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Summary 
T cells appear to play a central role in viral bronchiolitis, but the effects of different functional 
and phenotypic subgroups ofT cells have not been defined. To test the activities ofT cells recognizing 
individual proteins of respiratory syncytial (RS) virus, virus-specific T cell lines were produced 
from mice primed by scarification with recombinant vaccinia viruses expressing the major surface 
glycoprotein (G), fusion protein (F) or second matrix (22K) protein of KS virus. As previously 
reported, the in vitro characteristics of these cells are predetermined by the choice of KS virus 
protein: 22K-specific cells are predominantly class I-restricted cytolytic CD8 + cells; F-specific 
cells, a mixture of cytolytic CD8 + cells and CD4 + cells with a T helper 1 cell (Thl) cytokine 
secretion profile, whereas those from G-sensitized mice are almost exclusively CD4 + , with Th2 
characteristics. Mice infected intranasally with RS virus showed mild illness and recovered fully, 
but developed respiratory distress after intravenous injections of T cells. Dose-for-dose, infected 
mice receiving G-specific cells suffered the most severe (sometimes fatal) illness, characterized 
by lung hemorrhage, pulmonary neutrophil recruitment (shock lung) and intense pulmonary 
eosinophilia. This disease was further enhanced by coinjection of 22K-specific cells, which alone 
caused mild shock lung without eosinophilia. F-specific cells caused minimal enhancement of 
pathology and had little or no effect on the disease caused by G-specific cells. Each cell line reduced 
lung virus titer and combined injections of G- and 22K-specific cells eliminated infection completely. 
The in vitro characteristics of these antiviral T cell lines therefore predict the pathological effects 
in vivo. Moreover, different forms of viral bronchiolitis can be caused by functionally distinct 
types of activated T cell. 

V iral bronchiolitis is the single most common cause of 
hospitalization of infants in the Western world, but the 

development of effective preventative or therapeutic stratagems 
has been hampered by lack of information about its patho- 
genesis. The majority of cases are caused by respiratory syn- 
cytial (R,S)* virus, the annual hospitalization costs of which 
were estimated to be $300,000,000 in 1988 in the United 
States alone, with 91,000 children admitted (1). Antiviral im- 
munity appears not only to protect against infection but also 
to contribute to lung pathology. The first evidence that specific 
immunity could be harmful came in the 1960s, when chil- 
dren were vaccinated with formalin-inactivated RS virus. Vac- 
cine recipients developed strong serological responses, but were 
not protected against infection. Moreover, the majority of 
vaccinees who subsequently became infected with RS virus 
developed severe lower respiratory tract disease, with significant 
mortality. The reasons for vaccine-augmented disease have 

1 Abbreviations used in this paper: BAL, bronchoalveolar lavage; CS, culture 
supernatant; F, fusion protein; G, major surface glycoprotein; RS, respiratory 
syncytial; rVV, recombinant vaccinia virus; 22K, 22kDa second matrix 
protein of KS virus. 

been studied (2-5), but no safe, effective vaccine has yet been 
produced. 

Animal studies suggest that specific activated T cells are 
probably responsible for this phenomenon of disease augmen- 
tation, and may also be responsible for many of the patho- 
logical effects seen during primary and secondary RS virus 
infections. Passive transfer of specific antiviral Ab does not 
enhance disease, either protecting against infection and dis- 
ease or being neutral in effect. Mice infected with RS virus 
develop a lymphocytosis in the hronchoalveolar lavage (BAL) 
fluid, dominated by CD8 + c~/3 T cells at the time of virus 
elimination (6). Treatment of such mice by injection of T 
cell-depleting anti-CD4 and/or anti-CD8 mAbs reduces or 
abolishes disease, while enhancing virus replication (7). Adop- 
tive transfer of CD8 § CTL lines or clones can eliminate in- 
fection in vivo, while also causing hemorrhagic, neutrophilic, 
and sometimes fatal pneumonitis (8). CD4 + Th cells also 
have distinct antiviral and pathogenic effects, and may be more 
potent on a cell-for-cell basis than CD8 + T cells (9). During 
reinfection, both T cell subsets have to be depleted to com- 
pletely abolish the enhanced pathological response (7). Cotton 
rats vaccinated with formalin-inactivated KS virus (3, 10, 11) 

81 j. Exp. Med. �9 The Rockefeller University Press �9 0022-1007/94/01/0081/09 $2.00 
Volume 179 January 1994 81-89 



and mice vaccinated with recombinant vaccinia viruses (rVV) 
encoding some single proteins of RS virus (12, 13) show a 
reduction in lung virus titer after challenge with R.S virus. 
In both these situations, there can also be a paradoxical in- 
crease in the severity of  lung pathology (3, 5, 10, 11, 14, 
15). In mice given formalin-inactivated KS virus intramus- 
cularly, vaccine-enhanced disease is abolished by CD4 + cell 
depletion in vivo but is little affected by depletion of CD8 + 
cells (4). The immune mechanisms responsible for enhanced 
disease in mice primed with recombinant vaccinia viruses have 
not been defined. 

In KS virus-infected mice previously sensitized with rVV- 
expressing individual RS virus proteins, BAL has shown the 
patterns of immunopathology to vary depending on the RS 
virus protein to which the mice are sensitized. Remarkably, 
mice sensitized to the major surface glycoprotein (G) develop 
RS virus-specific Th  cells which release IL-4 and IL-5 in re- 
sponse to antigen (16), and after infectious challenge with 
RS virus, suffer disease characterized by a striking increase 
in BAL eosinophils (14-25%, from < 3 %  in controls) (15). 
Recently, virus-specific T cell lines were derived from mice 
primed by scarification with rVV-expressing single RS virus 
proteins (17). For the present studies, we selected three cell 
lines as being of special interest: the G-specific line, because 
it is dominated by CD4 § T cells with Th2 characteristics; 
the fusion protein (F)-specific line, because it contains 
CD4 § cells with Th l  characteristics, as well as class I-re- 
stricted CTL;  and the 22K-specific line, because it is domi- 
nated by CTL alone. Immune responses to these three pro- 
teins are also of special interest in terms of vaccine development. 
F and G are the main surface glycoproteins against which 
Ab responses occur, and 22K is the main target for CTL in 
the mouse. We now report the in vivo effects of T cell lines 
specific to these three KS virus proteins, and show that these 
T cells can transfer the antiviral and pathogenic effects seen 
in mice sensitized to single viral proteins to naive syngeneic 
recipients. 

Materials and Methods 

Viruses and Mice 
The human A2 strain of RS virus was grown and assayed for 

infectivity in HEp2 cells, as previously described (9). Mock-infected 
HEp2 cells were treated in the same way to derive control antigen. 
Infectious units of RS virus (i.e., each of which is able to induce 
a single immunoperoxidase-positive cell) were regarded as equiva- 
lent to PFU. All rVV were the kind gifts of Drs. Wertz, Ball, and 
Anderson (University of Alabama, Birmingham, AL) and were pro- 
duced by insertion of the cDNA transcript of the RNA sequence 
for a specific protein from the A2 strain of RS virus according to 
the protocol described by Ball et al. (18). All rVV were grown in 
HEp2 cells, and infectivity was measured by plaque assay in 24-well 
plates (Costar Corp., Cambridge, MA). Recombinant VV-F (VF 
317), G (VAG 301), and 22K have been described previously (12, 
13, 19). Similar rVV expressing 3Gal was used as a control. All 
virus stocks and cells were free of mycoplasma infection by DNA 
hybridization (Gen-probe Inc., San Diego, CA). AUantoic fluid con- 
taining influenza A X31 (H3N2) was provided by Dr. A. Douglas 
(National Institute for Medical Research, Mill Hill, London, UK) 

at 4,096 hemagglutination units (HAU) m1-1. Female BALB/c 
mice 3-4-mo-old (Harlan Olac, Bicester, Oxon, UK) were infected 
intranasally with 2 • 105 PFU of RS virus, 7 HALT of influenza, 
or scarified over the rump and tail base with rVV stock diluted 
to contain 3 • 10 ~ PFU in 10/~l/mouse (19). rVV-infected mice 
were checked for formation of typical infective lesions on days 3 to 5. 

T Cell Lines 
Spleen cells from primed mice were suspended at 106 cells/ml 

with 2.5 • 10 s cells/ml RS virus-infected autologous splenocytes 
(stimulator cells) at a multiplicity of infection (m.o.i.) of 0.1 
PFU/cell, in 15 ml RPMI 1640 medium (GIBCO BILL, Paisley, 
Scotland) supplemented with 10% FCS, antibiotics, 2-ME, and 
glutamine (RPMI/10). After 5 d, cells were washed and suspended 
at 2 • 10 s cells/ml with normal syngeneic irradiated spleen cells 
(2 • 106 cells/ml). After 5-6 d of antigenic "rest," cells were 
washed and stimulated with antigen presented by normal syngeneic 
irradiated cells infected with KS virus at similar cell densities. This 
stimulation/rest cycle was repeated up to seven times. It was neces- 
sary to add 5% Con A-stimulated rat spleen cell culture superna- 
tant (Con A supernatant) to the predominantly CD8 + T cell line 
derived from mice primed with rVV-22K after the second cycle, 
in order to maintain growth (see Results). As controls, spleen cells 
from unprimed mice and mice inoculated with rVV-~Gal (by 
scarification) or HEp2 cell material (transnasally) were cultured as 
described for RS virus-specific T cell lines. Cell transfers were per- 
formed by tail vein injection within 4 h of intranasal challenge. 

Fluorescent Staining for Lymphocyte Surface Markers 
For three-color analysis, cell pellets were incubated first with 

Abs to TCR-c~/~ (af~nity purified H57-597 at a final concentra- 
tion of 1.15/~g/ml), TCR-C3, (Uc7-13D5 bioreactor supernatant 
kindly given by Dr. J. Bluestone (University of Chicago, Chicago, 
IL), used at 1 in 100), CD3 (145-2cll supernatant, final concen- 
tration 1 in 100), CD45RB (16A, rat mAb kindly given by Dr. 
K. Bottomly (Yale University, New Haven, CT), final concentra- 
tion 1 in 1,000), or left without first layer Ab. Bound Ig was de- 
tected by FITC-conjugated goat anti-hamster Ab (Cappel Organon 
Teknika Corp., West Chester, PA) which also reacts with rat Ig. 
After blocking with 1 mg/ml a~nity-purified rat Ig (Sigma Chem- 
ical Co., St. Louis, MO), appropriate dilutions of coupled Ab to 
CD4 (GK 1.5-PE; Becton Dickinson & Co., Mountain View, CA) 
and CD8 (53-6.7-biotin, Becton Dickinson & Co.) were added; 
the CD8 stain was developed with streptavidin-duochrome (Becton 
Dickinson & Co.). For two-color stains, appropriate dilutions of 
GK 1.5-PE and 53-6.7-FITC (Becton Dickinson & Co.) were used. 
All procedures were performed on ice with 0.1% sodium azide and 
1% BSA. Cells were analyzed on a FACScan | flow cytometer 
(Becton Dickinson & Co.). 

Cytotoxicity Assay 
P815 cells were infected overnight with RS virus at an moi of 

2 PFU/cell or rVV at 10 PFU/cell. Uninfected or rVV-~Gal-in- 
fected P815 cells served as control targets. A chromium release assay 
was performed as previously described (19). Briefly, targets were 
labeled with Na2SlCrO4 for 50 rain at 37~ washed, and diluted 
to 105/ml. Effector cells were mixed with targets and incubated 
for 3 h in 96-well plates. The percent lysis was calculated by meas- 
uring 51Cr release into the supernatant: 100x [(sample cpm - 
background cpm)/(total cpm - background cpm)], where total 
cpm is the radioactivity released from targets treated with Triton 
X-100. 
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Cytokine Assays 

Cell lines were cultured with irradiated syngeneic spleen cells 
that were either uninfected or infected with the RS virus. Culture 
supernatants (CS) were tested for cytokines on day 1 to 3 after an- 
tigenic stimulation. 

IL2 Assay. IL-2 dependent CT.EV cells (20) were maintained 
in RPMI/10 and 5% IL-2 (CS of X6310 line expressing mRNA 
for II.-2 [21]). These were washed four times and suspended at 10 s 
cells/ml. 5 x 103 cells were incubated with 50/~1 of each test 
sample in 96-well round-bottomed microtiter plates for 42 h be- 
fore addition of 0.5 #Ci/well of [3H]TdR for 6 h. The cellular 
DNA was harvested onto filters, dried, and assayed by liquid scin- 
tillation counting. The results were calculated as the mean cpm 
of triplicates after subtraction of counts obtained when cells were 
incubated with medium alone (typically 200-400 cpm). In each 
assay, wells containing rIL-2 acted as positive controls. Selected CS 
were also tested in the presence or absence of 11Bll anti-IL-4 or 
$4B6 anti-IL-2 monoclonals, which confirmed that the action on 
CT.EV cells could be fully ascribed to II.-2. Alternatively, CTLL 
cells were used to measure IL-2/4 levels. In this case, cells were 
pulsed with [3H]TdR at 18-24 h, and inhibition of proliferation 
by anti-IL-2 was used to identify stimulation caused by IL-2. In 
the presence of anti-IL-2, residual proliferation is caused by IL-4 
and is fully inhibitable by anti-IL-4 (see below). Although multiple 
dilutions and time intervals up to day 4 were tested, here we report 
the results of assays on 1:2 dilutions of CS collected on day 1 or 
2, as optimal levels were found at this time. Essentially similar 
methods were used to measure IL-3, -4, and -5, with the following 
modifications. 

IL3 Assay. The B13 cell line (LyH7-B13) was maintained with 
10 U/ml rIL-5 (CS of X6310 cell line expressing mRNA for IL-5 
[21]). This line responds to both IL-5 and IL-3, and in the presence 
of anti-IL-5 Ab (TRFK.5 hybridoma CS at 1:20 dilution [22]), be- 
haves in an IL-3-responsive manner. Under these conditions, prolifer- 
ation is proportional to that of IL-3-responsive 32D cells (16 and 
our unpublished results). 

1114 Assay. IL-4 dependent cell line CT.4S (20) was maintained 
in medium supplemented with 5% rIL-4 (CS of X6310 cell line 
expressing mRNA for IL-4 [21]). Results from this assay are con- 
cordant with results obtained from CTLL cells stimulated by CS 
in the presence of anti-IL-2 Ab (see above). 

11-.5 Assay. B13 cells were maintained with rIL-5 produced from 
transfected X6310 cells as above. The proliferation inhibited by 
TRFK.5 Ab was taken to represent IL-5 activity (16). Residual 
proliferation in the presence of anti-IL-5 is probably caused by IL-3 
(see above). 

In Vivo Testing of Celt Lines 
The cell lines were injected into mice intravenously within 4 h 

of intranasal infection. Mice were inspected daily for signs of ill- 
ness, and weighed before and at intervals after challenge as a quan- 
titative index of disease. All surviving mice were killed on day 4 
and subjected to BAL, and lungs were homogenized for virus 
titration. 

In experiment 1, 13 mice were infected with KS virus and an- 
other 12 were given control material intranasally (mock infection). 
Of  the RS virus-infected mice, four were injected intravenously 
with 3 x 106 G-specific cells, two with similar numbers of 22K- 
specific cells, and four with both cell lines (total, 6 x 106 cells). 
Of the mock-infected mice, four were injected with G- and four 
with 22K-specific cells. The remaining mice were left as controls. 

All cells were injected 3 d after the third cycle of antigen stimula- 
tion in vitro. 

In experiment 2, 24 mice were infected intranasally with RS 
virus, 8 with influenza A, and 4 with mock antigen. Of the RS 
virus-infected mice, four were injected with 3 x 106 G-specific 
cells, four with a mixture of G and 22K cells at a 3:1 ratio (total, 
4 x 106 cells), four with a 3:3 mixture (total, 6 x 106), four with 
a 1:3 mixture, and four with 3 x 106 22K-specific cells alone. All 
the mock-infected mice, four of the eight influenza-infected, and 
four uninfected mice were injected with a 3:3 mixture of cells. The 
remaining virus-infected mice were left as controls, without injec- 
tion. In this experiment, all cells were injected 3 d after the fifth 
cycle of antigen stimulation in vitro. 

In experiment 3, the in vivo effects ofF- and G-specific cell lines 
were compared on day 3 after the third cycle of antigen stimula- 
tion. Groups of mice were infected intranasally with RS virus 
(n = 15), influenza (n = 6), given mock HEp2 antigen (n = 6), 
or left uninoculated (n = 3). Of the KS virus-infected mice, four 
were given 3 x 106 F-specific cells, a further four were given 
3 x 10 e G-specific cells, and four given both G- and F-specific cells 
(total, 6 x 106 cells per mouse). The remaining three mice were 
left without cell transfers. Half of the influenza or mock-infected 
mice were injected with both G- and F-specific cells, which were 
also injected into all three uninoculated mice. 

Bronckoalveolar Lavage 

Mice were given 3 mg pentobarbitone intraperitoneally and ex- 
sanguinated via the femoral vessels. The thorax was opened, and 
1.2 mm portex tubing introduced into the trachea at the cricothyroid 
membrane. 1 ml of 12 mM lignocaine in PBS was washed in and 
out six times over a 1-2-min period to promote elution of adherent 
cells. 2 ml of hemolytic HBSS was added to the cell suspension 
for 5 rain, and 150 #1 was removed for spectrophotometric estima- 
tion of hemoglobin content (8). The remaining cells were washed 
and cytocentrifuge preparations made, which were fixed and stained 
with Giemsa's reagent. 300-500 cells per slide were identified and 
counted by oil immersion light microscopy. 

Virus Titration in the Lung Tissues 
After BAL, both lungs from each mouse were homogenized to- 

gether in 1 ml of virus stabilization buffer as previously described 
(8). Homogenates were centrifuged at 10,000 g for 1 min and su- 
pernatants stored in liquid nitrogen before determination of virus 
titer in HEp2 cells were cultured in square, flat-bottomed 25-well 
plates. Wells were infected with dilutions of standards or homo- 
genates in 500 #l/well of PBS for 1.5 h, and stained for KS virus 
at 18-24 h by immunoperoxidase. The theoretical limit of detec- 
tion for this assay is ~ 5 PFU/mouse, or 25 PFU per gram of lung 
tissue. 

~esult$ 
Phenotype of T Cell Lines. As in previous studies (17), 

splenic T cell cultures from 22K primed mice rapidly became 
dominated by C D 4 - 8  + cells. A typical FACS | analysis on 
day 3 after the third cycle is shown in Fig. 1 C. These cells 
required added Con A supernatant to grow. The G-specific 
line was comprised mainly of  CD4+8 - T cells (Fig. 1 A), 
and continued to grow without  addition of exogenous 
cytokines. The F-specific line also grew without  added 
cytokines and on day 3 after the second cycle, contained 28% 
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Figure 1. FACS | analysis of G-, 
F-, and 22K-specific cell lines. Cell 
lines from mice primed with rVV-G, 
-F, or -22K were expanded by cycles 
of antigen stimulation. Methods of 
derivation differed only in the RS 
virus protein to which the mice 
were sensitized, except that exoge- 
nous cytokines were added to main- 
tain growth of 22K-specific cells as 
the level of endogenous CD4 + 
cells (and T cell help) declined in 
these cultures. Lines were stained 
with anti-CD4 coupled to GK1.5 

PE and anti-CD8 coupled to 53-6.7 FITC. In these examples, the G line (A) is 89% CD4+8 - and 4% CD4-8 § , whereas the F line (B) is 71% 
CD4+8 - and 26% CD4-8 § and the 22K line (C) is 5.6% CD4+8 - and 74% CD4-8 + , with a further 19% in the CD4-8- "tail" of cells, which 
appears to be continuous with the main CD8 § cell population. 

CD4+8  - and 41% C D 4 - 8  § cells. At this same time, a G 
line was 50% CD4+8  - and 26% C D 4 - 8  § By the third 
cycle, their ratios had changed to 48 and 34% for F cells and 
71 and 13% for G cells, respectively. A typical C D 4 / 8  anal- 
ysis of  an F line after the fourth stimulation is shown in 
Fig. 1 B. 

Functional Characteristics of Cell Lines In Vitro. From the 
third cycle of  stimulation, cytokine production and cytotox- 
icity against P815 (H-2K a) target cells showed stable char- 
acteristics. The 22K-specific line produced no detectable IL-2, 
IL-4, or IL-5 in response to antigen, but supernatants of  
antigen-stimulated cultures were rich in IL-3. By contrast, 
the G-specific line produced IL-5, IL-4, and IL-3 but not IL-2 
in response to antigen (Table 1). The F-specific line released 
excess IL-2 but  not IL-5 (Table 2). 

In cytotoxicity assays against P815 cells, the 22K-specific 
line showed virus- and protein-specific cytotoxicity against 
cells infected with RS virus or rVV-22K. F-specific cells lysed 
P815 cells infected with KS virus or rVV-F (51 and 49% 
specific lysis, respectively, at killer/target ratio [K/T]  50:1), 
but  did not cause significant lysis of  targets infected with 
rVV-G (15%) rVV-/~3al (8%) or uninfected targets (13%) 

to a significant degree. The G-specific line cause <15% lysis 
of  any of these targets at K / T  ratios ~<50:1. 

Signs of IUness After Cell Transfers. In all cases, mock- 
infected mice appeared well, with stable or slightly increasing 
body weights and were not affected by cell transfers. Influenza- 
infected mice appeared mildly ill, lost 3 - 5 %  of body weight 
by day 4 but were not affected by cell transfers. RS virus- 
infected mice generally appeared well unless injected with 
T cells. 

In experiment 1, KS virus-infected mice not injected with 
cells showed a decline in weight to 93.2 _+ 0.5% of starting 
weights by day 2, recovering thereafter to 96.4 +_ 0.5 by day 
4. By contrast, KS virus-infected mice injected with G, 22K, 
or both cell lines became rapidly unwell with lethargy, ruffled 
fur, tachypnoea, cyanosis, and progressive weight loss, which 
was most severe among mice injected with both cell lines 
(83.5 _+ 4.2% of starting weight on day 4), followed by G 
recipients (87.9 _+ 8%), and was least in 22K recipients (90 
+ 3.8%). 

In experiment 2, RS virus-infected mice did not lose weight 
except when injected with  T cells. Those given G or 22K 
cells alone, and those given a 1:3 or 3:1 mixture of  cells lost 

Table 1. Cytokine Production by 22K- and G Protein-Specific T Cell Lines 

22K line G line 

Without Ag With Ag Without Ag With Ag 

cpm x 10 -7 
IL-2 0.2 _+ 0.02 0.16 _+ 0.02 0.29 _+ 0.02 0.26 __. 0.05 
IL-3 4.89 _+ 1.16 14.67 _+ 1.11 4.37 _+ 0.79 14.5 __. 2.02 
IL-4 0.16 __ 0.04 0.17 + 0.02 0.80 -- 0.02 5.50 _+ 0.54 
IL-5 -0 .25 _+ 0.04 0.013 _ 0.001 0.35 -+ 0.47 10.82 __. 0.59 

Production of IL-2, -3, -4, and -5 by 22K- and G protein-specific T cell lines, expressed as thousands of cpm. Background proliferation of IL-2-respon- 
sive CT.EV cells (135 _+ 38 cpm), IL-4 responsive CT.4S (84 _+ 14), and IL-3/5-responsive B13 (478 + 150) cells have been subtracted. Positive 
controls for each of these cell lines (5% CS from x 6310 cell lines producing IL-2, -4, or -5) were 11,601 _+ 213; 2,939 _+ 111; and 9,477 _+ 787, 
respectively. The IL-5 readout is the inhibition of B13 [3H]TdR incorporation by anti IL-5 mAb TRFK-5, which leaves residual incorporation here 
ascribed to IL-3. The 22K line generates good levels of IL-3, but not IL-2, IL-4, or IL-5 (typical of CTL), whereas the G line generates IL-4 and 
IL-5, but not IL-2 (typical of Th2). 
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Table 2. IL-2 and IL-5 Production by F and G Cell Lines 

CTLL proliferation B13 proliferation 

No anti-IL-2 Wi th  anti-IL-2 No anti-IL-5 Wi th  anti-IL-5 

cpm x 10 -3 

F line 5.65 + 0.6 0.41 .+ 0.55 8.84 _+ 0.5 8.4 _+ 1.3 

G line 3.13 .+ 0.85 2.87 + 1.15 13.00 _+ 1.6 4.6 _+ 1.0 

Cytokine production by F and G cell lines, expressed in thousands of cpm. Background proliferation of CTLL (480 cpm) and B13 (630 cpm) cells 
was not affected by respective anticytokines, and has been subtracted. Ab inhibition shows that the F line generates good levels of IL-2 but not 
IL-5, whereas the G line generates IL-5 but not significant IL-2. CS from the F line contains IL-3, which causes B13 cells to proliferate regardless 
of anti-IL-5 Ab. CS from the G line also contains IL-3 (accounting for nearly one third of the total B13 proliferation) and IL-4, which appears 
responsible for most of the CTLL proliferation (see 16 and 17 for further discussion). 

10-20% of body weight by day 4. Those given 3:3 mixtures 
(total 6 x 106 cells) lost 25.5 + 2.0% of starting weight 
by day 4 (Fig. 2). Deaths due to the severity of augmented 
lung disease occurred between days 3 and 4 in one mouse 
given G-specific cells, and two mice given G and 22K cells 
at a 3:1 ratio. No deaths due to lung disease occurred in other 
groups or in other experiments, although three mice failed 
to recover from anesthesia. 

In experiment 3, RS virus-infected mice maintained static 
weight unless simultaneously injected with T cells, in which 

.~ 90 

._~ 

~ 8o  

70 I I I I I 

0 1 2 3 4 

Days 

Figure 2. Weight loss caused by G- and 22K-specific T cell lines in RS 
virus-infected mice. Mean group weights + SEM of KS virus infected 
mice in experiment 2, with or without cell transfers, calculated as percent 
of starting weight for each mouse. Groups are: (l-q) R.S virus infection, 
no cells; ( l l)  KS virus and 3 x 106 22K cells; ( ' )  RS virus and mixed 
cells (106 G and 3 x 106 22K); (A) KS virus and mixed cells (3 x 106 
of each); (O)  RS virus and mixed cells (3 x 106 G and 106 22K); (A) 
KS virus and 3 x 106 G cells. Control groups not infected with KS virus 
(i.e., infected with influenza or mock infected) were not affected by cell 
transfers and are not shown in the figure. 

case they became ill by day 2 after transfers. Infected recipients 
of F-specific cells lost 6.7% and G-specific recipients 13.3% 
of starting weights by day 4. Simultaneous injection of both 
cell lines produced effects similar to G-specific cells alone up 
to day 3 (Fig. 3). 

Effects of Transfer of Individual Cell Lines on BAL Parameters. 
In all cases, no significant lung hemorrhage, PMN efftux, 
eosinophilia, or lymphocytosis occurred in mock-infected mice 
regardless of cell transfers. Influenza-infected mice developed 
lymphocytosis and PMN efflux, but were again unaffected 
by cell transfers (e.g., experiment 3, influenza only: 9.1 _+ 
1.1% PMN; influenza with cell transfers: 6.1 +_ 1.4% PMN, 

100 

90 

80 I I I ~ I 

0 1 2 3 4 

Days 

Figure 3. Weight loss caused by G- and F-specific T cell lines in KS 
virus-infected mice. Mean group weights _+ SEM of KS virus-infected 
mice, with or without cell transfers in experiment 3, calculated as percent 
starting weight for each mouse. Groups are: (I-q) KS virus infection, no 
cells; (A) RS virus and 3 x 106 G cells; ( l l)  RS virus and 3 x 106 F 
cells; (A) KS virus and mixed cells (6 x 106 total). Control groups not 
infected with RS virus (i.e., infected with influenza or mock infected) were 
not affected by cell transfers and are not shown in the figure. 
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Figure 4. Pathological effects of G- and 22K-specific cell lines. Groups 
of RS virus-infected mice: (A) left without i.v. injection; (B) injected with 
3 x 106 22K-specific cells; (C) 3 • 106 22K and 106 G-specific cells; (D) 
3 x 106 of each line; (E) 106 22K and 3 x 106 G-specific cells; and (F) 
3 x 106 G-specific cells. Cell transfers were done at the same time as RS 
virus infection, either after the third (experiment 1, r or after the fifth 
(experiment 2, O) cycle of in vitro growth. Either cell line caused lung 
hemorrhage and PMN efflux into BAL fluid (shock lung), and the effects 
of combined cell transfers were additive in this regard. By contrast, only 
G-specific cells cause eosinophilic pneumonitis, the severity of which was 
reduced by the addition of 22K-specific cells. Neither cell line enhanced 
disease in influenza- or mock-infected mice (data not shown, see text). 

p = 0.2; hemorrhage: 67 • 7 #g/ml without, 70 + 5.5/~g/ 
ml with cells, p = NS). RS virus-infected mice developed 
mild pulmonary lymphocytosis as previously described (23), 
but no other pathological effects unless T cells were injected. 

T cell injections only affected disease in RS virus-infected 
mice. In all experiments, such mice given G-specific cells 
showed brisk lung hemorrhage, PMN and eosinophil eflqux. 
Those given 22K cells showed mild lung hemorrhage, occa- 
sional slight PMN efflux (5.7% in one mouse in experiment 
1, Fig. 4), but not eosinophilia (Figs. 4 and 5). Injecting 
F-specific cells into such mice caused slight but significant 
lung hemorrhage (Fig. 5, top; 29 • 3 in A vs 109 _+ 20 
/~g/ml in B, p -- 0.03, Student's t test) but no PMN or eo- 
sinophil efflux. 

Effects of Combined Transfer Different Cell Lines. Equal mix- 
tures of G and 22K cells caused an increase in lung hemor- 
rhage and PMN efflux, compared with the effects of either 
cell line alone. Combining the results of experiments 1 and 
2, addition of 3 x 106 22K to 3 x 106 G cells enhanced 
PMN efflux from 26.8 _+ 2 to 36.7 _+ 3.7% (F = 0.045, 
Student's t test). By contrast, the eosinophilia seen in recipients 
of G-specific cells was reduced by coadministration of 22K 
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Pathological effects of G- and F-specific T cell lines. Groups 
of RS virus-infected mice: (A) no i.v. injection; (B) injected with 3 x 
106 F protein-specifc T cells; (C) injected with both cell lines (6 x 106 
total); and (/9) injected with 3 x 106 attachment protein G-specific T 
cells. On day 4, all mice were subjected to BAL for quantification of lung 
hemorrhage (BAL Hb, #g/ml,  top) and differential cell counts (e.g., PMN% 
and eosinophil%, middle and bottom). The F-specific cells caused slight hut 
significant lung hemorrhage (29 _+ 3 in A vs 109 -+ 20 #g /ml  in B, 
p = 0.03, Student's t test) but not PMN or eosinophil ef[tux. The G-specific 
cells caused severe lung hemorrhage (618 _+ 72/~g/ml), eosinophil, and 
PMN e~ux. F- and G-specific cells together caused pathological effects 
similar to G cells alone. No additional pathological effects were caused 
by injection of T cells into uninfected, mock-, or influenza-infected mice 
(see text). 

cells (e.g., 30.4 _+ 0.3 vs 8.3 _+ 1.15%,p = 0.003 in experi- 
ment 2). Unequal mixtures produced immediate results (Fig. 
4). Combined injections os F and G cells caused pathological 
effects similar to G cells alone (Fig. 5). 

Effects of Cell Transfer on RS Virus Replication. In experi- 
ment 1, either the 22K or G cell line caused a significant 

~<0.05, Student's t test) reduction in lung virus titer com- 
pared with those not given cells, whereas coinjection of both 
cell lines eliminated virus completely (Fig. 6 A). In experi- 
ment 2, the same pattern was seen (Fig. 6 B; data from asym- 
metrical transfers not shown, but where no lung virus was 
detected). In experiment 3, RS virus-infected mice injected 
with F-specific cells had greatly reduced lung virus titers, 
whereas G-specific cells or combinations of F- and G-specific 
cells virtually eliminated virus from the lungs (Fig. 6 C). 

Discussion 

These studies show that injection of viral protein-specific 
T cell lines into naive mice coinfected with P,S virus can re- 
duce virus replication in the lungs, but that each also produces 
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Figure 6. Antiviral effects of in- 
jection of T cell lines. Mice were 
subjected to BAL on day 4 after in- 
tranasal infection with KS virus, and 
lungs homogenized for determina- 
tion of virus titer. The performance 
of BAL before lung virus recovery 
reduces lung virus titers (23), but 
does not invalidate the comparisons 
shown here. Results for individual 
mice are shown in infectious units 
(pfu) per mouse (y-axis). The theo- 
retical limit of detection for this 
assay is ,,o5 PFU/mouse. Results 

have not been corrected for lung weight, since acute changes in weight result from infiltration or fluid and not from changes in true pulmonary mass. 
Such a correction would falsely lower virus titers in inflamed lungs that were unaffected in their ability to support virus replication. In experiment 
1 (A) 22K- and G-specific cell lines were tested by intravenous transfer after three cycles in vitro stimulation, and in experiment 2 (B) after five cycles. 
In C, the effects of F- and G-specific cells are shown. No virus could be isolated after coinjection of G- and 22K-specific cells, either with equal numbers 
(i.e., 3 x 106 of each, 22K+G or F+G) or unequal numbers (i.e., ratios of 3:1 or 1:3) of cells (data not shown). 

a characteristic pattern of disease enhancement. The im- 
munopathology in mice given specific T cells largely repro- 
duces that seen in mice sensitized to the KS virus protein 
which the ceils recognize, and correlates with the phenotypic 
and functional properties of the T cell lines in vitro. 

First, KS virus-infected mice injected with T cells from 
mice primed with rVV-F develop mild disease augmentation 
of a similar pattern to that seen in mice sensitized by rVV-F 
infection (15). This recombinant induces strong RS virus- 
specific CTL (24) and Th cell (25) responses. The T cell line 
contained both CD4 + cells (which produced IL-2 but not 
IL-5) and CD8 + CTL. 

Second, priming with rVV-22K (which expresses the prin- 
cipal target for Ka-restricted CTL and induces CTL in vivo 
[19]) leads to a cell line that is almost exclusively CD8 + , has 
CTL (but not Th) activity, and induces more marked disease 
augmentation, with lung hemorrhage PMN efl:lux. This pat- 
tern of disease may be caused by CTL recognition of infected 
pulmonary epithelial cells, thereby resulting in a breakdown 
of the alveolar/capillary membrane. 

Third, the G-specific cell line induces a more severe and 
quite distinct pattern of disease with severe eosinophilic pneu- 
monitis similar to that seen in RS virus-infected mice sensi- 
tized with rVV-G (15). In vitro, the G-specific line releases 
IL-3, IL-4, and IL-5, but little IL-2. On the basis of results 
obtained from Th cell clones, Street et al. (26) and others 
have proposed that Th cells can be divided into Thl (producing 
IFN-3', IL-2, and IL-3) and Th2 (producing IL-3, IL-4, and 
IL-5, among other factors). One explanation for the present 
results is that the KS virus-specific Th cells induced by rW-G 
are predominantly Th2 cells which produce cytokines that 
induce the differentiation, maturation, migration, prolifera- 
tion, and survival of eosinophils. In murine leishmaniasis, 
cells that behave as Thl cells protect against infection, whereas 
those that exhibit Th2 properties enhance DTH and the 
severity of the disease and are associated with chronicity (27, 
28). These Th subsets may also be relevant to in vivo responses 
to other infectious agents such as schistosomulae (29), listeria 
(30), and Brucella abortus and Nippostrongylus (26), but the 
studies described herein are the first to indicate that such Th 

subsets might also explain pathological responses to viral in- 
fections. 

These findings are largely consistent with our previous 
studies, in which polyclonal KS virus-specific T cell lines 
were separated into CD4 + and CD8 + T cell-enriched frac- 
tions by immunomagnetic adhesion. Transfer of CD4 § 
CD8 .+, or both cell fractions caused KS virus-infected mice 
to become ill and lose weight, whereas infection alone caused 
no overt illness. Either fraction also caused an increase in the 
severity of lung pathology (as monitored by BAL) with the 
appearance of lung hemorrhage and PMN efflux. In addi- 
tion, recipients of CD4 § ceils developed pulmonary eo- 
sinophilia. There is some evidence from these studies that 
coinjection of CD4 § and CD8 § cells may reduce the sever- 
ity of pathology, compared with the effects of either subset 
alone (9). In these studies, mice given both G and 22K lines 
showed enhanced PMN efflux and reduced eosinophilia com- 
pared with those given 22K or G cells alone. F-specific cells 
alone caused minimal enhancement of disease, and did not 
much influence the disease caused by G-specific cells either 
in terms of weight loss or lung pathology. They did, how- 
ever, exhibit antiviral effects. 

In other experimental situations, sequential actions of CD8 
and CD4 subsets may be required for antiviral DTH responses 
(31), and cooperation of both subsets may be required to pro- 
tect against infection (32). Different subsets may have different 
roles at different sites (33, 34), and in different genetic strains 
of animal. For example, protective T cells that recognize the 
nucleoprotein of vesicular stomatitis virus are CD4 § in H-2 k 
mice, but CD8 § in H-2 b strains (35). 

Although these studies highlight the potentially patho- 
genic role of Th cells that recognize the attachment protein 
G, they should not be taken to indicate that all subunit or 
recombinant vaccines containing G will be pathogenic, or 
that the same applies to other strains of mice or to other 
species. Mice seem to be more prone to pathogenic responses 
than cotton rats (10), and BALB/c mice may be particularly 
susceptible to eosinophilia (36) and perhaps to the development 
of CTL-induced immunopathology (37), thereby making 
them the best available model in which to define mechanisms 
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of disease augmentation. A second important issue is the 
timing and strength of the T cell response. These studies show 
what can happen if highly activated T cells are present at 
the start of infection. A less exuberant T cell response would 
be less likely to be pathogenic, and is probably an essential 
component of the protective immune response to any effec- 
tive vaccine. 

In addition to possible implications for vaccine develop- 
ment, the appearance of eosinophils in the lungs of sensi- 
tized RS virus-infected mice may be relevant to the patho- 
genesis of asthma in humans. Eosinophilia in the lung and 
blood is a frequent finding in asthmatics, in whom the bron- 
chial epithelium is infiltrated with Th2-1ike lymphocytes (38). 
Wheezing is an important clinical sign ofbronchiolitis, and 
respiratory viral infections are common precipitants of attacks 

of asthma (39, 40). Children with a history of bronchiolitis 
often suffer respiratory symptoms typical of asthma in later 
childhood (41, 42) and respiratory morbidity in adult life may 
also be affected (43). The mechanisms by which viral in- 
fections might cause delayed effects recently have been re- 
viewed (44). 

In conclusion, different components of the immunopatho- 
logical response to RS virus infection are associated with T 
cell recognition of particular viral proteins. A vaccine that 
induced moderate, balanced T cell responses and high levels 
of neutralizing, fusion-inhibiting Ab at the mucosal surface 
would appear ideal. Further studies of the immune and patho- 
logical responses to modified recombinant proteins may show 
how protective immunity can be induced without causing 
harmful reactions to subsequent RS virus infections. 

We thank Dr. F. Melchers (Basel Institute for Immunology, Basel, Switzerland) for X6310 cells transfected 
with cytokine genes; Drs. D. Wraith (Cambridge University, Cambridge, UK), and G. Klaus (National 
Institute for Medical Research, London, UK) for providing cytokine-dependent cell lines. H57-597 was 
provided by Dr. R. Kubo (Denver, CO). We also thank Ms. F. Record for excellent technical assistance. 

The construction of recombinant vaccinia viruses was supported by National Institutes of Health grants 
from the U.S. Public Health Service National Institute of Allergy and Infectious Diseases R37 AI18270 
(L. A. Ball), and R37 AI12464 and AI20181 (G. W. Wertz). This work was supported by The Wellcome 
Trust and SmithKline Beecham Biologicals. 

Address correspondence to Dr. P. J. M. Openshaw, Respiratory Unit, Department of Medicine, Imperial 
College of Science, Technology and Medicine, London W2 1PG, UK. The current address ofW. H. Alwan 
is Registrar, Department of Immunology, University of Glasgow, Western Infirmary, Glasgow Gll 6NT, 
Scotland, UK, and that of W. J. Kozlowska is Medical Student, St. Bartholomew's Hospital Medical 
School, London EC1A 7BE, UK. 

Received for publication 15 October 1992 and in revised form 13 September 1993, 

References 

1. Heilman, C.A. 1990. Respiratory syncytial and parainfluenza 
viruses. J. Infect. Dis. 161:402. 

2. Mclntosh, K., and J.M. Fishaut. 1980. Immunopathologic 
mechanisms in lower respiratory tract disease of infants due 
to respiratory syncytial virus. Prog. Med. Virol. 26:94. 

3. Murphy, B.R., A.V. Sotnikov, L.A. Lawrence, S.M. Banks, and 
G.A. Prince. 1990. Enhanced pulmonary histopathology is ob- 
served in cotton rats immunized with formalin-inactivated re- 
spiratory syncytial virus (RSV) or purified F glycoprotein and 
challenged with RSV 3-6 months after immunization. Vac- 
cine. 8:497. 

4. Connors, M., A.B. Kulkarni, C.Y. Firestone, K.L. Holmes, 
H.C. Morse, A.V. Sotnikov, and B.R. Murphy. 1992. Pulmo- 
nary histopathology induced by respiratory syncytial virus 
(RSV) challenge of formalin-inactivated RSV-immunized 
BALB/c mice is abrogated by depletion of CD4 + T cells. J. 
Virol. 66:7444. 

5. Vaux-Peretz, F., J.-M. Chapsal, and B. Meignier. 1992. Com- 
parison of the ability of formalin-inactivated respiratory syn- 
cytial virus, immunopurified E G, and N proteins and cell ly- 
sate to enhance pulmonary changes in BALB/c mice. Vaccine. 
10:113. 

6. Openshaw, P.J.M. 1991. Pulmonary epithelial T cells induced 

by viral infection express T cell receptors cr Eur.J. Immunol. 
21:803. 

7. Graham, B.S., L.A. Bunton, P.F. Wright, and D.T. Karzon. 
1991. Role ofT lymphocyte subsets in the pathogenesis of pri- 
mary infection and rechallenge with respiratory syncytial virus 
in mice. J. Clin. Invest. 88:1026. 

8. Cannon, M.J., P.J.M. Openshaw, and B.A. Askonas. 1988. 
Cytotoxic T cells clear virus but augment lung pathology in 
mice infected with respiratory syncytial virus. J. Extz Med. 
168:1163. 

9. Alwan, W.H., F.M. Record, and P.J.M. Openshaw. 1992. 
CD4 + T cells clear virus but augment disease in mice infected 
with respiratory syncytial virus: comparison with the effects 
of CD8 + cells. Clin. Exp. Immunol. 88:527. 

10. Vaux-Peretz, E, and B. Meignier. 1990. Comparison of lung 
histopathology and bronchoalveolar lavage cytology in mice 
and cotton rats infected with respiratory syncytial virus, l/hc- 
cine. 8:543. 

11. Wathen, M.W., T.J. Kakuk, R.J. Brideau, E.C. Hausknecht, 
S.L. Cole, and R.M. Zaya. 1991. Vaccination of cotton rats 
with a chimeric FG glycoprotein of human respiratory syncy- 
tial virus induces minimal pulmonary pathology on challenge. 

J. Infect. Dis. 163:477. 

88 Effects of Respiratory Syncytial Virus Protein-specific T Cells In Vivo 



12. Wertz, G.W., E.J. Stott, K.KJ. Young, K. Anderson, and L.A. 
Ball. 1987. Expression of the fusion protein of human respira- 
tory syncytial virus from recombinant vaccinia virus vectors 
and protection of vaccinated mice. J. Virol. 61:293. 

13. Stott, E.J., L.A. Ball, K.K. Young, J. Furze, and G.W. Wertz. 
1986. Human respiratory syncytial virus glycoprotein G ex- 
pressed from recombinant vaccinia virus vector protects mice 
against live virus challenge. J. Virol. 60:607. 

14. Stott, E.J., G. Taylor, L.A. Ball, K. Anderson, K.K.-Y. Young, 
A.M.Q. King, and G.W. Wertz. 1987. Immune and histopatho- 
logical responses in animals vaccinated with recombinant vac- 
cinia viruses that express individual genes of human respira- 
tory syncytial virus. J. Virol. 61:3855. 

15. Openshaw, P.J., S.L. Clarke, and F.M. Record. 1992. Pulmo- 
nary eosinophilic response to respiratory syncytial virus infec- 
tion in mice sensitized to the major surface glycoprotein G. 
Int. Immunol. 4:493. 

16. Alwan, W.H., and P.J.M. Openshaw. 1993. Distinct patterns 
of T and B cell immunity to respiratory syncytial virus induced 
by individual proteins. Vaccine. 11:431. 

17. Alwan, W.H., F.M. Record, and P.J.M. Openshaw. 1993. 
Phenotypic and functional characterisation of T cell lines specific 
to individual respiratory syncytial virus proteins. J. lmmunol. 
150:5211. 

18. Ball, L.A., K.K.Y. Young, K. Anderson, P.L. Collins, and G. 
Wertz. 1986. Expression of the major glycoprotein G of human 
respiratory syncytial virus from recombinant vaccinia virus 
vectors. Proc. Natl. Acad. Sci. USA. 83:246. 

19. Openshaw, P.J.M., K. Anderson, G.W. Wertz, and B.A. 
Askonas. 1990. The 22-kilodahon protein of respiratory syn- 
cytial virus is a major target for Kd-restricted cytotoxic T lym- 
phocytes from mice primed by infection. J. Virol. 64:1683. 

20. Hu-Li, J., J. Ohara, C. Watson, W. Tsang, and W.E. Paul. 
1989. Derivation of a T cell line that is highly responsive to 
IL-4 and IL-2 (CT.4R) and of an IL-2 hyporesponsive mutant 
of that line. J. Immunol. 142:800. 

21. Karasuyama, H., and F. Melchers. 1988. Establishment of mouse 
cell lines which constitutively secrete large quantities of inter- 
leukin 2, 3, 4, or 5, using modified cDNA expression vectors. 
Eur. J. Immunol. 18:97. 

22. Schumacher, J.H., A. O'Garra, B. Shrader, M. van Kimmenade, 
W. Bond, T.R. Mosmann, and R.L. Coffman. 1988. The 
characterisation of four monoclonal antibodies specific for 
mouse IL-5 and development of mouse and human IL-5 enzyme- 
linked immunosorbent assays. J. Immunol. 141:1576. 

23. Openshaw, P.J.M. 1989. Flow cytometric analysis of pulmo- 
nary lymphocytes from mice infected with respiratory syncy- 
tial virus. Clin. Exp. Immunol. 75(2):324. 

24. Pemberton, R.M., M.J. Cannon, P.J.M. Openshaw, L.A. Ball, 
G.A. Wertz, and B.A. Askonas. 1987. Cytotoxic T-cell 
specificity for respiratory syncytial virus proteins: fusion pro- 
tein is an important target antigen. J. Gen. Virol. 68:2177. 

25. Openshaw, P.J.M., R.M. Pemberton, L.A. Ball, A.M.Q. King, 
G.W. Wertz, and B.A. Askonas. 1988. Helper T-cell recogni- 
tion of respiratory syncytial virus in mice.J. Gen. Virol. 69:305. 

26. Street, N.E., J.H. Schumacher, T.A.T. Fong, H. Bass, D.F. Fi- 
orentino, J.A. Leverah, and T.R. Mosmann. 1990. Heteroge- 
neity of mouse helper T cells: Evidence from bulk cultures 
and limiting dilution cloning for precursors of Thl  and Th2 
cells. J. Immunol. 144:1629. 

27. Heinzel, F.P., M.D. Sadick, B.J. Holaday, R.L. Coffman, and 
R.M. Locksley. 1989. Reciprocal expression of interferon 7 
or interleukin 4 during the resolution or progression of mu- 
rine leishmaniasis. J. Exp. Med. 169:59. 

89 Alwan et al. 

28. Bogdan, C., K. Schr6ppel, M. Lohoff, M. R611inghoff, and 
W. Sollbach. 1990. Immunization of susceptible hosts with 
a soluble antigen fraction from Leishmania major leads to ag- 
gravation of murine leishmaniasis mediated by CD4 § T cells. 
Eur. J. Immunol. 20:2533. 

29. Caulada-Benedetti, Z., F. A1-Zamd, A. Sher, and S. James. 1991. 
Comparison of Thl- and Th2-associated immune reactivities 
stimulated by single versus multiple vaccination of mice with 
irradiated Schistosoma mansoni cercariae.J. Immunol. 146:1655. 

30. Baldridge, J.R., R.A. Barry, and DJ. Hinrichs. 1990. Expres- 
sion of systemic protection and delayed-type hypersensitivity 
to Listeria monocytogenes is mediated by different T-cell subsets. 
Infect. Immun. 58:654. 

31. Moskophidis, D., andF. Lehmann-Grube. 1989. Virus-induced 
delayed-type hypersensitivity reaction is sequentially mediated 
by CD8 + and CD4 + T lymphocytes. Proc. Natl. Acad. Sci. 
USA. 86:3291. 

32. Hom, R.C., R.W. Finberg, S. Mullaney, and R.M. Ruprecht. 
1991. Protective cellular retroviral immunity requires both 
CD4 + and CD8 + immune T cells. J. Virol. 65:220. 

33. Nash, A.A., A. Jayasuriya, J. Phelan, S.P. Cobbold, H. Wald- 
mann, and T. Prospero. 1987. Different roles for L3T4 + and 
Lyt 2 + T cell subsets in the control of an acute herpes sim- 
plex virus infection of the skin and nervous system. J. Gen. 
Virol. 68:825. 

34. Kadima-Nzuji, M., and J.E. Craighead. 1990. T-lymphocyte 
effects on murine cytomegalovirus pulmonary infection. Am. 
J. Pathol. 137:907. 

35. Binder, D., and T.M. Kiindig. 1991. Antiviral protection by 
CD8 + versus CD4 § T cells: CD8 + T cells correlating with 
cytotoxic activity in vitro are more efficient in antivaccinia virus 
protection than CD4-dependent IL. J. Immunol. 146:4301. 

36. Lammas, D.A., L.A. Mitchell, and D. Wakelin. 1989. Genetic 
control of eosinophilia. Analysis of production and response 
to eosinophil-differentiating factor in strains of mice infected 
with Trichinella spiralis. Clin. Exp. Immunol. 77:137. 

37. Mufioz, J.L., C.A. McCarthy, M.E. Clark, and C.B. Hall. 1991. 
Respiratory syncytial virus infection in C57BL/6 mice: clear- 
ance of virus from the lungs with virus-specific cytotoxic T 
cells. J. Virol. 65:4494. 

38. Robinson, D.S., Q. Hamid, S. Ying, A. Tsicopoulos, J. Barkans, 
A.M. Bentley, C. Corrigan, S.R. Durham, and A.B. Kay. 1992. 
Predominant Tin-like bronchoalveolar T-lymphocyte popula- 
tion in atopic asthma. N. Engl. J. Med. 326:298. 

39. Mclntosh, K., E.F. Ellis, L.S. Hoffman, T.G. Lybass, and J.J. 
Eller. 1973. The association of viral and bacterial respiratory 
infections with exacerbations of wheezing in young asthmatic 
children. J. Pediatr. 83:578. 

40. Pattemore, P.K., S.L. Johnston, and P.G. Bardin. 1992. Viruses 
as precipitants of asthma symptoms. I. Epidemiology. Clin. 
Exp. Allergy. 22:325. 

41. Eisen, A.H., and H.L. Bacal. 1963. The acute relationship of 
acute bronchiolitis to bronchial asthma-a-4-to-14 year follow 
up. Pediatrics. 31:859. 

42. Sly, P.D., and M.E. Hibbert. 1989, Childhood asthma following 
hospitalization with acute viral bronchiolitis in infancy. Pediatr. 
Pulmonol. 7:153. 

43. Barker, D.J.P., and C. Osmond. 1988. Childhood respiratory 
infection and adult chronic bronchitis in England and Wales. 
Br. Med. J. 293:1271. 

44. Openshaw, P.J.M., and D.R. O'Donnell. 1994. Asthma and 
the common cold: can viruses immitate worms? Thorax. In 
press. 


