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Abstract

In recent years, time-dependent density-functional theory (TDDFT) has been the

method of choice for calculating optical excitations in medium sized to large systems, due

to its good balance between computational cost and achievable accuracy. In this thesis,

TDDFT is reformulated to fit the framework of the linear-scaling density-functional the-

ory (DFT) code ONETEP. The implementation relies on representing the optical response

of the system using two sets of localised, atom centered, in situ optimised orbitals in

order to ideally describe both the electron and the hole wavefunctions of the excitation.

This dual representation approach requires only a minimal number of localised functions,

leading to a very efficient algorithm. It is demonstrated that the method has the capa-

bility of computing low energy excitations of systems containing thousands of atoms in a

computational effort that scales linearly with system size.

The localised representation of the response to a perturbation allows for the selective

convergence of excitations localised in certain regions of a larger system. The excitations

of the whole system can then be obtained by treating the coupling between different

subsystems perturbatively. It is shown that in the limit of weakly coupled excitons, the

results obtained with the coupled subsystem approach agree with a full treatment of the

entire system, with a large reduction in computational cost.

The strengths of the methodology developed in this work are demonstrated on a

number of realistic test systems, such as doped p-terphenyl molecular crystals and the

exciton coupling in the Fenna-Matthews-Olson complex of bacteriochlorophyll. It is shown

that the coupled subsystem TDDFT approach allows for the treatment of system sizes

inaccessible by previous methods.
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9.2 Kohn–Sham energies of the HOMO-1, HOMO and LUMO states for all 4

crystals with embedded defect molecules, as measured in eV with respect

to the LUMO+1 state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

15



LIST OF TABLES

9.3 T1, T2 and S1 states for pentacene and o-DNP, both in vacuum and in

the p-terphenyl crystal. Energies are given in eVs, oscillator strengths in

brackets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

9.4 Excitation energies for low energy singlet and triplet states of the c-DNP

molecule, both in vacuum and p-terphenyl. Energies are given in eVs,

oscillator strength in brackets. . . . . . . . . . . . . . . . . . . . . . . . . . 199

9.5 Excitation energies for low energy singlet and triplet states of the HNTMP

molecule, both in vacuum and p-terphenyl. Energies are given in eVs,

oscillator strength in brackets. . . . . . . . . . . . . . . . . . . . . . . . . . 199

16



Chapter 1

Introduction

“The underlying physical laws necessary for the mathematical theory of a large part of

physics and the whole of chemistry are thus completely known, and the difficulty is only

that the exact application of these laws leads to equations much too complicated to be

soluble. It therefore becomes desirable that approximate practical methods of applying

quantum mechanics should be developed, which can lead to an explanation of the main

features of complex atomic systems without too much computation.”

Paul Dirac [1]

1.1 Practical methods

When the theory of quantum mechanics was developed in the early 20th century, it caused

the most groundbreaking revolution in scientific thinking since the publication of Newton’s

Principia over 200 years prior. It was quickly recognised that the theory did in principle

allow for the calculation of all properties of matter from the atomic scale all the way

up to the macroscopic scale. Or, in Dirac’s perhaps slightly optimistic words, quantum

mechanics provided a mathematical theory for “a large part of physics and the whole of

chemistry”. However, it soon became equally apparent that the equations describing the

fundamental behaviour of matter were far too complicated to be soluble for more than a

handful of the most trivial cases.

For this reason, ever since the development of the basic theory of quantum mechan-

ics, a significant research effort has been directed into developing “practical methods”

that would allow for calculating approximate solutions to complex systems. The earliest

approximations, like the WKBJ method (named after Wentzel, Kramers, Brillouin and

Jeffreys, who each independently developed it) [2–5], focused on finding so-called “semi-

classical solutions” to the Schrödinger equation, the main equation governing quantum

mechanics. It has been used extensively in finding the behaviour of quantum particles

in simplified models of tunneling processes, most notably to derive the rate of nuclear
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1. INTRODUCTION

fusion [6].

The introduction of computers helped along a further development in quantum me-

chanics, namely the move away from studying simplified model systems towards finding

approximate numerical solutions to real systems like molecules and solids. To unlock the

predictive power of quantum mechanics, it becomes necessary to make use of methods

that are truly ab initio, in that they do not make use of any a priori assumptions about

behaviour of the system that is studied. However, the complexity of the quantum me-

chanical equations that Dirac already recognised in 1926 means that a direct numerical

solution requires a computational effort that grows exponentially with the size of the sys-

tem that is to be solved, rendering any such direct approach impractical for anything but

the most simple problems. Thus in practice, further well-controlled approximations have

to be made in order to reduce the scaling from an exponential to a polynomial one.

The most successful in this new generation of “practical methods” are based on density-

functional theory (DFT) [7], which after making a number of simplifying approximations

to the quantum mechanical effects of exchange and correlation of electrons, yields any

ground state property of a system with a computational scaling that is just the cube of

the system size. Since its development in 1964 it has shown real predictive power in the

study of molecules and solids and has become the standard tool in areas as diverse as

chemistry, biophysics and materials science. The great impact of DFT on a wide range

of scientific disciplines was recognized in 1998 by awarding the Nobel Prize of Chemistry

to Walter Kohn and John Pople.

1.2 Spanning lengths

While the standard formulation of DFT has been remarkably successful in the last few

decades, measured in both the annual citations of the papers describing the original

method and the number of different scientific areas it is now routinely used in, most of its

applications are focused on two limiting cases. On one end of the scale are small, isolated

molecules, while the other end of the scale contains applications to infinite crystals. The

reason why most applications are limited to these two regimes can be seen in the O(N3)

scaling with system size that is inherent in the method, meaning that a doubling of system

size leads to an 8-fold increase in computational effort. Both the case of a small, isolated

molecule and an infinite (defect-free) crystal can be computed by considering only a few

atoms1 and are easily treated by standard DFT with moderate computational effort.

In recent years there has been an increased interest in systems that lie between these

1In the case of infinite systems, this is achieved by making use of periodic boundary conditions, such
that only a unit cell of the crystal has to be treated explicitly and the translational crystal symmetry is
exploited.
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two limiting cases and that are prohibitively large for the O(N3) scaling of DFT. Examples

of these systems include large biomolecules, nanocrystals and infinite crystals containing

defects. The feature all of these systems have in common is that an appropriate treatment

of them requires calculations containing thousands of atoms, rendering them impractical

using conventional DFT even on modern supercomputers.

Over the last 20 years, linear-scaling DFT methods have been designed specifically to

address the class of systems mentioned above and are now routinely used to treat systems

containing thousands of atoms. This new generation of methods has been used with great

success to treat problems that were completely inaccessible even a few years ago.

1.3 Light interactions

While the development of linear-scaling techniques has opened up a wide field of new

applications for DFT (see, for example [8–11]), it also comes with a new set of challenges.

Since calculations of ground state properties of systems containing thousands of atoms are

now possible, the problem shifts to extracting information from these calculations that

can be compared directly to experimental measurements.

Consider for example a crystal with two interacting defects in it. In order to find the

lowest energy arrangement of the defects in the entire structure using linear-scaling DFT

one has to generate all unique configurations of the two defects in the lattice and perform

a full DFT calculation on every one of these structures to compare the total energies.

While each of the individual DFT calculations does scale linearly with the number of

lattice sites within a finite supercell, the number of nonequivalent defect configurations

grows as O(N) with lattice sites, leading to an overall scaling of O(N2). Thus in this

example the scaling problem does not originate from the DFT calculation itself but from

the configurational complexity that increases once the system size is increased. To make

matters worse, the above example of two interacting defects is likely to produce a large

array of potential structures, all separated by very small energy differences, any of which

are likely to occur in the real material whose properties need to be predicted. Due to this

configurational complexity in large systems, it is often found that predicting ground state

properties of the single lowest energy configuration is of little use in making predictions

of the behaviour of the entire system.

A way of sidestepping the configurational complexity problem leading to unfavourable

scaling when linear-scaling DFT is applied to a large system is to attempt to predict

properties that are measured directly in experiments. One of the properties of interest

for many practical applications is the interaction of the system with light, which can be

obtained from the time-dependent extension of the DFT method (TDDFT). Accurate
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predictions of absorption spectra of semiconductor nanocrystals are a key ingredient to

developing new generations of efficient solar cells, while predictions of spectra of large

photoactive biomolecules is of great interest in the area of biophysics.

Optical absorption spectra of nanostructures and large photoactive biomolecules that

are measured in experiments are taken on timescales that are several orders of magnitude

larger than the timescales of atomic vibrations around their point of equilibrium. Thus

the optical spectra produced in experiments can be seen as the result of an averaging

over many low energy configurational structures of the system of interest and are often

well reproduced by theoretical calculations on a single, average low energy structure of

that system2. Thus in order to make meaningful predictions on the measurable quantity

of light absorption, the configurational complexity problem that troubles many poten-

tial applications of linear scaling techniques can be, to a large extent, ignored, making

theoretical spectroscopy an ideal area of impact for linear-scaling methods.

The purpose of this dissertation is to extend the linear-scaling techniques that proved

so successful in standard DFT over recent years to the calculation of optical spectra using

TDDFT. The aim is to develop methods capable of calculating the low energy optical spec-

trum of systems containing thousands of atoms in an effort scaling linearly with system

size. This will open up new potential areas of research in the field of theoretical spec-

troscopy and connect directly to experimental measurements to enable a more effective

collaboration between the experimental and the theoretical community.

1.4 Dissertation outline

This dissertation is organised in the following way.

Chapter 2 contains a brief discussion of some of the prerequisite knowledge for the

later chapters. Some basic concepts of quantum mechanics are introduced, as well as the

the main type of system that is solved for in later chapters and some conventions in the

scientific notation that is used throughout this work.

In chapter 3 the theoretical foundations of density-functional theory are discussed. The

focus of the chapter is on introducing the main approximations and techniques used in

practical DFT calculations, both for periodic infinite systems and localised finite systems.

Finally, the main concepts of density-matrix DFT are introduced and it is demonstrated

2It should be noted that such an average, low energy structure cannot always be readily found in large
biological systems where atomic positions are derived from X-ray diffraction experiments. Furthermore,
while atoms in nanostructured crystals often undergo simple oscillations around a point of equilibrium,
this is not necessarily the case in biological pigment-protein complexes, where the motion of the protein
happening on a much longer timescale can become important. In these systems, it is often necessary to
calculate spectra of several snapshots taken from a molecular dynamics simulation in order to achieve a
good representation of the relevant phase space.
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how this method can yield algorithms scaling linearly with system sizes.

In chapter 4, the focus is shifted from ground state properties to excited state proper-

ties. The formal justification for time-dependent density-functional theory is introduced

before moving on to practical implementations. Both the advantages and disadvantages

of the two main flavours of TDDFT, time-evolution TDDFT and linear-response TDDFT,

are discussed in the light of the objective of this dissertation. Finally, the TDDFT method

is compared and contrasted to a different approach to the excited state problem, namely

many-body perturbation theory, where the focus is on the so-called GW -approximation

and the Bethe-Salpeter equation.

Chapter 5 gives a brief overview over some specific features of the linear-scaling DFT

code ONETEP that are relied upon in later chapters. Here, the focus is on properties needed

for the derivation of the linear-scaling TDDFT method in the next chapter, as well as

some specific functionality going beyond standard DFT that is used in later benchmark

calculations.

Chapter 6 contains the derivation of the linear-scaling TDDFT method developed in

this dissertation. An algorithm is introduced that is capable of obtaining low-energy

excitations of large systems in linear-scaling effort and its convergence properties are

discussed. A number of benchmark calculations are performed and an excellent agreement

with conventional TDDFT codes is found. Furthermore, it is demonstrated on a test

system that the algorithm indeed scales linearly with system size.

In chapter 7 a number of appropriate changes to the linear-scaling TDDFT algorithm

are derived to make it compatible with the projector augmented-wave (PAW) formalism

used in ground-state calculations of transition metal elements in ONETEP. The correct

behaviour of the code is demonstrated by comparing to all-electron TDDFT results and

a proof-of-priniple calculation of the low-energy optical spectrum of a Cadmium-Sulphide

(CdS) nanocrystal under pressure is performed.

In chapter 8 it is demonstrated that placing constraints on the sparsity of the response

density matrix allows for the calculation of targeted excitations localised to certain subsys-

tems of a larger system. It is furthermore shown that the interaction between subsystems

can be introduced perturbatively, yielding the excitation spectrum of the entire system

to a good degree of accuracy in the limit of weakly coupled excitons.

Finally, in chapter 9, some practical uses of the method developed in this work are

shown, where two physically motivated, large scale applications are considered. First, the

exciton coupling between chromophores in the Fenna-Matthews-Olson light-harvesting

complex is calculated, demonstrating both the importance of large-scale calculations to

correctly capture environmental effects and the power of the subsystem TDDFT technique

to speed up calculations. The other large scale system treated is a p-terphenyl organic
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crystal doped with different acene derivatives. It is demonstrated that linear scaling

TDDFT can be used as a part of a prescreening process to select potential dopants for

applications in room-temperature masers.

The dissertation is concluded with chapter 10, summarising the main findings. Finally,

some potentially interesting further research is pointed out, with the capability to expand

on the scope of the work discussed here.
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Chapter 2

Theoretical background: Prerequisites

In this chapter, some of the prerequisite background knowledge that is needed for the

later chapters is discussed. The chapter gives a very brief overview over some important

aspects of quantum mechanics and introduces the most important choices of notation that

are used throughout the rest of the work.

2.1 The wavefunction

The wavefunction Ψ completely describes the quantum state of a system of N particles

and contains all information about the system. While the wavefunction does not have a

unique representation for an arbitrary quantum system, a typical representation for an

N -particle system is the position representation, in which Ψ can be written as a complex

3N+1 dimensional function3 Ψ(r1, r2, r3 · · · rN , t) of the positions of all N particles and

some time t. The square modulus of the wavefunction Ψ∗Ψ can be interpreted as a

probability distribution function of the N -particle system. In order for this interpretation

to be valid, the wavefunction is required to follow normalisation conditions, which, for an

N -particle system in position representation, can be suitably written as:

ˆ
d3r1d3r2 · · · d3rN Ψ∗(r1, r2, r3 · · · rN , t)Ψ(r1, r2, r3 · · · rN , t) = 1 (2.1)

For most of this work the Dirac notation will be used, where the wavefunction is

denoted as |Ψ〉, a state vector in the Hilbert space. The advantage of the Dirac notation

can be seen in that it is representation independent and thus provides a generalised

way of introducing quantum mechanical concepts. In Dirac notation, the normalisation

constraint of equation (2.1) can be simply written as 〈Ψ|Ψ〉 = 1. The existence of a

wavefunction with the above properties for any arbitrary system forms the first postulate

of quantum mechanics [12].

3This notation implies that an intrinsic property of quantum mechanical particles called spin is ignored
for the time being. It is formally introduced later in this chapter.
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2.2 Operators and basis functions

The second postulate of quantum mechanics states that every classical (ie. physical)

observable has a corresponding linear operator [12]. Considering an operator Â with

associated observables {an} one can write

Â|ψn〉 = an|ψn〉 (2.2)

where ψn is said to be an eigenfunction of operator Â with an associated observable

eigenvalue an. All operators of observables are required to be linear, from which it follows

that if there are two eigenstates |ψ1〉 and |ψ2〉 of operator Â with the same eigenvalue a,

then every linear combination of |ψ1〉 and |ψ2〉 is also an eigenstate of Â with eigenvalue

a, since

Â(c1|ψ1〉+ c2|ψ2〉) = c1Â|ψ1〉+ c2Â|ψ2〉 = a(c1|ψ1〉+ c2|ψ2〉). (2.3)

Furthermore, all operators associated with classical observables are required to be

Hermitian or self-adjoint, ie. Â† = Â. This equality is required such that

〈ψi|Â|ψi〉∗ = 〈ψi|Â†|ψi〉 = 〈ψi|Â|ψi〉 (2.4)

from which it follows immediately that the eigenvalues an of an Hermitian operator are

real, as required for observable properties of a system. The Hermitian property has one

further consequence for the eigenstates of quantum mechanical operators. Consider two

states |ψi〉 and |ψj〉 such that Â|ψj〉 = aj|ψj〉 and Â|ψi〉 = ai|ψi〉. Operating with 〈ψi|
and 〈ψj| on those two expressions respectively one obtains

〈ψi|Â|ψj〉 = aj〈ψi|ψj〉

〈ψj|Â|ψi〉 = ai〈ψj|ψi〉

⇒ 〈ψi|Â|ψj〉 − 〈ψj|Â|ψi〉 = (aj − a∗i )〈ψi|ψj〉. (2.5)

However, due to the Hermitian properties of Â, the left hand side of the equation must

vanish, such that one obtains

(aj − a∗i )〈ψi|ψj〉 = 0. (2.6)

If ai and aj are non-degenerate, then it is required that 〈ψi|ψj〉 = 0 and thus the two

eigenstates are orthogonal to each other. Thus eigenstates of Hermitian operators with

different eigenvalues are necessarily orthogonal to each other.

Due to the orthogonality property the eigenfunctions of an Hermitian operator form a

complete basis and can be used to expand an arbitrary quantum state |Ψ〉 of the system.
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Written in this basis the wavefunction becomes

|Ψ〉 =
∞∑
n=0

cn|ψn〉

cn = 〈Ψ|ψn〉∗ (2.7)

Any measurement of the physical quantity associated with operator Â yields the quantity

an with a probability of |cn|2. Thus if all the eigenstates and eigenvalues of a Hermitian

operator are known, the probability of a given measurement outcome on an arbitrary

quantum state |Ψ〉 can be predicted. If |Ψ〉 can be represented by a single |ψn〉, it follows

that |Ψ〉 is an eigenstate of Â and any measurement will yield an. Furthermore, for

an arbitrary normalised state |Ψ〉, the quantity 〈Ψ|Â|Ψ〉 is the expectation value of a

measurement of the observable associated with Â.

Since a measurement of the observable associated with Â yields a single well-defined

outcome an if and only if |Ψ〉 = |ψn〉, it follows that the measurement of a second ob-

servable associated with B̂ simultaneously can only yield a single well-defined outcome if

|ψn〉 is also an eigenstate of B̂. Writing |ψn〉 as |ψn,m〉 to signify that it has associated

eigenstates an and bm, one can write

ÂB̂|ψn,m〉 = B̂Â|ψn,m〉 = anbm|ψn,m〉 (2.8)

from which it follows that(
ÂB̂ − B̂Â

)
|ψn,m〉 =

[
Â, B̂

]
|ψn,m〉 = 0. (2.9)

The quantity
[
Â, B̂

]
is known as the commutator. Thus, if the commutator of two

operators vanishes, the two operators share a common set of eigenstates and the two

observables associated with Â and B̂ can be measured simultaneously with arbitrary

precision.

2.3 The Schrödinger equation

The quantum mechanical operator related to the classical observable of the total energy

of a system is the Hamiltonian, commonly denoted as Ĥ. It is most commonly written

as Ĥ = T̂ + V̂ , ie. as the sum of the kinetic energy operator and the potential energy

operator. In quantum mechanics, the Hamiltonian is of fundamental importance since it

generates the time evolution of a quantum state |Ψ〉 via the time-dependent Schrödinger
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equation, which can be written as:

Ĥ|Ψ〉 = i~
∂

∂t
|Ψ〉 (2.10)

where ~ is Planck’s constant divided by 2π. Solving the Schrödinger equation for the

Hamiltonian of a given system yields the full time evolution of any eigenstate of said

Hamiltonian. Here, a special case of the above equation is considered, that occurs when

Ĥ is time-independent. If Ĥ has no explicit dependence on time one can use the following

Ansatz for the quantum state (working explicitly in a position representation for the time

being): Ψ(r1 · · · rn, t) = ψ(r1, · · · rn)τ(t). Using the Ansatz, the spatial coordinates are

separated from the time coordinate. Since Ĥ is time-independent, it only operates on

ψ(r1, · · · rn), while the partial derivative on the right hand side of equation (2.10) only

operates on τ(t). It follows that

ψ−1(r1, · · · rn)Ĥψ(r1, · · · rn) = i~τ−1(t)
∂τ(t)

∂t
(2.11)

and from this it is found that

Ĥψ(r1, · · · rn) = Eψ(r1, · · · rn) (2.12)

Ψ(r1, · · · rn, t) = ψ(r1, · · · rn)e−iEt. (2.13)

Equation (2.12) is known as the time-independent Schrödinger equation. Switching

back to Dirac notation, the above expressions state that for a time-independent Hamil-

tonian, in order to find the time-evolution of any quantum state, it is sufficient to solve

Ĥ|ψn〉 = En|ψn〉 for {En} and {|ψn〉}, the set of all eigenstates and eigenvalues of the

Hamiltonian.

2.4 Symmetry and spin

One major postulate of quantum mechanics is that quantum particles described by the

wavefunction are indistinguishable. This means that for a two-particle wavefunction, the

states Ψ(r1, r2) and Ψ(r2, r1) must describe the same physical system. Therefore, the

wavefunctions under particle exchange can at most differ by some complex constant c.

Defining the particle interchange operator P̂12 such that

P̂12|Ψ(r1, r2)〉 = |Ψ(r2, r1)〉 (2.14)
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it follows that

P̂12P̂12|Ψ(r1, r2)〉 = Î|Ψ(r1, r2)〉 = |Ψ(r1, r2)〉 (2.15)

where Î is the identity operator. The above considerations require that the eigenvalues

of P̂12 are ±1 and that one can therefore write

Ψ(r1, r2) = ±Ψ(r2, r1). (2.16)

The above result can be generalised to any number of particles such that the total

wavefunction is either symmetric or antisymmetric. Whether it is symmetric or anti-

symmetric follows from an intrinsic angular momentum of quantum mechanical particles

called spin, that does not have a classical equivalent and is a consequence of a relativistic

extension of the Schrödinger equation [13]. Quantum mechanical particles come in two

basic flavours: bosons with an intrinsic spin equal to an integer number are described by

a symmetric wavefunction, while fermions with half-integer spin are described by anti-

symmetric wavefunctions.

To correctly account for spin, it is neccessary to explicitly include it in the wave-

function. One thus introduces the set of collective variables {xi} = {ri, σi} containing

a position vector and spin index for each particle. In this work the only quantum me-

chanical particles of interest are electrons, which have a spin of 1/2. This leads to their

wavefunctions being antisymmetric, ie.

Ψ(· · · ,xi, · · · ,xj, · · · ) = −Ψ(· · · ,xj, · · · ,xi, · · · ) (2.17)

An important consequence of the antisymmetry condition of the wavefunction is that two

indistinguishable fermions cannot occupy the same quantum state, a property known as

the Pauli exclusion principle.

Even without considering the full relativistic Dirac equation, the effects of the spin

dependence of the many-electron wavefunction can often be introduced into the Hamil-

tonian in an approximate form, or treated perturbatively. For the purpose of this work

however no explicit spin dependence of the Hamiltonian is considered. Thus the main

consequence of the electron spin in this work originates from the symmetry restrictions

of the wavefunction and the Pauli exclusion principle only.

2.5 The variational principle

Consider a Hamiltonian Ĥ with associated energies and eigenstates {En} and {|ψn〉}.
Now consider the system to be in an arbitrary, normalised state |Ψ〉. Then the variational

principle states that the expectation value of an energy measurement of the system in
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state |Ψ〉 has to follow

〈Ψ|Ĥ|Ψ〉 ≥ E0 (2.18)

with the equality only reached if |Ψ〉 = |ψ0〉.
This can be seen by expanding |Ψ〉 =

∑∞
n=0 cnψn and using the orthogonality of the

eigenstates of Ĥ:

E[Ψ] = 〈Ψ|Ĥ|Ψ〉

=
∞∑

i,j=0

c∗i cjEj〈ψi|ψj〉

=
∞∑
i=0

|ci|2Ei (2.19)

Finally, subtracting E0 from both sides one obtains

E[Ψ]− E0 =
∞∑
i=0

|ci|2(Ei − E0). (2.20)

Since every term on the right hand side of the equation is greater than or equal to zero,

E[Ψ] − E0 ≥ 0 and the equality only holds if c1, c2 · · · c∞ = 0 (provided E0 is non-

degenerate).

The variational method is often used to compute the ground state of a quantum

mechanical system. The principle allows for the calculation of the ground state energy

of a system by starting from a trial wavefunction |Ψ〉 and then minimising the functional

E[Ψ] with respect to Ψ. If a minimum is reached, by the variational principle Ψ = ψ0

and E[Ψ] = E0, provided the ground state is non-degenerate.

2.6 The molecular Schrödinger equation and Hartree atomic

units

At this point, the exact form of the Hamiltonian for a system of interacting atoms is

introduced. For reasons of simplicity, the position representation is used throughout,

the nucleic positions are denoted as R ≡ {RA} and the electron positions as r ≡ {ri}.
Ignoring the electron spin for the moment, the time-independent part of the wavefunction

of the system of nuclei and electrons can be written as Ψ = Ψ(R, r). The time-independent
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molecular Hamiltonian of the system can then be written as:

Ĥ = −
∑
i

1

2me

∇2
i −

∑
A

1

2MA

∇2
A −

∑
i,A

ZAe
2

4πε0|ri −RA|
+
∑
i>j

e2

4πε0|ri − rj|

+
∑
A>B

ZAZBe
2

4πε0|RA −RB|
(2.21)

Here ZA denotes the atomic number of nucleus A, me is the electron mass and MA is the

mass of nucleus A. As can be seen, the above Hamiltonian contains two kinetic energy

terms, one for the nuclei and one for the electrons and the electron degrees of freedom are

coupled to the degrees of freedom belonging to the nuclei.

At this point, it becomes convenient to introduce a new system of natural units,

where the electron mass me, the electron charge e, the reduced Planck’s constant ~ and

the Coulomb constant 1/4πε0 are all chosen to be unity. Then the above Hamiltonian

reduces to

Ĥ = −
∑
i

1

2
∇2
i −

∑
A

1

2MA

∇2
A −

∑
i,A

ZA
|ri −RA|

+
∑
i>j

1

|ri − rj|

+
∑
A>B

ZAZB
|RA −RB|

(2.22)

where MA is now measured in units of me, energy is measured in units of α2mec
2 called

hartree units (where α is the fine structure constant) and length is measured in units of

a0 = ~/(mecα) (where a0 is known as the Bohr radius).

2.7 The Born–Oppenheimer approximation

The way the nuclear and electronic degrees of freedom are coupled in the molecular

Schrödinger equation makes it difficult to solve for the eigenfunctions of the time-independent

Hamiltonian. A commonly made approximation, named after Born and Oppenheimer [14],

is therefore used to decouple the motion of the nuclei from that of the electrons. The step

is usually justified by considering that the forces acting on both electrons and nuclei are

equal and opposite, meaning that their momenta must be similar. From this it follows

that because the mass of the nucleus is much larger (of the order of 103 for Hydrogen

atoms to 105 for heavy elements) than that of the electron, the velocity of the nuclei

must be much slower than that of the electrons. This idea is used to justify the following

Ansatz for the eigenstate of the full Hamiltonian [15]:

Ψ(r,R) = χ(r; R)φ(R). (2.23)
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Here, χ(r; R) is taken to depend only parametrically on the nucleic positions R.

One now splits up the full Hamiltonian Ĥ into Ĥ = T̂n + Ĥe(R), the nucleic kinetic

energy term and the effective electron Hamiltonian where

Ĥe(R) = −
∑
i

1

2
∇2
i −

∑
i,A

ZA
|ri −RA|

+
∑
i>j

1

|ri − rj|
+
∑
A>B

ZAZB
|RA −RB|

(2.24)

and requires χ(r; R) to be an eigenfunction of Ĥe(R) such that

Ĥe(R)χ(r; R) = Ee(R)χ(r; R). (2.25)

Note that the energy eigenvalues of the electronic part of the system depend on the nucleic

positions R. The quantity Ee(R) is thus often referred to as the Born–Oppenheimer

potential energy surface of the system.

Acting with the full Hamiltonian Ĥ on the Ansatz for the wavefunction of equation

(2.23), one obtains

ĤΨ = χ(r; R)

[
−
∑
A

1

2MA

∇2
A + Ee(R)

]
φ(R)

−
∑
A

1

2MA

[
2∇Aχ(r; R) · ∇Aφ(R) + φ(R)∇2

Aχ(r; R)
]
. (2.26)

Ignoring the second term of the above expression, ie. assuming that the terms involving

the derivative of χ(r; R) with respect to the nucleic positions R are small, leads to the

Born–Oppenheimer approximation, where the nucleic and electronic degrees of freedom

are decoupled and φ(R) can be simply obtained from[
−
∑
A

1

2MA

∇2
A + Ee(R)

]
φ(R) = Eφ(R) (2.27)

The above equation is a Schrödinger-like equation for the ions moving in the effective

potential Ee(R). Thus the nuclei move on the potential energy surface defined by Ĥe.

It can be shown [15] that the first term involving derivatives of χ(r; R) with respect

to R in equation (2.26) strictly vanishes, while the second term is indeed of the order of

1/MA, thus justifying the approximation.

2.8 Perturbation theory

Given the complicated nature of many quantum mechanical systems, it is often beneficial

to describe the complicated system via a simpler system that can be solved exactly. The
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difference between the Hamiltonian of the complicated system and the Hamiltonian of the

simple system is referred to as a perturbation. In case the perturbation is weak enough,

the properties of the full system can be represented by an asymptotic series of corrections

added to the solutions of the simple system.

Consider some system with a Hamiltonian Ĥ0 for which all (non-degenerate) eigen-

states and energies are known, ie.

Ĥ0|ψ{0}n 〉 = E{0}n |ψ{0}n 〉. (2.28)

The full Hamiltonian Ĥ is now considered in terms of a perturbation to Ĥ0:

Ĥ = Ĥ0 + λV (2.29)

where V is a weak perturbing potential and λ is a dimensionless continuous parameter

that varies from 0 to 1, with 0 representing no perturbation and 1 representing a full

perturbation. If the perturbation is weak, then the eigenstates and energies of the full

system can be written as

En = λ0E{0}n + λ1E{1}n + λ2E{2}n + ... (2.30)

|ψn〉 = λ0|ψ{0}n 〉+ λ1|ψ{1}n 〉+ λ2|ψ{2}n 〉+ ... (2.31)

In the limit of weak perturbations, the above expansion should converge rapidly such that

only the first couple of correction terms need to be computed in order to obtain a good

approximation to the perturbed system.

The perturbation expansion of |ψn〉 can then be treated as an Ansatz acting on the

perturbed Hamiltonian. To calculate the first order correction to the energy and wave-

function one can then ignore all terms containing higher orders of λ. To first order, one

obtains

λ0Ĥ0|ψ{0}n 〉+ λ1
(
Ĥ0|ψ{1}n 〉+ V |ψ{0}n 〉

)
= λ0E{0}n |ψ{0}n 〉+ λ1

(
E{0}n |ψ{1}n 〉+ E{1}n |ψ{0}n 〉

)
(2.32)

The zeroth order of λ simply gives the unperturbed Schrödinger equation. The first order

correction is then given by

Ĥ0|ψ{1}n 〉+ V |ψ{0}n 〉 = E{0}n |ψ{1}n 〉+ E{1}n |ψ{0}n 〉. (2.33)
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Operating with 〈ψ{0}n | on both sides one obtains

E{0}n 〈ψ{0}n |ψ{1}n 〉+ 〈ψ{0}n |V |ψ{0}n 〉 = E{0}n 〈ψ{0}n |ψ{1}n 〉+ E{1}n 〈ψ{0}n |ψ{0}n 〉 (2.34)

⇒ 〈ψ{0}n |V |ψ{0}n 〉 = E{1}n . (2.35)

Here, the fact is used that {ψ{0}n } are normalised. Thus, the first order correction to

the energy eigenvalues is simply the expectation value of the perturbing potential with

respect to the unperturbed eigenstates.

To compute correction to the unperturbed eigenstates, consider V |ψ{0}n 〉:

V |ψ{0}n 〉 = ÎV |ψ{0}n 〉 =
∑
m

|ψ{0}m 〉〈ψ{0}m |V |ψ{0}n 〉

=

(∑
m6=n

|ψ{0}m 〉〈ψ{0}m |

)
V |ψ{0}n 〉+ |ψ{0}n 〉〈ψ{0}n |V |ψ{0}n 〉

=

(∑
m 6=n

|ψ{0}m 〉〈ψ{0}m |

)
V |ψ{0}n 〉+ E{1}n |ψ{0}n 〉 (2.36)

Here, fact that {ψ{0}n } froms a complete set is used. Now substituting from equation

(2.33) for E
{1}
n |ψ{0}n 〉 and rearranging, one obtains

(
E{0}n − Ĥ0

)
|ψ{1}n 〉 =

(∑
m6=n

|ψ{0}m 〉〈ψ{0}m |

)
V |ψ{0}n 〉 (2.37)

and after operating with 〈ψ{0}m′ | on both sides and again using the orthogonality of the

eigenstates, the first order correction to the wavefunctions is found to be

|ψ{1}n 〉 =
∑
m 6=n

〈ψ{0}m |V |ψ{0}n 〉
E
{0}
n − E{0}m

|ψ{0}m 〉 (2.38)

where it is again assumed that the eigenstates of Ĥ0 are non-degenerate.

Furthermore, |ψn〉 is required to be normalised. Expanding the normalisation condi-

tion to the first order in λ yields

〈ψn|ψn〉 = λ0〈ψ{0}n |ψ{0}n 〉+ λ1
(
〈ψ{1}n |ψ{0}n 〉+ 〈ψ{0}n |ψ{1}n 〉

)
= 1 (2.39)

⇒ 〈ψ{1}n |ψ{0}n 〉 = −〈ψ{0}n |ψ{1}n 〉 = 0. (2.40)

The power of the perturbative treatment lies in the fact that the first order changes to

the eigenstates and eigenenergies only require knowledge of the zeroth order eigenstates
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and eigenenergies. The same remains true for higher order perturbations, with the second

order energy correction being equal to

E{2}n =
∑
m 6=n

|〈ψ{0}m |V |ψ{0}n 〉|2

E
{0}
n − E{0}m

. (2.41)

2.9 The Hartree–Fock method

While the Born–Oppenheimer approximation is a great simplification to the molecular

Hamiltonian introduced in 2.6, it still requires the treatment of the electronic Hamiltonian

Ĥe which cannot be solved analytically for its eigenstates and eigenvalues for anything

but the most trivial systems. Indeed, even solving the time-independent Schrödinger

equation for Ĥe numerically requires a computational effort that scales exponentially

with the number of electrons. The reason for this lies in the Coulomb interaction between

individual electrons. The interaction couples the degrees of freedom of all electrons and

makes it impossible to separate them. In practice, approximate methods need to be used

in order to solve for the eigenstates of Ĥe. The simplest of these methods originates from

restricting the state vector Ψe to a certain form.

Consider a system of N electrons where the task is to find an approximation to the

many-electron wavefunction Ψe(x1,x2 · · · ,xN). The easiest possible form that can be

considered is

Ψe(x1, · · ·xN) = ψ1(x1)ψ2(x2) · · ·ψN(xN) (2.42)

where it is assumed that {ψi} is an orthonormal set of single-electron eigenstates. How-

ever, this model form violates the anti-symmetry requirement of the wavefunction since

Ψe(· · · ,xi, · · ·xj, · · · ) = −Ψe(· · · ,xj, · · ·xi, · · · )

iff ψi(xi)ψj(xj) = −ψi(xj)ψj(xi) (2.43)

which clearly is not generally the case. The simplest way of generating a guaranteed

antisymmetric wavefunction from single-particle states ψi is in the form of a Slater-

determinant [16]:

Ψe(x1, · · ·xN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣
ψ1(x1) ψ2(x1) · · · ψN(x1)

ψ1(x2) ψ2(x2) · · · ψN(x2)
...

...
. . .

...

ψ1(xN) ψ2(xN) · · · ψN(xN)

∣∣∣∣∣∣∣∣∣∣
(2.44)

Given the chosen Ansatz for the many-electron wavefunction in equation (2.44), one
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has to work out the expectation value of the Hamiltonian which is straightforward due to

the fact Ψe is made up from single electron state vectors:

〈Ψe|Ĥe|Ψe〉 = −
N∑
i

∑
σ

ˆ
d3r

1

2
ψ∗i (x)∇2ψi(x) +

∑
A>B

ZAZB
|RA −RB|

+ EeI + Eee (2.45)

Here, EeI is the energy due to electron-ion interaction and Eee denotes electron-electron

Coulomb interaction energy given by:

Eee =
1

2

∑
i

∑
j 6=i

∑
σ,σ′

ˆ
d3r d3r′

[
|ψi(x)|2|ψj(x′)|2

|r− r′|
−
ψ∗i (x)ψj(x

′)ψi(x
′)ψ∗j (x)

|r− r′|

]
. (2.46)

The first term of the above expression is known as the Hartree energy, which is the

energy contribution due to the mean-field electron repulsion. The second term is the

exchange energy and is purely a result of the anti-symmetry requirement of the all-electron

wavefunction. Considering that for the term in the sum for which i = j, the Hartree

contribution exactly cancels the exchange contribution, the i 6= j condition in the double

sum over states can be dropped.

Given the expectation value for the Hamiltonian, one can now make use the variational

principle to find the lowest energy eigenstate of the Hamiltonian Ĥe:

δ

δΨe

〈Ψe|Ĥe|Ψe〉
〈Ψe|Ψe〉

= 0 (2.47)

⇒ δ

δΨe

〈Ψe|Ĥe|Ψe〉 − E0
δ

δΨe

〈Ψe|Ψe〉 = 0

⇒
∑
i

δ

δψi
〈Ψe|Ĥe|Ψe〉 =

∑
i

∂

∂ψi
λij (〈ψi|ψj〉 − δij)

where for the last line, the variations in the single-particle orbitals are considered and

the Lagrange multiplier λij is introduced to enforce the orthonormality between all single

particle orbitals {ψi} during the variation. From this expression it is possible to derive

the N coupled Hartree-Fock equations for the single-particle orbitals:[
−1

2
∇2 +

∑
A

ZA
|r−RA|

]
ψi(x) +

∑
σ′

[ˆ
d3r′

∑
j |ψj(x′)|2

|r− r′|

]
ψi(x)

−
∑
j

∑
σ′

[ˆ
d3r′

ψ∗j (x
′)ψi(x

′)

|r− r′|

]
ψj(x) = εiψi(x) (2.48)

where εi is the effective single-particle energy associated with single-particle state ψi. Since

the effective potential in this Schrödinger-like equation for each of the single particle states
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ψi depends on the whole set {ψi}, the set of equations has to be solved self-consistently. To

do so, one starts with a guess for the set of single-particle states, which is used to generate

the effective potential for each of the single particle states. Solving equation (2.48) then

leads to a new set {ψi}. The process can then be repeated until self-consistency is reached.

The resulting Hartree–Fock energy is, by the variational principle, higher than the true

ground-state energy of the system. The energy difference between the Hartree-Fock energy

and the true energy is labelled “correlation energy” because it is due to correlation effects

between the electrons that is ignored in the mean-field Hartree–Fock treatment of the

electron-electron interaction4.

The Hartree–Fock method is the first and oldest of the “practical methods” that

are considered in this work and, by the variational principle, necessarily yields the best

wavefunction that can be constructed from a single Slater determinant. Extensions to

the Hartree-Fock method either introduce correlation into the theory via perturbation

theory (Møller-Plesset perturbation theory) [17] or by extending the naive wavefunction

Ansatz, either by using an exponential Ansatz of Slater determinants (Coupled Cluster)

[18] or by considering multiple reference configurations (see [19] for an overview over

so-called multireference approaches). In contrast to the methods that are discussed in

the following chapters, all these methods are wavefunction methods, since they directly

obtain an approximation for the ground state many-electron wavefunction of the quantum

system.

4It should be noted here that the above description of “correlation energy” assumes the infinite basis
set limit, where a complete basis set is used to represent the single-particle orbitals and to compute the
Hartree–Fock energy. Furthermore, the term “true ground-state energy” does refer to the ground-state
energy of the electron Hamiltonian Ĥe and thus all effects that are ignored in Ĥe, like any relativistic
effects and explicit spin dependence of the Hamiltonian do not contribute to the ground-state energy.
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Chapter 3

Approximations to the ground state

In this chapter, approximations to calculating the ground state of a many-body system

with electronic Hamiltonian Ĥe as discussed in the previous section are considered. Unlike

the methods introduced briefly in the last chapter, the method discussed here avoids any

explicit representation of the many-electron wavefunction, but will instead be making use

of the electron density of the system defined via

ρ(r) = 〈Ψ|ρ̂(r)|Ψ〉 =

ˆ ∏
i=2

d3ri |Ψ(r, r2, · · · rN)|2. (3.1)

One can readily see the advantage of such a treatment. While the many-body wave-

function is a 3N -dimensional function, the electron density is a 3-dimensional function

and thus potentially much easier to treat. For convenience, the spin dependence of the

wavefunction is dropped in the entire chapter and only reintroduced where necessary.

3.1 Density-functional theory

In this section the main theorems that lead to the establishment of density-functional

theory (DFT) are discussed. The electron Hamiltonian Ĥe of an interacting many-electron

system is considered under the assumption that the ground state of Ĥe is non-degenerate.

The Hamiltonian can be divided into three parts (ignoring the constant term due to

ion-ion interactions that does not influence the solutions to the eigenstates):

Ĥe = T̂ + V̂ee + V̂ext (3.2)

where

V̂ext =
∑
i

Vext(ri) = −
∑
i,A

ZA
|ri −RA|

(3.3)

the static external potential due to the ions acting on the electrons and T̂ and V̂ee are the

kinetic energy term and the electron-electron interaction. Note that T̂ + V̂ee is the same
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for any N -electron system. Therefore Ĥe and thus |Ψ0〉 must be completely determined

by N and Vext(r). Furthermore, because |Ψ0〉 is a functional of N and Vext(r), the ground

state density of the system, ρ0(r), is equally a functional of N and Vext(r).

3.1.1 Hohenberg–Kohn theorem

In 1964, Hohenberg and Kohn [7] proved two crucial theorems that form the starting

point of density-functional theory:

• There exists a one-to-one mapping between the external potential Vext(r) of the

interacting quantum system and the ground state density ρ0(r).

• For all v-representable5 densities ρ(r), there exists a unique functional E[ρ(r)] such

that the exact ground state energy is the global minimum of E[ρ(r)].

The first Hohenberg–Kohn theorem can be proven by assuming that there exists a

second external potential V ′ext(r) with ground state wavefunction |Ψ′0〉 that produces the

same ground state density ρ0(r). One therefore considers two different Hamiltonians

Ĥe = T̂ + V̂ee + V̂ext and Ĥ ′e = T̂ + V̂ee + V̂ ′ext with ground state energies E0 = 〈Ψ0|Ĥe|Ψ0〉
and E ′0 = 〈Ψ′0|Ĥ ′e|Ψ′0〉. Using the variational principle it is clear that

E0 < 〈Ψ′0|Ĥe|Ψ′0〉 = 〈Ψ′0|Ĥ ′e|Ψ′0〉+ 〈Ψ′0|(Ĥe − Ĥ ′e)|Ψ′0〉 (3.4)

E ′0 < 〈Ψ0|Ĥ ′e|Ψ0〉 = 〈Ψ0|Ĥe|Ψ0〉+ 〈Ψ0|(Ĥ ′e − Ĥe)|Ψ0〉 (3.5)

Given that both systems have the same ground state density, the terms 〈Ψ′0|(Ĥe−Ĥ ′e)|Ψ′0〉
and 〈Ψ0|(Ĥ ′e − Ĥe)|Ψ0〉 can both be written in terms of ρ0(r) to give

E0 < E ′0 +

ˆ
ρ0(r) [Vext(r)− V ′ext(r)] d3r (3.6)

E ′0 < E0 −
ˆ
ρ0(r) [Vext(r)− V ′ext(r)] d3r (3.7)

from which immediately follows that

E0 + E ′0 < E ′0 + E0 (3.8)

which is a contradiction. Thus if two systems have the same ground state density, their

external potentials must be identical (to within a constant) and vice versa. Therefore,

there exists a one-to-one mapping between the external potential and the ground state

density of the system.

5A density ρα(r) is v-representable, iff it is the ground state density of a system with some external
potential V αext(r). See later in this section for more details on the question of v-representability.
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To consider the second theorem, it is first necessary to address some of the implications

of the first theorem. Since the ground state density uniquely determines the external

potential and the external potential uniquely defines the electronic Hamiltonian of the

system, it must be possible to express any ground state property of the many-body system

as a unique functional of the ground state density. Now consider a set of all densities

{ρv}, each of which is the ground state density to some external potential Vv(r) and

thus {ρv} uniquely defines the set of many-body wavefunctions {|Ψv〉}. These densities

are referred to as v-representable since for them the one-to-one mapping to the potential

exists. Since the wavefunction is uniquely defined for the v-representable density, the

functional F [ρv] = 〈Ψv|T̂ + V̂ee|Ψv〉 must be uniquely defined as well. Thus for the v-

representable densities there exists a unique energy functional E[ρv] such that

E[ρv] = 〈Ψv|Ĥe|Ψv〉 = 〈Ψv|T̂ + V̂ee|Ψv〉+ 〈Ψv|V̂ext|Ψv〉

= F [ρv] +

ˆ
d3r Vext(r)ρv(r) (3.9)

for some electronic Hamiltonian Ĥe with external potential V̂ext.

Now consider some v-representable density ρv with associated potential Vv(r) and

wavefunction |Ψv〉 acting on the Hamiltonian Ĥe with arbitrary external potential V ext.

Using both the variational principle and the considerations above one finds that

〈Ψv|Ĥe|Ψv〉 = F [ρv] +

ˆ
d3r Vext(r)ρv(r) = E[ρv] ≥ E0 (3.10)

where equality is only reached if ρv = ρ0. Thus, in principle it is possible to find the ground

state energy of any system defined by the electronic Hamiltonian Ĥe by minimising the

functional E[ρv] over the set of all v-representable densities {ρv}. However the Hohenberg–

Kohn theorems do not specify how the minimisation should be carried out in practice given

that, for an arbitrary density, it is generally not known if it is v-representable.

3.1.2 Levy constrained search method

The problem of carrying out the minimisation of the energy functional suggested by

Hohenberg and Kohn without relying on v-representability has been addressed by Levy

[20]. It turns out that to prove the second statement of the Hohenberg–Kohn theorem,

it is not necessary to make a reference to v-representability at all. Following Levy it is

possible to define the functional F [ρ] as

F [ρ] = min
|Ψ〉→ρ

〈Ψ|T̂ + V̂ee|Ψ〉. (3.11)
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Thus F [ρ] is defined via the minimum of the expectation value of
(
T̂ + V̂ee

)
, where the

minimisation is carried out with respect to all many-electron wavefunctions |Ψ〉 that yield

the electron density ρ.

Now consider the many-electron wavefunction |Ψ[ρ]〉 that produces the density ρ and

minimizes F [ρ]. The expectation value of the Hamiltonian Ĥe with external potential Vext

and ground state energy E0, under the redefinition of E[ρ] via the new definition of F [ρ]

can then be written as

〈Ψ[ρ]|Ĥe|Ψ[ρ]〉 = 〈Ψ[ρ]|T̂ + V̂ee|Ψ[ρ]〉+ 〈Ψ[ρ]|V̂ext|Ψ[ρ]〉

= F [ρ] +

ˆ
d3r Vext(r)ρ(r) = E[ρ] ≥ E0 (3.12)

where the last statement follows necessarily from the variational principle and equality

only holds if |Ψ[ρ]〉 = |Ψ0〉. The statement holds for all densities that can be generated by

an N -particle wavefunction, a condition that is referred to as N -representability and that

is much less restrictive than v-representability. Now consider F [ρ0] and the ground-state

wavefunction |Ψ0〉. Clearly |Ψ0〉 is one of the many-electron wavefunctions yielding ρ0

over which F [ρ] is minimised. From equation (3.11) it therefore follows that

F [ρ0] ≤ 〈Ψ0|T̂ + V̂ee|Ψ0〉

⇒ F [ρ0] +

ˆ
d3r Vext(r)ρ0(r) ≤ 〈Ψ0|Ĥe|Ψ0〉

⇒ E[ρ0] ≤ E0 (3.13)

From the two inequalities, it directly follows that E[ρ] ≥ E[ρ0] = E0 such that minimising

E[ρ] with respect to all ρ that are N -representable yields the ground state energy of the

system. It has been shown [21, 22] that the condition of N -representability is easily met

for arbitrary, normalisable, differentiable densities and that it poses no real restriction on

the validity of the central Hohenberg–Kohn theorem as the problem of v-representability

does.

3.1.3 Kohn–Sham theory

While the Hohenberg–Kohn theorems prove the existence of a functional E[ρ] that, if

minimised, yields the ground state density and energy of the many-electron system, the

exact form of F [ρ] is unknown and has to be approximated.

The main strategy to achieve approximations is to split F [ρ] into independent particle

and mean field contributions and unknown many-body contributions. One therefore writes

F [ρ] = Ts[ρ] + EH [ρ] + Exc[ρ] (3.14)
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where Ts[ρ] is the kinetic energy of a system of N non-interacting particles of density

ρ and EH [ρ] is the Hartree energy (see section 2.9), the mean-field electron interaction

energy due to a system of N particles with density ρ. Exc is the exchange-correlation

energy and contains all many-body effects not included in Ts[ρ] and EH [ρ], such that

Exc[ρ] = T [ρ]− Ts[ρ] + Eee[ρ]− EH [ρ] (3.15)

Since this is just a simple rewriting of the original statement, both Exc[ρ] and Ts[ρ] are

generally not known and suitable approximations have to be found. It is to be hoped that

the many-body corrections introduced through Exc are small. However, the kinetic energy

contributions through Ts[ρ] are generally not small and good approximate treatments

become crucial. Several approximations have been known long before the development

of density-functional theory, most notably the Thomas–Fermi kinetic energy functional

[23,24]

TTF [ρ] =
3

10

(
3π2
) 2

3

ˆ
d3r [ρ(r)]

5
3 (3.16)

and the von Weizsäcker kinetic energy functional [25]

TW [ρ] =
3

10

(
3π2
) 2

3

ˆ
d3r [ρ(r)]

5
3 +

1

8

ˆ
d3r
∇ρ(r) · ∇ρ(r)

ρ(r)
. (3.17)

While in the Thomas–Fermi model, the kinetic energy per infinitesimal unit volume is

constant and only dependent on the density at that point, the von Weizsäcker functional

adds a correction term depending on the gradient of ρ(r). It can be shown that the von

Weizsäcker functional is exact for 1- or 2-electron systems [26] and constitutes a lower

bound to Ts[ρ] for an N -electron system. Other, higher order corrections to TW [ρ] can be

introduced but in general the deviation of these approximate kinetic energy functionals

from the true, independent particle kinetic energy functional Ts[ρ] is significant [26].

A way to avoid any approximations to Ts[ρ] was introduced by Kohn and Sham [27].

It consists of a remapping of the problem of N interacting electrons to a fictitious system

of non-interacting electrons in an effective potential producing the same ground-state

density. It exploits the fact that for a set of N non-interacting electrons with single-

particle wavefunctions {ψi(r)} producing the density ρ, Ts[ρ] is simply given by

Ts[ρ] = Ts[{ψi[ρ]}] = −
N/2∑
i

〈ψi|∇2|ψi〉 (3.18)

and is thus exactly known (here it is assumed that the system in question is spin-

degenerate and thus every single-particle state ψi is doubly occupied). In order to arrive
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at the Kohn–Sham equations, it is possible to minimize the energy functional of a system

in external potential Vext(r). The stationarity condition at the minimum can be written

as:

δ

δρ(r)

[
Ts[ρ] + EH [ρ] + Exc[ρ] +

ˆ
d3r Vext(r)ρ(r)− µ

(ˆ
d3r ρ(r)−N

)]
= 0 (3.19)

where the Lagrange multiplier µ is introduced to constrain the density to integrate to N .

It follows that
δTs[ρ]

δρ(r)
+ VKS(r) = µ (3.20)

with

VKS(r) =

ˆ
d3r′

ρ(r′)

|r− r′|
+
δExc[ρ]

δρ(r)
+ Vext(r). (3.21)

However, Eqn. (3.20) has the form of a noninteracting system of particles moving in

an effective potential VKS(r). Thus the problem of finding the ground state density of

the system is mapped to solving the single particle Schrödinger equation for a set of N/2

single-particle states ψi(r) with[
−1

2
∇2 + V̂KS

]
|ψi〉 = εi|ψi〉. (3.22)

The electron density of the system is then defined via the sum of the single particle

densities

ρ(r) = 2

N/2∑
i

|ψi(r)|2 (3.23)

and the total energy of the system can be written as

E[ρ] = Ts[{ψi[ρ]}] + EH [ρ] + Exc[ρ] +

ˆ
d3r Vext(r)ρ(r)

= 2

N/2∑
i

〈ψi|ĤKS|ψi〉 −
1

2
EH [ρ]−

ˆ
d3r ρ(r)Vxc(r) + Exc[ρ]

= 2

N/2∑
i

εi −
1

2
EH [ρ]−

ˆ
d3r ρ(r)Vxc(r) + Exc[ρ] (3.24)

= EBS[ρ]− Edc[ρ]. (3.25)

Here, the effective Kohn–Sham Hamiltonian ĤKS has been introduced and the ground

state energy is written in terms of the bandstructure energy EBS of single particle energy

eigenvalues εi and some double counting terms that are obtained from comparing to the

full energy functional of the density.
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Since the Kohn–Sham effective potential in (3.22) is dependent on the density, which

is in turn defined via the Kohn–Sham single particle orbitals {|ψi〉}, the problem has to be

solved self-consistently. This is done by starting with a guess for the ground-state density

of the system which defines the Kohn–Sham potential and a set {|ψi〉}. These orbitals

define a new density and the process can be iterated until the change between incoming

and outgoing density vanishes6.

Thus in order to gain a good representation of the kinetic energy functional, the

problem of minimising E[ρ] with respect to ρ is recast into iteratively solving for N/2

orthogonal single particle states |ψi〉. This reformulation comes at a computational cost.

While minimising E[ρ] directly does scale linearly with size of the system, finding the

solutions to (3.22) generally scales as O(N3) with system size, due to the orthogonality

constraints on the N/2 Kohn–Sham single-particle orbitals. However, while there has been

an intense research effort over the last decades in trying to find better purely density-based

approximations to Ts[ρ] for orbital-free DFT approaches (OF-DFT) [26,29], to this point

none of them can achieve accuracies comparable to Kohn–Sham DFT over a wide range

of different systems. For this reason Kohn–Sham DFT has been the more widely used

flavour of DFT over the last decades.

While the Kohn–Sham eigenstates |ψi〉 are those of a fictitious noninteracting system

in an effective potential that are introduced purely in order to gain a representation of

the kinetic energy functional, they are often being taken to have some physical meaning

attached to them. In particular, it is often found that Kohn–Sham eigenvalues are in rea-

sonably good agreement with experimentally obtained bandstructures of the real system.

Strictly speaking however, only the Kohn–Sham energy of the highest occupied orbital

has a physical meaning attached to it, as for the exact DFT functional it corresponds to

the ionisation energy of the system following Koopmans’ theorem [30].

3.1.4 Exchange-correlation functionals

So far, the form of the functional Exc[ρ], the term in which all the many-body effects

of exchange and correlation are collected that are ignored in Ts[{ψi[ρ]}] and EH [ρ] has

not been addressed. The exact functional form of Exc[ρ] is unknown and a number of

properties that Exc[ρ] must obey suggest that it cannot be easily stated as a simple

functional of the density [31]. Therefore in practice, DFT cannot provide an exact solution

to the many-body problem and the results obtained are dependent on the way Exc[ρ] is

approximated.

6In practice, a naive approach of using the outgoing density to define the Kohn–Sham potential is
unlikely to yield convergence in real systems. For calculations in real systems, sophisticated density
mixing schemes are used that take into account the densities of previous iterations to define a new one
(see for example [28] for details).
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The simplest possible approximation of Exc[ρ] is the local density approximation

(LDA), where it is assumed that the exchange-correlation energy at an infinitesimal vol-

ume element d3r is the same as that of a homogeneous electron gas with uniform density

ρ = ρ(r). Thus

Exc[ρ] =

ˆ
d3r εxc [ρ(r)] ρ(r) (3.26)

Vxc(r) = εxc [ρ(r)] + ρ(r)
dε [ρ]

dρ

∣∣∣∣
ρ=ρ(r)

(3.27)

The exchange energy of the homogeneous electron gas is fully known, while for the cor-

relation energy, analytic forms for the high and low density limit are known [32]. These

limits are extrapolated over the whole density range by fitting to data obtained by very

accurate quantum Monte-Carlo calculations [35]. Different fittings have yielded a number

of different LDA functionals in recent years [32–34]. LDA is very appealing due to its

simplicity and generally yields good results for a wide range of different materials and

molecules.

While the LDA functionals have turned out to yield very good results in a variety

of systems and have been used extensively by physicists, total energies calculated for

molecular systems are often not good enough for the purposes of quantum chemists. As

a result, DFT was not a widely used method in quantum chemistry until the next class

of functionals, the gradient-corrected functionals (GGA functionals) were introduced [36].

In order to deal with rapidly changing electron densities such as encountered close to the

nucleus7, GGA functionals treat the exchange-correlation energy as

EGGA
xc [ρ] =

ˆ
d3r εGGA

xc [ρ(r), |∇ρ(r)|] ρ(r) (3.28)

and different analytic forms and fittings to the homogeneous electron gas have again led

to a vast variety of different functionals of this type [37–39]. GGA functionals do improve

significantly on total energies and some structural properties like bond lengths in some

covalently bonded systems, but in many regards have the same failures as LDA functionals

and do not deliver a universal improvement over a wide range of sytems.

The main failure of many simple density-based exchange correlation functionals is the

so-called self-interaction error. This error can be quantified by considering a system with

a single electron. Since there is only one electron, the electron-electron interaction is

7This is mainly the case for quantum chemistry all-electron DFT methods, since they need to explicitly
treat core electrons that are confined to the region close to the nucleus. These core electrons are ignored
in pseudopotential approaches (see section 3.2.6) often used in solid-state physics community, making the
electron density smoother.
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required to strictly vanish. In the DFT framework, this means that the Hartree potential

of a single electron is required to exactly cancel the exchange-correlation functional. In

essence, the requirement states that the asymptotic 1/r dependence of the Hartree po-

tential must be cancelled by a 1/r dependence of the exchange-correlation potential. For

most (semi)-local functionals depending only locally on ρ (or |∇ρ|), this simple property is

violated. Note that the Hartree–Fock method discussed in section 2.9 does not suffer from

this type of self interaction error as the Hartree potential exactly cancels the exchange

potential for a single electron.

The self-interaction error in most commonly used DFT functionals causes ionisation

energies to be severely underestimated. This can be understood by considering that in

the limit that an electron is moved far away from an arbitrary nucleus, it should be feeling

a simple 1/r potential of the nucleus screened by all other valence electrons. However, in

DFT treatments the self-interaction error screens the potential, causing it to decay faster,

which leads to underestimated ionisation energies.

To address some of the shortcomings of (semi-)local functionals, a third class of func-

tionals named hybrid functionals [40, 41] has been introduced. In hybrid functionals, a

certain fraction of non-local Hartree–Fock exchange is added to a GGA-type exchange-

correlation functional to yield better results in systems where the (semi-)local exchange

correlation functionals perform poorly. However, while hybrid functionals often perform

better in systems where non-local effects are important, they still do not produce the

correct long-range behaviour for Vxc and are, unlike the pure Hartree–Fock method, not

self-interaction free. They also come with significant increase in computational cost as

Vxc is no longer a simple functional of the density but has a dependence on individual

Kohn–Sham orbitals. Furthermore, just as (semi)-local functionals, hybrid functionals

generally do not reproduce correct binding curves for systems that are bound by van der

Waals type interactions which arise from non-local correlation effects8.

3.2 From theory to practical method

In section 3.1 the theoretical foundation of density-functional theory was outlined. Over

the last thirty years, intense research has been invested into transforming the theory into

a practical method that can be used routinely for calculating energies and structural

properties of any system. In this section, some of the main techniques used by most

modern DFT-codes in order to facilitate routine calculations on a variety of systems are

discussed.

8These nonlocal correlation effects can be introduced into the DFT framework by making use of van
der Waals density functionals, which have been shown to give realistic binding curves in many systems
where van der Waals effects are important (see [42])
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3.2.1 Bloch’s theorem, Brillouin zones and periodic boundary conditions

Consider a crystalline solid with a translational symmetry defined by the primitive lattice

vectors ai. From this it follows that the external potential of the ions Vext follows the

same periodicity, ie.

Vext(r + niai) = Vext(r) for ni ∈ Z, i ∈ {1, 2, 3} (3.29)

It follows that

VKS(r + R) = VKS(r) (3.30)

where

R = n1a1 + n2a2 + n3a3 for n1, n2, n3 ∈ Z (3.31)

and thus that the effective single particle Hamiltonian ĤKS possesses the same transla-

tional symmetry as the lattice since the kinetic energy is translation invariant. Consider

now the translation operator T̂R that translates the system by R. Since the Hamiltonian

is invariant under translations by R, ĤKS and T̂R commute and therefore have a common

set of eigenfunctions. From this consideration it immediately follows that ψKS
i (r+R) can

be written as

ψKS
i (r + R) = C(R)ψKS

i (r) (3.32)

for some complex function C(R). Given that translating the Kohn-Sham eigenfunction

by R cannot change the normalisation of that wavefunction, it is found that |C(R)|2 = 1

and that therefore

C(R) = eiθ(R). (3.33)

Considering that

T̂RT̂R′ψKS
j (r) = T̂R′T̂Rψ

KS
k (r) = T̂R+R′ψKS

j (r) = ψKS
j (r + R + R′) (3.34)

it follows that

T̂Rψ
KS
j (r) = ψKS

j (r + R) = eik·RψKS
j (r) (3.35)

for some wavevector k.

Equivalently one can state that the eigenfunctions of the Hamiltonian can be written

as

ψKS
jk (r) = eik·ruj(r) (3.36)

where the function ui(r) has the same periodicity as the external potential. This can be
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seen by considering ψKS
jk (r + R) and finding that

ψKS
jk (r + R) = eik·(r+R)uj(r + R) = eik·Reik·ruj(r) = eik·RψKS

jk (r). (3.37)

The two statements in (3.35) and (3.37) are known as Bloch’s theorem [43].

Before continuing, one has to consider the appropriate boundary conditions for the

problem at hand. It is assumed that the crystal considered here is made up of a number

of Nj primitive unit cells in each of the three dimensions. An appropriate set of boundary

conditions comes in the form of Born–von Karman boundary conditions that are imposed

on the crystal supercell made up of Nj copies of the unit cell in all j direction. Let o

denote the point of origin of the crystal, from which a number of Nj primitive unit cells

get repeated in each of the three directions. One then requires that

ψKS
i (o +

3∑
j

ajNj) = ψKS
i (o) (3.38)

To obey the boundary condition, it is required that k · (
∑3

j ajNj) = 2πl for some integer

l. From this it simply follows that

k =
3∑
j=1

mj

Nj

bj for Nj, mj ∈ Z (3.39)

with the primitive reciprocal lattice vectors defined as

bi · aj = 2πδij. (3.40)

One can now use the above definitions to define an arbitrary reciprocal lattice vector G

as

G = m1b1 +m2b2 +m3b3 for m1,m2,m3 ∈ Z. (3.41)

Note that from Bloch’s theorem it follows than ψik(r) = ψi[k+G](r) and thus it is

sufficient to limit the range of allowed k-vectors to −1
2
≤ mj

Nj
≤ 1

2
in order to obtain the

full solution of the system. The reciprocal space to which k is limited by introducing this

range to the allowed values of mj is known as the first Brillouin zone and it contains all

information of the entire system. From the above considerations it can be seen that the

first Brillouin zone contains exactly N1×N2×N3 discrete allowed values for k, and thus

there are as many k-points to be considered as there are primitive unit cells in the crystal

supercell.

To solve for |ψik〉 one can then use the second formulation of Bloch’s theorem (3.37)
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to act onto the Hamiltonian, which yields

ĤKS
k |uik〉 = εi|uik〉 (3.42)

under the boundary condition uik(r+R) = uik(r), where the effective Kohn–Sham Hamil-

tonian now has a k-dependence that can be expressed as9

Ĥk = −1

2
(ik +∇)2 + VKS(r). (3.43)

An important special point in the Brillouin zone is the Γ-point corresponding to k = 0.

From the above equation (3.43) it can be seen that at this point, the eigenfunctions of

the Hamiltonian can be chosen to be real.

Therefore, in order to calculate the properties of a crystal consisting of a number of

unit cells, it is sufficient to solve (3.42) in a single unit cell for all allowed k in the first

Brillouin zone. The total energy of the system is then defined via a discrete sum over

eigenenergies in k-space. In case of an infinite crystal, Ni → ∞, k becomes continuous

in the Brillouin zone and the Kohn–Sham eigenenergies form continuous bands in k-

space. For practical calculations however, one still only considers a discrete number of

k-states and the integral over the Brillouin zone is approximated as a discrete sum. If

enough discrete points are used, the integral is well converged and the result obtained is

equivalent to that of the infinite system.

From the above considerations it also follows than one does not have to choose the

primitive unit cell in real space to solve for the Bloch functions |uik〉. It is equally valid

to consider larger real space cells made up of a number of primitive unit cells. While this

increases the computational cost of solving for {|uik〉} it means that fewer discrete points

k are required to achieve converged energies for the infinite crystal.

3.2.2 Wannier functions

Consider an infinite crystal with Bloch functions |ψik〉 as defined in (3.37). Let index

i label an isolated Bloch function associated with an energy band εi(k) that does not

possess any degeneracies with any other Bloch band for any value of k. It is then possible

to define a localised, orthonormal real space function wn(r−R) such that [44]

|wnR〉 =
V

(2π)3

ˆ
d3k e−ik·R|ψik〉 (3.44)

9Here, it is assumed that VKS is fully local, which is not the case depending on whether non-local
pseudopotentials are used in order to remove the core electrons from the effective Hamiltonian.
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and, conversely

|ψik〉 =
∑
R

eik·R|wnR〉 (3.45)

where V is the volume of the real space primitive unit cell. This function is referred to

as a Wannier function. In a normal infinite crystal, there is generally some band crossing

and thus degeneracies in k-space. In this scenario one defines a set of J generalised

Wannier functions for a set of J composite bands, that have some degeneracies amongst

each other but not with any other band, via equation (3.44). This establishes a connection

between generalised Wannier functions and generalised Bloch states via equation (3.45)

such that the generalised Bloch states are no longer eigenfunctions of the Hamiltonian at

k but are transformed to the eigenstates by a single unitary transformation defined by

a matrix of size J × J [44]. Consider an insulator with some number of occupied bands

Nocc. By definition, the set of Nocc bands forms a composite set of bands, not sharing

any degeneracies in k-space with unoccupied bands. It is therefore possible to define a

set of Nocc generalised localised Wannier functions spanning the same space as the Nocc

eigenstates |ψik〉.
There is some arbitrariness in defining Wannier functions which follows from the fact

that there is a freedom in the choice of phase of Bloch functions |uik〉. In practice this

choice of freedom can be expressed as a unitary matrix of dimensions Nocc × Nocc for a

composite set of Nocc bands of such that

|uik〉 →
Nocc∑
j=1

U
{k}
ji |ujk〉. (3.46)

Given the arbitrariness of the phase of |uik〉 it can be chosen such that the spread of

the resulting Wannier functions is minimised, leading to maximally localised generalised

Wannier functions. It is this feature of maximal localisation that makes Wannier functions

interesting for a number of applications, including linear-scaling approaches as discussed

in section 3.3.

The asymptotic localisation of Wannier functions has been discussed for a number

of years [44]. While it had long been proven that Wannier functions and generalised

Wannier functions are exponentially localised in 1D [45,46], in 3D the proof only existed

for isolated bands [46,47]. Recently, it has been shown that generalised Wannier functions

spanning the composite bands corresponding to the occupied states in a 3D insulator with

time-reversal symmetry are exponentially localised [48].
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3.2.3 Basis functions

The most effective way of solving the Kohn–Sham Hamiltonian for its eigenstates depends

on the type of system of interest. In most cases, it is beneficial to represent |ψKS
i 〉 in some

underlying set of basis functions {φα} such that

|ψKS
i 〉 =

∑
α

aαi |φα〉 (3.47)

for some complex coefficients aαi . For the case of a periodic crystal discussed above, a

natural choice are plane waves of the form

φG(r) =
1√
V
eiG·r. (3.48)

Expanding the eigenfunction of the k-dependent Hamiltonian Ĥk in terms of φG(r) en-

sures that uik(r) obeys the periodic boundary conditions by construction. Obtaining the

eigenfunctions at a certain k-point in the Brillouin zone reduces to finding the lowest N/2

eigenstates of a matrix with the elements

HG,G′

k = 〈φG|Ĥk|φG′〉 (3.49)

Plane waves have the convenient property that they form an orthonormal basis that

gives an unbiased sampling of the entire space. Furthermore, the action of the kinetic

energy operator of the Kohn-Sham Hamiltonian onto a plane wave is trivial to evaluate.

The accuracy of the plane wave expansion of the eigenfunctions is controlled by a single

parameter Gmax, the maximum reciprocal lattice vector G included in the basis. Given

that the plane wave |φGmax〉 has a kinetic energy associated with it that can simply be

written as |Gmax|2/2, the basis set size is often specified via a kinetic energy cutoff. This

defines the maximum kinetic energy the Kohn–Sham electrons are allowed to have and

thus provides a physically motivated, systematically improvable accuracy of the basis set

representation.

While plane-waves form a very effective basis in an infinite solid in periodic boundary

conditions, they are not a suitable choice for isolated molecules10. In this scenario, the

most efficient basis sets come in the form of localised, atom-centered functions, that are

generally non-orthogonal. Common choices include Gaussian functions or pseudoatomic

orbitals. The non-orthogonality of the basis functions transforms the Kohn–Sham eigen-

10This is mainly due to the fact that the treatment of a molecule in periodic boundary conditions
requires the explicit inclusion of vacuum into the unit cell to avoid interaction between periodic images
of the system. Since plane waves provide a uniform description of the entire unit cell, they are ineffective
in this scenario, as they sample the vacuum to the same degree as the molecule.
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value equations into generalised eigenvalue equations of the form

Hφ
KSai = εiS

φai (3.50)

where (
Hφ

KS

)
αβ

= 〈φα|ĤKS|φβ〉

Sφαβ = 〈φα|φβ〉 (3.51)

and ai forms the coefficient vector of Kohn–Sham state |ψKS
i 〉. The localisation of the

basis functions allows for efficient calculations on systems of isolated molecules. Further-

more, far fewer basis functions are generally needed to represent the eigenstates of the

Hamiltonian compared to the plane-wave basis. However, localised basis sets of the form

discussed here do not generally offer the systematic convergence properties of plane-wave

basis sets and require special techniques to treat problems arising from non-orthogonality.

Furthermore, any localised basis set is naturally unsuited to represent very delocalised

Kohn–Sham states. This issue will become important in the discussion of excited states.

3.2.4 Fast-Fourier transforms and Ewald summation

In section 3.2.1 it is pointed out that to obtain the DFT eigenstates of an infinite, periodic

system, it is sufficient to solve for the functions |uik〉 in a single primitive real space unit

cell for some discrete mesh of points k confined to the first Brillouin zone in reciprocal

space. The periodicity of the Kohn–Sham potential allows for the use of a number of

special techniques to speed up calculations. For every density ρ(r) constructed in the

self-consistent solution to the Kohn–Sham equations, a new Kohn–Sham potential has

to be constructed. For semi-local exchange-correlation functionals, the application of the

Hartree potential VH(r) to a certain Kohn–Sham band is normally the most computation-

ally demanding term to calculate. For a given density, the Hartree potential is simply the

convolution of the density with the Coulomb potential in real space

VH(r) =

ˆ
d3r′

ρ(r′)

|r− r′|
. (3.52)

The density must have the same periodicity as the lattice and can thus be expanded

using a plane wave basis as defined in 3.2.3. The density in real space and the basis set

coefficients ρ(G) are related by a simple Fourier transform. However, in reciprocal space,
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the convolution in (3.52) reduces to a simple product11

VH(G) =
4πρ(G)

Ω|G|2
(3.53)

where Ω denotes the unit cell volume. Fast-Fourier Transforms (FFTs) [49] allow to change

between reciprocal space and real space in a computational effort scaling as O(N log(N))

with unit cell size, allowing for very efficient calculations of the Hartree potential.

Another term that does need to be evaluated to calculate the total energy per unit

cell of the system is the electrostatic energy related to the ion-ion interaction associated

with a single unit cell of the crystal.

Eion-ion =
1

2

∑
A

∑
B 6=A

∑
R

ZAZB
|RA −RB + R|

(3.54)

Here, the first two sums run over all the ions in the unit cell, RA and RB denote the

positions of ion A and B and R denotes a real space lattice vector. The sum over R

runs over an infinite number of real space lattice vectors and accounts for all possible

interactions between the primitive unit cell and the infinite number of periodic repeats.

Since the Coulomb potential falls off slowly with distance, the sum over R converges

very slowly and is inefficient to evaluate for practical purposes. A more efficient approach

comes in the form of the Ewald summation technique [50], where the Coulomb interaction

1/r is split into a long range and a short range part such that

1

r
=

erfc(αr)

r
+

erf(αr)

r
(3.55)

for some Ewald splitting parameter α. This allows the sum over R to be split into a short

range part converging rapidly in real space and a long range part converging rapidly in

reciprocal space, yielding a much more efficient computational scaling of O(N2) with the

number of ions in the unit cell. In principle, the computational effort that can be made to

scale as good as O(N log(N)) with the number of ions in the unit cell if FFTs are used12.

3.2.5 Iterative eigensolvers

Once the KS potential is constructed, the lowest Nocc/2 eigenstates of HKS have to be

found in the iterative solution of the Kohn–Sham equations. In case of an isolated sys-

11The |G|=0 component is excluded from the calculation as the overall system is taken to be charge
neutral and the term is cancelled by analogous terms in the ion-ion and electron-ion interactions.

12Given that the Ewald summation has to be only carried out once at the beginning of a calculation,
it is often (eg. in the ONETEP method) considered to be unnecessary to calculate it in linear-scaling effort
since it does not provide a bottleneck for practical calculations.
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tem where the KS states are expanded in a relatively small number of localised basis

functions {φα}, it is often possible to directly construct the Hamiltonian matrix Hφ
KS and

use standard linear-algebra methods to diagonalise it. For localised basis functions, the

asymptotic scaling of the construction of the Hamiltonian is linear with system size (pro-

vided (semi)-local approximations to the exchange-correlation potential are used), while

the diagonalisation techniques generally scale as O(N3
φ) with the number of basis functions

Nφ.

In an infinite crystal, where plane waves form an appropriate basis set as discussed in

section 3.2.3, the computational cost of this direct approach of solving the Kohn–Sham

equations is often prohibitive. In a plane wave basis Nφ is given by

Nφ ≈
V

2π2

|Gmax|3√
(23)

(3.56)

which is generally much larger than the size of localised basis sets. For large cell vol-

umes, it can become prohibitive to construct, store and diagonalise ĤG,G′

k . The explicit

construction of HG,G′

k also scales as O(N2
φ) as the plane waves are delocalised over the

entire unit cell. Furthermore, since Nocc/2 � Nφ, direct diagonalisation of HG,G′

k yields

a large number of eigenstates that are not needed for the self-consistent solution of the

KS equations.

The above problems can be avoided by using an iterative eigensolver. Since solving

for a subset of eigenvalues of large matrices is a standard problem in computational

science, a variety of different algorithms exist that vary in convergence properties and

memory requirements [51]. Among the most popular in electronic structure theory are

the Davidson [52] and Conjugate Gradients algorithms [53], which are based on minimising

the Rayleigh quotient

ρ(x) =

Nocc/2∑
i

x†iH
φ
KSxi

x†iS
φxi

(3.57)

under the constraint

x†iS
φxj = δij (3.58)

where Hφ
KS is again the Hamiltonian in some basis set representation φ, {xi} is a set

of approximate eigenvectors and Sφ is the overlap matrix of the basis set. Minimising

(3.57) with respect to {xi} yields the lowest Nocc/2 eigenstates of Hφ
KS. A main feature of

iterative methods is that to perform the minimisation it is sufficient to know the action

of the Hamiltonian on an arbitrary trial vector x. Thus in practice, one never has to

explicitly calculate or store Hφ
KS, which is prohibitive for large basis set representations.

For localised basis sets, Hφ
KS is sparse and computing Hφ

KSxi can be made to scale linearly
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with the number of basis functions. However, keeping {xi} orthogonal has a computa-

tional complexity of O(2Nφ(Nocc/2)2) associated with it13, leading to a still overall cubic

scaling with system size when solving the Kohn–Sham equations.

3.2.6 Norm-conserving pseudopotentials

Close to the ionic core, the Coulomb potential diverges and the Kohn–Sham valence

wavefunctions are known to show rapid oscillations in order to fulfil the orthogonality

requirement to the core wavefunctions. This causes numerical problems in representing

these states, especially when plane wave basis sets are used. To resolve the rapid oscilla-

tions close to the ionic core, very high kinetic energy cutoffs are required, making basis

sets prohibitively large for practical calculations. To address this issue, plane-wave DFT

codes generally make use of pseudopotentials.

In the pseudopotential method, the chemically inert core electrons are removed from

the calculation and the bare ionic potential is replaced by a soft pseudopotential that

reproduces the effect of the core electrons on the valence wave functions outside a certain

cutoff region, while yielding smooth valence wave functions inside the core region. Since

the core electrons to a good approximation do not take part in chemical bonding, a

well constructed pseudopotential produces the right behaviour of Kohn-Sham valence

wavefunctions outside the core regions no matter what chemical environment the ion is

placed in.

Pseudopotentials are generally generated by solving a radial Kohn-Sham equation of

the form [
−1

2

d2

dr
+
l(l + 1)

r2
+ VKS[ρ](r)

]
rRnl(r) = εnlrRnl(r) (3.59)

for each atomic species in isolation. Here, l determines the angular momentum quan-

tum number, Rnl(r) are the radial wavefunctions and ρ(r) is the radial density associated

with the sum of the occupied wavefunctions Rnl(r). For the purpose of this work, only

norm-conserving pseudopotentials are considered. These so called norm-conserving pseu-

dopotentials have a number of desirable features which can be summarised as [54]:

• The valence pseudo-wavefunctions generated from the pseudopotentials should con-

tain no nodes. This is to ensure computational efficiency, as nodes are generally

associated with high kinetic energy components that are to be avoided to keep the

required plane-wave basis set as small as possible.

• The radial all-electron wavefunction of a valence state n is equal to the radial pseudo

13The computational complexity corresponds to that of the Gram-Schmidt method, a commonly used
technique to orthonormalise a set of vectors.
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wavefunction outside a given core cutoff region defined by rc:

RAE
nl (r) = RPS

nl (r) for r > rc (3.60)

• The charge enclosed in the core region must be equal for both the all-electron and

the pseudo wavefunction such that:

ˆ rc

0

|RAE
nl (r)|2r2 dr =

ˆ rc

0

|RPS
nl (r)|2r2 dr (3.61)

This is the definition of “norm-conserving” when referring to pseudopotentials.

• Both the pseudo Kohn-Sham wavefunction and the all-electron wavefunction have

the same eigenvalue associated with them

εAE
nl = εPS

nl (3.62)

In general, there exists a tradeoff between the “softness” and the transferability of

a generated normconserving pseudopotential. While large core region cutoffs rc lead to

very soft pseudopotentials that produce valence Kohn-Sham wavefunctions representable

by only few plane waves, harder pseudopotentials with small rc are much more reliable

when being transferred to different chemical environments.

3.2.7 Projector augmented-wave formalism

While the norm-conserving pseudopotential approach is relatively simple and intuitive,

it comes with a number of drawbacks. First, many transition metals require the explicit

treatment of semi-core states as valence states in order to achieve satisfactory agreements

with experimental data, resulting in very hard pseudopotentials. Second, any access to the

all-electron density and the full all-electron wavefunctions is lost in the pseudopotential

approach. The projector augmented-wave (PAW) formalism [55] has been developed to

address these issues by defining a linear transformation τ that maps soft pseudo (PS)

Kohn-Sham wavefunctions onto their all-electron (AE) equivalents such that

|ψ〉 = τ |ψ̃〉 (3.63)

Here, quantities with a tilde denote quantities associated with the PS Hilbert space.

Given that the all-electron wavefunctions outside the core region are smooth quantities,

we require the AE wavefunctions and the pseudo-wavefunctions to differ only inside the

core regions of the ions. Inside these augmentation regions, the operator is expanded
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by defining AE partial waves {|ϕi〉} that are linked to PS partial waves {|ϕ̃i〉} by the

operator τ inside the augmentation region. It is required that |ϕi〉 = |ϕ̃i〉 outside the

augmentation region and that {|ϕ̃i〉} is a set of numerically convenient smooth functions.

The partial waves are generally written in terms of a radial function expressible on a

radial grid around the atoms within the augmentation region and a spherical harmonic,

such that

ϕj(r) =
ϕnj ,Lj(r)

r
SLj ,Mj

(r̂). (3.64)

The linear transformation τ can then be written as

τ = 1 +
∑
i

(|ϕi〉 − |ϕ̃i〉) 〈p̃i| (3.65)

where 〈p̃i| are fixed projector functions for each partial wave. The projector functions are

required to fulfil the completeness and orthonormality conditions∑
i

|ϕ̃i〉〈p̃i| = 1 (3.66)

〈p̃i|ϕ̃j〉 = δij. (3.67)

The full mapping between the AE wavefunction and the PS wavefunction can thus be

expressed as

|ψ〉 = |ψ̃〉+
∑
i

(|ϕi〉 − |ϕ̃i〉) 〈p̃i|ψ̃〉. (3.68)

As required, the AE wavefunction reduces to the PS wavefunction outside the augmen-

tation spheres around the ions, while inside the spheres the soft part is replaced by an

all-electron part defined via the projectors 〈p̃i| and the AE partial waves |ϕi〉.
Using the linear operator τ the Kohn–Sham eigenvalues of the all-electron Hamiltonian

can be expressed as
〈ψ̃i|τ †ĤKSτ |ψ̃i〉
〈ψ̃i|τ †τ |ψ̃i〉

= εKS
i . (3.69)

Therefore, in order to obtain the all-electron Kohn–Sham eigenvalues, it is sufficient to

solve the Kohn–Sham equations for the smooth pseudo-wavefunctions and an effective

transformed Hamiltonian H̃ = τ †ĤKSτ , where the pseudo-wavefunctions need to obey a

modified orthonormality condition 〈ψ̃i|τ †τ |ψ̃j〉 = δij. The power of the formalism lies in

the fact that all-electron quantities like the total all-electron energy and bandstructure

are directly accessible while one only has to solve for the smooth pseudo Kohn–Sham

eigenstates which are conveniently expressed by plane wave functions.
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3.3 Linear-scaling density-functional theory

As seen in section 3.1.3, in order to achieve an accurate representation of the kinetic

energy functional, one has to introduce Nocc/2 orthogonal eigenstates |ψKS
i 〉 of a ficti-

tious non-interacting system. Solving the Kohn–Sham equations self-consistently for these

eigenstates introduces an asymptotic scaling of O(N3) with the number of electrons due to

the orthonormality constraint. This unfavourable scaling places severe limitations on the

sizes of systems that can be studied using conventional Kohn–Sham DFT. For this reason

there has been a long-lasting research effort into methods that show a linear asymptotic

scaling with system size [56, 57], while retaining the accuracy of orbital-based DFT14. In

the following, some of the main concepts of a particular class of linear-scaling DFT meth-

ods, namely methods based on the single-particle density matrix, are introduced. The

discussion presented here is limited to systems with a finite band gap.

3.3.1 The single-particle density matrix

The most successful subset of linear-scaling DFT methods over the recent years relies on

the use of the single-particle density matrix. Since the orthogonality constraint on the

Kohn–Sham orbitals poses a major problem for linear-scaling methods, one has to give

up the use of individual Kohn-Sham states in favour of a collective representation. The

single-particle Kohn–Sham density matrix can be introduced as

ρ{v}(r, r′) =

Nocc/2∑
i

ψKS∗
i (r)ψKS

i (r′) (3.70)

such that the KS density of the system can be written as ρ(r) = 2ρ{v}(r, r). In order to

be a valid density matrix of an independent particle Kohn–Sham system, ρ{v}(r, r′) has

to obey two conditions that directly follow from equation (3.70):

ˆ
d3r′′ ρ{v}(r, r′′)ρ{v}(r′′, r′) = ρ{v}(r, r′) (3.71)

2

ˆ
d3r ρ{v}(r, r) = Nocc. (3.72)

The first condition is known as the idempotency condition [58] and follows directly from

the orthogonality of the Kohn–Sham states. The second condition is a normalisation

constraint that ensures that the density associated with the single-particle density matrix

integrates to the number of (valence)-electrons in the system. Therefore, in solving for the

14As mentioned earlier, OF-DFT trivially obtains an O(N) scaling with system size but, due to the
approximation of the kinetic energy functional, lacks the accuracy of Kohn–Sham approaches.
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density matrix rather than the individual KS eigenstates, the orthonormality constraint

on the eigenstates can be dropped and replaced by the idempotency and normalisation

constraints of the density matrix.

3.3.2 Localised representation and non-orthogonality

While the collective representation of KS states in terms of a density matrix avoids the

orthogonality constraint on individual eigenstates in favour of a single idempotency con-

straint, this approach can only lead to efficient algorithms if the density matrix can be

represented in an efficient basis. In linear-scaling approaches, the density matrix is gen-

erally expanded in a set of localised, non-orthogonal orbitals or support functions {φα}.
One then writes

ρ{v}(r, r′) =
∑
αβ

φ∗α(r)P {v}αβφβ(r′) (3.73)

where P{v} is the ground state KS density matrix in the representation of localised or-

bitals. While for isolated molecular systems, it is always possible to choose a localised

representation in the form of equation (3.73), the validity of the expression for infinite

systems in periodic boundary conditions crucially depends on the existence of exponen-

tially localised Wannier functions in those systems. As established in section 3.2.2, in an

insulating system the valence Kohn–Sham states form a composite band for which a set

of exponentially localised Wannier functions can be constructed. From this it directly

follows that a representation of the form of equation (3.73) is generally possible even in

periodic systems, as long as the system in question is insulating. Note that while the

formal justification for the localised representation in (3.73) originates from the existence

of Wannier functions, the support functions {φα} are generally not chosen to be Wan-

nier functions constructed as described in section 3.2.2, since that construction would

require the self-consistent solution of the KS equations for all KS eigenstates. In most

methods, more generalised localised functions like atom-centered pseudoatomic orbitals

are chosen [59, 60] in order to represent the valence density matrix. This results in the

fact that the set of support functions chosen in order to obtain a good representation of

ρ{v}(r, r′) is generally larger than the minimal set of Wannier functions necessary to span

the occupied subspace.

Since the localised support functions are generally non-orthognonal, it is convenient

to introduce a differentiation between covariant and contravariant tensorial quantities.

Quantities with subscript greek letters are taken to be to be covariant quantities, while

superscript greek letters are contravariant quantities. The covariant and contravariant

support functions form a dual set such that 〈φα|φβ〉 = δβα. The overlap matrix Sφαβ =

〈φα|φβ〉 is an example of a covariant quantity, while P{v} and the inverse of the overlap
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matrix (Sφ)−1 are contravariant quantities. In this sense Equation (3.73) is an example

of a contraction between contravariant and covariant tensor quantities. In the following

sections, a repeated greek index on a contra- and covariant quantity will be taken to

mean a contraction of the form (3.73) and any explicit sums over localised orbitals are

dropped (for more details on the tensorial nature of non-orthogonal basis sets in electronic

structure theory, see [61,62]).

3.3.3 Density matrix DFT

The self-consistent solution of the Kohn–Sham equations can be replaced by a single

energy minimisation in the density matrix formalism. Choosing the localised support

functions as a representation for the single-particle Kohn–Sham Hamiltonian, the band-

structure energy EBS[ρ] can be written as

EBS[ρ] = 2Tr
[
P{v}Hφ

KS

]
(3.74)

Therefore, by using the variational principle, carrying out a direct minimisation of the

bandstructure energy with respect to P{v}

EBS[ρ0] = min
P{v}

2Tr
[
P{v}Hφ

KS

]
(3.75)

subject to the constraints

(
P {v}SφP {v}

)αβ
= P {v}αβ (3.76)

2Tr
[
P{v}Sφ

]
= Nocc (3.77)

yields the Kohn–Sham ground state density ρ0 and the ground state energy of the system

without any reference to individual Kohn–Sham states and their orthogonality. Note

however that Hφ
KS is dependent on the Kohn–Sham density and thus on the density

matrix. Thus the minimisation has to be performed self-consistently, just like in standard

Kohn–Sham approaches. Self-consistency can be achieved by minimizing EBS[ρ0] for a

fixed Hφ
KS. The resulting idempotent, normalised P{v} generates a new ρ and thus a new

Hφ
KS and the optimisation can be repeated until self-consistency is reached.

The normalisation constraint to the density matrix can be incorporated into the min-

imisation scheme by considering the grand potential Ω rather than the band structure

energy [63]

Ω[P{v}] = 2Tr
[
P{v}

(
Hφ

KS − µSφ
)]

(3.78)

and minimising it at fixed chemical potential µ. However, carrying out the minimisation
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while simultaneously enforcing the idempotency constraint on the ground state density

matrix requires special numerical techniques and algorithms to ensure the stability of the

minimisation procedure, which is discussed in the next sections.

3.3.4 Purification and penalty functionals

As was pointed out by McWeeny [58], it is possible to drive a near idempotent density

matrix to idempotency using a purification scheme. Consider the functional Q[P{v}]

defined as the square of the deviation from idempotency of P{v}:

Q[P{v}] = Tr

[(
P{v}SφP{v}Sφ −P{v}Sφ

)2
]

(3.79)

The functional is necessarily positive-semidefinite and strictly vanishes for idempotent

P{v}. Differentiating the scalar quantity Q[P{v}] with respect to P{v} one obtains the

covariant gradient:

∂Q[P{v}]

∂P{v}
= 4SφP{v}SφP{v}SφP{v}Sφ

−6SφP{v}SφP{v}Sφ + 2SφP{v}Sφ (3.80)

The covariant gradient can be changed into a contravariant gradient with the same tenso-

rial properties as P{v} by multiplying the above expression from the left and right with the

inverse overlap matrix. Using the contravariant gradient as a steepest descent direction

for improving a trial guess P{v}n , P
{v}
n+1 can be written as

P
{v}
n+1 = 3P{v}n SφP{v}n − 2P{v}n SφP{v}n SφP{v}n (3.81)

It is then in principle possible to find the DFT ground state energy by performing

a two-step approach of alternatingly minimising Ω[P{v}] and Q[P{v}]. However, this

approach is potentially numerically unstable and an alternative method comes in the

form of including the effect of Q[P{v}] into the ground state energy minimisation via a

penalty functional. Consider the effective total energy functional introduced by Kohn [64]

F1[P{v}] = Ω[P{v}] + α
[
Q[P{v}]

] 1
2

(3.82)

where α is some positive constant. The functional F1[P{v}] has a true minimum for the

idempotent ground state density matrix. This follows from the fact that the energy is

non-variational with respect to changes in the occupancies of P{v} due to the presence

of the square root. The square root causes the functional to have a branch point at
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the correct occupancy, which causes issues for standard conjugate gradient minimisation

schemes [65,66].

The alternative to the Kohn functional is to consider [66]

F2[P{v}] = Ω[P{v}] + αQ[P{v}]. (3.83)

This functional does not contain any branch points and is easy to minimise with standard

iterative techniques. However, the missing branch point causes F2 to only have a minimum

at an approximately idempotent density matrix P
′{v}, with P

′{v} approaching the correct

idempotent ground state density matrix as α→∞. The error in the occupancies of P
′{v}

can be shown to be proportional to α−1, causing significant errors in the bandstructure

energy for practical values of α. However, it is possible to derive a correction term to the

energy due to the imperfect idempotency such that [66]

EBS[ρ0] ≈ EBS[P
′{v}]− 2αTr

[
P

′{v}Sφ
(

1−P
′{v}Sφ

)2 (
1− 2P

′{v}Sφ
)]

. (3.84)

3.3.5 The LNV method

While enforcing the density matrix idempotency with penalty functionals causes a number

of problems in standard minimisation approaches, it was shown by Li, Nunes and Van-

derbilt [63] that these issues can be largely avoided. In the LNV method, one introduces

a trial or auxiliary density matrix L{v} such that

P{v} = 3L{v}SφL{v} − 2L{v}SφL{v}SφL{v} (3.85)

ie. P{v} is the first order idempotency corrected version of L{v} following equation (3.81).

Now, one considers the grand potential Ω to be a function of L{v} such that

Ω[L{v}] = Tr
[(

3L{v}SφL{v} − 2L{v}SφL{v}SφL{v}
)(

Hφ
KS − µSφ

)]
. (3.86)

The functional Ω[L{v}] has a local minimum where P{v} corresponds to the idempotent

Kohn–Sham ground state density of the system. The global minimum is characterised

by a runaway solution where the occupancies of states below and above the Fermi level

approach positive and negative infinity respectively. However, as long as a near idempo-

tent density matrix is used as an input guess, with occupancies close to 0 and 1, standard

iterative minimisation techniques applied to equation (3.86) yield the idempotent ground

state density matrix corresponding to the Hamiltonian Hφ
KS.
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3.3.6 Linear-scaling DFT

In the previous sections it was shown that density matrix DFT avoids the source O(N3)

scaling of standard Kohn–Sham DFT by replacing the orthonormality of Kohn–Sham

states with the idempotency of the single-particle density matrix. However, regardless

of whether idempotency is achieved via a penalty functional minimisation or the LNV

method, it generally involves the multiplication of density matrices. Since {φα} and thus

the dimensions of L{v} or P{v} grow linearly with system size, the computational effort in

computing matrix products of the form L{v}SφL{v} generally scales as O(N3) with system

size, suggesting that the density matrix formalism does not in fact yield any improvement

in scaling over the conventional KS-DFT method.

However, the considerations that prove the existence of maximally localised Wannier

functions for a set of composite bands (see section 3.2.2) also show that the single particle

density matrix corresponding to the same set of composite bands in a crystal with inversion

symmetry decays exponentially with distance [46], such that

lim
|r−r′|→∞

eεA|r−r
′|ρ{v}(r, r′) = 0 (3.87)

for some 0 < ε < 1. Thus in an insulator, the Kohn–Sham single particle density matrix

decays exponentially with distance and the rate of the exponential decay A is a function of

the band gap [67]. Since the density matrix is represented by localised functions, it follows

that in the case of insulators L{v} and P{v} are sparse for sufficiently large system sizes. In

the limit of large enough systems, the resulting matrices of all matrix products required

in the energy minimisation become sparse and all matrix operations can be performed in

O(N) effort.

Linear-scaling DFT calculations are thus possible if the explicit calculation of individ-

ual Kohn–Sham states is abandoned in favour of a collective representation through the

single particle density matrix and if the sparsity of the density matrix is exploited. The

nature of the density matrix representation means that some quantities readily accessible

in Kohn–Sham DFT like the Kohn-Sham bandstructure of the system are inaccessible in

the linear-scaling formulation, although they can generally be obtained in a single O(N3)

post-processing step of diagonalising the Kohn–Sham Hamiltonian.
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Chapter 4

Approximations to excited states

In this chapter, the focus lies on the approximate evaluation of excited states in the

many-electron system. The discussion is limited to neutral excitations in which the

many-electron system couples to light by absorbing photons of specific wavelengths. In

a quasiparticle or Kohn–Sham picture, this photon absorption event can be generally

described through the creation of an electron-hole pair in the system. In this chapter,

two main approaches to this problem are compared and contrasted, one being the time-

dependent extension to DFT (TDDFT) and the other being the Green’s function based

approach of many-body perturbation theory (MBPT). The chapter concludes with some

scaling considerations that assess the appropriateness of either approach for the large-

scale applications of interest in this work. As in the previous chapter, the only systems

considered are those with a spin-degenerate ground state. All spin indices are dropped

for convenience and are only reintroduced where the electron spin has to be considered

explicitly.

4.1 Time-dependent density-functional theory

As pointed out in section 3.1, the Hohenberg–Kohn theorem establishes a one-to-one

mapping between the ground state density of a many-electron system and the external

potential. Since the external potential uniquely defines the many-electron Hamiltonian

of a system, in principle any excited state of the full many-body Hamiltonian must itself

be a functional of the ground state density. However, the Hohenberg–Kohn theorem does

not say anything about the form of such a functional for an arbitrary excited state and

therefore does not provide a prescription for obtaining it.

For this reason, DFT cannot be used to yield neutral excitations15. While the Kohn–

15Here, we limit the discussion to vertical excitations of closed-shell systems. DFT can be used to yield
excitation energies in cases where different spin configurations yield different ground state energies. The
energy difference between two different configurations can then be interpreted as the excitation energy
of the system going from one symmetry to the other.
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Sham formalism provides the individual eigenstates of a fictitious non-interacting system,

the Kohn–Sham energy differences cannot be treated as neutral excitation energies, even

if the Kohn–Sham energies are interpreted as quasiparticle bandstructure energies. One

could consider the lowest excitation of a system to consist of an electron being moved from

the highest occupied Kohn–Sham state to the lowest unoccupied state and their energy

difference to be the excitation energy. However, this interpretation is not only lacking

any formal justification, it is also wrong, as in this system the external potential is fixed

and thus not appropriate for such an excitation.

One way of introducing the possibility of excitations into the Kohn–Sham formalism is

to explicitly consider the Hamiltonian of a system coupling to an external electromagnetic

field. One can then consider the general form of the non-relativistic time-dependent

Hamiltonian

ĤEM(t) =
1

2

∑
i

[∇i + Aext(ri, t)]
2 +

∑
i

Vext(ri, t) + V̂ee (4.1)

where Vext(ri, t) and Aext(ri, t) are the external scalar and vector potentials experienced

by particle i at time t and V̂ee again denotes the electron-electron interaction. The above

form of the Hamiltonian is capable of describing interactions between the many-electron

system and an external, classical electromagnetic field and is therefore the most general

form to describe non-relativistic light-matter interactions. Note that the Hamiltonian is

now explicitly time-dependent and thus cannot be treated with the techniques established

through the Hohenberg–Kohn theorem.

A major complication in the formal treatment of (4.1) comes through the introduction

of the vector potential Aext. Thus in practice, further approximations are introduced to

yield a simpler effective Hamiltonian. First, note that the original Hamiltonian in equation

(4.1), like the Hamiltonian considered for the ground state problem in the previous section,

does not contain any explicit spin-dependence and thus spin-orbit coupling effects as well

as the explicit coupling of the electron spin to the external magnetic field are ignored. This

means that a range of excitations often encountered in magnetic materials, like collective

spin-wave excitations, are ignored in the Hamiltonian of equation (4.1). Furthermore, any

fine splitting of excitations due to spin-orbit coupling effects can naturally not be obtained

from the spin-independent Hamiltonian16. Now, in a further approximation to equation

(4.1) one can ignore all interaction effects between the current of moving electrons and the

external magnetic field, thus removing any coupling to magnetic effects from the system

as well as the need to treat the vector potential Aext.

16Although, if spin-orbit effects are small, which is the requirement for the Hamiltonian in equation
(4.1) to be appropriate for the system at hand, the fine splitting can be obtained perturbatively (see for
example [68]).
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As a next step, consider that for low energy excitations, the wavelength of an electro-

magnetic wave is generally much larger than the spatial extent of the system of interest,

so that one can treat the applied electric field experienced by the electrons of the system

as constant in space. This approximation is known as the dipole approximation. One can

then write the perturbing potential to the ground state system felt by electron i due to

an externally applied time-varying electric field Eext(t) as

δVpert(ri, t) = −Eext(t) · r̂i (4.2)

and thus consider a time-dependent external field

Vext(ri, t) = −
∑
A

ZA
|ri −RA|

+ δVpert(ri, t) = Vext(ri) + δVpert(ri, t) (4.3)

where Vext(ri) is the usual static external potential considered in the ground state DFT

formalism.

Under the approximations mentioned above, it is therefore sufficient to consider a

much simpler Hamiltonian:

Ĥ(t) = T̂ + V̂ee +
∑
i

Vext(ri, t). (4.4)

Note that this simplified Hamiltonian is identical to the one addressed in the original

Hohenberg–Kohn theorem, with the difference that the external scalar potential is now

explicitly dependent on time, due to the introduction of the time-dependent perturbing

potential δVpert(ri, t). A formally justified extension of the Hohenberg–Kohn theorem to

time-varying external scalar potentials is known as the Runge–Gross theorem [69], leading

to time-dependent density-functional theory (TDDFT).

It should be pointed out that the original Hamiltonian defined in equation (4.1) can

also be treated in a Hohenberg–Kohn type framework, yielding time-dependent current

density functional theory (TD-CDFT) [70, 71]. However, since for the purpose of this

work, all effects due to a coupling of the electrons to magnetic fields are ignored, the

treatment of time-dependent perturbations of the form of δVext is sufficient.

4.1.1 The Runge–Gross theorem

As an extension to the Hohenberg–Kohn theorem established in 3.1, in their influential

paper [69] Runge and Gross provide a proof for the following statements:

• There exists a one-to-one mapping between the external time-dependent potential

Vext(r, t) and the electron density ρ(r, t) (up to a scalar function C(t)) for an inter-
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acting many-particle system evolving from a fixed initial state Ψ(t0) = Ψ0, given

that Vext(r, t) can be expanded as a Taylor series around time t0.

• The quantum mechanical action integral A[Ψ] can be written as a functional of

the density. Furthermore, for a time-dependent external potential Vext, A[ρ] can be

written as A[ρ] = B[ρ] −
´ t1
t0

dt
´

d3rρ(r, t)Vext(r, t), where B[ρ] is a universal (ie.

system-independent) functional of the density.

To prove the first statement, consider two time-dependent external potentials Vext(r, t)

and V ′ext(r, t) such that the two potentials differ by more than a time-dependent function

C(t), ie. Vext(r, t)−V ′ext(r, t) 6= C(t). It is assumed that both potentials can be expanded

as a Taylor series in time around t = t0. From this it follows that there must be some

n-th term of the Taylor series where the Taylor epxansion terms of Vext(r, t) and V ′ext(r, t)

differ by more than a constant c. It is therefore implied that [69]

∂n

∂tn
[Vext(r, t)− V ′ext(r, t)]t=t0 6= c (4.5)

for some n ≥ 0.

It is now useful to introduce the concept of a current density j(r,t) of the many-electron

wavefunction Ψ(t) where one can write

j(r, t) =
〈

Ψ(t)
∣∣∣̂j(r)

∣∣∣Ψ(t)
〉

=
1

2i

[
(∇r −∇r′)

ˆ N∏
j=2

d3rj Ψ∗(r, r2, · · · rN , t)Ψ(r′, r2, · · · rN , t)

]
r=r′

(4.6)

where ĵ(r) is the current density operator. The time evolution of the current density can

then be expressed in terms of an equation of motion

i
∂j(r, t)

∂t
=
〈

Ψ(t)
∣∣∣[̂j(r), Ĥ(t)

]∣∣∣Ψ(t)
〉
. (4.7)

Considering the difference between current densities corresponding to systems specified

by the two external potentials Vext(r, t) and V ′ext(r, t) evolving from the same initial state

Ψ0 and substituting into equation (4.7), it follows that at t = t0,

i
∂ [j(r, t)− j′(r, t)]

∂t

∣∣∣∣
t=t0

=
〈

Ψ0

∣∣∣[̂j(r),
(
Ĥ(t0)− Ĥ ′(t0)

)]∣∣∣Ψ0

〉
= iρ(r, t0)∇ [Vext(r, t0)− V ′ext(r, t0)] . (4.8)

In last line the fact was used that Ĥ(t) and Ĥ ′(t) only differ in their external potentials.

It is now possible to apply the time evolution equation n times, from which it follows
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that [69]

in+1 ∂
n+1 [j(r, t)− j′(r, t)]

∂tn+1

∣∣∣∣
t=t0

= ρ(r, t0)∇

[
in+1 ∂

n [Vext(r, t)− V ′ext(r, t)]

∂tn

∣∣∣∣
t=t0

]
(4.9)

It was however established in equation (4.5) that there exists an n-th term in the Taylor

expansion of the external potentials such that they differ by more than a constant C(t).

It therefore follows that there exists some n such that the right hand side of the above

equation (4.9) does not vanish. From this it can be concluded that the currents of the

two systems defined by external potentials Vext(r, t) and V ′ext(r, t) and evolving from the

same initial states Ψ0 must differ at a time t0 + δ, where δ is some infinitesimal number.

Equation (4.9) thus guarantees that the two potentials Vext(r, t) and V ′ext(r, t) must

produce different density currents when evolving from the same initial state. However,

the differences in the currents and the time-dependent densities of the two systems are

related through a continuity equation of the form

∂

∂t
[ρ(r, t)− ρ′(r, t)] = −∇ · [j(r, t)− j′(r, t)] . (4.10)

Taking the (n + 1)th time derivative of the above equation evaluated at time t = t0 and

substituting the result from equation (4.9) one obtains

∂n+2

∂tn+2
[ρ(r, t)− ρ′(r, t)]|t=t0 = −∇ ·

[
ρ(r, t0)∇

{
∂n

∂tn
[Vext(r, t)− V ′ext(r, t)]|t=t0

}]
(4.11)

and thus, a relation between the difference of the time-dependent densities at a time

t = t0 + δ and the Taylor expansion of the difference of the external potentials at time

t = t0 has been established. If the right hand side of equation (4.11) does not vanish for

some n, it can be concluded that the time-dependent densities of the two systems evolving

from the same initial state differ an infinitesimal instant after the initial time t0.

To show that the right hand side indeed cannot vanish if the assumption specified in

equation (4.5) holds, a short hand notation is introduced:

∂n

∂tn
[Vext(r, t)− V ′ext(r, t)]|t=t0 = un(r). (4.12)

One now assumes the contrary of the statement that is to be proven, ie. that

∇ · [ρ(r, t0)∇un(r)] = 0. (4.13)
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Integrating over all space and applying Green’s identity, it can be found that

ˆ
d3r un(r)∇ · [ρ(r, t0)∇un(r)] =

1

2

˛
ρ(r, t0)

[
∇u2

n(r)
]
· ds

−
ˆ

d3r ρ(r, t0) [∇un(r)]2 = 0. (4.14)

The first term on the right hand side is a surface integral that vanishes in finite systems,

as ρ(r, t0) decays exponentially with distance17. Thus for the expression to hold it is

required that the volume integral on the right hand side vanishes, and that therefore

ρ(r, t0) [∇un(r)]2 = 0. This however causes a contradiction with the original statement

in equation (4.5), since the statement requires that un(r) is not constant in r for some

n [69]. Since both ρ(r, t0) and [∇un(r)]2 are therefore greater or equal to zero everywhere

in space, an integral of the product of them taken over all space cannot vanish. It can

therefore be concluded that the statement made in equation (4.13) must be false and

that time-dependent densities of systems with different external potentials evolving from

the same initial state Ψ0 are different for any t > t0. From this, it follows directly that

there exists a one-to-one mapping between the time-dependent density and the external

potential (up to the scalar function C(t)) for any many-electron system evolving from a

fixed initial state Ψ0.

From the first part of the Runge–Gross theorem it follows that the time-dependent

many-body wavefunction Ψ(t) must be defined by the time-dependent density of the

system, up to a time dependent phase factor of the form Ψ̃(t) = e−iα(t)Ψ(t), where

(d/dt)α(t) = C(t). It thus follows that the matrix element

〈Ψ(t)|i∂/∂(t)− Ĥ(t)|Ψ(t)〉 (4.15)

must be a unique functional of the time-dependent density since the function C(t) is

cancelled exactly by the time derivative of the phase factor in the many-electron wave-

function [69]. Defining the quantum mechanical action integral of the many-body system

as

A[Ψ] =

ˆ t1

t0

dt 〈Ψ(t)|i∂/∂t− Ĥ|Ψ(t)〉 (4.16)

it follows directly that A is a unique functional of the time-dependent density. Partitioning

the Hamiltonian Ĥ into the system-independent, universal part T̂ + V̂ee and the system-

17In principle, requiring the electron density to vanish at infinity means that the proof of the Runge–
Gross theorem presented here is not valid for infinite systems. This limitation is avoided in TDCDFT,
as the mapping between the current density and external potential can be proven without relying on any
quantity vanishing at infinity (see equation (4.9)).
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dependent part consisting of the time-dependent external potential, one can write

A[ρ] = B[ρ]−
ˆ t1

t0

dt

ˆ
d3r ρ(r, t)Vext(r, t) (4.17)

with

B[ρ] =

ˆ t1

t0

dt 〈Ψ[ρ](t)|i∂/∂t− T̂ − V̂ee|Ψ[ρ](t)〉. (4.18)

Since the operators T̂ and V̂ee are the same for any N -particle system, B[ρ] must be

a universal functional for any N -particle system, thus proving the second part of the

Runge–Gross theorem.

Therefore, the following statement can be made due to the two parts of the Runge–

Gross theorem: since ρ(r, t) determines the many-electron wavefunction Ψ(t) for a system

specified by Vext(r, t) evolving from Ψ0 up to a complex phase, it follows that the expecta-

tion value of any observable associated with a time-dependent operator must be a unique

functional of ρ(r, t) and Ψ0.

4.1.2 The time-dependent Kohn–Sham equations

The Runge–Gross theorem establishes the mapping between the time-dependent external

potential and the time-dependent density of the many-particle system, thus requiring the

many-electron wavefunction to be a functional of the density. However, this statement

in itself is not particularly helpful. Just like in ground state DFT, the main power of

the TDDFT approach is that it allows for a mapping of the many-electron system to

a non-interacting system moving in an effective potential that produces the same time-

dependent density. This mapping is derived in the original Runge–Gross paper [69] in the

following way:

First, one considers the universal functional S[ρ] such that

S[ρ] =

ˆ t1

t0

dt 〈Ψ[ρ](t)|i∂/∂t− T̂ |Ψ[ρ](t)〉 (4.19)

is the kinetic energy part of the universal functional of the many-electron system. Now

consider different functionals S[ρ] for the case of different types of electron-electron inter-

actions Vee. In particular, let S0[ρ] denote the functional for a system of non-interacting

electrons with the same time-dependent density of the interacting system. It is then
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possible to write the universal functional A[ρ] as

A[ρ] = S0[ρ]−
ˆ t1

t0

dt

ˆ
d3r ρ(r, t)Vext(r, t)

−1

2

ˆ t1

t0

dt

ˆ
d3r d3r′

ρ(r, t)ρ(r′, t)

|r− r′|
− Axc[ρ] (4.20)

where Axc[ρ], analogously to the ground state DFT functional Exc[ρ], contains all many-

body contributions beyond the mean-field treatment of the Coulomb interaction. In par-

ticular, it can be written as

Axc[ρ] = S0[ρ]− S[ρ] +

ˆ t1

t0

dt 〈Ψ[ρ](t)|V̂ee|Ψ[ρ](t)〉 (4.21)

−1

2

ˆ t1

t0

dt

ˆ
d3r d3r′

ρ(r, t)ρ(r′, t)

|r− r′|
. (4.22)

As in ground-state DFT, the above is just a rewriting of the original action functional and

the functional Axc[ρ] is generally unknown. However, if it can be approximated in some

way, the stationary point of the action functional in (4.20) can then be used to specify

the fictitious non-interacting system. Taking the functional derivative of A[ρ] one obtains

δA[ρ]

δρ(r, t)
= 0 =

δS0

δρ(r, t)
− VKS(r, t) (4.23)

where

VKS(r, t) = Vext(r, t) +

ˆ
d3r′

ρ(r′, t)

|r− r′|
+
δAxc[ρ]

δρ(r, t)
(4.24)

Note that Equation (4.23) is the Euler-Lagrange equation for a system of independent par-

ticles moving in the time-dependent effective potential VKS(r, t). One can thus introduce

N/2 single-particle orbitals {ψKS
j } following the effective single particle time-dependent

Schrödinger equation (
i
∂

∂t
+

1

2
∇2

)
ψKS
j (r, t) = VKS(r, t)ψKS

j (r, t). (4.25)

The time-dependent density of the interacting system can then be written in terms of the

non-interacting Kohn–Sham states, such that

ρ(r, t) = 2

N/2∑
j

ψKS∗
j (r, t)ψKS

j (r, t). (4.26)

Note that just like in ground-state DFT, the Kohn–Sham potential is an explicit functional
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of the density.

As mentioned before, δAxc[ρ]/δρ(r, t) = Vxc(r, t) needs to be approximated in any

practical calculation, just like in ground state DFT an approximation of the functional

derivative δExc/δρ(r) is needed. Note however, that finding suitable approximations to

Vxc(r, t) at a given point t1 > t0 is more challenging than in the ground state DFT case.

The reason for this can be found in the functional form of Axc[ρ], which suggests that

Vxc(r, t1) is a functional of both the density ρ(r, t) at all past times t0 < t ≤ t1, and the

initial many-body wavefunction Ψ0 from which the system evolves.

The initial state and memory problem are discussed in more detail in a later section,

but it is obvious that finding approximate functionals for TDDFT is more problematic

than in the ground-state DFT case. Most approximations to the exchange-correlation

functional in TDDFT thus rely on avoiding the memory dependence entirely and are

referred to as adiabatic approximations. The simplest flavour, the ALDA or adiabatic

LDA functional, simply states that

V ALDA
xc (r, t) =

δELDA
xc

δρ(r)

∣∣∣∣
ρ=ρ(r,t)

(4.27)

and thus the exchange-correlation potential at time t1 is the same as the DFT exchange-

correlation potential for a density ρ = ρ(r, t1). Since V ALDA
xc (r, t) only depends on the

instantaneous time-dependent density at t1, all memory effects, as well as any dependence

on the initial state Ψ0 are ignored in the ALDA functional.

4.1.3 Some comments on the Runge–Gross theorem

The original proof of the Runge–Gross theorem contains a number of technical problems.

Some of them were explicitly mentioned in the original paper [69], while others were only

discovered at a later point. This section contains a brief overview of some of these points

and discusses attempts that have been made to improve the theoretical foundations of

TDDFT.

One issue with the Runge–Gross approach to deriving the time-dependent Kohn–Sham

equations can be seen in the functional derivative of the action functional A[ρ]. To see

why this derivative is somewhat problematic from a theoretical point of view, it needs

to be appreciated that functionals like A[ρ] and B[ρ] are not functionals of any arbitrary

densities, but only densities that correspond to the time-dependent electron density of

some system evolving from Ψ0 in some external potential Vext(r, t). That is, functionals

A[ρ] and B[ρ] are only functionals of v-representable densities and thus the functional

derivative in equation (4.23) can not be carried out over arbitrary changes in the density.

The problem of v-representability is avoided in ground-state DFT by introducing the
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Levy constrained search approach (see section 3.1.2). However, that approach relies on

the variational principle and is thus only applicable in the ground state case. There has

been some effort into extending the Runge–Gross theorem in order to allow for functionals

that are valid forN -representable densities [70,72], but these approaches are more involved

than the Levy constrained search approach in ground state DFT and will not be discussed

here.

A second issue can be seen in the fact that all functionals in the Runge–Gross theorem

have an implicit dependence on the many-electron wavefunction Ψ0 from which the system

initially evolves. Thus the Runge–Gross theorem does not formally replace all references

to many-electron wavefunctions by references to the much simpler many-electron density.

From a conceptual point of view, a removal of the functional dependence on the initial

state Ψ0 can be achieved by forcing the initial wavefunction to be the ground state of a

system with external potential Vext(r) = Vext(r, t0). In this case, the Hohenberg–Kohn

theorem described in section 3.1.1 guarantees that Ψ0 = Ψ0[ρ0], and thus can be written as

a functional of the ground state density of the system specified by the external potential

at t0. Since the main interest of this work is the calculation of excitations caused by

perturbations to a system in its ground state, the dependence of A[ρ] on the initial many-

body wavefunction can be removed for this class of problems.

Another point that can be raised concerning the Runge–Gross theorem is its depen-

dence on the existence of a Taylor expansion of Vext(r, t) at time t = t0. In other words,

switching on the external time-dependent potential instantaneously at t0 or considering

it to be a short a pulse in the form of a delta function at t0 is not strictly valid in the

framework of the Runge–Gross theorem.

A number of issues with the original Runge–Gross theorem have to do with the func-

tional form of the action used to derive the time-dependent Kohn–Sham equations. In the

original paper by Runge and Gross, the time-dependent Schrödinger equation can only

be derived from the action functional when treating the boundary conditions in such a

way that δΨ(t0) = δΨ(t1) = 0, in other words the initial and final many-electron states

of the propagation have to be treated as fixed. However, since the Schrödinger equation

is a first order differential equation in time, any variation δΨ(t) at t > t0 is completely

and uniquely determined by fixed initial condition δΨ(t0) = 0, meaning that the required

boundary condition at t = t1 is not free to be specified [73]. Furthermore, it is found that

the original formulation of the action functional does violate causality when considering

response functions like δVxc(r, t)/δρ(r′, t′), which are required to vanish for t < t′ but are

instead found to be symmetric in time in the original formulation. These problems are

addressed by van Leeuwen [73] in an influential paper that puts TDDFT on more rigorous

foundations using techniques derived from the treatment of non-equilibrium many-body
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Green’s functions.

In summary, the theoretical framework of TDDFT is considerably more subtle than

the foundations of DFT and is an area of ongoing research.

4.2 From theory to practical method

While the theoretical foundations of TDDFT are presented in the the previous section,

the focus is now shifted to introducing the basics of TDDFT as a practical method for

calculating the low energy optical response of a given system. Two main flavours of

TDDFT, the real-time propagation of the Kohn–Sham equations and the linear-response

frequency domain treatment, will be discussed in the light of the objective of calculating

low energy excitations in very large systems. The role of non-locality and memory effects

in the response of the TDDFT exchange-correlation potential to perturbations in the

density is then discussed in some greater detail.

4.2.1 The real-time TDDFT approach

The first approach to calculating absorption spectra is to extract the required information

directly from the explicit time evolution of the Kohn–Sham system. The task is to evaluate

the photoabsorption cross-section σ(ω) given by [74]

σ(ω) =
4πω

3

∑
γ

Im [δγ,ναγν(ω)] , (4.28)

where αγν(ω) is the dynamic polarisability tensor and the labels γ, ν = x, y, z denotes the

direction of polarisation. In the dipole approximation and in the limit of weak perturba-

tion, αγν(ω) is related to the linear density response function χ(r, r′, ω) via

αγν(ω) = −
ˆ

d3r d3r′ rγχ(r, r′, ω)r′ν (4.29)

The linear density response function is then defined by the change of the density due

to the perturbation of an infinitesimal external potential δVpert(r, t). Thus, the induced

perturbation of the density of the system can be written as

ρ{1}(r, ω) =

ˆ
d3r′ χ(r, r′, ω)δVpert(r

′, ω) (4.30)

Consider a Kohn–Sham system with external potential Vext(r) in its ground state at

t = t0, with an associated ground state electron density of ρ0(r). At t = t+0 , the system is

perturbed by the external potential δVpert(r, t) = −Eextrµδ(t − t0), where Eext is chosen
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small enough to ensure that the system response is in the linear regime [75]. It then

follows directly from equation (4.29) that the dynamical polarisability can be expressed

through the first order change in density ρ{1}(r, ω) via

αγν(ω) =
1

Eext

ˆ
d3r rγρ

{1}(r, ω). (4.31)

Note however, that the time-dependent density ρ(r, t) of the system is directly ac-

cessible from solving the time dependent Kohn–Sham equations. Therefore, the change

in density ρ{1}(r, ω) can be trivially obtained from a Fourier transform of ρ{1}(r, t) =

ρ(r, t)− ρ0(r) and thus the absorption spectrum of the system can be directly computed

from the time-dependent density.

The remaining issue is then how to efficiently solve the time-dependent Kohn–Sham

equations to obtain the Kohn–Sham orbitals and the density evolving from the initial

ground state of the system. This generally requires approximation of the time evolution

operator Û(t + δt, t), that propagates the Kohn–Sham orbitals at time t to some later

time t + δt, where δt is a chosen time step. A number of different approximations have

been proposed, and a survey of some common methods can be found in [76]. Here it

should just be mentioned that the time step size has to be picked in such a way that the

propagation remains stable, as approximate propagators are not strictly unitary and do

not exactly conserve the norm of the Kohn–Sham states.

Since any motion of the ions and thus any coupling of excitations to phonons is ig-

nored, the spectrum that a real time TDDFT calculation yields does in fact correspond to

a number of delta functions at frequencies equal to the excitation energies of the system.

However, this limit is only achieved in an infinite resolution, which can only be obtained

with an infinite time propagation of the orbitals and an exact propagator. Thus, a small

imaginary frequency is introduced into the Fourier transform of the time-dependent den-

sity response of the system, which results in a smearing out of excitation peaks and a

smoothing of the spectrum. This broadening term, while being purely introduced for

computational convenience, can be seen as approximating the effect of electron-phonon

coupling on the system and makes spectra more comparable to experimental results.

4.2.2 The linear response formalism

In the previous section it is shown how the time-dependent density response of the system

can yield the entire absorption spectrum. However, in many situations, one is mainly

interested in the excitation energies of a few low-energy excitations, rather than an entire

spectrum. In these situations, propagating the entire Kohn–Sham system in time can

become cumbersome and ideally a method should be chosen that avoids the explicit time
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propagation. This method is the frequency-domain linear-response TDDFT formalism.

It is worth pointing out that the term “linear-response formalism” is to a certain extent

misleading, since one way to obtain the absorption spectrum from the time-dependent

density outlined in the previous section also assumes a linear response of the system to

an external perturbation. However, since the time propagation of the real-time TDDFT

scheme can be carried out without assuming a linear response and can thus be used to

treat the non-linear regime as well, the method that is generally referred to as linear-

response TDDFT is taken to be a purely frequency-domain linear response scheme that

does not require any explicit propagation of Kohn–Sham states.

In order to avoid the explicit propagation of the Kohn–Sham orbitals, the linear density

response χ(r, r′, ω) of the system is studied in some more detail. Here, one again considers

a Kohn–Sham system with external potential Vext(r) in its ground state at t = t0, with

associated ground state density ρ0(r). The physical quantity of interest is the response

of the system to an infinitesimal external time-dependent perturbation δVpert(r, t), such

that the total external potential of the system is given by Vext(r, t) = Vext(r)+ δVpert(r, t).

In real space and time, the response function can be expressed as [77,78]

χ(r, t, r′, t′) =
δρ(r, t)

δVext(r′, t′)

∣∣∣∣
Vext[ρ0]

(4.32)

where the functional derivative is evaluated at Vext[ρ0](r, t) = Vext(r). Thus χ(r, t, r′, t′)

measures the first order change of the time-dependent density of the interacting system due

to a small perturbation to the external potential of the system. However, one can similarly

consider the density response function χ0(r, t, r′, t′) of the fictitious non-interacting Kohn–

Sham system moving in an external time-dependent potential VKS(r, t) (see Eqn. (4.24)),

which is given by

χ0(r, t, r′, t′) =
δρ(r, t)

δVKS(r′, t′)

∣∣∣∣
VKS[ρ0]

. (4.33)

Here, the functional derivative is evaluated at VKS[ρ0], corresponding to the static ground

state Kohn–Sham potential. Since the time-dependent density generated by the fictitious

Kohn–Sham system and the full interacting system must be identical due to the Runge–

Gross theorem, it is then possible to link the the two response functions via the chain rule

of differentiation [78]:

χ(r, t, r′, t′) =

ˆ
d3r′′

ˆ
dt′′

δρ(r, t)

δVKS(r′′, t′′)

δVKS(r′′, t′′)

δVext(r′, t′)

∣∣∣∣
Vext[ρ0]

. (4.34)

The functional derivative of the Kohn–Sham potential with respect to the external po-
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tential can be straightforwardly evaluated, yielding

δVKS(r′′, t′′)

δVext(r′, t′)

∣∣∣∣
Vext[ρ0]

= δ(r− r′)δ(t− t′)

+

ˆ
d3r′′

ˆ
d t′′

[
δ(t− t′′)
|r− r′′|

+
δAxc

δρ(r, t)δρ(r′′, t′′)

∣∣∣∣
VKS[ρ0]

]
χ(r′′, t′′, r′, t′) (4.35)

It is now convenient to introduce a short hand notation for the second derivative of

the exchange-correlation density functional, evaluated at the ground-state Kohn–Sham

potential, such that

fxc(r, t, r
′, t′) =

δ2Axc

δρ(r, t)δρ(r′, t′)

∣∣∣∣
VKS[ρ0]

. (4.36)

The function fxc(r, t, r
′, t′) is of major importance in the linear-response TDDFT scheme

and is commonly referred to as the exchange-correlation kernel. It should be noted that,

in line with comments made in section 4.1.3, the definition of fxc(r, t, r
′, t′) as a second

functional derivative of Axc is not formally correct, since it assumes a symmetry under

the exchange of t and t′ and thus a violation of causality. However, since in practice

the exchange-correlation kernel has to be approximated in any case it is simply pointed

out that the exact conditions that fxc(r, t, r
′, t′) needs to fulfil cannot be derived from

equation (4.36).

Using Equation (4.34) and (4.35), it is then possible to define a Dyson equation in

frequency domain for the fully interacting response function χ(r, r′, ω):

χ(r, r′, ω) = χ0(r, r′, ω)

+

ˆ
d3r1 d3r2 χ0(r, r1, ω)

[
1

|r1 − r2|
+ fxc(r1, r2, ω)

]
χ(r2, r

′, ω) (4.37)

The above equation can be solved self-consistently for the full density response χ(r, r′, ω),

starting from the density response of the fictitious Kohn–Sham system. Furthermore,

equation (4.37) can then be used to find an expression for the perturbation of the density

ρ{1}(r, ω) in terms of the non-interacting Kohn–Sham system only, where one can write [78]

ρ{1}(r, ω) =

ˆ
d3r′ χ0(r, r′, ω)

×
[
δVpert(r

′, ω) +

ˆ
d3r1

(
1

|r′ − r1|
+ fxc(r

′, r1, ω)

)
ρ{1}(r1, ω)

]
. (4.38)

Equation (4.38) defines a self-consistency relation for the frequency-dependent density

response of the system purely in terms of quantities related to the fictitious non-interacting

Kohn–Sham system. From Equation (4.31) it is known that ρ{1}(r, ω) contains all infor-
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mation required to construct the absorption spectrum of a system. Note that if fxc is

fully known, equation (4.38) is guaranteed to deliver the exact linear density response of

the interacting many-electron system thanks to the Runge–Gross theorem.

Since χ0(r, r′, ω) is fully characterised by the ground state of the unperturbed Kohn–

Sham system at t = t0, and the exchange-correlation kernel fxc(r, r
′, ω) is evaluated at

the ground state density ρ0, the absorption spectrum can be calculated from the ground

state of the unperturbed Kohn–Sham system only by solving equation (4.38). Thus, no

explicit time propagation of Kohn–Sham orbitals is necessary in order to calculate the

linear density response of the system.

To calculate the density response of the system, one has to introduce an explicit

representation of χ0(r, r′, ω). Let {ψKS
i (r)} denote the set of all ground state Kohn–Sham

orbitals with eigenenergies {εKS
i }, corresponding to the system with external potential

Vext(r) and ground state density ρ0. Furthermore, let nk denote a general occupation

number such that nk = 0 for k > Nocc/2 and nk = 1 otherwise. Then, the Kohn–Sham

response function can simply be written as

χ0(r, r′, ω) = 2
∞∑

j,k=1

(nk − nj)
ψKS∗
k (r)ψKS

j (r)ψKS∗
j (r′)ψKS

k (r′)

ω − (εKS
k − εKS

j ) + iδ
(4.39)

where the infinitesimal imaginary part iδ is added in order to ensure the convergence

of the Fourier transform of χ0(r, r′, ω) into the time domain. From equation (4.39), it

can be seen that χ0 only contains terms that correspond to particle-hole (for nj = 1

and nk = 0) or hole-particle (for nk = 1 and nj = 0) Kohn–Sham transitions and that

it diverges for ω equal to a Kohn–Sham particle-hole or hole particle transition energy

εKS
ij = εKS

i −εKS
j . Thus, if one uses equation (4.38) to directly calculate the density response

and the spectrum, it becomes necessary for numerical reasons to add a small imaginary

damping term to the frequency in order to avoid the poles along the real axis. Just like

in the time-domain TDDFT approach this has the effect of removing any singularities

and smoothing out the spectrum, and can be interpreted physically as an approximate

treatment of electron-phonon coupling (ie. temperature) effects on the spectrum.

4.2.3 The exchange-correlation kernel

Before moving on in the derivation of an equation that yields the individual excitation

energies directly, without the need to construct the density response of the system for the

entire frequency range, it is convenient to discuss the nature of the exchange-correlation

kernel in some detail. As in the case of time-domain TDDFT, where the first functional

derivative of the exchange-correlation density functional Axc has to be approximated, fxc

is generally unknown and suitable approximations have to be found in order to perform
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practical calculations.

Note however, that while Vxc(r, t) = δAxc[ρ]/δρ(r, t) is an explicit functional of the

time-dependent density and is dependent on the value of ρ(r, t1) at all previous values

t1 < t, the functional derivative in fxc is evaluated at the ground-state density of the

system only, and is thus uniquely specified through ρ0.

The true TDDFT kernel fxc is required to be fully non-local and frequency dependent,

accounting for all dynamical exchange and correlation effects in the response of the sys-

tem to an external perturbation that go beyond the simple mean-field treatment of the

electrons. It is thus inherently difficult to approximate. As a first step, one often makes

the approximation of ignoring the frequency dependence of fxc(r, r
′, ω), thus removing any

dynamical exchange-correlation effects from the calculation. Approximating the exchange

correlation kernel as static is, in accordance with the real time TDDFT approach, known

as the adiabatic approximation. The simplest available approximation to the TDDFT

kernel is then the adiabatic LDA approximation, where

fALDA
xc (r, r′) = δ(r− r′)

∂V LDA
xc [ρ]

∂ρ(r)

∣∣∣∣
ρ=ρ0

(4.40)

and thus fALDA
xc is simply obtained from the derivative of the ground state Kohn–Sham

exchange-correlation potential evaluated at the ground state density. Similarly, adiabatic

GGA functionals can be obtained by taking the ground state Kohn–Sham exchange corre-

lation potential in the GGA approximation. Note that for any semi-local DFT exchange

correlation functional, the required non-locality of fxc derived from it is automatically

lost. Thus in the ALDA and similar approximations, fxc is taken to be fully local and

static. In section 4.2.6, the discussion will focus in some more detail on the consequences

these common approximations have on the excitation energies and spectra derived from

TDDFT.

4.2.4 The effective 2-particle eigenvalue equation

Equation (4.38) establishes the self-consistent linear density response of the system as

a reaction to an external perturbation δVpert(r, ω) in terms of the non-interacting linear

response function χ0. The linear density response ρ{1}(r, ω) is linked to the linear response

function χ(ω) of the fully interacting system via equation (4.30). Note however, that from

the considerations in section 4.2.1 it follows that χ(ω) has poles at the true excitation

energies of the system. Thus finding the position of the poles directly yields the excitation

energies of the system.

As a first step, one substitutes the expression for χ0(ω) in terms of unperturbed ground

state Kohn–Sham orbitals into equation (4.38). It is then possible to write the equation
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in matrix form, by expressing all spatial dependencies in the basis of ground state Kohn–

Sham orbitals. After a few rearrangements, one obtains18 [79]:

nk−nl 6=0∑
kl

[
δi,kδj,l

ω − (εKS
k − εKS

l )

nl − nk
−Kij,kl(ω)

]
ρ
{1}
kl (ω) = δV pert

ij (ω) (4.41)

where

ρ
{1}
ij (ω) =

ˆ
d3r ψKS∗

i (r)ρ{1}(r, ω)ψKS
j (r) (4.42)

δV pert
ij (ω) =

ˆ
d3r ψKS∗

i (r)δVpert(r, ω)ψKS
j (r) (4.43)

Kij,kl =

ˆ
d3r d3r′ ψKS∗

i (r)ψKS
j (r)

[
1

|r− r′|
+ fxc(r, r

′, ω)

]
ψKS
k (r′)ψKS∗

l (r′)(4.44)

One can then consider the structure of the above matrix equation with indices i, j, k and

l, in order to separate particle-hole and hole-particle like transitions. Let c denote the

label of an unoccupied Kohn–Sham state and v the label of an occupied Kohn–Sham

state, such that ρ
{1}
cv then corresponds to a particle-hole matrix element and ρ

{1}
vc to a

hole-particle one. Considering hole-particle and particle-hole transitions individually and

using the fact that the coupling matrix Kij,kl is invariant under the swapping of the i with

the j, as well as the k with the l indices, equation (4.41) can be rewritten in terms of a

block matrix equation [79,80]:{(
A(ω) B(ω)

−B(ω) −A(ω)

)
− ω

(
1 0

0 1

)}(
~ρ{1}(ω)

~ρ{1}(ω)

)
=

(
−δVpert(ω)

δVpert(ω)

)
(4.45)

where19

Acv,c′v′(ω) = δcc′δvv′(ε
KS
c′ − εKS

v′ ) + 2Kcv,c′v′(ω) (4.46)

Bcv,c′v′(ω) = 2Kcv,v′c′(ω). (4.47)

Thus, the matrix equation (4.45) consists of diagonal blocks corresponding to particle-

hole and hole-particle transitions, while the off-diagonal blocks B(ω) couple particle-

hole and hole-particle transtions. Physically, particle-hole and hole-particle transitions

can be interpreted as excitations and de-excitations and the coupling between them is a

consequence of time-reversal symmetry in the system. Now note that for frequencies ω

18The quantity in brackets linking ρ
{1}
ij (ω) and δV

pert
ij (ω) actually corresponds to the inverse of χ(ω)

in matrix form.
19Here, the factor of 2 originates from an implied summation over spin indices. The spin structure of

the equation is discussed in some more detail in section 4.2.5.
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equal to an excitation energy of the system, it is required that the dynamic polarisability

of the system has a pole, which can only occur if the block matrix on the left hand side

of equation (4.45) is non-invertible [77]. From this it follows that excitation energies can

be directly obtained by solving the effective eigenvalue problem [79,80]

H[2p](ω)

(
x

y

)
= ω

(
x

y

)
(4.48)

where

H[2p](ω) =

(
A(ω) B(ω)

−B(ω) −A(ω)

)
(4.49)

Note that solutions to equation (4.48) are generally not trivially obtained, since H[2p]

explicitly depends on ω. However, if the ω-dependence of the exchange-correlation ker-

nel is ignored, solving (4.48) simply corresponds to solving a non-Hermitian eigenvalue

problem. Solutions then correspond to all particle-hole and hole-particle excitations in

the system. It was however noted by Casida [79], that the above eigenvalue problem can

be transformed into a simpler one of the form

Ω(ω)F = ω2F (4.50)

in terms of the pseudoeigenvectors F. Ω(ω) is now only defined in particle-hole space and

is given by

Ω(ω) = δcc′δvv′(ε
KS
c′ − εKS

v′ )2 + 2
√

(εKS
c − εKS

v )Kcv,c′v′(ω)
√

(εKS
c′ − εKS

v′ ) (4.51)

The reformulation of the two-particle Hamiltonian eigenvalue equation in terms of Ω(ω)

is known as Casida’s equation and allows for the direct solution for the square of the

excitation energies. However, the reformulation requires the evaluation of a matrix S

that contains the square root of Kohn–Sham eigenvalue differences in its diagonal entries.

While in Kohn–Sham particle-hole representation this matrix is trivially calculated, it

cannot be easily obtained if another representation of the TDDFT 2-particle Hamiltonain

eigenvalue matrix is chosen and is thus strictly limited to the representation considered

here.

Assuming that there is no frequency dependence in Ω(ω), the mean polarisability α(ω)

can then be written in terms of excitation energies ωi and the oscillator strengths fi of

excitations expressible through the normalised pseudoeigenvectors F such that

α(ω) =
∑
i

fi
ω2
i − ω2

(4.52)
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and

fi =
2

3

∑
γ=x,y,z

∣∣∣∣∣∑
c′,v

〈ψKS
v |rγ|ψKS

c′ 〉
√

(εKS
c′ − εKS

v )Fc′v

∣∣∣∣∣
2

(4.53)

There is an important sum rule (Thomas–Reiche–Kuhne) [81] connected with the

oscillator strengths {fi}, in that their sum must equal the number of electrons in the

system. In the derivation so far, it has been assumed that the matrix equations derived

from (4.41) are expanded in an infinite set of Kohn–Sham eigenstates of the unperturbed

system. In practice, these Kohn–Sham states are represented in an underlying basis and

thus only a finite number of states is used. The sum rule can then be used as a measure

the quality of the basis set representation of the TDDFT eigenvalue equation20.

4.2.5 The Tamm–Dancoff approximation

The structure of H[2p] explicitly considers particle-hole and hole-particle excitations, as

well as the coupling between them. Since this causes the full effective 2-particle Hamilto-

nian H[2p] to be non-Hermitian (see equation (4.48)), and since non-Hermitian eigenvalue

problems are cumbersome to solve using computational methods, it is desirable to find an

approximation that casts equation (4.48) into fully Hermitian form. This can be easily

achieved by the Tamm–Dancoff approximation (TDA) [82], in which the block matri-

ces B(ω) are ignored. Thus, any coupling between the particle-hole and hole-particle

excitations is neglected and it is sufficient to solve for the particle-hole space only, with

H
[2p]
TDA(ω)x ≡ A(ω)x = ωx. (4.54)

Since the block matrix A(ω) is trivially shown to be Hermitian, the above approxima-

tion can be solved with standard eigenvalue solvers for Hermitian eigenproblems. The

Tamm–Dancoff approximation has been known to deliver excitation energies that are of

comparable quality to the solution of the full TDDFT eigenvalue equation [83]. However,

oscillator strengths derived from it are known to violate the Thomas–Reiche–Kuhne sum

rule.

Up to this point any spin dependence of the effective TDDFT 2-particle Hamiltonian

has been ingnored. Denoting the two different spin channels as ↑ and ↓ one can then divide

the effective Hilbert space of the 2-particle Hamiltonian into four parts corresponding to

all possible combinations of the spin channels of the particle and the hole: c ↑ v ↑, c ↑ v ↓,
c ↓ v ↑ and c ↓ v ↓. The full Hamiltonian then decouples into two solution classes, a class

of triplet solutions given by subspaces c ↑ v ↓, c ↓ v ↑ and 1/
√

2(c ↑ v ↑ +c ↓ v ↓) and a

20Note that such a measure of basis set quality requires the calculation of all possible excitations and
thus a full diagonalisation of the entire 2-particle Hamiltonian and is thus not practical for larger systems.
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singlet class of solutions with effective subspace 1/
√

2(c ↑ v ↑ −c ↓ v ↓) [84].

Provided the discussion is limited to closed-shell systems with spin-degenerate ground

states only, the unperturbed ground state Kohn–Sham states {ψKS
i } and their associated

eigenstates {εKS
i } are spin-degenerate and thus the spin-dependence only enters in the

coupling term K(ω). Taking fxc(r, r
′, ω) to be in the adiabatic approximation, such that

it can be written as

fxc(r, r
′) =

δ2Exc[ρ]

δρ(r)δρ(r′)

∣∣∣∣
ρ=ρ0

(4.55)

where Exc is the exchange-correlation energy, it becomes obvious that the spin structure

of K originates from the second order functional derivative with respect to the density.

One can then differentiate between two different spin configurations for fxc, with

fxc
↑↑ (r, r

′) = fxc
↓↓ (r, r

′) =
δ2Exc[ρ]

δρ↑(r)δρ↑(r′)

∣∣∣∣
ρ=ρ0

(4.56)

fxc
↑↓ (r, r

′) = fxc
↓↑ (r, r

′) =
δ2Exc[ρ]

δρ↑(r)δρ↓(r′)

∣∣∣∣
ρ=ρ0

. (4.57)

The singlet and triplet configurations can then be solved for by treating two different

eigenvalue equations with different coupling matrices where the coupling matrices K{triplet}

and K{singlet} for the triplet case and the singlet case can then be written as

K
{singlet}
cv,c′v′ =

ˆ
d3r d3r′ ψKS∗

c (r)ψKS
v (r)

×
[

1

|r− r′|
+ 0.5

(
fxc
↑↑ (r, r

′) + fxc
↑↓ (r, r

′)
)]
ψKS
c′ (r′)ψKS∗

v′ (r′) (4.58)

K
{triplet}
cv,c′v′ =

1

2

ˆ
d3r d3r′ ψKS∗

c (r)ψKS
v (r)

(
fxc
↑↑ (r, r

′)− fxc
↑↓ (r, r

′)
)

×ψKS
c′ (r′)ψKS∗

v′ (r′) (4.59)

Solving for the eigenstates of the two different 2-particle Hamiltonians H
[2p]
{singlet} and

H
[2p]
{triplet} with coupling matrices K{singlet} and K{triplet} then yields the the triply de-

generate triplet states and the set of singlet states of the system. It should be noted that

the above analysis only considers spin-degenerate ground states and systems where any

spin-orbit coupling of the electrons is negligible. If these two assumptions do not hold,

a full treatment of the entire spin structure of the Hamiltonian H[2p] becomes necessary

and singlet and triplet subspaces are not easily decoupled [84].

4.2.6 Sources of errors in TDDFT calculations

In this section a practical formalism of calculating excitation spectra using TDDFT

has been introduced, either by generating the entire spectrum from the explicit time-
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dependent response density obtained from real-time TDDFT (RT-TDDFT), or by directly

obtaining excitation energies as the solutions to an eigenvalue equation of an effective 2-

particle Hamiltonian in linear-response TDDFT (LR-TDDFT). It is to be pointed out

that both the RT-TDDFT approach and the LR-TDDFT method presented here are in

principle exact (in the linear-response regime), that is if the exact ground state density

and ground state Kohn–Sham potential, as well as the exact exchange-correlation poten-

tial as a functional of the time-dependent density are known, both methods necessarily

produce the exact excitation spectrum of the many-electron system.

However, since both in the ground state DFT and the TDDFT scheme, the exchange-

correlation functional has to be approximated, it is important to analyse the influence

of these approximations on the quality of the excitation energies obtained from TDDFT.

While the approximations have the same effect no matter whether the RT-TDDFT or

the LR-TDDFT approach is used, the focus will be on the linear-response approach here,

as the effective 2-particle Hamiltonian allows for a more intuitive analysis of some of the

failings of commonly used approximate functionals.

The first obvious approximation introduced is that the ground state density ρ0 of

the Kohn–Sham system that is perturbed to derive the 2-particle Hamiltonian eigenvalue

equation does not correspond to the true ground state density of the many-electron system,

since the DFT exchange-correlation potential is only known approximately. As mentioned

mentioned in section 3.1.4, most approximations to the exchange-correlation functional

yield a seriously underestimated ionisation potential. While this leads to some interesting

failures in the prediction of ground state properties, the situation is to some degree worse

in TDDFT, as the number of unoccupied Kohn–Sham states with well-bound charac-

ter is greatly reduced. Since an excitation in the LR-TDDFT formalism is represented

through a linear combination of Kohn–Sham transitions from occupied to unoccupied

states, this causes higher energy excitations that should have a well-bound character to

contain significant contributions from unbound continuum Kohn–Sham states [85]. From

a theoretical point of view, this means that the excitations have the wrong character, while

from a practical point of view, very delocalised continuum Kohn–Sham states might not

be well-represented depending on the basis set representation chosen in the ground state

DFT calculation. These points are to be kept in mind when interpreting excitations with

energies higher than the Kohn–Sham ionisation energy.

While the previous point is purely an effect of the failure of common ground state

DFT approximations, there is a second class of errors in TDDFT excitation energies that

originate from the approximation of fxc. The first issue to be addressed is the locality

approximation employed when using a (semi)-local exchange correlation functional in

TDDFT. Following Peach et al. [86], one can define a measure spatial overlap between
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the conduction Kohn–Sham state ψKS
c (r) and a valence Kohn–Sham state ψKS

v (r) in a

system as

Ocv =

ˆ
d3r |ψKS

c (r)||ψKS
v (r)|. (4.60)

Then for a given excitation described by the elements xcv of the transition eigenvector x,

one can define a measure Λ for the spatial overlap of the electron and the hole state, with

Λ =

∑
cv |xcv|2Ocv∑
cv |xcv|2

. (4.61)

Now, consider the case where Λ→ 0, which corresponds to a complete spatial separation

of the electron and the hole density associated with the excitation described by transition

vector x. In this case, the excitation associated with x is a charge-transfer excitation

and it is trivial to show that x†Kx→ 0 for any (semi)-local exchange correlation kernel.

Thus for a charge-transfer excitation, (semi)-local functionals predict an excitation energy

that approaches that of pure Kohn–Sham eigenvalue differences and the TDDFT correc-

tion vanishes, which causes charge-transfer excitations to be seriously underestimated in

energy. The same is true for infinite periodic systems, where the electron and the hole

density completely delocalise, which has led to the statement that common (semi)-local

TDDFT functionals fail for solids [77]. This problem can be addressed by making use of a

hybrid functional, adding a fraction of exact Hartree–Fock exchange to the Tamm–Dancoff

coupling matrix, such that

KHF
cv,c′v′ = −cx

ˆ
d3r d3r′

ψKS∗
c′ (r)ψKS

c (r)ψKS
v′ (r′)ψKS∗

v (r′)

|r− r′|
(4.62)

where cx is the fraction of exact exchange used. Note that KHF
cv,c′v′ does add an explicit

non-local coupling between the effective electron and hole wavefunction of the excitation

and thus does not vanish, even if there is no spatial overlap between the electron and

hole density. Introducing an exact-exchange term of the form of equation (4.62) yields a

significant improvement in the description of some charge transfer excitations and excita-

tions in extended systems. Furthermore, since there is now an explicit coupling between

electron and hole densities in the system, KHF
cv,c′v′ can yield excitons with energies lower

than the Kohn–Sham bandgap of the system [77].

While non-locality is clearly important for the description of long-range excitations,

the effects of the frequency dependence of fxc on the spectrum of excitation energies

are less well understood [85]. However, if the ω-dependence of H[2p](ω) is ignored, the

TDDFT eigenvalue equation has the same dimensions as the number of possible Kohn–

Sham transitions in the system, meaning that it can only yield excitations that can be

described by a single electron-hole pair. If a ω-dependence is included, then the matrix
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equation can have additional solutions with multi-electron-hole character [85]. However,

in routine calculations on realistic systems, the frequency dependence in fxc is generally

ignored.

4.3 TDDFT and many-body perturbation theory

TDDFT has gained widespread popularity over recent years as the method of choice

to calculate excited states of systems that are too large for more advanced quantum

chemistry methods, both because of its conceptual simplicity and low computational cost

and the fact that it often produces excitation energies that are of better quality than

those obtained from the time-dependent Hartree–Fock method for states without charge

transfer character. However, as seen in the previous section, there are problems with the

method which mainly originate from the ambiguity in how to approximate the TDDFT

kernel in different systems. Another popular approach in obtaining excitation spectra of

solids and molecules is derived from many-body perturbation theory (MBPT). It has the

advantage of providing more insight into what approximations are made in the calculation

of excitation energies as compared to the relatively uncontrolled approximations made

when choosing a functional form for fxc.

For the purpose of this work these methods are not discussed in too much details as

there are comprehensive reviews available (see for example Onida et al. [77]). However,

a short discussion of the merits of MBPT from the perspective of the TDDFT approach

is enlightening in terms of understanding the role of the TDDFT kernel as well as in

justifying why TDDFT forms the only viable method currently available for obtaining

excited states of the very large systems of interest in this work. While the basic theory

of MBPT is entirely separate from Kohn–Sham DFT, here it will only be considered as

a perturbative treatment to improve a Kohn–Sham starting point obtained from a DFT

Hamiltonian with some approximation to the exchange-correlation potential.

4.3.1 Green’s function methods

While in the density functional methods discussed previously in this work, the main

quantity of interest is the single-particle electron density or the single-particle density

matrix, in MBPT the quantity of interest is the single-particle Green’s function. Following

Sadovskii [87], the Green’s function method is introduced by considering a single particle,

time-independent Hamiltonian Ĥsp such that

i
∂ψ(r, t)

∂t
− Ĥspψ(r, t) = 0 (4.63)
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Instead of solving the above equation for ψ(r, t), one can solve the quasi-Schrödinger

equation for the single-particle Green’s function G(r, t, r′, t′), that is given by

i
∂G

∂t
− ĤspG = δ(r− r′)δ(t− t′) (4.64)

subject to the initial condition G(r, t+, r′, t) = δ(r − r′). Physically, the single-particle

Green’s function represents the probability amplitude of a particle that is at position r′

at time t′ transitioning to position r at time t. The Green’s function can then be used to

express ψ(r, t+ τ) through ψ(r′, t):

ψ(r, t+ τ) =

ˆ
d3r′G(r, t+ τ, r′, t)ψ(r′, t) (4.65)

A simple substitution shows that the above expression obeys the time-dependent Schrödinger

equation as long as one assumes G = 0 for τ < 0 in order to satisfy causality. Expanding

the Green’s function in terms of the eigenstates φi(r) of the single particle Hamiltonian,

and noticing that since Ĥsp is time-independent, the time-evolution of ψ(r, t) is easily

described (see section 2.3), it follows that:

Gij(τ) =

ˆ
d3r d3r′ φi(r)G(r, t+ τ, r′, t)φj(r

′) = δije
−iεjτθ(τ) (4.66)

where θ(τ) is the Heaviside step function defined as θ = 1 for τ ≥ 0 and θ = 0 otherwise.

Thus, G can be written as a function of the time difference τ only and can therefore,

under a simple Fourier transform, be expressed in energy space:

Gjj(ω) =
1

ω − εj + iδ
. (4.67)

Here, δ is an infinitesimal positive number ensuring that the inverse Fourier transform of

G(ω) into the time domain yields equation (4.66) 21.

Now consider a many-electron system described by a non-interacting Hamiltonian. In

principle, this can be any noninteracting time-independent Hamiltonian, but for the pur-

pose of this work, the Hamiltonian is considered to be describing the fictitious Kohn–Sham

system introduced in 3.1.3, where {ψKS
i } and {εKS

i } define the Kohn–Sham eigenstates

and eigenvalues of the system. Considering that all states below the Fermi-level εf are oc-

cupied and all states above are unoccupied, it is possible to write down Green’s functions

G+
ij(τ) describing the evolution of occupied eigenstates and G−ij(τ) describing the evolu-

21In order to perform the inverse Fourier transform, one has to make use of Cauchy’s theorem and
consider G(ω) as a function of the complex variable ω in the lower half of the complex plane. The
contour chosen for the integration is a semicircle in the lower half plane, where the factor iδ ensures that
the pole is inside the contour region.
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tion of unoccupied eigenstates. It is then convenient to define the total Green’s function

Gij(τ) so that it describes the evolution of electrons for τ > 0 and the evolution of holes

for τ < 0. This can be done by defining

Gij(τ) =

{
G+
ij(τ) τ > 0

−G−ij(−τ) τ < 0
(4.68)

yielding a total expression for G(r, r′, ω) given by

G(r, r′, ω) =
∑
j

ψKS
j (r)ψKS

j (r′)

ω − εKS
j + iδsign(εf − εKS

j )
(4.69)

where the sign function is introduced to ensure that if one considers the analytic con-

tinuation of G(ω) to the entire complex plane, the poles corresponding to unoccupied

Kohn–Sham eigenstates are in the upper half plane while the poles corresponding to

occupied Kohn–Sham states are in the lower half plane.

For the remainder of this work G0(r, r′, ω) shall refer to the Green’s function of a

noninteracting system defined through equation (4.69). Note that G0 contains all infor-

mation of the unoccupied and occupied eigenstates of the fictitious Kohn–Sham system.

Let G(r, r′, ω) then denote the fully interacting Green’s function of the system, where the

interacting potential is defined as the Coulomb potential v between individual electrons,

minus contributions already accounted for in the mean-field treatment of the Kohn–Sham

system.

If the interacting system can be described in terms of weakly interacting, well defined

quasiparticles [88], the fully interacting Green’s function has poles at complex quasiparti-

cle energies {εQP
j }, where Re

[
εQP
j

]
corresponds to the electron addition or removal energy

of a single electron of the N -electron system such that

Re
[
ε

QP{+}
j

]
= Ej(N + 1)− E0(N) (4.70)

Re
[
ε

QP{−}
j

]
= Ej(N − 1)− E0(N) (4.71)

and the imaginary part Im
[
εQP
j

]
signifies that the quasiparticle state has a finite lifetime

due to scattering events with other quasiparticle states. In the limit of strong interactions,

G ceases to have well defined quasiparticle poles and describing the system in any form

of single particle-like picture becomes an ill-defined concept [88].

It is then possible to derive the fully interacting Green’s function from the non-

interacting Green’s function through a Dyson equation. To do so, one imagines that

a quasiparticle propagates freely for some time in the system, until some interaction or
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scattering event happens, after which it propagates freely again. Defining the self-energy

Σ as the sum of all irreducible scattering processes of the single particle, and summing

over all possible numbers irreducible scattering events a particle can undergo, one obtains

the symbolic equation

G = G0 +G0ΣG0 +G0ΣG0ΣG0 + · · · (4.72)

which can be written as [87]

G(1, 2) = G0(1, 2) +

ˆ
dτ3 dτ4G0(1, 3)Σ(3, 4)G(4, 2) (4.73)

where the short hand notation of 1 = r1, t1 has been introduced. Thus, Σ(1, 2) represents

a compact way to express all possible changes of a particle’s motion as a reaction to

interactions with other particles in the system. Solving for G through (4.73) then yields

the entire quasiparticle spectrum of the system, containing the lifetimes and energies

corresponding to all single electron additions and removals to the N -electron interacting

system. Thus G contains information on all single-particle excitations of the system and

can furthermore be used to express the ground state expectation value of any single-

particle operator [87].

4.3.2 The GW -approximation and the Bethe-Salpeter equation

While Σ(1, 2) contains all information needed to solve the many-electron system starting

from an arbitrary mean-field Hamiltonian, it cannot be calculated in practice as this

evaluation would correspond to a full solution of the many-body problem. In general, Σ

is only known in terms of an infinite perturbation expansion and has to be approximated in

actual calculations. A practical approach to such an approximation is given by Hedin [89],

who expanded the self-energy in terms of a dynamically screened Coulomb interaction

W (r, r′, ω) rather than the bare particle-particle interaction v(r, r′). From a physical

point of view, W (1, 2) represents the potential at point 1 due to a test charge at 2, where

all effects due to the polarisation of the many-electron system are included, yielding a

screening of the interaction [89]. Hedin derived a set of five coupled equations that, when

solved self-consistently, yield the full interacting Green’s function of the system. However,

in most practical calculations, only the simplifying approximation to Hedin’s equations is

considered, which is known as the GW approximation to the self-energy Σ.
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The GW -approximation can be written in compact form as

P (1, 2) = −iG(1, 2)G(2, 1) (4.74)

W (1, 2) = v(1, 2) +

ˆ
dτ3 dτ4 v(1, 3)P (3, 4)W (4, 2)

=

ˆ
dτ3 v(1, 3)ε−1(3, 2) (4.75)

Σ(1, 2) = i

ˆ
dτ3G(1, 3)W (3, 2) (4.76)

Gnew(1, 2) = G(1, 2) +

ˆ
dτ3 dτ4G(1, 3)Σ(3, 4)Gnew(4, 2) (4.77)

Here, ε−1(1, 2) is the inverse dielectric function of the system and v(1, 2) = δ(t1 − t2)

|r1 − r2|−1. The four equations above have to be solved self-consistently with G = G0 as

a starting point. However, since the above set of equations is only an approximation to the

full self-consistent Hedin’s equations, it is not guaranteed that full self-consistency delivers

better results than a simple non-selfconsistent perturbative correction that is obtained

when only applying the equations once starting from some G0. For this reason, GW is

most commonly performed in the so-called G0W0 approximation, which corresponds to a

one-shot perturbative correction to a Kohn–Sham DFT starting point [90].

Once the above system of equations has been solved and some approximation of Σ(1, 2)

has been obtained, it is then possible to solve for the quasiparticle eigenstates and eigenen-

ergies through

ĤKSψ
QP
j (r) +

ˆ
d3r′

[
Σ(r, r′, εQP

j )− δ(r− r′)Vxc(r)
]
ψQP
j (r′) = εQP

j ψQP
j (r). (4.78)

Note that the above equation is non-linear due to the energy-dependence of the self-energy.

Assuming that the eigenenergies and eigenstates of the Kohn–Sham system form a good

approximation to the quasiparticle energies and eigenstates, a first order correction to the

Kohn–Sham energies can be found as [77,90]

εQP
j = εKS

j + Zj〈ψKS
j |Σ(εKS

j )− Vxc|ψKS
j 〉 (4.79)

with

Z−1
j = 1−

〈
ψKS
j

∣∣∣∣∣ ∂Σ(ω)

∂ω

∣∣∣∣
εKS
j

∣∣∣∣∣ψKS
j

〉
. (4.80)

Thus the GW -approximation allows for the calculation of electron and hole quasi-

particle energies starting from a Kohn–Sham Hamiltonian. In general, the quasiparticle

eigenstates obtained yield a significant improvement over the Kohn–Sham bandgap for

a wide range of semiconductors [77]. However, for the purpose of this work, quantities
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of interest are not the electron addition and removal energies, but rather in neutral ex-

citations to the system. Thus it is necessary to consider an interaction between electron

and hole Green’s functions. Introducing the non-interacting two particle electron-hole

Green’s function L0(1, 2, 1′, 2′) = G(1, 2′)G(2, 1′) which contains all single particle corre-

lation effects due to the presence of the interacting single particle Green’s function, the

Bethe-Salpeter equation for the fully interacting electron-hole Green’s function can be

written as [84]:

L(1, 2, 1′, 2′) = L0(1, 2, 1′, 2′) +

ˆ
dτ3 dτ4 dτ5 dτ6 L0(1, 4, 1′, 4)K(3, 5, 4, 6)L(6, 2, 5, 2′)

(4.81)

Here, K(3, 5, 4, 6) is the interaction kernel that contains all possible irreducible interac-

tions between the electron and the hole Green’s functions. If one considers only sponta-

neous generation and annihilation of electron-hole pairs, only two of the four free time

variables in the above equation are independent and thus the entire time dependence can

again be expressed through a single variable τ of the time difference between the two

independent time variables [84]. It is then possible to transform the entire equation into

energy space with a single Fourier transform.

If one expands the entire spatial dependence of equation (4.81) in terms of quasiparticle

electron and hole wavefunctions {ψQP
c } and {ψQP

v }, it is possible to obtain a similar

eigenvalue equation of an effective 2-particle Hamiltonian as in the TDDFT case (see

4.2.4), which in the Tamm–Dancoff approximation can be expressed as∑
c′v′

(
H

[2p]
BSE

)
cv,c′v′

Ac′v′ = (εQP
c − εQP

v )Acv + 2
∑
c′v′

KBSE
cv,c′v′(Ω)Ac′v′ = ΩAcv (4.82)

where

KBSE
cv,c′v′(Ω) = i

ˆ
d3r3 d3r4 d3r5 d3r6 ψ

QP
v (r4)ψQP∗

c (r3)K(r3, r5, r4, r6; Ω)

×ψQP∗
v′ (r6)ψQP

c′ (r5) (4.83)

and in the GW -approximation, the kernel K(3, 5, 4, 6) is given by [84]

K(3, 5, 4, 6) = −iδ(3, 4)δ(5−, 6)v(3, 6) + iδ(3, 6)δ(4, 5)W (3+, 4). (4.84)

Here, it is again necessary to introduce positive and negative infinitesimal numbers to the

time variables in order to make the Fourier transforms into and from energy space well

defined.

Thus, in order to solve for the Bethe-Salpeter equation it is first necessary to per-
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form a GW -calculation to some level of approximation, obtain all quasiparticle energies

and quasiparticle wavefunctions from equation (4.78) and then build the Bethe-Salpeter

eigenvalue equation using the screened Coulomb interaction W . One then can solve the

nonlinear eigenvalue equation for the true electron-hole excitation energies of the system.

In most cases, the Bethe-Salpeter equation in the Tamm-Dancoff approximation is

actually solved in an approximate fashion. First, the frequency dependence of W (r, r′, ω)

is often ignored, turning the nonlinear eigenproblem into a conventional Hermitian eigen-

problem that is much simpler to solve. Secondly, one often makes the approximation that

ψQP
j (r) ≈ ψKS

j (r), ie. one assumes that the Kohn–Sham wavefunctions for the electron

and the hole state form a good approximation to the quasiparticle wavefunctions. In that

case, equation (4.82) can be expanded in terms of Kohn–Sham eigenstates and only the

first order correction to the Kohn–Sham eigenvalues from equation (4.79) is used in the

diagonal part of the effective Bethe-Salpeter Hamiltonian.

The Bethe-Salpeter equation has been shown to deliver very good agreements with

experimental data, especially for infinite systems, where TDDFT kernels struggle to cor-

rectly reproduce excitonic effects [77].

4.3.3 The TDDFT exchange-correlation kernel from a MBPT perspective

Superficially, the eigenvalue equation of the effective 2-particle Hamiltonian of the Bethe-

Salpeter equation (equation (4.82)) has a similar form to that of the TDDFT eigenvalue

equation in the linear response formalism derived in section 4.2.4. Interestingly, while

the interaction kernel in TDDFT is dependent on the exchange-correlation kernel, a non-

local, frequency-dependent function that has an unknown functional form of the density,

the interaction kernel in the Bethe-Salpeter equation is dependent on W (r, r′, ω), which

has a very straightforward physical interpretation as a dynamically screened Coulomb

interaction.

The main difference between the two effective 2-particle Hamiltonian equations is

that the TDDFT equation is derived from a two-point quantity, the linear density re-

sponse χ(r, r′, ω), while the Bethe-Salpeter eigenvalue equation is derived from the 4-

point electron-hole correlation function L(r1, r2, r
′
1, r
′
2, ω). This causes the interaction

kernel K(Ω) of the Bethe-Salpeter equation to become a 4-point quantity, as compared

to the corresponding 2-point quantity in TDDFT [77]. To see the difference in detail,

consider only the coupling part of the 2-particle Hamiltonian, which is assumed to be

frequency-independent, and for simplicity it is assumed that the electron and hole quasi-

particle wavefunctions are equal to the Kohn–Sham electron and hole wavefunctions. The

system at hand is also assumed to be isolated so that the Kohn–Sham eigenfunctions

can be chosen to be real. Let x then denote a trial vector corresponding to some linear
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combination of Kohn–Sham electron-hole states. Furthermore, the electron-hole response

density and response density matrix associated with the trial vector x can be defined as

ρ{1}(r) =
∑
cv

ψKS
c (r)xcvψ

KS
v (r) (4.85)

ρ{1}(r, r′) =
∑
cv

ψKS
c (r)xcvψ

KS
v (r′). (4.86)

Then the interaction energy due to the kernel K for a trial vector x for both the Bethe-

Salpeter equation and the TDDFT eigenvalue equation can be written as

x†KTDDFTx = 2

ˆ
d3r d3r′

[
ρ{1}(r)ρ{1}(r′)

|r− r′|
+ ρ{1}(r)

δ2Exc[ρ]

δρ(r)δρ(r′)

∣∣∣∣
ρ0

ρ{1}(r′)

]
(4.87)

x†KBSEx = 2

ˆ
d3r d3r′

[
ρ{1}(r)ρ{1}(r′)

|r− r′|
− ρ{1}(r, r′)W (r, r′)ρ{1}(r′, r)

]
(4.88)

As it can be seen from the two equations above, the first term in the interaction kernel

is identical in both cases and corresponds to the Hartree energy of the electron-hole

density. The second term however has a different structure due to the δ-functions present

in the Bethe-Salpeter kernel. While the exchange-correlation part of the TDDFT kernel

still acts on Kohn–Sham transition densities, in the Bethe-Salpeter equation equivalent

the screened Coulomb interaction W acts explicitly on electron-hole density matrices,

thus introducing a long-range coupling of electron and hole wavefunctions. Therefore

W trivially describes long-range electron-hole interactions in charge-transfer states or

delocalised systems, while in any (semi)-local approximation to the exchange-correlation

potential, this interaction is necessarily missing in TDDFT.

In the linear-response TDDFT method, hybrid functionals have been suggested as

a solution to the problem of missing long-range electron-hole interactions. It can be

seen why this suggestion is sensible from a MBPT perspective by remembering that W

is just an infinite series summation in terms of the bare Coulomb interaction v, thus

substituting v for W would lead to the second term in equation (4.88) to be simply equal

to the Hartree–Fock energy associated with the electron-hole density matrix. Thus in

the long-range charge-transfer limit, where the (semi)-local part of any hybrid functional

vanishes, the electron-hole interaction W in hybrid-TDDFT is simply approximated by

a fraction cx of the bare Coulomb interaction. Given that W is related to v through the

inverse dielectric function such that W = vε−1 in symbolic notation (see equation (4.75)),

using a hybrid functional in the long-range limit becomes equivalent to approximating the

BSE interaction W by assuming a static, constant dielectric function of ε = 1/cx. This

can be seen as a non-rigorous justification for expecting hybrid functionals in TDDFT
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to deliver relatively good results in uniform systems, where the spatial structure of W

is negligible. Whether many-body effects can be resolved in more complicated situations

of non-uniform screening, like in a graphene layer deposited on a substrate [91], is more

doubtful.

The close similarity between the structures of the two-particle Hamiltonians in linear-

response TDDFT and the Bethe-Salpeter equation have led to the derivation of an effective

exchange-correlation kernel fxc from the GW+BSE approximation capable of reproducing

all long-range excitonic effects in bulk materials that are correctly accounted for in the BSE

[92]. However, the kernel can only be constructed by first solving the GW -approximation

and thus does not represent a significant computational saving compared to the full Bethe-

Salpeter equation. In conclusion, it can be said that while TDDFT is formally exact for

the exact exchange-correlation kernel, the similarity between the TDDFT and MBPT

approach allows a more detailed analysis of the failures of certain approximations to the

exchange-correlation kernel and helps in recognising the important effects that are ignored

in simple approximations to fxc.

4.4 Scaling considerations: TDDFT vs. MBPT

For the remainder of this chapter the computational scaling of the two main TDDFT

approaches, the real-time and the linear-response method, are briefly considered and

compared to that of the GW -method in connection with the Bethe-Salpeter equation.

As can be appreciated from the previous discussion, the computational complexity of a

TDDFT calculation is strongly dependent on the sophistication of the approximation to

the exchange-correlation kernel fxc used. Here the discussion shall be limited to standard

(semi)-local and hybrid functionals for fxc and thus ignore any GW+BSE derived kernels

like the one discussed in [92], as they have a similar computational complexity as the

full MBPT solution to the excited states of the system. Any memory effects in both the

TDDFT and the MBPT approaches shall also be ignored.

While the full solution to the GW+BSE equation has the potential to provide a

better description of excitonic effects than most commonly used approximations to the

exchange-correlation kernel, the GW calculation can be seen as a major computational

bottleneck. Generally, GW calculations do not show a scaling better than O(N3) with

the number of atoms in the system [93–96]. This is mainly due to the non-locality of all

functions involved, as well as the fact that one has to perform integrals over the entire

frequency range of functions that only decay very slowly (as 1/ω) with frequency. A

naive construction of the two-particle Hamiltonian and a direct diagonalisation of the

BSE scales as O(N6), as the number of quasiparticle electron-hole pairs scales as O(N2)
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with system size, yielding a total number of matrix elements that scale as O(N4). Since

in large systems, only a few low energy excited states age generally of interest rather

than the entire spectrum, one can make use of iterative techniques that avoid the explicit

construction and diagonalisation of H
[2p]
BSE. However, one still has to evaluate the result of

a trial vector acting on KBSE, which, due to the non-locality of W (r, r′, ω), has a scaling

of O(N4) associated with it. It becomes clear that this unfavourable scaling makes the

GW+BSE approach prohibitive for large systems that already rely on linear-scaling DFT

approaches to solve for the ground state.

The scaling of TDDFT with most commonly used functionals however is considerably

more favourable. It has been known for over a decade that the real-time TDDFT approach

can be made to scale linearly with system size, if instead of individual Kohn–Sham orbitals,

the single particle density matrix is propagated in time and its sparsity is exploited [97]22.

For the linear-response TDDFT approach, it has recently been noted that, when the

solution of the eigenvalue equation to a small number of excited states of interest, these

excitation energies can be obtained in linear-scaling effort using iterative eigensolvers

[98–100]. Thus, TDDFT is the method of choice for the calculation of excited states

of large systems, even though common exchange-correlation functional approximations

cannot yield the full quality of excitonic effects that can be obtained from the solution of

the Bethe-Salpeter equation.

Thus the remaining question is whether to use the time evolution approach to TDDFT

or the linear-response formalism. Since for the purpose of this work, the focus lies on cal-

culating only a small number of excitations in the low energy range of very large systems,

the linear-response formalism is considered to be the most appropriate approach, since the

time-evolution TDDFT approach generates the entire spectrum. Furthermore, the linear-

response approach allows for the calculation of the full transition vector of any excitation,

which contains additional information on the excited state potential energy surface, that

are not available in the real-time TDDFT approach. The RT-TDDFT approach has

the additional disadvantage that the Kohn–Sham equations need to be propagated for a

rather long time to get a good resolution on the spectrum, which might be prohibitive

for very large systems. Thus for the remainder of this work, TDDFT is considered in the

linear-response formalism only.

22It should be noted that there is no full formal justification why the perturbed density matrix should
show the same sparsity properties as the ground state density matrix. A more detailed discussion on the
question of sparsity of response density matrices is delivered in section 6.2
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Chapter 5

The ONETEP code

Following the discussion in the previous chapters, the aim of this work is to develop an ex-

tension of the linear-scaling DFT code ONETEP [101,102] to allow for the calculation of the

TDDFT excitation energies in the linear response formalism. The DFT implementation

has been demonstrated to provide an excellent parallel scaling, allowing for large scale

calculations of ground state properties, while retaining the well-controlled convergence

properties of plane-wave DFT approaches. The task is to develop a TDDFT extension to

the DFT approach that retains all desirable features of the ground state method, while

allowing for the calculation of low energy optical spectra of previously inaccessible system

sizes. In order to derive a linear-scaling TDDFT approach, it is first necessary to briefly

introduce some of the special features of the DFT implementation as compared with

conventional linear-scaling approaches. First the approach to solving the ground state

DFT problem in the ONETEP code is presented, before introducing some more advanced

functionality that is made use of in later chapters.

5.1 Linear-scaling DFT in ONETEP

The focus in this section is on the main ingredients of a standard ground state DFT cal-

culation in ONETEP. The code makes use of many of the general linear-scaling DFT tech-

niques presented in section 3.3, like the density-matrix formalism and the LNV method.

Here, only the unique features of the approach are focused on that are not generally shared

with other linear-scaling DFT implementations.

5.1.1 Psinc basis set

The ONETEP code makes use of periodic boundary conditions as described in section 3.2.1.

Since the method is aimed at large system sizes, it can be assumed that the real space

unit cell is large, meaning that in reciprocal space the Brillouin zone sampling is well-

represented by the Γ-point. From this it follows directly that all eigenfunctions of the
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DFT Hamiltonian can be chosen to be real and any k-point dependence can be dropped

from the calculation.

While plane waves are a natural basis set choice for a system in periodic boundary

conditions, they are not advantageous for linear-scaling methods due to their delocalised

character in real space. Instead, an appropriate basis set for linear scaling purposes can

be defined through psinc functions [103,104], also referred to as bandwidth limited Dirac

delta functions. Consider a simulation cell with real-space and reciprocal space lattice

vectors {ai} and {bj}, which is divided into a discrete grid with Ni = 2Ji + 1 grid points

in the direction i (here, Ji is an integer). The psinc basis functions are then defined as

DKLM(r) ≡ D(r− rKLM) =
1

N1N2N3

J1∑
p=−J1

J2∑
q=−J2

J3∑
s=−J3

ei(pb1+qb2+rb3)·(r−rKLM ) (5.1)

with p, q and s being integers and rKLM given by

rKLM =
K

N1

a1 +
L

N2

a2 +
M

N3

a3. (5.2)

Here, K, L and M are again integers. Thus the basis function DKLM(r) is centered at

grid point rKLM and has the desirable property that it is zero at all other grid points.

Furthermore, a unitary transformation relates the set {DKLM(r)} to the basis of plane-

waves that can be represented by the real space grid of the simluation cell [103]. In other

words, the basis set is equivalent to a plane wave basis and the basis set quality can, like

in plane wave methods, be expressed in terms of a kinetic energy cutoff. The psinc basis

thus allows a systematic convergence of the DFT energy with basis set size, just like the

plane-wave basis in conventional DFT approaches.

Since the psinc function DKLM(r) is zero on all other grid points apart from rKLM ,

any function that is localised to some region in real space can be expanded by the subset

of {DKLM(r)} corresponding to grid points localised in the region. It is to be noted that

while each psinc function is zero on all grid points apart from the one it is centered on,

it has nonzero values between grid points. Thus any function expanded in terms of a

subset of psincs in some localisation region is delocalised through the entire simulation

cell, but only has nonzero values on grid points inside the localisation region. However,

it can be shown that the overlap integrals between any function with the periodicity of

the simulation cell and a function that is represented by {DKLM(r)} can be evaluated

exactly as a summation over grid points rKLM [103], meaning localisation constraints can

be exploited when performing integrals.
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5.1.2 NGWF representation

In line with other linear-scaling DFT implementations, the approach considered here re-

lies on expanding the single-particle density matrix in terms of localised functions (see

equation (3.73)). In ONETEP, the expansion is achieved through so-called Non-Orthogonal

Generalised Wannier functions (NGWFs) {φα}, that are taken to be atom-centered func-

tions confined within a strict localisation radius rc which is predefined for each atomic

species in the calculation.

The NGWFs are expanded in the underlying basis of psinc functions {DKLM(r)}, such

that each NGWF is defined through a set of expansion coefficients {CKLM,α}, with [104]

φα(r) =

N1−1∑
K=0

N2−1∑
L=0

N3−1∑
M=0

CKLM,αDKLM(r). (5.3)

Note that due to the strict localisation constraint on the NGWFs, the number of non-zero

expansion coefficients CKLM,α per NGWF stays constant with system size. Due to the

relationship between psinc functions and plane waves, the NGWFs can equally be written

in a plane wave expansion, such that

φα(r) =
1

V

J1∑
p=−J1

J2∑
q=−J2

J3∑
s=−J3

φ̃α(pb1 + qb2 + rb3)ei(pb1+qb2+rb3)·r (5.4)

where φ̃α(pb1 + qb2 + rb3) is obtained from a discrete Fourier transform of the expansion

coefficients CKLM,α.

The fact that the NGWFs used to represent the single particle density matrix and

the Kohn–Sham Hamiltonian are expressed through an underlying basis means that the

density matrix representation is not required to stay fixed during the calculation. The

DFT total energy E0 can thus be seen as a functional of both the density matrix in a

given NGWF representation and the NGWF expansion coefficients {CKLM,α}.

5.1.3 The FFT box technique

The evaluation of the DFT kinetic energy in the NGWF representation can be seen

as an example outlining the advantages of the underlying psinc basis used. Here a spin-

degenerate system is assumed, with a ground state density matrix P{v} expanded through

a set of NGWFs {φα}. The Kohn–Sham kinetic energy of such a system can be simply

written as

Ts[ρ] = −P {v}αβ〈φβ|∇2|φα〉 (5.5)
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Here, the advantage of the underlying basis becomes apparent. While applying the Lapla-

cian operator in other localised basis set representations that are commonly used can be

cumbersome, its action on a plane wave basis in reciprocal space is trivially evaluated.

Since the NGWFs can be transformed into a plane wave basis via equation (5.4), a way

the above matrix elements can be evaluated is by performing a Fast-Fourier transform

(FFT) on φα, applying the Laplacian operator and transforming back, before performing

the integral with φβ in real space as a summation over grid points [103]. However, since

both number of grid points in the simulation cell as well as the number of NGWFs scale

as O(N) with system size, performing an FFT for all NGWFs to evaluate the kinetic

energy matrix has a scaling of O(N2log(N)) with system size associated with it.

Linear scaling can only be achieved by exploiting the strict localisation of the NGWFs.

Rather than performing the FFT on the entire cell, a smaller region called an FFT box that

contains the NGWF in real space can be used. Since the size of the NGWF localisation

region is system size-independent, the size of the FFT box is also independent of system

size, meaning that Fast-Fourier transforms of NGWFs have a constant computational

scaling with simulation cell size associated with them. There are a number of requirements

that define the minimum possible size of the FFT box, which can be found in reference

[105]. Here it is just noted that the FFT box has to be chosen large enough so that for a

given NGWF it can contain that NGWF at its centre and all its overlapping neighbours.

The size of the FFT box in comparison to that of the entire simulation cell is a good

indicator for the efficiency of the calculation compared with conventional approaches,

where the crossover point with standard O(N3) plane-wave methods is only reached once

the simulation cell is considerably larger than the FFT box.

5.1.4 The two-step energy minimisation

In order to perform an energy minimisation in ONETEP the DFT energy E is considered

as an explicit functional of both the density matrix P{v} and the NGWF expansion coef-

ficients {CKLM,α}. It is thus possible to define a two-step nested minimisation procedure

such that [104]

Emin = min
{CKLM,α}

L [{CKLM,α}] (5.6)

where

L [{CKLM,α}] = min
P{v}

E
[
P{v}, {CKLM,α}

]
(5.7)

Here, the direct minimisation of the DFT energy in equation (5.7) is carried out for

fixed NGWF expansion coefficients, taking into account the change of the Kohn-Sham

potential VKS(r) as a result of changes in P{v} and thus ρ(r), while the idempotency and

normalisation constraints on P{v} are enforced as described in section 3.3.5. The second
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optimisation step with respect to the NGWF coefficients can then be performed by finding

the gradient of L with respect to CKLM,α. The exact form of L differs depending on how

the constraints of idempotency and normalisation are enforced. Here, only the gradient

of the energy with respect to CKLM,α is explicitly shown, ignoring extra terms from the

idempotency and orthonormality constraints. The gradient can be written as [104]:

∂L

∂CKLM,α

=

ˆ
d3r

δL

δφα(r)

∂φα(r)

∂CKLM,α

=
[
4wĤφβ(r)P {v}αβ

]
r=rKLM

. (5.8)

Here, w is the grid weight associated with each grid point. Since the above gradient is a

contravariant quantity, it has to be transformed into a covariant quantity by multiplying

with Sφ. It can then be used as a search direction in a conjugate gradient algorithm to

improve the expansion coefficients of all NGWFs. Due to the localisation constraints on

the NGWFs, as well as the use of the FFT box technique, the gradient of L with respect

to all NGWF coefficients can be evaluated in linear scaling effort, provided P{v} is sparse.

Thus once the two-step minimisation is converged, ONETEP yields a P{v} in the ideal

representation of NGWFs {φα} for the given localisation constraint imposed.

5.1.5 Sparsity and linear scaling

As with other approaches, linear-scaling computational effort with system size can only

be reached in ONETEP if the ground state density matrix can be truncated and becomes

sparse in the representation of localised NGWFs {φα}. This is achieved by predefining a

cutoff radius Rcut such that the matrix element P {v}αβ = 0 for |Rα −Rβ| > Rcut.

Together with the localisation radius rc on the NGWFs, the cutoff radius on the

density matrix elements predefines the sparsity pattern of any matrix encountered in a

ground state calculation [106]. The atoms are then ordered in such a way that the dense

matrix blocks of P{v} are clustered around the diagonal. Both the exact knowledge of the

sparsity pattern and the ordering of the atoms before the start of a calculation allows for

optimised communication and efficient sharing matrix data over the CPUs available to

the calculation [106].

In the LNV method (see section 3.3.5), the density matrix P{v} is defined via the

McWeeny purification transformation of an auxiliary density matrix L{v}, such that

P{v} = 3L{v}SφL{v} − 2L{v}SφL{v}SφL{v}. (5.9)

Thus in order for there to be no truncation in the evaluation of the density matrix before

the final result, the least sparse matrix that has to be explicitly evaluated is L{v}SφL{v},

which is considerably less sparse than P{v}. Only if the least sparse matrix required to

be constructed in the calculation becomes sparse does the DFT calculation scale fully

98



5. THE ONETEP CODE

linearly with system size.

However, it should be pointed out that the explicit optimisation of the NGWF expan-

sion coefficients means that the NGWF set {φα} is considerably smaller than comparable

localised basis sets that stay fixed during the calculations. This has the effect that the

system sizes at which point the dense matrix algebra begins to dominate calculation time

are larger in ONETEP calculations than in methods using fixed localised orbitals and an

explicit density matrix truncation is generally not necessary for system sizes up to about

2000 atoms.

5.1.6 Forces

One is often interested in nucleic forces in the context of density-functional theory calcu-

lations, as their evaluation is necessary to perform geometry optimisations to find equi-

librium structures of systems of interest. To evaluate forces from a DFT ground state

calculation, one has to consider the total derivative of the DFT energy with respect to

the atomic positions Rγ
23. In the method described here, the NGWFs have an explicit

dependence on the atomic positions, since they are all centered on specific atoms. Thus,

the force acting on an individual atom γ can be written as

Fγ = − dE

dRγ

= − ∂E

∂Rγ

− ∂E

∂P {v}αβ
∂P {v}αβ

∂Rγ

−
ˆ

d3r
δE

δφα(r)

∂φα(r)

∂Rγ

(5.10)

Since the density matrix is optimised at the end of a ground state calculation, the

derivative of E with respect to P{v} is zero and only two terms remain. One is the

standard force term due to the partial derivative of the energy with respect to the atomic

positions and the other one is a Pulay force term due to the derivative of the energy

with respect to the NGWF representation. However, since a two-step minimisation is

performed in ONETEP, the functional derivative of the energy with respect to {φα} also

vanishes at the end of a converged calculation and the force reduces to [107,108]

Fγ = − ∂E

∂Rγ

(5.11)

which is the familiar result obtained in plane-wave methods or other methods where the

basis set used is independent of the atomic positions.

Since it is often not possible to converge the psinc expansion of the NGWFs to arbitrary

23In principle, forces can be computed via a finite difference approximation as well, but since this re-
quires 6N individual ground state calculations (where N is the number of ions), the approach is impractical
for the system sizes considered here.
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accuracy24, one is often left with a small gradient of the energy with respect to the NGWFs

at the end of a ONETEP calculation. This can result in small but non-negligible Pulay force

contributions, which can cause a slow convergence behaviour of the geometry optimisation

algorithm. However, it is possible to derive a Pulay term correcting for the effect, which

when included in the calculation, yields a significant speed up when performing geometry

optimisations in many systems [108].

5.2 Relevant functionality

After having introduced the main features of the ONETEP code, the focus is now shifted

to some of the more advanced functionalities that go beyond a simple evaluation of the

ground state energy. Only functionality that will be used heavily in later chapters, either

in technical derivations or in proof-of-principle calculations, is considered here.

5.2.1 Conduction NGWF optimisation

As seen in the previous section, the two-step energy minimisation strategy in ONETEP

produces a valence density matrix P{v} expanded in NGWFs {φα}. The psinc expansion

coefficients of the individual NGWFs are optimised to form an ideal representation of

P{v}. Thus, at the end of a converged ground state calculation, the DFT energy of the

system is minimised with respect to variations in the localised NGWF representation.

If the system has a well defined bandgap and the localisation radius of the NGWFs is

chosen appropriately, the minimisation strategy guarantees to yield a representation of the

occupied Kohn–Sham space that is comparable to that achievable by plane-wave methods.

However, in excited state methods, the interest is not only in a representation of the

occupied subspace but also the unoccupied space, as it is necessary to represent electron-

hole states. This poses a problem for the ONETEP approach, as the entire unoccupied

space representable by a chosen NGWF set {φα} can be written in form of a projection

operator

P{c} =
(
Sφ
)−1 −P{v}. (5.12)

Here, P{c} is to denote the effective density matrix representing the entire conduction

space manifold in valence NGWF representation. While P{v} is well represented by {φα},
the entire conduction space manifold is clearly only very poorly represented by P{c} as the

24The reason why the minimisation with respect to the psinc expansion coefficients cannot be converged
to the same degree as the minimisation with respect to the density matrix P{v} is that there is an
inherent conflict between the energy minimisation and the localisation constraint. Thus in practice, for
well localised NGWFs, the gradient of the energy with respect to the NGWF expansion coefficients cannot
be made arbitrarily small.
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NGWF representation is far from complete and thus |φα〉
(
Sφαβ

)−1

〈φβ| is a poor represen-

tation of the identity operator. This has the effect that when one explicitly diagonalises

Hφ and compares the Kohn–Sham bandstructure energies to the ones generated by plane-

wave codes, only the occupied bands are in good agreement while the agreement breaks

down for the unoccupied space.

This shortcoming is not surprising. The size of the ONETEP NGWF representation

is very small, even when compared to other localised orbital methods that do keep a

fixed representation during the calculation. The in situ optimisation of the NGWFs

necessarily creates an ideal representation for the occupied states, but there is no reason

for the unoccupied states to be well represented. Given that the NGWF representation

of P{v} is justified via the existence of exponentially localised Wannier functions for the

composite band of valence states, the representation of arbitrary parts of the conduction

space manifold in the same manner is generally not valid.

However, it is reasonable to assume that a low energy subset of the conduction space

can indeed be represented in a localised NGWF representation and that an explicit op-

timisation of the Kohn–Sham bandstructure energy with respect to the psinc expansion

coefficients of the NGWF representation can yield results comparable to plane-wave meth-

ods. A technique to achieve this within the ONETEP code was recently introduced by

Ratcliff and coworkers [109] and will be briefly outlined here.

Consider a single particle density matrix for a set of the lowest Nvirt unoccupied

Kohn–Sham states, such that, again assuming spin degeneracy of the ground state, one

can write

ρ{c}(r, r′) =

(Nocc+Nvirt)/2∑
i=Nocc/2+1

ψKS
i (r)ψKS∗

i (r′). (5.13)

It is also assumed that the Nvirt lowest unoccupied states form a set of composite bands

(see section 3.2.2). In that case, ρ{c}(r, r′) can be rigorously expressed by some set of

localised conduction NGWFs which will be referred to as {χα} such that

ρ{c}(r, r′) = χα(r)P {c}αβχβ(r′) (5.14)

where P{c} is now an effective density matrix in conduction NGWF representation span-

ning the lowest Nvirt conduction states. The key of the conduction state optimisation in

ONETEP is then to optimise both P{c} and {χα} to ideally represent the subspace of low

energy conduction states. In order to do so a projected Kohn–Sham Hamiltonian in {χα}
representation is defined such that

(
Hχ

proj

)αβ
= 〈χα|Ĥ|χβ〉 − 〈χα|φγ〉

(
P {v}HφP {v} − λP {v}SφP {v}

)γδ 〈φδ|χβ〉 (5.15)

101



5. THE ONETEP CODE

where λ is a shift parameter. The effect of the projection in the Kohn–Sham Hamiltonian

is to shift all valence states up in energy. If λ is chosen larger than the energy of the highest

conduction state of interest, the valence states are shifted higher than that value and the

lowest Nvirt/2 eigenstates of the projected Hamiltonian correspond to the unoccupied

Kohn–Sham bands of interest.

Thus, minimising the conduction bandstructure energy

E
{c}
BS

[
P{c}

]
= 2Tr

[
Hχ

projP
{c}
]

(5.16)

with respect to P{c}, subject to the normalisation and idempotency constraints

P{c}SχP{c} = P{c} (5.17)

2Tr
[
P{c}Sχ

]
= Nvirt (5.18)

yields a density matrix in conduction NGWF representation spanning the lowest Nvirt

conduction states of the Kohn–Sham system. Note the similarity of the above expressions

to normal ground state density-matrix DFT. However, unlike for the valence density

matrix, there is no implicit self-consistency condition in the minimisation of equation

(5.16), as the Kohn–Sham Hamiltonian is a functional of P{v} and not P{c}. Thus, the

optimisation of the conduction space can be carried out as a post processing step after

the ground-state density matrix and the valence NGWFs of the system in question are

calculated. The minimisation of the conduction bandstructure energy can then be carried

out precisely in the same way as it is for the valence band structure energy, with the

difference that the Kohn–Sham potential VKS is kept fixed.

The usual two-step minimisation procedure is recovered by treating E
{c}
BS as a functional

of both P{c} and {χα}. Following the same steps as in the ground-state density matrix

optimisation procedure, the conduction optimisation thus yields a density matrix spanning

a predefined set of low energy conduction states expressed by a set of NGWFs that is

optimised to be an ideal representation for those states. Together, {χα} and {φβ} then

form an ideal representation for both the valence states and a low energy subset of the

conduction space and Kohn–Sham energies produced from the two representations are in

very good agreement with plane-wave results [109].

5.2.2 Linear-scaling PAW

In order facilitate the treatment of transition metal compounds, the PAW formalism (see

section 3.2.7) is implemented in ONETEP. Due to the fact that the linear-scaling DFT

approach used here is implemented in a density matrix formalism, a number of changes
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have to be made to Blöchl’s original formalism, which will be discussed here briefly.

Since the linear-scaling DFT formalism works with the single-particle density matrix

rather than the individual Kohn–Sham states, the PAW transformation discussed in sec-

tion 3.2.7 needs to be applied to the density matrix. Again denoting AE partial waves as

{|ϕi〉} and soft pseudo (PS) partial waves as {|ϕ̃i〉}, the AE single-particle density matrix

in operator form can be expressed in terms of the soft PS density matrix P{v} such that

ρ{v} = |φα〉P {v}αβ〈φβ|+
∑
ij

{|ϕi〉〈ϕj| − |ϕ̃i〉〈ϕ̃j|} 〈p̃i|φα〉P {v}αβ〈φβ|p̃j〉 (5.19)

The matrix elements (Qi
α)
†

= 〈p̃i|φα〉 and Qj
β = 〈φβ|p̃j〉 are effective projector-NGWF

overlap matrices, projecting the NGWFs that are defined on the soft PS grid in the entire

simulation cell onto the partial waves only defined within the augmentation spheres around

the atoms. Using the projector, it is possible to define the effective valence density matrix

inside the spheres as

ρ{v}ij =
(
Qi
α

)†
P {v}αβQj

β. (5.20)

In the PAW formalism, the AE density matrix rather than the soft PS density matrix has

to obey the normalisation and idempotency constraint, such that it is required that

ρ{v}ρ{v} = ρ{v} (5.21)

2Tr
[
ρ{v}

]
= Nocc. (5.22)

In close analogy to the conventional PAW implementations outlined in section 3.2.7, the

two constraints can be written in terms of the soft PS matrix P{v} by simply using the

effective linear PAW transformation operator τ and applying it to the NGWF overlap

matrix. Thus, Sφ is redefined such that

Sφαβ = 〈φα|τ †τ |φβ〉 = 〈φα|

(
1 +

∑
ij

|p̃i〉(〈ϕi|ϕj〉 − 〈ϕ̃i|ϕ̃j〉)〈p̃j|

)
|φβ〉. (5.23)

Under this redefinition, the normalisation and idempotency constraints of the full AE

density matrix can be expressed through the soft part P{v} of the density matrix, with

P{v}SφP{v} = P{v} (5.24)

2Tr
[
P{v}Sφ

]
= Nocc (5.25)

Note that the above form of the normalisation and idempotency constraint is exactly the

same as in the case of density matrix DFT using norm-conserving pseudopotentials and
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all the AE effects due to the augmentation spheres are hidden within the redefinition of

Sφ.

Now consider the full AE density ρ(r). Following the definition of the density matrix, it

becomes clear that the total AE density can be partitioned into three parts, one defined on

the conventional real space grid and two others defined within the augmentation spheres

around the atoms:

ρ(r) = ρ̃(r)− ρ̃(1)(r) + ρ(1)(r) (5.26)

where

ρ̃(r) = φα(r)P {v}αβφβ(r) (5.27)

ρ(1)(r) =
∑
ij

ϕi(r)ρ{v}ijϕj(r) (5.28)

ρ̃(1)(r) =
∑
ij

ϕ̃i(r)ρ{v}ijϕ̃j(r). (5.29)

Thus, the total density is constructed by taking the soft PS density on the entire grid,

subtracting the soft part within the augmentation spheres and adding in the hard AE

part of the density within the spheres. Using the above expressions for the total density

partitioned into its constituent parts, it is possible to write down an expression for the AE

DFT ground-state energy as a functional of P{v}, and it can be shown that this energy

can be partitioned into augmentation sphere parts that can be treated on a radial grid

around the atoms and soft PS parts that can be evaluated on the entire real space grid.

However, when partitioning the density into parts according to equation (5.26) one

does have to consider energy terms due to the non-local Hartree potential of one augmen-

tation sphere interacting with another. These terms are unwanted, as it is desirable to

keep in-sphere contributions fully local. Thus, following the conventional PAW formal-

ism outlined in references [110, 111], a compensation density ρ̂(r) is added to ρ̃(r) and

subtracted from ρ̃(1)(r). The compensation density can be calculated through

ρ̂(r) =
∑
ijLM

ρ{v}ijQ̂LM
ij (r) (5.30)

where Q̂LM
ij (r) is defined in a way to ensure that

ˆ
ΩR

[
ρ(1)(r)− ρ̃(1)(r) + ρ̂(r)

]
|r−R|LSLM(r−R) d3r = 0 (5.31)

for all L and M and the integral is defined over the augmentation region of the atom at

R. SLM again denotes a spherical harmonic. This condition is fulfilled by writing Q̂LM
ij (r)
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as

Q̂LM
ij (r) = nLnili,nj ljg

L(r)GLMlimi,ljmjSLM(r̂) (5.32)

where GLMlimi,ljmj denotes precomputed Gaunt coefficients that are obtained by performing

an integral over the product of three different spherical harmonics, nLnili,nj lj is given by an

integral over the radial part of the PS and AE partial waves

nLnili,nj lj =

ˆ rc

0

dr
(
ϕnili(r)ϕnj lj(r)− ϕ̃nili(r)ϕ̃nj lj(r)

)
rL (5.33)

and gL(r) is an arbitrary shape function chosen to be a pair of Bessel functions of order

L.

The above condition ensures that the Hartree potential of the difference between the

soft and the AE sphere density, when augmented with the compensation density, is zero

everywhere outside the augmentation region. It then becomes possible to write the inter-

acting DFT energy (omitting the ion-ion energy) in terms of soft PS quantities that can

be treated on the real space grid, and soft and AE sphere terms such that

E = Ẽ − Ẽ(1) + E(1) (5.34)

where25

Ẽ = P {v}αβ〈φα| − ∇2|φβ〉+ EH [ρ̃+ ρ̂] + Exc [ρ̃+ ρ̂]

+

ˆ
VH [ρ̃Zc ] (r) [ρ̃+ ρ̂] (r)d3r (5.35)

Ẽ(1) = ρ{v}ij〈ϕ̃i| − ∇2|ϕ̃j〉+ EH

[
ρ̃(1) + ρ̂

]
+ Exc

[
ρ̃(1) + ρ̂

]
+

ˆ
Ω

VH [ρ̃Zc ] (r)
[
ρ̃(1) + ρ̂

]
(r)d3r (5.36)

E(1) =
∑
ij

ρ{v}ij〈ϕi| − ∇2|ϕj〉+ EH

[
ρ(1)
]

+ Exc

[
ρ(1)
]

+

ˆ
Ω

VH [ρZc ] (r)ρ(1)(r)d3r. (5.37)

Here, ρZc denotes the AE core density of the ions, while ρ̃Zc is the soft PS version of the ion

core density that can be expressed on the regular simulation cell grid. For the integrals,

Ω denotes the volume of the augmentation spheres only. In the spirit of conventional

PAW approaches, one wants to find the energy of the system as a functional of the soft

density matrix P{v} and thus want to write the bandstructure energy of the system at

25Note that the soft compensation density ρ̂ is not always included into Exc in practical calculations,
since its unphysical shape can sometimes create unwanted effects in the exchange-correlation potential.
In this work, all equations are written in such a way that it is assumed that ρ̂ is included in Exc.
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fixed Kohn-Sham potential in terms of an effective PAW Hamiltonian Hφ and P{v}, such

that

EBS = 2Tr
[
HφP{v}

]
. (5.38)

In order to find this PAW-transformed DFT Hamiltonian, note that

Hφ =
dEBS

dP{v}
=
∂EBS

∂P{v}
+
∑
ij

∂EBS

∂ρ{v}ij
∂ρ{v}ij

∂P{v}
+

ˆ
d3r

δEBS

δρ̂(r)

∂ρ̂(r)

∂P{v}
(5.39)

and thus the effective Hamiltonian can be constructed in a straightforward manner by

differentiating the AE bandstructure energy. It can be shown [110, 111] that the PAW

Hamiltonian Hφ can be written as

(
Hφ
)
αβ

= 〈φα| −
1

2
∇2 + ṼKS|φβ〉+

∑
ij

Qi
αDij

(
Qj
β

)†
(5.40)

where the effective soft part of the Kohn–Sham potential ṼKS is given by

ṼKS(r) = VH [ρ̃+ ρ̂+ ρ̃Zc ] (r) + Vxc [ρ̃+ ρ̂+ ρ̃c] . (5.41)

Here, ρ̃c is the soft PS density of the core electrons inside the augmentation region. Thus

the total PAW Hamiltonian can be written in terms of a PS Kohn–Sham Hamiltonian

constructed on the real space grid, and an augmentation sphere correction term defined

through Dij. The PAW correction term Dij contains three major contributions. The

first one is a density independent term due to the kinetic energy operator acting on the

AE and PS partial waves which only has to be constructed once at the beginning of the

calculation. The two other terms originate from the Hartree and exchange-correlation

potential and are density dependent. Thus a new Dij has to be constructed every time

the density defining the Kohn–Sham Hamiltonian changes.

The evaluation of the Hartree and exchange-correlation PAW contributions inside the

augmentation spheres is facilitated by expanding both the Coulomb potential and the

exchange-correlation potential in terms of the spherical harmonics SLM(r̂). Given that

the AE and PS partial waves are expanded in the same way, the sphere terms can then be

expressed in terms of a summation over Gaunt coefficients GLMlimi,ljmj and a radial integral.

Using this approach, it can be shown that the full PAW correction term can be written

as

Dij = D0
ij + D̂ij +

∑
kl

ρ{v}kleijkl +Dxc
ij (5.42)

where eijkl is a rank-4 tensor that can be precomputed at the beginning of a PAW cal-

culation from the PAW partial waves and that contains all PAW corrections originating
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from the Hartree term. D0
ij is the constant term due to the kinetic energy operator acting

on the AE and PS partial waves. D̂ij is closely related to the compensation density and

can be easily evaluated from the soft Kohn–Sham potential ṼKS via26

D̂ij =
∑
LM

ˆ
d3r ṼKS(r)Q̂LM

ij (r) (5.43)

The exchange-correlation term Dxc
ij is more difficult to construct as it requires the evalu-

ation of V LM
xc (r) inside the PAW augmentation spheres given by

V LM
xc (r) =

ˆ
dσ Vxc[ρ](r)SLM(r̂). (5.44)

Here, dσ is taken to denote the differential solid angle. In ONETEP (following the imple-

mentation discussed in [111]), the term is evaluated by assuming that close to the atom,

the density is close to spherically symmetric and thus the full density can be expressed

by a Taylor expansion to second order around the symmetric density.

Thus in general, the linear-scaling DFT algorithm remains unchanged by the PAW

formalism. The AE DFT energy is minimised by simply optimising the soft PS density

matrix P{v} obeying the usual normalisation and idempotency condition with a redefined

overlap matrix Sφ. Every time the Hamiltonian is constructed, one simply has to calculate

the nonlocal correction term Dij and add the term (Vnl)αβ =
∑

ij Q
i
αDij

(
Qj
β

)†
to the soft

Hamiltonian matrix evaluated on the entire simulation cell grid. Since the correction term

is evaluated inside the augmentation spheres only and the compensation density guaran-

tees that the Hartree potential in one sphere does not contribute to another sphere, the

matrix (Vnl)αβ does not destroy any of the sparsity properties of the original pseudopo-

tential Hamiltonian. Since Dij can be computed in linear-scaling effort, it follows that

the PAW density-matrix formalism used in ONETEP preserves the linear-scaling properties

of the original method.

5.2.3 The implicit solvent model

The large system sizes accessible in linear-scaling DFT methods have allowed for biological

systems to become increasingly of interest to the DFT community. In these systems, the

question of solvent effects becomes very important. Many structures of proteins obtained

via X-ray crystallography are obtained within some form of solvating medium. Taking

these structures and simply simulating them in vacuum can yield unphysical vanishing

26Note that since the soft Kohn–Sham potential is defined on the real space grid, this integral is
written as an integral over the entire real space grid. However, since Q̂LMij (r) is only nonzero inside the
augmentation regions, the integral can be evaluated in practice by considering a small augmentation box
around the atom on the real space grid.
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band-gaps and convergence problems caused by unscreened electrostatic charges on the

surface of the protein [112]. Including the solvent environment explicitly in the calcula-

tion, either via classical point charges or fully quantum mechanically, is possible but in

the case of classical charges introduces uncontrolled approximations and in the case of

fully quantum mechanical solvents significantly increases the computational complexity.

An alternative approach is to introduce the effects of the screening medium into the cal-

culation via an implicit solvent model (see [113] for a review of different approaches to

the implicit solvent model encountered in the quantum chemistry community), which has

been recently implemented in ONETEP [114].

In general, the implicit solvent model is defined through a permittivity ε(r) such that

ε [ρ] (r) = 1 +
ε∞ − 1

2

(
1 +

1− (ρ(r)/ρiso)2β

1 + (ρ(r)/ρiso)2β

)
(5.45)

where ε∞ is the bulk permittivity and ρiso defines the cavity of the solute where the bulk

permittivity drops to ε∞/2. There are several different ways of defining the solute cavity,

such as taking the effective surface generated by placing spheres of a fixed radius onto

the atomic elements of the solute [113]27. For the purpose of this work however, ρiso is

taken to be an isosurface of the ground state density. This has the advantage that the

solute cavity can in principle respond self-consistently to the solvent. Equation (5.45) thus

defines a permittivity smoothly changing from the bulk permittivity value to 1 inside a

cavity defined by the density of the system and β is a parameter defining the smoothness

of the transition.

The Hartree terms of the electron-electron and electron-ion interaction in the Kohn–

Sham DFT potential are then replaced by the total electrostatic potential ΦES(r), which

is obtained by solving the Poisson equation

∇ · (ε [ρ]∇ΦES) = −4πρtot (5.46)

in real space subject to open boundary conditions. Here, ρtot is the total density of ρ and

a Gaussian-smeared density of the ionic cores of the atoms.

Since the cavity is defined as an isosurface of the density, the gradient of the total

electrostatic energy with respect to the Kohn–Sham density is no longer simply given by

27As is pointed out in [113], the freedom of choice in defining the solute cavity is of little consequence in
practical calculations, as the implicit solvent model is, by definition, an approximate approach to account
for solvation effects. In situations where the immediate surroundings of the solute need to be treated
more precisely, it is always possible to introduce a first solvantion shell of explicit solvent molecules,
followed by an implicit solvent model to treat the continuum.
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ΦES(r) but contains a term due to changes in the isosurface:

δEES

δρ
(r) = ΦES(r)− 1

8π
(∇ΦES(r))2 δε

δρ
(r) (5.47)

The second term is difficult to treat numerically, as δε
δρ

(r) → 0 everywhere apart from

close to the boundary defined by the density isosurface, which is precisely the region

where (∇ΦES(r))2 becomes very small. In practice, this self-consistent response of the

solvation cavity is often ignored to remove numerical ill-conditioning. This is normally

achieved by performing a ground state DFT calculation in vacuum and open boundary

conditions and then fixing the cavity in the in-solvent calculation to an isosurface of the

ground-state density obtained in vacuum. In general, the fixed cavity approximation is of

little consequence to the calculated free energies of solvation of neutral molecules [114],

and is thus suitable for the systems of interest considered in this work.

5.2.4 The electronic enthalpy method

In many situations it is desirable to study a system under transformation due to an

externally applied pressure. In a DFT framework, this can be straightforwardly achieved

by considering not the Kohn–Sham ground-state energy, but the enthalpy as a property

to be minimised, such that

H
[
P{v}, {φα}, {Rγ}

]
= EKS

[
P{v}, {φα}, {Rγ}

]
+ PV [{Rγ}] (5.48)

where P and V are the pressure and volume of the system and {Rγ} are the atomic

positions. For a periodic system, V is a well defined quantity and can be taken to be the

volume of the unit cell. The above enthalpy can then be minimised at constant pressure

subject to the atomic positions, which yields the structure of the system under pressure

P . Calculating the crystal structure of the system under a range of different pressures

yields information on phase transitions in the studied material.

While the above method is well defined for a periodic crystal, the thermodynamic

enthalpy becomes an ill-defined quantity for finite or zero-dimensional systems like quan-

tum dots, as there is no longer a unique way of defining the volume V . One way to study

such systems is to include the pressurising medium explicitly in the calculation, which is

computationally expensive. A conceptually simple alternative approach was introduced

by Cococcioni [115] and coworkers and adapted to the ONETEP code by Corsini et al [116].

In their approach, the volume of the finite system is defined via an isosurface of the
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Kohn–Sham ground state density such that

V =

ˆ
d3r

1

2
erfc

(
α− ρ(r)

σ
√

2

)
(5.49)

where α is the chosen cutoff defining the density isosurface and σ is a smearing parameter

used for numerical reasons. Thus the PV -term in the enthalpy method becomes a func-

tional of the electronic ground-state density only and its effect is transmitted to the ions

via forces obtained through the Hellman-Feynman theorem [116]. Finding the gradient

of the PV term with respect to the density leads to an effective potential contribution

ΦPV (r) =
P

σ
√

2π
exp

(
−(ρ(r)− α)2

2σ2

)
(5.50)

that can be simply added to the usual Kohn–Sham potential in the DFT energy minimi-

sation, leaving the general algorithm unchanged.

There is clearly some freedom in the choice of parameters α and σ, resulting in the

fact that the effective pressure felt by the system is not necessarily equal to P . Generally

α has to be chosen in a sensible way so that the isosurface of the density provides a

relatively smooth surface without any cavities. However, very small values of α lead to

a large excluded region and potential tails of ΦV that fail to vanish far away from the

system. Generally, the choice of α and σ needs to be calibrated for every system that is

studied. This can be achieved by comparing the nanocrystal bulk modulus for different

choices of P with the bulk modulus of an infinite system at the same pressures.
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Chapter 6

Linear-scaling TDDFT in ONETEP

In this section, an approach to solve for the lowest eigenstates of the TDDFT linear-

response equation in linear scaling effort is outlined and its implementation in the ONETEP

code is discussed in some detail. For the purpose of this discussion the treatment is lim-

ited to the Tamm–Dancoff approximation and closed shell systems. H
[2p]
TDA again denotes

the effective Hermitian two-particle Hamiltonian in canonical Kohn–Sham state represen-

tation (see section 4.2.5) and x is taken to be a trial eigenstate of H
[2p]
TDA in the product

space {|ψv〉 ⊗ |ψc〉}. Then the lowest eigenstate ω of the system can be written in terms

of a variational principle by minimising the Rayleigh–Ritz eigenvalue with respect to the

trial vector x:

ω = min
x

x†H
[2p]
TDAx

x†x
. (6.1)

Differentiating (6.1) with respect to x, one obtains

∂ω

∂x
=

2

x†x

[
H

[2p]
TDAx− ωx

]
. (6.2)

The gradient of the Rayleigh-Ritz value with respect to changes in x can then be used in

conjugate gradient algorithms to iteratively solve for the lowest eigenstate of the system.

Note that for this iterative solution, only knowledge of the action q = H
[2p]
TDAx is required,

and no explicit calculation of the entire matrix H
[2p]
TDA is required, which can only be

obtained in O(N4) computational effort. In Kohn–Sham product space, the vector q

describing this action can be expressed as28

qcv =
∑
c′v′

(
H

[2p]
TDA

)
cv,c′v′

xc′v′ = (εKS
c − εKS

v )xcv

+2
∑
c′v′

〈
ψ∗cψv

∣∣∣∣∣ 1

|r− r′|
+

δ2Exc

δρ(r)δρ(r′)

∣∣∣∣
ρ0

∣∣∣∣∣ψc′ψ∗v′
〉
xc′v′ . (6.3)

28for the purpose of this work, any memory effects in the exchange-correlation kernel is ignored and

thus H
[2p]

TDA is taken to be frequency independent.
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As it can be seen, the action splits into the diagonal term of Kohn–Sham eigenvalue

differences and a coupling term resulting from the Hartree and exchange-correlation in-

teraction.

Following Hutter [117], it is now helpful to introduce the first-order response density

ρ{1} that is associated with trial vector x such that29 :

ρ{1}(r) =
∑
c,v

〈r|ψc〉xcv〈ψv|r〉 (6.4)

Defining the self-consistent field potential V
{1}

SCF[ρ{1}](r) as a reaction to the response den-

sity as

V
{1}

SCF[ρ{1}](r) = 2

ˆ
d3r′

ρ{1}(r′)

|r− r′|

+ 2

ˆ
d3r′

δ2Exc

δρ(r)δρ(r′)

∣∣∣∣
ρ0

ρ{1}(r′) (6.5)

the action q of the TDDFT operator H
[2p]
TDA on the arbitrary trial vector x can be simply

written as

qcv = (εKS
c − εKS

v )xcv + 〈ψc|V {1}SCF[ρ{1}](r)|ψv〉. (6.6)

If q can be constructed from Equation (6.6) in linear-scaling effort for arbitrary x then

the lowest excitation of the system can likewise be found in O(N) operations. It should

be pointed out that this approach of finding the lowest eigenstate is based on the varia-

tional principle and thus is only valid if the eigenproblem is forced to be Hermitian due

to the Tamm–Dancoff approximation. However, the full TDDFT Hamiltonian consists

of Hermitian blocks and thanks to this structure it is possible to form a more gener-

alised variational principle valid for the full problem [118]. Generally speaking, the full

eigenvalue problem is more difficult to solve than the Hermitian equivalent under the

Tamm–Dancoff approximation and is considered to be outside the scope of this work.

6.1 Derivation of the formalism

In canonical representation, q makes explicit reference to eigenergies of occupied and

unoccupied Kohn–Sham bands, which cannot be obtained in linear-scaling effort. In order

to obtain a formalism in which q can be constructed in O(N) operations, any reference

to individual Kohn–Sham eigenstates must be avoided. Reference can only be made to

29Note that ρ{1} is not required to be real and will generally not be real, if {ψi} cannot be chosen to be

real. On the other hand,
∑
cv x

†
cv〈ψc|V

{1}
SCF[ρ{1}](r)|ψv〉 is necessarily real and thus ω is real as required.

In the ONETEP method however, calculations are performed at the τ -point and thus ρ{1} is trivially real.
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collections of Kohn–Sham states in the form of single-particle density matrices defined

over some subspace of Kohn–Sham bands. Furthermore, local orbitals have to be used

in order to represent ρ{1} and V
{1}

SCF[ρ{1}](r) to exploit locality when evaluating matrix

elements of q. The two factors of localised representations of all involved quantities and

the use of a Kohn–Sham density-matrix formalism throughout can be seen as the main

ingredients to linear-scaling TDDFT [98–100]. In the following outline of the formalism,

the original approach in deriving the method for the ONETEP code published in [99] is

closely followed.

6.1.1 The TDDFT operator in {χα} and {φβ} representation

A ground state and conduction state calculation in ONETEP as described in chapter 5

yields two sets of localised orbitals, {φα} and {χβ}, as well as two single-particle Kohn–

Sham density matrices P{v} and P{c} spanning the valence and low energy conduction

subspace respectively. The localised orbitals are optimised to form an ideal representation

of their respective subspaces such that only a minimal number is required, making the

representation very small and efficient. Therefore in combination, {χα} and {φβ} form a

suitable representation to expand quantities like ρ{1} and V
{1}

SCF[ρ{1}].

Starting with the response density, and again using superscript and subscript greek

indices to differentiate between contravariant and covariant tensor quantities respectively,

one can write

ρ{1}(r) =
∑
c,v

〈r|ψKS
c 〉xcv〈ψKS

v |r〉 =
occ∑
v

opt∑
c

〈r|χα〉〈χα|ψKS
c 〉xcv〈ψKS

v |φβ〉〈φβ|r〉. (6.7)

Here, the sum of the conduction states goes over all the states for which {χα} is op-

timised. The approximation of limiting the sum to states for which {χα} is explicitly

optimised goes beyond the implicit approximation involved when ρ{1} is expanded in a

finite-size representation. Any finite-size representation expansion automatically limits

the infinite unoccupied subspace to a finite number of Nbasis Kohn–Sham bands, where

Nbasis is the number of basis functions in the finite representation. By limiting the sum

to only optimised states, it is ensured that the only states included in the calculation are

well-represented by the chosen double representation of {χα} and {φβ}, a condition that

is generally not obeyed by other finite size representations.

In order for the approximation to be valid it is required that ρ{1} is well described by

a relatively small number of unoccupied states for some low energy excitations of interest

in the chosen system. This approximation can be rigorously tested by including a larger

subset of the conduction space manifold in the optimisation of the conduction density

matrix P{c}. In the spirit of the linear-scaling DFT formalism one can now introduce the
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response density matrix ρ{1}(r, r′) such that

ρ{1}(r, r) = ρ{1}(r) = χα(r)P {1}αβφβ(r) (6.8)

where the effective response density matrix P {1}αβ in mixed NGWF representation is

defined as

P {1}αβ =
occ∑
v

opt∑
c

〈χα|ψKS
c 〉xcv〈ψKS

v |φβ〉. (6.9)

Thus provided that {χα} and {φβ} are capable of representing ρ{1}(r, r′) for a given low

energy excitation, P {1}αβ is a representation of the TDDFT trial vector x in the product

vector space {|χα〉 ⊗ |φβ〉} spanned by the non-orthogonal localised orbitals rather than

the product vector space {|ψv〉 ⊗ |ψc〉} of orthonormal Kohn–Sham states.

Similarly to the response density, the coupling matrix elements of q, (V
{1}

SCF)cv =

〈ψc|V {1}SCF[ρ{1}]|ψv〉 can be rewritten as

(V
{1}

SCF)cv = 〈ψKS
c |χα〉〈χα|V̂

{1}
SCF|φβ〉〈φ

β|ψKS
v 〉. (6.10)

Furthermore, the diagonal part of qcv consisting of Kohn–Sham conduction-valence eigen-

value differences becomes:

(εKS
c − εKS

v )xcv =

opt∑
c′

〈ψKS
c |χα〉〈χα|Ĥ|χβ〉〈χβ|ψKS

c′ 〉xc′v

−
occ∑
v′

xcv′〈ψKS
v′ |φα〉〈φα|Ĥ|φβ〉〈φβ|ψKS

v 〉. (6.11)

Note that the matrix elements involving the Kohn–Sham Hamiltonian operator simply

correspond to the Hamiltonian matrices Hχ and Hφ in their respective conduction and

valence NGWF representation. The self consistent field response in mixed conduction-

valence NGWF representation is denoted as V
{1}χφ
SCF [ρ{1}] such that

(V
{1}χφ

SCF [ρ{1}])αβ = 〈χα|V {1}SCF[ρ{1}]|φβ〉. (6.12)

By inserting equations (6.11) and (6.10) into equation (6.6), multiplying with 〈χα|ψKS
c 〉

and 〈ψKS
v |φβ〉 from the left and right respectively and summing over the c and v indices,

one can remove all references to the canonical representation from q. Using the definition

of the response density matrix P{1}, the result of the TDDFT operator acting on a trial
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response matrix in NGWF representation reduces to the simple form

(qχφ)αβ = (P {c}HχP {1} − P {1}HφP {v})αβ

+ (P {c}V
{1}χφ

SCF [ρ{1}]P {v})αβ. (6.13)

Note that (6.13) makes no reference to individual Kohn–Sham states or bandstructure

energies. The only reference that is made is to collective representations in the form of the

density matrices of the valence and low energy conduction space in NGWF representation,

as well as the Kohn–Sham Hamiltonian in the respective NGWF representations. Hχ,

Hφ, P{c} and P{v} can all be obtained in linear scaling effort by performing a ground

state and conduction state optimisation in ONETEP. Evaluating the first two terms in

(6.13) for a given P{1} then reduces to a number of matrix multiplications, where the

dimensions of the matrices grow as O(N) with system size. Due to the strict localisation

of the NGWF representations, constructing V
{1}χφ
SCF [ρ{1}] for a given response potential

V
{1}

SCF[ρ{1}](r) requires O(N) computational steps and the matrix V
{1}χφ
SCF [ρ{1}] necessarily

becomes sparse in the limit of large systems. The scaling of the calculation of the response

potential V
{1}

SCF[ρ{1}](r) depends on the nature of the exchange-correlation functional used,

but is necessarily linear for all semi-local exchange-correlation functionals.

6.1.2 The Rayleigh–Ritz value

Using the action qχφ of P{1} acting on the full two-particle TDDFT Hamiltonian H[2p],

the lowest excitation energy can be obtained from optimising

ω = min
P{1}

 Tr
[
P{1}†SχqχφSφ

]
Tr
[
P{1}†SχP{1}Sφ

]
 . (6.14)

The above expression is trivially shown to be equivalent to optimising the Rayleigh–Ritz

value in canonical representation. However, the minimistation in (6.14) is not valid for any

arbitrary variation of the response density matrix and thus unlike in the canonical Kohn–

Sham representation, there is an implied constraint on P{1}. This constraint originates

from the way P{1} is defined in (6.9) and can be expressed in form of an invariance

relationship:

P{1}
′
= P{c}SχP{1}SφP{v} = P{1}. (6.15)

The constraint is analogous to the idempotency constraint on P{v} in density matrix based

DFT. Indeed, it originates from expanding the idempotency constraint on perturbations

to the ground state density matrix to first order [119]. Density matrices that violate

(6.15) do not describe excitations from occupied to unoccupied states, but also mix in
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forbidden occupied-occupied and virtual-virtual transitions. Just like in ground state

DFT, it becomes necessary to enforce the idempotency constraint explicitly as soon as

the canonical Kohn–Sham state representation is abandonned for a more flexible one. In

contrast, in the minimisation in (6.1), no constraint is placed on variations of x as {|ψc〉}
and {|ψv〉} are orthonormal to each other.

In practice, enforcing the condition in (6.15) during the minimisation of the excitation

energy does not cause the same problems as in ground state DFT. To see why, consider

minimising (6.14) by finding the derivative of the Rayleigh-Ritz eigenvalue with respect

to P{1}:
∂ω

∂P{1}
= gχφ =

2

Tr
[
P{1}†SχP{1}Sφ

] [SχqχφSφ − ωSχP{1}Sφ
]
. (6.16)

gχφ is the covariant gradient of the TDDFT excitation energy with respect to the con-

travariant density matrix P{1}. To transform it into a contravariant quantity, one mul-

tiplies from the left and the right with the appropriate inverse overlap matrices such

that

fχφ = (Sχ)−1 gχφ
(
Sφ
)−1

=
2

Tr
[
P{1}†SχP{1}Sφ

] [qχφ − ωP{1}
]
. (6.17)

fχφ can be used as a steepest descent search direction for a conjugate gradient algorithm

and has the same tensorial properties as P{1}. Note however, that for a response density

matrix obeying the invariance constraint (6.15), qχφ obeys the same constraint by con-

struction, as equation (6.13) is invariant under that transformation as long as P{v} and

P{c} are idempotent. From this it follows that fχφ is also invariant under the operation

(6.15) and so is any conjugate gradient search direction derived from it. Thus optimising

a matrix P{1} invariant under the transformation along a search direction derived from

fχφ will yield a new P{1} obeying the constraint. When minimising (6.14), it is therefore

sufficient to have an initial density matrix P
{1}
init that obeys the invariance relation. This

invariant P
{1}
init however is easily constructed from a random starting guess matrix P{1}guess

via a single projection into the occupied and unoccupied subspace:

P
{1}
init = P{c}SχP{1}guessS

φP{v}. (6.18)

6.1.3 Post-processing analysis

Once (6.14) is minimised, P{1} is the response density matrix corresponding the lowest

excitation of the system with associated excitation energy ω. From this response density

matrix, a number of interesting physical properties can be evaluated. The main quantity

of interest is the oscillator strength that determines how strongly the transition couples
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to light. It can be straightforwardly evaluated in linear-scaling effort by making use of

fω =
2ω

3

∣∣P {1}αβ〈φβ|r|χα〉∣∣2 . (6.19)

Furthermore, P{1} can be used to construct both electron and hole densities of the exci-

tation via

ρ{elec}(r) = χα(r)
(
P {1}SφP {1}†

)αβ
χβ(r) (6.20)

ρ{hole}(r) = φα(r)
(
P {1}†SχP {1}

)αβ
φβ(r). (6.21)

While representing P{1} in the space spanned by the conduction and valence NGWFs

allows for very efficient calculations compared to the canonical representation, the transi-

tion density matrix can now no longer be straightforwardly interpreted in terms of Kohn–

Sham transitions. However, decomposing TDDFT transitions in terms of Kohn–Sham

transitions often forms an important diagnostic tool in TDDFT calculations. While this

analysis cannot be performed in linear scaling effort, it can be carried out in an O(N3)

computational effort as a post-processing step after P{1} is converged. Let U{c} and U{v}

denote the matrices of conduction- and valence Kohn–Sham eigenvectors in NGWF space

such that

U{c}†HχU{c} = E
{c}
KS (6.22)

U{v}†HφU{v} = E
{v}
KS (6.23)

where E
{c}
KS and E

{v}
KS are the diagonal matrices of Kohn–Sham eigenvalues. U{c} and U{v}

can be obtained in O(N3) computational effort by directly diagonalising the conduction

and valence Hamiltonian. The matrices of eigenvectors can then be used to rotate P{1}

back into canonical Kohn–Sham space such that

x = U{c}†P{1}U{v} (6.24)

where x denotes again the transition vector in Kohn–Sham space corresponding to P{1}.

In this representation, |xcv|2 can then be rigorously interpreted as the percentage of the

Kohn–Sham transition from Kohn–Sham state v to Kohn–Sham state c that is mixed into

P{1}.

6.1.4 Multiple excited states

In general, one is interested in not only the single lowest, but rather the Nω lowest

excitations of a system. In that case, the outlined approach can be used to optimise a set
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of response density matrices
{

P
{1}
i ; i = 1, ...Nω

}
with corresponding

{
qχφi ; i = 1, ...Nω

}
such that the response density matrices span the subspace of the Nω lowest eigenstates.

In order to do so one can define the function

Ω =
Nω∑
i

ωi =
Nω∑
i

 Tr
[
P
{1}†
i Sχqχφi Sφ

]
Tr
[
P
{1}†
i SχP

{1}
i Sφ

]
 (6.25)

which can be minimised with respect to
{

P
{1}
i

}
under the constraint

Tr
[
P
{1}†
i SχP

{1}
j Sφ

]
= δij. (6.26)

Differentiating Ω with respect to P
{1}
i and assuming that

{
P
{1}
i ; i = 1, ...Nω

}
is nor-

malised, the steepest descent search direction fχφi orthogonal to all current response den-

sity matrices can be written as

fχφi = 2

[
qχφi −

∑
j

Tr
[
P
{1}†
j Sχqχφi Sφ

]
P
{1}
j

]
(6.27)

The orthogonality constraint on the response density matrices can be enforced by per-

forming a re-orthonormalisation step at the end of each conjugate gradient iteration. For

this re-orthonormalisation step, the Gram-Schmidt algorithm is used. A more detailed

outline of the type of conjugate gradient algorithm used here to optimise the subspace of

the lowest Nω TDDFT eigenstates can be found in [120].

Once Ω is minimised, the individual TDDFT eigenstates and eigenenergies are ob-

tained through a subspace diagonalisation to solve the Nω dimensional symmetric eigen-

problem

Au = ωu (6.28)

where

Aij = Tr
[
P
{1}†
i Sχqχφj Sφ

]
(6.29)

The matrix of eigenvectors u can then be used to build the individual TDDFT eigenvectors

from the
{

P
{1}
i ; i = 1, ...Nω

}
spanning the subspace. Due to the subspace diagonalisation,

the asymptotic scaling of the method with the number of excitation energies converged is

O(N3
ω). However, this computational step has a small prefactor associated with it and is

only relevant for extremely large numbers of Nω. The dominant scaling with number of

excitation energies comes in the form of the Gram-Schmidt orthonormalisation procedures

that have to be performed once per conjugate gradient step and that have an associated
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computational complexity of O(N2
ω).

6.2 Sparsity and linear-scaling

While the above formalism makes use of localised representations of the occupied and un-

occupied subspace and avoids any reference to individual Kohn–Sham states, the method

does not initially scale linearly with system size, since evaluating qχφ requires a number

of matrix-matrix multiplications involving P{c}, P{v} and P{1}. As the dimensions of

the density matrices involved grow as O(N) with system size, evaluating qχφ can only

scale linearly with system size if P{c}, P{v} and P{1} can all be treated as sparse for

sufficiently large system sizes. While the valence density matrix P{v} is guaranteed to be

exponentially localised in any system with a bandgap and time-reversal symmetry (see

section 3.3.6), the same exponential localisation properties cannot be universally justified

for P{c} and P{1} and require some more careful consideration.

The proof of exponential localisation of P{v} can be extended to P{c} if and only if

there is a second bandgap in the conduction space manifold and P{c} is taken to span the

set of composite Kohn–Sham bands between the two bandgaps. Strictly speaking, this is

also the only scenario in which exponentially localised Wannier functions exist for the part

of the conduction manifold defined by P{c} and a representation of P{c} in the form of

localised support functions {χα} is formally justified in infinite systems (see section 5.2.1)
30. If P{c} is exponentially localised for some part of the conduction space manifold, it

follows that the joint density matrix spanning both the valence bands and the composite

set of bands described by P{c} must also be exponentially localised. The joint density

matrix can be treated as a block diagonal matrix with the valence and conduction density

matrix making up the diagonal blocks. The perturbation represented by the response

density matrix P{1} corresponds to the off-diagonal blocks of the joint density matrix.

However, the application of a small perturbation cannot break the disentanglement of the

joint manifold of P{v} and P{c} from the rest of the conduction manifold and thus cannot

break the exponential localisation of the joint block density matrix [99] and it follows that

P{1} must also be exponentially localised.

The exponential localisation of an arbitrary excitation described by P{1} then hinges

on two conditions: that the excitation only contains Kohn–Sham contributions into the

set of unoccupied states described by P{c} and that P{c} itself is exponentially localised.

In general there is no formal reason for the existence of a set of composite Kohn–Sham

states in the conduction space manifold that does not have any degeneracies in k-space

with any other unoccupied bands in arbitrary periodic systems. However, for near one-

30Although Wannier-like functions with strict localisation properties can in many cases be obtained for
some set of bands even if there is some degeneracy with other bands not part of the set [121].
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dimensional systems and molecular crystals, where low-lying bands show little dispersion,

it should always be possible to choose such a composite set for some low energy subset of

the unoccupied manifold. Clearly, for any excitations into high energy Kohn–Sham states,

this exponentially localised description is no longer possible, as the high energy Kohn–

Sham states will start to show dispersion behaviour approaching that of free electrons with

εKS(k) ∝ |k|2 and a disentangling of the conduction space manifold is no longer possible.

This puts a limitation on the maximum energy of excitations that can be computed in

linear-scaling effort with the method described here.

However, it should be pointed out that the limitations described are not unique to the

method discussed here, and not unique to linear-scaling linear-response TDDFT either.

Any density-matrix based linear-response TDDFT approach making use of localised or-

bitals will suffer from the same limitation, as the representation of the conduction space

manifold with localised orbitals is only strictly justified for a set of composite bands. In

general, any localised orbital method will struggle to describe high energy excitations as

the electron is excited into a state that closely resembles that of a free electron. Further-

more, linear-scaling time-evolution TDDFT has to deal with similar problems, as in those

methods, the time dependent response density matrix of the evolving Kohn–Sham system

is treated as exponentially localised without any formal justification [97,122].

In general, it is expected that there is a large class of systems where the truncation of

all involved density matrices and thus truly linear-scaling calculations are indeed possible.

There are good reasons to assume that for a large number of excitations, P{1} should be

considerably more sparse than the ground state and conduction space density matrices

and that premise will be revisited in chapter 8.

However, for fully linear-scaling TDDFT calculations where all density matrices are

sparse, there are additional complications to the algorithm described in the previous

section. The main one originates from the fact that for truncated density matrices, the

invariance relationship of equation (6.15) only holds approximately. The reason for this

is that P{1}
′

is required to have the same predefined sparsity pattern as P{1}, necessarily

forcing (6.15) to be an approximate relationship. This then causes qχφ to violate the

invariance relationship and the accumulation of errors can cause the minimisation scheme

outlined in the previous section to fail. In the spirit of density matrix DFT approaches,

one can introduce the effective positive-semidefinite penalty functional Q[P{1}] such that

Q
[
P{1}

]
= Tr

[(
P{1}†SχP{1}Sφ −P{1}

′†SχP{1}
′
Sφ
)2
]
. (6.30)

where P{1}
′

is defined through (6.15). If none of the density matrices are truncated

and P{c} and P{v} are idempotent, Q[P{1}] strictly vanishes. For truncated matrices it
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can be taken as a measurement of how much the invariance constraint is violated by

P{1}. The penalty functional can be forced to stay below a chosen threshold value, by

iteratively applying the projection of (6.15) to the response density matrix at the end of

each conjugate gradient iteration, thus stabilising the algorithm. It should be pointed out

that the violation of the invariance relationship is, unlike the violation of the idempotency

constraint in ground state density matrix DFT, an issue that arises purely from numerical

errors in sparse matrix multiplications due to the enforced truncation.

6.3 Representing the conduction manifold

So far, P{1} has been constrained to only contain transitions into low energy Kohn–Sham

states represented by P{c} for which the conduction NGWFs {χα} are explicitly optimised.

This has the advantage of ensuring that the resulting excitation is well represented by

the localised support functions. The optimisation of {χα} and {φβ} for their respective

manifolds also has the advantage that the representation of P{1} is much more compact

than it would be in other localised basis set approaches making use of numerical atomic

orbitals or Gaussians. Furthermore, it allows for {φα} to be very strictly localised, while

the generally more delocalised Kohn–Sham states of the conduction manifold can be

represented by slightly less strictly localised functions {χβ}, making the representation

very computationally efficient.

However, even low energy excitations often show a relatively slow convergence with

the number of unoccupied states in the conduction manifold explicitly included in the

calculation and some form of representing those states becomes important for convergence.

While it is always possible to optimise {χβ} for a larger subset of the conduction manifold,

this is not always desirable in practice, as higher energy conduction states normally require

increasingly delocalised NGWFs to be represented, resulting in a loss of sparsity and thus

computational efficiency. In methods that make use of a single set of localised orbitals to

represent both the occupied and unoccupied space, this issue is often avoided by including

the entire unoccupied subspace representable by the basis set into the calculation via a

projector (see, for example [117, 123, 124]). In the formalism presented here, a similar

result can be reached by optimising {χα} for the set of low energy unoccupied states that

are considered to be the most important contributions to P{1} and to include the rest

of the conduction space manifold in an approximate manner. The simplest choice for a

redefined conduction density matrix is

P{c} = (Sχ)−1 (6.31)

This choice trivially preserves the idempotency constraint placed on P{c} and is a projec-
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tion onto the entire space representable by {χα}. However, given that the set of {χα} is

not generally chosen to be orthogonal to {φβ}, the above choice for the conduction pro-

jector also includes valence Kohn–Sham states represented by {χα}. Thus using (Sχ) as

a projector does destroy the clear separation between occupied and unoccupied states, al-

lowing P{1} to contain unphysical transitions between valence states represented by {χα}
and valence states represented by {φβ}.

In order to avoid unphysical valence-valence transitions, the valence states have to be

projected out of the redefined choice for P{c}, which can be achieved by redefining the

conduction density matrix as:

P{c} =
(

(Sχ)−1 − (Sχ)−1 SχφP{v}
(
Sχφ
)†

(Sχ)−1
)
. (6.32)

where Sχφ denotes the cross-overlap matrix between the two NGWF representations.

Note however, that P{c} defined through (6.32) is generally not idempotent even for

idempotent P{v}, due to the two different representations used. P{c} is only idempotent

if {χα}, apart from spanning the low energy conduction space, also spans the same space

as {φβ}, which is generally not true since the two sets are optimised to span different

manifolds. This can be seen by explicitly evaluating

P{c}SχP{c} = Sχ − 2 (Sχ)−1 SχφP{v}
(
Sχφ
)†

(Sχ)−1

+ (Sχ)−1 SχφP{v}
(
Sχφ
)†

(Sχ)−1 SχφP{v}
(
Sχφ
)†

(Sχ)−1 (6.33)

which, assuming idempotency of P{v}, only reduces to the expression of the redefined

P{c} if
(
Sχφ
)†

(Sχ)−1 Sχφ = Sφ. This in turn is only true if {χα} can represent the

same space as the set of valence NGWFs and will thus generally not be true in a typical

ONETEP calculation. However, it is often found that the redefined P{c} is near-idempotent,

especially if only a few conduction states are optimised that have a similar character to

the valence states, causing {χα} to be relatively similar to {φβ}. Thus it is often found

that the penalty functional defined in (6.30) stays below a desired threshold during the

entire calculation, but the degree to which P{c} violates the idempotency constraint is

generally system-dependent and is not known a priori.

The consequences of the lack of idempotency in the projector can be avoided by

introducing a new set of NGWFs {θα} = {χβ} ⊕ {φγ} such that {θα} is the joint set

of conduction and valence NGWFs. If it is used for representing the conduction space

manifold only, the projector can be defined to be rigorously idempotent via

P{c} =
((

Sθ
)−1 −

(
Sθ
)−1

SθφP{v}
(
Sθφ
)† (

Sθ
)−1
)
. (6.34)
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This allows the use of the projector onto the entire unoccupied subspace representable by

{θα} without introducing any numerical problems due to lack of idempotency. Since the

joint set of NGWFs is generally about twice as large as the set of conduction NGWFs,

using the projector in conjunction with the joint NGWF set increases the computational

complexity of the algorithm by a factor of two.

While the use of the joint set allows for a rigorous idempotent definition of the con-

duction operator via a projector onto the entire conduction manifold, there are a number

of drawbacks in this choice. The increased computational complexity is one, but the

main issue comes in the form of the strong linear dependence that {χα} and {φβ} can

exhibit if the conduction NGWFs are optimised for a small number of conduction states

that have the character of anti-bonding states. This linear dependence can in some cases

cause problems when attempting to invert the joint overlap matrix Sθ. An alternative to

using the projector in (6.32) with the joint NGWF set is to use the projector as defined

by equation (6.31) and the conduction NGWF set only but removing unwanted valence

transitions from Hχ when evaluating the TDDFT operator qχφ. This can be achieved by

simply redefining qχφ via

(qχφ)αβ = (P {c}Hχ
projP

{1} − P {1}HφP {v})αβ (6.35)

+ (P {c}V
{1}χφ

SCF [ρ{1}]P {v})αβ. (6.36)

where Hχ
proj is the projected Hamiltonian used in the conduction optimisation (see section

5.2.1). Since Hχ
proj contains all valence eigenstates, but has them shifted to high energies,

these forbidden transitions are never mixed in when
{

P
{1}
i

}
is minimised for some low

energy excitations. The assumption here is that the energy shift λ in the projected

Hamiltonian is chosen so that it leaves the low energy conduction spectrum completely

unaltered compared to the pure Hamiltonian in conduction NGWF representation. In

practice, the method using the projected Hamiltonian and the conduction NGWF set

and the method using the projection operator and the joint set are expected to produce

slightly different results, given that one method is working with a significantly larger

representation of the unoccupied space. The appropriateness of the different conduction

manifold representations is analysed further in section 6.5.

6.4 The exchange-correlation kernel and spin

In the above discussion, any spin dependency on both the response density matrix and

on the exchange correlation kernel has been ignored. The work presented here is limited

to closed shell systems, where the spin dependence of the ground state density can be

dropped. As discussed in chapter 4, in many situations the spin structure of the 2-

123



6. LINEAR-SCALING TDDFT IN ONETEP

particle TDDFT Hamiltonian can be exploited and singlet and triplet excitations can be

decoupled. The decoupled singlet and triplet excitations can then be solved for separately

by considering two different response potentials to the density perturbation:

V
{1}

SCF[ρ
{1}
singlet](r) = 2

ˆ
d3r′

ρ
{1}
singlet(r

′)

|r− r′|

+

ˆ
d3r′

(
δ2Exc

δρ↑(r)δρ↑(r′)

∣∣∣∣
ρ0

+
δ2Exc

δρ↑(r)δρ↓(r′)

∣∣∣∣
ρ0

)
ρ
{1}
singlet(r

′)

V
{1}

SCF[ρ
{1}
triplet](r) =

ˆ
d3r′

(
δ2Exc

δρ↑(r)δρ↑(r′)

∣∣∣∣
ρ0

− δ2Exc

δρ↑(r)δρ↓(r′)

∣∣∣∣
ρ0

)
ρ
{1}
triplet(r

′) (6.37)

Here the up and down arrows again denote different spin indices and it is assumed that

the ground state density of the system is spin-degenerate.

For the purpose of this work, only adiabatic semi-local density kernels are considered

and thus any memory effects or frequency dependence in fxc are ignored, as well as any

long range effects. In this case, the expression for the response potential of the system

can be significantly simplified, with

V
{1}

SCF[ρ
{1}
singlet](r) = 2

ˆ
d3r′

ρ
{1}
singlet(r

′)

|r− r′|

+

(
∂Vxc(r)

∂ρ(r)

∣∣∣∣
ρ0

+
∂Vc(r)

∂ρ(r)

∣∣∣∣
ρ0

)
ρ
{1}
singlet(r) (6.38)

V
{1}

SCF[ρ
{1}
triplet](r) =

(
∂Vxc(r)

∂ρ(r)

∣∣∣∣
ρ0

− ∂Vc(r)

∂ρ(r)

∣∣∣∣
ρ0

)
ρ
{1}
triplet(r) (6.39)

for the triplet and singlet states respectively, where Vc(r) denotes the correlation potential

only. Thus all that is required in the case of a spin degenerate ground state and a

decoupled treatment of singlets and triplets in the excited states is the second derivative

of the exchange and the correlation energy with respect to the density, evaluated at the

ground state density. For any class of semi-local exchange-correlation functional discussed

in this work, this second derivative can be easily found as an analytic expression from the

exchange-correlation energy. However, some care has to be taken with generalised gradient

approximations, since the second derivative introduces higher order gradient terms that

can become difficult to treat numerically on a finite real-space grid [117]. An alternative

comes in the form of evaluating the exchange-correlation part of the response potential
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using a finite-differences technique31, where one can write

V
{1}

SCF[ρ
{1}
triplet](r) ≈

Vxc[ρ
{0} + ερ

{1}
triplet](r)− Vxc[ρ

{0} − ερ{1}triplet](r)

2ε

−
Vc[ρ

{0} + ερ
{1}
triplet](r)− Vc[ρ

{0} − ερ{1}triplet](r)

2ε
(6.40)

for a chosen ε. Numberical tests have shown to yield good agreements with the analytical

results for ε = 10−4, in good agreement with [117]. For the remainder of this work, any

time an adiabatic LDA functional is used, the second derivative of the exchange correlation

energy is explicitly evaluated using the analytic expression, while for any other functional,

the finite difference technique is used. While the finite-difference evaluation does produce

a computational overhead, since the exchange correlation potential has to be recalculated

repeatedly every time qχφ is evaluated, this overhead is generally quite small, at least

where GGA functionals are involved. For van der Waals type functionals, the overhead

is found to be more significant, making an analytic evaluation of the second derivative

desirable, however since this work does not make excessive use of van der Waals type

functionals, the finite-difference implementation is deemed to be sufficient.

While this work does not make use of any hybrid functionals, it should be pointed out

that they can be introduced into the linear-scaling linear-response formalism in a very

straightforward manner. For hybrid functionals V
{1}
SCF can be split into V

{1}loc
SCF containing

the local part of the functional and V
{1}HF
SCF containing the fraction of exact exchange.

V
{1}loc
SCF can be evaluated trivially in linear-scaling effort, while the expression for V

{1}HF
SCF

reduces to (
V
{1}HF

SCF

)
αγ

= −2cHF ×

P {1}βδ
ˆ ˆ

χα(r)φγ(r
′)χβ(r)φδ(r

′)

|r− r′|
d3r d3r′ (6.41)

where cHF denotes the fraction of Hartree-Fock exchange [99]. Note that (6.41) is simply

the gradient of the Hartree-Fock exchange energy for a density ρ{1}(r), a term that is very

similar to terms that have to be evaluated in ground state DFT using hybrid functionals.

It has been long known that in ground-state DFT, the analogous gradient of the Hartree-

Fock energy with respect to the ground-state density can be evaluated in linear-scaling

effort [126]. For ground state DFT, such an implementation is already available in the

ONETEP code [127]. However, it has not yet been extended to treat two different sets of

31Here, it should be noted that exact arbitrary-order derivatives of the exchange-correlation energy
can also be obtained via algorithmic differentiation [125]. However, for the purpose of this work, a finite
differences approach is used instead.
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NGWFs and while all ingredients for linear-scaling TDDFT based on hybrid functionals

are available in the code, the implementation will be left to future work.

6.5 Benchmark tests

In this section a number of benchmark tests are performed on small and medium sized

systems to both assess the accuracy of the TDDFT approach presented here compared

to conventional TDDFT approaches and to demonstrate the scaling of the algorithm. All

calculations shown here are carried out using an ALDA exchange-correlation kernel based

on the Perdew-Zunger exchange-correlation energy [33]. Norm-conserving pseudopoten-

tials are used throughout this chapter. Unless specified otherwise, a minimal NGWF set

of four NGWFs per carbon, oxygen, nitrogen, magnesium, gallium and arsenide atom

and one NGWF per hydrogen is chosen in each of the calculations, both for the valence

NGWFs {φα} and the conduction NGWFs {χβ}. Furthermore, the conduction space in

the TDDFT calculations is represented through a projection onto the entire unoccupied

subspace and all involved density matrices are fully dense unless specified otherwise.

6.5.1 Pentacene

The first benchmark test is performed on pentacene (C22H14) because its moderate size

means that it can be conveniently studied using conventional approaches to linear-response

TDDFT. First, the importance of representing the unoccupied subspace correctly is es-

tablished and the effects of some of the choices presented in section 6.3 are discussed.

In order to do so the calculations are compared to benchmark results obtained with the

NWChem quantum chemistry package [128].

For the ONETEP benchmark results, a simulation cell size of 40×49×40 a3
0 and a kinetic

energy cutoff of 750 eV are chosen throughout, while the NGWF radius is chosen to be

10 a0 for {φα} and 15 a0 for {χβ} unless specified otherwise. The atomic positions of the

pentacene molecule are optimised at the LDA level using the above NGWF radius and

kinetic energy cutoff and the same atomic positions are used in the NWChem calculations.

For the NWChem reference calculations, an aug-cc-pVTZ gaussian basis set [129] is used.

Core electrons are explicitly included in the ground state calculation but are removed

from the active space of possible transitions in the TDDFT calculation to guarantee a

good comparability with the ONETEP results.

The first test can be taken as a more detailed analysis on how the representation

of the unoccupied subspace as discussed in section 6.3 influences the excitation energies

obtained with the ONETEP method. For this purpose, the 10 lowest conduction states are

optimised explicitly and four different cases are considered: case A limits the conduction
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ONETEP(A) ONETEP(B) ONETEP(C) ONETEP(D) NWChem

1 2.055(0.047) 1.903 (0.041) 1.883 (0.050) 1.885 (0.047) 1.844 (0.044)
2 2.430 2.429 2.416 2.420 2.408
3 3.003 2.996 2.961 2.986 2.961
4 3.362 3.191 3.143 3.155 3.115
5 3.434 3.434 3.419 3.422 3.412
6 3.988(0.032) 3.898(0.030) 3.852(0.034) 3.865(0.033) 3.839(0.030)
7 3.941 3.933 3.918 3.919 3.908
8 4.026 4.020 4.003 4.010 4.002
9 4.086(0.015) 4.059 (0.010) 4.029 (0.011) 4.042(0.013) 4.029(0.012)
10 4.168 4.168 4.162 4.160 4.159
...

...
...

...
...

...
(d) 4.252 4.254 4.251 4.246 4.246
(b) - 4.171 (2.89) 4.311 (2.58) 4.278(3.85) 4.270(3.88)

Table 6.1: Results for the ten lowest singlet states of pentacene, as calculated using ONETEP

in comparison with results generated by NWChem. The first three columns correspond
to ONETEP calculations using different representations of the unoccupied subspace, where
A denotes a conduction space limited to the 10 lowest optimised states, B (Sχ)−1 as a
projector and Hχ

proj, C uses the conduction NGWFs and the non-idempotent projector
and D the joint NGWF set and the idempotent projector onto the entire unoccupied
space. The NWChem calculations are performed using an aug-cc-pVTZ basis. Energies
are given in eV, oscillator strengths in brackets.
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space manifold to the 10 states only. Case B uses S{χ} as a projector onto the unoccupied

subspace and Hχ
proj as the conduction Hamiltonian, where the shift parameter λ is fixed

to 20 Ha. In case C the non-idempotent projector onto the entire unoccupied space as

represented by the conduction NGWF set only (see equation (6.32)) is used, while in

case D the joint NGWF set is used to represent the conduction space, allowing for the

projection operator to be rigorously idempotent (see equation (6.34)).

The results of these calculations for the first ten singlet excitations of pentacene, as

well as two selected higher energy states (one dark and one bright, labelled (d) and (b)

respectively) can be found in table 6.1. The character of the excited states obtained has

been analysed and compared to the NWChem results by breaking down the excitations

into individual Kohn-Sham transitions. Where necessary, the ONETEP excited states have

been reordered such that the same order as in the NWChem results is obtained.

Note that there is significant discrepancy between the results obtained if the conduc-

tion subspace is limited to only the ten lowest conduction states and all the other results

for a number of excited states. While most of the dark states are reasonably well rep-

resented, the states with significant oscillator strength, as well as the 4th excitation, are

seriously overestimated in energy, with discrepancies of up to 0.15 eV. The reason why

some of the dark states are well represented by truncating the allowed unoccupied sub-

space is that these states show only minimal mixing of Kohn–Sham states and are well

represented by a single low energy Kohn–Sham transition.

This phenomenon is easily understood. In general, transitions that have a vanishing

linear response term V
{1}
SCF associated with them tend to be pure low energy Kohn–Sham

transitions, while large response terms V
{1}
SCF imply that the excitation energy can be

lowered by mixing in higher energy Kohn–Sham transitions that minimise the system

response. Large off-diagonal response terms are often associated with high oscillator

strengths, while transitions with vanishing system response tend to be pure Kohn–Sham

transtions with small oscillator strengths. Thus limiting the unoccupied subspace to a

small energy window naturally causes a number of dark states to be very well represented

but produces significant errors for other states.

Comparing the other three representations of the unoccupied subspace with the bench-

mark results from NWChem, very good agreement is found, both between the individual

ONETEP results and with the benchmark calculation. Average discrepancies per excitation

between the ONETEP methods for the first ten states is of the order of 0.01 eV, while

the average errors compared to the NWChem results are slightly larger. The main dis-

crepancies occur in the first and 4th state, precisely the excitation that is very badly

represented by truncating the conduction subspace to 10 states and therefore a state that

contain significant mixing with higher energy Kohn–Sham states. Naturally, this state is
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ONETEP (1H) ONETEP (2H) ONETEP (5H) NWChem

1 1.883 (0.050) 1.855 (0.049) 1.839 (0.050) 1.844 (0.044)
2 2.416 2.402 2.405 2.408
3 2.961 2.942 2.945 2.961
4 3.143 3.121 3.103 3.115
5 3.419 3.405 3.409 3.412
6 3.852(0.034) 3.831(0.035) 3.821(0.035) 3.839(0.030)
7 3.918 3.900 3.903 3.908
8 4.003 4.000 3.996 4.002
9 4.029 (0.011) 4.032 (0.013) 4.006(0.013) 4.029(0.012)
10 4.162 4.106 4.101 4.159
...

...
...

...
...

(d) 4.251 4.216 4.211 4.246
(b) 4.311(2.58) 4.281(3.87) 4.239(3.92) 4.270(3.88)

Table 6.2: Results for the excited states of pentacene, as calculated using ONETEP with
the non-idempotent projection onto the entire unoccupied subspace and the conduction
NGWF representation, in comparison with results generated by NWChem. Results are
shown for the 10 lowest excitations, as well as two selected higher energy states, one dark
and one bright (labelled (d) and (b) respectively). The first three columns correspond to
ONETEP calculations using three different conduction NGWF representation, with 1, 2
and 5 NGWFs per H atom respectively. The NWChem calculations are performed using
an aug-cc-pVTZ basis. Energies are given in eV, oscillator strengths in brackets. This
table is reproduced from [99].

not perfectly represented in ONETEP by only optimising {χα} for the 10 lowest conduction

states.

The main discrepancy in the ONETEP results is obtained for the bright high energy

excited state, for which both results sets using {χα} to represent the unoccupied states

fail to give a decent description of the excitation energy and the oscillator strength but

for which the results set using the joint NGWF representation is in excellent agreement

with the NWChem results. In general, the joint representation of the conduction space in

combination with the idempotent projector onto the entire unoccupied subspace shows the

most consistent agreement with the NWChem results over the wide range of excitations

tested here. The main premise made in the previous sections holds: while it is evidently

very important to have some form of representation of the entire unoccupied manifold in

order to obtain well-converged excitation energies, good results are achieved for optimising

the NGWFs for only a small number of conduction states explicitly and representing the

rest of the unoccupied space approximately.

It should be noted that the ONETEP results are achieved using only a minimal number

of NGWFs. The effective dimensions of the two-particle TDDFT Hamiltonian in NGWF

representation are thus 10404 × 10404 if the conduction NGWF set is used to represent
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the unoccupied subspace and 20808 × 20808 if the joint set is used. In contrast, the

aug-cc-pVTZ basis set in NWChem generates an effective two-particle Hamiltonian of

dimensions of approximately (1.8× 106)× (1.8× 106), which is significantly larger in size,

making the ONETEP representation very compact and efficient.

It can be seen that the minimal NGWF representation can achieve very good results

if the unoccupied subspace is introduced into the calculation in some approximate form.

However, it is also demonstrated that some states in the low energy spectrum of pentacene

have a significant amount of high energy conduction states mixed in that might be only

poorly representable by the minimal set of NGWFs chosen. In order to test for this, the

calculation performed with the conduction NGWF set only and with the nonidempotent

projector onto the unoccupied space is taken and repeated for different sets of conduction

NGWFs. Specifically, the conduction NGWFs on the hydrogen atoms are enhanced by

choosing two and five NGWFs per hydrogen instead of the minimal representation of a

single NGWF. It is to be assumed that the additional variational freedom on the hydrogen

atoms leads to a better representation of some very delocalised unoccupied states. When

optimising {χα} the additional variational freedom allows for explicitly converging the

first 14 conduction states for the enhanced NGWF representations instead of only the

first 10 for the minimal set.

The results of this benchmark calculation as compared to the NWChem results are

summarised in table 6.2. Note that the enhanced NGWF representations indeed sys-

tematically lower the energy of the excitations that have a significant amount of high

energy conduction states mixed in, leaving other states virtually unaltered. Enhancing

the NGWF representation leads to a significant improvement of the character of the

bright state, with the oscillator strength in line with the NWChem results for both 2

and 5 NGWFs on the H atoms. In general, an improved agreement with the benchmark

results is found for the two enhanced representations, suggesting that representing the

very diffuse high energy conduction states correctly becomes important in a number of

low energy states in pentacene. It should be pointed out that even the enhanced repre-

sentations chosen here are significantly smaller in size than the NWChem representation,

with the largest representation corresponding to a two-particle Hamiltonian of dimensions

24336 × 24336. It can be concluded that the compact ONETEP NGWF representation of

the conduction-valence product space can yield results that are in excellent agreement

with Gaussian representations that are larger by a factor of 100.

It should be pointed out that while NWChem is treated as a benchmark in this work,

it also uses a localised orbital representation and is thus expected to experience similar

drawbacks to ONETEP when converging excitations into very delocalised conduction states.

In many respects, the NGWF approach is at an advantage here, since it is always possible
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Figure 6.1: Convergence of three selected excitation energies of pentacene with conduction
NGWF radius (adapted from [99]).

to increase the NGWF localisation region and optimise higher energy unbound conduction

states to get a good representation of delocalised excitations. Note for example that for

the states labelled (b) and (d) which have significant contributions from transitions into

delocalised conduction states, the enhanced NGWF representations seem to converge to

significantly lower excitation energies than the NWChem benchmark.

As a final benchmark test on the pentacene molecule, the dependence of the excited

state energies on the NGWF localisation radius of {χα} is established. The minimal

NGWF representation and the non-idempotent projector unto the unoccupied space is

chosen again for this purpose and the NGWFs are optimised for the 10 lowest conduction

states. The results for three selected excited states can be found in figure 6.1, where the

states shown correspond to states labelled 6, 9 and (d) in table 6.2 respectively.

As it can be seen from the data, the three states show very different convergence

behaviour. While the 6th singlet state is already well converged for an NGWF radius of

9 a0, the dark state shows a much slower convergence behaviour, requiring a radius of 15 a0

to reach convergence. The different convergence behaviours can be explained by breaking

down the excitations into individual Kohn–Sham transitions, where it is found that the

dark state is composed of 99 % of a transition from the HOMO to the 9th unoccupied

state. The 9th unoccupied Kohn–Sham state is only very lightly bound and diffuse and

thus naturally requires a larger NGWF radius to be represented correctly. However,

while different excited states show different convergence behaviours depending on the
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Figure 6.2: Low energy absorption spectrum of C60 calculated with ONETEP as compared
to results of the three main transitions obtained from [130](figure has been adapted from
[99]). A Lorentzian broadening of 0.03 eV has been used on both the reference results
and the ONETEP results and a constant shift in absorption strength has been applied to
the reference results in order to make them comparable.

character of the Kohn–Sham states involved in the transition, the results demonstrate

that the NGWF method is very capable of representing even diffuse excited states and

that increasing the localisation radius leads to a systematic convergence of excitation

energies.

6.5.2 Buckminsterfullerene

The next test system considered in this work is the C60 molecule that has been studied

in great detail by conventional TDDFT implementations. Since the low energy spectrum

of C60 is dominated by a few very strong peaks and a large number of dark states, it

provides a good test system to demonstrate the scaling of the method with the number

of individual excitations converged. The ONETEP results are obtained using a box size of

37.8× 37.8× 37.8 a3
0 and a kinetic energy cutoff of 800 eV. The NGWF radii of 13 a0 and

8 a0 for the conduction and valence representations respectively are found to yield well

converged results while the conduction NGWFs are optimised for the 30 lowest unoccupied

states. The conduction space manifold is represented by {χα} and the non-idempotent

projector is used for the purpose of this calculation.

The low energy spectrum of C60 as generated from the lowest 150 excitations can
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Figure 6.3: Time taken during a full calculation of applying the TDDFT operator when
calculating the 150 lowest excitations of C60. The blue and red lines are linear and
quadratic fits to the data points respectively. The figure is reproduced from [99].

be found in figure 6.2, where it is compared to the three main transitions taken from a

reference calculation found in [130] that was obtained with a 6-31G+s32 Gaussian basis

set and the BP86 GGA functional. The two main peaks and their relative oscillator

strengths are found to be in good agreement with the reference calculations, with the

ONETEP results being slightly lower in energy. However, as noted by the authors of the

reference calculation, the Gaussian basis set used is relatively small and estimated errors

to excitation energies are around 0.1 eV.

In figure 6.3, the scaling of the TDDFT algorithm with respect to the number of

excited states converged is demonstrated. As can be seen, the time taken to apply the

TDDFT operator to a batch of trial transition vectors scales linearly with the number of

transition vectors. However, the total time taken by the algorithm to converge the lowest

Nω excited states shows a scaling that is quadratic in character. This confirms the analysis

in section 6.1.4, in that the O(N3
ω) asymptotic scaling of the subspace diagonalisation is

completely insignificant even when Nω = 150 compared to the O(N2
ω) scaling of the

Gram-Schmidt orthonormalisation that has to be carried out at the end of each conjugate

gradient iteration.

32This denotes a 6-31G basis set that is augmented by diffuse s-functions. A more detailed description
on how the basis set was created can be found in [130].
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Figure 6.4: Excitation spectra generated from the 12 lowest singlet excitations of chloro-
phyll a in vacuum, compared to an experimental spectrum in diethyl ether [131](figure
adapted from [99]). A Lorentzian broadening of 0.03 eV was used for the TDDFT results.

6.5.3 Chlorophyll

Chlorophyll a (MgN4O5C55H72) can be considered an ideal application for the method

developed here. Although it is too small to take advantage of the linear-scaling capabilities

of the ONETEP method, it has a low energy spectrum that is completely determined by a

few transitions with large oscillator strength, while containing very few dark states. Thus

in contrast to C60, where a large number of excited states have to be converged in order

to obtain a meaningful low energy spectrum, Chlorophyll a is much more suited to the

linear-response TDDFT approach considered here.

Calculations are performed using a kinetic energy cutoff of 800 eV and a localisation

radius of 12.0 a0 and 8.0 a0 is used for the {χα} and {φβ} NGWF sets respectively. The

lowest 15 conduction states are explicitly optimised and the non-idempotent projector

onto the entire unoccupied subspace is used.

Figure 6.4 shows the low energy spectrum of chlorophyll a generated from the 12 lowest

singlet states in comparison to experimental results of chlorophyll in diethyl ether [131].

Note that the general shape of the spectrum, showing a sharp peak due to a single

transition in the low energy range and an extended feature at around 3.0 eV, is well

reproduced by the TDDFT calculation. In general, the TDDFT spectrum shows a blue

shift compared to the experimental results, in good agreement to published TDDFT

results, both within the Tamm–Dancoff approximation and a planewave basis and full
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TDDFT and a localised orbital representation [123,124,132].

Comparing individual excitations, the position of the first peak in the spectrum is

found to be at 2.057 eV with an oscillator strength of 0.208, in good agreement to the

2.00 eV and oscillator strength of 0.182 obtained by Sundholm [132] for an SP(V) Gaussian

basis set. The onset of the extended feature is caused by an excitation at 2.803 eV and

an oscillator strength of 0.133, while Sundholm reports an energy of 2.75 eV and an

oscillator strength of 0.182 for the same transition. The ONETEP results are systematically

higher in energy and while in Sundholm’s result the two main spectral features in the

low energy range are caused by excitations with identical oscillator strength, the ONETEP

results show some shift of spectral weight to the lowest singlet excitation of the system.

Note however, that the differences between the results presented here and the published

results in [132] are likely to originate from the fact that this work makes use of the Tamm–

Dancoff approximation, which is known to raise the excitation energy of bright states by

as much as tenths of eVs in some cases and cause changes in spectral weightings33.

In summary, the obtained results for chlorophyll a that are in reasonably good agree-

ment with the ones published in the literature. It can be concluded that systems like

chlorophyll, with low energy spectra that are completely dominated by a few strong tran-

sition and that do not contain a large number of dark states, are an ideal application for

the method developed in this work, allowing for very accurate and efficient calculations.

6.5.4 Carbon nanotube

To demonstrate the capabilities of the algorithm to perform TDDFT calculations in linear-

scaling effort, a number of benchmark calculations on a (10,0) single-walled carbon nan-

otube (CNT) are carried out in periodic boundary conditions. Different supercell sizes

containing 640, 920, 1240, 1600 and 1920 atoms are chosen, corresponding to segments of

127, 193, 257, 321 and 386 a0 in length.

All calculations are performed with a 700 eV kinetic energy cutoff and 8 a0 and 12 a0

radii for the {χα}- and {φβ}-NGWF representations respectively. The conduction NG-

WFs are optimised for all bound states and no projector onto the entire unoccupied

subspace is used. Thus, the size of the allowed unoccupied subspace for the TDDFT

transitions does increase linearly with system size. For the largest CNT supercell con-

taining 1920 atoms, the dimensions of the active canonical Kohn–Sham transition space

are (1.84× 106)× (1.84× 106), while the 2-particle Hamiltonian in effective conduction-

valence NGWF representation has a size of (5.90× 107)× (5.90× 107), prohibitively large

for any non-iterative treatment of the eigenvalue problem. In order to achieve a linear

scaling computational effort with system size, the conduction and valence density matrices

33For an example of this effect as observed with polycyclic aromatic hydrocarbons, see [133]
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Figure 6.5: Time taken for a single conjugate gradient iteration for a (10,0) carbon nan-
otube with different numbers of atoms in the system for fully dense density matrices and
for truncated density matrices with a truncation radius of 60 a0. The blue line represents
a linear fit while the red line is a cubic fit to the data points. The calculations were
performed using 6 Intel Ivy Bridge nodes with 12 cores each. This figure is reproduced
from [99].

are truncated using a spherical cutoff radius of Rcut = 35 a0.

Since the calculations are performed in periodic boundary conditions, all supercell

sizes correspond to the case of an infinite CNT. Due to the infinite system size, the

lowest excitation of the system corresponds to an excited state delocalised along the

entire length of the rod. This causes the response density and thus the system response

V
{1}
SCF to vanish and the lowest excitation energy to reduce to the Kohn–Sham gap for

any semi-local exchange-correlation functional, which is a well known failure of TDDFT

in periodic systems (see the discussion in section 4.2.6). Therefore, the results presented

here are to be taken as a demonstration of linear-scaling capabilities only, while linear-

scaling calculations of more physically meaningful systems will be demonstrated in later

chapters.

Figure 6.5 shows the time taken for performing a single conjugate gradient iteration

of a single excited state over the range of supercell sizes discussed above. Two different

timings are shown: one for the case of a fully dense response density matrix and one where

a moderate truncation of Rcut = 60 a0 is applied. Note that as soon as the truncation is
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applied, the time taken for a single conjugate gradient iteration scales fully linearly with

system size. If P{1} is not truncated, the asymptotic scaling goes back to the usual O(N3).

However, it can be seen that even if no truncation is applied, the algorithm presented here

exhibits near linear scaling up to the largest system sizes considered. The reason for this

can be seen in the very compact NGWF representation chosen in ONETEP, meaning that

the fully dense matrix-matrix multiplications required in the conjugate gradient algorithm

only become a significant contribution to the total calculation time for system sizes beyond

2000 atoms. Thus while it is necessary to truncate all density matrices to enable the

calculation of very large system sizes in ONETEP, this is not strictly necessary for a range

of medium-sized systems that are already inaccessible by conventional TDDFT methods

that use a less compact representation.

6.6 Convergence properties and preconditioning

In order to analyse the convergence properties of the conjugate gradient algorithm de-

scribed here, it is important to consider some properties of the original 2-particle Hamil-

tonian matrix H
[2p]
TDA that is solved for its lowest eigenvalues. It can be assumed, as a first

order approximation, that H
[2p]
TDA is diagonally dominant in canonical Kohn–Sham space,

such that, in product NGWF space qχφ ≈ qχφdiag with

qχφdiag = P{c}HχP{1} −P{1}HφP{v}. (6.42)

The approximation used here is that the self-consistent response of the system to the

perturbation caused by the neutral excitation is generally small, which has to be the case

in order for linear-response theory to be applicable in the first place. Approximating

H
[2p]
TDA as diagonally dominant, one can find an approximate expression for the condition

number of the two-particle Hamiltonian matrix. While there are several different ways of

stating the condition number of a matrix, the most convenient way in this scenario is via

the eigenvalues of H
[2p]
TDA, such that

κ(H
[2p]
TDA) =

∣∣∣∣ωmax

ωmin

∣∣∣∣ (6.43)

with ωmax and ωmin being the maximum and minimum eigenvalues of H
[2p]
TDA. Approxi-

mating the condition number of the diagonally dominant H
[2p]
TDA with that of the diagonal

matrix of Kohn–Sham eigenvalue differences H
[2p]
diag, it is found that

κ(H
[2p]
TDA) ≈ κ(H

[2p]
diag) =

∣∣∣∣ εKS
max − εKS

min

εKS
LUMO − εKS

HOMO

∣∣∣∣ =

∣∣∣∣Ewindow

Egap

∣∣∣∣ (6.44)
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where Egap denotes the Kohn–Sham bandgap and Ewindow denotes the size of the active

energy window between the lowest valence state and highest conduction state explicitly

included in the calculation. From this, two conclusions can be drawn:

• The matrix H
[2p]
TDA naturally becomes increasingly ill-conditioned as the Kohn–Sham

bandgap of the system decreases.

• Generally, Egap � Ewindow and thus H
[2p]
TDA is ill-conditioned even for non-vanishing

Kohn–Sham bandgaps.

The ill-contitioning of the eigenvalue problem causes the conjugate gradient to show a

poor convergence behaviour. This problem can be avoided by using an appropriate precon-

ditioner. Assuming again that the diagonal part of the Kohn–Sham eigenvalue differences

dominates over the coupling term due to the system response, H
[2p]
diag can be assumed to be

a very effective preconditioner, such that one can solve the left-preconditioned eigenvalue

problem (
H

[2p]
diag

)−1

H
[2p]
TDAx = ω

(
H

[2p]
diag

)−1

x (6.45)

where κ

((
H

[2p]
diag

)−1

H
[2p]
TDA

)
is close to 1. In conduction-valence Kohn–Sham space, ap-

plying this preconditioner is very easy, since H
[2p]
diag is diagonal in this representation and

its inverse is trivially found. In NGWF space, H
[2p]
diag is non-diagonal and the inverse can-

not be found in linear-scaling effort by direct linear algebra methods. Furthermore, H
[2p]
diag

is never explicitly constructed, making the direct calculation of its inverse undesirable.

Instead, one can obtain the preconditioned version fχφpre of the steepest descent search

direction fχφ by solving the linear system

fχφ = P{c}Hχfχφpre − fχφpreH
φP{v} (6.46)

for fχφpre, which can be easily done in linear scaling effort using a conjugate gradients

algorithm.

Figure 6.6 shows the number of iterations needed to converge the four lowest singlet

excitations of pentacene for different levels of preconditioner applied. Clearly, there is a

significant improvement in convergence for the preconditioned system compared to the

case when no preconditioner is used, in good agreement with results obtained in [98].

The preconditioned case converges in less than 1/6th of the number of iterations needed

the unconditioned system. However, more importantly, the results show that it is not

necessary to solve the linear system in (6.46) to numerical accuracy to obtain a significant

increase in performance. Limiting the solution to the linear system to a fixed number of

conjugate gradient steps corresponds to only applying the preconditioner approximately
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Figure 6.6: Logarithmic convergence of Ω for the four lowest states of pentacene compared
to the asymptotic value Ωconv for different degrees to which the preconditioner is applied.
For “No Precond”, no preconditioner is applied while for “Precond”, the linear system of
the preconditioner is solved to numerical accuracy. For the other three lines, the conjugate
gradient algorithm solving the linear system of the preconditioner is limited to 20, 10 and
3 iterations respectively.

every iteration. In every case the convergence properties are significantly improved com-

pared to the case where no preconditioning is used, even in the extreme example when

only three conjugate gradient steps are performed in each iteration.

This is an important finding, as it justifies limiting the solution of the linear system

to a few iterations in the case of large systems. In large systems, even if all involved

matrices are sparse, performing the matrix multiplications associated with the Kohn–

Sham eigenvalue difference part of qχφ can become comparable to the computational cost

of evaluating V
{1}χφ
SCF [P{1}]. Once this happens, solving (6.46) to numerical accuracy in

every single conjugate gradient iteration becomes unfeasible and a good balance has to

be found between speeding up the convergence by accurately applying the preconditioner

and saving computational effort by only applying it approximately34.

34While there is no way to know a priori how to find this balance in practical calculations, it can be
easily determined by performing a timed single conjugate gradient step at the beginning of the calculation.
Since even a very approximate application of the preconditioner is found to double the convergence rate,
choosing the number of preconditioner iterations such that they do take up less than 1/3 of the time of
the entire conjugate gradient iteration is a safe approach to ensure a good performance.
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6.7 Including solvation effects

In many situations one would like to calculate the spectrum of a biological molecule not in

vacuum but rather in a solvent. As discussed in section 5.2.3, a computationally feasible

alternative to treating solvent molecules explicitly is to introduce the solvent effects on

the electron density via an implicit solvent model. The implicit solvent formalism can be

straightforwardly extended to LR-TDDFT calculations. Performing a ground state and

conduction state optimisation in the implicit solvent as described in section 5.2.3 yields

Hamiltonians Hχ and Hφ and Kohn–Sham density matrices P{c} and P{v} that fully

include all solvent effects. Thus the diagonal term of Kohn–Sham eigenvalue differences

is consistent with the implicit solvent approach as long as the Hamiltonians and Kohn–

Sham density matrices are obtained from the implict solvation calculation.

However, some care has to be taken when considering solvent effects to the self-

consistent response potential Vχφ
SCF[P{1}](r). The ground state of the system, and thus

the diagonal term of the LR-TDDFT equation, is fully screened by the static dielectric

constant ε∞static of the solvent. This static dielectric constant models the rearrangement

of solvent molecules to maximise the screening of the solute molecule, which occurs over

a long timescale. The perturbation in the ground state density due to the excitation on

the other hand occurs on a very fast timescale, on which the slow degrees of freedom

of the solvent cannot react to the change in the electron density of the solute [134]. In

this “non-equilibrium regime”, the solvent effects are therefore modelled by an effective

ε∞dynamic accounting for a screening due to the fast degrees of freedom of the solvent only.

The Hartree potential of the perturbed ground state density of the system can then

be computed via:

∇ ·
(
εdynamic[ρ

pert]∇Φpert
)

= −4πρpert
tot (6.47)

where ρpert = ρ0 +ρ{1}, the perturbed ground state density due to the excitation and ρpert
tot

is the sum of the perturbed density ρpert and the Gaussian-smeared density of ion cores.

Here, the approximation is made that the solvation cavity for evaluating ε[ρpert] is taken

to be fixed and defined by the ground state density in vacuum. Then V χφ
H [P{1}](r) can

simply be written as

V χφ
H [P{1}](r) = Φpert(r)− Φ0(r) (6.48)

where Φ0(r) is the molecular Hartree potential due to the ground state density and only

has to be evaluated once at the beginning of a TDDFT calculation. The fact that the

solvation cavity is forced to stay fixed during the TDDFT calculation means that the

response density cannot respond self-consistently to the polarisation of the dielectric.

Furthermore, the fact that the perturbed density ρpert is often more delocalised than ρ0

due to the delocalised nature of the conduction Kohn-Sham states [113] is also ignored
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Figure 6.7: Excitation spectra generated from the 12 lowest singlet excitations of Bac-
teriochlorophyll in vacuum, in a solvent of εstatic = 80 and in the case where dynamic
solvent effects are approximated by εdynamic = 2 and are included in V

{1}
SCF. A Lorentzian

broadening of 0.03 eV is used.

in the fixed cavity approach. This can in principle be remedied by allowing the cavity to

vary self-consistently, with the effect that the expression (6.48) has to be adapted to

V χφ
H [P{1}](r) = Φpert(r)− 1

8π

(
∇Φpert(r)

)2 δε

δρpert
(r)− Φ0(r) (6.49)

Just like in standard implicit solvent calculations the second term on the right hand side

of Equation (6.49) is difficult to treat numerically and needs a very fine real space grid

to be resolved correctly. For this reason, for the purpose of this work the cavity will

be approximated as being fixed to the ground state cavity, which is more in line with a

linear-response type treatment of the TDDFT excitation energies.

The effect of the implicit solvent model on the TDDFT excitation energies is demon-

strated by considering a bacteriochlorophyll (Bchl) molecule. The atomic positions of

the molecule are taken from the X-ray diffraction data [135] for the Bchl site 3 in the

Fenna-Matthews-Olson complex and are kept fixed. The low energy excitation spectrum

of Bchl is then calculated both in vacuum and in water (using a dielectric constant of

ε∞static = 80 and ε∞dynamic = 2). Figure 6.7 shows the changes in the low energy excitation

spectra in both cases. The strong low energy peak at around 2.13 eV for Bchl in vacuum

corresponds to the Qy transition of the molecule. This Qy transition is shifted consider-
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ably lower in energy, to around 2.00 eV, in the solvent, where it actually corresponds to

the lowest excitation of the system. The oscillator strength of the Qy transition in the sol-

vent is enhanced. The Qx state also shows an enhanced oscillator strength in the solvent

and is shifted to 2.10 eV. Furthermore, the solvated system shows some reorganisation of

spectral weight in the extended feature of the molecule between 2.8 and 3.2 eV.

Figure 6.7 also shows the spectrum for the case where both the valence and conduction

Hamiltonians are constructed in the implicit solvent model, while the dynamic solvation

effects are ignored for the Hartree term in the TDDFT equation, meaning that the solvent

effects are limited to H
[2p]
diag only. It can be seen that the solvent effect on the Kohn–Sham

energies leads to a slight shift of the Qy transition to lower energy, but only has a relatively

small effect on the spectral weight. The large enhancement in spectral weight of the Qy

and Qx transitions is thus entirely due to dynamic screening effects not accounted for by

applying the dielectric screening to the ground state of the system only.

It can be concluded that the influence of the solvent on excitation energies and os-

cillator strength, as well as the ordering of states is a significant factor and needs to be

correctly accounted for in solvated systems. Furthermore, figure 6.7 can be seen as a

demonstration that TDDFT excitations are sensitive not only to static screening due to

the electrostatic environment, but also due to dynamic screening effects. It should be

noted here that while the implicit solvation model accounts for a an average screening

effect, it is often found that excitation energies of chromophores in solvent are quite sen-

sitive to the treatment of the surroundings and thus including explicitly some degree of

quantum mechanical description of the environment can become necessary [113]. This

premise will be revisited and discussed in some detail in chapter 9.

6.8 Sparsity of the response matrix revisited: GaAs nanorod

While the computation of the lowest singlet excitation in the carbon nanotube demon-

strates the linear-scaling of the method if all density matrices are truncated, it does not

provide a realistic test system, as the TDDFT corrections vanish in the periodic case due

to the locality of the ALDA functional. It is important to demonstrate that density matrix

truncations are indeed possible for a periodic system, however, a more realistic system is

needed in order to determine the effect of truncating the response density matrix. For this

reason, consider a hydrogen-terminated GaAs nanorod containing 996 atoms and having

a total length of 159 a0. Calculations are performed using a kinetic energy cutoff of 400

eV and an NGWF radius of 12 a0 is chosen for all NGWFs. No truncations are applied

to the conduction and valence density matrix.

The specific system has already been studied in great detail with the ONETEP method
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Figure 6.8: Transition density of the lowest excitation of a GaAs nanorod as found for
a truncated density matrix at 75 a0 (lower figure) and the full density matrix (upper
figure). In this plot, H is shown in grey, As in yellow and Ga in purple. This figure has
been reproduced from [99].

[136,137]. What makes the GaAs nanorod interesting from a physical point of view is that

it exhibits a very strong dipole moment along its long axis. This dipole moment causes

a strong electrostatic potential across the rod and forces the HOMO and LUMO to be

localised on opposite ends. Given that the HOMO and LUMO are separated in space,

their overlap vanishes, ρ{1}(r) → 0 everywhere for a transition from HOMO to LUMO

and the lowest TDDFT excitation computed with any semilocal functional approaches

Egap. Thus the lowest excitation of the system as computed with an ALDA functional is

expected to be a spurious charge transfer state corresponding to moving an electron from

one end of the rod to the other.

For a fully dense response matrix P{1}, this is exactly what can be observed (see Fig.

6.8). The transition density matrix is localised on both ends of the rod. However, as

soon as a truncation to the response density matrix is introduced, the lowest excitation

of the system collapses to a state where the transition density is fully localised on the As

terminated end of the rod and the excitation energy is pushed up by 0.33 eV.

The dependence of the energy of the localised excited state on the response density

matrix truncation radius is plotted in Fig. 6.9. Choosing a density matrix truncation

radius of 40 a0 introduces an error of less than 5 meV compared to the converged value

for this excited state, suggesting that it is indeed possible to represent localised excited

states with a truncated density matrix and thus to compute them in linear-scaling effort.

The remarkable feature of the truncation of the density matrix in this scenario is that

it is not introduced to simply improve the scaling as in ground-state DFT. The choice

of how to truncate the response density matrix determines what kind of excitations can

be represented. This becomes very apparent in the case of the polar nanorod and can be
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Figure 6.9: Lowest excitation energy of a GaAs nanorod as converged with different
response density matrix trunctations (figure adapted from [99]).

understood by some more careful analysis of the structure of the response density matrix.

For this purpose the atoms in some region A at LUMO end of the nanorod are labelled

by the subscript Ai and the atoms localised at some region B on the HOMO end of the

nanorod as Bj. Let furthermore {χAiα } denote the set of all conduction NGWFs centered

on atom Ai. Then for the charge transfer state, the response density matrix must be

expressible as

ρ{1}(r, r′) =
∑
Ai,Bj

[
χAiα (r)P

{1}αβ
{Ai,Bj}φ

Bj
β (r′)

]
(6.50)

Applying the radial cutoff ρ{1}(r, r′) = 0 for |r− r′| > Rcut to the above expression means

that the matrix elements P
{1}αβ
{Ai,Bj} = 0 for all NGWFs centered on atom Ai and Bj if

|RAi −RBj | > Rcut. Therefore, if the regions A and B are separated by more than the

chosen cutoff Rcut, all matrix elements that are important for representing the charge

transfer state between B and A are set to zero and that excitation is effectively removed

from the subspace of allowed solutions to the TDDFT algorithm.

Thus, depending on how the sparsity of the response density matrix is chosen, excita-

tions can be converged directly that are not the lowest excitations of the original system.

In the case studied here, a truncation of the response density matrix removes all charge

transfer excitations along the rod from the subspace of allowed solutions. Since these exci-

tations are precisely the type of excitations that are spuriously low in energy for any local

exchange correlation functional, the excitation obtained with the truncated density ma-

144



6. LINEAR-SCALING TDDFT IN ONETEP

trix corresponds to the lowest physical excitation of the system. Thus, the density matrix

truncation can be used to effectively remove spurious low energy charge transfer excita-

tions from the system. The remaining excitations are of much more local character and

are therefore expected to be treated reasonably accurately by local exchange-correlation

functionals. It can be concluded that in the case of the GaAs nanorod treated here,

density matrix truncations based on a spherical cutoff can be used to exclude long range

excitations from the calculation, while allowing for accurately converging more localised

excitations in linear-scaling effort.

It should be noted that the above approach is so effective in this example system

because the charge transfer states along the rod do not contribute to the lowest physi-

cal excitation localised at the end of the rod. In more complicated systems, one could

imagine a situation where a relatively localised state has a small contribution from a

state with charge-transfer character. Since this contribution cannot be represented by a

truncated density matrix, one would expect to find a discrepancy between the energy of

the excited state of the truncated system and the corresponding excited state in the full

system. Since there is no way of knowing a priori whether the system at hand possesses

a subset of localised excitations well-represented by a truncated response density matrix,

the truncation approach can be seen as a semi-empirical way of curing the deficiencies of

(semi)-local exchange correlation kernels. However, it should be noted that a failure of

the truncation approach can in principle be identified by performing a convergence study

like the one shown in Fig. 6.8. If the excitation energy of the truncated system shows

sudden drops when increasing the truncation radius, rather than a smooth convergence

behaviour, this can be seen as a direct indicator that the excitation has some delocalised

charge-transfer contribution in the extended system and thus is not well-represented by a

truncated density matrix. The usefulness of a truncation to the response density matrix

will be further demonstrated in chapters 8 and 9.

6.9 Representation of the unoccupied space revisited: In situ

optimisation of a response NGWF basis

In the previous sections, it was demonstrated that the TDDFT method achieves very

good results when using a projection onto the entire unoccupied subspace, even if {χα} is

only optimised for a low energy subset of the conduction space. No matter what choice of

projector introduced in 6.3 is used, they all have a feature in common: since the mixing

in of unoptimised unoccupied states is allowed, the TDDFT functional Ω
[
{P{1}i }

]
is no

longer strictly minimised with respect to the conduction NGWF expansion coefficients. In

section 6.5.1 it became apparent that this factor introduces a starting point dependence
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into the algorithm such that slightly different excitation energies are obtained if {χα} is

optimised for a different number of conduction states. Therefore a very desirable fea-

ture of the ground state implementation of ONETEP, the strict minimisation of the energy

functional with respect to the NGWF representation, has been lost in the TDDFT imple-

mentation. While for the examples considered in this work the low energy excitations are

very well represented by the chosen NGWF representation, even when compared to results

obtained with rather large Gaussian basis sets, it is in principle desirable to have an equiv-

alent of the two step minimisation procedure of ground state calculations for the TDDFT

calculations such that {χα} corresponds unambiguously to the ideal representation for a

set of Nω low energy excitations subject to the localisation constraint.

For this purpose, (Sχ)−1 is used as the projector onto the entire space representable

by {χα} and the projected conduction Hamiltonian Hχ
proj is used in order to force valence-

valence style transitions to be unfavourable in energy. Since all reference to any explicit

representation of a fixed part of the low energy conduction manifold is now removed from

the TDDFT calculation, the conduction optimisation step can be skipped entirely and

Ω can be treated as an explicit functional of both {P{1}i } and {χα} while keeping {φα}
and P{v} fixed. In this scenario, it is more appropriate to think of {χα} as generalised re-

sponse NGWFs rather than conduction NGWFs, because they are no longer optimised to

represent a certain energy window of the conduction space but rather to ideally represent

the response density matrices {P{1}i }.
One can then follow a very similar two step minimisation procedure to the one em-

ployed in ground-state DFT. Starting with some initial guess for {χα}, the projector

(Sχ)−1 and the Hamiltonian Hχ
proj are built in the given representation. Keeping {χα}

fixed, Ω is then minimised for a set of {P{1}i } in exactly the same way as described earlier

in this chapter. At the end of the conjugate gradient optimisation, the TDDFT energy

for the set of {P{1}i } obeying the appropriate the normalisation and invariance constraint

can be written in a compact form

Ω
[
{P{1}i }, {χα}

]
=

∑
i

Tr
[
Hχ

projP
{elec}
i

]
− Tr

[
SχP

{1}
i HχP

{1}†
i

]
Tr
[
SχP

{elec}
i

]
+

∑
i

Tr
[
P
{1}†
i V

{1}χφ
SCF

[
P
{1}
i

]]
Tr
[
SχP

{elec}
i

] (6.51)

One can then straightforwardly calculate the gradient of Ω
[
{P{1}i }, {χα}

]
with respect
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to χβ, yielding

1

2

(
∂Ω

∂χβ

)
j

= Ĥ|χα〉P {elec}αβ
j − |φα〉

(
P {v}HφP {v}SφχP

{elec}
j

)αβ
+ λ|φα〉

(
P {v}SφP {v}SφχP

{elec}
j

)αβ
− |χα〉

(
P
{1}
j HφP

{1}†
j

)αβ
+ V̂

{1}
SCF

[
P
{1}
j

]
|φα〉P {1}βα − Tr

[
P
{1}†
i Sχqχφj Sφ

]
|χα〉P {elec}αβ

j

Here, the fact is used that the response density matrices are normalised.

Then the contravariant gradient of the TDDFT energy functional with respect to the

psinc expansion coefficients Cmα of the NGWFs {χβ} can be expressed via

gβm = w
∑
j

[(
∂Ω

∂χβ

)
j

]
r=rm

(6.52)

where w is the grid point weighting and rm is the grid point associated with psinc func-

tion m. The contravariant gradient can be transformed into a covariant by multiplying

it with Sχ, which can then be used to update {χα}. Thus, a two step minimisation sim-

ilar to the ground state version can be carried out without any need to perform the an

explicit conduction NGWF optimisation before starting the TDDFT calculation. When

Ω
[
{P{1}i }, {χα}

]
is minimised both with respect to the response NGWFs {χα} and the

response density matrices {P{1}i }, an optimal representation of the TDDFT response for

the Nω lowest excitations has been found.

While the above outline details in principle how to perform the minimisation of the

TDDFT energy with respect to the generalised response NGWFs {χα}, carrying out the

minimisation in an efficient way is not trivial and will be left for future work. For the

remainder of this work, the conduction NGWFs are taken to be fixed and the joint set

and the idempotent projector onto the entire unoccupied subspace are used, as they are

found to yield the most consistent results of all the fixed NGWF set approaches outlined

in this section.
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Chapter 7

Linear-scaling TDDFT within the PAW formalism

In the previous chapter, the linear-scaling TDDFT method was introduced for the case of

norm-conserving pseudopotentials. In this chapter the focus is on expanding the algorithm

to make it compatible with the linear-scaling projector augmented-wave (PAW) formalism

available in ground state and conduction calculations with ONETEP (see section 5.2.2).

The correct workings of the formalism are then demonstrated on a number of small test

molecules, as well as the physically motivated system of a Cadmium Sulphide (CdS)

nanocrystal under pressure.

7.1 Derivation of the formalism

In analogy to the conventional implementation of PAW in ONETEP, one would like to

write the all-electron equivalent of the TDDFT excitation energy as a functional of the

soft pseudo response density matrix P{1} that is well represented by the conduction and

valence NGWFs. The total all-electron response density matrix can be written in operator

form in terms of the pseudo density matrix, the PAW projectors |p̃i〉 and the all-electron

and pseudo partial waves |ϕi〉 and |ϕ̃i〉:

ρ{1} = |χα〉P {1}αβ〈φβ|+
∑
ij

{|ϕi〉〈ϕj| − |ϕ̃i〉〈ϕ̃j|} 〈p̃i|χα〉P {1}αβ〈φβ|p̃j〉 (7.1)

As with the ground state and conduction density matrices, the response density matrix

thus splits into a soft pseudo part defined everywhere in the system and an all-electron

part defined only in the PAW spheres around the atoms. To express the sphere terms,

one needs the projector-NGWF overlap matrices Q
{χ}i
α = 〈χα|p̃i〉 and Q

{φ}j
β = 〈φβ|p̃j〉.

These matrices can be precomputed at the beginning of the TDDFT calculation by using

the NGWF sets optimised in the ground state and conduction calculation. Together they

can be used to express the projector matrix ρ{1}ij with

ρ{1}ij = 〈p̃i|χα〉P {1}αβ〈φβ|p̃j〉 =
(
Q{χ}iα

)†
P {1}αβQ

{φ}j
β . (7.2)

148



7. LINEAR-SCALING TDDFT WITHIN THE PAW FORMALISM

For the PAW formalism, the all-electron excitation energy ETDDFT is written as a

functional of the PS density matrix P{1} and is minimised under the normalisation con-

straint and invariance constraints discussed in the previous chapter. However, in the PAW

formalism, these constraints are placed on the all electron response density matrix and

not the pseudised version P{1}. It is thus required that the all-electron response density

matrix in operator form fulfills:

Tr
[
ρ{1}†ρ{1}

]
= Tr

[
ρ{1}ρ{1}†

]
= 1 (7.3)

ρ{c}ρ{1}ρ{v} = ρ{1} (7.4)

where ρ{v} and ρ{c} are the all-electron conduction and valence density matrices in operator

form. Just like in conventional PAW, it is easy to show that the above conditions can

be written in terms of the pseudo response density matrix only. Redefining the overlap

matrices Sχ and Sφ in the same fashion as in conventional PAW, with

Sφαβ = 〈φα|

(
1 +

∑
ij

|p̃i〉(〈ϕi|ϕj〉 − 〈ϕ̃i|ϕ̃j〉)〈p̃j|

)
|φβ〉 (7.5)

Sχαβ = 〈χα|

(
1 +

∑
ij

|p̃i〉(〈ϕi|ϕj〉 − 〈ϕ̃i|ϕ̃j〉)〈p̃j|

)
|χβ〉 (7.6)

the normalisation and invariance constraint on the all-electron response density matrix

can be conveniently written as

Tr
[
P{1}†SχP{1}Sφ

]
= 1 (7.7)

P{c}SχP{1}SφP{v} = P{1}. (7.8)

Note that the above constraints have exactly the same form as in the norm-conserving

pseudopotential case, and all references to all-electron terms are wrapped up in the re-

definition of the overlap matrices.

In the norm-conserving approach, the TDDFT excitation energy is a functional of the

the response density ρ{1}(r). The excitation energy can be split into three different parts,

with

ETDDFT

[
ρ{1}

]
= Ediag

[
ρ{1}

]
+ 2EH

[
ρ{1}

]
+ 2Exc

[
ρ{1}

]
(7.9)
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where

Ediag

[
ρ{1}

]
= Tr

[
P{1}†HχP{1}Sφ

]
− Tr

[
P{1}†SχP{1}Hφ

]
(7.10)

EH

[
ρ{1}

]
=

ˆ ˆ
d3 d3r′

ρ{1}(r)ρ{1}(r′)

|r− r′|
(7.11)

Exc

[
ρ{1}

]
=

ˆ
d3r d3r′ δ(r− r′)ρ{1}(r)fxc(r)ρ{1}(r′). (7.12)

Here, fxc is assumed to be (semi)-local and any explicit spin dependence is again dropped

for convenience. In the following sections, each of the three terms will be considered

individually and the changes required in writing them as all-electron equivalents that are

functionals of the soft pseudo response density matrix are addressed.

7.1.1 The diagonal term

The conceptually most simple contribution to the TDDFT excitation energy is the diag-

onal term of Kohn–Sham eigenvalue differences. First, it becomes convenient to rewrite

Ediag

[
ρ{1}

]
in terms of the effective electron and hole density matrix by making use of

the invariance of the trace under cyclic permutations:

Ediag

[
ρ{1}

]
= Tr

[
HχP{1}SφP{1}†

]
− Tr

[
HφP{1}†SχP{1}

]
= Tr

[
HχP{elec}

]
− Tr

[
HφP{hole}

]
. (7.13)

In other words, the diagonal term in the TDDFT algorithm is due to the difference

between the Kohn–Sham bandstructure energy of the electron and the hole. In the case

of a PAW treatment of the TDDFT energy, the Kohn–Sham bandstructure energies of

the electron and the hole need to be replaced by their all-electron equivalents and need

to be expressed in terms of the soft pseudo versions of the electron- and the hole density

matrices. However, the required all-electron version of the Kohn–Sham bandstructure

energy for an arbitrary density matrix is exactly what is required in the ground state and

conduction state optimisation using the PAW method. Thus, the diagonal part of the

TDDFT energy is obtained by simply replacing the conduction and valence Hamiltonians

by their PAW equivalents such that

Hφ
αβ = 〈φα|

(
−1

2
∇2 + ṼKS +

∑
ij

|p̃i〉Dij〈p̃j|

)
|φβ〉 (7.14)

Hχ
αβ = 〈χα|

(
−1

2
∇2 + ṼKS +

∑
ij

|p̃i〉Dij〈p̃j|

)
|χβ〉 (7.15)
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with Dij being the non-local PAW correction term to the Hamiltonian (see section 5.2.2).

The gradient of Ediag

[
ρ{1}

]
with respect to P{1} can then be found trivially, since Hχ and

Hφ are not functionals of P{1}. Thus it is found that

dEdiag

dP{1}
=
∂Ediag

∂P{1}
= 2

(
HχP{1}Sφ − SχP{1}Hφ

)
(7.16)

and that the gradient of the diagonal part of the TDDFT energy can be evaluated trivially

after constructing the PAW-corrected conduction and valence Hamiltonians.

7.1.2 The Hartree term

To calculate the all-electron equivalent of the Hartree term due to response density ρ{1}(r),

a similar partitioning technique to the one used in conventional ground-state PAW is

considered. The AE response density can be written as

ρ{1} =
(
ρ̃{1} + ρ̂{1}

)
+
(
ρ{1}

)(1) −
((
ρ̃{1}

)(1)
+ ρ̂{1}

)
(7.17)

where ρ̃{1} is the soft part of the response density,
(
ρ{1}

)(1)
is the hard all-electron density

defined in the sphere regions and
(
ρ̃{1}

)(1)
is the density in the sphere regions defined

via the pseudo partial waves. The densities within the augmentation sphere regions are

constructed from the projector density matrix ρ{1}ij in exactly the same way as in the

ground state PAW implementation. ρ̂{1} again denotes the compensation density chosen

in such a way that the Coulomb potential in one sphere has no contributions in the

other sphere. As in the ground state version of PAW, adding the compensation density

is crucial to preserve locality of the PAW sphere terms. In close analogy to the ground

state calculation, ρ̂{1} is simply given by

ρ̂{1}(r) =
∑
ijLM

ρ{1}ijQ̂LM
ij (r) (7.18)

where Q̂LM
ij (r) follows the same form as in the ground state calculation and can be trivially

preconstructed using the AE and PS partial waves. Thus, in close analogy to the ground

state calculations, the PAW Hartree energy of the response density can be split into three

parts: the soft PS part defined everywhere and a AE and a PS part only defined within

the PAW spheres. The Hartree energy is then given by

EH

[
ρ{1}

]
= EH

[
ρ̃{1} + ρ̂{1}

]
+ EH

[(
ρ{1}

)(1)
]
− EH

[(
ρ̃{1}

)(1)
+ ρ̂{1}

]
. (7.19)
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The gradient of the Hartree energy with respect to the PS response density matrix P{1}

can then be found via

dEH

dP{1}
=

∂EH

∂P{1}
+
∑
ij

∂EH

∂ρ{1}ij
∂ρ{1}ij

∂P{1}
. (7.20)

Following similar steps as in the ground state case, the gradient of the Hartree TDDFT

energy can be written

1

2

(
dEH

dP{1}

)
αβ

= 〈χα|VH

[
ρ̃{1} + ρ̂{1}

]
|φβ〉

+
∑
ij

〈χα|p̃i〉
∑
LM

ˆ
d3r Q̂LM

ij (r)VH

[
ρ̃{1} + ρ̂{1}

]
(r)〈p̃j|φβ〉

+
∑
ij

〈χα|p̃i〉〈ϕi|VH

[(
ρ{1}

)(1)
]
|ϕj〉〈p̃j|φβ〉

−
∑
ij

〈χα|p̃i〉
∑
LM

ˆ
Ω

d3r Q̂LM
ij (r)VH

[(
ρ̃{1}

)(1)
+ ρ̂{1}

]
(r)〈p̃j|φβ〉

−
∑
ij

〈χα|p̃i〉〈ϕ̃i|VH

[(
ρ̃{1}

)(1)
+ ρ̂{1}

]
|ϕ̃j〉〈p̃j|φβ〉 (7.21)

where integral that is only performed in PAW sphere are again denoted with the subscript

Ω 35.

In the spirit of ground state PAW, this equation can be written in a compact form

such that(
dEH

dP{1}

)
αβ

= 2
(
Ṽ χφ

H

[
ρ̃{1} + ρ̂{1}

])
αβ

+ 2
∑
ij

Q{χ}iα D
{H}
ij

(
Q
{φ}j
β

)†
(7.22)

with the non-local correction term D
{H}
ij given by

D
{H}
ij =

∑
LM

ˆ
d3r Q̂LM

ij (r)VH

[
ρ̃{1} + ρ̂{1}

]
(r) + 〈ϕi|VH

[(
ρ{1}

)(1)
]
|ϕj〉

−
∑
LM

ˆ
Ω

d3r Q̂LM
ij (r)VH

[(
ρ̃{1}

)(1)
+ ρ̂{1}

]
(r)− 〈ϕ̃i|VH

[(
ρ̃{1}

)1
+ ρ̂{1}

]
|ϕ̃j〉 (7.23)

Note that this decomposition is exactly equivalent to the way the ground state Hartree

potential was decomposed in conventional PAW. This means that the last three terms of

the above expression can be evaluated in the same way as in the ground state case so that

35Again, as in the ground state PAW case, the integral involving the soft PS response density and
Q̂LMij (r) is formally evaluated on the entire real space grid. However, in practice, it can be calculated in

a small augmentation box around each atom due to the localisation of Q̂LMij (r).
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the full expression reduces to

D
{H}
ij =

∑
LM

ˆ
d3r Q̂LM

ij (r)VH

[
ρ̃{1} + ρ̂{1}

]
+
∑
kl

eijklρ
{1}kl (7.24)

where eijkl is the same rank 4 tensor that gets precomputed in the ground state and

conduction state calculations when reading the PAW datasets from file.

Thus the gradient of the Hartree energy for a given response density ρ{1}(r) can be

computed in a number of straightforward steps analogous to the ground state evaluation of

the Hartree energy. First, the compensation density ρ̂{1} is constructed from the response

density matrix and the PAW projectors. Then the soft PS part of the Hartree term is

constructed as usual, but one now adds the compensation density to the soft response

density ρ̃{1}. The PAW correction terms to the soft Hartree potential are then simply

constructed via equation (7.24) and added to the PS part.

7.1.3 The exchange-correlation kernel

For the exchange-correlation part, one can again divide the energy gradient into a PS

part evaluated on the normal simulation cell grid and a PAW correction term. Note

however, that in this case, both the response density ρ{1} and the ground state density

ρ need to be partitioned in the usual PAW fashion, as the exchange-correlation kernel

fxc needs to be evaluated at the ground state density. Furthermore, in order to simplify

a number of expressions, it is helpful to reintroduce the finite-difference approximation

to the exchange-correlation term such that the soft PS part of the exchange-correlation

potential can be written as

ˆ
d3r′δ(r− r′)fxc [ρ̃+ ρ̂+ ρ̃c] (r′)

(
ρ̃{1}(r′) + ρ̂{1}(r′)

)
≈

Vxc

[
ρ̃+ ρ̂+ ρ̃c + ε(ρ̃{1} + ρ̂{1})

]
(r)− Vxc

[
ρ̃+ ρ̂+ ρ̃c − ε(ρ̃{1} + ρ̂{1})

]
(r)

2ε
= ∆Vxc

[
ρ̃{1} + ρ̂{1}

]
(r) (7.25)
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Similarly, the soft and the AE parts in the PAW spheres can be evaluated from

∆Vxc

[(
ρ{1}

)(1)
]

(r) =
Vxc

[
ρ(1) + ρc + ε

(
ρ{1}

)(1)
]

(r)

2ε

−
Vxc

[
ρ(1) + ρc − ε

(
ρ{1}

)(1)
]

(r)

2ε
(7.26)

∆Vxc

[(
ρ̃{1}

)(1)
+ ρ̂{1}

]
(r) =

Vxc

[(
ρ̃{v}

)(1)
+ ρ̂{v} + ρ̃c + ε

(
ρ̃{1} + ρ̂{1}

)(1)
]

(r)

2ε

−
Vxc

[(
ρ̃{v}

)(1)
+ ρ̂{v} + ρ̃c − ε

(
ρ̃{1} + ρ̂{1}

)(1)
]

(r)

2ε
(7.27)

Using the finite difference approximation above facilitates the calculation of the PAW

sphere correction terms as they can all be written in terms of the exchange-correlation

potential only and thus become very similar to the terms that need to be evaluated in

ground state PAW calculations. Previous PAW implementations in a plane-wave TDDFT

code have made use of the same finite difference approximation and found the scheme to

be very insensitive to the finite-difference parameter ε used [138]36.

Following similar steps to the way the gradient of the Hartree energy was constructed

in the previous section and using the finite difference approximation for the TDDFT

kernel it is found that(
dExc

dP{1}

)
αβ

= 2〈χα|∆Vxc

[
ρ̃{1} + ρ̂{1}

]
|φβ〉+ 2

∑
ij

Q{χ}iα D
{xc}
ij

(
Q
{φ}j
β

)†
(7.28)

where

D
{xc}
ij =

∑
LM

ˆ
d3r Q̂LM

ij (r)∆Vxc

[
ρ̃{1} + ρ̂{1}

]
(r)

+ 〈ϕi|∆Vxc

[(
ρ{1}

)(1)
]
|ϕj〉 − 〈ϕ̃i|∆Vxc

[(
ρ̃{1}

)(1)
+ ρ̂{1}

]
|ϕ̃j〉

−
∑
LM

ˆ
Ω

d3r∆Vxc

[(
ρ̃{1}

)(1)
+ ρ̂{1}

]
(r)Q̂LM

ij (r) (7.29)

The above expression is very similar to the PAW correction obtained in the ground

state case, with the difference that any Vxc term is replaced by the corresponding finite-

difference term ∆Vxc. Just like in the ground state case, the sphere terms can be evaluated

36In ONETEP, if ALDA functionals are used, the soft part of the exchange-correlation term in TDDFT
is actually evaluated using the analytic expression for fxc, while the sphere terms are treated in a finite
difference approximation. The errors introduced through this slight inconsistency in the way different
terms are treated are found to be negligible.
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by expressing ∆Vxc in terms of its moments ∆V xc
LM such that

∆Vxc[ρ](r) =
∑
LM

∆V xc
LM [ρ](r)SLM(r̂). (7.30)

Again, as in the ground state case, these moments are constructed by approximating the

appropriate density as a second order Taylor expansion around its spherically symmetric

moment with L,M = 0.

Once the moments are calculated for the three different ∆Vxc terms, the PAW correc-

tion term can be written as:

D
{xc}
ij =

∑
LM

ˆ
d3r Q̂LM

ij (r)∆Vxc

[
ρ̃{1} + ρ̂{1}

]
(r)

+
∑
LM

GLMlimiljmj

ˆ rc

0

∆V xc
LM

[(
ρ{1}

)(1)
]

(r)ϕnili(r)ϕnj lj(r)dr

−
∑
LM

GLMlimiljmj

ˆ rc

0

∆V xc
LM

[(
ρ̃{1}

)(1)
+ ρ̂{1}

]
(r)ϕ̃nili(r)ϕ̃nj lj(r)dr

−
∑
LM

GLMlimiljmj

ˆ rc

0

∆V xc
LM

[(
ρ̃{1}

)(1)
+ ρ̂{1}

]
(r)nLnilinj ljgL(r)r2dr (7.31)

where the above integrations can be conveniently performed on the radial grid in the PAW

spheres around the atoms. Here, GLMlimiljmj again denotes the set of precomputed Gaunt

coefficients and the definition of the shape function gL(r) and the coefficients nLnilinj lj are

unchanged from the ground-state PAW case (see 5.2.2).

Since only spin-degenerate ground states are considered in this work, reintroducing

the spin dependence into the exchange correlation kernel is relatively trivial and can be

performed in the same way as in the conventional TDDFT implementation. One again

obtains two different exchange correlation terms, depending on whether singlets or triplets

are calculated, with

∆V triplet
xc [ρ{1}] =

1

2

(
∆Vxc[ρ

{1}]−∆Vc[ρ
{1}]
)

(7.32)

∆V singlet
xc [ρ{1}] =

1

2

(
∆Vxc[ρ

{1}] + ∆Vc[ρ
{1}]
)

(7.33)

where the exchange-correlation term ∆Vxc and the correlation-only term ∆Vc are then

spin-degenerate quantities. Note that in the case of the triplet excitations, the Hartree

term of the previous section is set to zero in agreement with the conventional TDDFT

algorithm in the norm-conserving approach.

155



7. LINEAR-SCALING TDDFT WITHIN THE PAW FORMALISM

7.1.4 The algorithm

Taking the results from the previous sections the gradient of the TDDFT energy with

respect to the PS density kernel P{1} can be written as37

(
dETDDFT

P{1}

)
αβ

= 2
(
HχP {1}Sφ − SχP {1}Hφ

)
αβ

+ 2
(
Ṽ
{1}χφ

SCF

[
ρ̃{1} + ρ̂{1}

])
αβ

+ 4
∑
ij

Q{χ}iα

(
D
{H}
ij +D

{xc}
ij

)(
Q
{φ}j
β

)†
(7.34)

A contravariant gradient is required that automatically preserves the invariance con-

straint on the response density matrix to form a PAW equivalent of the quantity qχφ in

the norm-conserving approach. This can be achieved by taking equation (7.34), mutli-

plying by the PS conduction density matrix from the left and the valence density matrix

from the right and dividing by a factor of 2. After using the idempotency constraint on

the conduction and valence density matrix, one arrives at(
qχφPAW

)αβ
=
(
P {c}HχP {1} − P {1}HφP {v}

)αβ
+

(
P {c}

{
Ṽ
{1}χφ

SCF

[
ρ̃{1} + ρ̂{1}

]
+ 2

∑
ij

Q{χ}i
(
D
{H}
ij +D

{xc}
ij

) (
Q{φ}j

)†}
P {v}

)αβ

(7.35)

and the PAW TDDFT energy can then be written in the compact form

ETDDFT

[
ρ{1}

]
= ω =

Tr
[
P{1}†SχqαβPAWSφ

]
Tr
[
P{1}†SχP{1}Sφ

] . (7.36)

Note that the PAW-corrected TDDFT operator qχφPAW has a very similar form to the

conventional qχφ in the norm-conserving approach. The only difference is that the Hamil-

tonians and overlap matrices in the conduction and valence NGWF representations are

replaced by their PAW equivalents, while Ṽ
{1}

SCF(r) is evaluated for the soft PS density and

the compensation density on the standard simulation cell grid and is then enhanced by

the in-sphere PAW correction terms D
{H}
ij and D

{xc}
ij .

Thus, only minimal changes to the conventional TDDFT algorithm are required for

the PAW formalism. While the conduction and valence Hamiltonians Hχ and Hφ have

to be constructed only once at the beginning of the calculation, each time the TDDFT

37Note that a factor of two has been absorbed into Ṽ
{1}χφ
SCF

[
ρ̃{1} + ρ̂{1}

]
(r) in order to keep its definition

fully analogous to the norm-conserving case.
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gradient is evaluated a new ρ̂{1} and new PAW sphere terms D
{H}
ij and D

{xc}
ij have to

be constructed. However, note that the routines to calculate ρ̂{1}, D
{H}
ij and D

{xc}
ij can

be reused from standard ground state PAW calculations. D
{H}
ij is evaluated in precisely

the same way as in ground state calculations, it is simply computed with a different

density kernel ρ{1}ij, while thanks to the finite-difference technique, the D
{xc}
ij term can

be computed completely analogous to the ground state version, only that now fractions

of the response density are added to and subtracted from the appropriate fixed ground

state density. Since the sphere terms are fully local in character, they do not alter the

computational efficiency of the TDDFT algorithm with system size. Once the PAW-

corrected operator qχφPAW is computed for a given guess to the response density matrix,

the TDDFT conjugate gradient search direction is evaluated in exactly the same way as

in conventional TDDFT calculations.

The only other quantity that needs to be changed for the TDDFT algorithm to be

compatible with the PAW formalism is the transition dipole moment that is used to

compute the oscillator strength. In the conventional norm-conserving approach it is given

by

µ = P {1}αβ〈χα|r|φβ〉 (7.37)

while in the PAW approach it has to be computed for the all-electron response matrix

rather than for the soft PS part only. This can be achieved by applying the PAW trans-

formation such that

µ = P {1}αβ〈χα|

(
r +

∑
ij

|p̃i〉 {〈ϕi|r|ϕj〉 − 〈ϕ̃i|r|ϕ̃j〉} 〈p̃j|

)
|φβ〉 (7.38)

= P {1}αβ〈χα|r|φβ〉+
∑
ij

ρ{1}ij {〈ϕi|r|ϕj〉 − 〈ϕ̃i|r|ϕ̃j〉} (7.39)

The PAW correction term can be trivially evaluated inside the PAW spheres and added

to the conventional term for the oscillator strength.

7.2 Benchmark tests

A number of benchmark tests are performed to demonstrate that the ONETEP approach

can be used to obtain optical spectra for low energy excitations of systems that could not

be treated effectively with the norm-conserving pseudopotential approach. For these small

test molecules, the benchmark tests to the all-electron results obtained from NWChem

[128]. A more realistic test system of a cadmium sulphide (CdS) nanocrystal under

pressure is then considered.

Unless specified otherwise, the calculations are performed using a Perdew-Zunger LDA
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Figure 7.1: Low energy spectrum of a single TiO2 molecule, as calculated with ONETEP

and NWChem. A Lorentzian broadening of 0.03 eV is used in both plots.

exchange-correlation functional [33]. The joint NGWF set is used throughout to represent

the unoccupied Kohn–Sham space and the idempotent projector onto the unoccupied

subspace is used. The PAW projector sets in all calculations are taken from the ABINIT

dataset generated with ATOMPAW [139].

7.2.1 TiO2 molecule

The first test is performed on a single TiO2 molecule. Transition metal oxides are no-

toriously hard to treat with conventional norm-conserving pseudopotentials as they tend

to require very hard pseudopotentials and thus a large plane wave basis set to yield con-

verged results [55, 110, 111]. Therefore, the TiO2 molecule forms an appropriate simple

test system. A kinetic energy cutoff of 700 eV is chosen and the box size is given by

30 × 30 × 30 a3
0. A minimal set of 4 NGWFs per oxygen and 9 NGWFs per titanium

atom is selected for this calculation. Furthermore, an NGWF radius of 13 a0 is chosen for

both the conduction and the valence set of NGWFs and the first 4 conduction states are

optimised explicitly. The NWChem benchmark calculations are performed for identical

atomic positions with the aug-cc-pVTZ Gaussian basis set [129].

The results for the low energy spectrum of the TiO2 molecule as generated by the 8

lowest singlet states can be found in figure 7.1. One finds that there is in general a very

good agreement between the ONETEP and the NWChem results, both for peak positions

and oscillator strengths. The maximum energy discrepancy is obtained for the first and
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last excitation, which are found to be at an energy of 2.375 eV and 4.282 eV in ONETEP

and 2.418 eV and 4.328 eV in NWChem. However given that the ONETEP results are

obtained with PAW in periodic boundary conditions while the NWChem results are all-

electron results, a discrepancy of less than 50 meV can be considered to be in very good

agreement (errors are of the same order of magnitude as typical errors between ONETEP

with norm-conserving pseudopotentials and NWChem, as can be seen from section 6.5),

especially given that the errors for the other excited states are considerably lower.

While the agreement for the oscillator strength between the PAW and the TDDFT

results is very close for the first few excitations, the difference is somewhat more pro-

nounced for the bright state at 3.8 eV and the 8th excitation. However, in general, a very

good agreement between the ONETEP and the all-electron results can be observed for this

simple example of a transition metal oxide.

7.2.2 Nickel tetracarbonyl

Nickel tetracarbonyl (Ni(CO)4), a small tetrahedral molecule that has four carbon monox-

ide molecules bound to a central nickel atom, is considered as a second test system. Due

to the nickel atom and the four oxygens, this is again an example for a system that is very

difficult to treat with conventional norm-conserving pseudopotential approaches. For the

ONETEP calculation, a minimal set of 4 NGWFs per carbon and oxygen and 9 NGWFs for

the nickel is selected. Calculations are performed using a kinetic energy cutoff of 800 eV

and a simulation cell size of 40 × 40 × 40 a3
0. An NGWF radius of 13 a0 is used both for

the valence and conduction NGWFs and the conduction NGWFs are optimised for the

lowest 8 conduction states.

Table 7.1 shows the energies and oscillator strengths of the 12 lowest excitations of

Ni(CO)4 as compared to the benchmark calculations performed with NWChem. The

TDDFT results have been analysed by a breakdown into individual Kohn-Sham transi-

tions and the ONETEP results have been reordered where necessary to match the order

of their corresponding states in NWChem. It can be noted that there is generally a

good agreement for states 1-3 and 9-12, both for the excitation energies and oscillator

strengths. There is however a significant discrepancy in the results for states 4-8. These

states correspond to a triply degenerate state and a doubly degenerate state. In the

ONETEP calculation, the order of the two degenerate sets is reversed compared to the

NWChem calculation. However, looking at the bandstructure Kohn–Sham energies for

both the NWChem calculation and the ONETEP calculation, it is found that this discrep-

ancy is due to a discrepancy in the ordering of the 8 lowest conduction states rather than

of a failure of the TDDFT calculation in ONETEP.

Thus, with the exception of states 4 and 5 in the ONETEP calculation, which are found
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ONETEP NWChem

1 3.265 3.278
2 3.265 3.278
3 3.265 3.278
4 3.616 3.513
5 3.616 3.513
6 3.573 3.555
7 3.573 3.555
8 3.573 3.555
9 3.639(0.0029) 3.604(0.0058)
10 3.639(0.0029) 3.604(0.0058)
11 3.639(0.0029) 3.604 (0.0058)
12 3.683 (0.0115) 3.367(0.0115)

Table 7.1: Results for the 12 lowest singlet excitations of Ni(CO)4 as calculated with
ONETEP and NWChem. The ONETEP results have been reordered by comparing their
character to that of the NWChem results. Energies are given in eV, oscillator strengths
in brackets.

to be about 0.1 eV too high in energy as compared to the NWChem benchmark, the two

calculations agree to within a few tenths of meV, which can again be considered a very

good agreement given the pathological system treated here. It can thus be concluded that

the TDDFT implementation performs as expected and calculations on systems containing

transition metals can be performed that yield an overall good agreement with all-electron

results obtained from a large Gaussian basis set representation.

Figure 7.2: Transition densities for the 3-fold degenerate lowest excitation of the CdS
nanocrystal at 3 GPa pressure.
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Figure 7.3: Low energy spectrum of a CdS crystal under 0 and 3 GPa pressure, as
calculated with ONETEP. A Lorentzian broadening of 0.02 eV is used.

7.2.3 CdS crystals under pressure

Now a more realistic, physically motivated system of a CdS nanoparticle under pressure

is considered. Since applying pressure on a nanocrystal lowers the volume of the system,

quantum confinement effects tend to increase the Kohn–Sham gap which leads to an in-

crease of the optical gap of the system. The sensitivity of the absorption spectrum of the

crystal to pressure leads to a number of interesting potential applications as nanoscale

stress sensors [140]. Given that the exact response of the optical properties of a nanocrys-

tal to pressure is very dependent on topology, surface functionalisation and other non-bulk

effects, a good theoretical prediction can only be reached if the entire system is treated

in a fully ab initio way.

Here, a proof-of-principle calculation is performed on the low energy optical spectrum

of a small CdS nanocrystal (Cd32S50H48N4) with a surface termination of hydrogens and

four NC3 molecules. Using the method outlined in 5.2.4, the structure of the system is

relaxed under 0 and 3 GPa of hydrostatic pressure, yielding two different model systems38.

The atomic positions from the two structures are then taken to be fixed and a TDDFT

calculation is performed in vacuum.

The calculations are performed using a minimal set of 9 NGWFs for the Cd and S

atoms, 4 NGWFs for the N atoms and 1 NGWF for the H atoms, for both the conduction

38The relaxed structures for the nanocrystal under 0 and 3 GPa of pressure that are used for obtaining
the TDDFT results presented here were provided by Niccolo Corsini.
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and the valence NGWFs. A cutoff energy of 700 eV is used and the NGWF localisation

radius is chosen to be 9.0 a0 and 12.0 a0 for the {φα} and {χβ} NGWFs respectively.

The conduction NGWFs are optimised explicitly for the 17 lowest conduction sates. All

calculations are performed in a 60.5× 60.5× 60.5 a3
0 simulation cell.

The low energy spectrum of the nanocrystal under 0 and 3 GPa of pressure, as cal-

culated from the lowest 12 excited states, can be found in figure 7.3. It is found that

the spectrum of both structures is dominated by a triply degenerate excited state located

at an energy of 2.61 eV at 0 GPa pressure and 2.71 eV at 3 GPa pressure. Both struc-

tures show that the state couples very strongly with light (see figure 7.2 for a plot of the

transition densities corresponding to the peak for the structure at 3 GPa pressure39). As

expected, quantum confinement effects shift the strong peak of the nanocrystal up by 0.1

eV when a force of 3 GPa is exerted.

The prominent absorption onset for this system is expected to be easily observable

under experimental conditions. Here, only a proof-of-principle is provided by performing

two calculations at different pressures. It should however be noted that it is feasible to

perform the TDDFT calculation shown here for a range of different pressures, and thus

characterising the phase space of the crystal transforming under pressure by its absorp-

tion onset and strength. These results can then be readily transferred to experimental

conditions and a detected change in the spectrum of a given nanocrystal can then be

matched to an applied pressure in the system.

While the system chosen here is a bit smaller than the nanocrystals that can be

routinely produced experimentally, it is noted that the TDDFT approach developed here

is capable of reaching nanocrystals of sizes used directly in experiments [116,140].

39The figure, as well as other plots of atomistic systems and transition densities in later chapters of
this work are produced using VMD [141].
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Chapter 8

Subsystem TDDFT

In this chapter, some conclusions that can be derived from points raised in Chapter 6

regarding the sparsity structure of the response density matrix are discussed in more

detail. These conclusions can be summarised in the following way:

• The linear response TDDFT algorithm presented in this work only retains its linear-

scaling properties if P{1} can be made sparse for an excitation of interest.

• The algorithm scales as O(N2
ω) with the number of excitation energies converged.

For many systems, the number of excitations within a certain energy window grows

quadratically with system size, since the number of possible Kohn–Sham transitions

in the energy window grows quadratically. Therefore, converging all excited states

within a fixed energy window does have a scaling of O(N4) with system size associ-

ated with it. However, there are many situations where the number of excitations

in a certain energy window increases quadratically but the number of excitations of

interest from a physical point of view stays constant. A standard example would be

a chromophore in a protein environment or a defect state in a periodic system. In

these cases it would be highly desirable to be able to converge targeted excitations

in a system40.

• It has been demonstrated in section 6.8 that the sparsity pattern chosen for P{1}

directly influences the character of excitations that can be converged. In the case

of a polar nanorod, a spherical cutoff radius on elements of the density matrix is an

efficient way to eliminate charge-transfer excitations.

The second point raised is of major importance if the linear-scaling method developed

in this work is to be of any practical use for calculating physical properties of previously

40It should be pointed out that there are eigenvalue solvers capable of solving for excited states in a
narrow energy range without explicitly converging all lower energy excitations of the system and thus
provide some form of converging targeted excitations [142]. However, this generally requires the energy of
the target excitation to be known to some accuracy and assumes that there are no unwanted eigenstates
in the direct neighbourhood of the target state.
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Figure 8.1: Single monomer of the Fenna-Matthews-Olson complex: The chromophores
are shown as a ball-and-stick model, while the protein backbone is represented as a ribbon.
The Mg atoms of the seven Bchl chromophores are shown in grey.

inaccessible system sizes. The key to bridging the length scales and accessing properties

of large-scale systems is to be able to calculate targeted excitations in the system, rather

than evaluating the entire low energy spectrum. In this chapter, this problem is addressed

and it is demonstrated how to exploit the localised representation of the response density

matrix to calculate excitations localised in certain subsystems of a larger system.

8.1 Sparsity of the response density matrix revisited: Subsys-

tems

In order to recognise the power of a subsystem TDDFT approach, it is helpful to first

consider a physically motivated example. Here the focus is on the Fenna-Matthews-Olson

(FMO) complex, a water-soluble pigment-protein complex (PPC) of green sulphur bacte-

ria (see figure 8.1, the atomic positions are taken from X-ray spectroscopy data obtained

in [135]). The PPC consists of three monomers, each containing seven bacteriochlorophyll

molecules (Bchls) that are the optically active pigments of the system. The FMO-complex

works as a linker complex, funnelling excitons from antenna complexes to reaction centres

with a quantum efficiency of close to 100 %. Figuring out the reasons for the highly

efficient exciton transport in these structures has been an area of intense research over

the last couple of years [143,144].

The comparatively simple structure and the existence of high quality X-ray crystal-
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lographic data of atomic positions make the FMO complex an ideal candidate for stud-

ies with computational methods. In the computational approaches used, one normally

tries to calculate the site energies of excitons localised on individual Bchls and compute

the coupling of individual localised excitons to each other. This data obtained from

ab initio calculations can then be used to parameterise a model Hamiltonian to study

the exciton dynamics of the system [145, 146]. However, even this comparatively small

pigment-protein complex is normally too large to be studied fully quantum mechanically

by conventional methods, given that a single monomer containing the 7 BChls and the

full protein environment consists of roughly 10,000 atoms. Thus most computational

studies of the FMO complex rely on some form of mixed quantum mechanical and classi-

cal (QM/MM) technique, where a chromophore and some of its surroundings are treated

quantum mechanically, while the electrostatic effects of the extended protein environment

is represented in form of classical point charges. The problem with this approach is that

the influence of the protein environment on the chromophores is often found to be rel-

atively subtle and of a similar order of magnitude to the errors introduced through the

QM/MM approach [147,152]41.

In order to eliminate any potential errors originating from a classical representation

of the electrostatic interactions between a chromophore and its surroundings, one would

like to treat the entire system on the same footing by performing a DFT and TDDFT

calculation including the full FMO complex. However, it is known that the excitations of

interest must to some extent be localised on the chromophores, thus representing them

with a standard truncated response density matrix is very inefficient. A response den-

sity matrix truncated with a spherical cutoff suppresses long range charge transfer style

excitations but otherwise allows for excitations delocalised over the entire system, while

an excitation localised onto one of the chromophores of the FMO complex should be

representable by a much sparser response density matrix.

Thus ideally, one would like to treat the chromophore and its immediate surrounding

as a subsystem embedded in the larger protein environment and only compute excitations

within that subsystem. In the following section, an algorithm is presented that is capable

of systematically converging an excitation confined to a subsystem of a larger system while

treating the effects of the entire environment fully quantum mechanically, thus making full

use of the sparsity of the response density matrix and allowing for very efficient TDDFT

calculations.

41As an example, it has been demonstrated that a QM region of 723 atoms or almost half the entire
system is necessary to converge the excitation energies on the chromophore in the photoactive yellow
protein in a QM/MM approach [153].
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8.2 The algorithm

Consider a subsystem A consisting of all atoms {Ai} of some larger system U. While the

ground state and conduction state calculations are performed in the usual way for the

entire system, the TDDFT excitations should be constrained to be fully localised inside

the subsystem A. This can be achieved by considering a truncated response density

matrix. Labelling the sets of conduction and valence NGWFs of atom Ai as {χAiα } and

{φAiβ }, the appropriate response density matrix has the form:

ρ{1}(r, r′) =
∑
Bi,Cj

[
χBiα (r)P

{1}αβ
{Bi,Cj}φ

Cj
β (r′)

]
(8.1)

with

P
{1}αβ
{Bi,Cj} = 0 for Bi ∪ Cj * A (8.2)

In the above definition, the block density matrix consisting of all the matrix elements

corresponding to NGWFs centered on atoms in A is fully dense. In most applications,

systems are considered where the spatial extent of the subsystem is small, so that an

internal truncation of the block density matrix is negligible. However for large regions A,

one can combine the above truncation pattern with the usual spherical cutoff radius on

the density matrix, causing the block density matrix of the subsystem to become sparse

as well.

While the above sparsity structure cannot by definition represent any excitation with

contributions from NGWFs centered outside the region A, this does not in itself guarantee

that the TDDFT algorithm can yield a meaningful lowest excitation of the system, given

that P{1} is required to fulfil the invariance constraint specified in equation (6.15) in

order to be a valid response density matrix. Fulfilling the constraint while simultaneously

preserving the variational properties of the TDDFT algorithm is a key challenge in the

subsystem approach.

8.2.1 Invariance constraint

For the invariance constraint of the response density matrix, it is required that P{1}
′

=

P{1}, where

P{1}
′
= P{c}SχP{1}SφP{v}, (8.3)

the response density matrix projected into the conduction and valence subspace. However,

for any sparse P{1}, P{1}
′

is clearly less sparse than P{1}, meaning that the relationship

can only hold approximately. For a conventionally truncated density matrix like the one

considered in section 6.8, the violation of the invariance relationship is generally small
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and can be corrected for by iteratively applying the projection in equation (8.3). While

the iterative projection causes the TDDFT algorithm to become non-variational, in the

GaAs nanorod scenario discussed in section 6.8, the algorithm is found to be well behaved

enough to guarantee a good level of convergence for all matrix truncations considered.

However, when considering a response density matrix constrained to a subsystem A,

one is normally interested in a scenario where the region A is much smaller than the entire

system U. This causes P{1} to be much more sparse than P{v} and P{c} and, by extension,

the difference in sparsity between P{1}
′

and P{1} to be much more problematic, since

the amount of violation of the invariance constraint in each conjugate gradient iteration

is considerably larger than in the conventional case. The non-variational nature of the

algorithm causes the conjugate gradients method to break down and a desired convergence

tolerance of the excitation cannot be reached.

The problem of keeping the constraint of the invariance relation while introducing

sparsity in the density matrix is to a certain extent analogous with the one encountered

in the ground state problem. Thus, just as proposed in the ground state problem, one

could use the positive semidefinite norm Q[P{1}] defined in equation (6.30) as a penalty

functional, and minimising

Ωpen = Ω[{P{1}i }] + α
Nω∑
i

Q[P
{1}
i ] (8.4)

This approach has exactly the same downside as in ground state DFT, in that it only con-

verges to the correct {P{1}} for α→∞, but has the advantage of being fully variational.

One could also use a functional equivalent to the Kohn functional in ground state DFT,

by considering

√
Q[P

{1}
i ] instead of Q[P

{1}
i ]. This again leads to the correct minimum at

the cost that the algorithm is now non-variational again due to the branch point of the

square root. Instead, an analogous approach to the ground state DFT LNV method (see

section 3.3.5) for TDDFT is introduced in this work.

8.2.2 The auxiliary density matrix

In analogy to the LNV algorithm in ground state DFT, the auxiliary response density

matrix L{1} is introduced such that

P{1} = P{c}SχL{1}SφP{v}. (8.5)

It is now required that L{1} has a sparsity pattern with matrix elements only non-zero for

NGWFs on atoms in subsystem A as defined in section 8.2, while P{1} is now considerably

less sparse than L{1}. To the degree that the sparse density matrices P{c} and P{v} fulfil
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their respective idempotency constraints, P{1} fulfils the invariance constraint of equation

(6.15). Treating Ω as a functional of L{1} and finding its derivative with respect to the

auxiliary density matrix, one finds that the matrix-vector operation qχφ can be written

as

qχφ = P{c}SχP{c}HχP{c}SχL{1}SφP{v}SφP{v}

−P{c}SχP{c}SχL{1}SφP{v}HφP{v}SφP{v}

+P{c}SχP{c}V
{1}χφ
SCF

[
P{c}SχL{1}SφP{v}

]
P{v}SφP{v} (8.6)

in terms of L{1}. One can now make the approximation that the amount to which the

sparse ground state and conduction density matrices violate their idempotency constraints

is negligible, which should be the case at the end of any well converged ground state and

conduction calculation in ONETEP. Then qχφ reduces to

qχφ = P{c}HχP{1} −P{1}HφP{v} + P{c}V
{1}χφ
SCF

[
P{1}

]
P{v}, (8.7)

which is the same familiar form introduced in chapter 6, with the difference that P{1} is

now defined via the auxiliary density matrix L{1}.

The full TDDFT algorithm then follows a very similar structure to the standard

algorithm outlined in chapter 6. One starts with a random guess for L{1} and uses it

to construct P{1}. The TDDFT gradient is calculated and a conjugate search direction

is constructed from qχφ. Once an ideal step size is found, the step direction is used to

update L{1} and a new P{1} is constructed. While the use of the auxiliary response density

matrix comes at a computational cost since P{1} is significantly less sparse than L{1}, it

guarantees that the minimisation of Ω is variational and that P{1} fulfils the invariance

constraint at every single conjugate gradient step.

The subsystem TDDFT algorithm outlined here then enables the convergence of the

lowest TDDFT excitations localised within a certain subsystem of a larger system. Note

that the Kohn–Sham Hamiltonian as well as the ground state and conduction density

matrices are defined for the entire system. Thus, the only approximation entering the

subsystem TDDFT calculation is the sparsity pattern of L{1} defined through the spatial

extent of the subsystem A. Following the physically motivated example of the FMO com-

plex, the localised excitation on a single chromophore can be converged by systematically

increasing the subsystem region to include parts of the protein environment.
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8.2.3 Exciton couplings between subsystems

Consider the case where there is not a single region A of interest, but a number of regions

A, B, C etc. An example for this has been considered with the FMO complex in section

8.1, but there is a large number of photoactive biological systems that generally have more

than one chromophore. While it is possible to converge the excitations localised in each

individual region using the above technique, this does not represent a good approxima-

tion to the excitations of the full system if there is non-negligible coupling between the

subsystems.

If the coupling between subsystems is small, which is a requirement for the subsystem

approach to be valid to begin with, its net effect on excitation energies and oscillator

strengths can be reintroduced perturbatively. Consider two subsystems A and B with

local response density matrices
{

P
{1}
A,i; i = 1, ...NA

ω

}
and

{
P
{1}
B,j; j = 1, ...NB

ω

}
. It is then

assumed that any global excitation of the coupled subsystems can be written as a linear

combination of {P{1}A,i} and {P{1}B,j}. Constructing the two-particle TDDFT Hamiltonian

H
[2p]
TDA in the representation of the combined solution space {P{1}A,i}⊕{P

{1}
B,j} the following

effective eigenvalue equation is obtained:

H
[2p]
A,Bu = ωSA,Bu (8.8)

where the block matrices H
[2p]
A,B and SA,B are being given by

H
[2p]
A,B =

(
ωAA ΩAB

ΩAB ωBB

)
(8.9)

with matrix elements

ωA,iA,j = δijωAj
(8.10)

ΩA,iB,j = Tr
[
P
{1}†
A,i SχqχφB,jS

φ
]

(8.11)

and

SA,B =

(
IAA SAB

SAB IBB

)
(8.12)

with matrix elements

IA,iA,j = δij (8.13)

SA,iB,j = Tr
[
P
{1}†
A,i SχP

{1}
B,jS

φ
]
. (8.14)

Just like in the subspace diagonalisation of the conventional TDDFT algorithm, H
[2p]
A,B
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and SA,B can be trivially constructed from
{

P
{1}
A,i

}
,
{

P
{1}
B,j

}
and their corresponding{

qχφA,i

}
and

{
qχφB,i

}
. Solving the eigenvalue problem in equation (8.8) then yields all

excited states of the global system, while the matrix of eigenvectors u can be used to con-

struct the full transition density matrices
{

P
{1}
tot,k; k = 1, ...(NA

ω +NB
ω )
}

from the transi-

tion density matrices of the individual subsystems A and B. Expanding the formalism

from two coupled subsystems to an arbitrary number of coupled systems is trivially done.

8.2.4 Scaling considerations

Just like in the conventional linear-scaling TDDFT algorithm, the subspace diagonalisa-

tion of equation (8.8) scales as the cube of the size of the total subspace
{
{P{1}A,i} ⊕ {P

{1}
B,j}

⊕{P{1}C,k} ⊕ ...
}

considered in the calculation. However, given that one is usually only in-

terested in a small number of excitations per subsystem, the subspace diagonalisation is

never a bottleneck in practical calculations.

Now consider the computational cost of evaluating the low energy excitation spectrum

of a system U containing Nsub subsystems of interest. Performing the ground state DFT

and the conduction optimisation on the entire system U scales linearly with system size.

To obtain the spectrum of the entire system it is necessary to perform Nsub individual

subsystem TDDFT calculations, converging a fixed number of states in each case. How-

ever, note that the sparsity pattern of the auxiliary response density matrix L{1} of a

subsystem dictates that the number on nonzero elements it contains must stay constant,

rather than increase linearly, with system size. Given that the number of states of interest

contained in each individual subsystem is also constant with system size, obtaining these

states for an individual subsystem scales as O(1) with system size of the global system U.

The number of individual subsystems of interest Nsub can be assumed to grow linearly

with system size, therefore obtaining all transition density matrices for all localised exci-

tations of interest for all subsystems scales as O(N) with system size. As discussed above,

the computational subspace diagonalisation that has to be performed when coupling the

individual subsystems is negligible for most practical calculations.

One can therefore conclude that calculating the excitation spectrum for some low

energy window of a system that can be divided into individual subsystems with well

defined localised excitations scales fully linearly with the size of that system. If the

separation into subsystems is possible, the subsystem TDDFT approach described here

avoids the scaling problems stated at the beginning of this chapter and allows for truly

O(N) calculations of excitation spectra. Clearly, this division is not always possible

in practice. While it is expected to yield very good results for chromophores in light

harvesting biological systems or organic crystals, it is not likely to work in situations
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where it is not clear a priori where the excitation localises or in systems where well

localised excitations simply do not exist. However, in the remainder of this work it will

be demonstrated that the subsystem TDDFT method is very powerful in a number of

interesting realistic systems.

8.3 Comparison to the FDEc method

The method of converging localised excitations in different regions A, B ... and then cou-

pling them in a post-processing step by assuming that global transition density matrices

can be written as linear combinations of transition density matrices of the individual sub-

systems is analogous to the coupled frozen-density-embedding TDDFT (FDEc-TDDFT)

approach introduced by Neugebauer et al. [148–150]. However, their approach shows a

number of differences, mainly in how the ground state calculation is treated. This leads

to some differences in the form of the coupled subsystem TDDFT eigenvalue equations,

which will be briefly summarised here without going into too much detail on the FDEc

method.

In the subsystem TDDFT approach presented here, the effects of the embedding envi-

ronment are fully included without the need of any approximation, while in FDEc they are

included by calculating an approximate embedding potential. The FDEc method divides

the total density of the system in two parts, that of the subsystem and that of the embed-

ding environment. While it is trivial to write down a Hohenberg-Kohn density functional

for the total energy of a system partitioned in this way, the Kohn–Sham treatment is dif-

ficult as the Kohn–Sham single particle kinetic energy of the total system is not the sum

of the single particle kinetic energies of its constituent parts. This means that one has to

add an extra term for the non-additive kinetic energy to the energy functional. Since the

exact functional form of the non-additive kinetic energy term is generally unknown, it has

to be approximated in practical calculations and thus introduces a further approximation

compared to the conventional Kohn–Sham scheme.

The advantage of the FDEc method is that only a small part of the system has to be

treated quantum mechanically at any given time during the ground-state and TDDFT

calculation, while the effect of the rest of the system is included through the embedding

potential. In the TDDFT method introduced here, the Hamiltonian and the ground

state density matrix are calculated for the entire system. This removes any additional

approximations in the form of a non-additive kinetic energy functional but means that a

larger system has to be treated fully quantum mechanically. Here, the advantage of the

linear-scaling DFT method becomes apparent as it allows for the full treatment of very

large systems without the need of a fragment approach.
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After the TDDFT excitation energies are found for individual subsystems, the coupling

of the subsystems in the FDEc method follows a similar approach as in the subsystem

TDDFT method presented here, in that the full TDDFT equation is rewritten in the

subspace of eigenvectors of the individual local excitations of all the subsystems. However,

the block matrix elements ΩAB coupling the two subsystems are different in the two

approaches. In the FDEc approach, the coupling originates from V
{1}
SCF, which contains

an additional term due to the second derivative of the non-additive kinetic energy with

respect to the density of the system. In the subsystem TDDFT approach presented here,

the kinetic energy term is naturally missing. Instead the coupling elements also contain

contributions from the diagonal part of Kohn–Sham eigenvalue differences:

Ωdiag
A,iB,j = Tr

[
P
{1}†
A,i SχP{c}HχP

{1}
B,jS

φ
]
− Tr

[
P
{1}†
A,i SχP

{1}
B,jH

φP{v}Sφ
]

(8.15)

This term is only strictly vanishing if P
{1}
A,i does not contain any fractions of a Kohn–Sham

transition that are also present in P
{1}
B,j, that is to say if P

{1}
A,i and P

{1}
A,i are orthogonal and

span entirely different subspaces. This is not guaranteed to be the case in the subsystem

approach presented here, although the overlap between P
{1}
A,i and P

{1}
A,i can be assumed

to be very small for well separated and thus well defined subsystems. This diagonal

term is readily available in the subsystem TDDFT approach presented here because the

Hamiltonians Hχ and Hφ are evaluated for the entire system and thus P
{1}
A,i and P

{1}
B,j can

both be represented in the same total space of all possible Kohn–Sham transitions of the

total system.

It can be summarised that the FDEc and other density embedding approaches to

TDDFT achieve a similar goal to the method proposed here, in that they both perform

a global TDDFT calculation by breaking the total system into different subsystems with

well localised excitations that can be coupled in a post-processing step involving a single

subspace diagonalisation. The method introduced here is conceptually very simple, as the

convergence of excitations localised in subsystems is achieved purely by truncating the

auxiliary response density matrix. Thus the accuracy of the method is uniquely defined by

a single parameter, the size of the region of the subsystem of interest. This approach relies

heavily on the fact that it is possible to perform a ground state DFT calculation of the

entire system in linear-scaling effort within the ONETEP method. The FDEc method never

requires the treatment of the full system in the ground state or excited state calculations

but has the disadvantage of introducing additional approximations.

Both the FDEc method and the subsystem method introduced here make the inherent

assumptions that there exist meaningful localised excitations in the system and that the

response density matrices of the entire system can be written as a linear combination of the
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density matrices of the individual subsystems. As mentioned earlier, the first assumption

breaks down as soon as it is not possible to define a meaningful, physically motivated

region in the full system where excitations might have a local character. The second

assumption breaks down as soon as the coupling between the two subsystems becomes

strong. This breakdown leads back to the first assumption, because in the limit of strong

coupling between subsystems A and B, it is no longer meaningful to regard them as well

defined individual subsystems.

8.4 Benchmark tests

In order to test the subsystem algorithm, a number of benchmark tests are performed.

The test calculations are relatively simple examples that are used to establish the va-

lidity of both the convergence of excitations localised in certain parts of larger systems

and the coupling of excitations between individual subsystems. In the next chapter, the

algorithm established here is used on realistic systems of real research interest. All cal-

culations presented here are performed using norm-conserving pseudopotentials and the

ALDA functional in the Perdew-Zunger parameterisation is used unless specified other-

wise. Furthermore, one NGWF per H atom and four NGWFs per C and O atom is used

throughout and the conduction space manifold is represented by the joint NGWF set {θα}
and the projection operator onto the entire unoccupied subspace.

8.4.1 Benzene

As a first test system, a benzene dimer in a T-shape configuration is considered in order to

test the capability of converging targeted excitations with the density matrix truncation.

For this purpose each benzene molecule is treated as an individual subsystem, causing

the L{1} matrices to have 75 % of all elements set to zero. As the system is too small to

make use of any matrix truncations for the conduction and valence density matrices, P{1}

is still fully dense for both subsystems. The T-shape configuration is chosen to ensure

that the dipole moments of excitations localised on the two different benzene molecules

are orthogonal to each other, and it is therefore expected that the coupling between the

two subsystems is vanishingly small for most low energy excitations. Thus one expects

to find low energy excited states that are well localised on a single benzene molecule and

that are thus well represented by the subsystem approach.

Calculations are performed on a box size of 40 × 40 × 40 a3
0, using a kinetic energy

cutoff of 800 eV. A centre of mass separation of 12.35 a0 is chosen for the two benzene

molecules in the T-shape configuration. The localisation radii are set to 12 a0 and 10 a0

for the {χα} and {φβ} NGWF representations respectively and the PBE functional [39]
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(a) Hole Density (b) Electron Density (c) Transition Density

Figure 8.2: Electron, hole and transition density for the first excitation of a T-shaped
benzene dimer for a fully dense response density matrix

is used for all calculations. First, a benchmark calculation is performed where the entire

system is treated explicitly, no truncation on the response density matrix is used and the

16 lowest singlet states are converged. Then, the lowest 8 localised singlet excitations

are computed for both of the benzenes, first treating one benzene as the subsystem of

interest and then the other. As a final step, the two sets of response density matrices

from the localised excitations of both benzenes are used to construct the coupled subspace

eigenvalue problem. This subspace matrix is then diagonalised to find the 16 eigenstates

of the coupled system.

Since a semi-local exchange correlation functional is used, it is again expected that the

lowest excitation of the system corresponds to an unphysical charge transfer state from

one benzene to the other. As can be seen from figure 8.2, this is exactly what can be

observed. The lowest excitation is found to have an energy of 4.892 eV and a vanishing

oscillator strength. Figure 8.2 shows that the hole is entirely localised on the upper

benzene, while the electron is fully localised on the lower benzene, with the transition

density being spread over both of them. A breakdown of the TDDFT transition into

Kohn–Sham states confirms that the excitation is fully composed of an excitation from

the HOMO of the upper benzene to the LUMO of the lower benzene, as expected.

In fact, the first eight excitations of the system treated with a fully dense L{1} cor-

respond to unphysical charge transfer states that all originate from the failure of the

semi-local exchange correlation kernel to capture non-local exchange effects. However,

the 9th excitation corresponds to an excited state localised on a single benzene. As seen
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(a) 9th excitation full system (b) 1st excitation truncated system

Figure 8.3: Transition density of the 9th excitation of the entire system compared to the
transition density of the first excitation of a system where L{1} only has non-zero elements
on the lower benzene.
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(a) Hole Density (b) Electron Density (c) Transition Density

Figure 8.4: Electron, hole and transition density for the 11th excitation of the full system.

in figure 8.3, the transition densities for the 9th excited state of the dense system and

the 1st excited state of the system where L{1} is constrained to have non-zero elements

for the lower benzene only are virtually identical, apart from a difference in the sign of

the transition vector. However, the sign of the transition vector is arbitrary and has no

effect on the excitation energy and thus the two different state vectors indeed describe the

same excitation. This is confirmed by a breakdown of the transitions into their respective

Kohn–Sham transtions.

The excitation energy obtained with the fully dense L{1} is 5.1950 eV, while the

truncated response density matrix yields a marginally higher value of 5.1953 eV. Thus

the error induced due to constraining the auxiliary transition density matrix is of the order

of 0.3 meV. Here, in this simple test system, one can already observe the strength of the

subsystem TDDFT approach. Just as with the radial cutoff used for the GaAs nanorod in

section 6.8, constraining the response density matrix allows for the direct convergence of

the localised excitations well described by (semi)-local exchange correlation functionals,

while removing any charge transfer excitations from the system for which the choice of

exchange correlation functional must necessary fail. This strongly limits the number of

excitations that have to be converged to obtain the excitations of interest, yielding a

significant increase in computational efficiency.

However, while the 9th excitation of the full system shows a localised character well

described by a single subsystem, this is not true for all excitations of the system that do

not have charge-transfer character. Consider the 11th excitation of the system, plotted in

figure 8.4. While this excitation is mainly localised on the upper benzene molecule, the

electron and the hole clearly spread out over both benzenes. Therefore, the excitation
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(a) Transition density
benzene 1

(b) Transition density
benzene 2

(c) Transition density
coupled

(d) Transition density
whole system

Figure 8.5: Transition density of the 11th excitation of the full system as compared with
the transition density of the same excitation obtained in the coupled subsystem approach.
The two main localised transitions on benzene 1 and benzene 2 that are contributing to
the coupled excitation are also plotted.

does not have a pure charge transfer character from one benzene to the other. However,

given that the transition density is spread out over both benzenes, it cannot be obtained

from a single L{1} localised on one of the benzenes.

The main contribution to the 11th excitation comes from the upper benzene, so it is to

be hoped that the full excitation can be reproduced by taking a localised excitation on the

upper benzene and mixing in some contributions from the lower benzene. As can be seen

from figure 8.5, this is precisely what is found. The excitation is dominated by the second

excitation of the subsystem of the upper benzene. This excitation couples to the second,

third and fourth excitation of the subsystem of the lower benzene (in the figure, only the

2nd excitation of the lower system is plotted), with the resulting transition density being

similar to the one of the 11th excitation of the full system.

The main differences between the two transition densities is that there is less weight on

the lower benzene in the coupled approach. Furthermore, while the sign of the transition

density of the upper benzene is reversed, that of the lower benzene is not when compared

to the full solution. In general, the coupling between the two subsystems is found to be

very weak, due to the T-shape configuration of the benzene dimer that does not allow for

strong dipole interactions between the two benzenes. Thus the excitation in question is

already well described by a localised transition density on the upper benzene and shifting

some weight to the lower benzene does not significantly alter the excitation energy. The

excitation energy for the coupled system is found to be 6.2685 eV, in good agreement with

the 6.2643 eV obtained for the full system. Thus the error of the subsystem approach is
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of the order of a few meVs in this example.

It can be concluded that it is possible to converge localised excited states in the T-

shape dimer of benzene that agree very well to excitations obtained for the whole system.

The excitations of the full system tend to show some more spread in the transition density

that is not fully reproduced by the coupled subsystem. However, due to the very weak

coupling between subsystems, the excitation energies of the more localised subsystem

excitations are in excellent agreement with the energies for the full system. Thus the

calculations presented here can be taken as a demonstration that it is indeed possible

to converge targeted excitations localised in some subsystem of a larger system with the

algorithm outlined above.

8.4.2 Benzaldehyde

While the example of a T-shape benzene dimer demonstrates some of the strengths of

the subsystem approach, such as the removal of any unwanted badly-represented charge-

transfer excitations from the subspace of allowed solutions, it does not provide an adequate

test of the coupling of the subsystems, since the coupling of the benzenes in the T-shape

configuration is so weak.

For this purpose, a calculation on a dimer of benzaldehyde (C6H5CHO) is performed.

Rather than choosing a T-shape configuration like in the case of benzene, the molecules

are stacked on top of each other so that they are aligned, thus maximising the interaction

between the two systems. In such a configuration, one can then observe exciton splitting:

the two benzaldehyde molecules each have a set of localised excitons associated with

them, which are, due to the symmetry of the problem, necessarily degenerate in energy.

When these excitons couple to form the total excitation of the entire system, they can

do so in two different ways. Either, their transition densities can align such that the

transition dipole moments align or they can oppose each other such that the transition

dipole moments cancel one another. The two different configurations can be seen in figure

8.6 for a chosen excited state of benzaldehyde.

The interaction between the two excitons causes the dipole-opposed configuration to

have a lowered energy and vanishing oscillator strength, while the dipole aligned config-

uration shows an enhanced oscillator strength and an increased excitation energy. Thus

the degenerate exciton splits into two different excited states, purely due to the coupling

between the systems. This coupling is expected to be well reproduced by the subsystem

TDDFT approach.

Thus a subsystem TDDFT calculation of the benzaldeyhde dimer is performed at

different dimer separations and the results for a chosen exciton pair are compared to the

results obtained when the entire system is treated explicitly. The simulation cell size is
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(a) Dipole-opposed configuration (b) Dipole-aligned configuration

Figure 8.6: Exciton splitting in a benzaldehyde dimer. The exciton splits into a dipole
aligned configuration with enhanced oscillator strength and higher excitation energy and
a dipole opposed configuration with vanishing oscillator strength and lowered excitation
energy.

chosen to be 40× 40× 40 a3
0 and a kinetic energy cutoff of 1200 eV is used. The Perdew-

Zunger exchange-correlation functional [33] is used and an NGWF localisation radius of

10 a0 and 12 a0 is chosen for the valence and conduction NGWFs respectively. For the

subsystem TDDFT approach, the four lowest excitations localised on each benzaldehyde

are converged and then coupled, while for the treatment of the entire system, the lowest

14 states are converged explicitly. It is found that even for this small system there is a

significant saving in computational cost when the subsystem approach is considered, as

converging the two sets of localised excitons and coupling them is found to only require

about 55 % of the time taken to converge the 14 lowest states of the system with a dense

response density matrix.

The exciton splitting between the degenerate excitons corresponding to the third tran-

sition in the individual benzaldehydes, a bright state with an oscillator strength of 0.0166

in the isolated system, is then considered. Just as expected, for large dimer separation,

this state splits into one bright state with an enhanced oscillator strength of 0.033 and a

dark state that is lower in energy.

Figure 8.7 shows the energy of the two excited states in question, obtained from both

the coupled subsystem approach and the full TDDFT calculation on the entire system, for

different dimer separations. As can be clearly seen, for large enough dimer separations,

the excitation energies obtained with the coupled subsystem approach agree perfectly

with the full TDDFT calculation. As the two benzaldehyde molecules get closer together,

the exciton splitting between the excited states grows larger, as one would expect from
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Figure 8.7: Exciton splitting in Benzaldehyde plotted against dimer separation for both
the full system and the coupled subsystem approach.

the increased interaction strength between the excitations. However, up to a separation

of around 5.5 Å, the subsystem calculation still yields a good agreement with the full

TDDFT approach.

This good agreement breaks down for smaller separations. While the subsystem

TDDFT approach simply predicts an increased splitting between the two excitons, the

full TDDFT approach shows that a crossing between the excited state energy surfaces of

the two excitons occurs at a dimer separation of around 5 Å. Here, the breakdown of the

transition density matrix into Kohn–Sham transitions is used to confirm that a crossing of

excited state potential energy surfaces is indeed occurring, rather than an avoided cross-

ing. Naturally this crossing fundamentally changes the character of the excitations such

that they are no longer well represented by the simple model of two interacting localised

excitons, leading to a breakdown of the subsystem TDDFT approach.

In conclusion, it is found that the subsystem TDDFT approach is indeed capable of

describing the coupling between excited states of interacting subsystems to great accuracy,

as long as these subsystems are not interacting strongly. In the limit of strong interaction,

the excitations can no longer be written as a linear combination of localised excitations

of individual subsystems and the subsystem approximation must necessarily break down.

Note that in this limit it is no longer physically meaningful to treat the system as consisting

of well defined localised subsystems that are weakly interacting and there is no alternative

to treating the entire system explicitly. However, it should be pointed out that a number
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8. SUBSYSTEM TDDFT

of the systems discussed as potential applications to this method, such that chromophores

in biological systems and organic crystals, are known to interact only weakly and thus

the subsystem approach is expected to be valid. Some of these systems are considered

explicitly in the next chapter.
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Chapter 9

Large-scale applications

To test the methods developed in the last couple of chapters, a number of realistic large

scale applications are focused on. Two different problems are considered in detail, the

first one of which, the study of environmental effects on the excitons localised on bacteri-

ochlorophyll (Bchl) sites in the Fenna-Matthews-Olson complex, has already been briefly

introduced in the last chapter. As a second problem, the singlet and triplet excitations

of pentacene-derived dopant molecules are studied when substituted into an infinite p-

terphenyl organic crystal.

9.1 The Fenna-Matthews-Olson (FMO) complex

In order to assess the influence of the protein environment on localised excitation energies

in the Fenna-Matthews-Olson (FMO) complex, two model systems from the full complex

are designed. For the first model, the Bchl site 1 of the X-ray structure obtained in [135] is

taken and all atoms of the protein environment that are within a radius of 10 Å centered

on the Mg atom of site 1 are included, as well as the full nearest neighbour Bchl molecule

(corresponding to Bchl2 following the original labelling by Fenna and Matthews [151]).

For the second model, protein environment up to a radius of 15 Å is included and again,

Bchl2 is included completely as well. Thus, two structures for the Bchl molecule of site

1 are obtained, with different amounts of the protein environment included, where the

smaller model corresponds to a system size of 562 atoms, while the larger model contains

1646 atoms. Both models are shown in figure 9.142.

The 10 Å and 15 Å structures of the two models correspond exactly to the ones

discussed in [152], where it is found that the smaller system of 10 Å cutoff radius is

sufficient to converge the Qy transition of the system constructed from pure Kohn–Sham

42The optimised structures of both models of Bchl1, equivalent to those used in [152] were provided by
Daniel Cole
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(a) 562 atoms (b) 1646 atoms

Figure 9.1: Two different structures used in the FMO calculation: The 10 Å cutoff radius
corresponds to a system with 562 atoms, while the 15 Å cutoff radius corresponds to a
system of 1646 atoms.

transitions43. Here, the discussion is extended to the case where the exciton energies are

obtained with TDDFT rather than just taken to be the Kohn–Sham eigenvalue differences

of Kohn–Sham states localised on the Bchl1 site.

Calculations are performed in a 101.253 a3
0 simulation cell for the small model and

a 123.753 a3
0 cell for the larger model and an implicit solvent model (see section 5.2.3)

with a static dielectric constant of εstatic = 80 is used throughout in order to remove any

spurious protein states in the HOMO-LUMO gap due to insufficient electrostatic screening

at the surfaces of the systems. The dynamic response of the solvent to the excitations is

modelled by choosing εdynamic = 2, approximately corresponding to the optical response

of water. The kinetic energy cutoff used in both models is 1020 eV and a cutoff radius

of 10.0 a0 is used for all NGWFs. All calculations in this section are performed using

norm-conserving pseudopotentials and the LDA functional. For both models, the 16

lowest conduction states are explicitly optimised and the joint representation and the

projector onto the entire unoccupied subspace is used in the TDDFT calculations. Since

both models are of moderate size, an explicit density matrix truncation of P{v} and P{c}

is deemed unnecessary and both the conduction and the valence DFT calculations are

performed using fully dense density matrices.

43However, to converge Qy transitions of other Bchl sites it is often found that the larger system of 15
Å is needed. See the supplementary information of reference [152] for more details.
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Figure 9.2: Low energy spectrum of the 10 Å cutoff system and the 15 Å cutoff system,
both calculated using a fully dense P{1}. A Lorentzian broadening of 15 meV is used in
both spectra.

In a first step, a full TDDFT calculation is performed on the two models, using fully

dense response matrices P{1}. Due to the presence of the two Bchl sites in the models

and the use of a local exchange-correlation kernel, the treatment of the systems with fully

dense response matrices yields a number of unphysical low energy charge transfer states

between the Bchl sites. Since these states are dark, they do not show up in the spectrum

but do nevertheless have to be converged in order to obtain all excitations in some low

energy window. Furthermore, even though the systems are placed in an implicit solvent,

there are a number of spurious occupied and unoccupied protein states close to the HOMO

and LUMO states respectively that are caused by electrostatic effects due to the way the

models are cut out of the larger FMO system. These spurious protein states cause the

low energy spectrum to contain a further number of charge transfer states, all of which

are dark as well. For this reason, in order to calculate the spectrum in an energy range

between 1 and 2.2 eV, it is necessary to explicitly calculate the 14 lowest excitations of

the 10 Å model and the lowest 34 excitations of the 15 Å model.

The low energy spectrum of the two models can be found in figure 9.2. Note that the

spectrum for the smaller model is dominated by four peaks of different intensity, while

the larger model shows an extended feature between 1.90 and 2.05 eV that is made up

of three distinct peaks of similar intensity. Analysing the spectrum of the small model,

it is found that the first and the second distinct peak with excitation energies 1.850 eV
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(a) coupled subsystems (b) full system

Figure 9.3: Transition density of the S1 excitation localised on Bchl1 for the 10 Å cutoff
system, obtained by coupling the two subsystems and by solving for the entire system
with a dense P{1}.

and 1.956 eV respectively are associated with excitons localised on the central Bchl1 of

interest, while the third and fourth peaks at 2.029 eV and 2.123 eV are associated with

Bchl2. Here, the strongest peak in the spectrum corresponds to the Qy transition of Bcl1,

while the first small peak is the Qx transition. Both Qy and Qx transitions show non-

negligible coupling to Kohn-Sham transitions associated with Bcl2. For the larger model,

the first peak is found to correspond to the Qx transition of Bchl1 and, with an energy of

1.848 eV, is found at almost exactly the same energy as the Qx transition in the smaller

model. The second peak in the 15 Å model corresponds to the Qy transition of Bchl1 and

is located at an energy of 1.909 eV. The fourth peak in the spectrum is associated with

Bchl2 and is located at 2.009 eV. The Bchl2 excitation corresponding to the fourth peak

in the smaller model is absent, most likely due to the fact that not enough excitations

were calculated in the larger system to obtain it. The third peak in the large model is an

interesting case: its character is shared between Bchl1 and Bchl2 and it is entirely absent

from the smaller model.

For the purpose of calculating site energies in the Fenna-Matthews-Olson complex,

we are mainly interested in how the Qx and the Qy transitions of Bchl site 1 behave

with the amount of protein environment considered explicitly. Thus we focus on the two

lowest excitations of both models. It can be noted that the Qx transition associated

with Bchl1 in the large model is almost exactly reproduced in the smaller model, both in

excitation energy and oscillator strength. However, the Qy transition shows significant
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(a) coupled subsystems (b) full system

Figure 9.4: Transition density of the S2 excitation localised on Bchl1 for the 10 Å cutoff
system, obtained by coupling the two subsystems and by solving for the entire system
with a dense P{1}.

differences between the two models. In the larger model, the energy of the transition is

lowered by almost 50 meV, decreasing the splitting between Qx and Qy energies by the

same amount. Furthermore, the oscillator strength of the excitation is halved compared

to the smaller model. These discrepancies can be directly attributed to the difference in

environmental screening of the excitation in the two different systems. It can thus be

concluded that while the Qx and Qy transition energies derived from simple Kohn-Sham

energy differences reported in [152] are converged for the small model of Bchl1, the same

is not true for the excitation energies derived from TDDFT. While the test calculation

performed here does not allow us to say whether the Qy energy obtained from the 15

Å model is converged with the amount of explicit protein environment included in the

calculation, it is clearly evident that the small model fails to provide a converged value

for the Qy transition, suggesting that the explicit treatment of large systems is indeed

necessary in determining site energies in the Fenna-Matthews-Olson complex.

After having established that an explicit quantum mechanical treatment of a large

amount of the protein environment seems to be necessary to correctly converge an ex-

citation localised on a Bchl site in the FMO complex, it is now interesting to consider

the question of whether these excitations can be converged with the coupled subsystem

approach. It can be seen from the spectrum in Figure 9.2, that the low energy absorption

is dominated by the low energy excitations localised on the two Bchls and thus converging

the spectrum using a fully dense P{1} is wasteful and leads to a large number of spurious
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Figure 9.5: Low energy spectrum of the 10 Å cutoff system as calculated with a fully
dense P{1} or the subsystem approach. Two different subsystem definitions are used. For
the spectrum labelled “fully local”, P{1} is restricted onto one of the Bchls only. For
the spectrum labelled “delocalised”, P{1} contains the protein environment as well. A
Lorentzian broadening of 10 meV is used in all spectra.

dark charge transfer states.

In order to establish the validity of the coupled subsystem approach for this realistic

system that is considerably more complicated than the model systems treated in section

8.4, the small model is focused on first and two different definitions of the subsystems

for the response density matrices are used. In the first, fully localised definition of the

subsystems, subsystem A and B are taken to only contain atoms belonging to one of

the Bchls but none of the atoms belonging to the protein environment. In a second,

delocalised definition of the subsystems, subsystem A contains all atoms of Bchl1 and all

protein atoms, but none of the atoms belonging to Bchl2, while subsystem B contains

all atoms in the system apart from atoms belonging to Bchl1. The lowest few singlet

states for each of the subsystem are converged and are then coupled as described in

chapter 8. Generally it is found that coupling between the subsystems is weak, with

coupling strengths between excitations of the order of a few meV, and that the subsystem

approach is thus well defined.

The results for the low energy spectrum of the small model, as calculated with the

fully dense approach and the two definitions of subsystems can be found in figure 9.5. It

can be seen that when the subsystems are taken to be fully localised on the Bchls, the

excitations corresponding to Bchl1 are significantly overestimated, with errors of about
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(a) S1 (b) S2

Figure 9.6: Transition density of the first and second singlet excitation localised on Bchl1
for the 15 Å cutoff system, where both excitations are obtained by coupling the two
subsystems.

0.1 eV, while the discrepancies for Bchl2 are somewhat smaller but the oscillator strength

of the transitions is wrong. When the protein environment is included in the subsystem

approach, the errors are significantly reduced, with excitation energies being overestimated

by about 20 meV as compared to the calculation corresponding to a fully dense P{1}.

There is a slight discrepancy in oscillator strengths for the Qy transition of Bchl1 in the

subsystem approach, which is slightly overestimated. However, in general the agreement

between the subsystem method and the full approach is very good, with the advantage

that the subsystem TDDFT approach eliminates a number of spurious charge transfer

states by design and is much more efficient computationally.

In figures 9.3 and 9.4 the transition density of the two low energy singlet states localised

on Bchl1 are plotted as calculated with the delocalised coupled subsystem approach and

the full TDDFT approach. As it can be seen, the agreement is very good. Furthermore,

note that in 9.3, the Qy transition can be seen to have a small contribution on Bchl2,

that is correctly reproduced in the coupled subsystem approach.

Figure 9.7 shows the coupled subsystem approach as applied to the larger model in

comparison to the full TDDFT treatment. Here, the delocalised definition of the subsys-

tems is used that does include the protein environment but excludes all spurious charge-

transfer states between the Bchls. The errors of the subsystem approach are slightly larger

in the large system, with the Qy transition on Bchl1 being overestimated by about 40

meV. This suggests that the subsystem region should be defined more carefully, possibly

including some parts of Bchl2 that are very close to Bchl1 in order to get fully converged
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Figure 9.7: Low energy spectrum of the 15 Å cutoff system as calculated with a fully
dense P{1} or the subsystem approach. For the coupled subsystem approach P{1} is
limited to one of the Bchls and the full protein environment, but excludes the other Bchl.
A Lorentzian broadening of 10 meV is used in both spectra.

answers.

When looking at the S1 and S2 states as obtained in the coupled subsystem approach

for the large model (see figure 9.6) in comparison to the ones obtained for the smaller

model, it can be noticed that the transition densities indeed look very similar as expected,

but that the S2 state seems to delocalise considerably more in the larger model.

In conclusion the computational study performed here shows two different effects.

First of all, an explicit inclusion of large parts of protein environment into the calculation

is crucial to obtain well-converged excitation energies for localised excitons in the FMO

complex, making the treatment of very large systems necessary. Secondly, the subsystem

TDDFT approach is a viable method to significantly decrease the computational load for

large scale calculations of excitation energies on the chromophores in the FMO complex,

capable of converging energies to an accuracy of 10-20 meV for the small system and

30-40meV for the larger system. The main features of spectra are well reproduced in the

subsystem approach, with oscillator strength in reasonable agreement to those of the full

system. Drawing from these conclusions, linear-scaling DFT and linear-scaling subsystem

TDDFT can be proposed as a viable method to obtain the low energy optical spectrum

of the FMO complex, while it is demonstrated that the explicit treatment of large parts

of the protein environment is crucial in order to obtain converged site energies.
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9.2 Exciton delocalisation on molecular dopants in a p-terphenyl

crystal

The focus is now shifted onto the second large scale application of the TDDFT method de-

veloped in this work, which is the study of excitons of pentacene-derived dopant molecules

embedded in an infinite p-terphenyl crystal. From a theoretical point of view, this type of

system is of immense interest as it was demonstrated that pentacene defects in p-terphenyl

organic crystals can be used to create a zero-field room-temperature maser [154].

The way the room-temperature maser operates is by pumping the first singlet state

of the pentacene molecule, which couples strongly to light. The excitation undergoes an

intersystem crossing to the first triplet state T1 via the second triplet state T2, which is

close in energy to S1. The process is spin-selective and therefore leads to a population

inversion between the highest and lowest sublevel of T1. When this metastable population

inversion is triggered to revert through stimulated emission to fully populate the lowest

energy sublevel of T1, the system emits a microwave pulse of about 1.45 GHz, equivalent

to the spitting between the highest and lowest sublevel of the triplet state [154].

From the above considerations it becomes clear that the performance of the maser

relies on a number of factors. First of all, the pentacene dopant molecule must fit well

into the p-terphenyl structure, such that its structure is only mildly perturbed and the S1,

T1 and T2 states retain a similar character to the case of an isolated pentacene molecule.

Second, in order for the intersystem crossing to be viable, the energy difference between

the S1 and the T2 state must be relatively small so that little energy has to be gained or

lost via vibrational modes in order to cross from the singlet to the triplet level. Finally,

the T1 state must fill in a way such that a natural population inversion occurs and after

the masing has happened, the T1 state must relax back to the ground state S0 at a fast

enough rate to allow for continued maser pulses.

The purpose of this study is to investigate some of the above mentioned conditions for

pentacene and a number of other proposed pentacene-derived maser molecules embedded

in a realistic model of p-terphenyl. The fact that no spin-orbit interaction is considered

in this work means that the splitting of the T1 state and the rate of intersystem crossing

cannot be predicted as these properties require the evaluation of spin-orbit coupling matrix

elements. Furthermore, the standard expected error in TDDFT excitation energies does

not allow for determining whether the T2 and S1 states line up perfectly in the real

molecule, as the TDDFT error for a given triplet state is not necessarily of the same

size as for a given singlet state. However, since it is known experimentally that pentacene

works as a dopant, it is possible to compare the computational results for different dopants

to that of pentacene, given that a pentacene-derived dopant molecule is expected to show

190



9. LARGE-SCALE APPLICATIONS

(a) c-DNP (b) o-DNP (c) HNTMP

Figure 9.8: Figure showing the crystal structure of p-terphenyl, as well as the relaxed
structures of the three molecular defects that are proposed additionally to pentacene.
The pentacene derivatives are labelled after the number of nitrogen atoms substituted
into the structure. To differentiate between (a) and (b), a label of ’c’ for ’central’ and ’o’
for ’opposite’ is introduced to denote the position of the carbon atoms that are replaced.

very similar TDDFT errors as pentacene. Thus, a combined TDDFT and DFT approach

allows for a prescreening of potential maser molecules on the basis of structural properties

and the alignment of excited states with those obtained for pentacene. It is then possible

to determine whether a given molecule is a likely candidate for being used in a room-

temperature maser.

All DFT calculations in this section are performed with an ALDA functional [33]

and norm-conserving pseudopotentials. A kinetic energy cutoff of 750 eV is used and

a localisation radius of 10 a0 is chosen for all NGWFs both in the conduction and the

valence NGWF set. No density matrix truncation on P{v} or P{c} is applied throughout

this section.

For the computational study, a 4× 4× 3 supercell of a p-terphenyl crystal is chosen,

containing 72 p-terphenyl molecules and a total number of 2304 atoms. The position

of the carbon atoms, as well as the cell shape and volume are fixed to experimental

results obtained from [155], while the hydrogen atoms are added and their positions are

optimised at the LDA level. Fixing the carbon molecules to the experimental positions

guarantees that a realistic crystal structure is obtained, since DFT cannot produce the

correct binding behaviour between the individual molecules at LDA level due to the lack

of van der Waals interactions.
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pentacene c-DNP o-DNP HNTMP

av. force 0.108 0.087 0.095 1.575
max. force 0.212 0.135 0.159 9.741

Table 9.1: Average and maximum force acting on the four defect molecules after being
placed into the p-terphenyl matrix. Forces are given in eV/Å.

Four different dopant molecules are considered, one being pentacene and the other

three being pentacene derivatives obtained by replacing different C-H atoms by nitrogen

atoms. The pentacene derivatives chosen are 6,13-dinitro-pentacene (c-DNP), 2,9-dinitro-

pentacene (o-DNP) and 1,4,6,8,11,13-hexanitro-2,3,9,10-tetramethyl-pentacene (HNTMP)

(see figure 9.8 for relaxed structures in vacuum for these molecules). Together with pen-

tacene, these three candidate molecules are then to be substituted into the p-terphenyl

crystal, replacing one of the p-terphenyl molecules. While the supercell of p-terphenyl is

too small to reach realistic dopant concentrations of 10−4 for the pentacene as reported

in [154], it is considered to be large enough to provide a realistic representation of the

environmental effects experienced by the embedded dopant molecule.

In a first step the geometries of all dopant molecules are relaxed in vacuum and the low

energy triplet and singlet states are calculated. These benchmark calculations can then

be used to identify the influence of the p-terphenyl crystal on excitation energies of the

dopant molecules. The vacuum structures of the molecules are then taken and substituted

into the p-terphenyl crystal for one of the p-terphenyl molecules. The substitution is

performed such that the dopant molecule is oriented in the same way as the p-terphenyl

it is substituted for and that their centres of mass coincide. A ground state calculation

with fixed atomic positions is then performed and the maximum and average forces on

the substituted molecules are calculated.

The results of the force calculations can be found in table 9.1. As it can be seen, the

pentacene and the two DNP structures show relatively small forces when placed into the

p-terphenyl structure. Maximum forces on the pentacene are slightly higher than for the

two DNP structures, but average forces are around 0.1 eV/Å. This suggests that all three

dopant molecules fit very well into the p-terphenyl structure and are likely to cause only

minimal perturbations to their immediate surroundings. The c-DNP dopant shows the

best fit, which can be explained by the fact that equilibrium C-N bond lengths are shorter

than C-C bonds, meaning that the length of the c-DNP is closer to that of p-terphenyl

than the length of o-DNP or pentacene. The HNTMP molecule however shows different

characteristics, with a maximum force that is almost two orders of magnitude larger than

the maximum force on the c-DNP molecule and an average force 15 times larger than the

average force on the other molecules. The high forces are mainly due to the methyl groups
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attached to the end of the pentacene derivative, making the dopant molecule HNTMP

considerably longer than the p-terphenyl it is substituted for. Thus it is expected that the

HNTMP molecule can only be fitted into the p-terphenyl crystal by causing significant

distortions to the surrounding crystal structure.

Following the above considerations, in order to obtain realistic structures for the defect

molecules, a geometry optimisation of them placed inside the p-terphenyl structure is

performed. For the pentacene and the DNP structures, the surrounding atoms are kept

fixed and only the dopant molecule is relaxed. Since the forces are already very small

to begin with, only a few iterations are needed to reduce the maximum force to values

lower than 0.1 eV/Å. For the HNTMP structure, a geometry optimisation of the dopant

molecule only in a fixed p-terphenyl crystal fails to converge, suggesting that it is indeed

necessary to perturb the surrounding crystal. Thus for the HNTMP molecule, a full

geometry optimisation on the entire system is performed and all atoms are allowed to

relax, yielding significant perturbations on nearest neighbour p-terphenyl molecules. The

maximum change in position for any atom in the relaxed crystal compared to the atomic

positions in the fixed crystal is found to be 1.04 Å, with an average change of 0.12 Å per

atom.

After having obtained realistic structures for all four dopant molecules substituted into

the p-terphenyl crystal, a TDDFT calculation is performed on each of the four systems.

Here, the main interest is in singlet and triplet excitons that are localised on the dopant

molecule and retain a similar character as in vacuum. However, in many situations ex-

citons on molecules in organic crystals are known to show a degree of delocalisation to

neighbouring molecules [156,157], thus using a truncation on P{1} to force a complete lo-

calisation of excitons on the defect molecule is not expected to yield realistic results. On

the other hand, the local nature of the ALDA functional is likely to delocalise the exciton

much too strongly and couple it to charge transfer states to all p-terphenyl molecules

in the crystal in the case where no truncation on P{1} is used. Therefore, calculations

are performed using a P{1} that is non-zero only for the defect molecule and the six

nearest neighbour p-terphenyls. Thus, delocalisation of the exciton to nearest neighbour

p-terphenyl molecules is allowed, while any long-range charge transfer excitations are

suppressed.

However, while long range charge transfer states are effectively excluded from the sub-

set of allowed solutions it is still not guaranteed that the obtained excitations have the

character of excitons localised on the defect molecule with only small amounts of delo-

calisation. Table 9.2 shows the Kohn–Sham energies of the HOMO, LUMO an HOMO-1

states of the four different systems, as measured with respect to the LUMO+1 state.

Note that the HOMO and LUMO states correspond to Kohn–Sham states localised on
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pentacene c-DNP o-DNP HNTMP

HOMO-1 -2.726 -2.682 -2.683 -2.394
HOMO -1.775 -2.294 -2.066 -2.233
LUMO -0.627 -1.228 -0.904 -0.972

HOMO-LUMO gap 1.148 1.066 1.162 1.261

Table 9.2: Kohn–Sham energies of the HOMO-1, HOMO and LUMO states for all 4
crystals with embedded defect molecules, as measured in eV with respect to the LUMO+1
state.

pentacene vacuum pentacene p-terphenyl o-DNP vacuum o-DNP p-terphenyl

T1 0.946 0.965 0.955 0.980
T2 2.125 2.123 2.122 2.113
S1 1.856 (0.0431) 1.803 (0.0679) 1.854 (0.0430) 1.748 (0.0658)

Table 9.3: T1, T2 and S1 states for pentacene and o-DNP, both in vacuum and in the
p-terphenyl crystal. Energies are given in eVs, oscillator strengths in brackets.

the dopant molecule, while the HOMO-1 and the LUMO+1 state belong to the p-terphenyl

crystal. The four different systems do have similar Kohn–Sham gaps, ranging from 1.066

eV for c-DNP to 1.261 eV for HNTMP. However, the positioning of the HOMO and

LUMO states with respect to the p-terphenyl states differs considerably, with the largest

difference observed between pentacene and c-DNP. The positioning of the HOMO-LUMO

gap with respect to the p-terphenyl states has a strong influence over how the exciton de-

localises. Since the delocalisation of the excitation must necessarily increase the diagonal

part of the excitation energy, a delocalisation is only favourable if it is balanced out by

a decrease of the energy associated with the self-consistent potential V
{1}
SCF. Depending

on the strength of the self-consistent field response of the system, a strong coupling to

the charge transfer states HOMO→LUMO+1 and HOMO-1→LUMO can become ener-

getically favourable in an ALDA treatment of the system, since these transitions have a

relatively low self-consistent field response associated with them. In order to make sure

that all excitations have a relatively localised exciton character on the defect molecule, all

low energy excited states that have more than 50 % charge-transfer character are ignored

in the calculation44, since their energy is assumed to be unphysically lowered due to the

lack of long range exchange interaction in the exchange-correlation kernel.

The excitation energies for the low energy singlet and triplet states that do have

less than 50% charge-transfer character and are localised on the dopant molecules are

44The fraction of charge-transfer character is obtained by determining the dominant Kohn–Sham tran-
sitions mixed into the transition density matrix. Since the Kohn–Sham states in the system are either
localised on the dopant molecule or on the surrounding p-terphenyls, it is possible to identify transitions
as charge-transfer states. Furthermore, transitions are compared to the ones obtained if the response
density matrix is constrained onto the dopant molecule only.
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(a) S1

(b) T1

(c) T2

Figure 9.9: Transition densities of the S1, T1 and T2 states of the pentacene dopant
molecule.
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summarised in tables 9.3, 9.4 and 9.5, where they are compared to their corresponding

states for the isolated molecule in vacuum. Furthermore, transition densities of selected

excited states for all four dopant molecules in p-terphenyl can be found in figures 9.9 to

9.12.

Analysing the results for pentacene (see table 9.3) substituted in p-terphenyl, it is

found that the T2 and S1 states do not precisely line up in the ALDA treatment of the

system, with a discrepancy of 0.22 eV in their excitation energy. Furthermore, the T1 ex-

citation energy is increased by 20 meV in the p-terphenyl crystal compared to the vacuum

result, while the T2 state is almost identical. In the S1 state, an increased delocalisation

compared to the triplet states (see figure 9.9) leads to a decrease of the excitation energy

by over 50 meV and an increase of the oscillator strength. In general it is thus found that

the electrostatic potential of the crystal environment leads to a confinement of excitations

and thus an increase of excitation energies, which is counterbalanced by the delocalisation

to neighbouring p-terphenyl molecules. Depending on the character and energy of the ex-

citation and thus the amount of delocalisation occurring, the net effect can be an increase

or a decrease of the excitation energy compared to the isolated molecule in vacuum.

For pentacene, it is helpful to compare the results obtained with experimental results

available both in the gas phase and in the p-terphenyl crystal. It has long been known

that TDDFT significantly underestimates the energy of the S1 state in vacuum [158,159],

where the experimental value of the S1 energy in gas phase is known to be 2.23 eV [160].

The experimental results obtained in [154] suggest that this singlet state shifts to an

energy of about 2.12 eV when embedding the pentacene in p-terphenyl. Thus while

the TDDFT calculation presented here underestimates the lowest singlet transition by

approximately 0.36 eV in vacuum it predicts the shift of the state when placed in p-

terphenyl to be in the right direction. While the results obtained here predict a shift

of about 53 meV, the experimental results suggest a shift that is twice as large, with

about 0.11 eV. This underestimation of the shift is most likely due to the limitation of

the spread of the response density matrix to nearest neighbour p-terphenyls only, yielding

an underestimation in the exciton delocalisation. However, it can be concluded that while

the absolute energies of the singlet transition cannot be reliably predicted using TDDFT,

the environmental effects of placing the defect molecules into the p-terphenyl structure,

which are of interest in this computational study, are expected to be predicted with much

less of an absolute error.

For the o-DNP molecule, it is found that excitation energies in vacuum that are very

close to those of the pentacene molecule in vacuum. In p-terphenyl, this trend is repeated,

in that the T1 state shows an increase while the S1 state shows a decrease of the excitation

energy. However, the increased delocalisation of the o-DNP S1 state in p-terphenyl leads
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(a) S1

(b) T1

(c) T2

Figure 9.10: Transition densities of the S1, T1 and T2 states of the defect molecule o-DNP.
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(a) S1

(b) T1

(c) T3

Figure 9.11: Transition densities of the S1, T1 and T3 states of the dopant molecule
c-DNP.
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c-DNP vacuum c-DNP p-terphenyl

T1 0.915 0.912
T2 1.659 1.629
T3 1.805 1.792
S1 1.748 (0.0345) 1.749(0.0193)

Table 9.4: Excitation energies for low energy singlet and triplet states of the c-DNP
molecule, both in vacuum and p-terphenyl. Energies are given in eVs, oscillator strength
in brackets.

HNTMP vacuum HNTMP p-terphenyl

T1 1.035 1.090
T2 1.497 1.524
T3 1.592 1.674
T4 1.604 1.688
T5 2.091 2.174
S1 1.676 (0.0001) 1.703 (0.0007)
S2 1.684 (0.0002) 1.716 (0.0002)
S3 1.730 (0.0009) 1.763 (0.0008)
S4 1.859 (0.0273) 1.964 (0.0320)

Table 9.5: Excitation energies for low energy singlet and triplet states of the HNTMP
molecule, both in vacuum and p-terphenyl. Energies are given in eVs, oscillator strength
in brackets.

to a drop in energy compared to the vacuum reference state by 0.106 eV, twice as much

as in the pentacene dopant. This increased delocalisation for the o-DNP molecule can be

explained through changes in the positioning of the HOMO and LUMO as compared to the

p-terphenyl gap (see table 9.2). The results obtained for o-DNP suggest that it will have

very similar characteristics to pentacene when substituted into the p-terphenyl crystal.

The increased delocalisation of the S1 state and thus increased energy gap between S1

and T2 might worsen the efficiency of the intersystem crossing compared to the pentacene

defect, while the introduction of two nitrogen atoms has the potential to influence the

triplet splitting of T1 and the rate of intersystem crossing due to changes in the spin-orbit

coupling of the molecule. To the accuracy of the calculations performed here however,

it can be concluded that the o-DNP molecule forms a potential candidate to replace

pentacene as the photoactive molecule in a room-temperature maser.

In the case of the c-DNP molecule, the close analogy to pentacene changes to a certain

extent. First of all, the T2 state of pentacene and o-DNP has the same character as the

T3 state of c-DNP (see figure 9.9 and 9.11), meaning that the c-DNP molecule gains an

additional triplet state between the target state T1 and the triplet state that couples to

S1 to make the intersystem crossing possible. Furthermore, the excitation energies of c-
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DNP in p-terphenyl are in very close agreement with c-DNP in vacuum, with the largest

difference being 30 meV for T2. It is also noted, that the alignment between the S1 and

the T3 state is much closer than that between S1 and T2 in the previous two examples

of pentacene and o-DNP, with a difference of only 43 meV. While the standard TDDFT

error associated with typical localised excitations on small molecules does not allow us to

predict with confidence whether the alignment of singlet and triplet states is indeed more

favourable for intersystem crossing in the o-DNP case, it is certainly plausible that the

crossing can be achieved in this system. Whether the insertion of an extra triplet state

state 0.16 eV below the T3 state changes the reaction pathway down to the masing state

T1 in a positive or negative way however cannot be predicted from this study.

For the HNTMP molecule, one does not only obtain additional states in the triplet

excitations but also the singlet ones. The high oscillator strength singlet state most likely

to absorb low energy photons corresponds to S4 rather than S1 in the HNTMP molecule.

There are three lower energy singlet states, which have a relatively low oscillator strength

associated with them. Furthermore, between target state T1 and the state T5 most likely

to couple with the high oscillator strength state S4, there are three additional triplet

states. Contrary to the previous example molecules, all excitation energies are increased

in the p-terphenyl crystal compared to the vacuum case, some by more than 0.1 eV.

This is most likely due to the more significant distortions experienced by the HNTMP

molecule in the p-terphenyl crystal compared to other defect molecules, as the forces on

the HNTMP molecule are significantly higher. The alignment between the T5 and S4

states however is comparable to that of the o-DNP molecule.

It can be concluded that pentacene in a room-temperature maser can most likely be

substituted by o-DNP without significantly altering the efficiency of the pathway to the

masing state T1. The absorption energy and strengths of the two S1 states for these two

molecules in p-terphenyl are almost identical. While c-DNP shows the best alignment

between the singlet and triplet states for intersystem crossing in the ALDA study per-

formed here, it introduces an additional triplet state between the target state T1, with

unknown consequences for the reaction pathway of the exciton. Furthermore, the oscilla-

tor strength of its S1 state is lower than that of pentacene or o-DNP in p-terphenyl by a

factor of 3, suggesting that a maser based on c-DNP might be significantly less efficient

at absorbing light into the desired singlet state. Of the three pentacene derivatives tested

here, HNTMP provides the most doubtful results as a masing molecule. It causes large

distortions to the p-terphenyl crystal structures and the fact that there are three low

lying singlet states below the state coupling strongly to light suggests that there might

be significant loss from hot excitons decaying into lower singlet states, if the coupling to

singlet states happens at a faster rate to that of intersystem crossing. In any case, the
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(a) S4

(b) T1

(c) T5

Figure 9.12: Transition densities of the S4, T1 and T5 states of the defect molecule
HNTMP. Note the perturbations in the structure of the nearest neighbour p-terphenyl
molecules due to the presence of the defect molecule.
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additional singlet and triplet states in HNTMP are likely to significantly complicate the

reaction pathway from the absorption state S4 to the masing state T1, which is likely to

have detrimental effects on the efficiency of that reaction.

It is again to be pointed out that the absolute energies obtained in the TDDFT study

are not expected to be in very close agreement with experiment, especially for the singlet

states. However, as can be seen from the experimental results for pentacene, the absolute

shift of excitation energies when placing the molecules from vacuum into the p-terphenyl

crystal is in much closer agreement with experiment. It is expected that this trend

remains true for all other dopant molecules considered here, meaning that the absolute

shift energies between the calculation in vacuum and the calculation in p-terphenyl can be

compared directly to experimental results. It can thus be concluded that the theoretical

study performed here can be treated as a first step to prescreening potential dopant

molecules for a room-temperature maser.
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Chapter 10

Conclusion and future work

In conclusion, an approach has been outlined to compute optical properties of very large

systems previously inaccessible with conventional methods. It was argued that while

approaches derived from many-body perturbation theory are known to describe excitonic

effects in complex systems to a very high degree of accuracy, a good balance between

accuracy and computational cost makes time-dependent density-functional theory the only

currently available computational method for large systems. This is especially true for

systems that already require linear-scaling techniques to converge ground state properties.

The linear-scaling DFT code ONETEP has been successfully extended to the TDDFT linear-

response formalism, and it has been demonstrated that the method scales fully linearly

with system size. The method makes use of two different localised orbital representations,

one to expand the conduction and one to expand the valence subspace. It has been

demonstrated that these two compact sets yield a very efficient representation of the

effective transition density matrix of an excitation, allowing for the routine calculation of

low energy excitations of systems containing up to 2000 atoms without making use of an

explicit truncation of any of the density matrices. It was furthermore demonstrated that

the algorithm developed in this work is capable of treating transition metals with great

accuracy when extended to the projector augmented-wave formalism.

However, the main insight gained in this work is the way the truncation of the re-

sponse density matrix can be used to converge targeted excitations in a system. While

any truncation of the response density matrix guarantees that the computational cost of

converging a single excitation scales linearly with system size, it was outlined in chapter

8 that this does not mean that low energy spectra can be converged in linear scaling

effort. However, by truncating the response density matrix in a way to force excitations

to localise as described in the subsystem TDDFT approach developed in chapter 8, a fully

linear scaling calculation of low energy spectra composed of coupled localised excitons is

possible, opening up a wide range of applications from doped molecular crystals to large

scale photoactive biological systems.
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In chapter 9, explicit calculations on real systems of interest were outlined both in

the area of biophysics and that of molecular crystals, and the power of the subsystem

TDDFT approach was demonstrated. It was shown that in order to converge localised

excitons in the Fenna-Matthews-Olson complex, it is crucial to treat a large part of the

protein environment of a chromophore fully quantum mechanically, making large scale

calculations such as the ones enabled by the linear-scaling TDDFT approach presented

here necessary. Furthermore, in the second physically motivated system treated in this

work, the subsystem TDDFT approach was used to study excitons localised on defect

molecules within a p-terphenyl crystal. Together with structural information gained from

linear-scaling DFT, three different defect molecules were analysed and compared to pen-

tacene in their suitability for being used in a room-temperature zero-field maser. It was

possible to identify two of the molecules as likely candidates with similar exciton char-

acteristics as pentacene when placed into a p-terphenyl crystal, while one molecule could

be ruled out as ineffective. It is to be pointed out that most of the large scale systems

treated in this work have sizes of the order of 2000 atoms, which is at the lower end of

the capabilities of linear-scaling DFT. While systems of this moderate size are already

beyond the capabilities of most conventional cubic-scaling TDDFT methods, a real test

of the linear-scaling TDDFT approach developed here will come in the form of larger

systems. In chapter 9 one such application was already proposed, where the low energy

optical absorption spectrum of the entire Fenna-Matthews-Olson complex could be com-

puted without having to resort to any semi-classical treatment of parts of the system.

The techniques developed in this work open up a wide range of potential applications un-

accessible by previous methods and have shown the potential to bridge the gap between

computational simulations and experiment.

While the findings outlined in this work lay the foundations for some interesting large

scale applications of TDDFT, there are a number of desirable further developments that

will be addressed in future work. The extension of the algorithm to hybrid functionals

via techniques to evaluate Hartree-Fock exchange in linear scaling effort is crucial in

describing long-range charge transfer states and excitonic effects in solids. Furthermore,

an extension of the two-step minimisation approach of the ground state DFT method to

TDDFT is desirable, as it will allow for the optimisation of generalised response orbitals to

represent the response density matrices of some low lying excitation, rather than relying

on an explicit conduction optimisation for a chosen number of unoccupied states. From a

theoretical point of view, the explicit minimisation of the TDDFT energy functional with

respect to some generalised response NGWFs would allow for the rigorous definition of the

response and valence NGWFs as the optimum representation for a given set of excitations

and a given localisation constraint. Finally, it is desirable to extend the formalism to allow
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for the linear-scaling evaluation of excited state forces, which will open up the possibility

of excited state geometry optimisations of very large systems, with potential applications

to the calculation of photoemission spectra and transition states of large photoactive

biomolecules.
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[80] Hübener, H. & Giustino, F. Linear optical response of finite systems using multishift

linear system solvers. J. Chem. Phys. 141, 044117 (2014).

211



BIBLIOGRAPHY

[81] Berkowitz, J. Photoabsorption, Photoionization, and Photoelectron Spectroscopy

(Academic Press: New York, 1979)

[82] Fetter, A. L. & Walecka, J. D. Quantum Theory of Many-Particle Systems

(McGraw-Hill, New York, 1971)

[83] Hirata, S. & Head-Gordon, M. Time-dependent density functional theory within

the Tamm-Dancoff approximation. Chem. Phys. Lett. 314, 291-299 (1999).

[84] Rohlfing, M. & Louie, S. G. Electron-hole excitations and optical spectra from first

principles. Phys. Rev. B 62, 4927 (2000).

[85] Casida, M. E. Time-dependent density-functional theory for molecules and molec-

ular solids. J. Mol. Struc.-THEOCHEM 914, 3-18 (2009).

[86] Peach, M. J. G., Benfield, P., Helgaker, T. & Tozer, D. J. Excitation energies in

density functional theory: An evaluation and a diagnostic test. J. Chem. Phys. 128,

044118 (2008).

[87] Sadovskii, M. V., Diagrammatics: Lectures on Selected Problems in Condensed

Matter Theory, (World Scientific Publishing Co Pte Ltd, Singapore, 2006)

[88] Lifshitz, E. M. & Pitaevskii, L. P., Statistical Physics: Theory of the Condensed

State (Course of Theoretical Physics Vol. 9), (Pergamon Press, Oxford, 1980)

[89] Hedin, L. New Method for Calculating the One-Particle Green’s Function with

Application to the Electron-Gas Problem. Phys. Rev. 139, A796 (1965).

[90] Hybertsen, M. S. & Louie, S. G. Electron correlation in semiconductors and insu-

lators: Band gaps and quasiparticle energies. Phys. Rev. B 34, 5390 (1986).

[91] Brar, V. W., Wickenburg, S., Panlasigui, M., Park, C.-H., Wehling, T. O., Zhang,
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