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ABSTRACT (200 words) 

Exacerbations of chronic obstructive pulmonary disease (COPD) are an 

increasing cause of hospitalizations and are associated with accelerated 

progression of airflow obstruction. Approximately half of COPD exacerbations 

are associated with bacteria and many patients have lower airways 

colonization. This suggests that bacterial infection in COPD could be due to 

reduced pathogen removal. This study investigated whether bacterial 

clearance by macrophages is defective in COPD.  

Phagocytosis of fluorescently labelled polystyrene beads and Haemophillus 

influenzae and Streptococcus pneumoniae by alveolar macrophages and 

monocyte-derived macrophages (MDM) were assessed by fluorimetry and 

flow cytometry. Receptor expression was measured by flow cytometry. 

Alveolar macrophages and MDM phagocytosed polystyrene beads similarly. 

There was no difference in phagocytosis of beads by MDM from COPD 

patients compared with cells from smokers and non-smokers. MDM from 

COPD patients showed reduced phagocytic responses to S.pneumoniae and 

H. influenzae compared with non-smokers and smokers. This was not 

associated with alterations in cell surface receptor expression of TLR2, TLR4, 

MARCO, CD163, CD36 or the mannose receptor. Budesonide, formoterol, or 

azithromycin did not suppress phagocytosis suggesting that reduced 

responses in COPD MDM were not due to medications.  

COPD macrophage innate responses are suppressed and may lead to 

bacterial colonisation and increased exacerbation frequency.  
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INTRODUCTION 

Chronic obstructive pulmonary disease (COPD) is an inflammatory lung 

disease comprising small airways disease and emphysema [1]. It is currently 

the 6th most common cause of death globally and is predicted to become the 

3rd most common cause of death by 2020 [2]. This may be due to the 

increased incidence of cigarette smoking as this is the most common risk 

factor for COPD and contributes to approximately 85% of all cases. 

Approximately, 15% of smokers will develop COPD whereas the incidence in 

non-smokers is 1.6% [3]. In healthy individuals and smokers without lung 

obstruction, the lower airways are sterile, but in COPD patients there is often 

colonization of the lower respiratory tract, with Streptococcus pneumoniae and 

Haemophilus influenzae being the most common bacterial pathogens [4]. 

Exacerbations of COPD are an increasing cause of hospitalizations in the UK 

[5], are associated with accelerated disease progression [6] and account for 

much of the healthcare costs associated with COPD [7,8]. The causes of 

exacerbations vary, but ~50% of infective exacerbations are bacterial in origin. 

Alveolar macrophages contribute 90-95% of cells found in bronchoalveolar 

lavage fluid and are highly phagocytic, producing multiple inflammatory 

mediators [9]. Moreover, their role in removal of potentially pathogenic micro-

organisms via phagocytosis is essential in maintaining the normally sterile 

environment within the lung. One reason for the increased incidence of 

bacterial infections in the respiratory tract of COPD patients might be failure of 

macrophages to clear pathogens because of reduced phagocytosis due to 

chronic activation [10,11].  



 4 

Alveolar macrophages from COPD patients phagocytose fewer 

apoptotic epithelial cells [12] and Escherichia coli [13] compared with non-

smokers and less H. influenzae compared with smokers without COPD [14]. 

Presently, there are no animal models of this aspect of COPD limiting study to 

primary human cells. Therefore, we compared the phagocytic responses of 

alveolar macrophages and monocyte-derived macrophages (MDM) from 

COPD patients with cells from non-smokers and smokers without lung 

obstruction. The use of MDM examined whether reduced phagocytic 

responses of alveolar macrophages in COPD was due to these cells 

becoming replete or whether differentiation in a specific, pro-inflammatory, 

lung environment was required to establish this defect.  
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METHODS 

Subject selection 

Healthy subjects and smokers were recruited from the NHLI, Royal Brompton 

Hospital, London. COPD subjects were recruited from the Royal Free Hospital, 

London or Wexham Park Hospital, Slough. All subjects gave written informed 

consent as approved by the Royal Brompton and Harefield NHS Trust Ethics 

Committee. Bronchoalveolar lavage (BAL) fluid was obtained from consenting 

patients at St. Mary’s Hospital, London or Wexham Park Hospital, Slough. 

Demographic data are presented in Table 1. COPD patients were significantly 

older than the control groups but there were no differences in smoking history 

with the smoking controls (Table 1). 

 

Cell culture 

Monocytes were isolated from PBMC using a Monocyte Isolation kit II 

(Miltenyi Biotec, Surrey, UK) and cultured in the presence of 2ng/ml GM-CSF 

for 12d to generate MDM as described previously [15]. Alveolar macrophages 

were isolated from BAL fluid as described previously [16].  

 

Phagocytosis assays 

Non-typeable H. influenzae strain 1479 and S. pneumoniae serotype 9V, 

strain 10692 were cultured and heat killed at 60ºC for 2h. Bacteria were 

fluorescently labelled using Alexafluor 488 dye (2mg/ml in DMSO) in the dark, 

at room temperature overnight. The labelled bacteria were washed repeatedly 

in PBS to remove unbound label and resuspended in PBS. For alternative 

experiments, live bacteria were resuspended in broth containing CellTracker 
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Red CMPTX dye (12.5µM) (Molecular Probes, Invitrogen, UK) and incubated 

in the dark at 37oC for 45 min.  The labelled bacteria were washed in D-PBS 

until the free dye was removed and stored at -20 oC.  Fluorescently labelled 

polystyrene beads or bacteria were added to cells and incubated for the times 

indicated. Cells were washed with D-PBS and fluorescence of extracellular 

particles was quenched by adding Trypan blue (2%v/v) for 1 min. Excess fluid 

was removed and fluorescence determined for beads and heat killed bacteria 

using an excitation λ 480nm and emission λ 520nm. For experiments using 

live bacteria, MDM were exposed for 4h prior to measurement in a platereader 

using an excitation λ 570 nm and emission λ 610 nm. Initial experiments and 

pharmacology experiments with E.coli were performed using the Vybrant 

Phagocytosis kit according to the manufacturer’s instructions (Invitrogen Ltd, 

Paisley, UK). Data are presented as phagocytosis relative to the fluorescence 

of each specific bacterium to account for differences in labelling. To confirm 

the labelling procedure was not altering the ability of cells to phagocytose, 

E.coli (strain K12, Sigma, Dorset, UK) were labelled under identical conditions 

and used in comparative experiments. Alternatively, following exposure of 

cells to bacteria as described above, cells were removed from the plate by 

agitation and fluorescence measured using a flow cytometer. 

 

Confocal microscopy 

Macrophages were cultured on Lab-tek Permanox chamber slides and fixed 

with 4%w/v paraformaldehyde.  Nuclei were stained with DAPI and cell 

cytoplasm by incubation with Evans blue dye (0.1%w/v).  Slides were viewed 

on a Leica TCS 4D Confocal microscope with a Krypton-Argon laser to detect 
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fluorescence of the FITC/yellow-green/Alexafluor 488 fluorochromes. Images 

of the three stains (DAPI (blue), Evans Blue (red) and the fluorochromes 

(green)) were overlaid.  

 

Electron microscopy 

MDM were incubated with H. influenzae (1mg/ml, 1h) and fixed by addition of 

glutaraldehyde. Secondary fixation was performed with osmium tetroxide. 

Samples were then suspended in molten 2% (w/v) agar and dehydrated by 

incubation with increasing concentrations of methanol.  Cells were infiltrated 

with propylene oxide and Araldite resin, followed by incubation and 

embedding in Araldite alone. Ultrathin sections were then cut, mounted on 

copper support grids and stained using uranyl acetate and Sato’s lead citrate. 

Grids were transferred to the TEM for visualization.  

 

Flow cytometric analysis of macrophage receptor expression 

MDM were removed from the cell culture plates using non-enzymatic cell 

dissociation solution (Sigma, Dorset, UK), washed in PBS containing bovine 

serum albumin (BSA) (0.5%) and sodium azide (PAB) (0.1%) and then 

resuspended at a concentration of 1 × 106 ml. MDM suspension (180 µl) was 

incubated for 1 h on ice with 20 µl of either the appropriate mouse isotype 

control antibody, or mouse monoclonal antibody against CD14, CD163, CD36, 

mannose receptor, MARCO, PS receptor, HLA-DR, TLR2 and TLR4, all at 

50 µg/ml. The cells were washed twice with PAB and a F(ab)’2 fragment of a 

PE-labelled goat anti-mouse IgG (20 µg/ml) (Dako Ltd, Cambridgeshire, UK) 

was incubated with the cells for 30 min on ice. The cells were washed with 
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PAB and finally resuspended in 300 µL of FACSFlowTM containing 0.5% (v/v) 

formaldehyde prior to analysis on a FACScan cytometer (Becton Dickinson, 

Oxon, UK). Five thousand events were acquired and the fluorescence staining 

of the MDM was assessed at 575 nm. The specific mean fluorescence (SMF) 

values were calculated as the fold difference of the mean fluorescence 

intensity (MFI) the isotype control to the MFI of the test antibody. 

 

Statistical Analysis 

Data are presented as mean ± SEM for ‘n’ observations. Comparisons 

between subject groups or cell types were performed using Kruskal-Wallis 

analysis using GraphPad Prism software followed by Dunn’s multiple 

comparison test (GraphPad Software Inc., San Diego, CA) or a Mann-Whitney 

test where appropriate. Differences were considered significant where p<0.05.  
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RESULTS 

Comparison of alveolar macrophage and MDM phagocytosis 

Initial experiments demonstrated that phagocytosis of polystyrene 

beads by both alveolar macrophages and MDM were similar (Fig. 1a). 

Moreover, MDM from non-smokers, smokers and COPD patients 

phagocytosed beads equally (Fig. 1b) which was confirmed as internalization 

by confocal microscopy (Fig. 1c). This would indicate that the MDM model 

reflects alveolar macrophage phagocytosis and that inert particle removal is 

not altered in COPD. In order to ascertain whether similar responses were 

observed when macrophages were exposed to bacteria, a series of 

experiments were devised. Alveolar macrophages from COPD patients 

phagocytosed less E. coli compared with cells from non-smokers and 

smokers (Fig. 2a). By contrast, monocytes from each of the subject groups 

had low phagocytic responses that did not differ with either smoking or 

disease status (Fig. 2b). However, MDM from COPD patients exhibited a 

reduced capacity to ingest bacteria similar to that of alveolar macrophages 

(Fig.2c). We confirmed this observation using FACS analysis. Phagocytosis 

by MDM from non-smokers and smokers were similar (Figs. 2d and e) but 

cells from COPD patients exhibited a significant curve shift to the left (Fig. 2f), 

indicating that fewer cells had engulfed bacteria. These comparative 

phagocytosis experiments suggest that in COPD, defective macrophage 

phagocytosis is acquired during differentiation and that MDM may be useful 

for studying the underlying defective mechanism. 

 

MDM phagocytosis of H.influenzae and S.pneumoniae 
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 To investigate whether this reduced phagocytic response to bacteria 

was restricted to E.coli the phagocytic responses of MDM to fluorescently-

labelled H. influenzae, S. pneumoniae and E. coli were evaluated. All MDM 

phagocytosed the three bacterial strains in a concentration-dependent manner 

(Fig. 3a-c) but the response of COPD MDM was attenuated, not only towards 

E. coli (Fig 3a) but also for S. pneumoniae (Fig. 3b) and H. influenzae (Fig. 

2c). To investigate as to whether defective phagocytosis in COPD MDM was 

an artefact of using heat killed bacteria, experiments were devised using 

labelled, live bacteria. Under these conditions, MDM from control subjects 

phagocytosed increased H. influenzae and S. pneumoniae (p<0.05) 

compared with cells from COPD patients (H. influenzae: control – 3587 ± 390 

vs. COPD – 2170 ± 166 fluorescence units, n=9; S. pneumoniae: control – 

3885 ± 344 vs. COPD – 2514 ± 288 fluorescence units, n=9). Confocal 

microscopy confirmed internalization of S.pneumoniae (Fig. 3d) and H. 

influenzae (Fig. 3e) and electron microscopy confirmed bacterial ingestion and 

formation of phagosomes (Fig. 4) indicating that MDM from COPD patients 

have the capacity to mount correct phagocytic responses, albeit attenuated.  

This reduced clearance of bacterial pathogens by macrophages may 

account for increased infections and the concomitant decline in lung function 

observed in COPD. Therefore, we next examined the relationship between 

lung function parameters and phagocytosis. Phagocytic responses of MDM to 

both E. coli, H. influenzae or S.pneumoniae did not correlate with FEV1% 

predicted (r=0.07,  r=-0.05, and r=0.12 respectively). Similarly, FEV1/FVC ratio 

also did not correlate, with phagocytosis of E. coli, H. influenzae or 
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S.pneumoniae (r=-0.12, r=-0.10, and r=0.32 respectively). In addition, there 

was no relationship between phagocytic response and current smoking status. 

Despite COPD patients having smoked more cigarettes than smokers and 

being older (see Table 1) there were no correlations between either age or 

number of cigarettes smoked (pack-years) and phagocytosis of any bacteria 

examined.  

 

Cell surface expression of receptors involved in bacterial recognition 

   There are numerous receptors involved in bacterial recognition by 

macrophages [17,18] thus reduced receptor expression in COPD could 

account for attenuated phagocytosis. However, there were no differences in 

the expression of TLR2, CD14, TLR4, or CD163 on MDM from COPD patients 

compared with cells from the other subject groups (Table 2). There were also 

no differences in expression of non-specific scavenger receptors including the 

mannose receptor, macrophage receptor with collagenous structure (MARCO) 

or CD36 (Table 2). Nor were there any differences in expression of the 

phosphatidylserine (PS) receptor or HLA-DR on these cells (Table 2).  

MDM from COPD patients phagocytosed beads normally (Fig. 1b) 

limiting defective phagocytosis to engulfment of pathogenic bacteria. Since 

there were no differences in expression of a number of receptors considered 

important in recognition of non-opsonized particles (Table 2), the downstream 

mechanisms emanating from receptor ligation that regulate phagocytic 

responses were examined. Pharmacological modulation of these pathways 

was utlilized to investigate whether altered signal transduction could account 

for these observations. The phosphoinositol-3-kinase (PI3K) inhibitor, LY-
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294002 and the p38 inhbitior, SB 203580, inhibited MDM phagocytosis of E. 

coli from all subjects similarly (Figs. S1a and S1c). By contrast, the Rho 

kinase inhibitor, Y-27632, had no effect on phagocytosis at any of the 

concentrations tested (Fig. S1b).   

 

Effect of pharmacological agents on MDM phagocytosis 

COPD patients are currently taking a variety of medicaments to 

ameliorate their symptoms. These include glucocorticosteroids and 

bronchodilators. Therefore, it was possible that systemic effects of these 

drugs could alter the responses of blood-derived macrophages. To test this 

possibility, MDM from non-smokers, smokers and patients with COPD were 

pre-treated with various pharmacological agents prior to phagocytosis assay 

(Fig. 5).  

Exposure of MDM to budesonide improved the phagocytic responses 

of cells from COPD patients and smokers towards both H.influenzae and 

S.pneumoniae (Figs. 5a and 5d). Agents that elevate cAMP are considered to 

be inhibitory for phagocytosis [19], however formoterol did not inhibit 

phagocytosis of the bacteria in this system (Figs. 5b and 5e) but stimulated 

the response of cells from smokers. There was no effect on the responses of 

cells derived from patients with COPD. The macrolide, azithromycin, is 

reported to restore the phagocytic response of alveolar macrophages from 

COPD patients and enable removal of apoptotic cells [20], however in this 

system azithromycin had no effect on the response of cells from patients with 

COPD but improved the responses of cells from smokers (Figs. 5c and 5f). 

Other drugs (tiotropium bromide (10-9-10-6 M) or theophylline (10-8-10-5M)) 
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prescribed commonly to patients with COPD had no effect on the phagocytic 

response (data not shown).  
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DISCUSSION 

Alveolar macrophages are the sentinel cell of the lung, patrolling the 

airways to remove any inhaled particles or pathogens. Failure of this innate 

response could lead to pulmonary damage and persistent infection. These are 

features of COPD and contribute to the worsening of disease. Therefore, this 

study examined, in detail, the phagocytic responses of macrophages to 

physiological lung pathogens in COPD. 

Using a MDM model, we showed no difference in the capacity of cells 

from patients with COPD to remove inert particles. This confirms observations 

in alveolar macrophages from COPD patients where phagocytosis of inert 

beads occurs to the same extent as cells from control subjects [12,21]. 

However, we observed a very clear defect in the phagocytic response of MDM 

and alveolar macrophages from COPD patients to bacteria. This was not an 

artefact of using heat-killed bacteria, since we observed qualitatively similar 

data with live bacteria. Recently, alveolar macrophages from cigarette 

smokers have been shown to have a reduced phagocytic response for 

apoptotic epithelial cells that was associated with suppression of CD31, CD91,  

CD44 and CD71 [22]. The present study did not show any effect of smoking 

on the phagocytic response of MDM or alveolar macrophages for bacteria 

indicating that the mechanisms for apoptotic cell recognition and bacterial 

pathogens are quite distinct. Initial experiments using E.coli did not show a 

clear difference in the phagocytic response of MDM from smokers and COPD 

patients. However, a more detailed analysis using E.coli labelled ‘in-house’ 

showed reduced phagocytosis of this bacterium between cells from smokers 

and COPD patients. This discrepancy might reflect sensitivity of labelling 
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between commercially obtained phagocytic prey and bacteria labelled ‘in-

house’. Another study has suggested previously that alveolar macrophages 

from COPD patients phagocytose less H. influenzae compared with cells from 

smokers but not non-smokers [14]. In contrast to our data, they reported no 

differences in responses of COPD MDM [14]. The reason for this discrepancy 

with our data is unclear but may reflect differences in the methods used to 

differentiate monocytes to MDM. Our methodology employed the use of GM-

CSF which drives monocytes towards a more alveolar macrophage-like 

phenotype [23] and we also further validated our model by comparison with 

alveolar macrophages with respect to phagocytosis of polystyrene beads and 

E. coli. 

Examination of the mechanism of reduced bacterial clearance by 

COPD macrophages led to investigation of cell surface molecules that could 

be responsible for recognition of bacteria leading to phagocytosis. However, 

these analyses indicated that various receptors were expressed similarly on 

MDM from all subject groups. This contrasts to reports that have shown that 

TLR2 is decreased on the surface of alveolar macrophages in smokers and 

patients with COPD [24]. Although, TLR may modulate the phagocytic 

response [25], the observation that removal of both Gram positive and Gram 

negative bacteria is reduced in COPD would suggest that these receptors are 

not pivotal in this response. Furthermore, the concept that reduced alveolar 

macrophage phagocytosis in COPD is due to cells becoming replete in the 

lung environment is unlikely as MDM, differentiated in vitro show the same 

reduced response.   
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Investigation into the cell signalling pathways showed that 

phagocytosis was mediated by a PI-3-kinase dependent mechanism but that 

Rho kinase is unlikely to be involved. Rho kinase is critical in complement 

receptor-mediated but not FcR-mediated phagocytosis [26] and is inhibitory 

during phagocytosis of apoptotic cells [27]. As Y-27632 had no effect on 

phagocytosis of E. coli by MDM, the defective mechanism in COPD cells is 

likely to be distinct from that of apoptotic cells and complement opsonised 

particles. The inhibition of the phagocytic response by a non-selective PI-3-

kinase inhibitor and a p38 inhibitor could limit the benefit of these agents as 

putative anti-inflammatory therapies in diseases such as COPD where the 

phagocytic response in already suppressed. 

Since this study utilised circulating cells that were subsequently 

differentiated, systemic levels of pharmacological agents used for the 

treatment of COPD may be responsible for the suppression of the phagocytic 

response observed in this study. However, none of the pharmaceutical agents 

examined suppressed phagocytosis of either H. influenzae or S.pneumoniae 

in cells from any of subject groups. Therefore, it is unlikely that differences in 

treatment regimes between the COPD patients and the control groups could 

account for the suppressed phagocytic response.  It is of note that budesonide 

stimulated the phagocytic response in MDM obtained from patients with 

COPD. Although glucocorticosteroids do not improve the long term decline in 

lung function observed in COPD patients, they have been shown to reduce 

exacerbation frequency [28]. This may be due to improved phagocytic 

responses of macrophages in the lungs of these patients. However, the 

concentrations of steroid required to significantly improve phagocytosis in vitro 
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are high (10-7-10-6M) and unlike alveolar macrophages from COPD patients, 

MDM do respond to steroids (data not shown). 

In summary, MDM from COPD patients demonstrate reduced 

phagocytosis for common airway pathogens. This defect is specific to 

pathogenic bacteria. MDM from COPD patients are not replete, nor has 

differentiation occurred in a chronically inflamed lung, suggesting that lack of 

pathogen removal is an inherent defect in circulating monocytes from COPD 

patients that unmasks during maturation into macrophages. This defect in 

phagocytosis of bacteria that most frequently cause acute exacerbations of 

COPD is likely to be an important factor leading to colonization of the lower 

airways and the propensity for bacterial exacerbations. Furthermore, the 

persistence of bacteria in the lower airways may act as a chronic antigenic 

drive for pulmonary inflammation and could contribute to the increased 

numbers of T- and B-lymphocytes in the airways of COPD patients [29]. 

Defining the molecular basis of this defect may lead to identification of 

susceptibility markers for airway obstruction in asymptomatic smokers and to 

development of novel therapies that stimulate phagocytic functions, leading to 

sterilisation of the respiratory tract and a reduction in the bacterial load that 

may drive chronic inflammation in COPD patients. 
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FIGURE LEGENDS 
 
Figure 1.  Comparison of alveolar macrophage and MDM phagocytosis 

of beads  

Panel a) alveolar macrophages (open bars), n=7 and MDM (hatched bars) 

n=7, were exposed to fluorescent beads for 6 h. Phagocytosis was measured 

using a fluorometric plate reader. Panel b) comparison of phagocytic capacity 

of MDM from non-smokers (NS) (open bars), n=9, smokers (S) (hatched bars), 

n=13 and COPD patients (solid bars), n=10 following exposure to 50 x 106 

beads/ml for 6h. Data are presented as mean ± SEM. Panel c) Confocal 

micrograph of MDM engulfing fluorescent beads (50 x 106 beads/ml) 

 

Figure 2. Phagocytosis of E. coli by alveolar macrophages, monocytes 

and MDM. 

Panel a) Phagocytic response of alveolar macrophages from non-smokers 

(NS) (open bars), n=5, smokers (S) (hatched bars), n=5 and COPD patients 

(solid bars), n=4 following exposure to 1 mg/ml FITC-E. coli for 1h. Panel b) 

Phagocytic response of monocytes from non-smokers (NS) (open bars), n=4, 

smokers (S) (hatched bars), n=4 and COPD patients (solid bars), n=6 

following exposure to 1 mg/ml FITC-E.coli for 1h.  Panel c) Phagocytic 

response of MDM from non-smokers (NS) (open bars), n=7, smokers (S) 

(hatched bars), n=6 and COPD patients (solid bars), n=8 following exposure 

to 1 mg/ml FITC-E. coli for 1h.  Data are presented as median ± interquartile 

range, where * represents p<0.05 for differences from non-smokers. The 

phagocytic response of MDM to fluorescently labelled E. coli was also 

determined by flow cytometry. Panel d) represents non-smokers, panel e) 
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smokers and panel f) COPD patients. Data is presented of a representative 

FACS histogram where the grey lines are cells in the absence of bacteria and 

the purple lines are cells in the presence of bacteria for at least n=4 

independent experiments.  

 

Figure 3. Phagocytic responses of MDM from non-smokers, smokers 

and COPD patients to pathogenic bacteria. 

MDM were generated from non-smokers (open bars) n=15-16, smokers 

(hatched bars), n=13-14 and COPD patients (solid bars), n=16-17 and 

exposed to increasing concentrations of fluorescently labelled E. coli (panel a), 

S. pneumoniae (panel b) and H. influenzae (panel c) for 1h. Phagocytosis was 

measured using a fluorometric plate reader. Data are presented as median ± 

interquartile range where * indicates p<0.05 and ** p<0.01.  Internalization of 

particles was confirmed using confocal microscopy. Panels d and e show 

representative orthogonal Z-stack views of phagocytosed S. pneumoniae and 

H. influenzae respectively. 

 

Figure 4. Electron microscopy images of MDM phagocytosis of H. 

influenzae. 

MDM were generated from COPD patients and incubated with 1mg/ml H. 

influenzae for 1h. Cells were then fixed, dehydrated and embedded in Araldite 

resin. Ultrathin slices were cut and stained, then viewed on a transmission 

electron microscope. Arrows indicate bacteria. Image a shows a bacterium on 

the surface of a MDM, images b and c show formation of phagocytic cups 

around bacteria, this is proceeded by complete encapsulation by pseudopodia 
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as indicated in images d and e. The bacteria are then transported into the cell 

cytoplasm within a phagosome (image f).  

 

Figure 5. Effects of pharmacological agents on phagocytosis of bacteria 

by MDM. 

MDM from non-smokers (), smokers (▲) and COPD patients () were pre-

treated with budesonide (panels a and d) or formoterol (panels b and e) for 1h 

or azithromycin (panels c and f) for 24h prior to exposure of the cells to either 

1 mg/ml H.influenzae (panels a-c) or S.pneumoniae (panels d-f) for 1h. Data 

were normalised to the phagocytosis response of each cell type in the 

absence of drug (100%). Data are presented as mean ± SEM for n=5-6.  
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Table 1. Study participant demographics 

 

Data are presented as mean ± SEM. 1 pack year represent 20 cigarettes per 

day for 1 year. * represents p<0.001 vs. non smokers, + represents p<0.001 

vs. smokers. 

 
 
 
 

 Non-smokers 

(n=20) 

Smokers (n=17) COPD (n=19) 

Age (years) 48 ± 3 53 ± 2 70 ± 2*+ 

Sex (M:F) 11:9 10:7 11:8 

Smoking history 

(pack years) 

0.0±0.0+ 33.3 ± 4.6  45.0 ± 4.9* 

FEV1 (l) 3.3 ± 0.15 2.9 ± 0.3 1.2 ± 0.1*+ 

FEV1 % predicted 102.7 ± 2.6 93.8 ± 3.8 50.6 ± 4.0*+ 

FVC (l) 4.2 ± 0.2 3.8 ± 0.3 2.4 ± 0.3*+ 

FEV1:FVC 0.8 ± 0.03 0.8 ± 0.02 0.5 ± 0.03*+ 
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Table 2. Receptor expression on monocyte-derived macrophages 

  Non smokers Smokers COPD 

HLA-DR % 
expression 

92.4±2.9 
n=5 

96.7±1.7 
n=6 

93.6±1.7 
n=12 

SMF 9.8±4.3 
n=5 

16.6±2.0 
n=7 

12.8±2.2 
n=12 

CD14 % 
expression 

92.8±3.0 
n=8 

97.5±1.3 
n=5 

97.7±0.5 
n=12 

SMF 18.2±6.3 
n=8 

20.2±2.4 
n=5 

15.8±2.2 
n=12 

TLR2 % 
expression 

5.5±0.6 
n=5 

7.7±4.6 
n=8 

19.7±16.1 
n=6 

SMF 1.2±0.1 
n=5 

1.4±0.3 
n=8 

2.8±1.6 
n=6 

TLR4 % 
expression 

4.1±0.8 
n=5 

2.1±0.4 
n=8 

10.4±6.9 
n=6 

SFI 1.1±0.1 
n=5 

1.0±0.1 
n=8 

1.3±0.2 
n=6 

CD163 % 
expression 

21.1±4.1 
n=7 

22.9±6.1 
n=9 

18.8±2.2 
n=5 

SMF 6.0±0.7 
n=7 

6.2±0.9 
n=9 

4.6±0.6 
n=5 

CD36 % 
expression 

82.2±7.2 
n=7 

87.6±3.0 
n=9 

83.3±5.2 
n=5 

SMF 8.1±1.2 
n=7 

7.4±1.1 
n=9 

7.2±0.8 
n=5 

Mannose 
receptor 

% 
expression 

43.5±9.8 
n=4 

51.2±14.0 
n=8 

32.7±3.2 
n=5 

SMF 2.3±0.2 
n=4 

3.6±0.6 
n=8 

2.3±0.3 
n=5 

MARCO % 
expression 

7.5±1.2 
n=4 

6.9±0.9 
n=4 

5.9±0.6 
n=5 

SMF 2.3±0.2 
n=4 

2.1±0.1 
n=4 

1.7±0.3 
n=5 

PS receptor 

 

% 
expression 

58.2±4.6 
n=7 

64.6±9.8 
n=6 

47.9±0.8 
n=5 

SMF 2.7±0.3 
n=7 

3.0±0.3 
n=6 

2.4±0.1 
n=5 

HLA-DR = human lymphocyte antigen - DR, MARCO = macrophage receptor 

with collagenous structure, PS = phosphatidylserine, SMF = specific mean 

fluorescence, TLR = Toll-like receptor 

Data are presented as mean ± SEM for ‘n’ samples. 
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Supplementary Figure Legend 

 

Figure S1. Effect of pharmacological inhibitors on MDM phagocytosis of 

E.coli. 

MDM were generated from non-smokers (open bars), n=4-6, smokers 

(hatched bars), n=4-6 and COPD patients (solid bars), n=5-11, and exposed 

to the PI3 kinase inhibitor, LY-294001 (panel A) and the Rho kinase inhibitor, 

Y-27632 (panel B) or the p38 inhibitor, SB203580 (panel C) prior to exposure 

to FITC-labelled E.coli. Data are presented as % of the response of MDM in 

the absence of the inhibitor (100%) and as mean± SEM. 

 

 

 


