d
2λY T ð2λY T �1ÞþY0dðd�1Þ

d2
4λY T :

We use Eqs. (3) and (5) to calculate the distributions of XT and YT
numerically in the next sections.

2.3. The conditional prevalence of mixed infection

After the phases of sub-division and growth in culture, geno-
typing is performed on DNA extracted from mycobacterial cells. In
this paper we assume that the genotyping test performed is
mycobacterial interspersed repetitive unit-variable number tan-
dem repeat (MIRU-VNTR) typing (Supply et al., 2001). MIRU-VNTR
typing is a convenient methodology to detect mixed infections, as
multiple alleles at multiple loci are usually interpreted as the
presence of mixed infection (Supply, 2005). Clearly, in order to
detect a minority strain by MIRU-VNTR or any other method, the
minority strain must be present in sufficient numbers. We define
the threshold f as the minimum value of the proportion XT=YT at
which the minority strain, thus mixed infection, is detectable by
MIRU-VNTR typing. It is convenient to introduce the new random
variable D (for detection) which is defined by

D¼ 13XT=YT 4 f and D¼ 03XT=YT o f : ð6Þ
where D is a Bernoulli random variable that is used to model the
positive or the negative result of the test for mixed infection for
each sputum sample.

Up to this point, we have analysed the dynamics of a single
sample. To estimate the prevalence of mixed infection, we need to
link our model to the outcome of a study aimed to detect mixed
infection. Suppose there are n individual patients in the study and
each of their sputum samples is sub-divided and cultured, and
then tested for mixed infection. Let the outcome be denoted Dj,
for j¼ 1‥n. The total number of detected mixed infection is
SD≔

Pn
j ¼ 1 Dj: Because the Djs are Bernoulli, it follows that

PðSD ¼ kjX0;Y0Þ ¼ Binomialðk;n;PðD¼ 1jX0;Y0ÞÞ; ð7Þ
where we recall that PðD¼ 1jX0;Y0Þ ¼PðXT=YT 4 f jX0;Y0Þ.

2.4. Distributions of X0 and Y0

Eq. (7) is the distribution of the total number of detected mixed
infections in n individuals, in a study that satisfies the initial
assumptions outlined at the start of Section 2. To perform computa-
tions and statistical inference it is necessary to derive a distribution
of SD that is not conditional on X0 and Y0. We have chosen particular
distributions for these inputs, but the overall arguments we make
about the effects of stochastic growth and low starting cell numbers
are not specific to these particular choices.

The number of majority type cells Y0 is relatively large (Core
Curriculum for Disease Control; Palaci et al., 2007) in the samples,
with the order of magnitude 103. Because Y0 is a discrete random
variable we choose a discretized gamma distribution. The shape and
scale parameters are also chosen to provide a reasonable expected
value and variance: recall that the sputum sample is 0.25 mL and
the concentration is 5000–10,000 per mL (Core Curriculum for
Disease Control):

PðY0Þ ¼ CDFGammað70;25ÞðkÞ�CDFGammað70;25Þðk�1Þ; ð8Þ
where CDF stands for the Cumulative Distribution Function.

The number of minority strain cells in the sample (X0) is likely
to be variable. It will depend on many factors, including the
dynamics of bacterial populations in the host, the time of reinfec-
tion and the distribution of cell types over different TB lesions.
These factors may be elucidated in the future in studies using DEP
frequency or single cell technologies, but at the moment there is
very little information available to inform us as to the numbers of
cells present in sputum samples from diverse infections.

When a minority strain is present, we do not have empirical
information about the numbers of minority cells likely to be found
in the sputum. We choose a class of distributions parametrized by
their expectation Emin, for the probability PðX0 ¼ kjX0Z1Þ of
finding k minority cells in the sample given that the host has
two or more strains. The numbers of minority and majority cells in
sputum will depend on a complex series of growth limitations
imposed by the host during the course of infection, the relative
timing of infection, the extent of in-host competition between the
strains, the time that has elapsed before the patient comes to
clinical attention and the non-random sampling of the in-host
population in sputum. The inoculum for each strain of TB is likely
to consist of a relatively small number of bacilli (Balasubramanian
et al., 1994), and each strain presumably undergoes a period of
exponential growth at some stage. So it is likely that a substantial
difference in the robustness of the two strains in the host would
lead to the less robust strain either being out-competed or being
present in vanishingly small fractions in the host; a minority strain
would either be “drowned out” in the exponential phase, or would
suffer losses through the complex course of infection if it were not
sufficiently robust. Such hosts would never be detected as mixed
infections. For these reasons, to maintain high enough cell num-
bers to comprise E1% of a sputum sample, any minority strain
will likely need to be a fairly strong in-host competitor. Conversely,
when more than 2–5% of a sputum sample are minority strain
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bacilli, they are highly likely to be detected (and this will happen
only for highly robust strains that achieve a very strong balance of
cell numbers in the host). The problem of bias is most relevant
when a minority strain is a robust enough competitor to rise to
high enough levels that there is any change of detection, but not so
high that detection is effectively certain. Accordingly, we investi-
gate the range of Emin in which minority strains comprise between
0 and 2% of the population of bacilli in the sputum i.e. Eminr40.

Furthermore it must be taken into account that the prevalence of
mixed infection corresponds to the probability PðX0Z1Þ of mixed
infection present in the sample, that we called ρ. Note that ρ is
fundamental for this study, as it is the parameter to be estimated. We
use a Poisson distribution for X0, parametrized by Emin:

PðX0 ¼ kÞ ¼
1�ρ if k¼ 0

ρ � ðEmin�1Þk�1

ðk�1Þ! e�Emin þ1 if kZ1

8><
>: : ð9Þ

2.5. Posterior distribution of the prevalence of mixed infection

In this section we use the Bayesian inference to derive the
distribution for the real prevalence of mixed infection, ρ, and we
present an estimate of such prevalence. At first it is necessary to
evaluate the probability PðD¼ 1Þ. The law of total probability can
eliminate the condition on X0 and Y0 of PðD¼ 1jX0;Y0Þ in Eq. (7)
using PðX0Þ and PðY0Þ from Eqs. (8) and (9) respectively. Note that
because the distribution of X0 is linear in ρ, the distribution of XT

and the probability PðD¼ 1Þ are also linear in ρ; this fact reflects
the initial decomposition in Eq. (1). It follows that

PðD¼ 1Þ ¼PðXT=YT 4 f Þ ¼mρ; ð10Þ
where the slope m represents the probability Pðdetectjmixed
infection presentÞ in (1); it depends on the parameters λX , λY , Emin

and T and is calculated numerically using the law of total probability
(we refer to the Supplement for further details). Because D has a
Bernoulli distribution with probability mρ, the distribution of SD is
binomial; therefore the probability of detecting nmix mixed infection
in a study involving n patients is a binomial with nmix successes over
n trials and with success probability mρ.

In Bayesian notation, the binomial distribution of SD is the
likelihood. We set an uninformative Beta prior distribution because
it is a conjugate prior for the binomial (we refer to the Supplement
for further details). This lead to the following posterior:

PðρjSDÞ ¼
ðmρÞnmix ð1�mρÞn�nmix

Bmðnmixþ1;n�nmixþ1Þ; ð11Þ

where Bmðnmixþ1;n�nmixþ1Þ ¼ Rm
0 unmix ð1�uÞn�nmix du is the inc-

omplete beta function. Fig. 2 shows the posterior distribution of ρ
for a range of values of Emin.

It is important to note that by the Law of Large Numbers, in the
limit n;nmix-1, ð1=nÞSD-mρ. Because we observe SD ¼ nmix

mixed infection, this implies that mρ� nmix=n, thus

ρ-
1
m
nmix

n
as n;nmix-1: ð12Þ

Alternatively, taking the expectation of the posterior distribution
in Eq. (11) and noting that the variance vanishes in the limit yield
the same result. Eq. (12) provides a simple estimate for the real
prevalence of mixed infection and it suggests that m gives a
numerical value of the bias coefficient. Figs. 4 and 5 show the
details of its behaviour and sensitivity analysis.

2.6. Deterministic approximation

If the number of initial bacteria is large for both minority and
majority strains (for instance if the initial sample is large), the

model can be simplified, removing most of its stochasticity. In this
case we consider continuous approximations of the variables X0

and Y0:

Y0 ¼N ðμY ;σ
2
Y Þ; ð13Þ

X0 ¼ ð1�ρÞX ½0;1Þ þρN ðEmin; EminÞX ½1;þ1Þ: ð14Þ
Eqs. (13) and (14) can be considered as limit distributions of
(8) and (9) respectively because the Gamma and Poisson distribu-
tions converge to a normal when the mean is large. In the
deterministic approximation, sub-division and growth are not
stochastic, yielding

XT ¼
2λXT

d
X0; ð15Þ

YT ¼
2λY T

d
Y0: ð16Þ

Therefore the slope m can be expressed explicitly with the
following expression:

m¼PðXT 4 fYT Þ ¼P
2λXt

d
X0� f

2λY t

d
Y040

 !

�evaluated substituting ρ¼ 1 in Eq: ð14Þ:
The substitution ρ¼ 1 follows from the fact that PðXT 4 fYT Þ is
linear with respect to ρ, as in Eq. (10). The expression inside the
brackets is a linear combination of two normal random variables
and therefore is a new normal with known cumulative density
function. Therefore

m¼ 1
2

1�erf
f2ðλY �λX ÞtμY �Eminffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Eminþ f 222ðλY �λX Þtþ1σ2
Y

q
0
B@

1
CA

0
B@

1
CA: ð17Þ

This quantifies the bias in measurements of the prevalence of
mixed infection, and how that bias depends on the relative growth
rates of minority and majority type cells in culture.

Parameters: The parameters and random variables are given in
Tables 1 and 2 respectively.

3. Results

We computed and analysed the posterior distribution of the
prevalence of mixed infection assuming that we observe nmix=n¼

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
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ρ

P
(ρ

|S
D
)

Posterior density distribution of the prevalence of mixed infection
0<E <10

10<E <20

20<E <40

raw prevalence: 0.15

Fig. 2. Posterior density distributions of the prevalence of mixed infection PðρjSDÞ
when both the growth rates for minority and majority type cells equal 1 and for
different values of the expected number of minority cells in sputum Emin . Bearing in
mind that the larger the Emin is, the smaller the mean of the distribution is, the
values of Emin that we used are 39, 25, 18, 14, 11, 8, 4. We considered n¼ 500
patients, nmix ¼ 75 of whom are detected with mixed infection. A naive estimate
from the data would indicate a mixed infection prevalence of approximately
nmix=n¼ 15%, corresponding to ρ¼ 0:15. However the posterior distribution has
mean close to 0.15 only if Emin is large (Emin440). The posterior distributions have a
much higher mean as Emin decreases.
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15% mixed infection in a study of n¼500 patients. This baseline
estimate of 15% represents a value of mixed infection that is in the
range observed in other studies in high TB incidence areas in sub-
Saharan Africa (Cohen et al., 2012; Hanekom et al., 2013). Fig. 2
displays a number of different posterior distributions of ρ related to
the average number of minority type cells per sputum sample Emin. In
particular, the smaller the Emin is, the larger the expectation of ρ is.
This is because numerous opportunities for false negatives arise when
the initial population of theminority strain is small or when its growth
rate is relatively low. Our posterior estimate accounts for these
possible sources of bias, and therefore the estimated mixed infection
prevalence may be much higher than the observed 15%. When hosts
with mixed infection consistently have a good representation of
minority types in their sputum, there are fewer false negatives, m is
higher, and the posterior estimate of ρ is closer to the fraction of cases
in whom we detect mixed infection (nmix=n).

We evaluated the posterior distribution of the prevalence of
mixed infection in a specific study (Warren et al., 2004) and in Fig. 3
we presented four possible posteriors for optimistic and pessimistic
values of Emin and the growth rates. In the most optimistic scenario
the posterior ρ is higher that 0.19 with probability 0.9 and has mean
over 0.23. On the other hand a more moderate choice of parameters
would indicate that 0:35oρo0:65 with probability 0.95.

Fig. 4a shows how the estimate of the prevalence of mixed
infection E½ρ� varies for different values of the growth rates. From
Fig. 4a we conclude that E½ρ� does not depend directly on λX and λY
but on their difference λY �λX . This is confirmed by the deterministic
approximation and in particular by the expression in Eq. (17) for m.

Fig. 4b illustrates the estimate of the prevalence of mixed
infection E½ρ� using a contour plot in the plane ðλY �λX ; EminÞ.
Fig. 4b demonstrates that the bias in detection of mixed infection
is related to the number of minority-type bacilli the sputum sample
and the difference of the growth rates. It is noteworthy that there is a
region of rapid change in the estimate – for example in Fig. 4(b), if
Emin is near 20, the estimate is very sensitive to λY �λX when the
latter is near 0.1. This implies that, in some studies, the raw estimate
nmix=n may be uninformative. Independent estimates of Emin and
λY �λX would greatly improve our ability to interpret such studies.

In Fig. 5 the four contour plots of the posterior estimate of mixed
infection E½ρ� for four different values of the sensitivity threshold f
are compared. In each plot the percentage of detected mixed

infection is nmix=n¼ 19% as in Warren et al. (2004). We can see that
as f increases, there is a larger area where E½ρ�40:8. This confirms
that the higher the sensitivity thresholds is, the higher the chances
are of non-detecting mixed infection. Consequently if a percentage
nmix=n is detected then it is likely that the real prevalence ρ is much
higher, even close to 1. It is important to note that even if the
sensitivity threshold is reasonably small, see the plot where f¼0.01,
the raw percentage nmix=n is still not a good estimate for a large
portion of the parameter set. We conclude that the correction factor
1=m is necessary both when f is small and when f is large.

4. Discussion

We developed a mathematical framework both for assessing
the conditions under which current methods underestimate the

Table 1
Parameters.

Parameters Description Range/expression

r Probability of presence of mixed infection in sputum sample Eq. (9)
Emin Mean of minority type cell in the sputum sample given presence of mixed infection 1–40
λX Growth rate of minority strain cells 1–1.2, from Sarkar et al. (2012)
λY Growth rate of majority strain cells 1–1.2, from Sarkar et al. (2012)
T Growth time 7 days
l Exponent of the approximation function (3) 0.336 (see Supplement)
C Coefficient in the approximation function (3) Supplement Eqs. (8) and (10)
f Threshold for detection of mixed infection 0.005–0.02
d Number of parts the sputum sample is divided in during handling 4

Table 2
Random variables.

Random
variable

Description Expression

X0 Number of minority strain cells in the sputum sample assumed mean: ρEmix Eq. (9)
Y0 Number of majority strain cells in the sputum sample assumed mean: 1750 from Core Curriculum for Disease Control (), Palaci et al. (2007) Eq. (8)
XT Number of minority strain cells after specimen handling Eq. (2)
YT Number of majority strain cells after specimen handling Eq. (4)
D Bernoulli random variable representing the test result for mixed infection Eq. (6)
SD Total mixed infection detected in a study with h patients Eq. (7)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

ρ

P
(ρ

|S
D
)

Posterior density of the prevalence of mixed infection using data from Warren (2004)
λ =1; λ =1;  E =30

λ =0.95; λ =1;  E =30

λ =1; λ =1;  E =15

λ =0.95; λ =1;  E =15

raw prevalence: ρ=0.19

Fig. 3. Posterior density distributions PðρjSDÞ of the prevalence of mixed infection
ρ, for different values of the expected number of minority cells in sputum Emin , one
optimistic and one pessimistic, and two different combinations of the growth rates
of minority and majority type cells, λX and λY . We considered n¼ 186 patients,
nmix ¼ 35 of whom are detected with mixed infection, as in Warren et al. (2004).
The values for the growth rates are in line with the estimations in Sarkar et al.
(2012). The raw estimate from the data would indicate a mixed infection
prevalence of approximately nmix=n¼ 19%, corresponding to ρ¼ 0:19, however
we observe that, even in the most optimistic scenario (green dashed line) the
posterior ρ is higher that is 0.19 with probability 0.9 and has mean over 0.23. (For
interpretation of the references to colour in this figure caption, the reader is
referred to the web version of this paper.)
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prevalence of mixed infections and for quantifying the potential
magnitude of this bias. We found that the prevalence of mixed
infection is biased by a factor m which depends on the growth
rates and the population of the minority strain in the initial
samples. With the parameters we have used, for example, if initial
mixed infection sputum samples had on average 80 minority type
cells per mL, the posterior estimate of the prevalence of mixed
infection is 33%, compared to the direct measurement of only 15%.

Our framework combines a binomial model for the specimen
sub-division with a birth model for bacterial growth in culture,
treating the populations of the minority and majority strains
separately. Assuming that detection occurs if and only if the ratio
between the two populations is greater than a threshold f, we
merged the two distributions using the law of total probability.
This allowed us to obtain a posterior estimate of the prevalence of
mixed infection, represented by the parameter ρ. We found that
stochastic effects during specimen handling may reduce the
probability of detecting mixed infections. On the other hand if

the sample size were increased, fewer stochastic effects would
interfere with the detection of mixed infection and the raw
percentage could be a more accurate estimate.

The parameter m, and therefore the distribution of ρ, is very
sensitive to variation of λY and λX . The growth rates and, more
importantly, their difference are usually not known and have
important consequences for our ability to observe mixed infec-
tions in culture. Targeted experiments to measure the growth rates
could help inform the extent of bias in estimation of mixed
infection. These experiments could be done if it were possible to
resample from initial cultures to obtain cells of both types to
measure absolute and relative growth rates in culture. The para-
meter Emin, the expected number of minority cells in the specimen
given that the host has mixed infection, also affects the distribu-
tion of ρ and therefore the bias, as shown in Fig. 2. In this paper we
decided to treat Emin as a parameter and not as another random
variable. In fact we have not modelled the specimen collection, but
only the specimen handling: Emin has to be interpreted as reflect-
ing the numbers of minority strain bacilli which, if present, will
arise in the sputum sample, and this is beyond the scope of this
paper. However, the diversity of TB present in a host is potentially
complex and heterogeneously distributed, comprising some clonal
diversity (Colijn et al., 2011) in addition to diversity resulting from
multiple infections. It is reasonable to suspect that not all of the
diversity will be represented in sputum samples, and that this is
an additional source of bias in detecting mixed infections.

The model presented in this paper is limited in its complexity.
Here, we only consider a minority and a majority strain while in
reality there may be more than two different strains. Moreover we
consider only strains that potentially can be detected with geno-
typing, i.e. strains with different MIRU types. In a real situation
there can be a reinfection with bacteria having the same MIRU
type and, therefore, it is impossible to detect such mixed infections
with genotyping. New studies which use methods with additional
sensitivity for detecting variation between strains, such as whole
genome sequencing, will likely be increasingly used to understand
within-host diversity (Sun et al., 2012; Chan et al., 2013; Köser
et al., 2013). However, it is important to recognize that most
studies will continue to be limited by the examination of sputum
samples, which may not represent the actual degree of strain
heterogeneity within a host (Cohen et al., 2011). These examples
suggest that mixed infections can be even more frequent than in
the results reported here. On the other hand, our results also
suggest that when the population size of the minority strain is
large, 43%, bias is minimal and the detected prevalence of mixed
infection is very close to the real prevalence.

Mixed infection is of interest because it is informative of aspects
of the epidemiology of tuberculosis, but it may be particularly
relevant to the estimation of the prevalence and infectiousness of
drug-resistant TB strains. Drug-sensitive and drug-resistant strains of
TB can compete for susceptible hosts, and can re-infect hosts who
already have one strain of TB, resulting in mixed infections. A higher
estimated incidence of mixed infection could therefore suggest new
estimates of the extent of reinfection, and of the level of transmission
of resistant strains.

Mixed infections have been detected in nearly 15% of cases in a
number of studies (Cohen et al., 2012; Hanekom et al., 2013), and
have been considered to play an important role in facilitating the
stable coexistence of different strains (Colijn et al., 2009), in
altering treatment outcomes (van Rie et al., 2005) and under-
mining the effectiveness of TB control programmes (Cohen et al.,
2008). In this paper we provide strong evidence that estimates of
the prevalence of mixed infection can be considerably higher than
the raw detection frequency. This implies that mixed infection
could play an even more important role in TB epidemiology than
raw estimates would suggest.
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Fig. 4. We calculated E½ρ�, the expected prevalence of mixed infection, in a study
with nmix ¼ 75 individuals detected with mixed infection among n¼ 500 patients.
In (a) for fixed values of the average number of minority type cells in sputum,
Emin ¼ 25, and of the sensitivity threshold f ¼ 0:01 we can see a numerical evidence
that E½ρ� depends on the difference of the growth rates λY �λX and not on the two
growth rates independently; this is confirmed by the deterministic approximation,
Eq. (17). In panel (b) how E½ρ� varies taking into account the difference λY �λX on
the x-axis and the parameter Emin on the y-axis is shown. From panel (b) we note
that there is a large area (bottom-right) in the parameter space where E½ρ� is close
to 1, estimate very far from the detected 0.15. Although E½ρ� decrease rapidly from
0.9 to 0.6, most part of the parameter space features an expected prevalence of
mixed infection larger than 0.3.

G. Plazzotta et al. / Journal of Theoretical Biology 368 (2015) 67–7372



Acknowledgements

The work is supported by EPSRC Grant EP/I03626/1 and NIH
Grant D2OD006663. The content is solely the responsibility of the
authors and does not necessarily represent the official views of the
National Institutes of Health.

Appendix A. Supplementary data

Supplementary data associated with this paper can be found in
the online version at http://dx.doi.org/10.1016/j.jtbi.2014.12.009.

References

Bailey, N.T., 1964. The Elements of Stochastic Processes with Applications to the
Natural Sciences. Wiley, New York.

Balasubramanian, V., Wiegeshaus, E., Taylor, B., Smith, D., 1994. Pathogenesis of
tuberculosis: pathway to apical localization. Tuber. Lung Dis. 75 (3), 168–178.

Chan, J.Z.-M., Sergeant, M.J., Lee, O.Y.-C., Minnikin, D.E., Besra, G.S., Pap, I., Spigel-
man, M., Donoghue, H.D., Pallen, M.J., 2013. Metagenomic analysis of tubercu-
losis in a mummy. New Engl. J. Med. 369 (3), 289–290.

Cohen, T., Colijn, C., Murray, M., 2008. Modeling the effects of strain diversity and
mechanisms of strain competition on the potential performance of new
tuberculosis vaccines. Proc. Natl. Acad. Sci. USA 105 (42), 16302–16307.

Cohen, T., Wilson, D., Wallengren, K., Samuel, E.Y., Murray, M., 2011. Mixed-strain
Mycobacterium tuberculosis infections among patients dying in a hospital in
Kwazulu-Natal, South Africa. J. Clin. Microbiol. 49 (1), 385–388.

Cohen, T., van Helden, P.D., Wilson, D., Colijn, C., McLaughlin, M.M., Abubakar, I., Warren,
R.M., 2012. Mixed-strain Mycobacterium tuberculosis infections and the implications
for tuberculosis treatment and control. Clin. Microbiol. Rev. 25 (4), 708–719.

Colijn, C., Cohen, T., Murray, M., 2009. Latent coinfection and the maintenance of
strain diversity. Bull. Math. Biol. 71 (1), 247–263.

Colijn, C., Cohen, T., Ganesh, A., Murray, M., 2011. Spontaneous emergence of
multiple drug resistance in tuberculosis before and during therapy. PloS One 6
(3), e18327.

Core Curriculum for Disease Control, Division of Tuberculosis Elimination, Core
Curriculum on Tuberculosis: What the Clinician Should Know.

Hanekom, M., Streicher, E.M., van de Berg, D., Cox, H., McDermid, C., Bosman, M.,
van Pittius, N.C.G., Victor, T.C., Kidd, M., van Soolingen, D., et al., 2013.
Population structure of mixed Mycobacterium tuberculosis infection is strain
genotype and culture medium dependent. PloS One 8 (7), e70178.

Hingley-Wilson, S.M., Casey, R., Connell, D., Bremang, S., Evans, J.T., Hawkey, P.M.,
Smith, G.E., Jepson, A., Philip, S., Kon, O.M., et al., 2013. Undetected multidrug-
resistant tuberculosis amplified by first-line therapy in mixed infection. Emerg.
Infect. Dis. 19 (7), 1138.

Huang, H.-Y., Tsai, Y.-S., Lee, J.-J., Chiang, M.-C., Chen, Y.-H., Chiang, C.-Y., Lin, N.-T., Tsai,
P.-J., 2010. Mixed infectionwith Beijing and non-Beijing strains and drug resistance
pattern of Mycobacterium tuberculosis. J. Clin. Microbiol. 48 (12), 4474–4480.

Imaeda, T., 1985. Deoxyribonucleic acid relatedness among selected strains of
Mycobacterium tuberculosis, Mycobacterium bovis, Mycobacterium bovis bcg,
Mycobacterium microti, and Mycobacterium africanum. Int. J. Syst. Bacteriol. 35
(2), 147–150.

Köser, C.U., Bryant, J.M., Becq, J., Török, M.E., Ellington, M.J., Marti-Renom, M.A.,
Carmichael, A.J., Parkhill, J., Smith, G.P., Peacock, S.J., 2013. Whole-genome
sequencing for rapid susceptibility testing of M. tuberculosis. New Engl. J. Med.
369 (3), 290–292.

Kremer, K., van Soolingen, D., Frothingham, R., Haas, W., Hermans, P., Martin, C.,
Palittapongarnpim, P., Plikaytis, B., Riley, L., Yakrus, M., et al., 1999. Comparison
of methods based on different molecular epidemiological markers for typing of
Mycobacterium tuberculosis complex strains: Interlaboratory study of discrimi-
natory power and reproducibility. J. Clin. Microbiol. 37 (8), 2607–2618.

Mills, H.L., Cohen, T., Colijn, C., 2013. Community-wide isoniazid preventive therapy
drives drug-resistant tuberculosis: a model-based analysis. Sci. Transl. Med. 5
(180), 180ra49.

Navarro, Y., Herranz, M., Pérez-Lago, L., Lirola, M.M., Ruiz-Serrano, M.J., Bouza, E., de
Viedma, D.G., 2011. Systematic survey of clonal complexity in tuberculosis at a
populational level and detailed characterization of the isolates involved. J. Clin.
Microbiol. 49 (12), 4131–4137.

Palaci, M., Dietze, R., Hadad, D.J., Ribeiro, F.K.C., Peres, R.L., Vinhas, S.A., Maciel, E.L.N.,
do Valle Dettoni, V., Horter, L., Boom, W.H., et al., 2007. Cavitary disease and
quantitative sputum bacillary load in cases of pulmonary tuberculosis. J. Clin.
Microbiol. 45 (12), 4064–4066.

Rodrigues, P., Gomes, M.G.M., Rebelo, C., 2007. Drug resistance in tuberculosis—a
reinfection model. Theor. Popul. Biol. 71 (2), 196–212.

Sarkar, R., Lenders, L., Wilkinson, K.A., Wilkinson, R.J., Nicol, M.P., 2012. Modern
lineages of Mycobacterium tuberculosis exhibit lineage-specific patterns of
growth and cytokine induction in human monocyte-derived macrophages.
PloS One 7 (8), e43170.

Sergeev, R., Colijn, C., Cohen, T., 2011. Models to understand the population-level
impact of mixed strain m. tuberculosis infections. J. Theor. Biol. 280 (1), 88–100.

Sola, C., Filliol, I., Legrand, E., Lesjean, S., Locht, C., Supply, P., Rastogi, N., 2003.
Genotyping of theMycobacterium tuberculosis complex using mirus: association
with VNTR and spoligotyping for molecular epidemiology and evolutionary
genetics. Infect. Genet. Evol. 3 (2), 125–133.

Sun, G., Luo, T., Yang, C., Dong, X., Li, J., Zhu, Y., Zheng, H., Tian, W., Wang, S., Barry, C.E.,
et al., 2012. Dynamic population changes in Mycobacterium tuberculosis during
acquisition and fixation of drug resistance in patients. J. Infect. Dis. 206 (11),
1724–1733.

Supply, P. Multilocus Variable Number Tandem Repeat Genotyping of Mycobacter-
ium tuberculosis. Technical Guide, 2005.

Supply, P., Lesjean, S., Savine, E., Kremer, K., Van Soolingen, D., Locht, C., 2001.
Automated high-throughput genotyping for study of global epidemiology of
Mycobacterium tuberculosis based on mycobacterial interspersed repetitive
units. J. Clin. Microbiol. 39 (10), 3563–3571.

van Embden, J., Cave, M.D., Crawford, J.T., Dale, J., Eisenach, K., Gicquel, B., Hermans, P.,
Martin, C., McAdam, R., Shinnick, T., 1993. Strain identification of Mycobacterium
tuberculosis by DNA fingerprinting: recommendations for a standardized metho-
dology. J. Clin. Microbiol. 31 (2), 406–409.

van Rie, A., Victor, T.C., Richardson, M., Johnson, R., van der Spuy, G.D., Murray, E.J.,
Beyers, N., van Pittius, N.C.G., van Helden, P.D., Warren, R.M., 2005. Reinfection
and mixed infection cause changing Mycobacterium tuberculosis drug-
resistance patterns. Am. J. Respir. Crit. Care Med. 172 (5), 636.

Warren, R., Richardson, M., van der Spuy, G., Victor, T., Sampson, S., Beyers, N.,
van Helden, P., 1999. DNA fingerprinting and molecular epidemiology of
tuberculosis: use and interpretation in an epidemic setting. Electrophoresis
20 (8), 1807–1812.

Warren, R.M., Victor, T.C., Streicher, E.M., Richardson, M., Beyers, N., van Pittius, N.C.G.,
van Helden, P.D., 2004. Patients with active tuberculosis often have different
strains in the same sputum specimen. Am. J. Respir. Crit. Care Med. 169 (5),
610–614.

0.8

0.5

0.3

λY−λX

E m
in

E[ρ] for f=0.005

0 0.04 0.08 0.12 0.16 0.2
10

16

22

28

34

40
0.3

0.5

0.8

λY−λX

E m
in

E[ρ] for f=0.01

0 0.04 0.08 0.12 0.16 0.2
10

16

22

28

34

40
0.3

0.5

0.8

λY−λX

E m
in

E[ρ] for f=0.015

0 0.04 0.08 0.12 0.16 0.2
10

16

22

28

34

40

0.5

0.8

λY−λX

E m
in

E[ρ] for f=0.02

0 0.04 0.08 0.12 0.16 0.2
10

16

22

28

34

40

Fig. 5. Contour lines of the expected prevalence of mixed infection E½ρ� are drawn for four different values of the sensitivity threshold f of the genotyping method. Every plot
shows three elevation levels (0.3, 0.5 and 0.8) when the difference of the growth rates λY �λX spans between 0 and 0.2 (x-axis) and the expected number of minority strain
cells in sputum Emin spans between 10 and 40 (y-axis). To produce each plot we simulated a study involving 500 patients among whom 75 are detected with mixed infection.
From the comparison of the contour plot we evince that as the threshold f increases, a greater portion of the parameter space features a high (40:8) expected prevalence of
mixed infection. On the other hand, when f is small, E½ρ� is closer to the detected prevalence 15%. This not only confirms that a small sensitivity threshold allows more precise
results, but also shows that even when such threshold is small, the raw percentage 15% should be corrected to give a good estimate of the real prevalence of mixed infection.
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