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Abstract 
 
 
 

The tumour necrosis factor ligand superfamily member 4 gene (TNFSF4), also known  as 

OX40L, is an established susceptibility locus in the autoimmune disease systemic lupus 

erythematosus (SLE). Genetic association studies map polymorphisms that associate  with 

disease, but linkage disequilibrium often hinders the identification of the actual  casual 

allele(s) at a disease susceptibility locus. At TNFSF4 genetic association studies had shown 

that an extended 100kb haplotype upstream of the coding region of the gene was associated 

with SLE risk. The principle aim of the project was to conduct genetic association analyses in 

cohorts with different ancestry in an attempt to fine map the TNFSF4 association signal and 

thereby identify the causal genetic variants that underlie the genetic risk. Utilizing >17,900 

subjects of European, African-American, Hispanic-American and Southeast Asian ancestry a 

transancestral fine mapping analysis was performed. The results demonstrate the strong 

association of TNFSF4 risk alleles in all populations tested. The  most  consistent  and 

strongest  evidence  of  association  came  from  the  single  nucleotide  polymorphism  (SNP), 

rs2205960-T  (P  =  7.1  x  10-32,  odds  ratio  =  1.63).    This variant was also associated  with 

autoantibody production in three independent cohorts. In silico analysis of the DNA sequence 

encompassing rs2205960-T predicts it to form part of a decameric motif, which binds the RelA 

(p65) component of the NF-κB transcription factor complex. A second associated SNP, 

rs16845607-A in TNFSF4 intron 1 was identified in Hispanic-Americans (P = 9.17 x 10-9, 

odds ratio = 2.06). In an attempt to further refine the association, resequencing was performed 

in 80 individuals who were selected on the basis of their genotype to carry risk or non-risk 

haplotypes upstream of TNFSF4. This sequencing study identified >200 novel variants, mostly 

small insertion-deletion polymorphisms indels. The data presented in this thesis largely 

resolves the genetic basis of the immediate upstream association signal observed at TNFSF4 

with SLE and will facilitate the unraveling of the molecular basis of this genetic risk in 

systemic autoimmunity. 
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1.1 Systemic lupus erythematosus – a systemic 

disease 

 
1.1.1 SLE: Prototype of systemic autoimmunity 

 
Over a century has passed since Paul Erlich proposed "horror autotoxicus": 

Antibodies against self-antigens that injure one's cells are not produced through 

lack of purpose. However, research over the past several decades has 

demonstrated the reality of the autoimmune phenotype, which is characterised 

by an aberrant immune response against the organism’s own cells and tissues 

due to failed recognition. An array of organ-specific and systemic autoimmune 

disorders are now known to manifest with varying population prevalence. Only 

few conditions are truly systemic and autoimmune, of these, systemic lupus 

erythematosus (SLE, abbreviated to lupus) is a prototype. Lupus is a rheumatic 

trait with the potential to affect all major organ systems with wide-ranging 

phenotypic heterogeneity. In common with many autoimmune disorders it is 

most likely to follow a benign course with intermittent or sporadic relapses 

(flares). Clinical manifestations of the disease are diverse, although high-affinity 

IgG autoantibodies to an array of nuclear antigens are a unifying feature of 

pathogenesis. Evidence suggests activation of complement and the components 

of immune regulation pathways to additionally characterise the global 

perturbation of the immune system found in SLE. 
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1.1.2 SLE: An overview of clinical features 
 

Lupus is a systemic disorder with varied presentation of aetiologic features: 

Frequently observed benign disease manifestations include inflammation of the 

skin and joints, whilst impairment of the kidney and central nervous system are 

hallmarks of severe and active disease (Rozzo et al., 1996). The most 

extensively used SLE classification criteria were revised by the American 

College of Rheumatology (ACR) in 1982 and details of these criteria are found 

in Appendix A (Tan et al., 1982). 

 
 
 

Patients need present four of eleven criteria during any interval of observation, a 

major obstacle in standardised clinical research, which has highlighted 

combinations of lupus sub-phenotypes more suited to classification 

independently. Given the poorly understood aetiology of SLE per se, sub- 

phenotypes may be amenable to study as more homogenous groups as they often 

result from single or related aberrations during pathogenesis. Clinical subsets 

that have been researched independently include specific autoantibody subsets, 

renal disease and age at diagnosis. 

 
 
 

1.1.2.1 Autoantibody subsets 
 

Serologic studies indicate antinuclear antibodies (ANA) are found in 95% of 

lupus individuals, whilst antibodies to double-stranded DNA (dsDNA-Ab) are 

found in 60% of cases. In a subset of patients, presence of dsDNA-Ab and a 

concomitant depression of complement C3 pro-activator levels are predictors of 

disease flares through immune complex formation (Tan et al., 1966). 

Autoantibody subsets are valuable predictors of sub-phenotype; Anti-Ro 

antibodies are associated with photosensitivity (Mond et al., 1989) and 

subcutaneous lupus erythematosus in Europeans (Lee et al., 1989) and Anti-Sm
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antibodies are associated with renal disease in Afro-Caribbean, African- 

American (Alba et al., 2003) and Hispanic populations. 

 
 

1.1.2.2 Renal disease 
 
 

Autoantibody (IgM, IgG and IgA)-containing immune complexes deposit in, 

and cause damage to the kidneys leading to the lupus nephritis phenotype 

(Leavy, 2010). The most frequent diagnosis of renal disease in lupus is grade IV 

lupus nephritis, diagnosed by histopathology in a third of UK lupus individuals 

(Cortes et al., 2008) according to guidelines in the 2003 classification of lupus 

nephritis. Renal pathology is a hallmark of poor prognosis and an indicator of 

increased disease burden. This phenotype segregates with increased frequency in 

non-European SLE populations. Epidemiological data from the multi-ethnic 

LUMINA (Lupus in Minorities: Nature vs. Nurture) cohort illustrate the trend: 

After adjustment for clinical and demographic variables, there is decreased time 

to lupus nephritis in African-American and Hispanic SLE cases (Burgos et al., 

2011). An epidemiological study of a Canadian multi-ethnic cohort also 

suggests increased incidence of lupus nephritis in African-American and South 

Asian lupus cases (Peschken et al., 2009). Resolution of the mechanisms which 

cause lupus nephritis in subsets of cases will improve the therapeutic treatment 

of severe disease. 

 
 
 

1.1.2.3 Age at diagnosis 
 

Subtypes of SLE can be categorised by age at diagnosis into neonatal, paediatric 

and late-diagnosis of disease (Simard and Costenbader, 2007; Tucker et al., 

1995). Nearly 15% of cases present in children before the age of 16; paediatric 

cases have more frequent haematological and renal manifestations early after 

disease onset and a higher frequency of elevated dsDNA antibodies which 

predict a severe and active disease course (Tucker et al., 1995). Early expression 

of the trait could be a result of increased expression of genetic aetiologic 

features: Onset at age 50 or after is associated with reduced disease activity and 

evidence  suggests  reduced  severity  of  the  trait  when  diagnosed  in  post- 
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menopausal women (Urowitz et al., 2006; Simard et al, 2011). Lupus is 

diagnosed at a younger age in non-European populations: In a multi-ethnic UK 

cohort, mean age of onset of SLE was 28.9 years in South Asians, 32.9 years in 

Afro-Caribbean’s and 36 years in UK Europeans (Chambers et al., 2007). The 

trend repeats in the aforementioned large multi-ethnic Canadian cohort, though 

the South Indian group presents with lower lupus damage scores, possibly due to 

earlier access to healthcare (Peschken et al., 2009). 

 
 
 

1.1.3 SLE Epidemiology 
 

Classical epidemiological studies in SLE find segregation of disease with 

gender, geographical location and race: New, large-scale datasets are powering 

definition of ever narrower subtypes within these categories. Current research is 

also directed in populations with little or no past definition with regards to the 

lupus phenotype, including Amerindian populations from North (Houghton et 

al., 2006) and South (Seldin et al., 2008) America. In the current era of global 

SLE research, better-defined epidemiological data are required from these 

populations: A research effort underway in Central and South America using 

the GLADEL multinational Latin American SLE cohort (Pons-Estel et al., 2004) 

is attempting to address unknown aetiology in Latinos. The updated global data 

do not include measurements of SLE prevalence in Africa and South Asia as the 

research is at a very early stage in these groups. Epidemiological studies in 

Northern and Western European SLE populations have directed the majority of 

studies on lupus pathogenesis. 
 

There is a gender imbalance in lupus; the ratio of affected, reproductively-able 

females to males is 9 to 1. This pattern is less pronounced but still evident in 

early- and late-onset groups (Masi and Kaslow, 1978). The global and racial 

incidence and prevalence patterns follow a similar trend with a bias in non- 

European populations. The latter include groups with admixed ancestry (defined 

as populations with recent ancestry from two or more continents) such as the 

African-American and Latino/Hispanic groups.  No clear North–South or East– 
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West pattern emerges from these data (Danchenko et al., 2006; Simard and 

Costenbader, 2007). 

 
 
 

1.1.3.1 SLE prevalence gradient 
 

Despite the high disease load in African-Americans, there is the perception that 

lupus is relatively rare in continental Africans: A ‘prevalence gradient’ between 

sub-Saharan Africa, where SLE prevalence is reportedly low, and western 

countries, where these same populations have more disease, has been described 

by Bae and colleagues (Bae et al., 1998). Increased competition from 

morbidity/mortality factors due to infection, and reduced survival time and 

difficulties diagnosing the lupus phenotype in Africa challenge the current 

estimates of African SLE prevalence. Thus, questions remain on the accuracy of 

this gradient. High prevalence and early-onset morbidity in African-admixed, 

Hispanic and South Asian populations probably reflect increased expression of 

genetic aetiology and socioeconomic factors related to poverty and limited 

access to care (Molina et al., 1997; Fernandez et al., 2007). 

 
 
 

The majority of genetic association studies in Africans have been undertaken in 

East, Central and North African populations, which are not the ancestral areas of 

origin of most African-Americans. Significant genetic differences exist between 

native African populations (Gilkeson et al., 2011). To better define the SLE 

prevalence gradient, and to establish the impact of environmental factors on 

African SLE prevalence, parallelised studies of Europeans and West-Africans 

are required. However, defining the disease in West Africa is challenged by 

minimal health care systems (Kushner et al., 2010). A confounding factor when 

using African-American populations, which predominantly descend from West- 

Africa, is the significant and variable genetic admixture (10-30%) with 

Europeans. A second informative group is the Gullah population of the Sea 

Islands of South Carolina. The Gullah have lower genetic admixture (<10%) due 

to geographical isolation and strong cultural heritage. Anthropologic studies 

indicate  a  direct  ancestral  link  between  the  Gullah  and  Sierra  Leoneans 
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(Gilkeson et al., 2011). Epidemiological data collected by the Gilkeson group 

from Gullah and Sierra Leonean groups suggest the presence of autoantibodies 

to nuclear antigens in the sera of both groups but a lack of progression to disease 

in the Sierra Leone group. 

 
 
 

1.1.4 Immune dysregulation 
 

1.1.4.1 B-cells, autoantibodies and immune complexes 
 

A perception for the role of B-cells as the main drivers of SLE pathogenesis has 

remained robust for the past several decades, perhaps due to the ability of 

terminally-differentiated plasma cells to produce auto-reactive antibodies. Auto- 

antibodies, as mediators of the immune pathology underlying the disease 

process, are substantive contributors to lupus. The (auto)-antigen- presenting 

capability of an activated B-cell is also likely to direct pathogenesis prior to 

auto-antibody production. 

 
 
 

B-lineage cells induce or maintain SLE through the secretion of inflammatory 

mediators, presentation of auto-antigen to CD4+ T-cells and production of 

antibodies to nuclear self-antigens (Minton, 2011). The latter is mediated by 

plasma cells, final differentiated cells in the B-lymphocyte pathway, which 

produce autoantibodies to directly or indirectly interfere with cellular function 

and evoke immune pathology: Fc-mediated activation of complement followed 

by recruitment of inflammatory cells is an example of direct interference. 

Antibody-dependent mechanisms can indirectly mediate end organ damage 

through immune complex (IC) formation. In lupus, IC-activation of complement 

results in their deposition in the kidneys, and deposition correlates with 

progression to lupus nephritis. IC-activation of the FcγRIII-dependent pathway 

primes a range of cells which control immune functionality, including 

plasmacytoid DCs which secrete the pathogenic cytokine IFNα (Martin and 

Chan, 2006). IC can also activate a range of pathways of the innate and adaptive 

immune systems inappropriately in SLE. 
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1.1.4.2 T-cells 

CD4+ T-cells 

T-cells perpetuate autoimmunity in several organ-specific diseases, however, for 

several years, B-cells were believed to be the predominant drivers of lupus 

pathogenesis. Evidence suggests T-cell contribution to the initiation and 

perpetuation of SLE, in addition to pathology (Engler et al., 2011; Xu et al., 

2004). Cognate interaction between B-cells and T-cells is likely to feature in 

lupus pathogenesis and directly drive immune pathology in the trait: T-cells 

from animal models and human cases have altered attributes including 

differences in homing (Lyons et al., 2010), aberrant signalling and transcription 

factor binding. CD4+  T-cells interpret (auto)-antigen recognition, steering the 

cells they influence to become regulatory or pro-inflammatory: Switching is 

likely to be aberrant in SLE and the overall T-cell compartment perturbed. As a 

result, CD4+ T-cells inappropriately activate B-cells and dendritic cells to 

secrete cytokines which promote inflammation. 

 
 
 

CD4+ T regulatory cells 
 

CD4+ T regulatory cells (Tregs) are necessary for maintenance of immunological 

tolerance: Absence results in severe autoimmunity (Feuerer et al., 2009). 

Distinct  lineages  of  Tregs   are  altered  in  lupus  and  these  include  ‘natural’ 

CD4+CD25+FoxP3+    cells   and   an   inducible   Tr1subset   which   tolerise   by 

producing large quantities of IL-10 (Ito et al., 2006). 
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1.2   Complex trait analysis 
 
 

Association or linkage disequilibrium (LD)-based mapping is widely used to 

efficiently locate genes that influence complex traits. The best possible mapping 

data are obtained if the genealogical history of the sampled individuals is 

explicit: An accurate kilobase scale map of the recombination rate improves 

mapping accuracy for pin-pointing causal variations and identifying multiple 

independent contributors to risk at a single locus: The genetic association study 

is closely tied with indirect LD-based recombination maps and aims to identify 

statistical associations between candidate genetic polymorphisms and complex 

disease. The HapMap (The International HapMap Consortium., 2003; 2005; 

2010) and 1000 Genomes (1000 Genomes Project Consortium., 2010; 2012) 

projects accelerated the development of tools used to map causal contributors to 

disease risk: I describe the rationale for the aforementioned association studies, 

including use of single nucleotide polymorphisms (SNPs) and haplotypes to 

infer population-scale genotypes by imputation. I give a brief overview of the 

current and historical techniques used to map the established genetic 

associations in complex disease. 
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1.2.1    Human genetic variation 
 

1.2.1.1         Single nucleotide polymorphisms 
 

Though any two human genomes are >99% identical, analysis of human DNA 

sequences has revealed significant genetic differences within and amongst 

populations. These variations are responsible for heritable changes, including 

disease susceptibility in individuals (Kruglyak and Nickerson, 2001). About 

90% of genetic variations in humans are single base-pair substitutions which 

occur at a minor allele frequency of >1%, these are defined as single nucleotide 

polymorphisms (SNPs) (Figure 1.1). Whole genome multiplexed sequencing of 

random clones has facilitated early discovery of SNPs. Large multidisciplinary 

efforts to identify and characterize SNPs have subsequently been undertaken by 

the International HapMap Project and the 1000 Genomes Project (The 

International HapMap Project., 2005; 1000 Genomes Project Consortium., 

2010). 

 
 
 

The 1000 Genomes Project has used multiplexed sequencing of the whole 

genome in 1092 individuals from 14 populations to generate the most detailed 

catalogue     of     human     genetic     variation     to     date     (1000 

Genomes Project Consortium., 2010; 1000  Genomes Project Consortium., 

2012). The total number of SNPs identified by this project is >30 million owing 

to individuals from different populations having distinct SNP profiles for both 

rare and common variants. Up to 98% of accessible single nucleotide 

polymorphisms are captured at a frequency of 1% in related ethnic groups as 

part of this project (Figure 1.2). In addition to SNPs, there are many novel or ‘de 

novo’ single nucleotide variants and rare variants; in some cases these variants 

have been identified within a single nuclear family (Frazer et al., 2009). 
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1.2.1.2         Structural variations 
 

Structural variants (SVs) are the other pervasive class of inherited variations: 

Included are 1.4 million short insertions or deletions (indels) of nucleotide bases 

in the DNA sequence (1000 Genomes Project Consortium., 2012). Larger 

structural variants, including inversions and copy number variants (CNV), are 

also major contributors to human genetic variation (Figure 1.1). Although they 

occur at lower frequency than SNPs, the fraction of the genome SVs affect is 

comparatively large (Conrad et al., 2010). Structural variants have significant 

consequences on phenotypic variation: A genome-wide map of CNVs, based 

on sequencing data from 185 whole human genomes, encompassing 22,025 

deletions and additional insertions and tandem duplications, has facilitated 

mapping of these variants in disease traits (Mills et al., 2011). 

 
 
 

1.2.2 Heritability and genetic variance 
 

The heritability (h2) of a phenotype is a useful indicator of the genetic aetiology 
for the trait and is defined as the ratio of the genetic variance to the total 
phenotypic variance amongst individuals with a common shared environment. 

Estimating h2 for human phenotypes often involves comparison of the 

concordance rates for monozygotic twins against dizygotic twins. Using the h2 

parameter as a tool to assess genetic susceptibility to complex traits is useful, 

however accurate estimation can be impacted by increased hidden MZ shared 

environment, or if high risk pedigrees are used (Visscher et al., 2008). 

Heritability is sometimes incorrectly equated to the total genetic variance: Only 

a small proportion (<10%) of genetic variance that explains the genetic 

susceptibility to most complex diseases has been identified (Frazer et al., 2009). 

This may be because the allelic effects of the variants are small, because there 

are gene-gene and gene-environment epistatic interactions or because the causal 

variations are rare but highly penetrant (Eichler et al., 2010). 
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Figure 1.1 The spectrum of variation in the human genome 
 
 
 
 
 

 
 
 
 

Depiction of genetic variations with their size range (double-headed arrows). SNP 
indicates single-nucleotide polymorphism; indels, insertions and deletions; STR, short 
tandem repeat and CNV, copy number variation. SNPs and point mutations apart, the 
size ranges of the variations are not definitive. A logarithmic x-axis measures the number 
of nucleotides, from 1 bp to ≥100 Mb. (Figure by Pollex and Hegele., 2007). 
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Figure 1.2  The distribution of rare and common variants identified by the 1000 
Genomes Project in A. populations and B. sub-populations 

 
 
 
 
 

 
 
 
 
 

A. The fraction of variants identified across the 1000 Genomes Project that are identified 
in one population (white line), identified in one ancestry-based group, found in all groups 
(solid black line) and found in all populations (dotted black line). B. The density of the 
expected number of variants per kilobase per individual genome drawn from each 
population, as a function of variant frequency. Key with colour-coding for all groups and 
populations to the right of figure) (The 1000 Genomes Project Consortium., 2012). 



14  

 
1.2.3 Recombination: An overview 

 
The Holliday model of recombination suggests homologous pairing of 

chromosomes is followed by crossing-over of sections of DNA (Holliday, 1964). 

Cross-over events cluster into narrow 2kb regions coinciding with a breakdown 

of LD (hotspots) and point to an LD pattern consisting of blocks of correlated 

DNA bases termed haplotypes (Amos et al., 1968; Piazza et al., 1969; Gabriel et 

al., 2002; Jeffreys and May, 2004). Extending the pattern to the entire human 

genome has allowed inference of the recombination pattern (Gabriel et al., 2002). 

The boundaries of blocks and the specific haplotypes they contain are correlated 

across populations to provide statistical power in association studies of common 

genetic variation across each region. Classical quantification of recombination 

rate has used pedigree-based data (Clark et al., 2010). The first comprehensive 

genome-scale linkage maps have been constructed using STRP markers in eight 

CEU families (Dib et al., 1996). The CEU map has greatly enhanced the ability to 

localize and identify genes for inherited disorders and revealed extensive 

variation in the recombination rate per unit physical length across the genome. 

Significant variation in the recombination rate per meiosis has been found in 

females but not males with peak differences at metacentric centromeres (Broman 

et al., 1998, Murray et al., 1994). The sex-specific variations identified have been 

consistent across all chromosomes (Dib et al., 1996). 

 
 
 

1.2.4 Estimation of fine-scale recombination rates from human population 

variation data 
 

The expense of large-scale crossing-over experiments has limited the resolution 

of recombination to the megabase scale. Improvements in genotyping efficiency 

have enabled genome-wide experiments including the HapMap diversity study 

and the first inferred recombination maps. These maps present recombination at 

the kilobase scale; they find increased local rate variation, with the majority of 

recombination events in small two kilobase segments of sequence called hotspots. 
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The first recombination maps in non-Europeans have been inferred and illustrate 

features that are unique in each population. 

 
 

1.2.5 Model-based inference 
 

The program rhomap adopts the coalescent model (Stumpf and McVean, 2003), 

which treats pairs of adjacent SNPs as two bi-allelic loci: The loci are used to 

score a recombination event using the four gamete test (FGT).  Rhomap infers the 

local recombination rate from the decay of LD between adjacent SNPs. However, 

LD is shaped by many additional factors: Incorporation of a composite likelihood 

method allows a range of recombination rates for pairs of SNPs and priors are 

included to avoid over-fitting and to support short-range smoothness (McVean et 

al., 2004). Rhomap uses the product of per-generation recombination rate, r, and 

the effective population size, Ne to gives the estimated population recombination 

rate, ρ. Simulations of HapMap samples using rhomap establish recombination 

as a general feature at the kilobase scale with hotspots occurring ubiquitously at 

200kb intervals (Stumpf and McVean, 2003). The inferred hotspots are likely to 

be located in intergenic regions as opposed to genes. 

 

1.2.6 Comparison of recombination maps across ancestral groups 

Recombination maps built in people of European descent have limited use when 

extended to Non-Europeans: In a 2005 study, microsatellite-based genetic maps 

constructed  in  Europeans,  African-Americans,  Mexican  Americans  and  East 

Asians found excess map length in  African- Americans and East Asian females 

(Jorgenson  et  al.,  2005).  Locus-specific  factors  influenced  by  demographics, 

including  natural  selection,  may  also  bias  LD-based  estimates:  The  next 

generation deCODE recombination map, which has been constructed with family- 

based genome-wide SNP data to identify 15,257 meiosis, has been contrasted 

with the 2005 CEU and YRI HapMap LD-based maps. Using regression to map 

differences,  clear  differences  exist  between  the  European  and  West  African 

recombination pattern (Kong et al., 2010; The International HapMap Project., 

2007). Decay of LD indicates increased recombination and reduced concentration 

of crossovers in the West African genome (Hinch et al., 2011). In this population 
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70% of recombination occurs in 10% of the sequence rather than 80% of the 

recombination in 10% for Europeans and East Asian individuals (Leavy, 2010). 

 
 

1.2.7 Mapping causal genes in disease: parametric linkage-based mapping 
 

Flanking restriction fragment length polymorphisms (RFLPs) or highly 

polymorphic microsatellite markers are typed in multigenerational clear-cut 

pedigrees with two or more disease-affected family members to identify sections 

of the genome which co-segregate with disease (Lander and Schork, 1994). 

Linkage studies have successfully mapped simple Mendelian traits, including 

Cystic Fibrosis (Botstein and Risch, 2003). Positive selection of the inherited 

phenotype is a key requirement for this positional method: Researchers had little 

or no prior knowledge of the biology behind the trait. The first comprehensive 

tools for correlating phenotype with DNA sequence were provided by the human 

genetic linkage map. However, identification of the underlying disease gene has 

powered limited progress in therapeutics by informing on 

molecular/physiological mechanisms of mainly rare, highly penetrant diseases. 

 
 
 

Linkage disequilibrium (LD), is the non-random association of alleles at two or 

more genetic loci, which is dependent on identity by descent (IBD), has been 

used to narrow defined linkage regions: The inherited DNA progressively 

shortens over many generations due to increased recombination. Markers in LD 

with disease-associated alleles segregate at the same frequency as the mutant 

allele non-randomly in the founder population. LD places the risk variant in a 

much narrower interval relative to traditional linkage methods, thereby greatly 

increasing the resolution of the linkage map. The first studies using this method 

identified loci in rare, autosomal recessive disorders as the associated alleles are 

less likely to be negatively selected (Friedman et al., 1995). 
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1.2.8 LD-based mapping: haplotypes 
 

Resolution of haplotypes across the human genome has accelerated evaluation of 

the more elusive genes which underlie complex disease (Service et al., 1999). The 

first haplotypes were identified as early as 1968 on chromosome 6p, spanning the 

HLA super locus (Amos et al., 1968): These are series of adjacent markers, non- 

randomly inherited together, thus in strong LD, and considered an independent 

entity. Mapping using haplotypes involves genotyping many adjacent markers 

which span a genomic region, followed by analysis of haplotype frequency 

between disease-affected and non-affected groups. Historic cross-over points can 

segregate with disease-associated loci: Decay of haplotype sharing permits their 

identification as causal contributors to disease (McPeek and Strahs, 1999). The 

identification of genes in these early studies has heavily depended on low 

etiologic heterogeneity within the affected samples: In complex diseases, 

including lupus, the trait is usually the product of several independent genetic loci 

or alleles and successful resolution of contributing loci has been limited. 

 
 
 

1.2.9 Pattern and structure of SNP-based haplotypes in the human genome 
 

The conserved pattern and the structure of SNP-based haplotype blocks across the 

human genome offer a powerful approach for genetic mapping studies: Disease- 

associated SNPs, on specific ancestral haplotypes, are transmitted to the next 

generation and are conserved within each population, though they can be altered 

by mutation or meiotic recombination (Amos et al., 1968; Gabriel et al., 2002). 

The boundaries of haplotype blocks coincide with recombination hotspots and so 

they have variable length. Within each block, for most populations, only a few 

common haplotypes are observed. Selecting SNPs which best tag each haplotype 

allows inexpensive yet efficient study design to capture all common sequence 

variation within the target genomic region (Johnson et al., 2001). 
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1.2.10 Variation of human haplotypes across population samples 
 

A collective effort to decipher human haplotype variation amongst populations 

has significantly contributed to genetic research into complex disease. Data 

generated by Gabriel and colleagues provides a basic framework for genetic 

mapping studies: Candidate SNPs in 51 autosomal regions across populations of 

distinct ancestry were surveyed by this research. Significant genome-wide 

differences in SNP incidence and allele frequency are found across ancestral 

populations (SNPs incidence, 70% (East Asians) up to 86% (African-Americans)) 

(Gabriel et al., 2002). The African-American population have the proportion of 

adjacent SNPs with most reduced proximal distance; indirect evidence for an 

increased rate of historical recombination in this group. The pattern is reversed 

for adjacent SNPs separated by 22kb or more. Collectively, these data suggest the 

African-derived population to have shorter haplotypes. Differences in LD 

amongst the aforementioned populations translate to a minimum average span of 

9kb for African-derived haplotype blocks compared to 18kb for East Asians and 

Europeans. 

 
 
 

1.2.11 Genetic association (candidate gene) studies 
 

The past 15 years has increased the number of SNP variants from the thousands 

to the tens of millions: The first dense maps of SNPs, which uniquely  tag 

common haplotypes, were generated for the human genome in 1999-2000. SNP 

maps have driven high-resolution identification of candidate genes in complex 

disease. (Altshuler et al., 2000; Mullikin et al., 2000; International HapMap 

Consortium, 2005; Cunninghame Graham et al., 2008). The genetic association 

study tests allele or genotype frequencies of one or more polymorphism between 

two groups of individuals with common ancestry. Classically, these groups are 

diseased subjects and healthy controls who are assumed to be independent non- 

related individuals. The allele/genotype is associated with the trait if it occurs at 

higher frequency in the cases than the controls. Three likely scenarios result in 

association between a genetic polymorphism and a trait in a given population: 

The polymorphism has a causal role; the polymorphism has no direct causal role 
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but is a surrogate/proxy marker in LD with a nearby causal variant (indirect 

association); underlying stratification or admixture of the population cause 

spurious association of the polymorphism with the trait (Cordell and Clayton., 

2005). 

 
 
 
 

1.2.12 Addressing admixture 
 
 

Increased prevalence of complex disease, including SLE, in admixed populations 

has been documented by many studies (Burgos et al., 2011). Owing to this, multi- 

ethnic cohorts have become increasingly common over the past several years. 

Overrepresentation of disease in admixed populations presents the additional 

challenge of controlling stratification to allow close genetic matching of cases 

with controls. Stratification occurs due to systematic differences in allele 

frequency and phenotype distribution between subgroups of the population. In 

admixed populations, this variability might be ascribed to different proportions of 

the source genomes between cases and controls. Exploring the distribution of 

admixture in the AA and Hispanic groups finds that it occurs at a steady rate in 

each generation, resembling patterns observed in the continuous gene flow (CGF) 

model of admixture (Pfaff et al., 2001). 

 

African-American and Hispanic chromosomes contain segments of their 

respective source genomes which can be distinguished as local ancestry. Often, 

the ancestral populations have risk alleles with large enough differences in 

frequency to easily be mapped at a causal locus by using the genotypes of 

ancestry informative markers (AIMs) or GWAS chips. AIM panels are designed 

to include markers with large differences between ancestral groups which are not 

linked within each group (Pfaff et al., 2001). 

 

The mosaic-like structure of the aforementioned admixed genomes might better 

delineate causal variants in complex disease. However, these genomes can also 

give  false  positive  associations.  Categorising  populations  by  self-reported 
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ancestry alone is an imperfect control for genetic heterogeneity as any underlying 

population substructure would inflate the association test statistic. Even modest 

levels of bias can distort the null distribution to overwhelm evidence of true 

association. Systematic bias can be visualised by plotting a quantile-quantile plot 

of the observed against the expected distribution of the p-values using AIMs to 

generate test statistics for the data. To resolve the potential confounding effects 

which might undermine novel associations, the first analytic method frequently 

used to correct raw genotype data is genomic control (GC). GC is the median χ2
 

(1 degree of freedom) association statistic across SNPs divided by its theoretical 

median under the null distribution, a value of λGC > 1 indicates stratification 

(Devlin and Roeder, 1999; Devlin et al., 2004). Within a tightly  matched 

ancestral group the allele frequencies are within narrow confines, these data 

are suited to GC alone: Genomic control is not sufficient to control for 

stratification in groups with mixed continental ancestry owing to increased 

deviations of allele frequencies, and should be used as a checkpoint after better-

suited methods have been used (Lohmueller et al., 2006). 

 

1.2.12.1 Correcting population substructure in admixed populations 
 
 

Population substructure can be corrected intuitively using clustering algorithms 

followed by the use of regression as a covariate within the analysis framework 

(Sankararaman et al., 2008). Estimates of local ancestry by programs including 

STRUCTURE (Pritchard et al., 2000) and LAMP (Sankararaman et al., 2008) can 

be used for admixture mapping. The accuracy by which the clustering algorithm 

corrects stratification is difficult to predict when applied to the composite 

genomes of recently admixed Hispanic populations; they often have four-way 

admixture and thus available source information can lack clarity. 

 

The prevailing method for dealing with population stratification in admixed 

populations over the past several years has been by a principal components (PC)- 

based approach such as that used by the Eigenstrat tool (Price et al., 2006). 

Continuous axes of genetic variation are inferred from population-scale genetic 

data, using AIM or GWAS genotypes. The variability is ascribed a number of 
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dimensions, the first dimension corresponds with the first principal component 

which describes the biggest change in allele frequency between subgroups. If 

there are ancestral differences within a population, plotting the first two principal 

components illustrate major differences between the groups, this might 

correspond to a significant geographical change. The second, third and even 

fourth principal components might be compared with each other to correct for 

subtle but significant population differences. 

 
 
 

1.2.13 Inferring population-scale genotypes: Imputation 
 

Missing genotype data in a candidate gene association study can challenge 

modelling the effects of multiple genetic variants (D'Angelo et al., 2010). The 

prevailing approach for dealing with these incomplete data is by imputation. 

Genotype imputation is defined as the prediction of polymorphic variants that 

have not been assayed in an association study. High-throughput, low-cost 

genotyping has accelerated the development of several powerful imputation 

approaches to estimate genotypic or haplotypic effects in large datasets (Li et al., 

2006; Marchini et al., 2007; Marchini and Howie, 2008; Marchini and Howie, 

2010). Combining observed and missing genotypes (MAF>1%) and predicting 

the missing data from the observed genotypes in the presence of a fine-scale 

recombination map and high-density reference genotype panel generates allows 

inference of genotypes which concur with high confidence. 

 

The IMPUTE program, devised by Marchini and colleagues, is reliant on the 

genotype calling algorithm CHIAMO, and has been widely applied to impute 

missing data for SNPs in genetic association studies (Marchini et al., 2007). 

Prior to imputation, genotyped SNPs are phased and resulting haplotypes are then 

compared to dense reference haplotypes such as those from the HapMap phase III 

or 1000 Genomes panels. The comparison involves modelling a mosaic of 

haplotypes of other individuals and imputing missing genotypes to match them. 

The uncertainty and probability distributions over three possible genotypes are 

used to evaluate SNPs for quality. Well-imputed genotypes progress to 

association analyses. The incorporation of a flexible modelling framework has 



22  

resulted in increased accuracy of imputation by accounting for phasing 

uncertainty independently. IMPUTE2 has been used to combine information 

across multiple reference panels potentially enabling the inclusion of thousands of 

chromosomes to reduce errors at common and lower frequency, but not rare SNPs 

(Howie et al., 2009). 

 

Although power is not greatly boosted by imputing sporadic missing data, false 

positives at difficult to genotype SNPs are controlled (Marchini and Howie, 

2010). Imputation has been used to infer high frequency SNPs from 1958 British 

Birth Cohort genotypes: Imputation gave a maximum posterior genotype call rate 

of 0.998, illustrating the high-confidence of well-imputed genotypes (Marchini et 

al., 2007). This method fine-maps a panel of markers so that SNPs which have 

not been genotyped but which may be causal, are more likely to be detected. 

Imputed, associated SNPs can have slightly overinflated association values and 

the quality of the inferred data is limited if there are increased or unexpected 

recombination events in the assayed region. The tool has worked well to equate 

SNPs from independent datasets to compare genotypes across different platforms. 

Equating the variants by imputation has facilitated meta-analysis to increase the 

power to detecting causal variation for complex traits. 

 
 
 

1.2.14 Statistical power to detect associations 
 

The power of a statistical test is the probability that it will reject the null 

hypothesis and detect a statistically significant association. A number of factors 

constrain the power to detect a genetic association: The genotype relative risk 

(GRR) (the ratio of the risk of disease between individuals with and without the 

genotype), the sample size and study design can degrade power (Evans and 

Purcell., 2007). A priori power calculations are often used to determine the 

sample size required to detect the effect. Sample size is under the investigator’s 

control; however effect size can also be increased through genotyping a region of 

interest more densely. 
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Examining all observed haplotypes at a locus by capturing their tag SNPs has the 

trade-off of reduced power to detect common causal alleles: This is because 

significance levels are set at a higher level to compensate for the increased 

number of statistical tests. The number of tests can be decreased by ranking tag 

SNPs according to the number of other SNPs for which they can act as proxy and 

analysing only the highest ranked variants to maintain the relative power. Tag 

SNPs selected from high density data give a distribution shifted towards higher χ2
 

values as causal SNPs are likely to be captured (Ardlie et al., 2002; de Bakker et 

al., 2005). Selecting the best tag SNP from a reference genotype panel can be 

undertaken using statistical programs developed for haplotype analysis (Service 

et al., 1999; McPeek and Strahs, 1999). 

 
 
 

1.2.15 Pair-wise correlations between polymorphic variants 
 

The popular Haploview software enables the selection of tag SNPs with a rank 

indicator viewed with the generated haplotypes on the interface. The quality 

metrics can be adjusted for different datasets using a range of adaptable software 

tools to generate single variant and haplotype association statistics. Haploview 

calculates several pairwise measures of LD. The multi allelic D´ represents the 

degree of LD between two loci and is dependent on the frequencies of the alleles 

(Devlin and Risch, 1995): A D´ value of 0 indicates complete independence 

whilst a D´ of 1  indicates complete LD. An alternative, widely-used measure of 

LD, also included in Haploview, is the pair-wise correlation coefficient r2 (Weiss 

and Clark, 2002). The r2 measure has the advantage of adjusting for loci having 

different allele frequencies. The scale used for pair-wise LD representation of r2 is 
the same as for D´. 

 
1.2.16 Modelling the genetic association 

 
The association of SNPs with disease status can be tested using allelic and 

genotypic tests: The genetic model selected must best suit the underlying 

correlation. The dominant genetic model dichotomizes SNP genotypes by treating 

heterozygotes and one of the homozygote genotypes as a single category: The 

single dominant allele is sufficient to confer risk so the two groups are modelled 
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as having the same risk (Lunetta., 2008). In the additive genetic model, each 

additional copy of the variant allele increases the risk of disease by the same 

amount. Thus, in Table 1.1, the homozygous A/A genotype confers double the 

risk compared to the heterozygous G/A genotype. Both these models require 1 

degree of freedom (df) for association testing. The degrees of freedom can be 

defined as the arbitrary number of coefficients in the regression model. The 

general genetic model retains the three distinct genotype classes and makes no 

assumptions on how the risk varies between these classes, but has the trade-off of 

requiring 2df for association-testing. 
 
 
 
 

  
Genotype 

 

GG GA AA 
 

  df P 

Crude OR (vs AA) 1 0.79 2.12 11.36 2 
 

3.40x10-3 

Additive model OR (vs AA) 1 1.52 2.31 5.00 1  0.03 
Dominant G allele OR (vs AA) 1 1.17 1.17 0.27 1  0.60 
Dominant T allele OR (vs GG) 1 1.00 2.43 10.99 1  9.00x10-4 

Allele table, G vs. A allele 1 (A) 1.52 (G)  4.99 1  0.03 

Table 1.1 Genotype vs. outcome for tests of association between SNP genotype and trait 
(adapted from Lunetta., 2008) 

 
 
 
 

1.2.17 Testing the association of variants with trait 
 

Uncertainty owing to imputation can be accounted for by weighting the 

probability of imputed genotypes: Score tests are an asymptotic test of 

hypothesis, and have been used to rapidly evaluate the likelihood of probablistic 

genotypes under the null hypothesis (Marchini and Howie., 2010). The score test 

has worked well to test association of variants with a binary or quantitative trait 

when fully genotyped or high certainty, well-imputed variants are used, as the 

log-likelihood is close to the quadratic function of the regression model. In this 

scenario the score test is a close approximation of the Cochran-Armitage trend 

test which exploits the suspected direction of the effect to increase the power to 

detect association (Sasieni., 1997). P-values are then used to interpret the quantile 

of the score test statistic. The level of significance which rejects an incorrect null 

hypothesis to preserve the type I error is dependent on the number of statistical 
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tests. Conventionally, 5% has been chosen as the significance level for the overall 

analysis at which the type 1 error is conserved, this is likely to consist of many 

tests with much lower significant levels (Balding., 2006). SNPTEST v2 is used to 

implement the aforementioned score test and can also condition on user-specified 

covariates to detect independent effects (Marchini and Howie., 2010). 

 
 
 

1.2.18 Assessing the functional potential of risk-associated variants 
 

The functional potential of putative SLE-associated risk variants should be 

evaluated to better assess their relevance prior to timely expression studies. 

Susceptibility markers at a single locus are often constrained by high pair-wise 

LD so this strategy would refine these variants to better inform the study. The 

ENCODE (Encylopedia of DNA Elements) pilot project (Birney et al., 2007) 

established pervasive transcription of the genome: These data comprehensively 

related transcription start sites (TSS) to their specific regulatory sequences and 

highlighted regions of accessible chromatin and histone modifications associated 

with transcription. In addition to these data, evolutionary and computational 

analyses have generated scores based on mammalian conservation (Siepel et al., 

2005) which can also be used to assess the regulatory potential of variants. 

 
 
 

The overlap of susceptibility variants with regulatory elements can be evaluated 

using NCBI (URL: http://www.ncbi.nlm.nih.gov/), UCSC 

(http://genome.ucsc.edu/) and Ensembl (http://www.ensembl.org/index.html). 

These databases incorporate many sources of regulatory data, including that from 

the ENCODE project. The regulatory potential and conservation scores for 

detecting cis-regulatory modules can be generated for aligned mammalian 

genome sequences (King et al., 2005). 

http://www.ncbi.nlm.nih.gov/)
http://genome.ucsc.edu/)
http://www.ensembl.org/index.html)
http://www.ensembl.org/index.html)
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1.2.19 Examining causal variants for regulatory potential: motif inference 
 

Once a causal variant has been identified, the encompassing DNA sequence can 

be examined for interaction with regulatory proteins including transcription 

factors (TFs) to predict binding to regulatory proteins with high confidence. For a 

causal polymorphism, each allele can be investigated for its impact on binding 

affinity of the motif for the target protein: SELEX binding data and position 

weight matrix (PWM) profiles stored in the Jaspar core database are used to 

investigate the DNA sequence for degeneracy of the motif (Portales-Casamar et 

al., 2010). Binding of the regulatory protein can be confirmed using publically 

available genome wide ChIP-seq data generated in EBV-B-cell lines as part of the 

ENCODE project (ENCODE Project Consortium., 2010). 

 
 
 

Causal variants located in coding regions can be investigated for impact on amino 

acid substitution and hence structure and function of the gene using the PolyPhen- 

2 (Polymorphism Phenotyping v2)  tool. Orthologs and  paralogs of the  gene 

sequence are used to increase the accuracy of the predicted effect in the multiple 

sequence alignment (MSA). After identification and alignment of homologs, the 

putative coding variants are interrogated for their predicted functional impact 

with respect to the translated protein. Polyphen-2 replaces amino acids where the 

variant causes a non-synonymous change and a naive Bayes classifier is used in 

two datasets (HumDiv and HumVar) to predict and classify the functional impact 

of each coding variant (Adzhubei et al., 2010). 
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1.3 Genetic susceptibility to SLE: a 

complex trait 

 
 

1.3.1 Genetic basis to SLE 
 

The genetic basis to lupus is established as a key element in disease 

susceptibility: Increased heritability, familial aggregation (as illustrated by high 

sibling recurrence risk ratios) and increased concordance for monozygotic 

compared to dizygotic twins denote lupus as a complex genetic trait (Deapen et 

al., 1992; Jarvinen and Aho, 1994; Alarcon-Segovia et al., 2005). Multiple 

etiologic genes determine SLE susceptibility and the number of established 

genetic associations has increased sharply as a result of advances in genotyping 

methodologies: Variations in 50 to 80 loci with modest effect sizes are thought to 

explain the genetic component to disease (Rhodes and Vyse, 2008), although the 

current number of established loci stands at around 30. No particular gene is 

necessary or sufficient for disease expression, however, major histocompatibility 

complex (MHC) genes confer the greatest risk with modest contributions from 

multiple non-MHC genes (Vyse and Kotzin, 1998). The mechanisms by which 

these genes predispose to SLE are not completely understood; an established 

locus where this is the case is the Fc receptor locus (Fanciulli et al., 2007). 

However, the known SLE loci can be broadly categorised by signalling pathway 

(Figure 1.3) (Harley et al., 2009). 
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In lupus, whole genome linkage scans have identified several large regions 

containing many genes with immune-related function. The MHC locus and the 

classical complement gene C1q (Bowness et al., 1994) were amongst the first 

polymorphic loci related to the human disease, the latter being a rare but highly 

penetrant contributor to risk. Linkage analysis in SLE has proved unsuccessful in 

the majority of studies: Underlying complex genetics and clinical heterogeneity 

have resulted in linkage studies beset with background noise. Early studies had 

poor resolution (5 to 20cM) due to the analysis of too few meiotic events in rare 

forms of lupus (Botstein and Risch, 2003). The initial linkage of the MHC risk 

locus on chromosome 6 has later been re-visited in the same pedigrees to map 

polymorphic variants with increased density and narrow the linked interval to 

class II (Tsao, 2004). Linkage studies in lupus have been inadequately powered to 

pin-point non-MHC loci in SLE as they contribute modestly to disease risk. 

 
 
 

1.3.2 Modelling SLE risk loci 
 

Highly penetrant monogenic forms of disease are rare; the genetic risk in most 

cases of SLE  is derived  from multiple variants  at  mostly independent 

susceptibility loci (Ramos et al., 2011; Harley et al., 2009). Most loci have 

modest effect on pathogenesis, in common with other complex autoimmune and 

inflammatory traits (Barrett et al., 2008). To date, replicated loci explain 10-20% 

of the genetic component to SLE (Harley et al., 2009). Modelling the biological 

processes underlying mechanism is uncertain in SLE as most causal processes are 

not completely delineated. For known risk loci, SLE is highly heritable but with 

large variance in risk between individuals, the genetic model which best fits the 

majority of established risk loci is the additive model (Madsen et al., 2011; 

Slatkin, 2008). The overall risk is the sum of the contributions from each locus. 
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1.3.3 Rare genetic forms of SLE 
 
 

Although SLE is usually modelled with several genetic loci under the additive 

model, rare more penetrant forms exist. These include complete deficiency of the 

early classical complement pathway component C1q (Botto et al., 1998), 

mutations in DNASE1 (Yasutomo et al., 2001) and TREX1 (Lee-Kirsch et al., 

2007). Rare forms of SLE have clarified disease pathogenesis, and the ‘rare 

variant, rare disease’ paradigm applies to the aforementioned forms of disease. 

The extent to which SLE heritability is explained by rare disease remains broadly 

undefined. 

 

1.3.4 Combined linkage and linkage disequilibrium-based mapping in SLE 
 

Early successes using the combined method in lupus were limited; the higher 

frequency polymorphisms which typically predispose to autoimmune disease are 

also common in healthy populations. A key SLE susceptibility gene identified 

using combined linkage and LD is IRF5 (Sigurdsson et al., 2005). The genetic 

association of IRF5 with SLE is now validated by candidate gene association 

mapping (Graham et al., 2006) and hypothesis-free genome-wide association 

study (GWAS) (Hom et al., 2008). I address the rationale behind these 

aforementioned tools for mapping genetic signals in disease in the following 

sections. 

 
 
 

1.3.5 Cross-population candidate gene association studies in lupus 
 
 

The number of loci correlated with SLE has been limited by the aforementioned 

constraints owing to heterogeneity in complex disease. The discovery of SNPs, 

distributed at high frequency across the genome, has greatly accelerated 

identification of SLE susceptibility loci. Most of the early signals identified in 

SLE by association testing are now established lupus risk loci. Associated 

variants which fail to replicate are a much reduced feature of modern genetic 

research in SLE, due in part to the accumulation of large, well-matched SLE- 
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Figure 1.3 Pathways that contain established SLE susceptibility loci. Updated 
and adapted from a figure in Harley et al. 2009 
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control cohorts. Failed associations are explained by poor study design or over- 

interpretation of data due to failed detection of LD. Inflated associations might 

also result from inconsistencies in allele frequency due to population 

stratification. 
 

Several high-throughput genome-wide association studies (GWAS) have been 

undertaken in lupus (Harley et al., 2008; Hom et al., 2008). GWAS has 

corroborated the association of immunologically relevant loci (Rhodes and Vyse, 

2008) previously identified by linkage and candidate gene association mapping 

studies (Table 1.2). These large-scale candidate gene association and GWAS 

studies have identified over 30 robust SLE-associated loci (Hom et al., 2008; 

Harley et al., 2008; Yang et al., 2010; Han et al., 2009). Most disease-associated 

genes are involved in immune regulation or signalling pathways (Figure 1.3), and 

have informed, to an extent, on the pathogenesis mechanisms which underpin 

lupus. More recently, robust lupus-associated genes discovered in European 

cohorts have been tested for association across ancestral groups as described in 

this section. 

 
 
 
 

1.3.5.1 MHC class II 
 
 

The strongest genetic contributors to SLE risk reside within the human MHC 

human leukocyte antigen (HLA) region on chromosome 6p. The HLA super- 

locus spans over 3Mb and is the location of many candidate genes with immune 

function. Association data from Europeans suggest common extended HLA 

haplotypes are associated with SLE: The HLA class II alleles involved in antigen 

presentation are included on these extended associated haplotypes. The major 

association in Europeans is ascribed to HLA-DR3 (DRB1*03:01). Within class II, 

HLA-DR2 (DRB1*15:01) and HLA-DR3 (DRB1*03:01), are independently 

associated with at least a two-fold increased risk of lupus (Yang et al., 2010). 

 

Assessing the precise contribution of individual MHC genes to lupus 

susceptibility is challenging, owing to the long-range LD exhibited by alleles at 
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the locus. The HLA association of DRB1*03:01 with European SLE is the most 

consistently replicated signal by candidate gene and GWAS association study and 

one of the few loci identified by linkage (Graham et al., 2002; Fernando et al., 

2008) which has consistently replicated by association study. The association of 

the MHC with SLE is strongly corroborated by signals in East Asian populations 

and large-scale studies in African-Americans, Hispanics and South Asian SLE- 

control cohorts are currently underway. Data from a multi-ethnic cohort suggests 

distinct alleles at HLA-DR3 best explain the aforementioned association of MHC 

class II in each population, indicating heterogeneity in these  different 

populations: The European-associated HLA-DR3 (DRB1*0301) haplotype is not 

associated in Hispanics or African-Americans (AA). Conversely; HLA-DR3 

(DRB1*15:03) is best-associated in AA and HLA-DR3 (DRB1*08:01) in 

Hispanics (Mihas et al., 1981; Fernando et al., 2007; Barcellos et al., 2009; Yang 

et al., 2010; Morris et al., 2012). 

 

1.3.5.2 IRF5 
 

Type I interferons (IFNs) are a class of cytokine with pleiotropic functions with 

regards to immune cell activity. IRF5 is a transcription factor which promotes 

inflammatory macrophage polarization and T(H)1-T(H)17 immune responses 

(Krausgruber et al., 2011). Elevation of IFNs and related proteins in the sera of 

lupus individuals has been reported as early as 1983 (Preble et al., 1983). As a 

result, they have been evaluated as contributors to disease development and 

progression prior to the discovery of the relevant genetic association (Ronnblom 

and Alm, 2002). A joint linkage and association scan by Sigurdsson and 

colleagues has identified interferon regulatory factor 5 (IRF5) to be associated 

with European SLE (Sigurdsson et al., 2005). Independent cis-acting variants 

which tag a common IRF5 haplotype drive differential expression of distinct 

IRF5 splice variants. These data suggest the rs2004640-T allele to create a 5' 

donor splice site in an alternate exon 1 of IRF5, allowing expression of several 

unique IRF5 isoforms (Graham et al., 2006). IRF5 splice variants are associated 

with increased expression of IRF5 transcript to elevate risk of disease (Graham et 

al., 2006; Graham et al., 2007). 
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Association of the IRF5 gene with lupus is robust across genetic studies in East 

Asian, Mexican and African-American SLE-control populations: the intronic 

risk-associated allele rs2004640-T is best-associated in European and African- 

American SLE-control groups (Kelly et al., 2008). The observed association of 

rs2004640-T is strengthened in independent cohorts of Amerindian families: the 

frequency of the rs2004640-T-T homozygote genotype is higher in Amerindian 

cases compared to Europeans and African-Americans (Reddy et al., 2007). Not 

all signals at IRF5 in SLE are preserved across populations: a high frequency 

IRF5 haplotype which confers protection against SLE in Northern Europeans is 

absent or observed at very low frequency in AAs (Graham et al., 2007). 
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Table 1.2 Best evidence of association, SLE risk loci by population 

 
Locus 

  
Best evidence of association 

 
Case/control    

associated Population Marker, Odds ratio (95% CI)/ frequencies Study type Pathway Reference 

with SLE  Nominal p-value     

BANK1 AA rs548234, 0.78(0.7-0.88)/ 5.9x10-5
 1724, 2024 Candidate gene associa tion Immune regulation/ signal ling Sanchez et al. 

 European rs10516487, 1.38(1.25-1.53)/ 3.7x10-10
 2003, 1968 Candidate gene associa tion Kozyrev et al. 

 East Asian rs4522865, 0.73/ 3.56x10-4
 3620, 5700 GWAS and replication  Yang et al. 

BLK Han Chinese rs7812879, 0.69(0.64-0.74)/ 2.09 x 10-24
 4199, 8255 GWAS and replication Immune regulation/ signal ling Han et al. 

 European rs13277113, 1.39 (1.28-1.51)/ 1 x 10-10
 2104, 4197 GWAS and replication  Hom et al. 

 Japanese rs13277113, 2.44(1.43-4.16)/ 4.75 x 10-7
 327, 322 Candidate gene associa tion Ito et al. 

 AA rs13277113, 1.36(1.19-1.55)/ 6.4 x 10-6
 1724, 2024 Candidate gene associa tion Sanchez et al. 

 Middle      
DNASE1L3 Eastern C643delT, LOD score of 6.6 N/A Autozygome linkage analysis Defective clearance of DNA Al Mayouf et al. 

 Arabian      
ETS1 Han Chinese rs1128334, 1.37(1.29-1.45)/ 1.77x10-25

 4199, 8255 GWAS and replication Immune regulation/signall ing Han et al. 
FCGR2A European rs1801274, 0.74(0.65-0.83)/ 6.78x10-7

 3137, 6456 GWAS and replication Immune regulation Harley et al. 
FCGR2B European rs1050501, 2.06/ 0.014 326, 1296 Candidate gene associa tion, Defective clearance of DNA Willcocks et al. 

 H/K Asian rs1050501, 1.7/8x10-5
 819, 1026 Candidate gene associa tion, Willcocks et al. 

FCGR2B       
and 3B Thai Asian Na2/Na2 and Thr232 OR=2.55 187, 87 Candidate gene associa tion Defective clearance of DNA Siriboonrit et al. 

FCGR3B European CNV (risk if 0 or 1 copy) 2.23/ 2.7x10-8
 536, 312 Candidate gene study, qPCR Defective clearance of DNA Fanciulli et al. 

 Japanese Allelic (Na2/Na2)/ 8x10-3
 81, 217 Candidate gene study, qPCR Hatta et al. 

 European Allelic (Na2/Na2)/ 0.014 365 trios Paralog ratio test  Morris et al. 
HLA-       
DRB1* AA 1501 N/A  Immune regulation  

 European 0301, 2.3/ 4x10-8
 365 trios Family-based TDT  Fernando et al. 

 Hispanic 0801 N/A    
 East Asian rs9271100, 1.9(1.59-2.27)/ 1.42x10-12

 N/A    

IKZF1 European 

East Asian/ 

rs2366293, 1.23/ 2.33x10-9
 

rs10276619, 0.77(0.73-0.82)/ 1.19x10-16
 

8710, 5510 

4199, 8255 

Candidate gene associa 

GWAS and replication 

tion Immune regulation Cunninghame 
Graham et al. 
Han et al. 

IL10 European rs3024501, 1.19(1.11-1.28)/ 4x10-8
 1963, 4329 Custom targeted chip and Immune regulation Gateva et al. 

IRAK1 European rs763737, 1.19/ 1.05x10-3
 3123, 3114 Candidate gene associa tion Immune regulation/signall ing Jacob et al. 

 East Asian rs763737, 1.41/ 2.29x10-8
 945, 869 Candidate gene associa tion Jacob et al. 

 Hispanic rs763737, 1.68/ 6.45x10-3
 845, 265 Candidate gene associa tion Jacob et al. 

IRF5 European rs2004640, 1.47(1.36-1.60)/ 4.4x10-16
 1661, 2508 Candidate gene associa tion Immune regulation/ signal ling Graham et al. 

 East Asian rs2070197, 1.43( 1.32-1.54)/ 8.14x10-19
 4199, 8255 GWAS and replication  Han et al. 

 Amerindian rs2070197, 2.06(1.63-2.6)/ 1.65x10-9
 804, 667 Candidate gene associa tion Sanchez et al. 
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Locus 

 
Population 

 
Best evidence of association 

 
Case/control 

   

associated  Marker, Odds ratio (95% CI)/ frequencies Study type Pathway Reference 
with SLE  Nominal p-value     

ITGAM Colombian rs1143679, 2.53(1.75-3.68), 3.6x10-7
 4199, 8255 Candidate gene replication Immune regulation Han et al. 

 European rs9888739, 1.62(1.47-1.78), 1.61x10-23
 3137, 6456 GWAS and replication Immune regulation Harley et al. 

 Hispanic American rs1143679, 2.06(1.44-2.97)/ 8.74x10-5
 657, 227 Candidate gene association Immune regulation Molineros et al. 

 European rs1143679, 1.78/ 1.7x10-17
 3818, unclear GWAS and replication Immune regulation Nath et al. 

 Amerindian rs1143679, 2.23(1.77-2.82), 6.22x10-11
 804, 667 Candidate gene replication Immune regulation Sanchez et al. 

JAZF1 European rs849142, 1.19(1.13-1.26)/ 1.54x10-9
 1963, 4329 Custom targeted chip and Immune regulation Gateva et al. 

LYN European rs7829819, 0.77(0.7-0.84)/ 5.4x10-9
 3137, 6456 GWAS and replication Immune regulation Harley et al. 

PHRF1 European rs4963128, 0.78(0.71-0.85)/ 1.3x10-7
 3137, 6456 GWAS and replication Immune regulation Harley et al. 

PRDM- European PRDM1, rs6568431, 1.20(1.14-1.27) 1963, 4329 Custom targeted chip and Autophagy Gateva et al. 
 Han Chinese rs548234, 1.25(1.2-1.3)/ 5.18 x10-12

 4199, 8255 GWAS and replication  Han et al. 
PTPN22 European rs2476601, 1.35(1.24-1.47)/ 3.4 x 10-12

 1963, 4329 Custom targeted chip and Immune regulation Gateva et al. 
PXK European rs6445975, 1.27(1.15-1.39)/ 9.2 x 10-7

 3137, 6456 GWAS and replication Immune regulation/ signalli ng Harley et al. 
RASGRP3 Han Chinese rs13385731, 0.7(0.64-0.76)/ 1.25 x 10-15

 4199, 8255 GWAS and replication Immune regulation/ signalli ng Han et al. 
SCUBE1 European rs2071725, 0.78(0.72-0.86)/ 1.21 x 10-7

 3137, 6456 GWAS and replication Defective clearance of DNA Harley et al. 
SLC15A4 Han Chinese rs1385374, 1.26(1.18-1.35)/ 1.77x10-21

 4199, 8255 Custom targeted chip and Unclear Han et al. 
STAT4 European rs7574864, 1.57(1.49-1.69)/ 1.4x10-41

 1963, 4329 Custom targeted chip and Immune regulation/ signalli ng Gateva et al. 
 Han Chinese rs7574864, 1.51( 1.43-1.61)/ 5.17x10-42

 4199, 8255 GWAS and replication, meta  Han et al. 
 Amerindian rs7574864, 1.41(1.2-1.66)/ 5.54x10-5

 804, 667 Candidate gene replication  Sanchez et al. 
TNFAIP3 Han Chinese rs2230926, 1.72( 1.52-1.94) 4199, 8255 GWAS and replication Immune regulation Han et al. 

 European rs5029939, 2.29/ 2.89 x 10-12
 2104, 4197 GWAS and replication Immune regulation Hom et al. 

TNFSF4 Han Chinese rs2205960, 1.46(1.4- 1.6)/ 2.53x10-32
 4199, 8255 GWAS and replication Immune regulation Han et al. 

 African-American rs2205960, 1.49( 1.2-1.8)/ 3.79x10-5
 1680, 2170 Candidate gene replication   

 Hispanic rs2205960, 1.62(1.4-1.9)/ 3.79x10-12
 1348, 717 Candidate gene replication   

 European rs2205960, 1.34(1.3-1.4)/ 4.6x10-15
 3432, 3640 Candidate gene replication   

TNIP1 European rs7708392, 1.27(1.1-1.35)/ 3.8x10-13
 1963, 4329 Custom targeted chip and Immune regulation Gateva et al. 

 Han Chinese rs10036748, 0.81(0.75-0.87)/ 1.67x10-9
 4199, 8255 GWAS and replication Immune regulation Han et al. 

UBE2L3 European rs5754217, 1.22(1.14-1.32)/ 7.53x10-8
 3137, 6456 GWAS and replication Ubiquitination Harley et al. 

UHRF1BP1 European rs11755393, 1.17 (1.1-1.24)? 2.2x10-8
 1963, 4329 Custom targeted chip and Unclear Gateva et al. 

 Hong Kong rs13205210, 1.49( 1.3-1.7)/ 2.8x10-9
 1230, 3144 GWAS and replication meta  Zhang et al. 

WDFY4 Han Chinese rs1913517,1.24( 1.17-1.32)/ 7.22x10-12
 4199, 8255 GWAS and replication Unclear Han et al. 

XKR6 European rs6985109, 1.23(1.16-1.3)/ 2.51x 10-11
 3137, 6456 GWAS and replication Immune regulation Harley et al. 

 



 

1.3.6 African-American and Hispanic chromosomes in SLE 
 
 

Differences in complex disease prevalence across ancestral populations is 

explained by the environment and are also due to genetic drift and positive 

selection of unique sets of variants per continent (Pfaff et al., 2001). Some of 

these variants favour predisposition to the disease more than others, although 

only a small fraction of genetic variation represents the differences between 

populations. Admixed populations including African-Americans (AAs) and 

Hispanics are disproportionately burdened by SLE and other complex diseases. 

 

1.3.7 Imputation-based association analysis in lupus 
 
 

Imputation-based strategies have been used in lupus association studies to increase 

power: re-visiting the established Integrin-α-M (ITGAM) association with SLE, 

combining genotypes from multiple studies have allowed investigators to delineate 

causal variation at ITGAM (Nath et al., 2008; Han et al., 2009). The authors have 

used imputation to assess the ITGAM association across independent cohorts of 

UK-Europeans, Columbians and Mexicans by the aforementioned meta-analysis 

methods. Their trans-ancestral approach has identified and replicated the 

association of the exonic (ITGAM) variant in SLE individuals of European and 

African-American descent: the research has additionally identified an independent 

signal to explain association of ITGAM in an Asian population (Han et al., 2009). 

 

1.3.8 Epigenetic modifications and SLE 
 
 

Recent research suggests that additional heritable factors over and above the 

aforementioned genetic loci influence SLE susceptibility: these can be epigenetic 

changes which are defined as functionally relevant heritable modifications caused 

by elements other than the DNA sequence. These changes modulate gene 

expression in SLE: the most extensively studied epigenetic modifications which 
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influence gene activity are DNA methylation and histone post-translational 

modifications (Ballestar, 2011). 

 

1.3.9 Functional Assessment of SLE-risk loci in human populations 
 

Examination of the genomic sequence at the locus better directs functional 

experiments linked to the association of candidate susceptibility genes in disease: 

Functional studies of the TNFAIP3 gene in SLE have been refined by in silico 

assessment of multiple risk-associated variants prior to expression studies using 

ex vivo samples (Adrianto et al., 2011). Examining the sequence of the 

aforementioned lupus susceptibility gene IRF5 has identified a candidate variant 

(rs2004640-T) with potential to regulate expression of IRF5 transcription. 

Rs2004640-T is located 2bp downstream of the intron-exon border of an 

alternative first exon; the associated T allele creates a consensus GT donor splice 

site, thus providing a regulatory mechanism. Quantitative real-time PCR analysis 

of total RNA from human PBMCs has confirmed genetic association of this 

variant with SLE: The investigators have found increased expression of IRF5 in 

cases compared to controls (Graham et al., 2006). 

 
 
 

1.3.10 Functional Assessment of SLE-risk loci: specific cell populations 
 

In common with other complex diseases, evidence from mostly in vitro studies 

have suggested the involvement of multiple immune cell types in lupus 

pathogenesis: APCs, including activated B lymphocytes, and CD4+ T-cell sub- 

sets, are likely causal contributors. Experimental assessment of the cellular 

subtypes which best expresses the associated gene is a requisite. 

 
 
 

1.3.11 Murine models of SLE 
 

Many of the loci implicated in SLE do not directly alter the coding sequence but 

alter regulation of the associated gene, usually in a cell-specific manner: 

Identifying the cell types that are pathogenic in lupus as a result of these risk loci 

is challenging in an experimental setting, but necessary for accurate assessment of 
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functional impact. However, results obtained from in vitro cellular model systems 

are often difficult to translate in vivo. There has been less evidence that directly 

implicates a mechanism of auto-reactive B-cell activation in human SLE than 

comes from mouse models, which provide a direct cellular link to disease (Lee et 

al., 2002). 

 
 
 

Multiple, independent sources suggest that pathogenic B and T-cells are causal 

contributors to risk of lupus in mouse models of the trait. This contrasts to the 

largely circumstantial evidence for the role of these cells in human disease. 

Autoimmune MLR mice homozygous for the lpr mutation lack B-cells and have 

attenuated disease (Shlomchik et al., 1994). Research also suggests CD8+ T-cells 

are activated in lupus-prone MRL-Faslpr mice, though not directly by B-cells 

(Chan and Shlomchik, 2000) and  inhibiting CD4+ cell –dependent B-cell help in 

SLE-prone NZB/NZW F1 mice results in absence of the immune response 

(Mihara et al., 2000). The double-stranded DNA autoantibodies found in most 

patients with disease (Monestier and Kotzin, 1992) which contribute to disease 

pathogenesis are also found in spontaneous mouse models of disease (Frese and 

Diamond, 2011). The immune systems of the mouse and human are similar in 

lineage and structure but also have fundamental differences (Hu et al., 2011). 

Murine models have directed functional studies using human cells with limited 

success, such as the association of the Fc receptor locus in SLE (Fanciulli et al., 

2007). 

 
 
 
 

. 
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1.4 Next generation sequencing in complex 

disease 

 
Determining the sequence of a complete set of chromosomes allows study of 

global genetic properties of an individual, organism or related species and this is 

core to the discipline of genomics. The first sequenced genome, that of the 

bacteriophage phiX174 virus, was completed three decades ago (Sanger et al., 

1977) and determining the sequence of bases of DNA has remained at the heart of 

genomics since. Automated Sanger sequencing has dominated the landscape of 

genome sequencing for several decades: This method is still used for small-scale 

projects and to confirm the results of alternative sequencing technologies, it is 

considered a first-generation technology. The Sanger approach has relied on the 

use of uniquely fluorescent chain-terminating nucleotide analogues for each 

genetic base followed by capillary electrophoresis to determine nucleotide order. 
 

The most successful application of the Sanger method has been the complete 

sequencing of the first human genome (Lander et al., 2001; Venter et al., 2001) at 

a cost of roughly $3.3 billion over approximately 14 years. Over a decade later, 

human genomes are now rapidly  sequenced due to technologies  collectively 

termed Next-Generation Sequencing (NGS). Collectively, these platforms offer 

the major advantage of producing vast amounts of sequencing data at low 

production cost (Metzker, 2010). These rapid de novo sequencing methods are 

greatly accelerating biological and medical research and discovery: Whole 

genome sequencing studies in humans, unimaginable a few years ago, are 

performed routinely today. 
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Multiple NGS platforms are routinely used today, each with subtle advantages to 

address differing biological questions. The main technologies which co-exist are 

Roche-454 (Margulies et al., 2005) which relies on pyrosequencing; the Illumina- 

Solexa platform uses sequencing by synthesis of immobilised templates, and 

Applied Biosystem’s SOLiD (Sequencing by Oligonucleotide Ligation and 

Detection) (Bentley., 2006; URL: 

http://www.appliedbiosystems.com/absite/us/en/home.html). All methods require 

a robust sequencing template; this is a crucial determinant of the quality of 

sequencing reads. 

 
 
 

Sequencing metrics differ for each platform, though quality and accuracy scores 

are generated per run for each method. For all platforms, template preparation is 

followed by sequencing, genomic alignment and assembly of reads. The read 

lengths generated by NGS platforms tend to be shorter compared to Sanger reads; 

in NGS reads are generated with higher coverage depths to compensate for 

sequence length, a requisite for accurate assembly. The Roche-454 GS FLX 

Titanium platform generates long read-lengths, at approx. 450bp average length 

per read; sequencing of 400-600 million bases per 454 run takes around 10 hours. 

This method is expensive and used less than other technologies. 

 
 
 

1.4.1     NGS sequencing platform: Roche- 454 
 

The Roche 454 method is the first of the established NGS platforms that gained 

prominence by describing the first million base pairs of the Neanderthal genome 

(Green et al., 2006). The advantage of this platform over competing methods has 

been the longer sequencing read lengths which has allowed improved mapping in 

repetitive regions, themethod also has relatively rapid turnaround times. 

However, the high reagent costs of this method and error rates in homopolymer 

regions have contributed to the competing Illumina Solexa platform being the 

http://www.appliedbiosystems.com/absite/us/en/home.html)
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most widely used platform in the field. The overall error rate during a 454 run is 

less than that for a Solexa run (Gilles et al., 2011). 

 
 
 

1.4.1.1 Roche 454 and read amplification 
 

The 454 approach uses fragmentation of DNA into randomly sized pieces to build 

a template library. Immobilisation of DNA fragments to a support surface 

facilitates parallel sequencing of many hundreds of thousands of reactions 

simultaneously. To detect these templates requires amplification and the method 

used in 454 is emulsion PCR (emPCR); universal primers are ligated to sites 

common to all fragments followed by amplification. DNA is separated under 

conditions favouring a single molecule per bead and amplified. After enrichment, 

the emPCR beads are deposited into individual pico-sized wells of a specially- 

adapted plate (pico-titre plate) and sequenced. 

 
 
 

1.4.1.2 Roche 454: read assembly and frameworks for identifying novel 

variants 
 

After read generation comes assembly; the tools used to map Sanger sequences 

use an overlap-consensus-layout paradigm to align overlapping identical ends of 

adjacent sequencing reads. Where an accurate reference sequence exists, these 

tools are well-equipped to map the sequence. However, the reference still has 

coverage gaps and ambiguities which can make alignment challenging, these gaps 

often arise from sequencing errors, conserved interspersed repeat elements and 

copy-number variants. 

 
 
 

The huge volumes of NGS data generated have posed unparalleled data handling 

questions. These have accelerated the development of storage and analysis 

frameworks. The latter examine data without bias, so that true variants are better 

distinguished from aberrant calls. The analysis framework has to map reads to an 

often imperfect reference genome. The local genome is realigned around complex 
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variations such as insertion/deletion (indel) polymorphisms and CNV. Machine 

artefacts vary with sequencing platform, and there are at least five different 

platforms, so multiple biases are factored into a single per-base error estimate. 

 
 
 

NGS data can suffer high per-base error rates in addition to errors of alignment. 

To quantify the error rate associated with a SNP or indel accurately, the sequence 

must be discriminated well. This is usually accomplished within an analysis 

framework by probabilistic algorithms. Within the framework, base calling and 

alignment errors are modelled with priors of established local variants and fitted 

against LD patterns for the genomic region. The base-calling algorithm Phred is 

often used to estimate the probability of error for each base-call as a function of 

the parameters computed from the data (Ewing and Green, 1998). Phred places an 

emphasis on discrimination within the high quality range (error rates <0.01) for 

the data, the error probability is then log transformed so that rates closest to 0 can 

also be resolved. A base-call having a probability of 1/1000 of being incorrect is 

assigned a value of 30, 1/10,000 assigned a rate of 40, and so on. 

 
 
 

Error rate determination at the base level is followed by local refinement of the 

aligned sequence. To do this, the reference file is converted into a technology- 

independent file format such as SAM/BAM. A final stage of analysis involves 

accurate variant calling in the presence of covariates which reflect features 

specific to the local genome; some plasticity is therefore required to refine true 

variants from false positive calls (DePristo et al., 2011). Large-scale and 

multiplexed sequencing studies need standardized formatting for storing sequence 

variations from NGS. The variant call format (VCF) incorporates meta- 

information tailored to the specific data into a standardised format (Danecek et 

al., 2011). VCF was developed to represent human genetic variation against a 

single reference sequence for the 1000 Genomes project but has been adopted for 

large-scale studies including the NHLBI exome project (URL: 

http://evs.gs.washington.edu/EVS/). 

http://evs.gs.washington.edu/EVS/)
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The large number of genome-scale sequenced datasets which vary with 

considerable diversity require scalable, intuitive visualisation tools. Evaluation of 

identified variants is followed by visualisation of reads at the nucleotide scale 

against a reference sequence. The integrative genomics viewer (IGV), developed 

at the Broad Institute, functions to do so on a standard desktop computer. IGV has 

low computational load and supports the integration of aligned sequence reads, 

mutations and CNVs across multiple individuals or projects. The IGV enables 

exploration of the dataset at a range of scales with relative ease (Robinson et al., 

2011). 

 
 
 

1.4.2 A Pilot whole-genome study in humans: 1000 Genomes CEU and YRI 

trios 
 

The pilot phase of the 1000 Genomes Project has sequenced DNA from LCLs 

from   human   HapMap   CEU   and   YRI   trio    individuals.    (1000 

Genomes Project Consortium, 2010; Conrad et al., 2011). These data have 

identified increased paternal de novo mutations (DNMs), with non-overlapping 

ranges, and rate variation within and between the two families sequenced. 

Although the number of somatic DMRs that have been identified in the CEU trio 

far exceeded those identified in the YRI trio, the number of germ line DNMs 

have illustrated the opposite trend: A three-fold increase in the inherited variants 

have been identified in the YRI pedigree. An almost equal number of the 

inherited DNMs are located in introns and intergenic regions in the YRI trio. As 

expected, a significantly reduced number of variants have been discovered in 

coding regions (Conrad et al., 2011). A striking feature of the 1000 Genomes 

pilot study is the discovery of a 20 fold increase in the number of somatic DNMs 

relative to historical studies. The investigators have proposed the observed 

difference owing to the age, mutagenic culture and/or clonality of the cell lines. 

Age-related metrics were unavailable to the authors and have not been factored 

into the published data. The size of the study and use of cell-lines has limited the 

observations to humans. 
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Re-visiting the 1000 Genomes pilot study, whole genome x2-4 coverage data 

from HapMap phase II European (CEU), West African (YRI) and East Asian 

(JPT and CHB) groups has been combined with high coverage exome sequencing 

data from HapMap phase III samples. This has leveraged the strengths of each 

study to catalogue novel genomic variants (Gravel et al., 2011). These data have 

demonstrated capture of low-coverage intergenic common variation, though 

many rare variants in the non-coding genome have been lost. The allele 

frequencies for the diploid population have been difficult to assess with the low 

coverage data: The investigators have found a majority of human genome- 

variable sites to be rare with low sharing amongst diverged populations. 

 
 
 

1.4.3 Exome sequencing studies 
 

Selective sequencing of genomic coding regions is a cheaper alternative to whole 

genome studies since less than 5% of the capacity is required. This approach uses 

targeted exome-capture followed by short-read NGS sequencing at high coverage 

to enrich for the discovery of highly penetrant variants. The strategy has resolved 

the genetic basis of rare Mendelian disease (Biesecker, 2010) with small numbers 

of unrelated, affected individuals (Ng et al., 2009). Using large sample sizes may 

extend the strategy to complex disease: Control data-sets from exomes of 

European-American and African-American individuals, from large well- 

phenotyped cohorts, are available in the NHLBI ESP Exome Variant Server 

(URL: http://evs.gs.washington.edu/EVS/). This set of exomes might be used to 

extend and enrich the discovery of novel loci and mechanisms in SLE. 

 
 
 

1.4.4 Trans-ancestral mapping and sequencing in lupus 
 

Genetic association by re-sequencing has successfully refined the TNFAIP3 

association in lupus. The TNFAIP3 gene encodes A20, an ubiquitin-modifying 

enzyme which regulates NF-κB. A20 modifies RIP and TRAF6 downstream of 

the TNFα or Toll-like receptor (Graham et al., 2008). GWAS in European and 

Asian SLE-control cohorts has identified TNFAIP3 variants which are strongly 

http://evs.gs.washington.edu/EVS/)


43  

associated with risk of disease (Graham et al., 2008; Han et al., 2009; Yang et al., 

2010). Re-visiting these association data, logistic regression has been used to 

model the association of typed variants and proxies identified that are in LD with 

untyped polymorphisms on the risk haplotype: Further fine-mapping and genomic 

re-sequencing in European and Korean lupus cases have fully characterized this 

haplotype. Nine TNFAIP3 risk chromosomes from seven carriers of European 

ancestry (two homozygotes and five heterozygotes) have been sequenced; no 

additional informative SNPs have been identified at the locus, instead the 

investigators have found a novel single base deletion on all nine risk 

chromosomes. The final analysis identified this as a TT>A polymorphic 

dinucleotide (deletion T followed by a T to A transversion) strongly associated 

with SLE in both Europeans and Koreans (Adrianto et al., 2011). 
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1.5 Tumour necrosis factor (ligand) superfamily, 

member 4 

1.5.1 TNFSF/TNFRSF superfamily 
 

The tumour necrosis factor (TNF) and TNF receptor super families (TNFSF and 

TNFRSF) consist of approximately 50 membrane and soluble proteins that can 

modulate diverse aspects of immune function (Croft. 2012). These molecules 

mostly evolved with, or closely after, the adaptive immune system 350–450 

million years ago (Croft. 2012). The control of immunity, which includes cell- 

survival, occurs upon TNFSF engagement of complementary TNFSFR (Croft, 

2010). TNFSF-TNFRSF interactions strongly regulate  conventional CD4 and 

CD8 T-cells: Although the specificity of the T-cell response is controlled by the 

TCR, complete activation is only achieved after interaction between accessory 

co-stimulatory receptor-ligand pairs. 

 

Primary co-stimulation occurs on interaction between CD28 and B7, however at a 

later stage when a sustained or memory response is required, there is a secondary 

co-stimulatory event, and the interacting pair often belongs to the TNFSF- 

TNFRSF superfamily. This interaction directly influences adaptive immunity 

through T-cell signalling. TNFSF-TNFRSF members are linked via a series of 

membrane proximal events to NF-κB and stress kinase signalling, resulting in 

cytokine production and cellular proliferation (Watts, 2005). Binding also 

influences the innate immune response indirectly through activation of antigen 

presenting cells (APC). 
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1.5.1.1 TNFSF/TNFRSF pairs involved in activation and survival 
 

TNFSF/TNFRSF pairs involved in activation and survival, that prevent excessive 

apoptosis of T-cells, are TNFSF4/TNFRSF4, 4-1BBL/4-1BB, CD30L/CD30, 

LIGHT/HVEM, CD70/CD27, and GITRL/GITR (So et al., 2006). Within each 

pair, the TNFSF ligands are type II membrane glycoproteins. Most are 

homotrimers with unique and overlapping function and shared intracellular 

signalling. The TNFRSF members also have a similarly shared structural aspect 

in that they are all type 1 membrane glycoproteins. Other TNFSF/TNFRSF pairs 

can induce pro-apoptotic pathways, illustrating their role as double-edged swords 

in the immune response (Aggarwal. 2003). 

 
 
 

1.5.2 TNFSF-TNFRSF in autoimmunity 
 

TNFSF and TNFRSF family members can exacerbate or ameliorate disease 

depending on the prevailing circumstances (Watts, 2005). Evidence suggests they 

are key mediators of organ-specific autoimmune disorders  including 

inflammatory bowel disease and rheumatoid arthritis: Blocking agents against 

specific family members used in patients with these conditions show beneficial 

results in the majority. TNFSF/TNFRSF are implicated in systemic 

autoimmunity: TNFRSF6 has long been implicated in SLE - the soluble form 

appears to increase in the serum of patients with active disease (Courtney et al., 

1999). There is also evidence for association of TNFRSF6 with SLE: A novel 

nucleotide insertion in TNFRSF6 mRNA alters the reading frame, causing cells to 

have mRNA editing refractory to apoptosis, thereby providing a mechanism for 

defective clearance of auto-reactive immune cells (Wu et al., 2011). 

 

The TNFS member, TNFSF13b (BAFF), is found at significantly higher levels in 

SLE patients (Roschke et al., 2002). This molecule regulates B-cell 

differentiation, including follicular B-cell development, and the conversion of 

memory cells to antibody-producing plasma cells (Marston and Looney, 2010). 

In  two  moderately  successful  clinical  trials,  blockade  of  TNFSF13b  by  the 

humanized antibody Belimumab has proved efficacious against moderately active 
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SLE, with disease prevention in early or preclinical cases. Blocking the 

TNFSF13b molecule probably censors auto-reactive B-cells prior to disease 

progression. In 2011 Belimumab was granted FSA approval, the most recently 

approved drug specifically for treatment of lupus in 50 years. 

 

1.5.3 TNFSF4 
 

1.5.3.1 TNFSF4 
 

Another TNFS member, TNFSF4 (also known as OX40L, CD252), is located on 

chromosome 1q25, within a genetic interval replicated to show significant linkage 

with SLE, making it a plausible candidate susceptibility gene (Shen and Tsao, 

2004). TNFSF4 forms a functional trimer which uniquely binds its receptor, 

monomeric TNFRSF4 (OX40, CD134), on T and NK lineage cells (Compaan and 

Hymowitz, 2006) to provide a late-stage co-stimulatory signal at the APC- T-cell 

interface. In common with related molecules, expression of the TNFSF4- 

TNFRSF4 pair is not ubiquitous for the most part, but can be induced following 

activation at the surface of a wide-range of cells which control immune 

functionality. 

 
 

1.5.3.2 TNFSF4 expression 
 

The TNFSF4 homotrimer is induced on antigen-presenting cells (DCs, B-cells 

and macrophages) by innate (TLR) and adaptive (BCR, Ig) signals prior and 

during engagement with naive and memory T-cells; expression of the ligand is 

transient. Aberrant expression of the resulting effector T-cells are pathogenic in 

autoimmunity and protective in infection and cancer (Croft, 2010). TNFSF4 can 

be induced, under physiologic conditions, on CD4+ and CD8+ T-cells, suggesting 

T-cell-T-cell interactions could ramp up inflammation. There is also evidence for 

constitutive expression of the ligand by lymphoid tissue inducer cells (LTi), an 

immune accessory cell type which interacts with B-cells at the B-T junction in 

secondary lymphoid organs (Kim et al., 2003). Regulatory T-cells subsets are 

able to express the complementary receptor, TNFRSF4. Engagement of this 

molecule by TNFSF4 may inhibit proliferation of regulatory cells or prevent their 
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suppressive effects to further promote effector T-cell responses (Ito et al., 2006). 

In common with other TNF ligands, TNFSF4 can also be induced on non- 

immune structural cells, including vascular endothelial and smooth muscle cells, 

which are proximal to activated T-cells; interactions may contribute to tissue 

damage at sites of inflammation. 

 
 
 
 

1.5.3.3 TNFSF4 and human disease 
 

Several lines of evidence published over the last 15 years suggest signalling 

specifically through TNFSF4–TNFRSF4 in humans is required for the induction 

of adaptive anti-tumour immunity, allergy and autoimmunity (Gri et al., 2008; 

Cunninghame Graham et al., 2008; Seshasayee et al., 2007; Zaini et al., 2007). 

The TNFSF4 homotrimer inhibits generation of natural and adaptive T regulatory 

(TR1) cells (Ito et al., 2006). There is evidence to suggest that the extent of the 

inhibitory effect, and predominance of T-helper subtype, influences progression 

to disease: Receptor-ligand signalling is protective against tumours in malignant 

Hodgkin’s Lymphoma (Buglio et al., 2011). The Thymic stromal lymphopoietin 

(TSLP) molecule is an important mediator of many allergic diseases (Kaur and 

Brightling, 2012). TSLP increases the expression of TNFSF4 on immature 

dendritic cells (DC), which respond by promoting T helper (Th) 2 polarization of 

naive T-cells within the lymph node. These polarised T-cells then produce the 

cytokines typically implicated in the allergic response. The TNFSF4 molecule 

influences the severity of allergic phenotypes: Airway Smooth Muscle increases 

expression of TNFSF4 in asthmatic individuals (Krimmer et al., 2009). 

 
 
 

In the aforementioned traits involving TNFSF4, T-lymphocyte activation 

modulates the severity of the response and/or influences progression to disease. 

T-cell activation is not a single event and requires a primary signal (antigen 

recognition from the APC-TCR interaction), followed by a secondary 

costimulation event (TNFSF4 ligation of TNFRSF4). Signal two strongly 

influences the protein kinase B (PKB)-signalling pathway to augment TCR- 
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dependent activation of NF-κB (So et al., 2011). In the absence of signal 2, T- 

cells do not expand efficiently in response to the antigen and the long-lasting 

memory response is impaired. 

 
 
 

1.5.4 Mouse models of human pathologies: Autoimmunity and TNFSF4 
 

The outcome of the TNFSF4-TNFRSF4 interaction is not limited to human 

disease: Knockout mouse models have impaired accumulation of antigen-specific 

T-cells, reduced cytokine production and inflammation (Croft, 2010). Blockade 

of the TNFSF4-TNFRS4 interaction also has ameliorative effects in animal 

models of T-cell pathologies (Compaan and Hymowitz, 2006) including allergic 

and autoimmune manifestations (Nohara et al., 2001). Weinberg and colleagues 

illustrate this well: Depletion of TNFRSF4+  effector T lymphocytes at 

inflammatory sites by anti-TNFRSF4 improved autoimmune sequelae in an EAE 

model of MS (Weinberg et al., 1996). The signalling complex induced by the 

TNFSF4-TNFRSF4 interaction includes the TNFR-associated factor 2 (TRAF2). 

Traf2(-/-)     knockout   mice   develop   fatal   autoimmunity   characterised   by 

autoantibody production and organ infiltration by T-cell subsets including 

activated, effector, and memory cells (Lin et al., 2011). 

 
 
 

1.5.5 Genomic organisation at 1q25.1 
 

TNFSF4 maps to human chromosome 1q25.1, where the proximal adjacent gene 

TNFSF18 (GITRL) has overlapping functional effects and is likely to have arisen 

by ancestral gene duplication. The gene adjacent to TNFSF4 distally, PRDX1, 

bears no structural or functional resemblance to TNFSF4. Figure 1.4 demonstrates 

TNFSF4 in relation to neighbouring translated genes on chromosome 1q25.1. 

Figure 1.4 also demonstrates that genetically, TNFSF4 is situated within a 

bipartite structure of two linked haplotype blocks which have minimal long range 

LD with neighbouring genes. The TNFSF4 gene spans 23.57kb: it has 3 translated 

exons, 2 introns and a 3kb 3ʹ-untranslated region with many known variations 

(Figure 1.5). Figure 1.6 demonstrates the three transcripts of the human TNFSF4 
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gene which are translated into protein. The high level of sequence conservation of 

TNFSF4 protein between humans and primates, as depicted in Figure 1.7, is 

expected. Conservation of DNA sequence between humans and the other Eutheria 

is unexpectedly low for non-translated regions; this includes the 3´UTR of 

TNFSF4, a region rich in common polymorphisms with the potential to regulate 

expression of the TNFSF4 gene (Figure 1.5). 

 
 

1.5.6 TNFSF4- genetic variation and gene expression studies 
 

The first report of TNFSF4 polymorphisms relating to gene expression appeared 

in 2005. QTL mapping in mice susceptible to atherosclerosis, a complex 

inflammatory disorder, revealed six point deletions and 2 SNPs in the proximal 

promoter region of Tnfsf4. These polymorphisms segregate with heart and aortic 

expression of Tnfsf4 mRNA 3.7 and 4.5 times higher, respectively, compared to 

controls. Genotyping studies of polymorphisms across the homologous TNFSF4 

region in humans were undertaken in Northern European atherosclerosis and 

myocardial Infarction (MI) - control cohorts. In both populations, the genotype of 

rs3850641 is associated with an increased risk of MI in females but not in males. 

The high degree of LD between the associated variant and adjacent genotyped 

SNPs translated into a risk haplotype associated in both study cohorts (Wang et 

al., 2005). 
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Figure 1.4 TNFSF4 and neighbouring genes in a 588kb genetic interval on 

chromosome 1q25.1 
 
 
 
 

 
 
 
 

A plot depicting pair-wise LD relationships between SNP markers genotyped across 588kb 
of chromosome 1q25.1 in CEU Northern and Western European samples from HapMap 
phase III (data release phase 3/#3 May 2010, NCBI B36 Assembly).The upper section of 
this figure is annotated for the genes in this interval in relation to the LD plot below. The 
plot was generated in Haploview 4.2 using a standard algorithm for haplotype calling. The 
black triangles depict haplotype blocks and grey ticks, SNP location to scale. The multi- 
allelic correlation coefficient D' is a measure of linkage disequilibrium that ranges from 0 
to 1, D' = 1 (deep red) indicates complete linkage disequilibrium (no evidence for historical 
recombination between blocks), and D' = 0 (white) represents zero LD (absent correlation 
between haplotype blocks). 



 

 
Figure 1.5 Diagram illustrating the known variations in the TNFSF4 gene 

 
 

 
 

The image depicts known variants in the TNFSF4 gene displayed as vertical lines against the four known transcripts of the gene. The coloured vertical lines in the 
top section of the diagram are coloured for their position in the gene, and adjacent 5´ and 3΄ UTR regions. The variations in the bottom section are located in the 
TNFSF4 coding sequence and are summarised by colour-coding for their effect on the translated protein. The synonymous (green) and non-synonymous (yellow) 
categories are informed by the Condel tool, used to provide a consensus prediction based on the SIFT and PolyPhen prediction scores. This variation diagram is 
generated in Ensembl version 65. 
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Figure 1.6 Translated splice-forms of human TNFSF4 
 
 
 
 
 

 
 
 
 

The three translated spliceoforms (A-C) of the human TNFSF4 gene are 3470, 3429 and 1240bp, 
respectively. Form A has been determined the most abundant form by 5΄RACE-PCR and is 
translated into a protein of 188 amino-acid residues. Splice variants B and C are translated into an 
identical 133 residue protein. A fourth splice variant (not shown) is processed but does not have a 
known translated protein form. 
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Figure 1.7 Cross-mammalian conservation of TNFSF4 
 
 
 

 
 
 
 

Multiple alignments of the TNFSF4 protein sequence for selected Eutherian mammals from Ensembl Release 65 were interrogated using the ClustalW2 tool (EBI- 
EMBL). The amino acids are numbered 1-210 and areas of similarity which may be associated with specific features that have been more highly conserved than other 
regions are coloured dark blue with scores of conservation, quality and consensus aligned below each amino acid. 
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1.6 Work which has led to these doctoral studies 
 
 

At the time these doctoral studies were planned, the Vyse group had started to 

interrogate the association of variants spanning both TNFRSF4 and TNFSF4 in 

human SLE. These genes were chosen as candidates for a number of reasons: 

Chromosome 1q23-25 had been flagged in several linkage screens (Johanneson et 

al., 1999; Edberg et al., 2002) in lupus families, almost certainly because of the 

multiple immune-related genetic association signals across the interval. This 

flagged TNFSF4 as a plausible candidate susceptibility gene. A parametric 

linkage screen of European and admixed Amerindian multi-case SLE families 

had also unambiguously confirmed genetic linkage of 1p36 (the interval 

containing TNFRSF4) and 1q25 (TNFSF4) with lupus (Johanneson et al., 2002). 

In addition to these early data, expression of TNFSF4 on a range of cells directly 

implicated in the adaptive immune response highlighted it as a candidate lupus 

susceptibility gene. 

 
 
 

Using a candidate gene association study format, haplotype-tagging SNPs, 

already typed in CEU individuals as part of HapMap phase II, were selected for 

genotyping. These variants spanned a 220kb section of 1q25.1 encompassing the 

TNFSF4 gene, 3′ UTR, 5′UTR and 5′ upstream region, up to the adjacent 

recombination hotspot. We found evidence that variants in the 5′ TNFSF4 region 

were strongly associated with SLE in families and a SLE case-control cohort, 

both groups of northern European descent. Results presented in chapter 3 of this 

thesis suggest correlation of the associated risk haplotype with cell-surface 

expression (Cunninghame Graham et al., 2008) in this early study of TNFSF4 in 

SLE. Using these same strategies, we illustrated absence of association of 1p36, 

and hence TNFRSF4, with SLE. Studying the recombination across the locus, we 

showed that the association arose from a 100kb haplotype (P<1 x10-5, after 
permutation) in UK-Europeans and European-Americans. 
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The TNFSF4 haplotype associated with risk of disease (TNFSF4risk) is found at a 

frequency of 20% in European populations and is tagged by rs1234317-T, 

rs2205960-T, rs12039904-T and rs10912580-T. In the early aformentioned data 

from the Vyse group, conditioning on the contribution from each haplotype- 

tagging allele did not resolve the association signal. The most frequent haplotype 

at this locus was under-transmitted to European SLE families and under- 

represented in European cases. This haplotype was tagged by a single allele, 

rs844644-A. The increased association of TNFSF4 5ʹ risk alleles with disease has 

been replicated by GWAS in European and East Asian populations (Han et al., 

2009; Yang et al., 2010), highlighting the genetic similarities at this locus in these 

ancestrally distinct populations. 

 
 

A major obstacle in the identification of disease-specific causal variants at 

TNFSF4 in the European and East Asian SLE cohorts has been the strong linkage 

disequilibrium (r2>0.8) exhibited by genotyped TNFSF4 alleles. This has resulted 

in a high frequency extended haplotype associated with risk of disease instead of 

delineating causal variations at the locus (Cunninghame Graham et al., 2008). It 

is probable that migration out of Africa  involved many founder effects and 

bottlenecks to increase haplotype length in East Asian and European populations 

(Foster and Sharp, 2004). As illustrated earlier in this introduction, Hispanic and 

African-American populations are disproportionately affected by SLE (Molina et 

al., 1997) and health disparities in these groups show onset at a younger age 

(Fernandez et al., 2007). 
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1.7      Summary and study aims 
 
 

The importance of non-MHC loci in genetic susceptibility to lupus is firmly 

established (Vyse et al., 1998; Wandstrat and Wakeland, 2001). Multiple studies 

of SLE families have found strong linkage with a genetic interval on chromosome 

1q25, a region that harbours multiple genes involved in immune regulation. Using 

both a family-based and case-control study design, the Vyse group have shown 

association of the TNFSF4 gene with risk of European SLE. A major obstacle in 

the definition of causal variation at this locus is the strong linkage disequilibrium 

(r2>0.8) exhibited by genotyped TNFSF4 alleles, which has resulted in a high 

frequency extended haplotype associated with risk of disease instead of 

delineating causal variations at the locus (Cunninghame Graham et al., 2008). I 

will use complementary and related strategies to explore the mechanism  of 

disease preposition at the molecular and cellular level. I will attempt to define the 

molecular genetic basis of the disease association. 

 
 

The specific questions that will be addressed in this thesis are as follows: 
 
 

1. Does   polymorphism   at   TNFSF4   predispose   to   SLE   in   non-European 
populations? 

2. Does the haplotype structure in non-European populations offer the potential to 
reduce the size of the TNFSF4 region associated with SLE? 

3. How does polymorphism at TNFSF4 influence gene expression? 

4. Are there additional novel variants which predispose to disease? 
 
 
 

. 
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Study aims: 
 

1. Use SNPs to fine map the TNFSF4 locus in a large cohort of Europeans to 
achieve greater power to resolve the association with SLE. 

 
2. Replicate the genotyping study undertaken in Europeans in aim 1. in five non- 

European populations, to define global TNFSF4 association with lupus. 
 

3. Evaluate TNFSF4 for its utility in terms of dissecting disease pathogenesis: The 
functional relevance of identified TNFSF4 risk-variants will be assessed for 
correlation with cell-surface expression. 

 
4. Perform a targeting deep-sequencing study on the genomic region encompassing 

TNFSF4 in SLE cases selected for their TNFSF4 genotype: To identify 
additional polymorphisms, if any, for association mapping in SLE. 

 
5. Use the novel variants from 4. to comprehensively define the variants unique to 

the TNFSF4risk and TNFSF4non-risk haplotypes for comprehensive haplotype 
construction. 

 
6. Define  the  full  spectrum  of  variants  underlying  the  upstream  TNFSF4 

association in lupus. 
 

7. Define rare SLE-associated coding variants to inform future functional 
experiments to investigate pathogenic mechanism. 
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Chapter 2 
 

Materials and methods 
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2.1 Baseline characteristics of study cohorts 
 

The trans-ancestral mapping study presented in chapter 4 included over 17,900 

SLE and control individuals of self-reported European, African-American (AA), 

Gullah, East Asian, Hispanic and Amerindian ancestry. All cases fulfilled four or 

more of the 1997 ACR revised criteria (Tan et al., 1982) for the classification of 

SLE and provided appropriate written informed consent. The cohorts are 

described in this section. As expected, SLE cases were predominantly women 

(82.33%). 

 

Data presented for TNFSF4 expression analysis additionally used samples from 

the BDA-Warren Repository held at the JDRF/WT DIL (Cambridge, UK) (Bain 

et al., 1990) and are described as cohort 7 in this section. 

 

2.1.1 White European cases and controls (cohort 1) 
 
 

 

The white European SLE cohort consisted of 3009 pooled samples of European 

SLE cases of European American and mainland European origin held under the 

Oklahoma Medical Research Foundation (OMRF) Institutional Review Board 

(IRB), together with 910 samples from the UK European SLE cohort held at 

Imperial College at the time the study was completed. After QC analyses, the 

final cohort used for the analyses is presented in Table 4.1 in chapter 4 of this 

thesis and consisted of 3432 cases and 3640 controls. 

 
 

OMRF and USC Lupus Genetics Study cohort- white European SLE cases 
 

White European SLE cases from America and mainland Europe were enrolled in 

the Lupus Genetics Study at the OMRF and additional collaborating European 

Institutions under the OMRF IRB in collaboration with Professor John B. Harley 

and the SLE genetics consortium (SLEGEN). Diagnosis was verified for all 

affected individuals through extensive medical record review and patient 

interview. Where possible self-reported ancestry was obtained on the basis of 

grandparental country of origin, otherwise parental ancestry was used. The cohort 
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included SLE individuals and probands from SLE pedigrees. Genomic DNA was 

extracted using standard methods from anti-coagulated blood samples and/or 

buccal swabs and/or mouthwash samples. 

 
 

UK European SLE cases 
 
 

This cohort represents a growing collection of SLE cases recruited through 

United Kingdom rheumatology clinics in London or by direct patient contact 

following publicity. The cohort is now held under the King’s College London 

IRB after being held for 7 years under the Imperial College London IRB. Ethical 

approval was obtained under MREC/98/2/6 and all patients recorded their 

demographic variables by patient questionnaire. Clinical data on SLE 

manifestations in all subjects were obtained from medical record review. 

 

Blood samples were collected from each participant and genomic DNA was 

isolated using a standard protocol for phenol-chloroform extraction from 40ml 

blood by technical staff and stored at 4°C. Clinical data and biological samples 

were collected at a single time-point at study enrolment. Disease phenotype and 

activity varied and samples were taken from individuals with acute disease in 

outpatients. 288 SLE probands from white UK European parent/proband trios 

recruited as above were included in addition to 622 individual cases. 

 

Ex-paternity individuals identified through current and previous genetic mapping 

studies were excluded from the analyses and only individuals of self-reported 

White European ancestry included (Rhodes, B., 2008). This cohort was integrated 

with the larger cohort of individuals of white European ancestry (below) before 

genotyping. 

 
 
 

European controls 

The DNA samples from a total of 3491 genotyped European controls were 

provided to the organizing centre (OMRF) from eight separate 

investigators/centres.  Of the total, 547 controls were contributed by the OMRF. 
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At the time of experiment, the controls were population-based and did not have 

SLE, no family history of SLE, and no other autoimmune illness. There is 

uncertainty whether controls provided by the other centres met all these criteria. 

 
 

2.1.2 African-American cases and controls (cohort 2) 
 
 

 

The African-American cohorts consisted of cases and controls from three main 

sources provided in collaboration with Prof. Robert P Kimberly and Dr Jeff 

Edberg from the University of Alabama (CASSLE and PROFILE cohorts). In 

addition, AA individuals were enrolled in the Lupus Genetics Cohort under the 

OMRF IRB in collaboration with Professor John B. Harley and the SLEGEN 

consortium. Collectively the cohort used for analyses comprised 1529 cases and 

3577 controls after QC and details are presented in Table 4.1 of chapter 4. 

 
 

PROFILE cohort 

African-American patients from the multi-centre, multi-ethnic PROFILE cohort 

provided informed consent explicitly indicating their agreement to enrol for 

longitudinal data collection in this study. Detailed characteristics of recruitment 

and demographic variables have been published (Alarcon et al., 2002). 

Individuals were included if 16 years of age or older with disease duration less 

than 10 years from diagnosis to enrolment. African-American ancestry was 

defined by reporting all four grandparents to be of the same background. 

Genomic DNA was extracted from blood obtained after physical examination. 

Longitudinal data allowed for the examination of phenotypes and damage as per 

the SLICCC Damage Index (SDI), including time to, and nature of, renal 

involvement and disease activity. 

 
 
 

CASSLE cohort 
 

652 SLE cases and 926 age-matched African-Americans from the University of 

Alabama CASSLE cohort were included if 16 years of age or older with disease 

duration  less  than  10  years  from  diagnosis  to  enrolment.  African-American 
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ancestry was defined by reporting all four grandparents to be of the same 

background. Additional SLE samples from the CASSLE are included in the 

multi-ethnic PROFILE cohort (above). Genomic DNA was extracted by standard 

procedures from whole blood and stored. 

 
 

OMRF Lupus Genetics Study cohort- Africa American SLE cases 
 

As for white European SLE cases enrolled under the same program described in 

section 2.1.1 of this chapter. 

 
 

2.1.3 Gullah cases and controls (cohort 3) 
 

 

As discussed in chapter 1, despite the high disease load in African-Americans, 

there is the perception that lupus is relatively rare in continental Africans, 

although AA samples can be used to investigate this; the significant genetic 

admixture (10-30%) which exists in AAs may confound attempts. A second 

informative group is the Gullah population of the Sea Islands of South Carolina, 

the Gullah have lower genetic admixture (<10%) due to geographical isolation 

and strong cultural heritage. Anthropologic studies indicate a direct ancestral link 

between the Gullah and Sierra Leonians. The SLEIGH (SLE in Gullah Health) 

cohort of 152 cases and 122 controls was provided in collaboration with Professor 

Gary Gilkeson of the Medical University of South Carolina.  

 

 

Characteristics of recruitment and demographic variables of this cohort have been 

published (Kamen et al., 2008; Gilkeson et al., 2011).  Inclusion criteria were age 

2 years or more, self-identification as African-American Gullah from the Sea 

Islands region of South Carolina with all known ancestors to be Gullah, to meet 

4/11 ACR criteria, the ability to understand English and be able to provide 

informed consent. Healthy AA-Gullah subjects recruited as controls were 

required to have no family history of autoimmune disease or known family 

members with SLE. Control subjects had to complete connective tissue screening 

questionnaires and screening examination for autoantibodies. 
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2.1.4 Amerindian and Hispanic cases and controls (cohort 4) 
 
 

 

Latin Americans have been generically coined Mestizo (Hispanic), in many US 

studies on the basis of language, but actually constitute a markedly heterogeneous 

group of subjects with different cultural backgrounds but a common mother 

tongue, Spanish. Individual contributors to the Mestizo cohort can be found in 

Table 2.1 and general features of cohorts not already described above are listed in 

this table. An additional 34 cases and 7 controls from 6 additional contributors 

which were used are held under the OMRF IRB. The final cohort used after QC 

analyses are presented in Table 3.1 in chapter 3 of this thesis. The combined 

cohort of Amerindians and Hispanics consisted of 1348 cases and 717 controls. 

 
 

  Table 2.1 Contributors to the Amerindian and Hispanic cohort 

Contributor Institution 

 

Cases, controls 

 

Cohort Details 

Betty P Tsao UCLA, California, USA 119, 21 UCLA lupus cohort 

Chaim O 
Jacob 

USC, California, USA 479, 51 
Lupus Genetics Study, 
USC 

Jacob et al. 2009 

John B Harley OMRF, Oklahoma, USA 204, 138 
Lupus   family   registry 
and repository Sanchez et al, 2011 

JM Ananya 
Universidad   del   Rosario, 
Bogota, Colombia 

164, 127 Colombian Ananya et al. 2011 

ME Alarcon 
Riquelme, 
Bernardo 
Pons Estel 

 
Sanitorio Parque, Rosario, 
Argentina 

 

193, 240 

 

GLADEL 

 

Pons Estel et al. 2011 

ME Alarcon 
Riquelme, 
Ignacio Garcia 
de la Torre 

 
University of Guadalajara, 
Guadalajara, Mexico 

 

101, 64 

 

GENLES 

 

Sanchez et al. 2011 

Robert P 
Kimberly, 
Jeff Edberg, 
EE Brown 

 

UAB, Alabama, US 

 

235, 148 

 

PROFILE 

 

Alarcon et al, 2002 
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GLADEL (Grupo Latinoamericano de Estudio del Lupus) cohort 
 

Clinical, laboratory and prognostic variables were analysed in this Latin American 

cohort samples from many centres in 9 Latin American countries for which data 

have been published (Pons-Estel et al., 2004). Each centre incorporated a maximum 

of 30 randomly selected patients. Disease activity using both SLEDAI (Bombardier 

et al., 1992) and MEX-SLEDAI (Guzman et al., 1992) was measured in all patients 

at the time of entry and every 6 months thereafter. All data was collected and held 

using the ARTHROS 6.0 database which has a lack of language barriers since all 

elements are coded and allowed English-speaking investigators at the OMRF to 

collect it. 

 
 

Lupus family registry and repository Mestizo SLE cases of Mexican ancestry 
 

Mestizo individuals of mainly Mexican ancestry were recruited with the same 

criteria as for all other samples used in the Lupus genetics Study cohorts described 

above and held in the OMRF family registry and repository. 

 
 

Colombian lupus cohort 
 

Colombian patients under approval of the local ethics commitee were recruited at 

multiple clinics in Medellin, Colombia. All patients fulfilled the minimium (ACR) 

criteria for the classification of SLE. Controls were unrelated to patients, without 

inflammatory or autoimmune disease, matched to patients by age (±5 years), sex, 

and ancestry. Clinical and laboratory variables were evaluated by medical exam, 

severity and damage measured using the SDI (Correa et al., 2003). 

 
 

GENLES 
 

This cohort represents a growing collection of SLE cases recruited throughout 

Latin America known as GENLES. The 101 SLE cases and 64 controls used in the 

analyses presented in chapter 3 were collected throughout Mexico (specifically 
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from the cities of Guadalajara, Morelia, Culiacán and Mexico City) (Sanchez et al., 

2010). 

 
 
 

2.1.5 East Asian SLE-control (cohort 5) 
 

 

This cohort consists of a heterogeneous group of East Asian subjects with most 

cases from Korea. Individual contributors and general features of the cohort can be 

found in Table 2.2. Population-based control samples were supplied by most SLE 

case contributors. At the time these doctoral studies were planned, the controls had 

not been diagnosed with SLE or other autoimmune illness and had no family 

history of SLE illness. The final cohort used for analyses after QC is presented in 

Table 4.1 in chapter 4 of this thesis. 

 

 Table 2.2 Contributors to the East Asian cohort   
 
Contributor 

Cases, 
controls 

 

 
Origin 

 

 
Cohort 

 
Details 

Susan 
Boackle 

13,0 Asia Colorado/ Denver 

SC Bae 648, 753 Korea Hanyang Lupus Cohort Chun et al. 2005 

CO Jacob 90 Asia 
Lupus Genetics Study Cohort, 
USC 

Jacob et al. 2009 

Judith James 2, 73 Korea 
Lupus Genetics Study Cohort, 
OMRF 

Harley et al, 2008 

Anne 
Stevens 

13,0 Asia Lupus Research Institute cohort Liao et al. 2011 

 
 
 

BP 

571, 522 Total 
 
 
 

Shanghai Institute of 

 
 
 
 

Lessard et al. 

40, 8 Asia 

113, 247 China 

Tsao/Nan 23, 8 Japan Rheumatology and UCLA. 

Shen 255, 259 Korea Asian Lupus cohort 2011 

29,0 Singapore 

111,0 Taiwan 

 
 

Hanyang Lupus Cohort 
 

All patients in this growing collection of SLE patients gave informed consent for 

enrolment in this cohort. All of the patients were Korean in ethnicity. The age, 

duration of disease and duration of follow-up for a large proportion of patients is 
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published (Chun and Bae, 2005). In 2005, when these features were published, 

the patients were aged 36.1+12.1 (mean+SD; range 8–74) years old, their disease 

duration and follow-up duration were 5.6+3.0 (range 0.4–19.9) and  4.7+2.8 

(range 0.4–14.5) years respectively. The female-to-male ratio at the time of this 

study was 13.6 (434/32). 

 

Shanghai Institute of Rheumatology, Asian Lupus 

SLE cases from multiple Asian countries were recruited in this cohort, the 

Chinese subjects from medical centres in Zhejiang, Shangdong and Liaoning 

provinces. Written informed consent followed by medical record review 

confirmed patient eligibility and clinical variables were collected at the time of 

diagnosis. Features of the disease were recorded by questionnaire. The clinical 

and immunological features of the SLE patients have been in published (Liao et 

al., 2011), the controls are area-matched unrelated healthy individuals visiting 

hospitals. 

 

Phenotypes 
 

Clinical data on SLE manifestations in all subjects used were obtained from 

medical record review performed at individual institutions, collected and 

processed at the OMRF, with additional phenotypic information from KCL, 

MUSC (Gullah) and UAB (PROFILE and CASSLE). 

 
 
 
 

2.1.6 Wellcome Trust Case Control Consortium (WTCCC) Controls (cohort 

6) 
 
 

 

This collection comprises a common set of nationally-ascertained controls 

from Great Britain. The samples have two major sources; the 1958 Birth 

Control Cohort and UK blood donors. This cohort has been used extensively 

as a common cohort to catalogue human genetic variation in common 

inflammatory and autoimmune disorders and details of the cohort are 

described at (URL: https://www.wtccc.org.uk/index.shtml). Fifty individuals 

http://www.wtccc.org.uk/index.shtml)
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were randomly selected from the 1958 Birth Control Cohort for genotyping of 

SNPs selected for the European cohort (cohort one) to increase the power of 

imputation analysis described in section 2.9 of this chapter. 

 
 
 

2.1.7 British Diabetic Association (BDA)- Warren Repository (cohort 7) 
 
 

 

In 1989, the BDA, in conjunction with a bequest from Alec and Beryl Warren, 

initiated a major genetic resource of DNA and EBV-transformed cell lines from 

multiplex type 1 diabetes pedigrees. The efforts of clinical staff, patient groups 

and publicity aided sample recruitment throughout the UK and Ireland. Contact 

was made by letter; informed consent was obtained and venesection arranged. To 

ensure ancestral homogeneity all individuals had four grandparents born within 

the British Isles. Inclusion criteria included at least one live parent with or 

without diabetes. Thereby an extensive, growing resource was founded and made 

available to research groups by material transfer agreement (MTA); at the time 

these doctoral studies were planned the collection included 3276 samples. 

Detailed information on Warren collection samples has been published (Bain et 

al., 1990). Lymphoblasoid cell lines and DNA from this collection was provided 

in collaboration with Prof. John Todd and colleagues, JDRF/WT DIL laboratory, 

Cambridge Institute of Medical Research, Cambridge, UK. 

 

 

2.2      SNP selection 
 

2.2.1     SNPs selected to resolve the TNFSF4 association with SLE 
 

Haplotype tag SNPs and proxy variants capturing all common haplotypes were 

selected for genotyping. This meant we did not type all markers in all groups as 

marker selection was dictated by TNFSF4 locus architecture and additional SNPs 

found to be associated in our European association study (Cunninghame Graham 

et al., 2008). 
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At the time these studies were planned, the association of TNFSF4 SNPs with 

European lupus was yet to be published; no other pertinent data were in the public 

domain. Therefore empirical genotypes for HapMap II reference populations 

dictated TNFSF4 locus architecture and tag SNP selection. 

 
 
 

The selection of SNPs for typing followed a similar pattern for the European, 

African-American and Gullah and East Asian cohorts, using the northern/western 

European (CEU), west African (YRI) and East Asian (CHB/JPT) HapMap II 

panels (Barrett et al., 2005; de Bakker et al., 2006), respectively. The 

distribution of the correlation (r2) values between the allelic tests based on the tag 

SNPs and the untyped variants was assessed using the Tagger facility of 

Haploview and an r2 threshold of 0.8. The effective coverage of these tag SNPs in 

comparison to the entire set of locus-specific polymorphic variants were 

evaluated and markers which best defined each haplotype block in each cohort 

were selected. Additional SNPs found to be associated in our European 

association study, at the time not published, (Cunninghame Graham et al., 2008) 

were also typed in all cohorts. 

 
Our Mestizo Hispanic and Amerindian samples were collected from regions with 

decreased African and increased European admixture (Sanchez et al., 2010). 

These data suggest the largest proportion of source ancestry for these individuals 

is Amerindian or Southern European, and so they are not specifically represented 

by the HapMap phase II datasets. It was our view that markers selected for the 

European cohort spiked with the best tag SNPs selected for each of the other 

cohorts would best represent the common TNFSF4 haplotypes associated with 

SLE in Amerindians. 

 
 

In all, 125 different SNPs in a 200kb region (chromosome 1q25.1, 171,400,000- 

171,600,000, NCBI build 36.3) encompassing the TNFSF4 gene and 5´ region 

were selected for fine-mapping the TNFSF4 locus. 
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2.2.2 SNPs selected to address admixture 
 

A panel of 347 genome-wide SNPs as used by Halder and colleagues (Halder et 

al., 2008) were  used to correct for major ancestry across all cohorts tested. 

Additionally, 20 1q25-specific ancestry markers were genotyped to correct for 

local two-way admixture between Europeans and West Africans. These markers 

were selected for their large differences in allele frequencies between West 

Africans and Europeans and were not in LD in the ancestral populations. 

 
 

2.2.3 SNPs selected to discriminate TNFSF4risk and TNFSF4non-risk haplotypes 
for gene expression studies 

 
Four SNPs- rs3850641, rs1234314, rs3861953 and rs2205960- were selected to 

discriminate between TNFSF4risk and TNFSF4non-risk homozygote individuals 

selected from the Warren Collection held at the JDRF/WT DIL laboratories. 

 
 

2.3 Genotyping 
 

For the trans-ancestral mapping data presented in chapter 4, genotyping was 

performed in two independent experiments using an Illumina Golden Gate 

custom genotyping assay for a first round of genotyping of the African-American 

and European samples followed by fine-mapping of all cohorts on the basis of 

these data on the Illumina iSelect platform. All genotyping was undertaken at 

OMRF for the combinations of haplotype tag SNPs and proxy variants described 

in 2.2.1 with the aim of capturing all common haplotypes at TNFSF4. The 

TNFSF4 locus was genotyped as part of a larger study of genetic loci in SLE, this 

significantly reduced cost per genotype. 

 
 
 

Technical staff at the JDRF/WT DIL laboratory (CIMR, Cambridge, UK) 

genotyped the TNFSF4 variants described in 2.2.3 by Taqman assay (Applied 

Biosystems,   Carlsbad,   California,   USA).   Theoretical   aspects   of   Taqman 
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genotyping and protocols are described at (URL: 

http://www.appliedbiosystems.com/absite/us/en/home/applications- 

technologies/real-time-pcr/taqman-probe-based-gene-expression- 

analysis/taqman-gene-expression-assay-selection-guide.html).  

Genotyping enabled interrogation of the Warren collection for individuals 

relevant to the experiments planned for which data are found in chapter 3 of this 

thesis. 

 
 

2.3.1 Design aspects of custom genotyping assays 
 

Genotyping was carried out in two stages as described, custom SNP assay panels 

were  designed  using  the  Illumina  online  Assay  Design  Tool  (ADT)  (URL: 

http://www.illumina.com/support/array/array_software/assay_design_tool.ilmn). 

Input of SNP loci generated an output file which predicted success information 

including the validation status of each allele by at least two independent methods 

and the design success in the context of previous successful Illumina genotyping. 

The output is used to refine the assay panel; three SNPs were replaced on the 

basis of low ADT score, increasing the likelihood of successful genotyping. The 

iSelect platform was selected because the historically high call rates give accurate 

detection  of  polymorphisms  and  the  platform  easily  lends  itself  to  high 

multiplexing for the SNPs selected in section 2.2. 

 
 
 

2.3.2 Theoretical aspects of GoldenGate chemistry 
 

Briefly, the workflow to generate genotypes typically starts with allele-specific 

hybridization followed by DNA extension and ligation. A universal PCR 

amplification step preceded hybridisation of product to BeadChip and autocalling 

of genotypes. A more detailed description is found at URL: 

http://www.illumina.com/technology/goldengate_genotyping_assay.ilmn 

 
 

2.3.3 Theoretical aspects of iSelect genotyping 
 

Markers were interrogated using 50-mer probes which selectively hybridized to  

http://www.appliedbiosystems.com/absite/us/en/home/applications-
http://www.appliedbiosystems.com/absite/us/en/home/applications-
http://www.illumina.com/support/array/array_software/assay_design_tool.ilmn)
http://www.illumina.com/support/array/array_software/assay_design_tool.ilmn)
http://www.illumina.com/technology/goldengate_genotyping_assay.ilmn
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the selected SNP loci but which stopped one base before the marker. Specificity 

was conferred by enzymatic single-base extension to incorporate a labelled 

nucleotide. Dual-colour florescent staining allowed the labelled nucleotides to be 

detected by Illumina’s iScan imaging system, to identify both colour and signal 

intensity, for which a description can be found at URL: 

(http://www.illumina.com/technology/infinium_hd_assay.ilmn). 

 
 

2.3.4 Cluster profiles 
 

SNPs genotypes in their raw form comprised three different plots of the 

fluorescent intensity and were used to evaluate the quality of the genotype calls. 

Two fluorescent dyes were used to measure the presence of an allele (X and Y). 

The allele specific intensities were normalized using a proprietary algorithm in 

the Illumina Beadstudio software (URL: 

http://www.illumina.com/Documents/products/datasheets/datasheet_beadstudio.p 

df). Normalized allele intensities were transformed to a combined SNP intensity 

and an allelic intensity ratio. Figure 2.1 illustrates raw and corrected plots for a 

well genotyped SNP. High quality SNPs should produce three clusters 

representing the homozygous XX, YY and XY genotypes. Poor separation 

between clusters, multiple clusters (caused by adjacent polymorphisms) or diffuse 

clusters resulted in poor accuracy in genotype calls. 

 
 
 

2.4 Data storage and management 
 

Genotypes and data on clinical variables and disease manifestations were stored, 

formatted and indexed in BCSNPmax version 2.5.5 (Biocomputing Platforms 

Ltd, Espoo, Finland). The BC suite integrated many of the analyses programs 

used for data presented in chapter 4. Data analysis was undertaken using this 

system in our local cluster environment. 

http://www.illumina.com/technology/infinium_hd_assay.ilmn)
http://www.illumina.com/technology/infinium_hd_assay.ilmn)
http://www.illumina.com/technology/infinium_hd_assay.ilmn)
http://www.illumina.com/Documents/products/datasheets/datasheet_beadstudio.p
http://www.illumina.com/Documents/products/datasheets/datasheet_beadstudio.p
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Figure 2.1 Raw (top) and corrected (below) plots for a well genotyped SNP. Diagram courtesy of 

Dr Ken Kaufman, OMRF 

 

 
 
 
 
 

2.5 Quality control (QC) analyses 
 

2.5.1 QC filtering of individuals 
 

QC of individuals was undertaken before QC of markers to reduce SNP fallout 

prior to association analyses. Samples with greater than 10% missing genotypes 

were excluded for poor DNA quality. Individuals with a large proportion of 

heterozygous genotypes compared to the mean for each cohort were removed as 

likely contaminated. Individuals were also excluded for low and high 

heterozygosity. The boundaries for low and high heterozygosity depended on the 

population, with the highest in African-Americans and lowest in Europeans. 

Unknown familial relationships due to identity by descent (IBD) were detected 

between pairs of individuals using the pi-hat approach in PLINK to remove 

second-degree relatives up to duplicates. 
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Population stratification bias and effects due to admixture were addressed by 

genotyping 347 genome-wide SNPs, on the Illumina iSelect platform, as used by 

Halder and colleagues (Halder et al., 2008). The authors had selected the panel of 

autosomal AIMs to distinguish individual biogeographical ancestry and 

admixture proportions for the same four continental ancestral populations used in 

the study presented in chapter 4 of this thesis. 20 Additional 1q25-specific 

ancestry markers were interrogated by Illumina GoldenGate custom array to 

correct for two-way admixture between Europeans and West Africans. Within 

each cohort the Eigenstrat program, as described in chapter 1, was used for 

principal components (PC) analysis and global ancestry estimates were 

additionally inferred by a combined  Bayesian and sampling-theory approach 

(Admixmap). The African-American data was spiked with HapMap phase III 

West African (Yoruba, YRI), Southern European (Tuscan, TSI) and 

Northern/Western European (CEU) genotypes to cross-compare two-way 

admixed AAs with their source populations (chapter 4, Figure 4.2). 
 

2.5.2 QC filtering of SNPs 
 

Following filtering for duplicates, first-degree relatives, assessment of HWE, 

missingness and major ancestry, the dataset comprised 111 TNFSF4 SNPs and 

294 AIMs and 15600 samples (Details of individual cohorts are found in Table 

4.1). Markers with less than 90% genotyping efficiency were excluded from the 

analysis. The relationship between genotype and allele frequency was evaluated 

by Hardy-Weinberg Equilibrium (HWE) in control samples of each cohort, to 

evaluate random mating in the absence of selection. We included markers which 

deviated up to P<0.01 away from HWE as assessed using Pearson's chi-squared 

test. The null hypothesis, that the distribution of allele frequencies is consistent 

with established allele frequencies per population, was tested. A single marker, 

rs1234313 had a HWE value which deviated in East Asian controls (HWEP=10-5), 

rs1234313 was associated with SLE in multiple populations tested in this study, 

and a previous reported association of this marker with SLE influenced the 

decision to include it. All other genotyped markers were well within the selected 

deviation parameters. 
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2.6 Statistical methods I 
 

2.6.1 Imputation methods 
 

Imputation of the genomic region from 171,385,000 to 171,600,000 (NCBI build 

36.3) on chromosome 1q25.1 was performed using IMPUTE2 and combinations 

of HapMap phase III populations with second reference genotypes dictated by 

population (described in chapter 4, Table 4.1). Imputation was used to fill missing 

gaps in the genotyping data and impute markers with MAF>3% missing between 

datasets to examine structure of common haplotypes across the populations. 

Imputed SNPs were included in downstream analysis if SNP certainty scores 

were greater than 0.8 and an Impute info threshold of 0.7 or above. These criteria 

successfully filtered out all but the best-imputed SNPs. The final datasets 

comprised Europeans (112 SNPs in 3432 cases, 3640 controls), East Asians (100 

SNPs  in  1500,  1396),  African-Americans  (121  SNPs  in  1529,  2048)  and 

Hispanics (51 SNPs in 1348, 717, not imputed). 
 
 
 

2.6.2 Inference of recombination 
 

FastPHASE v1.2 (Scheet and Stephens 2006) was used to infer missing 

genotypes and haplotypic phase from unphased TNFSF4 SNP genotypes from 

6272 unrelated control chromosomes (1568 from each population), randomly 

chosen after QC filtering. FastPHASE incorporates a Hidden Markov Model 

which allows flexible clustering of SNPs spanning the locus. Rhomap from the 

LDhat2.0 package was used to estimate population scale recombination rates in 

the presence of hotspots using pre-computed maximum likelihood tables in the 

analysis (Scheet and Stephens., 2006). Using the approach of Auton and 

colleagues (Auton and McVean, 2007; Auton., 2007), rhomap was run for a total 

of 1,100,000 iterations including a burn-in of 100,000 iterations, the chain was 

sampled every 100 iterations after the burn-in. Each simulation incorporated 196 

chromosomes meaning a total of eight simulations were completed per group and 

the mean average recombination calculated between each pair of markers at the 

TNFSF4 locus. Simulations were executed in their entirety on three independent 
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occasions and additional simulations were undertaken in each group by varying 

the burn-in and chain sampling parameters to ensure there were no irregularities. 

These analyses were extended to infer recombination in phased chromosomes 

from African-American TNFSF4risk and TNFSF4non-risk homozygote individuals: 

Figure 4.5 depicts the data in chapter 4 of this thesis. 

 
 
 

2.7 Statistical methods II 
 

2.7.1 Single marker association analyses 
 

After QC filtering, single marker association and conditional data were generated 

using a case-control format and the continuous covariate function in SNPTEST 

v2 under the additive model (Marchini., 2010). A frequentist statistical paradigm 

and a probabilistic method was used to treat genotype uncertainty. A logistic 

regression model which was additive on the log-odd scale was used to evaluate 

TNFSF4 variants. Under this model, the score test, an asymptotic test of 

hypothesis, was used to test association of the variants for the binary phenotype 

(case, control or phenotype-control), under the null hypothesis. For non-imputed 

variants and the high certainty imputed SNPs with info>0.7 that were included in 

analysis post QC, the test statistic reduced to the Cochran-Armitage trend test 

statistic. The score test was presumed to produce a sensible result since the 

validity of the quadratic function (of the log likelihood curve) was not 

undermined by small sample size, low allele frequency or increasing genotype 

uncertainty. The trend test exploited the suspected effect direction to increase 

power to detect association. 

 

To preserve the type 1 error, the variance of the score test was adjusted using 

genomic control to control for inflation. GC was calculated on null loci  to 

estimate variance. Association was computed at each of the null SNPs, and λ 

calculated as the empirical median, divided by its expectation under the χ2 

distribution (Balding., 2006). The association was then computed for candidate 

SNPs, where they reached λ > 1, the test statistics were divided by λ, testing 

required 2 df. The quantile of the score test statistic was interpreted by calculating 
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p-values. An arbitrary locus-wide significance level for rejecting the null 

hypothesis was set at P=5 x10-5. Odds ratios (OR) with 95% confidence intervals 

(95% CI) were taken from the exponent of the beta coefficient of the logistic 

regression model together with the standard errors. Significance of association of 

corrected p-values were based on permutation testing (5000 permutations). Data 

are represented as nominal uncorrected p-values and permuted (Pp) values. 

 
 

Per SNP significance level α′ should satisfy α = 1 − (1 − α′), leading to the 

Bonforroni correction n α′ ≈ α / n for independent variants tested under a 

statistical paradigm. However, this correction was judged conservative for the 

genotyped variants at TNFSF4, many of which exhibited high LD (r2>0.7). 

Instead, the type-1 error was approximated by a permutation procedure. Case- 

control status was randomised x5000 whilst maintaining the LD structure of 

variants for each dataset, to satisfy the null hypothesis, in order to estimate the 

false-positive rate (Balding., 2006). 
 
 
 

Technical details of the aforementioned score test used in SNPTEST v2 are found 

at      URL:http://mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.v2.pdf 

 
 
 
 

2.7.2 Meta-analysis 
 

A logistic regression model fitted with an interaction term (effect) in the R 

statistical package was used to investigate cross-study heterogeneity. P-values for 

individual associated SNPs were generated using the likelihood-ratio test. 

Rs1234314, rs1234317, rs2205960, rs12039904, and rs10912580 were selected 

as representatives for this test. I implemented a fixed effects meta-analysis 

method combining the association results for African-Americans, East Asians, 

Europeans and Hispanics to more powerfully estimate the true effect size, the 

results of these analyses are described in Table 4.6, chapter 4. The average effect 

size across all datasets was computed using inverse variance weighting of each 

http://mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.v2.pdf
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study. SNPs were organised into two categories (TNFSF4 gene or 5´ region) and 

are highly correlated with one another (r2 > 0.7) within each group. Associated 

SNPs from African-American cohort were tested for heterogeneity, and included 

in the meta-analysis where the associated allele was the same. 
 
 
 

2.7.3 Haplotype bifurcation 
 

The Long Range Haplotype (LRH) test was used to investigate common alleles 

with long-range linkage disequilibrium (LD): I was able to represent the 

breakdown of the risk and non-risk haplotypes. TNFSF4risk and TNFSF4non-risk were 

anchored by a core associated marker, rs1234314, in all groups and conveniently 

positioned at the boundary of the TNFSF4 gene and 5′ region, also at the 

boundary of two haplotype blocks. Haplotype bifurcation diagrams were then 

generated in the program Sweep™. 

 
 
 

2.7.4 Haplotype association and conditional regression 
 

Haplotypes in the TNFSF4 gene and 5′ region were constructed in Haploview 4.2 

using a custom algorithm, based on the r2 measure of linkage disequilibrium 

(LD). Markers and haplotypes with frequencies greater than 5% and 4% 

respectively, were included in the analyses. Haplotypes were anchored using tag 

SNP genotype data and boundaries were inferred using recombination data. SLE 

case-control association and step-wise conditional logistic regression data for 

each  haplotype  was  generated  in  PLINK,  as  were  OR  (95%  CI)  these  are 

represented as nominal uncorrected p-values and x5000 permuted (Pp) p-values. 
 
 
 

2.7.5 Sub-phenotype association 
 

Searching for TNFSF4 alleles linked to specific clinical manifestations of lupus 

may prove informative with regards to mechanism and so better resolve causal 

alleles because of greater genetic homogeneity compared to the disease per se: 
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Phenotypes amenable to study, and relevant to the biologic function of TNFSF4 

in lupus, are described in section 1.1.2 of chapter 1. TNFSF4 variants were tested 

for association using the same methods described in section 2.7.1 against 

interquartile age at diagnosis using a case-only format. The variants were also 

tested against leukopenia and lymphopenia, anti-La, anti-Ro and anti-Sm 

autoantibody subsets, which are associated with SLE, together with renal disease, 

using both case-only and phenotype-control formats. A covariate for the most 

associated marker  per aforementioned phenotype was included for each 

population to investigate independent effects. The SNPTEST v2 program was 

used for these tests. 

 
 
 

Investigating the correlation of TNFSF4 genotype with expression 
 

In order to better understand how TNFSF4 acts as a susceptibility gene in SLE, 

the upstream 
 

The TNFSF4risk and TNFSF4non-risk haplotypes were investigated for their 

influence on TNFSF4 expression in EBV lymphoblastoid cell lines (LCLs) 

(provided by the JDRF/WT DIL laboratory, Cambridge, UK) and in peripheral 

blood mononuclear cells (PBMC) from our UK-European SLE collection 

described in section 2.1 of this chapter. Haplotypes were defined by genotyping 

locus-specific SNPs which captured common, informative haplotypes in multiple 

Northern European parental-proband and SLE-control cohorts (Cunninghame 

Graham et al., 2008). In excess of 1,000 LCLs were genotyped at the tag SNPs 

rs2205960, rs1234314 and rs7514229. LCLs were selected if they were risk or 

non-risk haplotype homozygotes on the basis of this genotyping. Re-sequencing 

of the risk-haplotype tagging SNPs rs10912580, rs12039904 and rs1234317 and 

non-risk haplotype-tagging rs844644 confirmed homozygosity of the smaller 

subset of 12 JDRF/WT DIL samples selected for expression analysis. 
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2.8 Preparation of genomic DNA 
 

Genomic DNA was isolated from 40ml anti coagulated whole blood by a standard 

phenol-chloroform extraction. Lymphocytes were separated from anti-coagulated 

whole blood by centrifugation through Histopaque-1077 (Sigma-Aldrich) using a 

protocol described on the insert of and using ACCUSPIN™ tubes (Sigma- 

Aldrich). 

 
 
 

2.9 Selection of samples for expression analysis 
 

Expression analysis was performed on peripheral blood mononuclear cells 

(PBMC) taken from our UK- European SLE cohort and on EBV-transformed 

lymphoblastoid cell lines (LCL-cells) from the Warren collection (provided by 

Prof. John Todd and colleagues, JDRF/WT DIL laboratory). These cells were 

genotyped using the risk- haplotype-tagging SNPs rs2205960, rs1234314 and 

rs7514229 by standard Taqman assay (Applied Biosystems, Carlsbad, California, 

USA). The phase of the upstream haplotypes, for SNPs rs2205960 and 

rs1234314, was determined using PHASE v2 (Scheet and Stephens, 2006). In 

order to control for potential variation in expression at the 3′ end of TNFSF4, 

samples were only included in the expression study if they were also homozygous 

for SNP rs7514229 in the 3′ UTR of the gene. In LCL-cells, samples were 

selected which were homozygous for tag SNPs carried by the upstream risk 

haplotype (n=3) and those which were homozygous for the tagging SNPs carried 

by the under-transmitted upstream haplotype 3 (LCL-under) (n=3). 

 
 
 

2.10 In vitro activation of PBMCs and LCL-cells 
 

Peripheral blood lymphocytes or LCL-cells were suspended in complete RPMI 

medium (RPMI 1640 medium (Invitrogen, Paisley, UK) supplemented with 10% 

Foetal Bovine serum (Invitrogen, Paisley, UK), 10,000 U/ml Penicillin 

(Invitrogen, Paisley, UK), 10,000 µg/ml Streptomycin (Invitrogen, Paisley, UK) 

and 200 mM L-Glutamine supplement (Invitrogen, Paisley, UK)) and grown in 



80  

suspension at a concentration of 3x106 cells/ml. Cells were stimulated with 
10ng/ml rCD40L (Axxora, Nottingham, UK), 20ng/ml CD40L enhancer (Axxora, 
Nottingham, UK) and 2ug/ml goat anti-human anti-IgD polyclonal antibody 

(Serotec, Oxford, UK). 2 x 106/ml cells were frozen in Trizol® for RNA 

extraction and 0.5x106 cells/ml re-suspended in FACS staining buffer and then 
stained with fluor-conjugated antibodies for FACS analysis. 

 
 
 

2.11 FACS analysis 
 

PBLs or LCL-cells were stained in FACS staining buffer using FITC- conjugated 

anti-human CD86 mAb (MCA1118F, Serotec, Oxford, UK) as a marker of B-cell 

activation, in combination with phycoerythrin-conjugated anti-human TNFSF4 

mAb (ANC10G1, Axxora, Nottingham, UK). 

 
 
 

Cells were size-gated and analysed for expression of CD86 and TNFSF4 and 

designated negative for TNFSF4 if expression fell within the background staining 

compared to a mouse IgG1 negative control mAb (MOPC 31C, Ancell). All 

analyses of FACS data were carried out on the FACScalibur cell sorter using 

Cellquest software (Becton Dickinson, Franklin Lakes, USA) and cell plots 

generated using publically-available WinMDI software (Joe Trotter, Scripps 

Institute). 

 
 
 

2.11.1 Statistical analysis of FACS data 
 

The Mann-Whitney test was used to compare the differences between the 

numbers of TNFSF4-positive cells carrying the TNFSF4risk and TNFSF4non-risk 

haplotypes. Further tests were undertaken for the Epstein-Barr virus (EBV)- 

transformed lymphoblastoid cell lines (LCL cells) and peripheral blood 

lymphocytes (PBLs). 
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2.12 NGS sequencing of TNFSF4 gene and 5ʹ region 
 

To search for new TNFSF4 alleles associated with SLE, the Roche-454 Titanium 

platform (Rothberg and Leamon, 2008), (www.my454.com) was used to 

sequence a 118kb section of chromosome 1q25.1 encompassing the TNFSF4 

gene and risk-associated 5′ region up to the upstream boundary of this haplotype 

in 71 individuals. Step-wise conditional regression of the risk-associated alleles at 

this locus indicate the presence of an independent non-risk signal located in this 

section of the TNFSF4 5′ region tagged by a single non-risk marker, rs844645. 

Defining the boundary of the association signal in Northern Europeans by 

mapping genotyped TNFSF4 and longer range SNPs at adjacent loci allowed 

selection of individuals who possess two copies of the risk or non-risk SLE- 

associated TNFSF4 haplotype. Data from our previous case-control and family- 

based analyses of TNFSF4 in UK European SLE are used for haplotype definition 

(Cunninghame Graham et al., 2008). 

 
 
 

2.12.1 Long-range PCR amplification 
 

DNA stored at 2-8°C for selected UK-European SLE individuals was quantified 

by agarose gel electrophoresis to ensure high molecular weight. PCR primers 

were designed according to dictates required for long-range amplification using 

Primer3 (v. 0.4.0) software (Rozen and Skaletsky, 2000). Primer sequences are 

available on request. Enrichment of the TNFSF4 locus for NGS was 

accomplished by long-range PCR in a tile-path which spanned the locus  to 

prevent gaps in sequencing coverage and with amplicons of a size range of 8- 

14kb. High fidelity PCR was undertaken using the SequalPrep™ Long PCR Kit 

with enhancer B (Invitrogen, Carlsbad, UK) according to manufacturer’s cycling 

times, adjustments to the extension time at 1min were made for every 1kb of 

additional sequence amplified. 
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2.12.2 Purification and pooling of PCR products 
 

High-throughput ultrafiltration-based purification of PCR products >100bp 

(MinElute 96 UF PCR Purification, Invitrogen) preceded picogreen quantification 

(Quant-iT™, Invitrogen) to determine molarity. Additional quantification of the 

products of PCR by agarose gel electrophoresis was undertaken to ensure 

amplicon fidelity. PCR products were pooled in molar amounts on a per 

individual basis up to a final concentration of 2ug. These steps preceded 

hydrodynamic shearing of DNA to a 500-800bp size range by brief pulses of 

sonication at 4°C (Bioruptor® UCD-200, Diagenone). Further purification by 

solid-phase  reversible  immobilisation  (SPRI)  beads  removed  sheared  DNA 

<100bp (Dhanya et al., 2008) (Agencourt) and allowed concentration of the 

volume in EB buffer. All but 400ng of sheared pooled product per sample was 

stored in liquid nitrogen. 

 
 
 

2.12.3 Parallel-tagging and library preparation 
 

The parallel-tagged sequencing (PTS) strategy of Meyer and colleagues (Meyer et 

al., 2008) was adopted to facilitate processing of all samples in parallel whilst 

using only half a Roche-454 Titanium chip. The barcoding adaptors comprise 

single self-hybridised palindromic oligomers 8 nucleotides long; they carry a SrfI 

restriction site in the middle (GCCCGGGC). Srf1 cuts approximately  every 

150kb in mammalian genomes. The sequence tag may start with either an A or a 

T followed by six freely chosen nucleotides, and ends in a C or G. 

Homopolymers are not allowed within the tag sequence. For example, if the 

oligomer is TCTCTGTG its reverse complement is CACAGAGA, so the adapter 

in full is 

GCCCGGGCTCTCTGTG-Sequence-CACAGAGAGCCCGGGC, half of the tag 

is cut off by SrfI so the sequence reads GGGCTCTCTGTG-Sequence- 

CACAGAGAGCCC 

 
 

The PTS method is detailed in a Natural Protocols paper from Meyer and 

colleagues (Meyer et al., 2008). The order of the PTS and library preparation 
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stages can be summarised: Multichannel reaction set-up was followed by blunt- 

end repair and ligation of sample-specific self-hybridising barcoding adapters to 

both ends of the molecule. Nicks introduced during adapter ligation were repaired 

by a strand-displacing polymerase, Bst, samples were re-quantified by picogreen 

assay and pooled into equimolar ratios and any unligated molecule ends were 

excluded by dephosphorylation and SrfI restriction enzyme digestion. Universal 

454 primers were blunt-ligated to the pooled template and the sample sent to 

University of Liverpool, Advance Genomic Facility for generic library 

preparation and 454 sequencing. 

 
 
 

2.12.4 De-tagging sample-specific sequencing reads 
 

Novobarcode (www.novocraft.com/userfiles/file/NovoBarcode.pdf) was used to 

de-multiplex barcoding adapters embedded in 5' and 3' ends of sequencing reads 

and group them in per-individual FASTQ files. Reads with low quality tag 

alignments were written to a catch-all file with the tag sequence intact. 

 
 
 

2.12.5 Assessment of false assignment rate 
 

To estimate the reliability of PTS in this experiment, the false assignment 

frequency due to sequencing error and cross-contamination was calculated using 

the equation: 
 

 
 
 

F = Number of sequences carrying tags from unused barcoding adapters 

T = Total number of sequence reads obtained in the experiment 

N = Total number of barcoded samples that were sequenced in parallel 

A = Total number of barcoding adapters within the chosen category that have 

actually been synthesized 

F N 
T  x A – N 

http://www.novocraft.com/userfiles/file/NovoBarcode.pdf)
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The barcoding adapters that were generated and used are oligomers with a 

minimum of three substitutions difference between each other, to minimise the 

false assignment rate 

 
 
 

2.12.6 Generation of variant profiles 
 

Variant profiles were generated using an in-house variant calling pipeline 

assembled by Michael Simpson at Kings College London 

(m.simpson@kcl.ac.uk). Briefly, sequence reads were aligned to the reference 

genome (hg18) with Novoalign (Novocraft Technologies Sdn Bhd)  and 

anomalous reads (duplicates and those with multiple mapping coordinates) were 

excluded from downstream analysis. Depth and breadth of sequence coverage 

was calculated using custom scripts and the BedTools package (Quinlan and Hall, 

2010) and visualised using the integrated genomes viewer (IGV). Single 

nucleotide substitutions and small insertion deletions (indels) were identified and 

quality filtered within the SamTools software package (Li and Durbin, 2010) and 

using in-house software tools, these variants were visualised using the 

IGV(Robinson et al., 2011). Annotation of variants with respect to the two most 

abundant transcripts of the TNFSF4 gene was accomplished using the Variant 

Classifier tool (Li and Durbin, 2010). 

 
 
 

2.12.7 Identification of novel variants 
 

Novel variants were identified after converting their coordinates from UCSC 

hg18 to hg19 (based on the February 2009 high coverage assembly GRCh37) 

using the UCSC LiftOver tool (URL: http://genome.ucsc.edu/cgi- 

bin/hgLiftOver). This enabled the screening of identified variants against SNPs 

and structural variations found in Ensembl genome browser 64, dbSNP131, 

HapMap data release 28, 1000Genomes high coverage trios, 1000G high 

coverage exons and 1000G low coverage data. Novel exonic variants identified in 

the TNFSF4 gene were also probed against those identified in 350 control exomes 

sequenced and analysed by the method described above at Kings College London. 

http://genome.ucsc.edu/cgi-
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In addition novel variants were probed against novel TNFSF4 exonic variants 

found in the first data freeze of 2500 European and African-American control 

exomes and contained within the Exome Variant Server from the NHLBI Exome 

Sequencing Project (ESP) (URL: http://evs.gs.washington.edu/EVS/). 
 

2.12.8 Jaspar: sequence-based approach using curated binding profiles 
 

On identification of causal variants, the encompassing DNA sequence was 

examined for interaction with regulatory proteins including transcription factors 

(TFs). The alleles of associated variants identified were investigated for their 

impact on binding affinity of the motif for target proteins. In addition, the same 

SELEX binding data and position weight matrix (PWM) profiles (curated and 

stored in the Jaspar core database) were used to investigate DNA sequence motifs 

for degeneracy (Portales-Casamar et al., 2010). 

 
 
 

2.12.9 Polyphen-2: sequence and structure-based approach 
 

The prediction algorithm Polyphen-2 (Adzhubei et al., 2010) was applied to all 

newly identified coding region variants to evaluate the effect of non-synonymous 

SNPs (nsSNPs) on the TNFSF4 protein sequence. The in silico predictions were 

intended to guide future experiments. There was the possibility that protein 

structure would be affected by variants which influence disease susceptibility; 

thus both  orthologs and paralogs were used  in multiple sequence alignment 

(MSA) by the Polyphen-2 tool (Adzhubei et al., 2010). Homologs of the TNFSF4 

sequence were identified and aligned; the amino acid sequence was refined and 

clustered with regards to accuracy. The ancestral allele was compared with its 

replacement at each locus for several features including hypermutability and the 

relative fit of the replacement allele with respect to the adjacent alleles. A naive 

Bayes classifier predicted the functional significance of the replacement allele. 

The HumDiv dataset of 3,155 damaging alleles was used in the first in silico 

prediction, the HumVar (Capriotti et al., 2006) dataset of 13,032 human disease- 

causing mutations from UniProt (URL: http://www.uniprot.org/) were used in the 

second. 

http://evs.gs.washington.edu/EVS/)
http://www.uniprot.org/)
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Chapter 3 
 

Evaluating TNFSF4 expression 
 

For the most part, expression of TNFSF4 on cells that control immune 

functionality is inducible: The gene must respond to a stimulus prior to 

functioning as a ligand at the beginning of a signalling cascade. This suggests 

temporal regulation of TNFSF4 during the immune response. Evaluating TNFSF4 

for its utility in terms of dissecting disease pathogenesis, a simple and direct 

rationale is that risk-associated polymorphisms modulate SLE pathogenesis by 

causing aberrant expression of TNFSF4. The functional relevance of identified 

TNFSF4 risk-variants were assessed for correlation with cell surface expression 

and the data presented in this chapter. 
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3.1      Evaluating TNFSF4 cell-surface expression- study aims 
 

Expression of inducible immune-related genes can be used as a broad measure of 

the activity of the immune system. Conversely, the dynamics of gene expression 

might be perturbed by the disease process, and so influence severity. The aim of 

the preliminary studies presented in this chapter is to quantify expression of 

TNFSF4 in TNFSF4risk and TNFSF4non-risk EBV-transformed cell lines. 

Quantifying the expression in non-SLE samples selected for their genotype will 

better clarify the role of TNFSF4 as a susceptibility gene or as a modulator of 

disease severity. Warren repository samples held at JDRF/DIL were used for 

these preliminary studies. Evaluating the relationship between TNFSF4 genetic 

variation and expression in cell-lines will be used to guide future larger scale 

experiments in genotype-relevant controls and SLE individuals. 

 
 
 

Polymorphisms in genes at the start of immune-system signalling cascades can 

have a disproportionate effect on phenotype due to the amplification of minor 

affects (Sackton and Clark, 2009). The global perturbation of the immune system 

in SLE means it is difficult to separate the proportion of this aberrance due to 

genetic variance from that due to the disease process. Polychromatic fluorescent 

staining of peripheral blood mononuclear cells and Warren EBV-LCL cells was 

used to evaluate activated CD86+TNFSF4+ double-positive cells in the 

aforementioned risk and non-risk subgroups. The correlation between TNFSF4 

risk and non-risk genotype and TNFSF4 cell-surface expression was evaluated for 

these cells. An important objective of this study was to determine differences in 

protein expression between cell-lines and lupus patients and evaluate the role of 

TNFSF4 as a causal gene or modifier of disease progression. 
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Results 
 

3.2 TNFSF4 cell-surface expression on LCLs and PBMCs in TNFSF4risk 

and TNFSF4non-risk homozygotes 
 

In order to better understand how TNFSF4 acts as a susceptibility gene in SLE, I 

evaluated the upstream TNFSF4 risk and non-risk haplotypes for influence on 

TNFSF4 expression in EVB lymphoblastoid cell lines (LCLs) (provided in 

collaboration the JDRF/WT DIL laboratory, Cambridge, UK) and in peripheral 

blood mononuclear cells (PBMC) from our UK-European SLE collection. Details 

of the European cohort are described in chapter 2 (2.1.1) of this thesis. 

Haplotypes were defined by genotyping locus-specific SNPs in multiple Northern 

European parental-proband and SLE-control cohorts (Cunninghame Graham et 

al., 2008). In excess of 1,000 LCLs were genotyped at the haplotype tagging 

SNPs rs2205960, rs1234314 and rs7514229 at the JDRF/WT DIL laboratories. 

LCLs were selected for TNFSF4 risk or non-risk haplotype homozygosity on the 

basis of this genotyping. I re-sequenced the risk-haplotype tagging SNPs 

rs10912580, rs12039904 and rs1234317 and non-risk haplotype-tagging 

rs844644 to confirm homozygosity over a longer span of the TNFSF4 locus in a 

smaller subset of 12 JDRF/DIL samples selected for expression analysis. 

 
 
 

A time series was used to determine optimum activation of TNFSF4 in LCLs and 

PBMCs after CD40L and anti-IgD stimulation and cell-surface expression was 

found to be optimal at 48 hours post-treatment. A slight increase in cell-surface 

expression of TNFSF4 protein in risk relative to non-risk homozygote LCLs 

(Figure 3.1A) was found but this was not statistically significant (Mann-Whitney 

P>0.05). The trend in cell surface TNFSF4 expression was found with borderline 

statistical significance (Mann-Whitney P=0.02) for PBMCs from UK SLE 

individuals selected for the same risk and non-risk TNFSF4 alleles (Figure 3.1B) 

Investigating the geometric mean (Gmean) fluorescent intensity of activated LCL 

cells found similar intensities in the expression of CD86 between the two 

genotype subgroups, but a higher intensity of TNFSF4 in the risk homozygote 

groups (Figure 3.2). 
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Investigating the geometric mean (Gmean) fluorescent intensity of activated 

PBMCs also found similar intensities in the expression of CD86 between the two 

genotype subgroups, but a higher intensity of TNFSF4 in the risk homozygote 

groups (Figure 3.3). Double positive analysis of TNFSF4 and CD86 expression 

in stimulated and unstimulated PBMCs from UK SLE risk and non-risk 

homozygote probands found the percentage of CD86+TNFSF4+ cells within the 

activated cell fraction of PBMCs to be increased in the risk group (Figure 3.4). 



90  

Figure 3.1 Cell-surface expression of TNFSF4 on LCL-cells and peripheral 

blood cells 
 
 
 
 
 
 
 

 
 
 

A. Numbers of CD40L and anti-IgD-stimulated cells in eight different homozygous cell lines 
(two TNFSF4non-risk and three TNFSF4risk). Each bar represents the mean of two independent 
replicates. B. Numbers of TNFSF4+ PBLs taken from eight SLE-affected probands (four 
homozygotes for each of the risk- and non-risk haplotypes), 48hrs after CD40L- anti-IgD 
stimulation. Each bar represents the mean of two independent replicates. 
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Figure 3.2      Cell-surface expression of CD86 and TNFSF4 in EBV-LCL cells 
 
 

 
 

Histograms of CD40L anti-IgD-stimulated EBV-LCL cells showing expression of TNFSF4 ((I), 
(II) and (III)) and CD86 ((IV), (V), and (VI)) for representative samples homozygous for the non- 
risk haplotype (blue) (TNFSF4non-risk, (I and IV)) and for the risk haplotype (red) (TNFSF4risk, (II 
and V), respectively. Geometric mean (Gmean) values of the fluorescent intensity are shown for 
each marker. Data presented are from one of two experiments with similar results on the same cell 
lines. 
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Figure 3.3 Influence of stimulation on TNFSF4 and CD86 expression by 

PBMCs 
 

 
 
 

TNFSF4 (I and II) and CD86 expression (III and IV) in CD40L/anti-IgD–stimulated and 
unstimulated PBMCs. These cells were taken from UK SLE probands that were homozygous for 
the non-risk haplotype (shown in blue) and for the over-transmitted risk haplotype (shown in red). 
The Geometric mean (Gmean) values presented are shown for the cell-surface markers in two 
individuals. 
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Figure 3.4 Representative FACS dot plots of stimulated PBMCs 
 
 

 
 
 
 

Cells were taken from probands expressing two copies of (A.) the non-risk haplotype and (B.) the 
risk haplotype. The percentage of CD86+TNFSF4+ cells within the activated cell population is 
indicated in the upper left quadrant. Cells were designated TNFSF4-ve if TNFSF4 expression fell 
within background staining compared to a mouse IgG1negative control mAb (MOPC 31C, 
Ancell). 
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3.3 Discussion 
 

3.3.1 Summary of findings 
 

To better understand how TNFSF4 may act as a disease susceptibility gene in 

SLE, TNFSF4RISK and TNFSF4NON-RISK homozygote lymphoblastoid cell lines 

(LCL cells) and peripheral blood mononuclear cells (PBMCs) from the UK SLE 

cohort were investigated for their cell-surface TNFSF4 expression. The risk 

haplotype correlated with increased expression of both cell-surface TNFSF4 and 

TNFSF4 transcript. 

 
 
 

3.3.2 Results in the context of published work 
 

I hypothesized that variation in the upstream region of the gene increased the 

expression of TNFSF4, and, through TNFRSF4, increased co-stimulation for 

CD4+ T-cells and/or further activated the TNFSF4-expressing (Stuber et al., 

1995) APCs. This increased expression of TNFSF4 may act by destabilizing 

peripheral tolerance through inhibiting the generation of IL-10–producing CD4+ 

type 1 regulatory T-cells (Ito et al., 2006). Notably, TNFSF4 has also been 

associated with susceptibility to atherosclerosis (Wang et al., 2005), and 

individuals with SLE are prone to accelerated arterial disease. The role of 

TNFSF4 in the pathogenesis of SLE highlights the importance of the role of the 

T-cell–APC interaction in this disease, a conclusion supported by the genetic 

influence, albeit modest, arising from the CTLA4-ICOS locus (Cunninghame 

Graham et al., 2006). 

 
 
 

3.4 Limitations to the data 
 

The primary aim of the data presented in this chapter was to evaluate the trend 

between SLE- associated TNFSF4 genetic variants and expression of the gene 

product in cell lines from individuals without lupus and in PBMCs from 

individuals with disease. These data were intended as a pilot study, using few 

individuals and therefore interpretations are limited in their scope.  Although the 
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trend between genotype and expression appears robust there are a number of 

sources of potential error which allow only very limited interpretation of these 

data. 

 
 
 

3.4.1 Cell lines 
 

The data presented in this chapter find increased cell-surface expression of the 

TNFSF4 gene in ex vivo peripheral cells compared to EBV- cell lines: Both cell 

types were selected for the same genotypes. For the latter group, there was no 

difference in gene expression between TNFSF4 risk and non-risk homozygotes 

(Figure 3.1A). Although the cell lines were a significant tool in the research 

presented in this chapter, they would have undergone significant mutations during 

EBV-transformation, limiting their fidelity. Clonality due to  continuous 

passaging of the cell-lines may affect expression of their cell-surface proteins, so 

limiting biological relevance with regards to TNFSF4 cell surface-expression. 

 
 
 

3.4.2 Variation in disease activity 
 

Adjustments were also not made for disease activity, which was variable, or for 

inflammatory disorders. There was no global assessment of disease activity, or 

acute clinical variables, at the time data was collected, which would influence 

results. Disease activity can be assessed by a rheumatologist using a standardized 

disease activity index, SLEDAI (Bombardier et al., 1992). These data could have 

been used as a covariate in a standard regression model, to adjust data. 

 
 
 

3.4.3 Use of multiethnic SLE cohort 
 

Samples used from SLE individuals in this experiment were from a diverse mix 

of South Asian, UK European and Afro-Caribbean patients who regularly 

attended the West London Rheumatology Clinic, Hammersmith Hospital, UK. 

Chapter 4 of this thesis describes the ancestry differences at the TNFSF4 locus in 

detail. With regards to disease activity, this is a potential source of random error. 
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At the time of the experiment, only a limited number of samples with the relevant 

genotype were available. 

 
 
 

3.4.4 Absence of longitudinal data 
 

Correlation research such as undertaken in this chapter, in individuals with SLE, 

which is  a  relapse-remitting condition, requires  repeat  measurements of 

expression over a time course to more accurately reflect observed changes. 

Although we attempted these additional studies, they were not undertaken due to 

difficulties in recruiting patients at the same time. 

 
 
 

3.4.5 TNFSF4 peak expression 
 

Samples were harvested 48hours post stimulation; this time point was selected for 

peak expression of cell-surface TNFSF4 and determined by flow cytometry. 

During optimisation of the protocol, cells expressed a proportion of TNFSF4 at 

24hours. The abundance of transcript was not quantified in these cells and the 

peak transcript level is probably not coincident with that of peak protein, but in 

all likelihood precedes it. Real-time PCR data which accurately reflects transcript 

expression changes temporally in each subgroup is required so that we are better 

informed with respect to pathogenic mechanism. Bias in base composition 

between TNFSF4risk and TNFSF4non-risk transcripts could lead to efficient 

degradation of TNFSF4non-risk. 
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Chapter 4 
 

Trans-ancestral mapping of TNFSF4 in SLE 
 

SLE segregates with race and geographical location: Epidemiological studies for 

this trait suggest increased disease burden in non-Europeans. However, Northern 

and Western European SLE cohorts have been used most extensively in studies 

that have directed research (Simard and Costenbader, 2007). Since these doctoral 

studies were planned, GWAS has  identified or confirmed the association  of 

immunologically relevant SLE loci, including TNFSF4, with disease (Harley et 

al., 2008; Hom et al., 2008; Han et al., 2009; Yang et al., 2010). To date, the 

published GWA studies have confirmed association of an extended haplotype 

consisting of risk-associated variants at TNFSF4 in European and East Asian SLE 

cohorts. Pathological variables associated with severe disease are less common in 

Europeans, the population most likely to attain remission (Korbet et al., 2007). 

Thus, extensive research is required to clarify the role of genetic risk, 

socioeconomic status and quality of care in non-Europeans with SLE, particularly 

forms of the disease associated with severe phenotypic manifestations. 
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4.1 Trans-ancestral mapping experiment- study aims 
 

4.1.1 Re-evaluation of TNFSF4 association in Europeans 
 

Although data documenting the TNFSF4 association with lupus were not 

published at the time these doctoral studies were planned, it was understood that 

in Europeans strong LD across the locus was an obstacle in the delineation of 

TNFSF4 causal variation. To this end, I re-evaluated the disease association in the 

largest European SLE-control cohort available at the time. The aim of using this 

cohort was to resolve the association signal owing to TNFSF4 in European SLE 

with increased power. 

 
 
 

4.1.2 Evaluation of TNFSF4 in non-Europeans 
 

A second aim of the work presented in this chapter was to evaluate the TNFSF4 

locus in multiple non-European SLE cohorts: The six cohorts tested for 

association included African-Americans, African-American Gullah, East Asians 

and SLE individuals of Amerindian descent. These groups are disproportionately 

affected by SLE and health disparities in these groups show onset at an earlier 

age. By investigating multiple SLE-control cohorts, I wished to establish whether 

TNFSF4 risk in SLE is population-specific or global. The locus was fine-mapped 

in each group; the density of variants genotyped in this study greater than double 

those in the original European study (Cunninghame Graham et al., 2008). 

Selected combinations of haplotype-tagging and proxy SNPs were tested in each 

group to capture the majority of common SNPs by imputation. 

 
 
 

4.1.3 Inference of recombination rate 
 

An estimation of recombination rate across different ancestral groups is included 

in this chapter: The map available from HapMap phase II is population-averaged, 

the 1000 Genomes map at this locus based predominantly on low coverage, sex- 

averaged data. These maps give different recombination patterns at TNFSF4 

compared to the deCODE maps for the same ancestry. The European deCODE 
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sex-averaged and female-only recombination maps (URL: 

http://www.decode.com/addendum/), are based on 15,257 and 8,850 directly 

observed recombinations respectively. These maps have a resolution effective 

down to 10kb and I compared the standardised recombination rate for deCODE 

females and deCODE males to the HapMap phase II combined map (Appendix 

D). For the 200kb region at chromosome 1q25.1 including TNFSF4, I found 

recombination differences between the maps. Therefore, to more accurately 

decipher genetic architecture at TNFSF4, I attempted to resolve the fine-scale 

recombination rate in large numbers of control chromosomes matched for four 

SLE cohorts tested for association. The populations comprised African-American, 

East Asian, European and Hispanic control individuals. The recombination rate 

and presence of hotspots was also evaluated in TNFSF4risk vs. TNFSF4non-risk 

homozygote individuals. 

 
 
 

4.1.4 Evaluate haplotypic association 
 

The haplotypic association with SLE was investigated in African-American, East 

Asian, European and Hispanic cohorts and data presented in this chapter: Strong 

pair-wise LD between SNPs meant a 100kb haplotype upstream of TNFSF4 

correlated with risk of disease in the original European study. African 

populations tend to have shorter haplotypes because they are often subdivisions 

of the larger haplotypes found in non-Africans and so can be correlated to these 

(Daly et al., 2001). In Hispanics and African-Americans the genetic component 

attributable to the West African ancestral population TNFSF4 would equate to a 

faster decay of LD, much greater in African-Americans, with component 

estimates upwards of 80%, compared to Hispanics with ranges of 4-11% (Price et 

al., 2007; Winkler et al., 2010). Performing high-resolution trans-ancestral 

association mapping with tag SNPs and proxy variants, I aimed to anchored 

haplotypes in ancestral and admixed populations. A principal components (PC)- 

based strategy was used to adjust for major ancestry using a set of genome-wide 

ancestry informative markers. Higher numbers of diverse haplotypes are 

predicted due to differences in genetic architecture at TNFSF4. Recombinant 

http://www.decode.com/addendum/)
http://www.decode.com/addendum/)
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haplotypes, unique to African-American and Hispanic individuals, were used to 

resolve the association with disease. 

 
 

4.1.5 Evaluate TNFSF4 association with sub-phenotypes 
 

Data on clinical variables and phenotypic manifestations for all populations 

surveyed in this chapter were collated. Analysing TNFSF4 alleles in phenotypic 

subsets of SLE cases, I aimed to enrich for risk variants with increased effect size, 

in the hope that associations would prove informative for causal mechanism as 

these SLE sub-groups are less heterogeneous than SLE per se. 

 
 

Results 
 

4.2 QC filtering and population demographics 
 

To delineate causal variation at TNFSF4, SNPs in a 200kb section of 

chromosome 1q25 encompassing TNFSF4 (23.6kb) and 150kb of the 5´ region 

were genotyped. Population stratification bias and effects due to admixture were 

addressed using the approach of Namjou and colleagues (Namjou et al., 2009). 

Genotyping 347 genome-wide SNPs, as selected by Halder and colleagues 

(Halder et al., 2008) allowed for correction of major ancestry in each population. 

A PCA-based approach was used to do so (Figure 4.1, Figure 4.2, Figure 4.3). 

As outlined in chapter 2, SNPs and individuals that failed quality control were 

filtered. Pre- imputation, the cohorts were; African-Americans (88 SNPs in 1529 

cases, 2048 controls), African-American Gullah (51 in 152, 222) East Asians (65 

in 1500, 1396), Europeans (89 in 3432, 3076) and Hispanics (51 in 1348, 717). A 

detailed description of the component sample sets is presented in Table 4.1. 
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Table 4.1 Population demographics and imputation reference data for SLE-control cohorts post QC filtering 
  

 
 

Case 

Europea 
 

Control 

n 
 

ALL 

 
 
 

Case 

East Asian 
 

Control ALL 

 
 
 

Case 

Hispanic 
 

Control 

 
 
 

ALL 

 
 
 

Case 

AA-Gullah 
 

Control 

 
 
 

ALL 

Males 344 1151 1495 167 225 392 119 73 192 136 593 729 
Females 3088 2489 5577 1333 1171 2507 1229 644 1872 1541 1341 2882 

Unknown    3 236 239 
TOTAL 3432 3640 7072 1500 1396 2896 1348 717 2065 1680 2170 3850 

 

SNPS, TYPED 
 

89 
 

65 
 

51 
 

88 

 

SNPS, ALL 
 

244 
 

450 
 

460 
 

393 

 
 
 
 

Imputation 
reference 1 
Imputation 
reference 2 

 
 
 

*CEU, *TSI 
 

WTCCC controls 

 
 
 

*CHD, *CHB 

 
 
 

- 

 
 
 

*YRI 

Numbers after filtering for duplicates, FDRs, HWE, missingness and major ancestry. post SNPs with INFO scores <0.7 excluded, SNPS with HWE<0.01 
excluded. *HapMap phase III haplotypes, details of individual populations are found in abbreviations 
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4.3 Phasing and imputation 
 

To directly compare genotyped SNPs, the phased chromosomes  of  HapMap 

phase III samples and the IMPUTE 2.1 algorithm were used, together with the 

second reference sets defined in Table 4.1. Missing genotype data and SNPs with 

a MAF>0.03 were imputed. As described in methods, filtering to include only 

genotyped and high quality imputed SNPs resulted in final datasets for Europeans 

(112 SNPs in 3432 cases, 3640 controls), East Asians (100 SNPs in 1500, 1396) 

and African-Americans (121 SNPs in 1529, 2048). The Hispanic/Amerindian 

cohort was not imputed. 

 
 
 

4.4 Inference of fine-scale map of recombination rate 
 

An accurate map of the recombination rate facilitates mapping multiple 

independent contributors to disease risk at a single locus. The European sex- 

averaged and female-only recombination maps generated by deCODE (URL: 

http://www.decode.com/addendum/) (Kong et al., 2010), are based on 15,257 and 

8,850 directly observed recombinations, respectively. These maps have a 

resolution effective down to 10kb; Comparing the deCODE map to the HapMap 

phase II (The International HapMap Project, 2007) combined map, there were 

clear differences in the recombination pattern at the TNFSF4 locus (Appendix D). 

The differences in recombination were greater between the deCODE female-only 

and HapMap maps. The SLE cases used for association testing presented in this 

chapter were predominantly female (82.33%). The recombination rate between 

the two maps differed in the 5´ region spanning the TNFSF4risk haplotype.   Thus, 

I estimated background recombination rates in African-Americans, East Asians, 

Europeans and Hispanics using rhomap, a Bayesian composite-likelihood 

method. 

http://www.decode.com/addendum/)
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The inclusion of a hotspot model allowed sampling of hotspots from the Markov 

chain and inference of mean posterior hotspot densities from a threshold upwards 

of 0.25, giving a detection power of 50% and a false-discovery rate of 4% (Auton 

and McVean, 2007). In Asians, Europeans and Hispanics the bulk of the 

recombination occured in less than 5% of sequence (Figure 4.4). An exception to 

this pattern was found in the African-American cohort, with increased 

recombination rate and higher density and proportion of hotspots across the locus 

(Figure 4.5). In all populations, peak recombination was at the 5′ boundary of the 

TNFSF4 gene and approximately 120kb into the 5′ region. The recombination 

extended 30kb further from the TNFSF4 gene boundary into the 5′ region in 

African-Americans compared to negligible recombination in this region for the 

other populations (Figure 4.4). This is compatible with increased complexity of 

the genomic region in African-Americans. 



104  

 
 
 
 
 
 
 
 

Figure 4.1 A plot of PC1 vs. PC2 for the African-American population 
 
 
 
 
 

 
 
 

Left, Principal component (PC) 1 versus PC2 analyses of four HapMap phase III African 
(yellow) and two HapMap III European (red) populations and our African-American SLE- 
control cohort (black). Right. Population stratification between African-American cases 
(red) and controls (black) was minimised by principal components analysis using 347 
major ancestry informative markers. This figure depicts the most profound ancestry 
differences along continuous axis of variation between cases and controls after QC filtering 
of the AA cohort. 
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Figure 4. 2 Plot of PC1 vs. PC2 for the Amerindian (grey) and Hispanic (black) 

cohorts using genome-wide AIM markers 
 
 
 

 
 
 

Population stratification between Amerindians (Grey) and Hispanic (black) cohorts 
was minimised by principal components analysis using 347 major ancestry 
informative markers. This figure depicts the most profound ancestry differences 
along continuous axis         of         variation         after         QC         filtering         of        
the         cohorts. 



 

 
Figure 4.3 Quantile-quantile (QQ) plots for p-values for each dataset 

 

 
 
 
 

The figure illustrates the distribution of –log10 (expected p-value) on the x-axis, and –log10 (observed p-value) on the y-axis. 
Close adhesion of p- values to the red line, corresponding to the null hypothesis, was visualised for all but the European 
dataset (λ=1.3). Data were plotted for 347 ancestry informative markers and adjusted for values of PC1, PC2 and PC3 to confirm 
the effectiveness of the AIM panel. The log scale emphasised the smallest p-values. AIM SNPs were genotyped in the cohorts 
of African-American, Amerindian, East Asian, European, Gullah and Hispanic individuals (courtesy of Professor Carl 
Langefeld, Wake Forest, US). 
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Figure 4.4 Fine scale maps of recombination rate inferred for four 
populations 

 

 
 

1568 randomly assigned control phased chromosomes from East 
Asian, European, Hispanic and African-American populations were 
tested using rhomap from the LDHAT2.0 package to infer the fine-
scale map of recombination rate (4Ner/Kb). 200kb of chromosome 
1q25.1 encompassing TNFSF4 gene, and extended 5΄ and 3΄ regions 
were tested. Rhomap was run for a total of 1,100,000 rjMCMC 
iterations including a burn-in of 100,000 iterations and sampled the 
burn-in every100 iterations. 
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Figure 4.5 Comparison of recombination at TNFSF4 in African-American 
TNFSF4risk and TNFSF4non-risk individuals 

 
 
 

 
 
 
 

Phased chromosomes from African-American SLE individuals homozygous for 
TNFSF4risk (n=10) and TNFSF4non-risk (n=10) were tested using rhomap from the 
LDHAT2.0 package to infer the fine-scale map of recombination rate (4Ner/kb) 
across 200kb of chromosome 1q25.1 encompassing TNFSF4 gene, and extended 
5ʹ and 3ʹ regions. Individuals were identified as homozygous for TNFSF4risk or 
TNFSF4non-risk if they had two copies of AGTTCT (risk) or ACTTCT, (non-risk). 
For each simulation, rhomap was run for a total of 1,100,000 rjMCMC iterations 
including a burn-in of 100000 iterations, sampling the chain after every 100. 
Grey diamonds indicate the location to scale of SNPs significantly associated with 
risk of SLE in this cohort, the TNFSF4 gene is also located to scale under the graph. 



 

 
Figure 4.6 Single marker associations of SNPs at TNFSF4 locus in A. East Asian, B. European, C. Hispanic, D. African-American SLE populations 
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Figure 4.6 Single marker associations of SNPs at TNFSF4  locus  in  A.  East  Asian,  B. 
European, C. Hispanic, D. African-American SLE-control populations. This plot illustrates the 
strength of the association (-log10uncorrectedP) of markers in a 200kb segment of chromosome 
1q25 encompassing TNFSF4 with SLE versus chromosomal position (kb) in East Asians, 
Europeans, Hispanics and African-American populations. SNP names on each regional plot 
indicate the most associated SNPs in each group. SNPs are colour-matched for LD. 

 
 
 

4.5 Single marker association of 5΄ TNFSF4 SNPs with SLE 
 

A logistic regression model which was additive on the log-odd scale was used to 

evaluate TNFSF4 variants. Under this model, the score test, an asymptotic test of 

hypothesis, was used to test association of the variants for the binary phenotype 

(case, control) under the null hypothesis. For non-imputed variants and the high 

certainty imputed SNPs with info>0.7 that were included in analysis post QC, the 

test statistic was reduced to the Cochran-Armitage Trend test statistic. 

 

The association data presented is for markers with 90% of the alleles genotyped; 

imputation was used to compare haplotypes in this study. There was at least a 

base line of mutual dependence from the LD correlation coefficient r2 scores 

between genotyped TNFSF4 SNPs in each population and so they were permuted 

5000 times to correct for multiple testing. The quantile of the score test statistic 

was interpreted by calculating p-values. An arbitrary locus-wide significance 

level for rejecting the null hypothesis was set at P=5 x10-5. Odds ratios (OR) 

with 95% confidence intervals (95% CI) were taken from the exponent of the beta 

coefficient and standard error of the logistic regression model. Significance of 

association of corrected p-values was based on permutation testing (5000 

permutations). 

 

Data are represented as nominal uncorrected p-values and permuted (Pp) values 

for SNPs (Table 4.2, Table 4.3) and haplotypes. In East Asians, Europeans and 

Hispanics many strong associations (P 10-8< 10-16) at TNFSF4 were detected: 

Multiple susceptibility alleles in the TNFSF4 5΄ region were overrepresented in 

SLE cases (Table 4.2, Figure 4.6). In terms of single markers, best evidence of 

association with disease in Europeans was observed with rs2205960-T, 10kb 5΄ 

from the TNFSF4 gene (P=4.6 x 10-15, Pp< 10-4, OR=1.34 (95%CI 1.25-1.44)). 
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The T allele of rs2205960 was also best-associated with Hispanic SLE 

(P=7.24x10-11, Pp<10-4, OR=1.65 (95% 1.42-1.91)). Allele frequencies from the 
1000 Genomes project cohorts for associated SNPs are found in Appendix C. 

 
In Europeans, an additional 15 SNPs reached genome-wide significance (P<10-8), 

11 of the risk alleles also reach this level of significance in the East Asian and 

Hispanic cohorts (Table 4.2). Several 5´ risk alleles associated with disease in 

East Asians, Europeans and Hispanics were also associated in African-Americans 

and the association replicated in a small cohort of AA-Gullah (Table 4.3), 

underpinning this gene as a global SLE susceptibility gene. In African- 

Americans, the best evidence for the 5΄ association with disease came from 

rs1234317-T (P=1.45 x 10-5, Pp=0.01, OR=1.39 (95%CI 1.19-1.62)) and 

rs2205960-T (P=3.79 x 10-5, Pp=0.05, OR=1.48 (95% CI 1.22-1.79)). Association 

p-values for these variants were greater than the arbitrary level of locus-wide 

significance assigned to African-derived populations (P=5x10-5). 

 
There was a trend for under representation of rs844644-A, located 30kb 5´ to the 

TNFSF4 gene, in European (P=2.55x10-7, Pp<10-4, OR=0.85 (95% CI 0.8-0.9)), 

East Asian (P=8.61x10-12, Pp<10-4, OR=0.7 (95% CI 0.64-0.78)) and Hispanic 

(P=3.75x10-5, Pp=8 x 10-3, OR=0.74 (95% CI 0.64-0.86)) cases, consistent with 

our previous findings for this allele in two Northern European SLE 

cohorts(Cunninghame Graham et al., 2008). There was no evidence of association 

of either allele of this SNP in the African-American cohort (P=0.69, 

OR=1.03(95%CI=0.9-1.16)). 
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Table 4.2 Single marker association results for East Asian (As), European (Eur) and Hispanic (Hisp) SLE-control cohorts 

 

Marker Coordinate aLocation A1  F_A/F_U  A2  CHQ   Unadjusted p-value, P   Odds Ratio (95% CI)  
    As Eur Hisp  As Eur Hisp As Eur Hisp As Eur Hisp 

rs1234313 171.433 TNFSF4 Intron1 G 0.349/0.290 0.31/0.28 0.427/0.394 A 24.9 16.7 3.5 6.17x10-7 4.33x10-5 0.061 1.32(1.18-1.46) 1.17(1.08-1.24) 1.14(1-1.31) 

rs16845607 171.440 TNFSF4 Intron1 A   0.147/0.08 G   33   9.17x10-9   2.06(1.6-2.64) 

rs1234314 171.444 0.9 Kb 5' of TNFSF4 G 0.466/0.384 0.472/0.426 0.421/0.533 C 43.4 33.2 41.2 4.37x10-11 8.13x10-9 1.38x10-10 1.40(1.27-1.55) 1.20(1.13-1.28) 1.47(1.37-1.79) 

rs1234315 171.445 2Kb 5' of TNFSF4 T 0.466/0.386 0.521/0.473 0.363/0.454 C 41.1 36.4 29 1.42x10-10 1.59x10-9 7.24x10-8 1.39(1.26-1.54) 1.21(1.14-1.29) 1.47(1.28-1.69) 

rs1234317 171.454 11.3Kb 5' of TNFSF4 T 0.321/0.252 0.306/0.256 0.391/0.285 C 36.7 48.4 39.3 1.38x10-9 3.56x10-12 3.65x10-10 1.40(1.26-1.57) 1.28(1.19-1.38) 1.62(1.39-1.88) 

rs2205960 171.458 15Kb 5' of TNFSF4 T 0.312/0.246 0.273/0.219 0.374/0.267 G 41.5 61.4 42.5 1.18x10-10 4.6x10-15 7.24x10-11 1.44(1.29-1.61) 1.34(1.25-1.44) 1.65(1.42-1.91) 

rs844644 171.476 33Kb 5' of TNFSF4 A 0.403/0.488 0.434/0.475 0.333/0.402 C 46.6 26.6 17 8.61x10-12 2.55x10-7 3.75x10-5 0.7(0.64-0.78) 0.85(0.8-0.9) 0.74(0.64-0.86) 

rs844645 171.477 33.6Kb 5' of TNFSF4 G 0.476/0.403   A 34   5.44x10-9   1.35(1.22-1.49)   
rs12039904 171.479 35.8Kb 5' of TNFSF4 T 0.319/0.253 0.285/0.234 0.393/0.287 C 32.4 51.5 40.3 1.23x10-8 7.11x10-13 2.23x10-10 1.38(1.23-1.54) 1.30(1.21-1.4) 1.61(1.39-1.87) 

rs2795288 171.481 37.5Kb 5' of TNFSF4 A 0.489/0.410 0.468/0.417 0.523/0.42 T 38.6 40.3 33.9 5.2x10-10 2.21x10-10 5.8x10-9 1.37(1.24-1.52) 1.23(1.15-1.31) 1.52(1.32-1.72) 

rs1012507 171.486 43Kb 5' of TNFSF4 T 0.335/0.266 0.384/0.342 0.468/0.369 G 36.2 29.5 32.8 1.78x10-9 5.48x10-8 1x10-8 1.39(1.25-1.55) 1.2(1.12-1.28) 1.51(1.31-1.76) 

rs844648 171.490 47.4Kb 5' of TNFSF4 A 0.467/0.401   G 27.5   1.61x10-7   1.31(1.18-1.44)   
rs844649 171.491 47.9Kb 5' of TNFSF4 C 0.422/0.356 0.333/0.279 0.441/0.338 T 29.1 53.8 35.8 6.75x10-8 2.19x10-13 2.21x10-9 1.32(1.20-1-47) 1.29(1.21-1.38) 1.55(1.34-1.78) 

rs844651 171.492 48.7Kb 5' of TNFSF4 G 0.438/0.361 0.426/0.386 0.504/0.405 T 38.1 23.3 31 6.8x10-10 1.9 x 10-6 2.59x10-9 1.38(1.24-1.53) 1.18(1.1-1.26) 1.49(1.29-1.71) 

rs704840 171.493 49.7Kb 5' of TNFSF4 G 0.412/0.351   T 29.8   4.73x10-8   1.33(1.2-1.47)   
rs2840317 171.493 50Kb 5' of TNFSF4 A 0.318/0.252   T 33.1   8.81x10-9   1.38(1.24-1.54)   
rs2901716 171.494 51Kb 5' of TNFSF4 A 0.319/0.252   G 34   5.48x10-9   1.39(1.24-1.55)   
rs844654 171.499 56.3Kb 5' of TNFSF4 T 0.488/0.41 0.472/0.420 0.419/0.332 A 38.5 41.4 33.3 5.4x10-10 1.22x10-10 7.91x10-9 1.37(1.24-1.52) 1.23(1.16-1.31) 1.49(1.30-1.72) 

rs10489265 171.503 59.6Kb 5' of TNFSF4 G 0.314/0.251 0.284/0.234 0.386/0.287 T 30.8 50.4 34.3 2.88x10-8 1.25x10-12 4.81x10-9 1.37(1.22-1.53) 1.3(1.21-1.40 1.56(1.35-1.82) 

rs2022449 171.505 62.3Kb 5' of TNFSF4 T 0.321/0.252   G 36.2   1.76x10-9   1.40(1.26-1.56)   
rs844663 171.510 67.1Kb 5' of TNFSF4 C 0.428/0.354 0.334/0.278 0.436/0.332 T 35.7 53.8 36.2 2.34x10-9 2.26x10-13 1.78x10-9 1.36(1.23-1.51) 1.29(1.21-1.38) 1.56(1.35-1.80) 

rs12049190 171.514 57.8Kb ' of TNFSF4 A 0.332/0.262 0.386/0.346 0.45/0.358 T 34.5 26.8 21.6 4.37x10-9 2.2x10-7 3.28x10-6 1.41(1.27-1.55) 1.19(1.11-1.27) 1.46(1.25-1.71) 

rs12750070 171.516 73.3Kb 5' of TNFSF4 T 0.326/0.251 0.385-0.344 0.489/0.362 C 33.5 28.6 35.9 7.25x10-9 8.75x10-8 2.05x10-9 1.44(1.28-1.64) 1.2(1.12-1.28) 1.55(1.34-1.79) 

rs12405577 171.517 73.5Kb 5' of TNFSF4 T 0.319/0.256 0.287/0.238 0.398/0.292 C 26.1 47.3 35.6 3.31x10-7 6.14x10-12 2.45x10-9 1.34(1.20-1.50) 1.2991.2-1.39) 1.60(1.37-1.87) 

rs10912580 171.523 80.1Kb 5' of TNFSF4 G 0.315/0.251 0.286/0.236 0.397-0.297 A 31.7 49.2 35.5 1.81x10-8 2.3x10-12 2.55x10-9 1.37(1.23-1.53) 1.29(1.20-1.39) 1.56(1.35-1.81) 

rs4916319 171.533 90.1Kb 5' of TNFSF4 G 0.405/0.336 0.447/0.431  A 31.7 3.7  1.79x10-8 5x10-2  1.34(1.21-1.49) 1.06(0.99-1.13)  
rs4916213 171.535 92.4Kb 5' of TNFSF4 T 0.403/0.341 0.429/0.405  C 26.6 7.38  2.56x10-7 6.7x10-3  1.31(1.18-1.45) 1.1(1.02-1.17)  
rs1342032 171.537 94.2Kb 5' of TNFSF4 T 0.398/0.339 0.408/0.390 0.473/0.399 G 23.3 4.82 17.4 1.38x10-6 2.8x10-2 2.99x10-5 1.29(1.16-1.43) 1.08(1.0-1.15) 1.35(1.17-1.56) 

A1= minor allele code, A2= major allele code, F_A/F_U allele frequency in affected/unaffected, As, East Asian, Eur European, Hisp Hispanic, P unadjusted p- value, aPp adjusted p- value, by 5000 permutations to give  Pp<10-4,  CHQ chi-squared, 

OR odds ratio(95% CIn ) confidence interval), aLocation anchored to most common transcript we found by RACE-PCR, which validated Ensembl bioinformatic data 
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Table 4.3 Associated TNFSF4  markers in African- Americans, Gullah and combined AA-Gullah 
Marker a.Location A1/A2 African-American 

(1529 cases, 2048 controls) 
 Gullah 

(151 cases, 122 controls) 
Combined (AA-Gullah) 

(1680 cases,2170 controls) 

   F_A/F_U p-value ORX (95% CI) F_A/F_U p-value ORX(95% CI) F_A/F_U p-value ORX(95% CI) 

rs7553711 -20.96Kb 3' TNFSF4 T/T 0.29/0.24 4.01 x 10-5 1.26(1.10-1.44) 0.23/0.16 0.06 1.51(0.98-2.34) 0.29/0.24 5.34 x 10-5 1.26(1.10-1.44) 

rs6676785 7.85Kb 3' TNFSF4 A/G 0.29/0.24 3.49 x 10-5 1.26(1.10-1.44) 0.23/0.16 0.06 1.51(0.98-2.34) 0.20/0.24 6.23 x 10-5 1.26(1.1-1.44) 

rs10127728 1.72Kb 3' TNFSF4 G/T 0.51/0.46 1.30 x 10-4 1.20(1.09-1.32) 0.46/0.39 0.09 1.34(0.95-1.89) 0.50/0.46 5.68 x 10-5 1.21(1.1-1.32) 

rs6691738 0.84Kb 3' TNFSF4 T/G 0.29/0.25 6.12 x 10-5 1.25(1.09-1.43) 0.24/0.18 0.11 1.40(0.21-0.92) 0.29/0.25 6.64 x-10-5 1.25(1.09-1.44) 

rs3861950 TNFSF4 T/C 0.23/0.20 1.20 x 10-4 1.20(1.07-1.35) 0.15/0.11 0.12 1.50(0.89-2.50) 0.22/0.19 2.23 x 10-5 1.19(1.07-1.33) 

rs10798265 TNFSF4 T/C 0.37/0.32 5.17 x 10-5 0.81(0.74-0.90) 0.42/0.4 0.62 1.09(0.77-1.54) 0.370/0.34 3.05 x 10-4 0.84(0.76-0.92) 

rs1234314 0.92Kb 5' TNFSF4 G/C 0.32/0.28 7.27 x 10-5 1.22 (1.10-1.35) 0.34/0.24 0.01 1.62(1.10-2.37) 0.33/0.28 8.84 x 10-5 1.25(1.13-1.38) 

rs1234317 11.3Kb 5' TNFSF4 T/G 0.11/0.08 8.15x10-5 1.34 (1.14-1.58) 0.09/0.05 6.76x10-3 2.57(1.27-5.21) 0.11/0.08 1.45 x 10-5 1.39(1.19-1.62) 

rs2205960 15Kb 5' TNFSF4 T/G 0.07/0.04 8.29x10-4 1.38 (1.13-1.69) 0.09/0.02 6.51x10-4 4.69(1.78-12.38) 0.07/0.05 3.79 x 10-5 1.49(1.22-1.79) 

rs12039904 35.1 Kb 5' TNFSF4 T/C 0.06/0.04 3.44 x 10-3 1.36(1.11-1.69) 0.06/0.02 0.01 3.80(1.27-11.39) 0.06/0.04 7.60 x 10-4 1.43(1.16-1.75) 

rs10912580 80.1Kb 5' TNFSF4 G/A 0.14/0.12 9.24x10-4 1.25 (1.08-1.44) 0.13/0.07 0.01 2.18(1.19-3.99) 0.14/0.11 2.20 x 10-4 1.28(1.11-1.46) 

A1/A2- minor allele code/major allele code; F_A/F_U - allele frequency in affected/unaffected, CHISQ- chi square, ORX(95% CI)- Odds ratio (95% confidence interval). After Q.C filtering African-American(1510,2022), Gullah(152,122) and both (1680,2170) 
a. Location anchored to our transcript data found by RACE-PCR (S. Guerra, KCL, UK) and in the Ensembl genome browser. 

 
 

 
 

 
 

Table 4.4 Conditional regression results for 5´TNFSF4 variants in four SLE-control groups 
AA+Gullah 
p‐value 

Asian 
p‐value 

European 
p‐value 

Amerindian/Hispanic 
p‐value 

    Marker A1    A2    Coordinate     rs1234314     rs1234317     rs2205960     rs1234314     rs1234317     rs2205960     rs1234314     rs1234317     rs2205960     rs1234314     rs1234317     rs2205960   
 

rs1234314 G C 173177392 -1 0.088 0.103 -1 4 x 10-4 0.013 -1 0.017 0.038 -1 0.005 0.009 

rs1234317 T C 173187775 0.004 -1 0.084 0.190 -1 0.024 8.98x10-5 -1 0.57 0.007 -1 0.94 

rs2205960 T G 173191475 0.001 0.224 -1 0.008 9 x 10-4 -1 4.02x10-8 4.88 x 10-5 -1 3.56 x 10-4 0.010 -1 

Conditional analyses in SNPTESTv2 Case Control. Continuous covariate within a clustering framework. P-values selected using additional model and a frequentist paradigm 
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4.6 Conditional regression analysis of 5ʹ risk-haplotype 

associated single-markers 

As expected, the 5ʹ upstream association data suggested pairwise LD between 

markers is weakest in African-Americans and strongest in Asians, and this 

correlated with haplotype length. In order to establish whether the signals 

identified by our trans ancestral fine-mapping study represent causal variants, 

independent risk factors, or if they are surrogate markers strongly correlated with 

causal variants, the association data from each population was conditioned with 

the marker which represented the best evidence of association (Table 4.4). In all 

populations, rs2205960-T, a risk-haplotype tag SNP with highest meta-analysis p- 

value and effect size, was associated with SLE after 5000 permutations, a similar 

trend was found for the adjacent marker rs1234317. In African-Americans, the 

single most associated risk marker was rs1234314, a marker adjacent to the 

TNFSF4 promoter associated with SLE in all groups, and so rs2205960, 

rs1234317 and rs1234314 were included in a step-wise conditional regression 

analysis. 

 
 
 

Conditioning on the presence of rs1234317 or rs2205960, found residual 

association at the intron1 marker rs16845607 in the Hispanic/Amerindian group, 

confirming association at this marker as an independent signal unique to this 

population. Association of all other intron 1 markers tested across all groups was 

lost, confirming these as secondary to 5´ risk associations. Conditional analysis 

used either rs1234317 or rs2205960 as a covariate: The signal at rs1234317 was 

lost after conditioning for rs2205960, and this was consistent for all populations 

tested (Table 4.4). On performing the reverse analysis, conditioning on the 

presence of rs1234317, there was residual association of rs2205960 in the East 

Asian, European and Hispanic cohorts (P=0.024AS, P <10-4
EUR, P=0.015His). 
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4.7 Modelling the pattern of inheritance 
 

For each population, in genotype-based analyses, the model that best fit the 5´ 

association of TNFSF4 with SLE was the additive model. 

 
 
 

4.8 Association of intragenic TNFSF4 Single Markers 
 

Examining the genetic association between SNPs within the TNFSF4 gene and 

SLE, identified association of the intron 1 variant rs16845607-Awith Hispanic 

and Amerindian SLE (P=9.17 x 10-9, Pp<10-4, OR=2.06 (95%CI 1.6-2.64)) (Table 

4.5). Association of rs1234313-G, within intron1, with SLE in Asians (P=6.17 x 

10-7, Pp<10-4, OR=1.32 (95%CI 1.18-1.46)), and Europeans (P=4.32x10-5, Pp<10-
 

3, OR=1.17 (95% CI 1.08-1.24)) (Table 4.2, Figure 4.6) was also identified. In 

both cohorts rs1234313-G is partitioned from other associated SNPs by 

recombination at the TNFSF4-5´ boundary. However, correlation coefficient r2 

values between this marker and risk-associated 5΄ variants suggested strong 

correlation. Under representation of rs10798265-A in African-American SLE 

(P=4.09x10-5, Pp<10-3, 0.81(95%CI 0.74-0.9)) was also identified. There were 

additional modest association signals (P<10-4) from a series of SNPs located at 

the TNFSF4-3΄UTR boundary in the same cohort (Figure 4.6). 
 
 
 

4.9 Fixed-effects meta-analysis 
 

A logistic regression model fitted with an interaction term (effect) in the R 

statistical package was used to investigate cross-study heterogeneity. P-values for 

individual associated SNPs were generated using the likelihood-ratio test. I found 

no evidence of cross-study heterogeneity for key haplotype-tagging common 

variants which span the locus: rs1234317, rs2205960, rs12039904, and 

rs10912580 were selected as representatives for this test. These data indicate the 

observed effects to differ by chance. P-values against the homogeneity of odds 

ratios are found in Appendix E. 



116  

 
 

The fixed-effects meta-analysis method combined the association results for East 

Asians, Europeans and Hispanics and African-Americans to more powerfully 

estimate the true effect size (Table 4.6). The sample size for each set of data after 

QC was used in the meta-analysis. Genetic complexity at TNFSF4 in terms of 

pairwise SNP correlations and haplotype structure, and the strong association of 

identical alleles in the 5΄TNFSF4 region allowed use of a single set of 

assumptions and conditions in these diverse populations. The average effect size 

across all datasets was computed using inverse variance weighting of each study. 
 

SNPs were organised into two categories (TNFSF4 gene or 5´ region) and are 

highly correlated with one another (r2 > 0.7) within each group. By combining 
three independent datasets we find the 5´ association of TNFSF4 with SLE is 
greatly reinforced. Rs2205960-T, the most associated allele in Europeans and 

Hispanics, (P = 7.1 x 10-32, OR = 1.63, 95% CI = 1.58-1.79), and rs1234317-T (P 

= 3.0 x 10-30, OR = 1.62, 95% CI = 1.39-1.88) have the strongest combined 

associations with disease, these markers are adjacent to one another, separated by 

a 3kb section of chromosome 1. 



 

 
 
 
 
 
 
 
 

 

Table 4.5 Markers genotyped across intron1 of the TNFSF4 gene in an Amerindian and Hispanic SLE-control group and combined association data 

Marker aLocation A1/A2 Amerindian Hispanic Combined 
 

 F_A/F_U CHISQ p-value ORX (95% CI) F_A/F_U CHISQ p-value ORX(95% CI) F_A/F_U CHISQ p-value ORX(95% CI) 

rs13343108 171434853 C/T 0.201/0.229 1.35 0.2462 0.84(0.63-1.13) 0.422/0.384 3.03 0.082 1.17(0.98-1.4) 0.427/0.394 3.523 0.061 1.14(0.99-1.31) 

rs7525284 171435020 A/G 0.272/0.29 0.46 0.4956 0.91(0.13-0.70) 0.203/0.259 9.32 0.002 0.73(0.59-0.89) 0.202/0.246 9.116 0.003 0.78(0.66-0.92) 

rs10489267 171436775 A/C 0.119/0.101 0.95 0.3305 1.21(0.83-1.76) 0.265/0.293 2.01 0.156 0.87(0.72-1.06) 0.266/0.292 2.666 0.102 0.88(0.76-1.03) 

rs11811856 171438296 G/C 0.272/0.292 0.56 0.4551 0.90(0.67-1.18) 0.115/0.116 0.01 0.96 0.99(0.75-1.31) 0.116/0.109 0.3956 0.529 1.07(0.86-1.33) 

rs11811856 171438296 G/C 0.272/0.292 0.558 0.4551 0.90(0.67-1.18) 0.266/0.293 1.82 0.177 0.87(0.72-1.06) 0.268/0.293 2.615 0.106 0.88(0.76-1.03) 

rs16845607 171440240 A/G 0.152/0.073 14.9 1.1 x 10-4 2.27(1.48-3.46) 0.145/0.080 17.0 3.6x10-5 1.95(1.41-2.69) 0.147/0.077 33.01 9.17 x 10-9 2.06(1.60-2.64) 

rs3850641 171442455 G/A 0.176/0.188 0.9717 0.3243 0.86(0.63-1.17) 0.174/0.137 5.07 0.024 1.33(1.04-1.71) 0.173/0.161 0.7936 0.373 1.09(0.90-1.31) 

A1/A2- associated allele code/major allele code; F_A/F_U - allele frequency in affected/unaffected, CHISQ- chi square, ORX(95% CI)- Odds ratio (95% confidence interval). 

After Q.C filtering, Amerindian (274 cases, 336 controls), Hispanic  (959 cases, 336 controls) aLocation anchored to our transcript data found by 5’ RACE-PCR and in the Ensembl genome browser. 
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Table 4.6 Fixed effects meta-analysis of the association p-value for TNFSF4 SNPs 
 
 

MARKER NAME COORDINATE (Mb) A1 FREQ1 SE ZSCORE p-value p-value 

(5000 PERM) 

rs2205960 173.191 T 0.252 0.09 12.051 7.10 x 10-32 7.12x10-12 

rs1234317 173.188 T 0.279 0.030 11.174 3.00 x 10-30 3.06x10-11 

rs1234314 173.177 G 0.433 0.059 11.174 5.46 x 10-29 6.06x10-11 

rs844663 173.244 C 0.372 0.049 11.011 3.37 x 10-28 4.18x10-11 

rs12039904 173.212 T 0.310 0.039 10.888 1.32 x 10-27 5.14x10-11 

rs844649 173.224 C 0.372 0.048 10.721 8.15 x 10-27 7.06x10-11 

rs10912580 173.256 G 0.310 0.040 10.574 3.91 x 10-26 7.14x10-11 

rs10489265 173.236 G 0.307 0.037 10.559 4.62 x 10-26 8.08x10-11 

rs844654 173.233 T 0.467 0.022 10.332 5.05 x 10-25 6.06x10-10 

rs2795288 173.214 A 0.465 0.022 10.286 8.16 x 10-25 6.06x10-10 

rs12405577 173.250 T 0.313 0.040 10.214 1.71 x 10-24 6.06x10-10 

rs1234315 173.178 T 0.482 0.057 9.966 2.14 x 10-23 6.06x10-10 

rs1012507 173.219 T 0.386 0.041 9.446 3.51 x 10-21 6.06x10-10 

rs12750070 173.250 T 0.385 0.044 9.374 6.99 x 10-21 6.06x10-10 

rs844651 173.225 G 0.441 0.028 8.985 2.60 x 10-19 6.06x10-10 

rs844644 173.209 C 0.431 0.049 8.978 2.76 x 10-19 2.48x10-09 

rs12049190 173.247 A 0.384 0.036 8.744 2.25 x 10-18 6.06x10-10 

rs1234313 173.166 G 0.320 0.055 6.354 2.10 x 10-10 9.27x10-6 

rs1342032 173.271 T 0.416 0.025 5.73 1.00 x 10-08 2.58x10-6 

rs4916319 173.267 G 0.447 0.033 5.515 3.49 x 10-08 8.01x10-5 

The first three columns list SNP characteristics, the next six columns list meta-analysis results including allele frequencies 
(FREQ1)and two-tailed p-value for nominal and adjusted (5000 permutations)SNP associations 
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4.10 Bifurcation of TNFSF4 haplotypes 
 

Haplotypes significantly associated with risk of disease were identified for each 

population. To better visualise the breakdown of LD of associated haplotypes, I 

constructed bifurcation diagrams from phased genotypes for each cohort tested 

(Figure 4.7). The plots illustrate the breakdown of linkage disequilibrium (LD) 

at increasing distances in both directions from rs1234314, the most proximal 

genotyped SNP located at the TNFSF4 gene-5ʹ boundary which was used as the 

core variant in the figure (labelled, circular core from which haplotype branches). 

The location of rs1234317 and rs2205960, which were best-associated in the 

fixed effects meta-analysis, are also marked onto the diagram. The thickness of 

the line in each plot corresponded to the number of samples with the haplotype, 

branches indicate breakdown of LD. For the risk haplotype, the lines were most 

robust in East Asians (Figure 4.7A, risk), followed by Hispanics and Europeans, 

and least robust in African-Americans. Branch junctions depicting breakdown of 

LD of the risk haplotype were coincident with the section of the TNFSF4 locus 

encompassing rs1234317 and rs2205960. 

 
 
 

The non-risk haplotype retained its thickness with distance from the core in the 

AA group, indicating long-range homozygosity (Figure 4.7B, non-risk). 

Contrasting the recombination rate in risk and non-risk haplotype homozygotes, I 

found increased recombination in the risk individuals (Figure 4.5), data which 

support  the  visualized  breakdown  of  haplotypes  by  these  bifurcation  plots. 
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Figure 4.7 
A. TNFSF4risk 
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Figure 4.7 
B. TNFSF4non-risk 
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Figure 4.7 Haplotype bifurcation diagrams for A. TNFSF4risk and B. 
TNFSF4non-risk haplotype for four populations. Plots were constructed using 
phased haplotypes to illustrate breakdown of LD at increasing distances from a core 
proximal TNFSF4 SNP (rs1234314) and are approximately to scale. rs1234314 is located 
at the TNFSF4 gene-5′ boundary (black circle) this SNP is the most proximal 5′ marker 
associated with disease in all four populations. Gene location is depicted to scale by the 
black arrow below the plot, black ticks below each plot show the location of rs1234317 
and rs2205960, the best-associated markers from the meta-analysis, additionally 
rs16845607 is marked under the Amerindian/Hispanic plot. 

 
 
 
 

4.11 Conservation of TNFSF4 haplotype structure across 

populations 
There is a bipartite structure to the haplotype blocks at the TNFSF4 locus in all 

but the African-American cohort (Figure 4.8). Significantly associated 

haplotypes were found in each population (Figure 4.9). Low recombination and 

similar location of hotspots at the TNFSF4-5´ boundary in East Asians, 

Europeans, and Hispanics allowed the construction of near-identical risk and non- 

risk haplotypes (designated TNFSF4risk  and TNFSF4non-risk, respectively) which 

extended at least 100kb into the TNFSF4 5′ region (Figure 4.9). Multiple 

associated risk alleles uniquely tag TNFSF4risk, overrepresented in SLE 

individuals in each population, whilst TNFSF4non-risk is the most frequent 

haplotype for all cohorts tested but underrepresented in SLE individuals. 

 

Haplotype association data for TNFSF4 risk and TNFSF4non-risk are presented in 

Figure 4.9. A shorter subdivision of the larger risk haplotype was associated 

with African-American SLE; rs1234317-T and rs2205960-T tags this 15.6kb 

AGTTCTT risk haplotype (P=8.39 x 10-5, OR=1.52). This is anchored to the 

proximal 5΄ region. Low frequency haplotypes (<4%) in all populations tested 

were not associated with disease after correction for multiple testing. 
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4.12 Intragenic haplotype confers risk uniquely in Amerindians 

and Hispanics 

Examining haplotypes within the TNFSF4 gene in relation to SLE identified 

association of a 22.5kb high-frequency haplotype which conferred risk  with 

strong effect in the Hispanic and Amerindian cohorts (P=9.17 x 10-9, Pp<10-4, 

OR=2.06) (Figure 4.10). This haplotype is uniquely tagged by rs16845607-A. a 

SNP located in intron 1 of the TNFSF4 gene which is monomorphic in African 

and European populations. Including a covariate for the rs2205960 variant, there 

was residual association at rs16845607-A in this population, suggesting it as an 

independent causal contributor to disease risk in this population. 
 
 

Importantly, an intragenic common haplotype identical at all alleles but with 

rs16845607-G was found at reduced frequency in SLE cases (P=0.04, Pp=0.22, 

OR=0.84). 

 
 
 

4.13 Conditional regression analysis of AA haplotypes 
Testing the common haplotypes in the TNFSF4 proximal promoter region for 

association with SLE revealed two haplotypes after permutation testing (Table 

4.7): AATNFSF4risk (P=8.39x10-5, Pp<10-3, OR=1.52) and the most frequent 

haplotype,  AATNFSF4non-risk  (P=  6.92x10-6,  Pp=1  x  10-4,  OR=0.82  (0.75-0.9)). 

Conditional analysis was undertaken in order to establish whether the two most 

associated haplotypes identified are likely to represent independent risk and 

protective factors or whether the association is confined to AATNFSF4risk (in this 

instance, AATNFSF4 non-risk would only be associated because of the corresponding 

decrease in risk alleles). A covariate for the presence of AATNFSF4risk was 

included in the logistic regression model: There was residual association owing to 

AATNFSF4 non-risk. To explain further investigate the residual association signal at 

AATNFSF4non-risk, I further conditioned on a low frequency haplotype (haplotype 

1) which was weakly associated with SLE (P= 0.03, Pp=0.151, OR= 1.53 (1.04- 

2.25))  and  found  it  not  to  explain  the  residual  association  attributed  to 

AATNFSF4non-risk. 
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Figure 4.8 Comparison of LD plots across 200kb of chromosome 1q25.1 
 
 
 
 

 
 
 

This section of chromosome 1 encompasses the TNFSF4 gene and upstream region. Pairwise LD 
relationships are defined using the custom algorithm in Haploview 4.2. Pairwise LD was used to 
compare the 44 successfully genotyped SNPs common to all cohorts, post QC. The pair-wise 
correlations between TNFSF4 markers are illustrated in these plots by the correlation coefficient r2 

(where r2 = 0 = no correlation, white; 0 < r2 < 1, gradations of grey; r2 = 1 = complete correlation, 
black). The TNFSF4 gene is positioned above the plots relative to haplotype blocks (black 
triangles) and grey ticks indicate SNP locations to scale. 

African-American- 
Gullah 
1680 cases, 2170 

East Asian 
1500 cases, 1396 
controls 

European 
3432 cases, 3640 
controls 

Amerindian-Hispanic 
1348 cases, 717 
controls 
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Reversing the analysis by conditioning on presence of AATNFSF4non-risk also found 

residual association owing to AATNFSF4risk. These analyses demonstrated the 

observed signals in the TNFSF4 promoter region to independently confer risk and 

protection against SLE. 
 
 
 
 
 
 

 

Table 4.7 Conditional regression of TNFSF4 promoter haplotypes, AA SLE-control cohort 
 

 

Haplotype 
ID 

Seq aFreq Haplotypic association Conditional regression analysis 

 
ORX 

(95% CI) P Pp 
 

 

AATNFSF4risk AGTTCTT 0.052 1.52 (1.21-1.76) 8.4x10-5 1x10-3 NA NA 0.011 

Haplotype 1(H1) GGTTCCG 0.014 1.53 (1.04-2.25) 0.031 0.151 0.022 NA 0.100 

Haplotype 2 (H2) GGCTCCG 0.043 1.01 (0.90-1.14) 0.817 1 0.404 0.307 0.027 

Haplotype 3 (H3) ACTCCCG 0.200 1.02 (0.87-1.27) 0.466 0.966 0.328 0.270 0.945 

Haplotype 4 (H4) AGTTCCG 0.142 1.10 (0.96-1.25) 0.171 0.644 0.071 0.062 0.643 

Haplotype 5 (H5) AGTTCTG 0.036 1.23 (1.02-1.50) 0.090 0.486 0.089 0.075 0.723 

AATNFSF4non-risk ACTTCCG 0.496 0.85 (0.75-0.94) 6.92x10-6 1x10-4 0.001 0.004 NA 

ORX, odds ratio, P, uncorrected p-value, Pp, adjusted p-value after 5000 permutations a Total freq of haplotypes 0.98, we have excluded rare (0.01 or 
less) haplotypes from this analysis 

 
 

 
 
 
 
 
 

4.14 Neutral haplotypes 
 

Informative neutral haplotypes supported the identification of causal SNPs by 

conditional analysis. Recombinant haplotypes in European and AA cohorts were 

identified: These are composites of the non-risk and risk haplotypes. The 

recombination point is between rs1234317 and rs2205960, the best-associated 

variants by meta-analysis. These recombinants are presented under the Odds 

Ratio~1(NEUTRAL) subheading in Figure 4.9. The European neutral haplotype 

EURTNFSF4OR~1 extends 100kb into the 5΄ region. EURTNFSF4OR~1 has a proximal 

section of the risk haplotype, tagged by rs1234317-T and a distal section of the 

non-risk haplotype tagged by rs2205960-G: This haplotype was not associated 

with risk of disease. In AAs, the neutral AATNFSF4OR~1* haplotype is similarly 

structured to EURTNFSF4OR~1; the proximal section of the risk haplotype is in 

combination with a single non-risk variant rs2205960-G. AATNFSF4OR~1* was not 

AATNFSF4risk AATNFSF4risk +H1 AATNFSF4OR<1 

pValue Pu Pu 

 



126  

associated with SLE. These data support the single marker conditional regression 

results which suggest rs2205960-T but not rs1234317-T, to drive the risk 

association signal. 

In Hispanics, a high frequency 23.58kb intron 1 haplotype, black-boxed and 

designated #1 in Figure 4.10 is identical to the risk–associated haplotype (red- 

boxed and designated #4, Figure 4.10) but instead with the G allele of 

rs16845607. Haplotype #4 was not associated with risk of disease (P=0.04, 

Pp=0.22, OR=0.84). This supports rs16845607-A as a causal variant in SLE 

individuals with Amerindian ancestry. 
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Figure 4.9 Fine-scale structural comparison of the TNFSF4risk and TNFSF4non-risk haplotypes and their association in four SLE case control populations 

 
 

 
 
 
 

The black diamonds above SNPs give locations to scale. SNP IDs across the top of the haplotypes correspond to alleles listed for each population. Haplotype 
frequencies, uncorrected and permuted haplotypic association values, P and Pp respectively, and Odds Ratios (OR) are presented to the right of each haplotype. 
The extended haplotypes (>90kb) in East Asians (AS), Europeans (Eur) and Hispanics (His) cannot wholly be reconstructed in African-Americans (AA). 
Haplotype-tagging SNPs allow construction of the 11.9kb AATNFSF4non-risk and a 15.6kb subdivision of the risk haplotype (AATNFSF4risk). Under the 
OR~1(neutral) subheading are European (Eur) and AA alternative recombinant haplotypes which differ from OR>1(risk) at rs1234317 and/or rs2205960. 
Haplotypes with rs2205960-G instead of rs2205960-T were not associated with risk of SLE in these populations. 
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4.15 Sub-phenotype association analyses 
 

Given TNFSF4 surface expression on a range of cell types which control immune 

functionality, one might expect TNFSF4 alleles to be associated with disease 

manifestations of SLE. Median (IQR) age at diagnosis, autoantibody production 

and renal disease were examined within SLE cases and against controls for each 

cohort. American College of Rheumatology (ACR) classification criteria were 

additionally examined in East Asians, Europeans and Hispanics. Phenotypic 

subsets of SLE cases are less heterogenous than SLE per se and so may enrich for 

risk variants with increased effect size or prove informative for causal 

mechanism. Clinical characteristics of SLE individuals sorted by population are 

presented with case-only and phenotype-control association results (Table 4.8). 

 
 
 

The case-only and phenotype-control data presented here strongly reinforced the 
unique association of the intron 1 variant rs16845607-A in Hispanics. This 

marker was associated with leukopenia (P=1.08 x 10-8, Pp<10-4,  OR=2.75 (95% 

CI 2.04-3.72)) and lymphopenia (P=5.6 x 10-12, Pp<10-4, OR=2.95 (95% CI 2.1- 

4.0)) with improved significance and strong effect size (Table 4.8). Conditioning 

on the presence of rs16845607 in the subset of Hispanic SLE individuals positive 

for leukopenia resulted in residual 5´ TNFSF4 association (P=7.7 x 10-4, 

OR=1.47(95% CI 1.18-1.82), rs1234314). The same analyses in lymphopenia 

cases removed the association signal (most associated marker after conditioning 

on rs16845607, rs1234314, P=0.01, OR=1.23(95% CI 0.96-1.57)). 
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4.15.1 Association of TNFSF4 Markers with autoantibody 

production 

Case-only analysis revealed association of TNFSF4 risk variants with 

autoantibody production in AA, European and Hispanic SLE cohorts: Evidence 

of association of rs2205960-T with Anti-Sm autoantibodies in African- 

American cases (P=5.1 x 10-3, OR=1.57 (95% CI 1.14-2.16) was reinforced by 

testing this variant against controls (P=6.67 x 10-7, OR=1.91 (1.47-2.47)). This 

marker also segregated with anti-Sm autoantibodies in European case-only and 

phenotype-control analyses. In Europeans the adjacent variant rs1234317-T was 

associated with anti-Ro autoantibodies (P = 9.5 x 10-4, Pp=0.01, OR= 1.31(95% 

CI 1.12-1.54) and this was reinforced against controls (P=9.5 x 10-8, Pp<10-3 

OR=1.52 (1.3-1.76)). In African-Americans analyses of 5΄ variants against 

controls improved the significance of risk-haplotype-tagging variants with anti- 

dsDNA autoantibodies (rs1234317-T, P=5.36 x 10-6, Pp<10-3, OR=1.68 (95% CI 

1.34-2.1.)). There was a trans-ancestral trend which suggested 

underrepresentation of TNFSF4 intron 1 alleles with autoantibody production. 

(Table4.8). 



 

 
Table 4.8 Association analysis of TNFSF4 variants with SLE sub-phenotypes 

 
 

European 

  
Hispanic 

  
AA + Gullah 

 Presence/ 

Absence 

Best 

Marker 

P/ OR (95%CI) Presence/ 

Absence 

Best 

Marker 

P/ OR (95%CI) Presence/ 

Absence 

Best 

Marker 

P/ OR (95%CI) 

Phenotype-case    
Age at diagnosis, median 

(IQR) 
816/774 rs12405577 1.43x10-3/0.78 (0.68-0.91) 139/138 rs1539259 1.44x10-3/ 0.57(0.41-0.81) 

 
337/ 269 

 
rs844654 

 
2.51 x 10-3/0.70(0.5560.89) 

Anti-dsDNA 1177/1904 rs12124768 3.5x10-5/0.74(0.6-0.9) 515/522 rs12405577 3.8x10-4/ 1.4(1.16-1.68) 752/830 rsS4250 3.53 x 10-3/2.42(1.31-4.46) 

Anti-Ro 422/1742 rs1234317 9.5x10-4/1.31 (1.12-1.54) 119/385 rs16845607 0.02/ 1.69(1.08-2.64) 330/648 rs10127727 5.98x 10-3/0.74(0.59-0.92) 

Anti-Sm 225/2461 rs2205960 0.05/1.23(1-1.52) 204/772 rs12405577 3.1x10-3/1.41(1.12-1.78) 487/763 rs2205960 5.1x10-3/1.57(1.14-2.16) 

Renal Disease 1054/2020 rs2205960 2.87 x 10-4/1.24 (1.1-1.4) 439/449 rs16845607 0.03/1.3(1.02-1.77) 785, 784 rrrs7518045 1.77 x 10-3/0.73(0.60-0.89) 

 
Immunologic 

 
2441/570 

 
rs1234313 

 
2.5 x 10-3/0.81(0.7-0.93) 

 
297/92 

 
rs13343108 

 
1.7x10-4/0.52(0.36-0.73) 

 
1229/167 

 
rs2205960 

 
0.035/1.77(1.04-3.04) 

Leukopenia 684/1166 rs10798265 0.10/1.3(0.95-1.79) 103/597 rs16845607 0.02/1.37(1.04-1.79) 365/559 rs4916215 0.02/1.83(1.1-3.05) 

Lymphopenia 682/1097 rs7553711 1.77x10-3/0.76(0.63-0.90) 269/84 rs16845607 9.5x10-3/1.45(1.1-1.9) 281/640 rs10489268 0.01/1.83(1.15-2.92) 

Phenotype-control 
Age at diagnosis, median 

(IQR) 
816/3580 rs1234317 6.7x10-4/1.3(1.23-1.52) 139/615 rs2205960 1.89x10-3/ 1.55(1.17-2.03) 

 
337/2144 

 
rs10489265 

 
4.57 x 10-4/1.39(1.11-1.74) 

Anti-dsDNA 1177/3580 rs2205960 6.5x10-9/1.37(1.23-1.52) 515/615 rs12039904 6.12x10-10/ 1.74(1.46-2.07) 752/2144 rs2205960 1.59 x 10-6/1.74(1.39-2.19) 

Anti-Ro 422/3580 rs1234317 9.5x10-8/1.52 (1.3-1.76) 119/615 rs16845607 3.82x10-4/ 2.15(1.4-3.3) 330/2144 rs1234314 1.67 x 10-3/1.32(1.11-1.58) 

Anti-Sm 225/3580 rs2205960 1.63x10-5 /1.58(128-1.94) 204/615 rs2205960 2.4x10-7/1.85(1.46-2.4) 487/2144 rs2205960 6.67 x 10-7/1.91(1.47-2.47) 

Renal Disease 1054/3580 rs2205960 2.87x10-14 /1.53 (1.37-1.70) 439/615 rs2205960 3.24x10-9/1.75(1.45-2.1) 785, 2170 rs1234317 1.08 x 10-5/1.52(1.26-1.83) 

 
Immunologic 

 
2441/3575 

 
rs2205960 

 
2.2x10-15/1.4(1.29-1.53) 

 
783/615 

 
rs2205960 

 
2.57x10-10/1.69(1.43-1.98) 

 
1229, 2170 

 
rs2205960 

 
5.42 x 10-6/1.59(1.30-1.95) 

Leukopenia 684/3575 rs2205960 5.5x10-9/1.47(1.28-1.67) 347/615 rs16845607 1.1x10-11/2.75(2.04-2.37) 365 ,2170 rs1234317 5.27x10-5/1.64(1.29-2.09) 

Lymphopenia 682/3575 rs2205960 9.4x10-12/1.56(1.37-1.77) 269/615 rs16845607 5.6x10-12/2.94(2.14-4.05) 281, 2170 rs1234314 9.27x10-5/1.44(1.2-1.74) 

For phenotypic definitions see web resources. Case and control numbers after filtering for QC. 
Bold Indicates same marker is most-associated with phenotype in case-only and case-control analyses 
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(Hispanic P=1.7 x 10-4, OR=0.52 (95% CI 0.36-0.73), European P=2.5 x 10-3, 

OR= 0.81 (0.7-0.93) and East Asian P= 3.6 x 10-2, OR=0.7 (95% CI 0.5-0.98)). 

Conditional regression analysis of the best-associated marker in each analysis 

removed all evidence of association. 

 
 
 

4.15.2   Association of TNFSF4 markers with age at diagnosis 
 

Examination within cases revealed association of distal 5´ TNFSF4 alleles with 

age at diagnosis (IQR) across all cohorts apart from East Asians (Table 4.8). A 
trend for a reduced frequency of TNFSF4 alleles in individuals with early age at 

SLE diagnosis was found in AA (P=9 x 10-4, OR=0.69 (95% CI 0.56-0.86)), 

European (P=1.43 x 10-3, OR=0.78(0.68-0.91)) and Hispanic (P=1.43 x 10-3, 

OR=0.57(95% CI 0.41-0.81)) populations. These alleles are found in the distal 5´ 

region. A fixed effects meta-analysis found the best-associated marker associated 

with this phenotype to be rs844654 (P = 8.7 x 10-6, Z score 4.45), located 60kb 

from the TNFSF4 gene. An additional four SNPs in this region illustrated the 

trend with age at diagnosis. 

 
 
 

4.16 Bioinformatic analysis 
 

The DNA sequence at rs2205960 was examined for interaction with regulatory 

proteins including transcription factors (TFs). A decameric DNA sequence 

including the rs2205960 variant was predicted to bind to the NF-κB p65 protein 

(RELA) with high confidence. Changing the associated (T) allele for the (G) 

rs2205960 allele was investigated for its impact on binding affinity of the motif 

for the p65 target protein. SELEX binding data and position weight  matrix 

(PWM) profiles stored in the Jaspar core database (Portales-Casamar et al., 2010) 

were used to investigate the DNA sequence with rs2205960-T at the 8th 

nucleotide position: These data suggested a binding affinity of approximately 

90% for NF-κB p65 (Figure 4.11). Altering the allele to rs2205960-G decreased 

the binding affinity for NF-κB p65 by over 10%, but also highlighted degeneracy 
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of the motif (Figure 4.11b). Binding of NF-κB at rs2205960 has been confirmed 

by genome wide ChIP-seq experiments in EBV - B-cell lines as part of the 

ENCODE project (Figure 4.11c) (ENCODE Project Consortium, 2010). These 

ChIP-seq data indicate that signal intensity for NF-κB at rs2205960 in a 

heterozygous (G/T) cell-line (GM12878) was double that for a non-risk 

homozygote (G/G) cell line (GM06990). The sequence encompassing rs2205960 

is conserved in primates but the degree of conservation lessensd for other 

Eutheria (Figure 4.12). 

 
 
 

Annotation of the DNA sequence encompassing other haplotype-tagging TNFSF4 

variants was also investigated: The sequence encompassing rs1234314 was 

investigated for transcription factor binding. According to the conditional 

analysis, rs1234314 is the best-associated variant after including a covariate for 

the risk-association. Furthermore, the minor allele of this variant, under- 

represented in SLE individuals, tags the non-risk haplotype. Scanning the data 

held in the Ensembl genome browser revealed rs1234314 to be part of a 400bp 

segment which has repressed/ low activity in LCL cells but with no such activity 

in a T-cell line. The UCSC genome browser predicted rs1234314 to be located 

within a region associated with the H3K27Ac chromatin signature which is 

associated with active enhancers. Interrogating the sequence at rs1234314 with 

PWM binding data in the Jaspar core database gave no clear pattern of binding of 

either allele to the motif of a regulatory element. 
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Figure 4.11 SLE-associated rs2205960 predicted to be part of a decameric motif for NF-κB 

p65 (RELA) 

 

 
 

A. Degeneracy within the core 10-base motif is illustrated at all positions apart from position 7 
which is non-degenerate by the stacked letters at each position. The relative height of each letter is 
proportional to its over-enrichment in the motif. A dashed line is boxed around rs2205960-T, this 
SLE-associated allele is predicted to form the 8th nucleotide in the motif. Predictions were made 
using the non-degenerate set of matrix profiles in the Jaspar Core database. B. Altering the 
rs2205960 allele from -T to -G decreases the binding affinity for NF-κB p65 by over 10%. C. 
Binding of NF-κB at rs2205960, suggested by genome-wide ChIP-seq ENCODE data. Profiles 
were  generated  for  lymphoblatoid  cell  lines  and  stored  in  the  UCSC  genome  database 
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Figure 4.12 Phylogeny of for the sequence encompassing rs2205960 
 
 

A 
 

 
 

A.  

B. Gerp (Cooper et al., 2005) was used to calculate conservation scores on the 31-way Eutherian 
species’ multiple alignments for a 401bp section of chromosome 1q25.1 encompassing 
rs2205960. Positives scores indicate a greater degree of conservation. B. The phylogenetic 
context of the rs2205960-T polymorphism. The G allele of this variant (highlighted and 
underlined red) is depicted with 20bp flanking sequence. The sequence is aligned against that 
from eutherian mammal species. Pink highlighted nucleotides show differences in these species 
with respect to humans. 

2.45 

-4.74 

B 
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Examining the sequence with rs1234317-T against PWM binding data stored in 

the Jaspar Core database finds it completes a TATATT-binding motif and this 

motif was disrupted in the presence of rs1234317-C. The ENCODE project does 

not highlight binding of a TBP protein at this variant. Genome-wide ChIP-seq 

data from the ENCODE project has data for LCLs which carry the T allele of 

rs1234317. For LCLs carrying the risk (T) allele, there are currently no regulatory 

features annotated at this position in publically-available genome browsers. 

 
 
 

4.17 Discussion 
 

4.17.1 Summary of findings: Recombination 

The European deCODE sex-averaged and female-only recombination maps 

(URL: http://www.decode.com/addendum/), are based on 15,257 and 8,850 

directly observed recombinations, respectively. These maps, which have an 

effective resolution of 10kb, were compared to the HapMap phase III and 1000 

Genomes population-averaged maps. Recombination differences at the TNFSF4 

locus were found between the aforementioned, established maps for the 5´ region 

where the associated variants are located. As such, I estimated background 

recombination rates in each population tested for association, using a Bayesian 

composite-likelihood method. 

 
 
 

The deCODE map provides evidence of fine-scale differences in the 

recombination rate at TNFSF4. This map finds recombination at the bin closest to 

rs2205960 whilst the other maps do not. Furthermore, the observed 

recombination at this variant in the sex-averaged map is doubled in the female- 

only deCODE map and is highest at this variants relative to the 0.5Mb of 

encompassing sequence. The HapMap phase III and 1000 Genomes population- 

averaged maps depict very low recombination for this section of the TNFSF4 

locus. The trans-ancestral mapping study is predominantly in female cases and 

controls; I further investigated the likely pattern of recombination at TNFSF4 in 

our populations in light of the deCODE data. The LD-based data I generated are 

http://www.decode.com/addendum/)
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population-specific and inferred using multiple simulations and a large number of 

phased chromosomes from each group. The map data I generated better concur 

with the deCODE map for the section of the genome encompassing rs2205960. 

 
 
 

The recombination data generated suggest that in Asians, Europeans and 

Hispanics the bulk of the recombination occurs in a fraction of the sequence. In 

African-Americans, there is increased recombination rate and higher density and 

proportion of hotspots across the locus. In all populations, peak recombination is 

consistently at the 5′ boundary of the TNFSF4 gene and approximately 120kb into 

the 5′ region. A difference in African-Americans is that recombination extends 

30kb from the TNFSF4 gene boundary into the 5′ region, whilst there is 

negligible recombination in this section in the other populations, compatible with 

increased age of the genome in populations of African descent. 

 
 
 

4.17.2 Summary of findings: SNPs 
 

The data within this section collectively formed the first trans-ancestral fine- 

mapping association study of TNFSF4 in SLE. Haplotype-tagging and proxy 

variants and major ancestry informative markers were genotyped in four distinct 

populations, including two admixed populations, across 200kb of 1q25 

encompassing the TNFSF4 gene, and 5΄ and 3΄ regions. Association data testing 

TNFSF4 SNPs in African-American-Gullah SLE are also presented. Testing 

TNFSF4 variants with disease status revealed strong association in all cohorts 

(Tables 4.2, 4.3, and 4.5) establishing TNFSF4 as a global lupus susceptibility 

gene. Resolution of the association signal was accurate recombination data 

(Figure 4.1), and by increased power from the large numbers in our European 

cohort. Maximal power was achieved testing with a genetic model concordant 

with the major underlying mode of inheritance of the 5΄ TNFSF4 region in SLE, 

which is additive. The study confirmed the validity of large multi-ethnic cohorts 

where linkage disequilibrium is an obstacle. The novel association of 

rs16845607-A with Hispanic SLE was also reported. The data presented in this 
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chapter present two common TNFSF4 signals responsible for the underlying 

association with SLE in the Hispanic population (Figure 4.5). 

 
 

Rs16845607-A is located on intron 1 of the TNFSF4 gene, and is associated with 

risk of Hispanic SLE with strong effect size (OR=2.06) (Table 4.5). The effect 

size is of the magnitude consistent with MHC risk alleles in SLE (Fernando et al., 

2007). Rs16845607 is monomorphic in African-American and European 

populations but tags a high frequency haplotype in Hispanics (Figure 4.10). 

Amerindian ancestry is likely to drive increased frequency of rs16845607-A: This 

is supported by association data presented for independent Mestizo Amerindian 

and Hispanic Mestizo cohorts. Single marker and haplotype association data and 

results of conditional regression analysis suggest this allele represents a signal 

independent of the TNFSF4 5´ signal. A high frequency haplotype identical but 

instead carrying rs16845607-T was not associated with SLE risk (OR=0.86), 

suggesting a causal role for rs16845607-A. Sub-phenotype analyses 

demonstrated strong association of rs16845607-A with improved p-value and 

increased effect in leukopenia (OR=2.75) and lymphopenia (OR=2.94) (Table 

4.8). Conditioning on the presence of rs16845607-A in Hispanic lymphopenia 

demonstrated rs16845607-A to drive the intron one association in this subgroup 

of lupus patients. Interrogating the DNA sequence at this variant located a 

DNase1 hypersensitivity site to within 1kb of rs16845607-A: Further 

experimental analyses, including association testing in independent Latino 

cohorts, and ChIP investigation of regulatory proteins that potentially bind the 

sequence, are required to support this variant and to understand underlying 

mechanism by which it regulates TNFSF4 in lupus pathogenesis. 

 
 
 

Mapping the alleles uniquely tagging TNFSF4 haplotypes in each cohort helped 

establish the boundaries of TNFSF4risk TNFSF4non-risk in East Asians, Hispanics, 

and African-Americans and validated the haplotype boundaries previously 

defined in Europeans (Figure 4.9, and (Cunninghame Graham et al., 2008)). The 

spurious association of variants with disease through poor matching of cases with 
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controls was addressed by the removal of outlying individuals. The association of 

risk alleles was tested across all groups participating in this study. 

 
 
 

Comparing recombination patterns in African-American individuals homozygous 

for the risk and non-risk haplotypes, there was increased recombination at the 

locus for risk-haplotype bearing individuals. These data provide evidence for 

global association of rs2205960-T with SLE. The contribution of rs2205960-T to 

disease risk was assessed by conditional regression, these data suggest that this 

allele drives the 5΄ TNFSF4 association in African-Americans, Europeans and 

Hispanics. 

 
 
 

4.17.3 Summary of findings: Bioinformatics 
 

I further investigated key associated variants at TNFSF4 to further understand the 

biological processes underlying SLE pathogenesis: Curated and non-redundant 

profiles of SELEX binding experiments, stored in the JASPAR core database 

(Portales-Casamar et al., 2010) suggest rs2205960-T as the 8th nucleotide of a 

decameric motif with high binding affinity for NF-κB p65 (Figure 4.11). Altering 

the 8th nucleotide of the decamer to rs2205960-G reduced the binding affinity of 

this sequence for the NF-κB protein by approximately 10%, according to these 

data. ChIP-seq data generated for two HapMap phase III lymphoblastoid cell 

lines confirmed binding of NF-κB at this location. ENCODE ChIP-seq data also 

suggest binding of the transcription factors BCL11a, MEF2a and B-ATF at 

rs2205960, albeit with lower signal intensity compared to NF-κB. These data 

collectively suggest the genomic region encompassing rs2205960-T to have 

strong regulatory potential. 

 
 
 

4.17.4 Cis-eQTL data 
 

Expression profiling of common TNFSF4 variants was carried out in a cis-eQTL 

study in LCL samples from 777 female TwinsUK participants (Grundberg E. et 
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al., 2012). Association of RNA expression with >2 x 106 SNPs was tested by two- 

step mixed model–based score test. To characterize likely independent regulatory 

effects, the identified cis-eQTLs were mapped to recombination hotspot intervals. 

For each gene, the most significant SNP per hotspot interval was selected, and 

LD filtering performed. The top cis-eQTL in the LD bin, for the probe located at 

TNFSF4 (ILMN_2089875), was rs2205960 (P=3.75 x 10-4). 

 
 
 

4.17.5 Neutral haplotypes 
 

Increased decay of 5΄ LD at TNFSF4 in AAs anchor the associated haplotype to 

the proximal 5΄ region of TNFSF4. Examining the LD structure at TNFSF4 in 

African-Americans and Europeans (Figure 4.8) supported the association data: 

Neutral haplotypes in these populations, recombinant between rs1234317 and 

rs2205960 for the risk and non-risk haplotype, confirmed our conditional 

regression results (Figure 4.9). 

 
 
 

4.17.6 Sub-phenotypes 
 

Investigating the association of TNFSF4 risk alleles with biologically relevant 

lupus sub- phenotypes, strengthened the association p-value and effect size of 

rs2205960-T within the Anti-Smith autoantibody-positive AA lupus subgroup 

and this trend replicated in the European cohort (Table 4.7). The rs2205950-T 

allele was best associated when subgroups of Anti-Smith SLE cases were tested 

against AA, European and Hispanic controls. 

 
 
 

Assessing the correlation of rs1234317-T with the presence of anti-Ro 

autoantibodies in European cases found increased significance of the association 

p-value. There was an underlying trend illustrating strong correlation of TNFSF4 

variants with autoantibodies, suggest a putative role for TNFSF4 in their 

generation. The data suggest a mechanism by which TNFSF4 variants might be 
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involved in lupus pathogenesis. The Genomatix SNP analysis web tool predicts 

rs1234317-T to destroy the DNA binding site for the transcriptional repressor 

E4BP4, a transcription factor with a role in the survival of early B-cell 

progenitors (Ikushima et al., 1997). These data were validated by the 

transcription-factor annotation tool in Genomatix, incorporating DNA sequences 

from TNFSF4risk homozygotes. However, at the time the data were generated, no 

other publically available data confirmed the Genomatix annotation. 

 
 
 

Sub-phenotype analyses also demonstrate strong association of rs16845607-A 

with improved p-value and increased effect in leukopenia (OR=2.75) and 

lymphopenia (OR=2.94) (Table 4.8) subsets of Hispanic SLE cases. Conditional 

regression of rs16845607-A in Hispanic lymphopenia suggests that rs16845607-A 

drives the intron1 association in this subgroup of lupus patients, and is not 

dependent on the 5´ TNFSF4 association. Sequence analysis locates a DNase1 

hypersensitivity site to within 1kb of rs16845607-A in HapMap phase III 

Mexicans, however further experimental analyses are required to validate these 

data prior to functional experiments which investigate pathogenesis. 

 
 
 

4.17.7 Comparison with existing studies 
 

The association of rs2205950-T with African-American lupus concurs with data 

published previously by our group establishing a 5´ TNFSF4 association with 

SLE in Northern Europeans (Cunninghame Graham et al., 2008). The risk- 

associated variants rs2205960-T and rs1234317-T are strongly associated in the 

Minnesota cohort consistent with our results in four racial groups. In this previous 

study LD was a major obstacle in delineation of causal variation. Testing the 

association using a very large number of Europeans and utilising an African- 

American cohort, the signal was refined. Conditional analyses and the presence of 

neutral recombinant haplotypes aided the process. With regards to previously 

published data for TNFSF4 in SLE, the African-American data presented do not 

concur with data presented by Delgado-Vega and colleagues (Delgado-Vega et 
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al., 2009): These data suggest rs12039904-T and rs1234317-T to explain the 

entire haplotypic effect at TNFSF4 with SLE. A possible explanation for the 

modest association of rs12039904-T in African-Americans presented in this 

thesis, is its low frequency in populations of West African descent. The data 

presented in this thesis also find rs12039904-T as a borderline rare allele in 

African-Americans, with a nominal allelic association with SLE. Conditioning on 

rs2205960 removed residual association at rs12039904 in all groups tested. 

 
 
 

The key associated variant presented in this thesis, rs2205960-T, is correlated 

with risk of SLE in Amerindian-derived populations in a study by Sanchez and 

Colleagues (Sanchez et al., 2010). Sanchez and colleagues use TNFSF4 

rs2205960 and single markers at 15 other lupus susceptibility loci to illustrate 

correlation of Amerindian ancestry with increased frequency of lupus risk alleles. 

Delineation of rs2205960-T in the context of LD with adjacent markers isn’t the 

aim of the Sanchez study, as a single SNP is typed at each locus. They find 

aggregation of deleterious alleles in Amerindian SLE individuals: These data are 

supported by the increased effect sizes we find for associated TNFSF4 variants in 

Amerindians and Hispanics in this study. 
 

The intron 1 marker rs16845607-A, was associated with risk of Hispanic SLE 

with strong effect size (OR=2.06) (Table 4.5). The effect size is of the magnitude 

consistent with MHC risk alleles in SLE (Fernando et al., 2007). Rs16845607 is 

monomorphic in African-American and European populations but the  minor 

allele tags a high frequency haplotype in individuals of Amerindian ancestry 

(Figure 4.10). 

 
 
 

4.18 Key points of study 
 

In summary, the data presented in this chapter of the thesis confirmed TNFSF4 as 

a global susceptibility gene in SLE. The 5΄ association with disease was 

replicated in all racial groups; these data suggested the signal location in the 
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proximal TNFSF4 promoter region. Efforts in African-Americans and a large 

cohort of European individuals were used to refine the association. Increased 

recombination in the proximal section of the 5´ upstream region of this locus in 

the AA population and the conditional regression strategies employed, better 

focused the association signal to the risk-haplotype-tagging variant, rs2205960-T. 

This marker was strongly associated with  disease in all groups tested.  This 

marker segregated with autoantibody subsets in African-Americans, European 

and Amerindian/Hispanic groups. ChIP-Seq and bioinformatic data suggest that 

the variant sits within a regulatory element flagged as a promoter-associated 

DNase1 site: Bioinformatic data mined from the Jaspar Core database suggest 

the risk allele forms part of a decameric motif for NF-κB RELA. ChIP-seq data 

from the ENCODE project additionally supported binding of NF-κB to this 

sequence. Collectively, these data suggest a causal mechanism for disease risk. 

 
 
 

A novel association signal at TNFSF4 was also identified from these data: The 

intron 1 TNFSF4 variant rs16845607-A confers risk uniquely in SLE individuals 

with Amerindian ancestry. The results presented demonstrated segregation of this 

marker with lymphopenia and leukopenia which are sub-phenotypes associated 

with disease severity. These data suggest both global and population-specific 

TNFSF4 associations with SLE exist and illustrate the use of trans-ancestral 

mapping in this complex trait. 

 
 

4.19 Limitations 
 

4.19.1 Limited ancestry informative data 
 

Epidemiological studies suggest differences in the distribution of ancestry- 

associated susceptibility to SLE, the intron 1 association of rs16845607-A unique 

to mestizo Hispanic and Amerindian SLE cases described in this chapter support 

these data. The AIM panel of Halder and colleagues (Halder et al., 2008), limited 

to 347 markers, crudely distinguishes continental admixture but does not resolve 

hidden fine-scale genetic substructure.   Populations of mestizo Hispanics with 
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complex disease are now being used frequently in genetic analyses; they often 

have large variance in the proportions of Amerindian (AMI) and European (EUR) 

genome (Tian et al., 2007). Assessing the relative contributions of EUR and AMI 

has been limited by the paucity of AIMs that distinguish them and which 

distinguish between different Amerindian groups such as the Uto-Aztecan 

speaking (eg. Pima Indians) and the Non-Uto-Aztecan language speaking (eg. 

Mayan) groups. The data presented in this chapter assumed homogeneity in the 

indigenous Amerindian population, but it is likely that they are heterogeneous as 

DNA samples were collected from multiple sites. A set of markers screened and 

validated for enrichment of EUR/AMI AIMs could provide a strong basis for 

future analyses which assess SLE risk loci in groups with AMI source ancestry 

(Tian et al., 2007) 

 
 

4.19.2 Absent imputation of Amerindians and Hispanics 

Imputation is a statistical approach that can be used to leverage genetic 

association data. Imputation of data allows estimation of untyped genotypes: This 

enabled comparison of haplotypes across African-Americans, Europeans and East 

Asians. Imputation thus aided resolution of population differences in haplotype 

structure at TNFSF4. The Hispanic cohort was not imputed due to cryptic 

structure owing to three or four-way admixture. At the time the data were 

imputed, publically-available genome-wide sequencing data representing Latinos 

was not available. Thus, reference haplotypes were not available for imputation; 

Re-sequencing 200 Latino individuals at high coverage would capture the 

majority of common genetic variants at this locus so that accurate, phased 

haplotype data could be generated for the purpose. With regards to the TNFSF4 

association, the frequency of common associated alleles is higher in Hispanics 

compared to the other groups tested: Pair-wise LD is also stronger. Therefore, if 

the Hispanic populations tested are representative, it is likely that the imputed 

genotypes captured by the other groups are representative for this population. 
 

4.19.3 Recombination rate inference 
 

Assessing the performance of rhomap as a recombination rate estimation tool, an 

upward  bias  of  mean  estimates  is  identified  at  very  low  rates.  However, 
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simulations of the constant and variable recombination rate (Auton., 2007) found 

the variance of this estimate reduced compared to other programs so sample 

distribution is highly likely to contain the true rate for variable data. Comparing 

rhomap as a hotspot detection tool finds it less powerful than HotspotFisher or 

sequenceLDhot (Fearnhead., 2006; Krimmer et al., 2009). Rhomap is not suitable 

as an independent determinant for hotspot presence without recombination rate 

inference; however it is capable of identifying candidate hotspots with a lower 

false discovery rate than at least one other method assessed. Artificially thinning 

SNP density in a random but uniform manner affected the performance of 

rhomap; Detection power is reduced to below 10% for all hotspots. The markers 

used to infer recombination at TNFSF4 are densely packed in all but a 10kb 

section of the upstream region; the section comprising SINE and LINE repeat 

elements. Strong LD across the encompassing upstream region in Europeans and 

East Asians suggest a hotspot has not been missed in the repeat region. 

Artificially thinning the SNPs to an allele frequency of 5% loses resolution to a 

lesser extent but increases the number of falsely assigned hotspots (Auton., 2007) 

and so rhomap is not suitable for simulating recombination from rare variants. 

 
 
 

4.19.4 Imputation fall-out 
 

A key limitation of this study is TNFSF4 imputation may have missed common 

variations located in the distal 5ʹ TNFSF4 region which could be causal. Accurate 

characterisation of variants remains challenging in low-complexity regions 

including the LINE element located in the distal 5ʹ section of this locus. As a 

result, variants in this region are systematically underrepresented in genetic 

association studies. Furthermore, an association signal may reside in the fraction 

of SNPs which have a lower imputation performance and were omitted using the 

info threshold of 0.7. This fraction is likely to include rare variants which are too 

infrequent to be imputed with confidence but which might have a large effect on 

risk. However, the association data suggest the true causal variants are likely to 

be common (>5% frequency) and located in the proximal section of the 5ʹ region. 

The standard error of the beta coefficients for most imputed variants included in 

later analyses reflects high imputation certainty. 
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4.19.5 East Asian Phenotype data 
 

The data presented in this chapter finds association of TNFSF4 alleles with 

phenotypic manifestations of SLE. The associated variants have improved effect 

size and increased significance and there are trends with autoantibody production 

and age at diagnosis across multiple populations. However there are no 

statistically significant associations between TNFSF4 variants and the same 

phenotypes in the East Asian cohort, despite a similarly structured risk haplotype 

and strong association of TNFSF4 with lupus per se. Numbers of cases included 

in analyses are on a weighted par with European cases, thus lack of association is 

perplexing. The phenotype datasets were collected at multiple institutions and a 

drawback in any large association study of this kind is the lack of standardisation 

in data collection, with especially large variance in reliability of self-reported 

phenotypes. One would not expect such errors given the East Asian cohort, and 

would expect it to equally apply to the other cohorts, if it was due to error alone. 

If absence of association is a result of error, and not a negative association, it is 

likely to be a systematic error introduced after collation of all phenotypes for this 

population as opposed to any random fluctuations in measurements. 
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Chapter 5 
 

Targeted re-sequencing of TNFSF4 
 

NGS re-sequencing has successfully refined the association of established 

susceptibility loci in lupus, including the TNFAIP3 gene which regulates NF-κB 

(Graham et al., 2008). Sampling all available nucleotides at a locus catalogues 

previously untyped polymorphisms and allows full characterization of 

haplotype(s) associated with risk of disease. These data then enable 

comprehensive association fine-mapping, increasing the likelihood of identifying 

causal contributors, be they SNPs or structural variations, to SLE risk. 



148  

5.1 Targeted re-sequencing of the TNFSF4 locus - study aims 
 
 
 

5.1.1 Definition of variants unique to TNFSF4risk and TNFSF4non-risk 

haplotypes. 
 

A sequencing study at the TNFSF4 locus would better catalogue the genetic 

variation required for comprehensive association analysis of this gene in SLE. To 

this end, the TNFSF4 gene, 5´ and 3´ regions were deep-sequenced in UK- 

European SLE individuals who were homozygotes for the aforementioned 

TNFSF4risk or TNFSF4non-risk haplotypes. The conditional regression strategies 

applied to genotypic data in chapter 4 identified independent risk and protective 

effects owing to variants contained within TNFSF4risk and TNFSF4non-risk. 

Sequencing UK-European SLE individuals who are homozygotes for these 

haplotypes, I aimed to systematically identify the variants which implicate these 

signals in SLE. 

 
 
 

5.1.2 Definition of full spectrum of variants underlying the upstream TNFSF4 

association in lupus. 
 

The trans-ancestral mapping  experiment  identified  genetic  association  of 

rs2205960-T in all cohorts tested. The association of alleles at TNFSF4 in 

multiple SLE populations confirmed TNFSF4 as a global susceptibility gene for 

the disease. Utilising recombinant haplotypes and applying conditional regression 

strategies to these data, rs2205960-T best explains the association of the upstream 

region with disease. However, only a proportion of the  available nucleotide 

positions available at the locus were sampled to generate these results: Imputation 

may have missed common variations located in the distal 5ʹ TNFSF4 repetitive 

region; variants in this low-complexity region are systematically 

underrepresented in genetic association studies. Causal-variants, including indels, 

which might be in LD with rs2205960-T, but which have not yet been identified 

may be additional causal contributors to disease risk. Thus, by sequencing the 
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locus in many lupus individuals, I aimed to catalogue a more complete spectrum 

of variants, including structural variants, which potentially confer disease risk. 

 
 
 

5.1.3 Definition of rare SLE-associated coding variants. 
 

The rs2205960-T variant is a common allele with modest effect size; it is likely to 

explain a proportion of the variance in SLE disease risk owing to TNFSF4. 

Independently associated coding variations would more directly implicate the 

TNFSF4 gene and also explain additional heritability. These variants are likely to 

reside in the fraction of SNPs which have a lower imputation performance as they 

are more likely to be deleterious, negatively selected, and so occur at lower 

frequency. An info threshold of 0.7 was used to omit variants in this study: This 

fraction of omitted variants is likely to include rare variants which are too 

infrequent to be imputed with confidence but which might have a large effect on 

risk. These rare and probably functional variants, once validated, would be used 

to dictate functional research of TNFSF4 in SLE. 

 
 
 

Results 
 

5.2 Sequencing statistics 
 

Sequencing of the 118kb section of chromosome 1q25.1 (the TNFSF4 gene and 

genomic region up to the 5′ boundary of the risk-associated haplotype) was 

undertaken. Using this approach, 177.2Mb of sequence was generated in the form 

of 555,721 reads with a mean read length of 318 (Figure 5.1A). The depth and 

breadth of sequence coverage (Figure 5.2, Table 5.1) was calculated using a 

custom script designed by Michael Simpson at Kings College London. The 

parallel-tagged sequencing (PTS) strategy of Meyer and colleagues (Meyer et al., 

2008) enabled multiplexing of DNA sequence from 88 TNFSF4risk and 

TNFSF4non-risk homozygote SLE individuals using half a Roche-454 Titanium 

chip. 



150  

5.3 Variant-calling pipeline 
 

In order to search for new variants at TNFSF4, profiles were generated using an 

in-house variant calling pipeline. Sequence reads were aligned to the reference 

genome (UCSC hg18, NCBI Build36.3) and anomalous reads excluded from 

downstream analysis. Coverage sufficient for variant calling was achieved in 71 

of the 88 Northern European SLE individuals selected for sequencing (Table 5.1, 

Figure 5.2). The 5ʹ region upstream of the TNFSF4 gene, in particular the section 

corresponding to the 13.8kb amplicon with coordinates 171,462,182- 

171,476,028, predominantly comprises conserved repetitive elements: High 

quality sequencing data for this amplicon was generated with good coverage and 

depth in only three individuals; one risk (tagged by adapter 33) and two non-risk 

(tagged by 36 and 65) homozygotes. As a result, a reduced number of variants 

were called for this section of the locus. 

 
 
 

5.4 Variant calling 
 

Single nucleotide substitutions and small insertion deletions (indels) were 

identified and further filtered using the overall mean quality scores (calculated 

from the sample-specific quality scores) generated by the variant calling tool. 

Variants were also visualised using the Integrated Genomes Viewer (IGV), as 

described in chapter 1 and depicted in Figure 5.3. Novel variants were aligned 

against the two main transcripts of the TNFSF4 gene; data are presented in Table 

5.2. 
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Figure 5.1 Sequencing statistics generated for A. all sequencing reads (above) and B. 
assembled contigs (below) 

 
 
 
 
 
 
 

 

A Mean 319    Median 343 

B Median 359    Mean 364 
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Tag ID Tag sequence Number of Sequences Coverage Variants 
called 

Tag ID Tag sequence Number of Sequences Coverage Variants called 

TAG 01 TCTCTGTG 11680 35 24 TAG 36 ATATCACG 83284 249 105 
TAG 02 TGTACGTG 22188 66 28 TAG 39 AGCACACG 22504 67 65 
TAG 03 ATCGTCTG 31948 96 106 TAG 40 ATGTGTAG 27876 83 50 
TAG 04 TAGCTCTG 33144 99 70 TAG 41 ACTCGTAG 48132 144 90 
TAG 05 AGTATCTG 41892 125 71 TAG 42 TGCAGTAG 11608 35 35 
TAG 06 TCGAGCTG 49536 148 139 TAG 43 TGATCTAG 22508 67 4 
TAG 07 TCATACTG 38136 114 86 TAG 44 TACGCTAG 26044 78 53 
TAG 08 TACGACTG 21084 63 95 TAG 46 AGACATAG 16968 51 59 
TAG 09 ACTCACTG 63088 189 164 TAG 47 AGCGTGAG 35940 108 78 
TAG 10 AGAGTATG 46420 139 75 TAG 48 ATGATGAG 32312 97 87 
TAG 11 AGCTGATG 9860 29 32 TAG 50 TCTGCGAG 11968 36 66 
TAG 12 TATCGATG 28184 84 61 TAG 51 ATAGAGAG 43640 131 121 
TAG 13 ATGCGATG 44208 132 86 TAG 52 TATCAGAG 41056 123 104 
TAG 14 ACGTCATG 23728 71 34 TAG 53 ACGCAGAG 10656 32 44 
TAG 15 TCATGTCG 39312 118 145 TAG 54 ACAGTCAG 7580 23 23 
TAG 17 TCTACTCG 56316 168 123 TAG 55 TCTATCAG 7964 24 16 
TAG 19 ATCTATCG 44836 134 73 TAG 58 ATCAGCAG 26660 80 129 
TAG 20 ACAGATCG 13060 39 5 TAG 59 TGCTACAG 15596 47 21 
TAG 21 ATACTGCG 21076 63 40 TAG 60 AGTGACAG 39068 117 89 
TAG 22 TATATGCG 57772 173 88 TAG 62 TACATGTC 36656 110 116 
TAG 23 TGCTCGCG 12760 38 11 TAG 63 ATGACGTC 22428 67 100 
TAG 24 ATCGCGCG 21948 66 64 TAG 64 AGCGAGTC 18576 56 62 
TAG 26 AGATAGCG 57508 172 122 TAG 65 TCGCAGTC 32928 99 101 
TAG 27 TGTGAGCG 11888 36 40 TAG 66 ATACAGTC 87652 262 148 
TAG 28 TCACAGCG 32156 96 61 TAG 68 TCACTCTC 120408 360 199 
TAG 29 ACTGTACG 15212 46 26 TAG 69 ATCTGCTC 10348 31 10 
TAG 30 TGCGTACG 28824 86 58 TAG 72 TCTGACTC 90892 272 36 
TAG 31 TCGCTACG 31612 95 71 TAG 76 TGACGATC 19204 57 1 
TAG 32 TACTGACG 65004 194 132 TAG 79 ACAGCATC 10116 30 1 
TAG 33 AGACGACG 39628 119 131 TAG 82 TGCGATGC 7468 22 16 
TAG 34 TGTAGACG 19628 59 57 TAG 85 AGAGTCGC 19928 60 59 
TAG 35 ACGAGACG 13148 39 34 TAG 88 TCATGCGC 32772 98 61 

Table 5.1 Number of sequence reads generated and coverage per tagged individual, TNFSF4 sequencing study 
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Figure 5.2  Bar chart illustrating A. Number of sequences per individual and B. The number of variants called per individual 
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Figure 5.3 Integrated view of sequencing reads aligned against the TNFSF4 gene (hg18) for a TNFSF4risk homozygote 
 
 

 
The integrated genomes viewer (IGV) tool (Robinson et al., 2011) was used to explore aligned 454 reads aligned against the TNFSF4 
gene using the multi-resolution file formats bam and bam coverage. The example track depicts the full complement of sequencing 
reads at TNFSF4, post QC, for a single TNFSF4risk haplotype homozygote individual, tagged by the barcode adapter TAG68. Sporadic 
coloured vertical lines on the grey coverage plot immediately below the gene indicate a nucleotide base change at the position 
(example green line, black-circled). 
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Table 5.2 All versus novel variants in two transcripts of the TNFSF4 
gene 

 
 

Transcript a. Transcript b. 
 

 
TNFSF4 position 

All 
variants 

New 
variants 

All 
variants 

New 
variants 

Exon 3 24 16 24 16 
2+ individuals 24 16 24 16 
3+ 18 11 18 11 
10+ 4 1 4 1 
Intron 2-3 17 10 17 10 
2+ 17 10 17 10 
3+ 14 8 14 8 
10+ 5 2 5 2 
Exon 2 0 0 0 0 
Intron 1-2 90 57 79 53 
2+ 90 57 79 53 
3+ 62 37 53 36 
10+ 20 5 11 5 
Exon 1 - - 3 3 
2+ - - 3 3 
3+ - - 2 2 
10+ - - 0 0 
5'UTR - - 2 1 
2+ - - 2 1 
3+ - - 0 0 
10+ - - 0 0 

 
 
 
 
 
 
 

5.5 Identification of novel variants 
 

Novel variants were screened against UCSC hg19 (February 2009 high coverage 

assembly GRCh37) and also against SNPs and structural variations catalogued in 

the Ensembl Genome Browser 64, dbSNP132, HapMap data release 28, 1000 

Genomes high coverage trios, 1000 Genomes high coverage exons and 1000 

Genomes low coverage data. The URLs for the aforementioned browsers are 

described in Appendix B. of this thesis. 

 
 
 

Exonic variants identified in the TNFSF4 gene were probed against those 

catalogued from 350 control exomes sequenced and analysed by the method 

described (further described in Table 5.3, Table 5.4). In addition, the exonic 
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variants were probed against TNFSF4 variants from the the first data freeze of 

2500 European and African-American control exomes and contained within the 

Exome Variant Server from the NHLBI Exome Sequencing Project (ESP) (URL: 

http://evs.gs.washington.edu/EVS/). Variants with a phred quality score above 40 

were identified as ‘novel’ if they did not concord with the variants in the two sets 

of exome data. The variants were interrogated using the IGV (Figure 5.3) to 

further ensure they were not a result of sequence ambiguity. 

 
 
 

5.6 Polyphen-2 analysis 
 

PolyPhen-2 (Polymorphism Phenotyping v2) is a tool which annotates coding 

non synonymous SNPs (Adzhubei et al., 2010). Predictions for potential impact 

of coding variants identified in this study on amino acid substitution and thus 

structure and function of human TNFSF4 were made. Orthologs and paralogs of 

the TNFSF4 sequence were used to increase the accuracy of the predicted effect 

in the multiple sequence alignment (MSA). After identification and alignment of 

TNFSF4 homologs, putative coding variants were interrogated for their predicted 

functional impact with respect to TNFSF4. The Polyphen-2 tool replaced amino 

acids where the variant caused a non-synonymous change and a naive Bayes 

classifier was used in two datasets (HumDiv and HumVar) to predict and classify 

the functional impact of each coding variant. These data are described in this 

chapter (Table 5.4 and Figure 5.5). 

http://evs.gs.washington.edu/EVS/)
http://evs.gs.washington.edu/EVS/)
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ID Build 36 Build37 
Variant 

type 
Total 
freq 

Risk 
freq 

Non risk 
freq 

% Risk, 
sequencing 

data 

% Non- risk 
sequencing 

data 

Mean 
quality 

risk 

Mean 
quality 
non-risk Variant detail Transcript 1 Transcript 2 Regulatory features 

2 171419147 173152524 INDEL 13 4 9 16.00 30.00 62.5 69.39 T-TT Exon 3 Exon 3 
3 171420289 173153666 INDEL 7 0 7 0.00 23.33 87.37 TT-T Exon 3 Exon 3 
7 171421041 173154418 INDEL 6 0 6 0.00 20.00 66.5 A-AA Exon 3 Exon 3 
16 171423523 173156900 INDEL 7 0 7 0.00 23.33 69.29 A-AA Intron 2 Intron 2 SP1(1) 
20 171423863 173157240 INDEL 22 7 15 28.00 50.00 92.92 83.77 T-TT Intron 2 Intron 2 CTCF(2) 
21 171424250 173157627 INDEL 17 10 7 40.00 23.33 84.85 87.07 A-AA Intron 2 Intron 2 
30 171426673 173160050 INDEL 12 8 4 32.00 13.33 78.75 61.5 A-AA Intron 1 

Max(2), Cmyc(3), DNase1(11), 
Intron 1 E2F6(1) 

53 171430108 173163485 INDEL 7 5 2 20.00 6.67 61.5 62.5 T-TT Intron 1 Intron 1 
54 171430209 173163586 INDEL 6 4 2 23.53 8.70 65.6 81 A-AA Intron 1 Intron 1 
57 171432884 173166261 INDEL 3 0 3 0.00 13.04 84.67 T-TT Intron 1 Intron 1 
64 171437014 173170391 INDEL 5 1 4 5.88 17.39 78.15 T-TT Intron 1 Intron 1 
67 171437855 173171232 INDEL 3 0 3 0.00 13.04 63.83 A-AA Intron 1 Intron 1 
69 171438386 173171763 INDEL 5 1 4 5.88 17.39 81.625  A-AA Intron 1 

CTCF(17), Rad21(2), 
Intron 1 DNase1(4) 

70 171438729 173172106 INDEL 9 0 9 0.00 39.13 92.82 CCCTCCTC-C Intron 1 
CTCF(17), Rad21(2), 

Intron 1 DNase1(4) 
72 171438892 173172269 INDEL 7 2 5 11.76 21.74 74.75 78.88 A-AA Intron 1 Intron 1 
75 171440072 173173449 INDEL 6 1 5 5.88 21.74 79.3 A-AA Intron 1 Intron 1 
76 171441075 173174452 SNP 4 3 1 17.65 4.35 31 T-A Intron 1 Exon 1 Cmyc(1), DNase1(4) 
79 171443121 173176498 INDEL 4 1 3 7.14 18.75 61.83 T-TT 5' region 5' region DNase1(1), BATF(1) 
82 171444200 173177577 INDEL 3 3 0 21.43 0.00 68.23 A-AA 5' region 5' region DNase1(1) 
92 171449789 173183166 INDEL 10 3 7 21.43 43.75 87.33 73.21 A-AA 5' region 5' region 

102 171452784 173186161 INDEL 7 6 1 31.58 9.09 80.83 A-AA 5' region 5' region 
129 171461900 173195277 INDEL 8 6 2 31.58 18.18 76.08 99 T-TT 5' region 5' region 
141 171497624 173231001 INDEL 4 4 0 44.44 0.00 85.5 CC-C 5' region 5' region 
145 171499486 173232863 INDEL 3 3 0 33.33 0.00 71.23 AA-A 5' region 5' region 
151 171503293 173236670 INDEL 10 2 8 11.76 38.10 52.5 68.5 T-TT 5' region 5' region 
152 171503339 173236716 SNP 20 19 1 111.76 4.76 86.72 T-C 5' region 5' region EBF(1), DNase1(3), BATF(1) 
154 171503679 173237056 INDEL 17 17 0 100.00 0.00 92.4 A-AACAGGA 5' region 5' region 
164 171507785 173241162 INDEL 4 0 4 0.00 19.05 71.5 A-AA 5' region 5' region 
165 171508341 173241718 INDEL 5 0 5 0.00 23.81 80.1 A-AA 5' region 5' region 
166 171508485 173241862 INDEL 6 0 6 0.00 28.57 84.92 A-AA 5' region 5' region 
172 171511291 173244668 INDEL 9 2 7 11.76 33.33 83.75 78.07 T-TT 5' region 5' region 
177 171520353 173253630 SNP 27 15 12 150.00 70.59 87.94 82.19 T-C 5' region 5' region 
192 171531498 173264875 INDEL 8 2 6 8.70 20.00 96.25 84 A-AA 5' region 5' region 
193 171531632 173265009 INDEL 11 3 8 13.04 26.67 78.5 75.63 T-TT 5' region 5' region 
194 171531667 173265044 INDEL 6 5 1 21.74 3.33 61.9 T-TT 5' region 5' region 
197 171531931 173265308 INDEL 9 2 7 8.70 23.33 69.5 95.21 T-TT 5' region 5' region 
200 171532531 173266001 SNP 29 25 4 108.70 13.33 85.4 99 C-T 5' region 5' region 
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Figure 5.4 Novel SNPs and indels in the context of known genomic signatures at the TNFSF4 locus 

 

 
 
 

Variants were identified by targeted deep-sequencing of the 118kb section of chromosome 1q25.1 encompassing the TNFSF4 gene and upstream 5΄ region. Known SNP markers 
and indels from the December 2011 release of Ensembl, UCSC and 1000 Genomes browsers, along with SNPs from the NHLBI exome sequencing project and King’s College 
London exome sequencing project are mapped in ‘All SNPs’ and ‘All indels’; new variants in these classes, excluding singletons, are presented in the new SNP and indel 
sections. The data presented are aligned to the recombination data generated for 1568 control chromosomes from European individuals, which is presented in chapter 4 of this 
thesis. 
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Table 5.4 TNFSF4 coding variants predicted by Polyphen-2 as benign or probably/possibly damaging 
 
 

Variant ID 

 
 

hg18 

 
 

hg19 

 
Risk/ Non- 

risk 

 
Quality 
Score 

 
 

Position 

 
 

AA1/AA2 

 
Human Diversity 

Prediction 

 
 

pph2_prob 

 
Human Variation 

prediction 

 
 

pph2_prob 

173155664.AC.giv 171422287 173155664 NR 21 131 C/W probably damaging 0.961 possibly damaging 0.54 

173155664.AC.giw 171422287 173155664 NR 21 181 C/W probably damaging 1 probably damaging 0.941 

173155685.AC.giv 171422308 173155685 R 48 124 H/Q possibly damaging 0.577 benign 0.168 

173155685.AT.giv 171422308 173155685 R 48 124 H/Q possibly damaging 0.577 benign 0.168 

173155685.AC.giw 171422308 173155685 R 48 174 H/Q possibly damaging 0.709 benign 0.256 

173155685.AT.giw 171422308 173155685 R 48 174 H/Q possibly damaging 0.709 benign 0.256 

173155834.GA.giv 171422457 173155834 NR 78.5 75 P/S possibly damaging 0.922 benign 0.243 

173155834.GC.giv 171422457 173155834 NR 78.5 75 P/A possibly damaging 0.557 benign 0.061 

173155834.GT.giv 171422457 173155834 NR 78.5 75 P/T possibly damaging 0.843 benign 0.243 

173155834.GA.giw 171422457 173155834 NR 78.5 125 P/S probably damaging 0.999 possibly damaging 0.896 

173155834.GC.giw 171422457 173155834 NR 78.5 125 P/A probably damaging 0.992 possibly damaging 0.629 

173155834.GT.giw 171422457 173155834 NR 78.5 125 P/T probably damaging 0.998 possibly damaging 0.896 

173155921.TA.giv 171422544 173155921 R 23 46 N/Y probably damaging 0.993 possibly damaging 0.692 

173155921.TC.giv 171422544 173155921 R 23 46 N/D possibly damaging 0.465 benign 0.159 

173155921.TG.giv 171422544 173155921 R 23 46 N/H probably damaging 0.959 possibly damaging 0.576 

173155921.TA.giw 171422544 173155921 R 23 96 N/Y probably damaging 0.989 possibly damaging 0.669 

173155921.TC.giw 171422544 173155921 R 23 96 N/D possibly damaging 0.579 benign 0.169 

173155921.TG.giw 171422544 173155921 R 23 96 N/H probably damaging 0.988 possibly damaging 0.668 

173155944.AC.giw 171422567 173155944 R 29 88 V/G possibly damaging 0.65 possibly damaging 0.592 
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Figure 5.5 Classification of novel variants identified in the TNFSF4 gene 

 

 
 

A. Vertical lines depict novel variants identified in the TNFSF4 gene after sequencing on the Roche-454 platform. This upper section of the diagram depicts the 
location of ticks against scale (coordinates as for UCSC hg18) and against the three known translated spliceoforms of TNFSF4 (a b and c) and a single 
untranslated splice variant (d). The colour of each tick represents where it is located in the gene: black (exon), blue (intron) and pink (untranslated region, 
UTR). B. Functional effects of putative novel coding SNPs were predicted using the sequence and structure-based annotation tool Polyphen-2 (Adzhubei et al. 
2010), coding variants are classified for their predicted effect on the TNFSF4 protein. 
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5.7 Discussion 
 

Deep sequencing of TNFSF4 using DNA from TNFSF4risk and TNFSF4non-risk 

SLE cases aimed to identify putative, high-quality variants which segregate with 

the aforementioned haplotypes for further validation, genotyping, association 

testing and functional assessment. To this end, 200 novel SNPs and indels, with 

quality scores above 40, were identified. These variants screened positively if 

they were absent in the Ensembl genome browser 64, UCSC genome browser, 

dbSNP132, HapMap data release 28 or the 1000 Genomes data release v2. The 

variants were identified in two or more of the individuals sequenced in this study. 

Exonic variants were probed against variants identified in 350 in-house control 

exomes and also against the first data freeze of 2500 European and African- 

American control exomes from the NHLBI Exome Sequencing Project (ESP) 

(URL: http://evs.gs.washington.edu/EVS/). The identified variants were 

categorised as ‘novel, to be validated’ if absent in the aforementioned datasets. 

 
High frequency, probably low penetrant variants and low frequency variants with 

the potential for high disease penetrance were identified from the data presented 

in this chapter. Validation followed by genotyping is likely to find association of 

a proportion of these novel variants with SLE, given the high LD across the 

TNFSF4 locus in the selected individuals. The contribution of TNFSF4 variants 

to the genetic burden underlying SLE risk is likely to be from both common and 

rare variants:  Targeted re-sequencing  of susceptibility  loci  in  IBD  identified 

multiple rare and common associated variants at single loci (Rivas et al., 2011). 

Multiple independent signals were also identified at TNFSF4 in SLE individuals 

of Amerindian descent: These loci had markedly different effect sizes and allele 

frequencies. A similar trend might be identified in Europeans should one of the 

novel, low-frequency coding variants identified exert an independent effect in 

Northern European SLE individuals tested for association. 

 

5.7.1 Novel SNPs 

The total number of SNPs identified in this study was 1399; of these 1213 were 

singletons and 187 identified in two or more individuals. As expected, the mean 

quality score for singletons was lower than that for high-frequency identified 

http://evs.gs.washington.edu/EVS/)
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alleles: 44.4% against a mean of 70.5% for SNPs found in two or more 

individuals. Removing the quartile of singleton SNPs with lowest quality score 

improved the mean score for this group to 56.9% for the remaining ‘rare’ 

variants: A considerably higher score compared to the same region sequenced as 

part of the pilot release of the 1000 Genomes study. The aforementioned 1000 

Genomes release relied on low coverage (x2-4 coverage) data in intergenic 

regions and so early versions had higher base-calling error rates. The sequences 

from 71 individuals were included for variant calling: Uncertainty was reduced 

owing to high average read depths (x20 coverage, or greater) for this group. 

Sequencing data for a 13.8kb amplicon which represented a low complexity 

repeat region at the locus (see repetitive DNA and sequencing, below) was 

excluded from this analysis, and independently analysed where appropriate. 

 

Excluding known common SNPs and singletons from the cleaned data gave 17 

novel SNPs which were identified in two or more individuals; the 17 SNPs had a 

mean quality score of 57%. Investigating the location of these variants, there was 

a single exonic, six intronic and 11 intergenic novel SNPs. These variants will be 

validated by Sanger sequencing. Two novel upstream SNPs at coordinates 

171,503,339 (frequency, 19 risk vs. one non- risk) and 171,532,531 (25 risk vs. 

four non-risk) are annotated for regulatory features at their genomic location in 

the Ensembl genome browser: The variant at 171,532,531 is found within a 

regulatory region, in silico ChIP-seq data predict the B-ATF transcription factor 

to bind the sequence encompassing the variant.  B-ATF  enhances  the 

transcription of genes involved in B-cell proliferation (Ensembl, release 132). 

Increased B-ATF binding would be a plausible mechanism to cause TNFSF4 

overexpression thus increasing risk in SLE. 

 

5.7.2 Novel Indels 

The deep sequencing data presented in this chapter revealed 531 indels with a 

mean quality score of 69.9. Of the total, 226 (‘high frequency’) indels were 

identified in two or more individuals (mean quality score 73.4) and 186 (‘novel’) 

out of 226 were not identified in the aforementioned genome browsers or exome 

data.   Of the 186 high frequency novel indels, 37 were annotated as having 
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regulatory potential  (Ensembl  version 132 (December 2011), UCSC genome 

browser). 

 

Several novel high-frequency indels identified in this study segregate with the 

TNFSF4risk or TNFSF4non-risk haplotypes: A 7bp deletion (CCCTCCTC to C) in 

intron 1 of the gene, with start coordinate 171,440,072 (hg18, NCBI v36.3) was 

identified in nine TNFSF4non-risk individuals. This deletion was not found in a 

single risk individual sequenced. The motif may form part of a larger degenerate 

13bp motif (CCNCCNTNNCCNC) which causes increased recombination and 

forms of genomic instability in humans (Hinch et al., 2011). The TNFSF4 gene is 

on the reverse strand so all sequenced risk individuals appear to fulfil the criteria 

for this degenerate motif. Recombination rate simulation data presented in 

chapter 4 of this thesis highlight increased recombination in TNFSF4risk compared 

to TNFSF4non-risk homozygotes. The data relating to this motif, presented by Hinch 

and colleagues, has demonstrated association with disease-causing genomic 

rearrangements in individuals carrying it. The motif may serve as a binding site 

for the chromatin-modifying PRDM9 protein (Berg et al., 2010) which binds the 

chromatin signature histone3 lysine4 (H3K4), by binding the DNA sequence. Use 

of the 8bp motif to bring about folding of TNFSF4 might bring enhancers and 

transcription factors within close proximity of the gene. The TF would be 

predicted to bind associated variants identified in chapter 4, a plausible 

mechanism to cause overexpression of TNFSF4 and increase susceptibility to 

SLE. Folding of the sequence at TNFSF4 could be interrogated using the 

chromatin conformation capture (3C) technique. 

 

DNA sequences which are regulatory factor motifs often have biological function 

on factor binding: Sequence-specific transcription factor binding sites (TFBS) are 

sequences with strong regulatory potential: A high-frequency 6bp insertion (A to 

AACAGGA) identified in this study (Table 5.3, variant ID 154) was identified in 

17 risk individuals but absent in the non-risk group. The Jaspar and Genomatix 

data did not offer a consensus for the binding regulatory factor, however the motif 

is likely to have strong potential for regulation as multiple factors are predicted to 

bind the sequence. 
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Successful validation of all high-frequency novel indels presented would 

represent an increase in the total number identified at TNFSF4 by a factor of 4.7. 

A recent NGS study in Koreans identified approximately twice as many indels in 

each individual compared to previously sequenced personal genomes (Ju et al., 

2011). This study, presented by Ju and colleagues, identified substantial 

heterogeneity in the number of indels between the sequenced individuals. 

Comparing the indels identified in a single individual in the TNFSF4 study with 

the reference genome found a fold increase of 1.9 in the TNFSF4 study; this 

compares favourably and supports the data generated by the Korean study. The 

TNFSF4 data included in the overall fold increase take into account high-quality 

indels discovered by the pilot phase of the 1000 Genomes Project. The fold 

increase of 4.7 does not include 305 novel indels identified as singletons in this 

study. The lowest individual phred quality score for an indel which occurs once is 

50: These variants had a higher base calling accuracy compared to single 

occurrence SNPs identified in this study. 

 

The excess in novel indels at TNFSF4 from the study described in this thesis may 

be attributed to a combination of more accurate read alignments from increased 

lengths obtained by 454 sequencing, an increased proportion of available paired- 

end sequencing reads (Ju et al., 2011) but also errors including homopolymers, 

which are a known consequence of 454 sequencing (see below). A locus-specific 

map summarizing the location of indels is depicted in this chapter (see Figure 

5.4). 

 

5.7.3 Population or disease specific? 

Variants identified by this sequencing project may be uniquely associated with 

SLE or relevant to other complex polygenic traits. Polymorphisms located in 

intron 1 of the TNFSF4 gene are risk alleles in lupus but have also recently been 

associated with thick carotid plaque formation in the inflammatory process 

leading to severe atherosclerosis (Gardener et al., 2011). TNFSF4 alleles 

associated with SLE risk have also been associated with cerebrovascular disease 

(Olofsson et al., 2009). 
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5.7.4 Rare variants and non-synonymous SNPs in TNFSF4 

Accurate estimates of the number of rare variants in an individual genome are 

difficult to attain as they are likely to include many singleton variants that are 

false positives. An approximation of the total number can be calculated from 

positive predictive values of SNP detection for the experiment: The whole- 

genome Korean study estimated that 1.5% variants with an allele frequency of 

<1% were false (Ju et al., 2011). For the small-scale project presented in this 

chapter, most variations identified across the TNFSF4 gene were singletons, and 

so are rare polymorphisms or, more likely, false-positives. Within this fraction of 

singletons, the number of SNPs which cause a change in the amino-acid 

sequence, so called non synonymous SNPs (nsSNPs) are likely to be enriched as 

negative selection drives the frequency of deleterious alleles lower. A nsSNP 

could potentially affect the function of the protein, subsequently altering the 

carrier’s phenotype (Kumar et al., 2009). To assess the effect of missense 

substitutions on the TNFSF4 protein, the Polyphen-2 tool, which uses a sequence- 

based and structural approach, was used to evaluate TNFSF4 coding variants 

(Adzhubei et al., 2010). 

 
 

The naive Bayes classifier is a simple predictive tool which makes very 

independent (naive) computational predictions of functional impact. The coding 

variants identified were predicted as ‘benign’, ‘probably damaging’ or 

‘potentially damaging’ (Table 5.4). A missense substitution at position 

171422287 (hg18), Cys181Trp (Table 5.4, shaded blue), was classified as 

probably damaging by both Human Diversity and Human Variation datasets: This 

variant is to be validated by Sanger sequencing and then further assessed for 

function using a suitable expression vector. Variants which alter the amino acid 

sequence at positions 46, 96, 125 and 131, were also predicted as ‘probably 

damaging’ by the Human Diversity panel but predicted as ‘possibly damaging’ by 

the Human Variation panel: These variants will be assessed in a second round of 

validation. 
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5.7.5 Repetitive DNA and sequencing 

Repetitive DNA sequences have high homology or are identical to sequences 

elsewhere, accounting for around 50% of the human genome. These elements 

contribute to human evolution and may represent important phenomena in terms 

of biological function. Aligning repeats is technically challenging using Sanger 

sequences but more challenging with NGS reads because of the shorter read 

lengths and large volumes of data generated (Treangen and Salzberg, 2012). 

Assembly is therefore challenged by the intrinsic structure of the genome: 

Ignoring repeat sequences potentially introduces experimental bias which may 

result in over-interpretation of data. 

 
 
 

Repetitive DNA sequences are abundant in the upstream risk-associated region 5´ 

to the TNFSF4 gene as illustrated in Figure 5.4 of this chapter: LINE and SINE 

repetitive elements at the locus exhibited 100% sequence identity with >100 

identical copies scattered elsewhere in the genome, causing difficulties in the 

alignment procedure. The 454 platform generates longer reads and the TNFSF4 

locus is small, so errors in the assembly of these sequences compared to a 

genome-wide assembly were greatly reduced. Even so, the section upstream of 

the TNFSF4 gene corresponding to the 13.8kb amplicon (Figure 5.4) presented a 

major technical challenge and sequenced to high depth and uniformity in only 

three individuals. Adjacent amplicons generated an increased volume of better 

quality data, but with sporadic gaps in the majority of sequences for this part of 

chromosome 1q25.1. Historically, this section of the locus has generated poor 

quality sequencing and genotype data: There are a reduced number of identified 

variants owing to gaps in contigs in the Ensembl, NCBI and UCSC genome 

browsers. 

 
 

5.7.6 Errors in PTS: false-assignment rate 

PTS, and other multiplex approaches, exploit the capabilities of NGS well; 

however they also come with the risk of falsely assigning sequences to barcoding 

adapters. Rare variant analysis is compromised if sequence assignment is even 

slightly inaccurate. To avoid misalignment, the selection of barcoding adapters in 
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this study was particularly robust to sequencing error: Oligomers were highly 

distinguishable with at least three base changes required to transform them into 

another included adapter sequence: The false-assignment rate was calculated to 

be 0.27% for this study. A simple binomial error distribution model, as suggested 

by Meyer and colleagues (Meyer et al., 2008) also identified the edit distance of 

three to correspond to a false-assignment probability of <10-7 for 8-nucleotide 

sequences. There was scope for cross-contamination between adaptors in the 

laboratory and during manufacture of the adapters: Sequential purification which 

re-used a HPLC column at the manufacture stage could have given low-level 

carry-over contamination (Meyer et al., 2008), however the aforementioned risk 

is low. 

 
 
 

5.7.7 Limitations of PTS 

One limitation of PTS arises through the use of the restriction enzyme SrfI, a rare 

cutter in mammalian genomes with a restriction site approximately every 150kb 

in the human genome. Sequence coverage immediately around a SrfI site is lost; 

although sequence loss is limited to the immediate sequence either side the site, 

as the 454 universal adaptors are added after restriction digestion. 

Methyltransferase methylation of CpG sites prior to adapter ligation eliminates 

the sequencing loss by preventing restriction from occurring within template 

DNA (Meyer et al., 2008). 

 
 

5.7.8 454 sequencing errors 

Assessing the quality and accuracy of the sequences generated by the Roche 454 

GS-Titanium platform, different types of error might have been incorporated into 

the sequence during pyrosequencing. The 454 method does not call bases but 

instead calls light signals (flows). The length of brightness of a flow indicates the 

length of a run of identical bases (homopolymer), and homopolymer length is 

easy to mis-calibrate (URL: 

http://www.broadinstitute.org/crd/wiki/index.php/Homopolymer). Single base 

indels occur with considerable frequency both within and around homopolymer  

regions, can persist at high coverage and are the most common error in 454 

http://www.broadinstitute.org/crd/wiki/index.php/Homopolymer)
http://www.broadinstitute.org/crd/wiki/index.php/Homopolymer)
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sequencing (Kircher et al., 2012). Error rates vary for different versions of the 

454 assembly programs newbler and runMapper and may also differ among runs. 
 

Using an extensive dataset of Roche control DNA fragments, A. Gilles and 

colleagues (Gilles et al., 2011) identified insertions to be the most common errors 

(mean = 0.273% (0.269, 0.276)), followed by deletions (0.232% (0.229-0.235)); 

mismatches (0.022% (0.021-0.023)) and ambiguous base calls (0.007% (0.006- 

0.007)). Deep sequencing of multiple independent TNFSF4 sequences should 

have corrected for random errors generated by the sequencer. The Gilles study 

found heterogeneous errors along the length of sequences tested. The distribution 

of error within each category did not fit a stochastic model: Although the majority 

of positions sequenced correctly, a few had error rates which exceeded 50%. For 

the results presented in this thesis, there was additional, unintentional, control for 

the aforementioned errors, by sequencing lupus individuals with two distinct 

haplotypes: Many novel variants clearly segregated with TNFSF4risk or 

TNFSF4non-risk. Thus, the novel polymorphisms identified were a condition of 

genotype and not a function of the sequencing platform. 

 
 
 

5.7.9 Functional assessment of novel TNFSF4 variants 

Validation by Sanger sequencing and genotyping of high-quality upstream and 

rare coding variants in our UK-European SLE cohorts will be undertaken before 

functional assessment of novel alleles, which might be associated with risk. The 

novel alleles may impact TNFSF4 expression and provide further insight into 

lupus pathogenesis. 

 

 

5.8 Further work 
 

5.8.1 Targeted re-sequencing of multiple SLE risk-associated loci, prediction 

of threshold liability for SLE 

A multi-locus genetic model which can fit complex disease is the liability 

threshold model. This assumes an additive effect at each risk locus and between 
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loci. The extensive genetic research into complex disease which are 

currentlynderway are revealing many novel genetic loci. The multi-locus model 

shifts the mean of the normal distribution of disease liability for each genotype 

class until it is so great that disease is the result. A sequencing study at the 30 or 

so SLE loci will be undertaken in a multi-ethnic cohort comprising 600 

individuals, 150 from each population. The variants identified by a targeted 

sequencing study in African-American, East Asian, European, Hispanic and 

South Indian SLE individuals will increase the attributed proportion of 

heritability by increasing the number of true causal variants identified. These 

genotype data will give a better approximation of the threshold liability for the 

aforementioned ancestral groups in lupus.  

 

 

Novel and established genetic loci offer an important opportunity to improve 

clinical practice through the design of predictive genetic tests (Lu and Elston., 

2008). Plotting population-specific receiver operating characteristic (ROC) 

curves using the test statistic from a likelihood ratio test would give a plot of 

sensitivity vs. specificity for multiple predictor, to help build a test for lupus 

(Figure 5.6). The tests using these curves would be asymptotically more powerful 

and would extend to situations where causal loci are linked or interact. ROC 

curves would also better establish whether the differences in SLE prevalence are 

attributed to heritable factors, or environmental and socioeconomic factors and 

access to care. 

 
 
 

5.8.2 Targeted re-sequencing study of TNFSF4 RNA splice variants using 

PTS strategy 

To investigate the transcriptional impact of the TNFSF4 risk and non-risk 

haplotypes, RNA extracted from the individuals sequenced in this study will be 

sequenced, reverse transcribed and aligned to cDNA sequences stored in the 

Ensembl and UCSC browsers. This is to prevent misalignment of short reads 

which span exons to pseudogenes (pseudogenes are without junctions) so increase 

accuracy through in situ comparison. Transcriptional base modifications (TBMs) 

identified by comparison with the NGS DNA sequences will be mapped. TBMs 
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in coding regions are capable of influencing the translation of the protein, 

however modifications concentrated in AU-rich 3ʹ UTRs may function as mRNA 

editing  targets  (Rosenberg  et  al.,  2011)  which  can  regulate  translation.  The 

TNFSF4 gene has an extended 3kb 3ʹUTR which should be investigated for 

TBMs. Quantifying the coverage of DNA and RNA reads and comparing them 

for each validated variant will address preferential expression of one  allele 

relative to the other and the impact of allelic imbalance on expression of the 

TNFSF4 gene. 

 
 
 
 
 

Figure  5.6 Receiver Operating Characteristic Curves, exemplified with type 2 
diabetes 

 
 
 

 
 

ROC Curves for Type 2 Diabetes. The three lines in the plot from bottom to top correspond to the 
ROC curves of three type 2 diabetes predictive tests: the rebuilt existing predictive genetic test 
based on three SNP loci, a new predictive test combing the previously associated SNPs, four 
environmental factors, and four novel risk SNP loci and a improved new predictive test with five 
additional novel risk SNP loci.  (Lu and Elston., 2008). 



171  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chapter 6 

Conclusion 
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The trans-ancestral fine-mapping of SNP variants presented in chapter 4 of this 

thesis has refined a risk signal at TNFSF4 and mapped it in multiple independent 

populations: The SNP which demonstrates best evidence of association, 

rs2205960-T, is a common high-frequency variant which tags a risk-associated 

haplotype in all tested populations. This variant is the most associated variant in 

three independent populations (Europeans, Hispanics and African-American- 

Gullah). Rs2205960-T is also best-associated after fixed-effects meta-analysis 

and after conditional analysis of other key associated haplotype-tag SNPs. 

Assessing the regulatory potential of this variant; PWM binding data suggest 

rs2205960-T as the 8th  nucleotide of a motif which binds NF-κB p65 (RELA). 

Switching the rs2205960-T allele (risk) to G (non-risk), binding affinity for the 

motif is predicted to decrease by 10%. These data are supported by ChIP-seq data 

generated as part of the ENCODE project which find binding of NF-κB to the 

346bp section of chromosome 1q25.1 encompassing rs2205960. These ChIP-seq 

data were generated in EBV-transformed LCLs. 

 
 
 

At the time these doctoral studies were planned, the LD observed at the TNFSF4 

locus prevented delineation of specific causal contributors to SLE risk. The data 

presented in this thesis refine the signal to the proximal 5´ section of the locus. 

These data were generated from the best-available tag SNPs and proxies from the 

known repertoire of common TNFSF4 SNPs. The rate at which novel SNPs are 

identified is rapidly decreasing as they near the total number. In contrast, as NGS 

technologies advance, structural variants, including small insertions  and 

deletions, are being identified at increased frequency across the genome. The 

sequencing project described in this thesis increased the number of putative indels 

at TNFSF4 by 4.7 fold. A proportion are unique to the risk haplotype and thus in 

strong LD with the best-associated variants identified in chapter 4. Many of the 

identified indels exhibit strong regulatory potential: Genotyping of the novel 

variations might find a better-associated or additional contributor to the 

aforementioned TNFSF4 signal in lupus. 
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TNFSF4 variants associated with lupus are significantly more likely to be 

expression quantitative trait loci (eQTLs) than allele-frequency–matched SNPs 

spanning the locus: Presence of this polymorphism in a regulatory element makes 

it an attractive candidate for investigation as a cis-acting variant associated with 

transcript expression. Evidence from a genome-wide study supports the eQTL 

status of this variant. The cis-eQTL study in LCL samples from 777 female 

TwinsUK participants profiled common TNFSF4 variants at the same time as 

TNFSF4 transcript expression (Grundberg et al., 2010). In this study, association 

of RNA expression with >2 x 106  SNPs was tested by two-step mixed model– 

based score test. The identified cis-eQTLs were mapped to recombination hotspot 

intervals for likely independent regulatory effects. For each gene, the most 

significant SNP per hotspot interval was selected and LD filtering performed. The 

top cis-eQTL in the LD bin, for the probe located in the 3´UTR of TNFSF4 

(ILMN_2089875), was rs2205960-T (P=3.75 x 10-4) 

 
 
 

A limitation of the aforementioned eQTL data is that a large proportion of the 

available nucleotides were not tested for association with the TNFSF4 transcripts. 

These nucleotides include newly identified rare coding variants and indels 

identified in chapter 5 of this thesis. In a refined eQTL study, the novel TNFSF4 

variants, in addition to the causal contributors identified in chapter 4, would be 

assayed at the same time as the three main transcripts of the gene (Cookson et al., 

2009; Michaelson et al., 2009). Furthermore, the experiment would be repeated in 

different immune cell types, including activated B-cells, dendritic cells and CD4 

T-cells. The gene is inducible and expression of the transcript is likely to be 

different to the expression data reported in the aforementioned eQTL study. 

Annotating SNPs with a score reflecting their eQTL potential could help clarify 

the nature of the mechanism driving the associations. Identifying trans-eQTLs 

which are associated with expression of TNFSF4 transcripts might additionally 

prove informative for the gene-expression pathways which underlie disease 

pathogenesis (Kadota et al., 2007). 
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Data presented in this thesis identify an independent, population-specific risk 

variant unique to individuals of Amerindian-descent. This TNFSF4 intron  1 

allele, rs16845607-A, is annotated by ENCODE to sit within a regulatory region. 

A limitation of the Amerindian/Hispanic SLE data is that they were not imputed 

as part of this project, thus a large proportion of the available nucleotides were 

not tested for association. At the time of data generation, access to AMR phased 

reference haplotypes sequenced as part of the 1000 Genomes project was limited. 

For 80% of the TNFSF4 locus, these haplotypes were inferred from low-coverage 

(x2-6) sequence data. The pilot release of the pilot phase of low coverage 1000 

Genomes data were enriched for sequencing artefacts, thus unsuited as an 

imputation reference panel to use with these genotypes at the time. 

 
 
 

Prior to functional assessment of the Hispanic rs16845607-A risk variant, a more 

complete set of the variant nucleotides will be tested for association: A first 

stage will be imputation of the Amerindian/Hispanic SLE-control genotypes, 

presented in chapter 4. These data will be imputed using in excess of 2000 phased 

chromosomes which form the 1000 Genomes Phase I integrated variant set v3 as 

a reference panel. The reference chromosomes would be included in an 

alternative imputation framework which captures unexpected allele sharing 

amongst populations: These data would be augmented for selecting a higher 

quality, more conservative variant subset of bi-allelic indels and SNPs. A subset 

of sequencing artefacts, including problem indels, has been removed from the 

1000 Genomes integrated variant set v3 panel mentioned above: Power to detect 

SNPs present at a frequency of 1% is 99.3% using these data; thus an increased 

number of genetic variations at TNFSF4 would be sampled. Preliminary runs 

using these data suggest reduced standard error for the beta coefficient of the 

probabilistic genotypes. This reflects greater imputation certainty, requisite for 

reliable imputation of populations with cryptic substructure. 

 
 
 

If association testing of the imputed Hispanic data confirms the rs16045607-A 

allele as a causal contributor to risk, further exploration of the mechanism by 
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which it contributes to SLE pathogenesis is justified. Evaluation would include 

parallel experiments with the aforementioned associated variant rs2205960. 

Interactions of these variants with proteins in the same genomic regions could be 

assessed in vivo: Variation of chromatin state has been examined in pedigrees, 

and these studies demonstrate allele-specific clustering (Listgarten et al., 2010). 

Histone marks, transcription factors or other chromatin-associated proteins which 

bind these variants would be assessed by the chromatin immune precipitation 

(ChIP) assay in individuals selected by their genotype for increased heritability; a 

relevant group would include risk allele homozygote cases. In the first instance, 

ChIP would explore the regulation of TNFSF4: ENCODE data could be used to 

inform these preliminary investigations. 

 
 
 

The sequencing data presented in chapter 5 are currently in validation: Many 

markers were identified that clearly segregated with genotype subgroup. A 

substantial proportion of these identified variants were predicted in silico to have 

regulatory activity. Sequencing also identified ‘rare’ non synonymous variants in 

the gene which map to regulator regions: Although the majority of these are 

likely to be sequencing artefacts, several putative variants, including the missense 

substitution at position 171422287 (Cys181Trp, Table 5.4 blue-shaded) warrant 

further assessment. 

 
 
 

Preliminary functional data presented in chapter 3 suggest a difference in gene 

expression between TNFSF4risk and TNFSF4non-risk homozygote individuals, 

though these data have clear limitations due to sample heterogeneity and disease 

activity. The chromatin landscape of the TNFSF4 gene may be influenced by the 

risk or non-risk signal. Histone modifications, which are likely integral to this 

landscape, are linked to gene expression through orchestration of DNA-based 

biological processes. Epigenetic features including the di and tri-methylations of 

Histone 3 lysine 4 (H3K4) are associated with gene activation, whereas tri- 

methylation of H3K27 and H3K9 are implicated in transcriptional repression 

through heterochromatin formation and gene silencing (Barski et al., 2007). High- 
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specificity, well-validated ChIP antibodies to these modifications are available, as 

are antibodies to NF-κBp65 (RELA), and B-ATF and PU1 transcription factors. 

 
 
 

The functional data presented in this thesis identified statistically insignificant 

differences between TNFSF4risk and TNFSF4non-risk homozygote cell lines, but 

significance differences between gated PBMCs of the same genotype. The 

discordant findings may have resulted from background noise due to EBV- 

transformation or some other systematic effect in the cell lines, or because the 

influence the genetic variants have on expression is accelerated on a disease 

background. To avoid confounding effects of disease activity in lupus patients, 

which cause spurious or missed associations of variants with gene expression, 

ChIP and eQTL analysis would be undertaken in populations of TNFSF4- 

expressing cells from control individual participants, such as those from the UK 

Twins Registry of 11,000 twins (courtesy of Professor Tim Spector, King’s 

College London). The GWAS and phenotype data available for this cohort would 

direct sample selection. If these studies prove informative, the experiments would 

be repeated to evaluate purified lymphocyte subsets from lupus cases. 
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Appendices 
 

Appendix A: 
 

Table A1 The 1982 revised criteria for classification of systemic lupus 
erythematosus 

 
 

 

Criterion Definition 

 
1. Malar rash 

 
Fixed erythema, flat or raised, over the malar 
eminences, to spare the nasolabial folds 

 
2. Discoid rash 

 
Erythematous raised patches with adherent 
keratotic scaling and follicular plugging; 

3. 
Photosensitivity 

 
Skin rash as a result of unusual reaction to 
sunlight, by patient history or physician 

 
4. Oral ulcers 

 
Oral or nasopharyngeal ulceration, usually 
painless, observed by physician 

 
5. Arthritis 

 
Nonerosive arthritis involving 2 or more 
peripheral joints, characterized by tenderness, 

 
 

6. Serositis 

 
a) Pleuritis--convincing history of pleuritic 
pain or rubbing heard by a physician or 
evidence of pleural effusion 
OR 

 

7. Renal 
disorder 

 
a) Persistent proteinuria greater than 0.5 
grams/day or greater than 3+ if quantitation not 
performed 
OR 

 
 

8. Neurologic 
disorder 

 
a) Seizures-in the absence of offending drugs 
or known metabolic derangements; e.g., 
uremia, ketoacidosis, or electrolyte imbalance  
OR 
b) Psychosis--in the absence of offending 



200  

 

 
 
 

9. Hematologic 
disorder 

 
a) Hemolytic anemia--with reticulocytosis 
OR 
b) Leukopenia--less than 4,000/mm<>3<> 
total on 2 or more occasions 
OR 
c) Lymphopenia--less than 1,500/mm<>3<> 
on 2 or more occasions 

 
 
 

10. 
Immunologic 
disorder 

 
a) Positive LE cell preparation 
OR 
b) Anti-DNA: antibody to native DNA in 
abnormal titer 
OR 
c) Anti-Sm: presence of antibody to Sm 
nuclear antigen 

 

11. Antinuclear 
antibody 

 
An abnormal titer of antinuclear antibody by 
immunofluorescence or an equivalent assay at 
any point in time and in the absence of drugs 
known to be associated with "drug-induced 

 
 

 
 

(URL:       http://www.rheumatology.org/practice/clinical/classification/SLE/sle.asp) 

http://www.rheumatology.org/practice/clinical/classification/SLE/sle.asp)
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Appendix B: 
 
 
 

Web addresses/ uniform resource locators (URLs) 
http://www.rheumatology.org/practice/clinical/classification/SLE/sle.asp 
http://www.ncbi.nlm.nih.gov/ 
http://genome.ucsc.edu/ 
http://www.ensembl.org/index.html 
http://www.appliedbiosystems.com/absite/us/en/home.html 
https://www.wtccc.org.uk/index.shtml 
http://www.appliedbiosystems.com/absite/us/en/home/applications-technologies/real- 
time-pcr/taqman-probe-based-gene-expression-analysis/taqman-gene-expression-assay- 
selection-guide.html 
http://www.illumina.com/support/array/array_software/assay_design_tool.ilmn 
http://www.illumina.com/technology/goldengate_genotyping_assay.ilmn 
http://www.illumina.com/technology/infinium_hd_assay.ilmn 
http://www.illumina.com/Documents/products/datasheets/datasheet_beadstudio.pdf 
www.my454.com 
www.novocraft.com/userfiles/file/NovoBarcode.pdf 
http://www.uniprot.org/ 
http://www.decode.com/addendum/ 
http://www.broadinstitute.org/crd/wiki/index.php/Homopolymer 
http://evs.gs.washington.edu/EVS/ 
http://genome.ucsc.edu/cgi-bin/hgLiftOver 
http://mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.v2.pdf 

http://www.rheumatology.org/practice/clinical/classification/SLE/sle.asp
http://www.ncbi.nlm.nih.gov/
http://genome.ucsc.edu/
http://www.ensembl.org/index.html
http://www.appliedbiosystems.com/absite/us/en/home.html
http://www.wtccc.org.uk/index.shtml
http://www.appliedbiosystems.com/absite/us/en/home/applications-technologies/real-
http://www.illumina.com/support/array/array_software/assay_design_tool.ilmn
http://www.illumina.com/technology/goldengate_genotyping_assay.ilmn
http://www.illumina.com/technology/infinium_hd_assay.ilmn
http://www.illumina.com/Documents/products/datasheets/datasheet_beadstudio.pdf
http://www.my454.com/
http://www.novocraft.com/userfiles/file/NovoBarcode.pdf
http://www.uniprot.org/
http://www.decode.com/addendum/
http://www.broadinstitute.org/crd/wiki/index.php/Homopolymer
http://evs.gs.washington.edu/EVS/
http://genome.ucsc.edu/cgi-bin/hgLiftOver
http://mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.v2.pdf
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Appendix C: 
 
 
 
 

1000 Genomes allele frequencies, associated variants at TNFSF4 
 
 

1000 Genomes allele frequencies, rs2205960 
 

 G allele T allele 
ASW 0.9 0.1 
AMR 0.71 0.29 
ASN 0.77 0.23 
EUR 0.79 0.21 

 
1000 Genomes allele frequencies, rs1234314 

 

 C allele G allele 
ASW 0.64 0.36 
AMR 0.54 0.46 
ASN 0.62 0.38 
EUR 0.58 0.42 

 
1000 Genomes allele frequencies, rs1234317 

 

 C allele T allele 
ASW 0.87 0.13 
AMR 0.69 0.31 
ASN 0.77 0.23 
EUR 0.75 0.25 

 
1000 Genomes allele frequencies, rs16845607 

 

 G allele A allele 
ASW 1 0 
AMR 0.87 0.13 
ASN 0.91 0.9 
EUR 1 0 
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Appendix D: 
 
 
 
 

Comparison of recombination at TNFSF4, deCODE females vs. deCODE males vs. 
HapMap combined data 
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Appendix E: 
 
 
 
 

Test for cross-study heterogeneity 
 
 

A logistic regression model fitted with an interaction term (effect) in the R statistical 
package was used to investigate cross-study heterogeneity for associated variants 
spanning TNFSF4. Variants were assessed across the African-American, East Asian, 
European and Hispanic SLE-control cohorts. P-values for individual associated SNPs 
were generated using the likelihood-ratio test. P-values are against homogeneity of odds 
ratio per marker for association data. 

 
 

Marker P-value (against homogeneity of odds ratios) 

rs10489265 0.095 
rs10912580 0.012 
rs12039904 0.056 
rs1234317 0.089 
rs12405577 0.031 
rs2205960 0.142 

Table A2 Test for cross study heterogeneity 
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Appendix F: 
 
 

Publications 
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