
Systems biology

Topology-function conservation in

protein–protein interaction networks
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Abstract

Motivation: Proteins underlay the functioning of a cell and the wiring of proteins in protein–protein

interaction network (PIN) relates to their biological functions. Proteins with similar wiring in the PIN

(topology around them) have been shown to have similar functions. This property has been suc-

cessfully exploited for predicting protein functions. Topological similarity is also used to guide net-

work alignment algorithms that find similarly wired proteins between PINs of different species;

these similarities are used to transfer annotation across PINs, e.g. from model organisms to

human. To refine these functional predictions and annotation transfers, we need to gain insight

into the variability of the topology-function relationships. For example, a function may be signifi-

cantly associated with specific topologies, while another function may be weakly associated with

several different topologies. Also, the topology-function relationships may differ between different

species.

Results: To improve our understanding of topology-function relationships and of their conserva-

tion among species, we develop a statistical framework that is built upon canonical correlation

analysis. Using the graphlet degrees to represent the wiring around proteins in PINs and gene

ontology (GO) annotations to describe their functions, our framework: (i) characterizes statistically

significant topology-function relationships in a given species, and (ii) uncovers the functions

that have conserved topology in PINs of different species, which we term topologically

orthologous functions. We apply our framework to PINs of yeast and human, identifying seven

biological process and two cellular component GO terms to be topologically orthologous for the

two organisms.

Availability and implementation: http://bio-nets.doc.ic.ac.uk/goCCA.zip

Contact: natasha@imperial.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Proteins carry out specific tasks in a cell by binding to each other.

New proteins are getting identified due to recent advances in gen-

ome sequencing technologies, and annotating their biological func-

tions is receiving increasing interest (Radivojac et al., 2013).

Similarly wired proteins in the protein–protein interaction networks

(PINs) are shown to carry out similar functions and that fact has

been exploited for transferring functional annotations between pro-

teins (Milenković and Pržulj, 2008; Nabieva et al., 2005; Samanta

and Liang, 2003; Vazquez et al., 2003). A protein’s function can be
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described at different levels of detail, from its molecular functions to

the phenotypes that it affects. Identifying a unified descriptor for

protein function is a challenging task due to the inter-dependencies

and unclear separation between these levels. Gene ontology (GO) is

a well-established way of handling these issues (Ashburner et al.,

2000). A GO term represents either a biological process (BP), a mo-

lecular function, or a cellular component (CC) phenomenon and the

ontology containing these terms describe their dependencies. A pro-

tein can be associated with multiple GO terms, each representing a

different functional characteristic of the protein.

One of the important properties of a network is density: density

is the proportion of the node pairs in a network that are connected

with edges and it measures how tightly the network is wired. Apart

from density, many different standard network properties, such as

degree distribution, clustering coefficient, betweenness centrality

and closeness centrality, can be used for trying to understand the in-

formation contained in the wiring of a protein in the PIN (Newman,

2010). Graphlets have been shown to be particularly useful in cap-

turing different aspects of the wiring around a node; graphlets are

small, connected, non-isomorphic, induced subnetworks of a large

network (Pržulj et al., 2004). Nodes within each graphlet are said to

belong same automorphism orbit, if they can be mapped to each

other by an automorphism (Pržulj, 2007). The thirty 2- to 5-node

graphlets and their 73 automorphism orbits are illustrated in

Figure 1A. The wiring around a node can be described by general-

izing the notion of node degree to graphlet degree (Milenković and

Pržulj, 2008): the graphlet degree vector of node n, denoted by

GDVn, is a 73-dimensional vector where its ith coordinate, GDV

n[i], is the number of graphlets that node n touches at orbit i

(Fig. 1B). The GDV captures the wiring patterns around a node for

all possible subnetworks with up to five nodes.

Because proteins almost never perform their function alone, but

interact with each other to carry out their function, analysing their

interaction patterns can give valuable insights into their function

inside a cell (Sharan et al., 2007). It has been shown that proteins

with similar functions and cellular locations tend to cluster together

in the PIN of yeast (Chua et al., 2006) and 70–80% of interacting

protein pairs share at least one function (Vazquez et al., 2003).

Several graph-theoretic approaches were proposed to predict the

functions of proteins based on their shared neighbourhoods

(Samanta and Liang, 2003; Vazquez et al., 2003) or on their close-

ness in the PINs (Nabieva et al., 2005). However, it was shown that

the functional similarities between proteins do not necessarily de-

pend on them being in the same local neighbourhoods, but on the

similarities of their interaction patterns independent of the network

location (Milenković and Pržulj, 2008). Another group of methods

aligns PINs of two or more species to identify the evolutionary con-

served parts of the PINs and use the resulting node-to-node map-

pings to transfer the functional annotations of proteins across species

(Clark and Kalita, 2014). These graph-theoretic approaches show

that the topological characteristics of proteins complement their se-

quence and structural characteristics and enable transfer of their

functional annotation (Sharan and Ideker, 2006; Yook et al., 2004).

Although the link between topology and function has been

widely studied, all of these studies assume that, for each function,

the wiring patterns of the annotated proteins are similar. However,

evolution might have varying effects on different parts of the PINs.

For this reason, while some essential functions might carry the topo-

logical similarity constraint, other functions that are linked with

more species-specific processes may not have such topological simi-

larity constraints and therefore, their topological characteristics can

vary.

Unlike the previous studies that aim to predict the functions of

proteins from their wiring patterns in PINs, we aim to identify the

most prominent wiring patterns of biological functions and to char-

acterize their conservation across species. Our new method utilizes

the canonical correlation analysis (CCA) method (Hotelling, 1936)

to identify significant topology-function relationships, with the top-

ology being represented by the graphlet degrees of proteins and their

functions by GO annotations. To identify the evolutionarily con-

served topology-function relationships, we separately apply our

CCA-based methodology on different species and integrate the ob-

tained results. We illustrate our method on yeast and human PINs,

as they are the most complete to date, and we uncover consistent

topology-function relationships for seven BP and two CC terms.

These functions reveal the regions of the PINs that are evolutionarily

the most conserved, which we term topologically orthologous.

Furthermore, we perform three case studies on the identified pat-

terns of ‘DNA-dependent Transcription Initiation’, ‘Cellular

Localization’ and ‘Proteasome Complex’ GO annotations and show

that our results are coherent with the underlying topology.

2 Materials and methods

2.1 Our new methodology
We uncover the species-specific and evolutionarily conserved (cross-

species) relationships between wiring patterns and functional anno-

tations of proteins with the following three step approach.

Step 1: identifying topology-function relationships.

For each species, the associations between topological character-

istics and biological functions are defined based on their common

change patterns (also called shared variance). CCA (Dillon and

Goldstein, 1984; Hotelling, 1936) is a method for finding linear re-

lationships between two sets of variables. CCA has been applied in

bioinformatics context for linking gene expression data with

Fig. 1. Graphlets. (A) The thirty 2- to 5-node graphlets, denoted by G0, . . . ,G29

and their 73 automorphism orbits, denoted by 0,1, . . . ,72 (Pržulj, 2007). (B) An

illustration of the GDV of node v, e.g. node v is touched by four edges (orbit

0—illustrated in the left panel), one triangle (orbit 3—illustrated in the middle

panel) and one four-node cycle (orbit 8—illustrated in the right panel). In this

way, GDV quantifies the wiring of a node in the network (Milenković and

Pržulj, 2008)
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sequence motifs (Rhee et al., 2009), identifying binding and func-

tional sites in protein sequences (Gonzalez et al., 2012), and iden-

tifying correlated gene expressions and network characteristics (Vert

and Kanehisa, 2003). Here, we utilize it to link topological descrip-

tors with functional annotations.

For identifying the topology-function relationships, the first vari-

able set, Rt, is defined to represent topological information based on

the GDVs of the proteins in the PIN. For both human and yeast, we

obtain the PINs and compute the GDVs of all nodes in the PINs. We

rescale the graphlet degrees to log-scale [i.e. replacing each graphlet

degree x with log(xþ1)] to suppress extreme values (Milenković

and Pržulj, 2008). Because low degree nodes are likely to be located

in the incomplete parts of the PIN (Wang and Wu, 2013), we ex-

clude the proteins with degree less than 4 from the CCA after which,

8 192 proteins remain for human, and 4 740 proteins remain for

yeast in their respective PINs. This threshold is chosen so that all

proteins can touch to graphlets at any of the graphlet orbits (a de-

tailed discussion on the degree threshold is provided in

Supplementary Section S.1). Note that the GDVs are computed be-

fore this filtering, so the exclusion has no effect on the GDVs, but

only on the number of proteins that are analysed by the CCA. The

second variable set of CCA, Rf , is defined to represent the functional

information based on the GO term annotations of the proteins. For

each protein in the PIN, we encode its GO annotations as binary

variables: 1 if the protein is annotated with the GO term, and 0

otherwise. We only include the GO terms that have at least five

annotated proteins for both yeast and human, as we would like to

identify consistent patterns in the two species and reliable patterns

are unlikely to be found with fewer than five example cases. Given n

pairs of variable vectors from Rt � Rf for n proteins, CCA finds

weight vectors so as to maximize the Pearson’s correlation between

the weighted sums of Rt and Rf , i.e. between canonical variates.

After finding the first set of such weights, CCA iterates min{t,f}

times to find more weight vectors, such that the resulting canonical

variates are not correlated with any of the previous canonical vari-

ates. The weight matrices, W1 and W2, are constructed by combin-

ing all of the identified weight vectors.

The association matrix that encodes the pairwise relations be-

tween the two sets of features is then constructed as W1 � S�Wþ
2 ,

where S is a diagonal matrix of canonical correlations (i.e. Pearson’s

correlations among canonical variates) that weights the variates ac-

cording to their correlation strength, and Wþ
2 is the Moore–Penrose

pseudoinverse of W2 (detailed in Supplementary Section S.2). The

association matrix combines all topology-function relationships

identified by CCA and it is able to transform a GDV to a vector of

real-valued topology-based annotations (illustrated in Fig. 2A and

additionally explained in the figure’s legend).

Step 2: quantifying the topology-function relationship strengths.

There are two questions that we would like to answer using the

information encoded in the association matrix: (i) which GO terms

are significantly associated with a specific topological pattern in the

PIN, and (ii) which graphlet orbits are significantly important for

the topological pattern of a specific GO term. Although the canon-

ical variates and their correlations with the input variables can be

analysed directly in this respect, such an approach would be insuffi-

cient for uncovering the conserved patterns across species because

the dimensions of the two CCA runs on yeast and human are differ-

ent, and the obtained canonical variates are not comparable. To

overcome this issue, we develop a method that elegantly summarizes

the information encoded in the association matrix. Our method first

computes the topology-based GO term annotations by multiplying

the GDVs with the association matrix and then uses the obtained

topology-based annotations to derive two measures that answer the

two questions (Fig. 2B).

Our first measure, the structure association strength, identifies

the GO terms that are strongly linked with a specific topological

pattern by quantifying the linear dependence between the topology-

based GO annotations and the observed GO annotations [obtained

from NCBI FTP Server (Maglott et al., 2013)] using the Pearson’s

correlation (Fig. 2B). The high structure association strength indi-

cates that there is a strong correspondence between topology and

function.

Our second measure, orbit contribution strength, identifies the

most important orbits for the topological pattern of a GO term by

quantifying the linear dependencies between graphlet degrees of

Fig. 2. Our method for identifying the species-consistent relationships be-

tween network topology and biological function. Panel A illustrates the asso-

ciation matrix construction from CCA. CCA identifies weight matrices W1 and

W2 that maximize the Pearson’s Correlation between the resulting canonical

variates. These weight matrices are used for defining an association matrix

that transforms GDVs to topology-based GO annotations. Panel B shows the

process of identifying and characterizing single-species topology-function as-

sociations. The association matrix is used for computing the topology-based

GO annotations that explain how strongly each GO term is associated with a

given GDV. The Pearson’s Correlation between the topology-based GO anno-

tations and observed GO annotations give the structure association strengths

that indicate the extent to which each GO term is associated with network

structure. The Pearson’s Correlation between the GDVs and the topology-

based GO annotations give the orbit contribution strengths that explain the

involvement of each orbit in the topology-function association per GO-term.

Panel C illustrates the identification of orthologous topology-function associ-

ations. For a pair of species, the multi-species structure association strength

can be computed by taking the minimum of the two per-species structure as-

sociation strengths. Orbit contribution similarities for the GO terms can be

quantified via the Spearman’s Correlation of the per-species orbit contribu-

tion strengths
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each orbit and topology-based GO annotations using the Pearson’s

correlations (Fig. 2B). For each GO term, the orbits with the highest

absolute orbit contribution strengths characterize the local topology

associated with the function described by the GO term. A discussion

on choosing the topology-based annotations rather than the

observed annotations for computing this measure is provided in

Supplementary Section S.3.

Step 3: identifying orthologous topology-function relationships.

We can effectively find the topology-function relationships for

each species by analysing their structure association strengths and

orbit contribution strengths. The remaining question that we would

like to answer is: which of the identified topology-function relation-

ships are conserved across different species? To identify orthologous

topological patterns, we first compute the structure association

strengths and orbit contribution strengths for each species by apply-

ing the first two steps of the method. Each GO term will then have a

structure association strength and a 73-dimensional orbit contribu-

tion strength vector for each species. We compare these statistics to

assess the conservation, as explained in Figure 2C.

Consistently strong topology-function correspondences for two

species can be identified by taking the minimum of each GO term’s

per-species structure association strengths, which we termmulti-species

structure association strengths. Taking the minimum when combining

the scores guarantees that the worst topology-function correspondence

is taken into account for each GO term. High multi-species structure

association strengths mean that the annotations for the GO term can

be accurately inferred from the local topology for both species.

To determine whether a GO term is associated with similar top-

ologies across two species, we compute the orbit contribution simi-

larities by taking Spearman’s correlation between the two orbit

contribution strength vectors of the GO term. The Spearman’s cor-

relation tests the similarity of the rank ordering of the orbits, and

therefore assesses whether the best and worst orbit associations are

consistent for the two species.

The statistical significance of the two strength measures and of the

cross-species topology-function similarities are computed using per-

mutation tests (Supplementary Section S.4 for details). We adjust

the estimated P-values using Benjamini–Hochberg correction for the

statistical errors caused by multiple hypotheses testing.

2.2 Datasets
2.2.1 Protein–protein interaction networks

We obtain the PINs of S. cerevisiae (baker’s yeast) and H. sapiens

(human) from BioGRID database (version 3.2.106—November

2013) (Stark et al., 2006). We include all physical interactions that

are identified by any of the relevant experimental evidence codes,

while excluding interactions that are annotated only as genetic inter-

actions. We remove the ubiquitin proteins from the PINs of both

species (i.e. UBC from human and UBI4 from yeast), because these

proteins can bind to almost all proteins in the PIN, hiding the topo-

logical characteristics of functional interactions and generating noisy

topological patterns. The resulting human PIN contains 13 410 pro-

teins (nodes) and 116 552 interactions (edges), while the yeast PIN

contains 77 360 interactions among 5 831 proteins.

2.2.2 Gene ontology (GO) annotations

We obtain GO term annotations for the human and yeast proteins

from the NCBI FTP Server (ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/

gene2go.gz) (downloaded on June 11, 2013) (Maglott et al., 2013).

GO annotations from all GO evidence codes are included in the

dataset, but annotations with qualifiers (e.g. NOT, colocalizes-with)

are excluded. GO terms labelled by an alternate ID are remapped to

the unique ID for the term. We use the full GO hierarchy (http://

www.geneontology.org/ontology/obo_format_1_2/) and infer par-

ent GO annotations from ‘is-a’ relationships.

3 Results and discussion

We apply our methodology to identify the orthologous topology-

function associations between yeast and human. Although our meth-

odology can be applied on the datasets of any species, due to the lim-

ited availability of protein–protein interaction and GO annotation

data, we study these two organisms for which the available datasets

are more complete. Yeast is a model organism that is widely used to

infer the molecular basis of BPs in. For this reason, determining the

functions that are performed in similar ways is important and this

motivates us to study these two organisms. We summarize our main

observations on the two organisms (Section 3.1) and perform case

studies on three GO terms that show consistent patterns for the two

species (Sections 3.2 and Supplementary Section S.9).

3.1 Summary of observed topology-function patterns
For both yeast and human datasets, we first apply CCA to obtain all

existing linear dependencies across the wiring patterns and GO term

annotations of proteins. The highest canonical correlations identi-

fied by this analysis is within the range of the 0.239–0.433. Further

discussions on the raw CCA results are provided in Supplementary

Section S.5.

For identifying the statistically significant relationships between

GO terms and graphlet orbits, we compute the structure association

strengths and orbit contribution strengths of the GO terms that are

annotated with at least five proteins in both species. The GO term

annotation threshold of five is chosen so that the GO annotations

provide sufficient variance for CCA analysis, while as many GO

terms as possible are considered (a detailed discussion on the GO

term annotation threshold is provided in Supplementary Section S.

1). The topology-function relationship of a GO term is accepted to

be significant if the following conditions hold: (i) the structure asso-

ciation strength of the GO term has an adjusted P-value �0:05, and

(ii) at least one of the orbit contribution strengths of the GO term

has an adjusted P-value �0:05. To avoid reporting results on high-

level GO terms, which annotate too many proteins and hence are

not specific enough for interpretation, we only report the significant

patterns of the GO terms that annotate fewer than 5% of the pro-

teins in the PINs (i.e. 291 proteins in yeast and 670 proteins in

human). Supplementary Table S.1 reports the number of GO terms

that have significant topology-function relationships along with the

total number of evaluated GO terms.

Next, we focus on identifying the subset of these patterns that

are conserved between yeast and human. We identify the GO terms

with consistent topology-function relationships across yeast and

human by utilizing orbit contribution similarities and multi-species

structure association strengths. A GO term is accepted to have a sig-

nificantly conserved topology-function relationship if the following

conditions hold: (i) the multi-species structure association strength

of the GO term has an adjusted P-value �0:05, and (ii) the orbit

contribution similarity of the GO term has an adjusted P-value

�0:05. Based on these conditions, we show that 15 BP terms and

nine CC terms have significantly conserved topology-function rela-

tionships, while no molecular function terms have such patterns.

Note that these patterns provide further evidence of the link between

network topology and biological function, since it is not possible to
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obtain such large numbers of significant topology-function relation-

ships from meaningless randomized networks, as explained in

Supplementary Section S.6. We say that two GO terms are ‘redun-

dant’ if they annotate similar sets of proteins and have similar mean-

ings. When we group the identified GO terms based on their

redundancies, we obtain seven BP and two CC terms that are

non-redundant (Supplementary Section S.7). For interpreting their

consistent topological patterns, we compute their orbit contribution

strength profiles by averaging the two orbit contribution strength

vectors obtained from yeast and human. Figure 3 summarizes the

orbit contribution strength profiles of the non-redundant conserved

topology-function relationships. Detailed results for each statis-

tically significant GO term are provided in the Supplementary

Figure S.10.

Our analysis shows that ‘localization’ and ‘regulation of cellular

organization’ processes are significantly linked with orbit group

{0,2,7,16,21,23,28}. These orbits correspond to ‘broker’ roles (i.e.

topological positions) in sparse graphlets, where the ‘broker’ orbit

mediates the connection between two nodes that are not directly

connected (illustrated in Fig. 3). A case study that investigates the

brokerage role of the proteins that are annotated with ‘Cellular

Localization’ (GO:0051641) term is provided in Section 3.2.

A different set of topological patterns, consisting of orbit groups

{3,13,29,48,55,61}, {14,58,67,71}, {72} (illustrated in Fig. 3), is

linked with ‘Proteasome Assembly’, ‘Transcription Initiation’ and

‘Transcription Elongation’ processes. The first orbit group is linked

with nodes located on triangles or nodes that connect multiple tri-

angles. The second and third orbit groups represent dense network

regions (e.g. orbits 14, 67, 71) and mediators between a dense net-

work region and a ‘hanging off’ (sparsely linked) node, such as orbit

58. In addition to the three orbit groups, ‘Proteasome Assembly’

process is also linked with orbit group {57, 66, 70}, which represents

non-central positions on dense subgraphs. Transcription-related

processes are also linked with orbit 69, which has a role similar to

orbits {3,13,29,48,55,61}. ‘Transcription Elongation’ is further

linked with orbit groups {4, 15, 27}, {10,41,43,60,64,68},

{11,30,33,42,44} and {12,46,52,59,65} that represent peripheral

and semi-peripheral orbits on sparser graphlets. As a case study

about this group of topological patterns, we analyse the ‘DNA-

dependent Transcription, Initiation’ (GO:0006352) in Section 3.2.

In contrast to the previously listed GO terms that are linked with

certain topological characteristics, ‘Acetylation’ and ‘Protein

Modification by Small Protein Removal’ terms are significantly linked

with multiple topological characteristics. The interesting point about

their topological patterns is that cyclic patterns, such as graphlets G5

and G15, are never statistically significantly linked with these proc-

esses. This might indicate that these processes tend not to appear in

topological patterns that are easily destructible, since it is easy to dis-

rupt a cycle simply by disrupting a single node, e.g. removal of orbit 8

inG5 increases the distances between its nodes.

The consistency of these patterns for yeast and human indicates

that the regulation of cellular organization, transcription and acetyl-

ation mechanisms are topologically well-preserved during evolution.

This might be because these processes are essential, and hence, they

need to be similarly carried out for all species, and therefore, being

conserved through evolution and showing similar wiring patterns in

different organisms.

The CC terms that have significant topology-function relation-

ships fall into two groups: (i) protein complexes and (ii) cytosolic

part. Both of these CC groups are linked with orbit groups

{14,58,67,71} and {72}, that reside in densely connected regions of

the PINs. In addition, cytosolic part is also linked with orbit groups

{57, 66, 70} and {69} that again reside in dense network regions, the

first group representing non-central roles in these regions, and the

second group representing the role connecting four triangles. To in-

vestigate a pattern from this group of topology-function relation-

ships, we provide a case study on the ‘Proteasome Complex’

(GO:0000502) term in Supplementary Section S.9.

3.2 Case studies
A systematic validation of the results presented in Section 3.1

is not possible, because there does not exist a gold-standard top-

ology-function mapping. For this reason, we perform three case

studies to find biological validation for the observed wiring patterns

Fig. 3. The orbit contribution strength profiles of non-redundant terms that have significantly conserved topology-function relationships. The heatmap at the top

summarizes the significant patterns for the non-redundant BP terms, and the heatmap at the bottom summarizes the significant patterns for the non-redundant

CC terms. Each heatmap row corresponds to the average orbit contribution strength profile of the GO term that represent the redundant group. Each heatmap

cell represents the maximum orbit contribution strength in the relevant orbit group (Fig. 1A for illustrations of orbits 0,1, . . . ,72). For illustrative purposes, graphlet

orbits are grouped based on the similarity of their graphlet degrees following the methodology of Yaveroğlu et al. (2014) (explained in Supplementary Section

S.8). The orbit groups that do not have any significantly high orbit contribution strengths are coloured semi-transparently. Note that cells plotted with solid col-

ours do not mean that all orbits in the relevant group have significant relationships with the GO term, but it means that at least one of the orbits has a significant

relationship (for the exact list of significant orbits; Supplementary Data S1). Black nodes of the graphlets on the right denote the orbits of the corresponding col-

umn in the heatmap
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of the topologically orthologous functions (also see Supplementary

Section S.9 for the proteasome complex case).

3.2.1 DNA-dependent transcription initiation

DNA-dependent transcription initiation term captures any BP that is

involved in the assembly of RNA polymerase preinitiation complex

(PIC) at the core promoter region of a DNA template, resulting in

the subsequent synthesis of RNA from that promoter (Borukhov

and Nudler, 2008). Our analysis shows that this process is consist-

ently linked with densely connected regions of the PIN, i.e. orbits 3,

13, 14, 58, 61, 67, 69, 71 and 72 (Supplementary Fig. S.10). Two

hundred twelve proteins in human PIN and 32 proteins in yeast PIN

are annotated with this term. When we check the GO term enrich-

ments of these proteins to understand their common characteristics,

we observe that many of these proteins appear in the nucleus (135

proteins for human and 31 proteins for yeast), where the protein–

protein interactions are more clustered and denser than the other

parts of the cell (Supplementary Table S.2). On the other hand,

many of these proteins form protein complexes (122 proteins for

human and 29 proteins for yeast). Protein complexes tend to appear

in densely connected patterns, which is also similar to the topo-

logical patterns of DNA-dependent transcription initiation. There

are two major protein complexes that are consistently associated

with the annotated proteins of both species: (i) RNA Polymerase II

and (ii) mediator coactivator complex. RNA Polymerase II is an en-

zyme that catalyses the transcription of DNA to synthesize precur-

sors of mRNA (Kornberg, 1999), and therefore, has a principal role

in the gene expression and regulation for all organisms (Borukhov

and Nudler, 2008). Mediator coactivator complex serves as a bridge

between the activator and basal transcription machinery of RNA

Polymerase II and the general transcription factors (Biddick and

Young, 2005) and acts as a docking site for transcription elongation

factors (Takahashi et al., 2011). It has been shown that most protein

complexes tend to be densely connected in PINs and RNA

Polymerase II and mediator coactivator complex are no exceptions

(Gagneur et al., 2004). Apart from the densely connected patterns

that are associated with orbits 14 and 72, observing that orbits 13,

58, 61, 67, 69 and 71 are also significantly associated with the GO

term highlights the bridging role of the Mediator complex in these

dense subnetworks (illustrated in Fig. 4). It is shown that significant

homology exists between RNA polymerases over organisms, which

suggests that the existence of an evolutionarily conserved mechan-

ism of RNA synthesis (Sims et al., 2004). Similarly, mammalian

Mediator complex is also shown to share structural and functional

properties with yeast Mediator subunits (Tomomori-Sato et al.,

2004), and it is known to be evolutionarily conserved (Malik and

Roeder, 2010). These studies validate our observations on the con-

served topological patterns of DNA-dependent transcription initi-

ation. Our observations provide further evidence on the

conservation of this process in the wiring of the PINs, complement-

ing the sequence-similarity based evidences.

3.2.2 Cellular localization

Cellular localization term captures any cellular process in which a

substance, or a cellular entity (e.g. a protein complex or organelle) is

transported to, or maintained in a specific position within the mem-

brane of a cell. Our analysis on this process shows that this process

is consistently linked with broker positions on sparse graphlets,

which mediate the connection between two disconnected nodes, or

connect a node to a well-connected group of proteins, i.e. orbits 0,

2, 7, 11, 16, 21, 23, 33, 42 and 44 (Supplementary Fig. S.10). Two

hundred eighty-three proteins in human PIN and 205 proteins in

yeast PIN are annotated with cellular localization term. When we

check the other GO term enrichments of these proteins to under-

stand their common characteristics, we observe that many of them

are located at the membrane (147 proteins for human and 67 pro-

teins for yeast), and cytoplasm (121 proteins for human and 99 pro-

teins for yeast). Proteins are more loosely connected in these CCs

than in nucleus (Supplementary Table S.2), and this supports the ob-

servation on the sparsity of the graphlets that are significantly linked

with this GO term. In addition, many of these proteins are linked

with transport process (131 proteins for human and 114 proteins

for yeast) and response to stimulus process (176 proteins for human

and 46 proteins for yeast). Proteins that are involved in these proc-

esses act as ‘universal adapters’ by binding to multiple ligands and

connecting otherwise disconnected ligands to each other. For ex-

ample, when the human proteins are ranked based on the similarity

of their wiring patterns to the topological profile identified for cellu-

lar localization, the two highest ranking proteins, PLXNA2 and

RAMP3, are transmembrane proteins (McLatchie et al., 1998;

Pasterkamp, 2012). Transmembrane proteins tend to interact with

many different cytoplasmic proteins as well as with their extra-cellu-

lar ligands, while they rarely interact with each other as illustrated

in Figure 4 (Pinkert et al., 2010). Similarly, the highest ranked pro-

teins of yeast, YEL1 and AFI1, act as polarization-specific docking

domains for AFR3 protein that regulate the budding mechanisms in

yeast. These proteins function in different steps in regulating the lo-

calization of ARF3 to the plasma membrane (Tsai et al., 2008).

AFI1 is also involved in intra-golgi and golgi-endoplasmic reticulum

trafficking. When performing their functions, these proteins bind to

ligands at different cellular localizations, or at different time points,

and hence, they form the observed brokerage patterns.

4 Conclusion

We propose a three-step method that is able to find topology-func-

tion relationships that persist across the PINs of different species,

Fig. 4. Illustration of the identified topological characteristics in case studies 1

and 2. The small circles represent proteins and the lines connecting them repre-

sent edges. The cellular localization term is identified to be significantly linked

with mediator positions in sparse graphlets; i.e. graphlet orbits 0, 2, 7, 11, 16, 21,

23, 33, 42 and 44. We illustrate such connectivity patterns for the proteins of this

function on the cell membrane, over the green membrane pores (circles filled

with red). The DNA-dependent transcription initiation term is identified to be sig-

nificantly linked with dense connections and clique-like patterns; i.e. 3, 13, 14, 58,

61, 67, 69, 71 and 72. We illustrate such connectivity patterns inside the nucleus,

over the transcription factors and DNA (circles filled with blue)
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even if these topological patterns are not formed by the same sets of

proteins. With our method, we identify that seven BP and two

CC GO terms have non-redundant topology-function relationships

for yeast and human. Our case studies on the patterns of ‘DNA-

dependent Transcription Initiation’, ‘Cellular Localization’ and

‘Proteasome Complex’ validate that our results are in agreement

with the underlying biological mechanisms.

Our analysis uncovers conserved topology-function relationships

on a relatively small number of high-level GO terms. This is due to

the fact that GO terms that are annotated with small sets of proteins

are less likely to appear as significant. Furthermore, while we mainly

focus on conserved topology-function relationships, our method

also uncovers many species-specific ones. For example, a highly spe-

cific GO term, ‘Maturation of SSU-rRNA’, is linked with the orbits

of dense graphlets (i.e. orbits 3, 14, 58, 67, 69, 70, 71, 72) in yeast

while the same patterns are not observed in human. Analysis of such

species-specific topology-function relationships can shed light on the

wiring patterns of a wider range of functions and raise interesting

questions about the underlying reasons for different wiring patterns

of proteins annotated with the same GO terms in different species.

This could further improve our understanding of the evolution of

those functions.

Although the association matrix can be used for predicting the

GO term annotations of the proteins from their wiring patterns in

PINs, our results show that not all topology-function relationships

are conserved across species, which is likely to negatively impact

the quality of predictions. However, if prediction is the objective,

graphlet degree statistics can be further supported with other

types of features (e.g. protein sequence, or structure). Our method-

ology can easily accommodate such additional features to derive

more accurate linear transformations for predicting biological

function.

Our method is applicable to any number of species, although

the incompleteness of the PINs limits it to yeast and human for the

time being. When more complete protein–protein interaction

datasets become available, we will be able to apply our method

without modification. By replacing the functional annotations with

other biological information about proteins, our method would fur-

ther uncover conserved wiring patterns in different phenomena,

including those in disease or KEGG pathway annotations of

proteins.
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