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Consider a two-dimensional capped capillary pore formed by capping two parallel planar walls with
a third wall orthogonal to the two planar walls. This system reduces to a slit pore sufficiently far from
the capping wall and to a single planar wall when the side walls are far apart. Not surprisingly, wetting
of capped capillaries is related to wetting of slit pores and planar walls. For example, the wetting
temperature of the capped capillary provides the boundary between first-order and continuous tran-
sitions to condensation. We present a numerical investigation of adsorption in capped capillaries of
mesoscopic widths based on density functional theory. The fluid-fluid and fluid-substrate interactions
are given by the pairwise Lennard-Jones potential. We also perform a parametric study of wetting in
capped capillaries by a liquid phase by varying the applied chemical potential, temperature, and pore
width. This allows us to construct surface phase diagrams and investigate the complicated interplay
of wetting mechanisms specific to each system, in particular, the dependence of capillary wetting
temperature on the pore width. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4905605]

I. INTRODUCTION

Studies of nano-confined fluids are motivated by funda-
mental as well as applied interest. From a theoretical point
of view, a fluid confined inside a small pore is a statistical-
mechanical system with a rich phase behavior since the
parameters of the fluid-substrate potential and the character-
istic dimensions of the pore act as thermodynamic degrees
of freedom. In applications, enhancing our understanding of
adsorption in small pores is essential in new and rapidly
developing branches of engineering and science such as micro-
and nano-fluidics,1–5 biomimetics,6,7 colloidal science,8–10

and the design and operation of lab-on-a chip devices.11,12

Investigations of wetting in prototypical nano-sized pores
also provide a foundation for understanding adsorption on
patterned substrates and the phenomenon of superhydropho-
bicity and superspreading.13,14

In this study, we consider three prototypical systems, a
planar wall, a slit pore, and a capped capillary in contact with
undersaturated vapor of a fluid with long-range intermolecular
fluid-fluid and fluid-substrate interactions. The three systems
are sketched in the top panels (a), (b), and (c) of Fig. 1. The
bottom panels of Fig. 1 show the respective wetting phase
diagrams. It is convenient to define the (negative) deviation
chemical potential∆µ= µ−µsat, where µsat(T) is the saturation
chemical potential at the given temperature T . We will use ∆µ
instead of µ when plotting the isotherms and wetting phase
diagrams.

Consider first a planar wall, Fig. 1(a). For ∆µ = 0
and T = Tw (wetting temperature), the fluid in contact with
the wall undergoes a first-order wetting transition.15–18 For
∆µ < 0, there is a line of first-order prewetting transitions
(the coexistence of thin and thick adsorbed liquid films is
often referred to as prewetting), ∆µpw(T), which approaches

saturation tangentially at Tw. If saturation is approached from
below at T > Tw, the transition to wetting is continuous
(complete wetting transition). At saturation, the macroscopic
contact angle Θ of a sessile liquid drop sitting on a planar wall
is given by the Young equation

σwv=σwl+σlv cos Θ, (1)

where σwv, σwl, and σlv are wall-vapor, wall-liquid, and
liquid-vapor surface tensions, respectively. The wall wetting
temperature satisfies the condition

Θ(Tw)= 0. (2)

We now turn to a slit pore formed by two parallel walls
with H the separation distance, Figure 1(b). When µc < µsat,
the fluid in the pore undergoes a first-order condensation
transition. During condensation vapor coexists with liquid,
which is metastable in the bulk, hereinafter referred to as
capillary liquid. The value of µc at low T is often approximated

FIG. 1. The geometries under consideration (top) and their respective wetting
phase diagrams (bottom) for a planar wall (a), a slit pore (b), and a capped
capillary (c). Top of each panel: hatched and gray-shaded areas represent the
substrate and the adsorbate, respectively. Bottom of each panel: black and
gray curves correspond to the prewetting [referred to as ∆µpw (T ) for (a) and
∆µcpw (T ) for (c)] and condensation [∆µc (T )] transition curves, respectively.

0021-9606/2015/142(3)/034708/11/$30.00 142, 034708-1 © 2015 AIP Publishing LLC
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using the phenomenological Kelvin equation15,18

µc= µsat−
2σlv cos Θ

H∆ρ
, (3)

where ∆ρ = ρliq− ρvap is the difference between bulk liquid
and vapor number densities at ∆µ= 0. According to Eq. (3),
the transition curve ∆µc(T) crosses saturation at Ts, where
Θ(Ts)= π/2, and has a minimum near Tw.18

Finally, we turn to the capped capillary, Figure 1(c). This
system has been studied a lot less than a planar wall and a slit
pore. Far from the capping wall, as x→ ∞, the capped capillary
reduces to its associated slit pore, so the fluid should undergo
condensation at µc given by Eq. (3). However, the order of the
transition can be continuous, as was found by Parry et al.19

A later density functional theory (DFT) study by Yatsyshin
et al.20 has revealed the existence of the capillary wetting
temperature, Tcw, which separates first-order and continuous
condensation at µc. For T ≤Tcw, condensation is first-order and
for T >Tcw, it is continuous. When T >Tcw and µ < µc (but not
too far from µc), the cumulative action of the substrate behind
the capping wall may serve to nucleate a slab of capillary
liquid, which is then separated from the vapor by a circular-
arc meniscus. The continuous unbinding of the meniscus as
µ→ µ−c marks the onset of condensation above Tcw.

The DFT calculations performed by Yatsyshin et al.,20

and independently by Malijevský21 for a similar system, also
suggested that condensation above Tcw may be preceded by
the capillary prewetting transition and a resulting hysteresis
in the growth of the capillary liquid slab. During capillary
prewetting, vapour and a slab of capillary liquid of mesoscopic
height adsorbed on the capping wall coexist. The locus of
the transitions, ∆µcpw(T), is sketched in the bottom panel of
Fig. 1. The curve∆µcpw(T) approaches the condensation curve
∆µc(T) tangentially at Tcw. Such phenomenology of capped
capillaries is clearly analogous to wetting of planar walls.
A recent study by Rascon et al.22 has explored the effect of
the wetting properties of the capping wall on the order of
condensation at Tcw. Using an effective Hamiltonian approach,
the authors have revealed that Tcw is related to the Young
contact angle of the capping wall considered on its own.

In what follows, we consider the three systems from Fig. 1
using DFT.23 All intermolecular interactions are modelled by
the Lennard-Jones (LJ) pairwise potential

ϕ6−12
ε0,σ0

(r)= 4ε0


−
(
σ0

r

)6
+

(
σ0

r

)12

, (4)

where ε0 and σ0 are measures of the strength and range of the
potential, respectively. We work sufficiently below the bulk
critical temperature, Tc, where the classical DFT approach is
applicable, neglecting also the density fluctuations along the
z-axis. At the same time, T is taken above the bulk triple point,
where there is no freezing or layering in the fluid.

Our goal is to understand the connections of wetting in
the capped capillary to wetting on a wall and in a slit pore,
which provide two different limiting cases (H→ ∞ and x→ ∞,
respectively). For example, the adsorption of capillary liquid
slab on the capping wall of the capillary and the adsorption of
liquid film on an infinite planar wall are related phenomena.22

What is then the effect of the pore width? To what extent can

one consider the value of Tw to be an approximation to Tcw?
How well does the Kelvin equation describe condensation in
slit pores and capped capillaries at low temperatures? Only
a detailed calculation using a microscopic approach, such as
that provided by DFT, can address these and similar questions.
Details of the DFT we use and the governing equations are
given in Sec. II. Calculation results are detailed in Sec. III,
with a brief summary given in Sec. IV.

II. THEORETICAL FRAMEWORK

Treating the substrate as a spectator phase which gives
rise to the external potential Vext(r), the fluid grand potential
can be approximated as a functional of the spatially distributed
one-body number density ρ(r),23,24

Ω[ρ(r)]= Fin[ρ(r)]+


drρ(r)(Vext(r)− µ), (5)

where Fin[ρ] is the “intrinsic” free energy functional, which
does not depend on Vext(r); integration is carried out over
the volume V occupied by the fluid. At equilibrium, ρ(r)
minimises Ω[ρ(r)], which is then equal to the grand potential
Ω(T,V,µ). Taking the hard sphere fluid as a reference system
and the LJ attractions as a perturbation, Fin[ρ] can be
approximated as

Fin[ρ(r)]= kBT


drρ(r)�lnλ3ρ(r)−1
�

+


drρ(r)ψ (ρ(r))

+
1
2


dr


dr′ρ(r)ρ(r′)ϕattr(|r−r′|), (6)

where kB is the Boltzmann constant, λ is the de Broglie
wavelength, ψ (ρ) is the configurational part of the hard sphere
fluid free energy per particle, and ϕattr(r) is the attractive
potential. The first term in the right hand side of Eq. (6)
corresponds to the ideal gas free energy, the second term
accounts for the hard sphere repulsions at short distances,
and the third term accounts for the LJ attractions. With the
Carnahan-Starling equation of state for the hard sphere fluid,25

the expression for ψ (ρ) is given by

ψ (ρ)= kBT
η (4−3η)
(1−η)2 , η = πσ3ρ/6, (7)

where σ is the hard sphere diameter. The attractive potential
can be approximated with the Barker-Henderson perturbation
theory26

ϕattr(r)=



0, r ≤ σ
ϕ6-12
ε,σ , r > σ

, (8)

where ε is the depth of the attractive potential well. In Eq. (8)
we have neglected the weak temperature dependence of σ.
When ρ(r) is constant in one [Fig. 1(c)] or two [Figs. 1(a) and
1(b)] directions, the last term in Eq. (6) can be simplified by
integrating ϕattr(r) along the directions of constant density, see
Appendix A.

The local density approximation for the repulsive contri-
bution to Fin[ρ] [second term in Eq. (6)] does not properly
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account for the excluded volume correlations in the fluid. As
a result, the fluid density profiles obtained do not possess an
oscillatory near-wall structure. This can be captured with more
refined treatments such as fundamental measure theory.27,28

Nevertheless, the local treatment of intermolecular repulsions
we adopt here is suitable for the purposes of the present study.
This is because we investigate wetting by a liquid phase above
the bulk triple point, where the fluid surface phase behavior
is determined by the asymptote of the pairwise attractive
potentials,29 and the description of short-range intermolecular
repulsions30 offered by this treatment adequately captures the
main features of the phenomenology we wish to discuss. Our
treatment of attractions [last term in Eq. (6)] corresponds to the
random phase approximation, which captures the asymptotic
behavior of the fluid direct pair correlation function in the
bulk.31

The intermolecular fluid-substrate interactions are gov-
erned at long distances by the pairwise LJ potential in Eq. (4)
with the substrate-specific parameters, ε0 = εw, σ0 = σw. In
general, at short distances, the intermolecular potentials are
different from LJ.32 Moreover, integrating the LJ potential over
the substrate volume to obtain the cumulative fluid-substrate
potential Vext(r) leads to a non-physical divergence of Vext(r) at
contact with the fluid. To remove the divergence, we introduce
a near-wall shift H0 of the cumulative substrate potential. One
can think of the substrate surface as being coated by a layer
of foreign solid phase of width H0, where the coating does
not exert a long-range potential on the fluid, and thus does
not affect the corresponding wetting behavior. The cumulative
substrate potential in Eq. (5) is given by

Vext(r)= ρw


dr′ϕ6−12

εw,σw(|r−r′|), (9)

where ρw is the effective density of the LJ substrate, and the
integration is carried out over the volume of the substrate
excluding the coating. The potential of the planar wall
[Fig. 1(a), the fluid has y-dependent density, ρ(r)≡ ρwall(y),
defined for r= (x,y,z) with x,z ∈ (−∞,+∞) and y ∈ [0,+∞)] is
given by

Vwall(y)= 4πρwεwσ
3
w
*
,
−1

6

(
σw

H0+ y

)3

+
1

45

(
σw

H0+ y

)9
+
-
. (10)

The potential of the slit pore of width H [Fig. 1(b), the fluid
has y-dependent density, ρ(r)≡ ρslit(y), defined for r= (x,y,z)
with x,z ∈ (−∞,+∞) and y ∈ [0,H]] is given by

Vslit(y)=Vwall(y)+Vwall(H− y). (11)

Finally, the potential of the capped capillary [Fig. 1(c),
the fluid has x- and y-dependent density, ρ(r) ≡ ρcpd(x,y),
defined for r = (x,y,z) with x ∈ [0,+∞), y ∈ [0,H] and z
∈ (−∞,+∞)] is

Vcpd(x,y)=Vslit(y)+Vcap(x,y), (12)

where the second term accounts for the contribution due to the
capping wall

Vcap(x,y) = ρw

−H0
−∞

dx ′
H+H0
−H0

dy ′
∞

−∞

dz′ ϕ6−12
εw,σw(|r−r′|)

=
−3
8
ρwεwσ

6
wπ(H+2H0)

x4

+O
(
ρwεwσ

6
wH0(H+2H0)

x5

)
, (13)

as x→ ∞.
The Euler–Lagrange equation for the minimization of

Ω[ρ(r)] can be obtained by functional differentiation

kBT lnρ(r)+ψ (ρ(r))+ ρ(r)ψ ′ρ(ρ(r))
+


dr′ρ(r′)ϕattr(|r−r′|)+Vext(r)− µ= 0, (14)

where ψ ′ρ is the derivative of ψ (ρ) in Eq. (7) with respect to
ρ. In the limit Vext(r)→ 0 and ρ(r)→ ρ= const, Eqs. (14) and
(5) are equivalent to the bulk equations of state

µ= kBT lnρ+ψ (ρ)+ ρψ ′ρ(ρ)− 32π
9

ρσ3ε, (15)

P= ρkBT
1+η+η2−η3

(1−η)3 − 16π
9

ρ2σ3ε, (16)

where P denotes pressure. At saturation, µ
�
ρliq

�
= µ

�
ρvap

�

= µsat and P
�
ρliq

�
= P

�
ρvap

�
= Psat. At T = Tc, ∂P/∂ρc = ∂

2P
/∂ρ2

c = 0, where ρc is the bulk critical density. Given T and µ
of the reservoir, we can obtain ρ(r) by solving Eq. (14) and
subsequently, the grand potential Ω(T,µ) from Eq. (5).

A. Critical exponents

The effective binding potential15 corresponding to the free
energy functional in Eq. (5) can be obtained by substituting
the “sharp-kink” parametrization of the density profile in
terms of the local interface height.18,33 For example, in the
case, when a liquid film of height l is adsorbed on a planar
wall, the density can be approximated by ρ(r) ≡ ρsk(y)
= ρliqΘ(l− y)+ ρvapΘ(y− l), whereΘ(x) is the Heaviside step-
function. Substituting into Eq. (5) with Vext(r)=Vwall(y), one
can identify the terms corresponding to the bulk energy contri-
bution, surface tensions, and effective binding with potential
W (l). The latter is due to the substrate-fluid interactions, which
decay with the distance to the wall29

Ω(l)/A=−l∆µ∆ρ+σwl+σlv+∆ρW (l), (17)

where A is the wall area and

W (l) ≡
∞
l

dz
*..
,
ρliq

∞
z

dyϕattr(y)−Vwall(z)+//
-

= AH/l2+O
�
εwρwσ

6
wH0/l3�, (18)

where it is assumed that l/σw is large, ϕattr(y)=


dxdzϕattr(r),
and AH is the Hamaker constant29

AH= π/3
�
ρwεwσ

6
w− ρliqεσ

6�. (19)
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Note that AH does not depend on H0 from Eq. (10).
Minimising Ω(l) with respect to l, we obtain

l = (2AH)1/3(−∆µ)−1/3, (20)

which should hold near ∆µ= 0 for LJ intermolecular poten-
tials.

Analogous considerations for the capped capillary have
to take into account that a slab of capillary liquid of height
ls is adsorbed on the capping wall when µ < µc, due to the
potential Vcap. Taking into account the asymptote of Vcap(x,y)
in Eq. (13), the capillary liquid slab adsorbed on the capping
wall behaves as19

ls∝ (µc− µ)−1/4, (21)

for µ approaching µc.
Note that W (l) depends on the local film height. On

the other hand, the non-local character of intermolecular
interactions is properly expressed by the free energy functional
in Eq. (6). In Sec. III, we contrast the DFT calculation with
the predictions in Eqs. (20) and (21).

B. Phase transitions

To trace the various phase transitions, we fix T and
vary µ to obtain a set of solutions {ρ(r)}µ to Eq. (14)
together with their corresponding grand potential isotherm
Ω(µ) = Ω�{ρ(r)}µ�, discarding the density profiles corre-
sponding to non-concave branches of Ω(µ). The remaining
stable configurations may correspond to different fluid phases
coexisting at some µ0, where Ω(µ0) is non-analytic. A first-
order transition corresponds to a discontinuity in ∂Ω(µ)/∂µ
at µ0. The divergence of ∂Ω(µ)/∂µ, as µ→ µ0, corresponds
to a continuous transition at that point.

A first-order transition is expressed by the following
system of equations for µ0 and the coexisting density profiles
ρ1(r) and ρ2(r):

δΩ

δρ
���ρ1(r)
=
δΩ

δρ
���ρ2(r)
= 0, (22a)

Ω[ρ1(r)]−Ω[ρ2(r)]= 0, (22b)

where Eq. (22a) is equivalent to the Euler–Lagrange equation,
Eq. (14) and Eq. (22b) expresses the condition that Ω(µ) self-
intersects at µ0. Solving Eq. (22) for a range of values of T
allows us to construct the phase diagrams sketched in Fig. 1.
To compute wetting temperatures, one can make use of the
Clausius–Clapeyron equation, which determines the slope of
a phase coexistence curve µ0(T),34

∂µ0

∂T
=− S1−S2

N1−N2
, (23)

where N1, S1 and N2, S2 are the particle numbers and entropies
of the coexisting fluid phases.

C. Surface excess quantities

For a given T , it is convenient to separate bulk and surface
excess contributions to extensive thermodynamic variables.
The bulk contribution to the grand free energy (−PV) is the
same for all the systems sketched in Fig. 1. In the cases of the

wall and the slit pore, the excess grand free energy is given
by34

Ω
ex
wall, slit(µ) ≡Ω(µ)+PV

=Ω
�
ρwall, slit(y)�−Ω[ρb], (24)

where Ω[ρ(r)] is given in Eq. (5) and ρb is the bulk vapor
density, which can be obtained as the root of Eq. (15). In
the case of the wall, the fluid density ρwall(y) is defined for y
∈ [0,∞), and for large y/σw, we have, to leading order, ρwall(y)
= ρb+α/y

3+ · ··, where α is a dimensionless constant.35 It then
follows thatΩex

wall(µ) is finite for wall wetting. In the case of the
slit pore, the fluid density ρslit(y) is defined between y = 0 and
y =H , soΩex

slit(µ) is finite too. Finally, in the case of the capped
capillary, the fluid density ρcpd(x,y) is defined for x ∈ [0,∞)
and y ∈ [0,∞). It follows from Eq. (13), that to leading order
ρcpd(x,y) = ρslit(y)+ κ/x4+ · ··, as x → ∞, where κ has the
dimensions of length. Therefore, if the expression in Eq. (24)
is evaluated with ρcpd(x,y), it would not give a finite quantity.
A finite quantity is instead obtained by defining the excess
grand free energy relative to the associated slit pore

Ω
ex
cpd(µ)=Ω

�
ρcpd(x,y)�−Ω[ρslit(y)]. (25)

For the adsorption on the wall and in the slit pore, we have
the usual expression34

Γwall, slit=


dy (ρwall, slit(y)− ρb). (26)

The Gibbs adsorption equation connects Γ and Ωex(µ) at
constant T through34

Γwall, slit=−1/A
(
∂Ωex

wall, slit/∂µ
)
. (27)

Following similar arguments, due to the asymptotic
behavior of ρcpd(x,y), a finite adsorption for wetting of the
capped capillary can be defined as

Γcpd=


dx


dy

�
ρcpd(x,y)− ρslit(y)�. (28)

For a capillary with the macroscopic characteristic length
scale R along the z-axis, the Gibbs adsorption equation takes
the form

Γcpd=−1/R
(
∂Ωex

cpd/∂µ
)
. (29)

D. Numerical approach

Let us comment briefly on the numerical challenges
associated with solving Eqs. (14) and (22) in one and two
dimensions. Over the years, a number of numerical approaches
have been proposed for solving DFT equations.9,27,36–38 The
crucial step in the numerical implementation is to accurately
and efficiently compute the non-local integral terms corre-
sponding to the fluid-fluid interactions, i.e., the fourth term
in Eq. (14). Our recent studies for both local/differential
equations39,40 and non-local/integral equations20,28,35 have
highlighted the advantages of employing pseudospectral
collocation methods.41,42 For integral equations, we use
the Clenshaw–Curtis quadrature to evaluate the non-local
terms.35,43 Regarding the spectral approach, it is noteworthy
that it has an exponential convergence rate with the size
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of the computational grid, while other methods used in the
literature are typically based on the Simpson rule or fast
Fourier transform and exhibit only algebraic convergence.27,44

A faster convergence rate allows us to use significantly fewer
grid points when discretising the computational domain, while
retaining high accuracy in the computations. This is especially
important in two-dimensional (2D) problems.

Pseudospectral methods for DFT are implemented by
discretising ρ(r) on a non-uniform grid of collocation points
and constructing a globally interpolating function. All mathe-
matical operations are performed on this global interpolant
and have exponential accuracy. For the present study, the
pseudospectral method developed for integral equations in
Ref. 35 was extended to 2D problems by constructing the
interpolant on a tensor product grid formed by conformally
mapping a grid based on Chebyshev42 points independently
in each direction onto the physical domain of interest. The
benefit of using conformal maps is that we can position the
collocation points densely near the walls, where the density is
expected to vary sharply, and at the same time, we can have grid
points quite far from the adsorbing wall allowing us to capture
the smooth decay of the density profile. This approach allows
us to compute accurately the values of the critical exponents
given in Eqs. (20) and (21). In practice, we positioned the last
point at a distance of about 103σ from the adsorbing wall. For
one-dimensional problems (1D, planar wall and slit pore), we
used grid sizes of 130 points for the wall and up to 60 points for
slit pores with various H . For 2D problems (capped capillary),
we used 130 and up to 60 discretization points along the x-
and y-directions, respectively. To obtain critical exponents and
compute coexistence lines near the wetting temperatures, we
sometimes increased the grid size to about 200 points along
the direction of interface growth.

Discretizing the integral Eqs. (14) and (22) leads to
systems of non-linear algebraic equations, which are solved
using Newton’s algorithm. A tolerance of 10−7 typically
requires 2 or 3 iterations. The calculation time is significantly
reduced by evaluating the non-local terms as a matrix-vector
product and computing the matrix outside the Newton loop.

Figure 2 shows the results of a convergence test for
the numerical solver of Eq. (14) for the capped capillary
with H = 30. A density profile ρ0 of a fluid configuration
similar to the one shown in Fig. 8(d), with the center of
the meniscus along the x-axis located at approximately 10

FIG. 2. Convergence of the numerical scheme with the number N of grid
points.

molecular diameters from the capping wall, was obtained
on the reference grid with 162×80 points along the x- and
y-axes, respectively. The same calculation was repeated on
coarser meshes of size 32×16, 48×24, 72×36, and 108×54
obtaining ρN , where N is the total number of mesh points. In
order to compare ρN with ρ0, we interpolated both solutions
on a truncated domain [0,20]× [0,30], which was discretized
uniformly with K = 2400 points, using 2 points per molecular
diameter along each dimension. The estimate of the average
error is given as the mean of the Euclidean norm of the
difference of the interpolated data, namely,

E = 1
K


K
i=0

[ρ(i)N − ρ(i)0 ]2, (30)

where the superscript (i) is a label for points on the uniform
grid.

Apart from the discretisation issues, selecting an initial
guess for the Newton algorithm (or any other iterative scheme,
e.g., Picard) to converge is a challenge. To overcome it, we
employ a pseudo-arc-length continuation technique35,45 which
allows one to treat any parameter in the non-linear system of
equations as an unknown and serves to optimize the selection
of the initial guess. In Eq. (14), we choose µ as the continuation
parameter and start our calculations at a rather low value of µ,
where the fluid is dilute and a simple initial guess suffices
to obtain the unique numerical solution. The continuation
algorithm then proceeds to automatically vary the values of
µ and provide an optimal initial guess for the Newton method
to converge for every new value of µ. This allows us to obtain
grand potential and adsorption isotherms in a systematic and
efficient fashion. By applying the same method to Eqs. (22), we
can trace the transitions with T as the continuation parameter
and construct the phase diagrams of wetting.

All computations presented in Sec. III were performed on
a standard desktop computer. In practice, in the cases of the
wall and the slit pore, the calculation of a single density profile
from Eq. (14) is fast, with the calculation of an isotherm (same
equation, µ is treated as a parameter) taking several seconds,
and the calculation of a phase diagram from Eqs. (22) with
T treated as a parameter taking several minutes. For capped
capillaries, the calculations of density profiles and of isotherms
take about a minute and an hour, respectively. The calculation
of a phase transition curve takes about three hours.

III. NUMERICAL RESULTS AND DISCUSSION

We use the parameters σ and ε in Eqs. (7) and (8) as the
units of length and energy. The bulk critical temperature is
Tc ≈ 1.006 (in units of ε/kB). We set ρw = 1 in Eq. (9). The
parameters εw, σw, and H0 of the fluid-substrate potentials
in Eqs. (10)–(12) were chosen to satisfy three criteria for the
systems to exhibit the behaviour we wish to study: the planar
wetting transition should be first-order, the planar prewetting
on the side walls of the slit pores should be pre-empted by
condensation, and lastly, there should be no remnant of wedge
prefilling in the corners of capped capillaries.20,46 The case,
where prewetting films can form on the side walls of the
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capped capillary and the case, where the wetting of 2D wedges
is manifested by drops adsorbed in the corners of the capped
capillary deserve a dedicated study and will not be considered
here. Finally, we tried to get a substrate with Tw ∼ 0.9Tc, in
order for the interfaces to be smoother and not requiring too
many grid points to be resolved. We thus fix the parameters
of the substrate as εw = 0.6, σw = 1.7, H0 = 3.5. The results
we present should remain qualitatively unaltered for a broader
class of long-range fluid-substrate potentials, which lead to
first-order planar wetting.

A. Wall

Figure 3 shows planar prewetting at T = 0.92 and ∆µpw
=−0.1×10−2. The adsorption isotherm Γwall(µ) is plotted in
Fig. 3(a), with a dashed vertical line at ∆µpw showing the
equal-area construction. By setting the effective thickness of
adsorbed film to be

lB Γwall/∆ρ, (31)

we can connect with the phenomenology of prewetting
discussed in Sec. I. The isotherm of excess grand potential
per unit area is shown in Fig. 3(b). The Gibbs adsorption
rule from Eq. (27) was used to verify the calculation. The
intersection of the concave branches of Ωex

wall(µ) suggests the
presence of a first-order transition at ∆µpw and hysteresis.
The density profiles of coexisting thin and thick prewetting
films are shown in Fig. 3(c), where we observe that the thick-
film profile has a plateau near ρliq, and that ρ(y)→ ρb as
y → ∞ for both profiles. Noteworthy is that the value of
the density at contact with the wall, ρ(0+), is related to ρb
via a sum rule (see Appendix B), which is exact for the
given grand free energy functional, and thus can be used
to further verify the numerics. We found the agreement of
the calculation and the sum rule to be of the order of 10−7.

FIG. 3. Planar prewetting at T = 0.92, ∆µpw = −0.1 × 10−2. (a) and (b):
Γwall (µ) and Ωex

wall (µ) isotherms. Solid (dotted) branches are stable (unsta-
ble). The dashed vertical line in (a) is drawn at ∆µpw, where the branches in
(b) intersect. (c) Density profiles of prewetting films. The dashed horizontal
lines are at ρvap ≈ 0.096 and ρliq ≈ 0.455. (d) Γwall (µ) on a log-log plot for
∆µ → 0−. The dashed line shows the theoretical asymptote.

FIG. 4. Prewetting line of the planar wall, comparing our calculation (black
curve), and the asymptotic fit (gray curve) used to extrapolate to saturation.
The inset zooms into the region near Tw. Dotted vertical lines are drawn at
T = 0.909 and T = 0.911, and demarcate the interval where 150 data points
were used for fitting. The open circles show a selection of the data. The last
data point is at T ≈ 0.9090 and ∆µ ≈ 8 × 10−5. Extrapolating to saturation
gives Tw ≈ 0.9064.

Figure 3(d) illustrates the divergence of Γwall(µ) as µ→ µsat
by plotting it on logarithmic axes. According to Eqs. (19) and
(20), near saturation Γwall ∼ −a∆µ−1/3, where the amplitude
a ≈ (2AH)1/3∆ρ ≈ 1.11 for our value of T . This theoretical
asymptote is plotted in Fig. 3(d) with a dashed line and
shows an excellent agreement between the theory and the
computation.

Figure 4 shows the calculated prewetting line ∆µpw(T),
where we observe that wall prewetting approaches saturation
tangentially at Tw. This is to be expected, since by rewriting the
Clausius–Clapeyron Eq. (23) with the help of surface excess
quantities, one gets47

d∆µpw/dT ∼−C/Γwall
�
µpw

�
, as µpw→ µsat, (32)

where C > 0 does not depend on µ, and Γwall
�
µpw

�
corresponds

to the thick coexisting film, whose height diverges as T → Tw,
so that d∆µ/dT → 0. Integrating Eq. (32) and using Eqs. (20)
and (31), we obtain15,47

µsat− µpw∝ (T −Tw)3/2, (33)

which holds for LJ intermolecular interactions.
Since as T → Tw, the liquid-vapor interface of the thick

coexisting film unbinds to infinity, whereas the calculation
of the density profiles is restricted to a finite domain, the
calculation has to be terminated at some T & Tw, and the last
data point can be taken as an approximation to Tw (see inset
of Fig. 4). One can also fit the power law ∆µpw= a(T −Tw)3/2

through the data points near saturation and use it to extrapolate
to ∆µ= 0 in order to obtain a better numerical value of Tw. We
have used a total of 150 data points in the small interval within
the vertical dotted lines in Fig. 4 to obtain the asymptote (gray
curve).48 We found a ≈−0.8 and a value for Tw within about
3% of the last computed value of T .

B. Slit pore

The Kelvin equation in (3) provides a simple approx-
imation for the condensation transition, µc, in a slit pore.
Using DFT, we can obtain the values of the surface tensions
σlv(T) and contact angles Θ(T) entering the Kelvin equation.
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Alternatively, we can also directly obtain µc(T) by solving
Eq. (22) as T varies. This direct approach captures fully the
microscopic interactions, and the result should be different
from the Kelvin prediction at high T .18 It is certainly of interest
to contrast the two at intermediate values of T .

To obtain the wall-fluid surface tensions, we solve Eq. (14)
with Vext(r) ≡ Vwall(y) and µ = µsat for the density profiles
ρliq(y) and ρvap(y) of the saturated liquid and vapor in
contact with the planar wall. The boundary conditions are
ρliq(y)→ ρliq and ρvap(y)→ ρvap, as y → +∞, respectively.
The wall-vapor and wall-liquid surface tensions (σwv and σwl)
are given by their corresponding values of Ωex

wall(µsat)/A, see
Eq. (24). The liquid-vapor surface tension, σlv, is obtained in
the same way, by setting Vext(r)≡ 0 and solving Eq. (14) for the
density profile of the free liquid-vapor interface. The boundary
conditions are ρ(y)→ ρvap and ρ(y)→ ρliq, as y→ ±∞.

From the surface tensions, we then compute the contact
angleΘ(T) using Eq. (1), finding also thatTs≈ 0.707 by solving
Θ(Ts)= π/2 graphically. According to the Kelvin equation, the
condensation curve should cross saturation at Ts and have a
minimum near Tw (see Sec. I).

Figure 5 shows the condensation curves of two slit
pores of widths H = 40 (black) and H = 20 (gray). The full
and the dashed curves correspond to µc(T) obtained from
Eqs. (22) and (3), respectively. For the Kelvin approximation,
we have restricted the range of temperatures between Ts and
T = 0.97 to keep the plot simple. Evidently, the wider pore is
described well by the Kelvin equation at lower temperatures
[∆µc(Ts) ≈ 4 × 10−4]. For higher T , the agreement breaks
down. In the case of the narrower pore, the microscopic
interactions neglected in the Kelvin equation noticeably affect
condensation, for both high and low T [∆µc(Ts) ≈ 3×10−3].
For both slit pores, the Kelvin equation predicts a minimum
near Tw, as expected. However, the DFT treatment shows the
presence of the minimum for the wider pore, but not for the
narrower pore, which can be attributed to the stronger fluid-
substrate interactions with the second wall. Note also that
unlike the Kelvin equation, DFT is capable of capturing the
shift of the bulk critical point in slit pores.18

Figure 6 depicts the isotherms of adsorption (a) and
excess grand potential (b) of the pore with H = 40 at Ts. The
black and gray segments correspond to concave (stable and
metastable) and non-concave (unstable) branches ofΩex

slit(∆µ),

FIG. 5. Condensation curves of slit pores with H = 20 (gray) and H = 40
(black). DFT calculations (solid) and their respective Kelvin approximations
(dashed). Dotted horizontal line shows ∆µ = 0. The leftmost and the right-
most solid circles mark Ts and Tw.

FIG. 6. Isotherms at Ts ≈ 0.707 of adsorption (a) and excess grand potential
(b) in a slit pore of width H = 40. Black: concave branches corresponding
to stable vapor and capillary liquid and metastable film. Gray: non-concave
branches. The metastable branch exists for 0.007 . µ . 0.014.

respectively. The value of Ts is quite low, and we find multiple
solutions of Eq. (14), most of which are unstable. The unstable
character of these states can be readily confirmed by going
beyond the equilibrium theory and considering the dynamics
of the system.8,35,49–51

We also note the existence of a metastable film adsorbed
on the walls of the pore. The interval of ∆µ where we find the
film phase is rather narrow and has a width ∆µ ≈ 7.6×10−3.
The metastable equilibria form a hardly noticeable concave
branch on the Ωex

wall(∆µ) isotherm, but span a large interval
in adsorption, ∆Γ ≈ 9.1. Figure 7 depicts the density profiles
of vapor and capillary liquid (black) coexisting at Ts and
∆µc(Ts)≈ 4×10−4, and a representative profile of a metastable
adsorbed film (dashed) at ∆µ≈ 7.9×10−3. Note the plateaus
at ρc

vap and ρc
liq, which can be obtained as roots of Eq. (15)

at µ= µc. In the example presented in Fig. 7, µc & µsat, and
we find that both ρc

vap− ρvap and ρc
liq− ρliq are positive and of

O(10−4), so capillary liquid is almost as dense as bulk liquid.
Increasing H will isolate the walls more from each other, and
part of the thin film branch will eventually become stable. In
that case, there will be prewetting on the side walls of the pore
at higher T .

C. Capped capillary

Consider now a capped capillary connected to the reser-
voir filled with vapor at T and µ [sketch in Fig. 1(c)]. To find
the fluid density profile ρcpd(x,y), we set Vext(r)≡Vcpd(x,y) in

FIG. 7. Solid curve: profiles of vapor and capillary liquid coexisting during
condensation at Ts ≈ 0.707. Dashed curve: representative density profile of
metastable film at ∆µ ≈ 7.9× 10−3, Γslit ≈ 16.2. All profiles have plateaus of
near-constant density at ρc

vap ≈ 0.02 and ρc
liq ≈ 0.68.
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FIG. 8. Prewetting transition in a capillary with H = 38 at T = 0.94,
where ∆µcpw (T ) ≈ 1.9 × 10−2 and condensation is continuous at ∆µc (T )
≈ −1.5 × 10−2. (a) Ωex

cpd (µ) isotherm. Full and dotted branches correspond
to stable and unstable fluid states, respectively [same in (b)]. Two stable
branches intersect at ∆µcpw. (b) Γcpd (µ) isotherm. The dashed vertical lines
at ∆µcpw and ∆µc show the equal-area construction and the asymptote for
Γcpd (µ), as µ → µc, respectively. (c) and (d) Coexisting density profiles. The
dashed white curve shows the position of the sharp interface.

Eq. (14), with ρcpd(x,y)→ ρslit(y), as x→ ∞. The isotherms
shown in Figs. 8(a) and 8(b) demonstrate the presence of a
first-order transition at µcpw < µc, where vapor coexists with
the capillary liquid slab adsorbed on the capping wall. We refer
to this transition as capillary prewetting, by analogy with the
transition observed for planar walls.20

The density profiles of coexisting fluid configurations
are shown in Figs. 8(c) and 8(d), on a gray scale between
ρc

vap ≈ 0.11 (white) and ρc
liq ≈ 0.41 (dark gray), with the

sharp interface (dashed curve) defined along the contour of
(ρc

vap+ ρ
c
liq)/2. As µ→ µc, the capillary liquid slab adsorbed

on the capping wall [Fig. 8(d)] grows and completely fills the
capillary. According to Eq. (29), the divergence of Γcpd(µ), as
µ→ µc indicates that the non-analyticity ofΩ(µc) corresponds
to a continuous transition.

Equation (21) provides us with the asymptote Γcpd

∼ (µc− µ)−1/4, as µ→ µc. To compare it with the DFT calcu-
lation, we have selected three adsorption isotherms exhibiting
continuous condensation corresponding to different values of
H andT . Fitting the dependence Γcpd= a(b− µ)q gives a, b≈ µc
and q ≈−1/4. Figure 9 summarises our results and illustrates
the divergence of Γcpd at condensation. In all calculations
presented, the critical exponent is captured to within 1% of
the theoretical value. In addition, the values µc obtained from
fitting also agree within 1% with the condensation curves of
the corresponding slit pores.

The locus of capillary prewetting transitions in the T-µ
plane forms the curve µcpw(T). The height of coexisting slab
grows as T is decreased along the capillary prewetting curve.
Using Clausius–Clapeyron Eq. (23), we obtain

d
�
µc− µcpw

�

dT
∼ C
Γcpd

�
µcpw

� as µcpw→ µc, (34)

where C > 0 does not depend on µ, and Γcpd
�
µcpw

�
corresponds

to the adsorbed capillary liquid slab. The relation above

FIG. 9. Adsorption isotherms near respective µc. Dashed line: guide to the
eye plotted according to Γcpd ∝ (µc − µ)−1/4. H and T for each isotherm
from bottom to top (in parentheses, we provide the parameters obtained from
fitting the power law Γcpd = a(b − µ)q to the data, where b is used to
calculate ∆µc): H = 20, T = 0.91 (∆µc ≈ −2.67 × 10−2, q ≈ −0.2509,
a ≈ 26.3); H = 30, T = 0.92 (∆µc ≈ −1.85 × 10−2, q ≈ −0.2505,
a ≈ 43.0); H = 40, T = 0.94 (∆µc ≈ −1.45×10−2, q ≈ −0.249, a ≈ 55.0).

is equivalent to dµc/dT → dµcpw/dT , as µcpw→ µc, so that
the curve µcpw(T) approaches the curve µc(T) tangentially
as T → Tcw, the capillary wetting temperature. Using the
asymptote from Eq. (21), and integrating the slope in Eq. (34),
we can also obtain the asymptote of the capillary prewetting
curve in the case of LJ intermolecular potentials

µc− µcpw∝ (T −Tcw)4/3 as T → Tcw. (35)

For T < Tcw, configurations with capillary liquid slabs are
metastable and condensation is first-order. Conversely, for
T >Tcw, capillary liquid slabs of finite height are stable when
µ > µcpw(T) and condensation is continuous. It then proceeds
via the unbinding of the interface between capillary-liquid
and vapour as µ→ µ−c . The temperature Tcw can be computed
by finding the temperature for which the capillary prewetting
curve µcpw(T) and the condensation curve µc(T) meet.
Figure 10 shows several condensation (gray) and capillary
prewetting (black) curves calculated for capillaries of different
widths. In agreement with Eq. (34), each prewetting curve
approaches the respective condensation curve tangentially.
By recalling the earlier discussion on slit pores, we note the
gradual disappearance of the local minima of the condensation

FIG. 10. Condensation (gray) and prewetting (black) lines of capped capil-
laries with different widths, H (top to bottom, also labelled in the plot): 40,
32, 22, 18, 14. The vertical dotted line marks the planar wetting temperature
at Tw ≈ 0.906.
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FIG. 11. Capillary wetting temperature as a function of capillary width
(symbols). The dashed horizontal line marks Tw.

curves near Tw with the decrease of H and the gradual decrease
of the critical condensation temperatures.

Figure 11 shows the width dependence of Tcw. For H
between 8 and 12, the computations were performed in
increments of 1 and for H between 12 and 40, in increments
of 2. Calculating Tcw becomes more challenging as H is
increased, because more mesh points are required to resolve
the unbinding meniscus of the coexisting capillary liquid
slabs. In the computations presented, we were able to resolve
coexisting capillary liquid slabs of up to about 90 molecular
diameters in length. For the values of H considered, such
coexisting slabs correspond to temperatures T > Tcw, such
that µc(T)− µpw(T) . 10−4. These values of T are taken as
reasonable approximations to Tcw in Fig. 11, since, according
to Eq. (35), we expect these values to be within 0.1% of Tcw.

We see from Fig. 11 that for small values of H , Tcw(H)
is significantly lower than Tw. As H is increased, Tcw(H) also
increases, reaching a maximum between H = 20 and H = 30.
As H → ∞, it appears that Tcw→ T+w , which is to be expected
physically, because the capillary prewetting line should tend to
the planar prewetting line of the capping wall in this limit. For
the values of H considered, we find that |Tcw−Tw| ∼ 6×10−3

on average when H > 20. Thus, the planar wetting temperature
provides a good estimate of the capillary wetting temperatures
of mesoscopically wide pores. This result is in agreement with
previous studies.22,35

IV. CONCLUDING REMARKS

In the present study, we have systematically investigated
adsorption in planar walls, slit pores, and capped capillaries
within the framework of classical DFT for fluids. The use
of DFT is a compelling alternative approach to full-scale
simulations, due to its ability to capture the main features of
the phenomenology of complex fluid systems at small scales
at a significantly lower computational cost.

For the purpose of computational efficiency, the under-
lying free-energy functional was kept as simple as possible.
The adopted simplification is generally applicable for most
single-component atomic fluids above the bulk triple point,
where a functional with the local treatment of excluded
volume interactions and the random phase approximation for
long-range attractions provides an adequate description of
wetting by a liquid-like fluid phase (such functionals would
be inappropriate for studying other phenomena, such as, for

example, layering or freezing).23,27,28 Yet, our DFT approach
is sufficiently sophisticated in that it ensures that the important
interactions are retained.

With the help of continuation techniques, we have
constructed complete phase diagrams with respect to µ and T ,
noting that in the same manner, one can relax other parameters
in the system, such as those of the interaction potentials or the
substrate geometry. Through continuation, we are also able
to uncover all solutions to the Euler–Lagrange equation and
eliminate the unstable ones by analyzing the convexity of the
corresponding branches of the grand potential Ω(µ). For a
deeper understanding of the stability of the various fluid states
obtained here, one makes use of dynamic DFT approaches,
such as those developed recently by Goddard et al.8,50

Throughout this work, we emphasized that a compre-
hensive understanding of wetting in a capped capillary is
facilitated by identifying links and common features with
wetting in a slit pore and on a planar wall. In capped capillaries,
condensation follows either the route of condensation in the
associated slit pore (first-order transition, for T ≤ Tcw) or a
route similar to complete wall wetting (continuous transition,
for T >Tcw). In the latter case, the fluid density profiles below
condensation can develop mesoscopic plateaus corresponding
to the denser capillary liquid phase, which is metastable far
from the capping wall. The capillary prewetting curve, which
joins the condensation curve tangentially at Tcw, demarcates
the region of stability of capillary liquid slabs.

It is instructive to obtain an estimate of the wetting temper-
ature of a capped capillary. First-order wetting transitions
have been first predicted by Ebner and Saam,54 and as an
example, we take their model of interactions for argon (ε/kB
= 119.76 K, σ = 3.405 Å) in contact with solid CO2 (εw/kB
= 153.0 K, σw = 3.727 Å, ρwσ

3
w = 0.988). Choosing the

coating parameter H0 = (σw+σ)/2, we obtain Tw ≈ 105.3
±0.1 K. Hence, condensation in capped capillaries which are
wider than 70 nm, should be first-order below 105 K, and
continuous above that value. In narrower pores, the boundary
between first-order and continuous condensation should be
at even lower temperatures. It is important to emphasize
that the value of Tw provided is merely an estimate and a
more sophisticated free energy functional might be required
to obtain a more accurate result.

Although continuous condensation is quite similar to
complete wall wetting, and, as we have seen, Tw of the
capping wall provides a reliable approximation to Tcw, there
are important differences in the physics of the two systems.
The adsorption of a mesoscopic liquid film on the planar wall
below bulk saturation is due to the interactions of the fluid
particles with the half-space filled by the substrate, whereas
the adsorption of capillary liquid on the capillary capping wall
below condensation is caused by the interactions between
the fluid particles and the substrate slab “plugging” the slit
pore. The fact that such slab is finite along the y-axis leads to
different values of the critical exponents. The fluctuations of
the fluid density along the z-axis, which are neglected in our
DFT treatment, should play a more important role in the case
of the capped capillary, than in the case of a planar wall.15,46

In the present work, we focused on capillaries with nano-
scale widths, where the effects of wetting in the capillary
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corners do not contribute to the wetting of the capped
capillary below condensation. In wider pores, where the
corners are sufficiently isolated, additional effects may take
place below the condensation transition, such as the adsorption
of drops in the capillary corners (so-called wedge prefilling
transition).46,52 For the nano-sized capillaries, we considered
here, the corner drops remain metastable, as the relatively
short distance between the side walls makes the formation
of a single meniscus (that of the capillary liquid slab) more
energetically efficient than the formation of two menisci (those
of the corner drops). This may change, however, for rather wide
pores, where the volume contributions of the adsorbate to the
fluid free energy will dominate the surface contributions due to
the interfaces. The system will then minimize the amount of the
adsorbed liquid, rather than the surface area of the liquid-gas
interfaces. As a result, two corner drops having a smaller total
amount of adsorbate may be more energetically favored than
a single capillary liquid slab in a range of chemical potentials
below condensation. For wider pores, there may also exist
a triple-point regime, where the drops in the corners coexist
with a capillary-liquid slab (at least within a classical DFT
treatment).

By analogy to continuous condensation, prewetting occur-
ring at the side walls of a capped capillary is expected to be a
continuous transition, manifested by the unbinding interfaces
between the thin and thick prewetting films, where the latter
are nucleated at the capping wall and are metastable far
from it.15,52 We shall consider this and related questions (e.g.,
the interplay between condensation in capped capillaries and
wedge prefilling) in future studies.
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APPENDIX A: EXPRESSIONS FOR POTENTIALS

All expressions below are dimensionless and correspond
to the parameters of Eq. (8) being set as units of length (σ = 1)
and energy (ε = 1). If a fluid is brought in contact with a planar
wall or a slit pore [1D problems, see Figs. 1(a) and 1(b)],
its one-body density is a single-variable field, while in the
capped capillary [2D problem, see Fig. 1(c)], it depends on
two variables. The distribution ρ(r) is obtained from Eq. (14).
For one-dimensional problems, we have r≡ yey (r = y), and

ρ(r)≡ ρwall(y) or ρ(r)≡ ρslit(y), (A1a)
Vext(r)≡Vwall(y) or Vext(r)≡Vslit(y). (A1b)

The expressions for the fluid-substrate potentials of the
wall and the slit pore are given by Eqs. (10) and (11). Due to
the fluid density being constant along the x- and z-axes, the
expression in Eq. (8) can be simplified for one-dimensional

problems, i.e., ϕattr(y)≡
 +∞
−∞ dz

 +∞
−∞ dx ϕattr

(
x2+ y2+ z2

)
,

ϕattr(y)=



−6π
5
, if |y | ≤ 1,

4π
(

1
5y10 −

1
2y4

)
, if |y | > 1.

(A2)

In the two-dimensional problem, we have in Eq. (14), r
≡ xex+ yey (r =


x2+ y2), and

ρ(r)≡ ρcpd(x,y), Vext(r)≡Vcpd(x,y), (A3)

where the expression for the external potentials is defined
in Eqs. (12) and (13). We compute the integral in Eq. (13)
numerically using a highly accurate Clenshaw–Curtis quad-
rature and a spectral discretisation in 2D, which generalizes
an earlier approach by Yatsyshin et al. in Ref. 35. Due to the
fluid density being constant along the z-axis, the expression in
Eq. (8) is simplified, i.e., ϕattr(r)≡

 +∞
−∞ dz ϕattr

(
x2+ y2+ z2

)
,

ϕattr(x,y)=




2

∞
√

1−r2

dz ϕ6−12
1,1

(
r2+ z2

)
, if r ≤ 1,

3π
2


−
(

1
r

)5

+
21
32

(
1
r

)11
, if r > 1.

(A4)

Although the integral in the expression above can be given
in closed form for r ≤ 1, see, e.g., the Appendix in the study
by Pereira and Kalliadasis,53 it is evaluated here by numerical
quadrature since computations with the exact expression are
prone to large round-off errors. In the region r > 1, we used
the analytic expression given above.

APPENDIX B: PLANAR CONTACT THEOREM
FOR LOCAL HARD SPHERE FUNCTIONALS

Here, we consider a LJ fluid in contact with a hard
planar wall, see, e.g., the top panel of Fig. 1(a). The density
ρ(r)≡ ρ(y) satisfies Eq. (14) with Vext(r) being zero at y > 0
and infinite at y ≤ 0. Using the system of units explained at
the beginning of Sec. III, we derive an analytic expression
connecting the value of the density at contact with the
wall, ρ(0+), with the bulk density ρb, where ρ(y)→ ρb, as
y→ +∞. The derivation for the cases of non-local hard sphere
functionals can be found, e.g., in Refs. 23 and 27. The Euler-
Lagrange Eq. (14) takes the form

δ f ex
HS(ρ)

δρ(y1)
�����y1=y

+

∞
0

dy1ϕattr(y− y1)ρ(y1)+ T lnρ(y)− µ= 0,

(B1)

where f ex
HS(ρ) ≡ ρψ (ρ) is the excess-over-ideal free energy

density of the hard sphere fluid and ϕattr(y) is given in Eq. (A2).
The first term on the left-hand side of Eq. (B1) denotes the
functional derivative of ρ(y)ψ (ρ(y)) with respect to ρ(y),
evaluated at y . We assume the existence of yb, such that for
y ≥ yb, the deviation of ρ(y) from ρb is negligible. We also
assume the existence of yc, such that for y ≥ yc, the deviation
of ϕattr(y) from zero is negligible. To proceed, we take the
derivative of Eq. (B1) with respect to y , then multiply the
result by ρ(y), and integrate from y = 0+ to y = yB≡ yb+ yc.
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Applying integration by parts, as well as the thermodynamic
relation between the pressure and the free energy, we arrive at
the following expression connecting the density at contact and
the bulk fluid pressure

P−Pex
HS

�
ρ
�
0+
��
=T ρ

�
0+
�
, (B2)

where Pex
HS(ρ) is the excess-over-ideal pressure of the hard

sphere fluid,25 see Eq. (16),

Pex
HS(ρ)= ρT

1+η+η2−η3

(1−η)3 − ρT. (B3)

The generalization of the expression above to the case of
an attractive wall, where Vext(r)≡Vwall(y) and ρ(r)≡ ρwall(y)
is straightforward: one needs to add the correction due to
the component of the pressure tensor normal to the wall-fluid
interface27,34

P−Pex
HS

�
ρwall

�
0+
��
+

+∞
0

dy ρwall(y) dVwall(y)
dy

= T ρwall
�
0+
�
. (B4)

The expressions in Eqs. (B2) and (B4) play the role of
exact sum rules, which may be used as a further means to
check our numerical implementation.
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