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Abstract 

ABSTRACT 

This research investigates the nonlinear response up to collapse of masonry arches and arch 

bridges using advanced numerical descriptions. Past research has shown that the mesoscale 

modelling approach for brick-masonry, where bricks and mortar joints are modelled 

separately, may offer a realistic representation of the mechanical behaviour of masonry 

components. However, because of the significant computational cost, thus far the use of this 

modelling strategy has been mainly restricted to 2D analysis of masonry arches and arch 

bridges. In some cases this may lead to a crude representation of the response which is 

inherently three-dimensional, especially when the analysed structure is subjected to eccentric 

loading or is characterised by a complex geometry (e.g. skew arches). 

In this work, masonry arches and arch bridges are analysed using a partitioned mesoscale 

approach, which enables the use of a detailed model for describing material nonlinearity at 

structural scale. This is combined with a partitioned approach allowing for parallel 

computation which guarantees computational efficiency. In the 3D mesoscale description, 

brick units and mortar interfaces are modelled separately accounting for the actual texture 

and arrangement of masonry. 3D elastic continuum solid elements are used to model brick 

units while mortar interfaces are modelled by means of 2D nonlinear interface elements. In 

analysing masonry bridges, the backfill material is modelled as an elasto-plastic continuum, 

while the physical interface between the continuum and mesoscale domain for masonry is 

represented by nonlinear zero-thickness interface elements allowing separation and plastic 

sliding.  

The proposed modelling approach has been applied to the analysis of multi-ring square and 

skew arches and masonry arch bridges. The numerical results, which also include 

numerical-experimental comparisons, confirm the accuracy of the adopted numerical strategy. 
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Moreover numerical simulations have been performed to investigate the effects of the arch 

geometry, loading positions, material characteristics and potential settlements at the supports. 

The results obtained offer important information and a detailed description on the complex 

response of these critical structural systems under different loading and boundary conditions. 
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1 Introduction  
 

CHAPTER 1 

Introduction 

1.1 Past and Present 

Masonry arch bridges represent a substantial part of existing bridges, which have been built 

since antiquity with different sizes and construction features. These structural systems are 

generally made up of a single or multi-span masonry arch, which is the critical structural 

component supporting the fill material and the road surface. Lateral masonry walls confine 

the fill and often act as barriers for safety purposes.  

The European railway network includes tens of thousands of masonry bridges, where only in 

the UK about 70,000 masonry bridges are still in service (Ashour & Garrity, 1998). These 

structures were mainly built from the time of the Romans until the early twentieth century to 

support the growth of cities and towns and the development of the road, railway and 

waterway systems. Notable examples of these structures are displayed in Figure 1-1 and 1-2. 

Figures 1-1 shows a skew masonry arch bridge carrying the existing lines from Heaton Lodge 

junction towards Mirfield in West Yorkshire. Figure 1-2 presents the Wye Bridge across 

the River Wye in Monmouth, Wales, which was first erected as a wooden bridge in the 

Middle Ages, and then was rebuilt between 1615-1617 using masonry with a total length of 

71m. 

http://en.wikipedia.org/wiki/River_Wye
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Besides, it was estimated that in China there exists four million masonry arch bridges, many 

of which were built more than a thousand years ago (Ning & O, 2008). Figure 1-3 displays 

the world's oldest open-spandrel stone segmental arch bridge, Zhaozhou (Anji) Bridge, which 

was constructed in the years 595-605. Apparently, such a beautiful ancient bridge is more 

than a component of the public transportation system, representing a work of engineering art 

which influenced the design of bridges thereafter. Therefore, most of these old structures not 

only play an essential role in public transport systems all over the world, but also belong to 

the engineering and architectural heritage, representing valuable examples of past 

engineering achievements (McKibbins et al., 2006).  

Old masonry bridges were designed according to empirical bases and considering reduced 

loading. Thus at present, most of these old structures are carrying much heavier traffic loads 

and undergoing much higher transportation speed, which is far beyond the original design 

expectation and requirements (McKibbins et al., 2006; Corradi, 1998). In this respect, 

according to the European Standard, in recent years the maximum allowable gross vehicle 

weight has increased from 38t to 44t, and the maximum axle load from 10t to 11.5t 

(Gramsammer, Kerzreho & Odeon, 1999). Therefore, a growing demand to determine their 

actual capacity under traffic loading condition is to be met over the coming decades, 

considering also that old masonry bridges may have gradually deteriorated in time. Thus it is 

becoming also crucial to identify effective strengthening measures to enhance their load 

capacity and general structural condition (Brencich & Colla, 2002).  

In past years, a number of modelling approaches for masonry bridges have been proposed. 

Most of them are based on the 2D analysis of the main masonry arch, neglecting the 

interaction among the different structural components. Only recently, the need for using more 

advanced descriptions to represent the 3D geometry of masonry bridges has been emerging 

(Brencich, 2009). This has been also confirmed by experimental research (Melbourne et al., 

2007; Cavicchi & Gambarotta, 2005; Melbourne & Gilbert, 1995; Melbourne & Walker, 

1989; Page, 1989; Walker & Melbourne, 1988; Page, 1987; Hendry et al., 1986b) which has 

http://en.wikipedia.org/wiki/Spandrel
http://en.wikipedia.org/wiki/Arch_bridge
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shown that the response of masonry bridges is strongly influenced by the interaction between 

the different structural and non-structural components. This confirms that an accurate 

prediction of the bridge behaviour can only be achieved using advanced numerical tools, 

which account for the actual geometry and mechanical characteristics, along with the 

interaction among the main parts of the bridge.  

 

Figure 1-1: Wood lane Bridge, UK 

 

Figure 1-2: Wye Bridge, UK 
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Figure 1-3: Zhaozhou (Anji) Bridge, China 

1.2 Objectives and Scope 

The principal aim of this research is to develop and validate numerical modelling strategies 

for high-fidelity nonlinear analysis of masonry arches and arch bridges, allowing for an 

accurate response prediction of these complex structural components and heterogeneous 

systems under monotonic static loading conditions up to collapse.  

Past research (McKibbins et al., 2006) has shown that the behaviour of masonry bridges is 

generally determined by the interaction between different structural and non-structural 

components, which can be described using three-dimensional (3D) models. Besides, 3D 

models are also required for analysing skew masonry arches, which are characterised by a 

complex 3D response associated with the specific masonry arrangement. 

Thus far, 3D descriptions for masonry bridges (e.g. Boothby & Roberts, 2001) have been 

developed mainly using macroscopic approaches for masonry (Lourenço, 1996), which do 

not allow the representation of the actual anisotropic behaviour and the consideration of 

potential defects in the brickwork. On the other hand, the use of more detailed mesoscale 
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strategies for masonry (Lourenço & Rots, 1997; Macorini & Izzuddin, 2011), where the 

masonry components are modelled independently enabling an accurate description of the 

actual masonry bond, is too computationally demanding. This renders mesoscale modelling 

impractical for the analysis of large masonry arch structures when adopting conventional 

computational resources. 

The research objectives of this research can be summarised as follows: 

 To develop an advanced 3D mesoscale representation for square and skew 

brick\block-masonry arches, accounting for material and geometric nonlinearity under 

static loading conditions, and to verify the accuracy and efficiency of the proposed 

approach when analysing realistic masonry arch structures. 

 To use the developed numerical strategy for masonry arches in nonlinear numerical 

simulations, providing a deep insight into the complex behaviour of both square and skew 

arches. Attention is paid not only to behaviour at collapse and the prediction of specific 

failure modes (e.g. four-hinge mechanism, ring separation, shear sliding etc.) but also to 

the performance at serviceability, taking into account the influence of the variation of the 

loading position, critical defects in the brickwork and support movements. 

 To develop and validate an advanced 3D modelling approach for accurate nonlinear 

analysis of masonry arch bridges, allowing for the interaction between different structural 

and non-structural components (e.g. the arch barrel, the backfill and the spandrel walls).  

 To investigate the effects of geometric, material and loading parameters, typical defects in 

the brickwork and support movements on the static response up to collapse of realistic 

single-span masonry bridges. 

This research will benefit from the use of an advanced mesoscale description for masonry 

(Macorini & Izzuddin, 2011) and a domain partitioning approach allowing for parallel 

computation (Macorini & Izzuddin, 2013a)) both recently developed at Imperial College. 

Previous research (Macorini & Izzuddin, 2013a,b) has shown that the use of partitioned 

mesoscale modelling for masonry structures, where the mesoscale model is incorporated 
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within a partitioning strategy to improve computational efficiency, guarantees the accuracy 

provided by the monolithic mesoscale description in the analysis of large masonry structures. 

1.3 Layout of the Thesis 

This thesis comprises seven chapters as follows: 

Chapter 1 outlines the main objectives and the scope of this research. 

Chapter 2 provides a general overview of masonry arch bridges including arch components, 

construction characteristics and possible types of failure. Various approaches which have 

been implemented for analysing and assessing masonry arch bridges are then reviewed. 

Previous efforts devoted to experimental work on full and model scale tests are also 

summarised. The development of analysis and assessment techniques for masonry arch 

bridges is then discussed. Following that, previous numerical modelling strategies for 

masonry, masonry arches and masonry arch bridges based on the finite element method are 

presented and critically discussed. 

In Chapter 3, the advanced numerical modelling approaches for masonry arches and bridges 

which are used in this research are described. This includes a 3D mesoscale modelling 

method for representing material nonlinearity in masonry, a partitioned modelling approach 

based on the use of parallel computing resources, a geometric description for skew arches and 

a modelling strategy for the interaction between the arch and the backfill. 

Chapter 4 considers the validation of the proposed mesoscale description for masonry arches. 

To check the accuracy of the proposed modelling strategy, numerical results are compared 

against experimental data on the response of masonry square and skew arches. Numerical 

studies considering the influence of material properties and the modelling strategy on the 

response predictions are presented and discussed. Finally, the effectiveness in using a 

partitioning approach (Macorini & Izzuddin, 2013a) for the mesoscale analysis of masonry 

arches is investigated. 



Chapter 1                                                         Introduction 

37 

 

Chapter 5 presents the results of extensive parametric studies on the behaviour of square and 

skew masonry arches. The responses of arches characterised by different geometrical 

characteristics are compared, and the effects on the arch response of (i) the loading position, 

(ii) defects in the brickwork, (iii) stiffness of the supports and (iv) potential movements at the 

abutments are investigated. 

Chapter 6 presents the results obtained from the use of the proposed modelling strategy for 

masonry arch bridges. The results obtained using an efficient strip-model are initially 

discussed. These include numerical experimental comparisons and parametric studies on the 

influence of the fill material properties, defects in the brickwork, variations in the loading 

position, geometry of the arch and movements at the abutments. Subsequently, results 

obtained by using full 3D models are discussed focusing on the transverse behaviour of a 

brick-masonry bridge. Finally the efficiency provided by the partitioning approach (Macorini 

& Izzuddin, 2013a) applied to the analysis of masonry bridges is analysed. 

Finally, in Chapter 7, conclusions and achievements of this research are summarised followed 

by recommendations for future work on masonry arch bridges. 
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2 Review of Literature 
 

CHAPTER 2 

Review of Literature 

2.1 Introduction 

In this chapter, after describing the main types, components and characteristics of masonry 

arch bridges, previous research aimed at investigating the response up to collapse of these 

complex structural systems is presented and critically discussed. 

Existing masonry bridges were built mainly considering empirical rules in the nineteenth 

century and well before. At present most of these structures are still in service playing a 

critical role within the railway and roadway networks in Europe and around the world, while 

carrying traffic loads substantially higher than those they were designed for. Thus, since after 

the Second World War, a growing interest in studying their behaviour up to collapse and 

assessing their ultimate load capacity has developed. 

Large experimental programs were carried out, where several full-scale and model-scale 

bridges were tested under vertical loading. These physical experiments allowed the 

understanding of the actual failure modes and pointed out the complex interaction between 

the different bridge components.  

The first structural assessment methods were based upon elastic principles providing only an 

approximate estimate of the load capacity. Afterwards plastic analysis procedures were 

proposed and only recently, thanks to the tremendous progress of the computational resources, 
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more advanced numerical modelling strategies have been set out allowing for a more accurate 

description of the bridge geometry and nonlinear behaviour.  

Most of the advanced modelling approaches for masonry bridges consider the use of the finite 

element method. One-, two- and three-dimensional finite element modelling strategies for 

masonry bridges have been proposed thus far. Three-dimensional models provide the most 

realistic description of the complex longitudinal and transverse interaction between the 

different bridge components, but their use has been limited by the significant computational 

demand. In any case the accuracy of the numerical results strongly depends upon the ability 

of the adopted models to describe the nonlinear behaviour of masonry, which is a 

heterogeneous and anisotropic material comprising brick units and mortar joints. Due to this 

complex nature, its structural response is dominated not only by the mechanical 

characteristics of the basic components but also by the specific masonry arrangement. 

 

2.2 Masonry arch bridges 

A typical masonry arch bridge comprises different components, which include the arch, the 

backfill, the abutments, the spandrel and the wing walls (Figure 2.1). A stone arch barrel is 

built from voussoirs with a keystone in the centre, while brick-masonry arches are made up of 

one or more rings of bricks (Figure 2-1).  
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Figure 2-1: Main components in a masonry arch bridge (McKibbins et al., 2006) 

 

   

                (a) Single ring                (b) Multi-ring        (c) Multi-ring with headers 

Figure 2-2: Masonry bond in brick-masonry arches (Melbourne et al., 2007) 

 

Brick arches with small span are usually built with a single ring (Figure 2-2a), but longer 

arches require two or more rings which are typically bonded using the stretcher or the header 

method. When using the stretcher method (Figure 2-2b), the bond between adjoining rings is 

Filling 

Abutment 
Arch rings 

Soffit or 

intrados 

Spandrel wall 
Skewback or 

springing 
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guaranteed by continuous circumferential mortar joints. Conversely according to the latter 

construction technique, headers are used to interconnect adjacent rings (Figure 2-2c). 

Existing masonry bridges were constructed with different forms (Page, 1993); arch barrels 

were built in semi-circular, segmental, semi-elliptical, multi-centre circular or parabolic 

shapes. In all these structures, the voussoir or the bricks at either end of the arch barrel are 

supported upon the skewback at a surface named springing. The skewback is located at the 

abutment or the piers (Figure 2-1). The spandrel walls restrain the fill and carry the parapets 

and also stiffen and strengthen the arch barrel as a whole. The wing walls are built by 

extending the spandrels on each side of the arch ring to resist the outward pressures from the 

backfill. The backfill is usually made up of soil materials excavated during the construction 

of the foundations, examples include clay and limestone. When the bridge span is greater 

than about 12m, masonry ribs or internal spandrel walls are normally adopted to lighten and 

stiffen the structure providing resistance to the outward pressure from the backfill. 

 

(a) Helicoidal or English method (b) “False” method (c) Orthogonal or French method 

Figure 2-3: Cylindrical projection of the soffit of a 45 degree skew arch 

 

In addition to the regular square arch bridges, existing masonry bridges comprise a large 

number of skew arch bridges. These are characterised by abutments which are parallel to 

each other but offset to some degree resulting in springings which are not perpendicular to 
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the edges of the arch (Harvey, 2004). The first skew arch in the British Isles was constructed 

by Chapman in 1787 (Page, 1993) on the Kildare Canal in Ireland. Chapman devised a design 

method for skew arches in which the joints between the courses of voussoirs are placed at 

right angles to the skew of the arch (Figure 2-3a). This method was later named as the 

Helicoidal or English method. Two decades later, Outram (Page, 1993) built several bridges 

with up to about 20° skew angles using un-skewed masonry blocks. These bridges were 

designed with the joints between the courses of voussoirs parallel to the abutments as in 

Figure 2.3b. This technique for high skew angles is considered as a "false" method, as it can 

easily lead to unavoidable abutment movements and partial failures (Page, 1993). According 

to a later method, known as the Orthogonal or the French method (Figure 2-3c), all the 

voussoirs are perpendicular to the skew of the arch and meet the springing asymptotically. 

This requires a complex arrangement, where the units must have varying sizes and different 

shapes posing restriction on the construction material and type of masonry units. For this 

reason the French method was mainly adopted to build skew arches with ashlar stones but not 

with brick units. Conversely the arches of most brick-masonry skew bridges were built 

following the English method, which enables the use of identical units increasing cost 

efficiency. The main drawback of this construction technique is that it requires untidy edge 

details for multi-ring skewed brickwork arches. 

2.3 Experimental research on masonry arch bridges 

A number of physical experiments including model-scale laboratory tests and full-scale on 

site tests were carried to investigate the response of masonry arches and arch bridges up to 

collapse. The results from these experimental studies are of paramount importance to 

understand the real behaviour of the main bridge components (e.g. masonry arches) as well as 

their interaction, and to identify the critical loading conditions and the actual failure modes. 

In the following, the results of some relevant experimental studies are presented 

distinguishing full-scale from model scale tests. Finally the failure mechanisms observed in 

the tests are discussed. 
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2.3.1 Load tests on full-scale arches and arch bridges 

Since 1953 the Transport Research Laboratory (TRL) has led a research programme in the 

UK to investigate the behaviour of masonry arch bridges under vertical static loading. Both 

real bridges and laboratory model bridges were tested up to collapse.  

Within this program, Davey (Davey, 1953; Davey, 1949; Davey, 1947) tested three real 

bridges, where two bridges were loaded at the crown and one bridge at the quarter span. It 

was found that the latter loading case is the more critical and that the infill contribution 

significantly increases the loading capacity of the bridge. However Davey observed 

significant deformations at the abutments which did not behave as perfectly rigid supports. 

Hendry et al. (Hendry et al., 1986b; Hendry, Davies & Royles, 1985) carried out full scale 

tests to collapse on two single span bridges, the Bargower and the Bridgemill Bridge. The 

Bridgemill Bridge was a square bridge constructed with a parabolic shape and 18.3m span, 

while the Bargower bridge was characterised by a 10m span, a 16 degree skew and a 

segmental shape. In the Bridgemill Bridge test, a line load across the full width of the arch 

was applied at the quarter span; progressive damage in the lateral walls and in the arch was 

observed by increasing the load, and collapse occurred when a mechanism with four radial 

cracks formed in the arch (Figure 2-4). The Bargower Bridge was tested applying a line load 

at the third span; in this case longitudinal and radial cracks developed within the arch. 

However a hinge mechanism did not form as the arch was restrained laterally by rock 

material above the abutments. The bridge collapse was caused by a local compressive failure 

in the arch, close to where the load was applied. 
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Figure 2-4: Collapse of the Prestwood Bridge due to a four-hinge mechanism (Page, 1993) 

 

Page (Page, 1993; Page, 1989; Page, 1987) performed full scale destructive tests on six 

redundant bridges. One of the experiments on a segmental single-span bridge at Prestwood 

was considered to check the adequacy of the plastic mechanism method (details are discussed 

in 2.4.3). It was found that the actual collapse mode was in good agreement with that 

predicted by the 2D plastic assessment method. In this case the stiffening contribution of the 

spandrel walls was not significant, as an early separation of the two lateral walls took place 

because of existing defects in the bridge.  

The early experimental studies on the response of masonry bridges were focused on the 

analysis of the longitudinal behaviour of the arch barrels interacting with the backfill. More 

recently, Fanning and Boothby (Fanning & Boothby, 2001) considered the transverse effects 

due to the interaction with the spandrel walls. Analysing the results of experimental tests on 

real stone masonry bridges under service loading (static truck loading), it was observed that 

the stiffening effect of lateral walls leads to transverse bending in the arch barrel which, at 

higher loading levels, may cause the development of longitudinal cracks in the arch.  
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Concerning experimental studies on masonry bridge components, Wang (Wang, 2004) 

carried out a series of laboratory tests on full scale brick-masonry arches, including both 

square and skew arches.  Wide square arches built using strong and weak brick units were 

tested applying point loads. Moreover different support conditions were considered, and the 

response of arches supported at the two abutments was compared to that of similar arches 

propped also along the span by point supports. The results obtained showed some important 

features of the 3D response of masonry arches, as a non-uniform distribution of vertical 

displacements along the arch width. Within the same experimental campaign, two realistic 

brick-masonry arches with 45 degree skew angle were analysed applying patch loads which 

were increased up to collapse. It was shown that the three-dimensional failure mode of skew 

arches which is characterised by the development of five radial cracks (hinges) is different 

from the typical four-hinge mechanism of square arches. 

2.3.2 Load tests on model scale bridges 

Pippard collaborated with other researchers on a series of experiments (Pippard & Baker, 

1968; Pippard & Chitty, 1941; Pippard, Tranter & Chitty, 1936). Masonry arches with 

lime-stone or concrete voussoirs bonded by cement mortar or lime mortar were loaded up to 

collapse. The backfill contribution was allowed for by “hanging” some additional weights on 

the arches. The experimental results were used to validate an assessment method developed 

by the same authors. 

More recently a number of bridge model tests were conducted at the University of Edinburgh 

(Ponniah, Fairfield & Prentice, 1997; Prentice & Ponniah, 1996; Fairfield & Ponniah, 1994; 

Fairfield & Ponniah, 1993) to investigate the beneficial contribution of the backfill to the 

ultimate loading capacity of masonry bridges.  

The interaction between the different bridge components was studied by Royles and Hendry, 

who carried out a series of collapse tests on model scale arch bridge (Royles & Hendry, 

1991). The experimental results clearly highlighted the limitations of simplified 2D 
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assessment methods for masonry bridges which disregard the interaction among the arch 

barrel, the spandrel and wing walls, and the backfill material. 

Finally it is important to mention the significant contribution made by Melbourne and his 

collaborators towards the understanding of the actual behaviour of masonry bridges 

(Melbourne, 1998; Melbourne, Gilbert & Wagstaff, 1995; Melbourne & Hodgson, 1995). 

They performed a number of model scale tests considering different types of bridges, 

including single span, multi-span, semi-circular and skew arch bridges. It was shown that 

masonry bridges may collapse not only because of the classic four-hinge mechanism, but also 

owing to ring separation and support movements, which may dramatically reduce the 

ultimate loading capacity. The arch-fill interaction was also investigated, as well as the 

stiffening and strengthening effects due to the spandrel walls. In the tests on skew bridges 

(Melbourne & Hodgson, 1995), the influence of the skew angle on the structural behaviour 

was examined. These tests probably represent the first attempt to study the specific failure 

mechanisms of skew bridges. Concerning multi-span bridges, it was found that the typical 

collapse mode involves the whole bridge rather than the loaded span, and that the critical 

loading position is at the crown and not at the third or quarter span. 

2.3.3 Failure mechanism 

The results of real scale and model scale experimental tests allowed for the definition of the 

potential failure mechanisms for masonry arch bridges (Melbourne et al., 2007; Hughes & 

Blackler, 1997; Page, 1993). These comprise failure due to (i) four-hinge mechanism, (ii) 

shear sliding, (iii) ring separation, (iv) abutment movement, (v) masonry crushing and (vi) 

arch buckling. 

The hinge mechanism is the most common failure mode for masonry bridges which results 

from the development of radial fracture lines in the arch barrel. Usually four radial cracks 

(hinges) transform the arch into a mechanism leading to the collapse of the bridge (Figure 

2-5). In single ring arches an individual large crack in one mortar bed joint represents a hinge, 
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but in multi-ring brickwork arch barrels a group of radial cracks may develop within a small 

portion of the arch forming a diffused hinge (Gilbert, 1993). 

  

(a) Four-hinge mechanism (b) Sliding 

  

(c) Ring separation (d) Abutment movement 

Figure 2-5: Failure modes for masonry arches (Melbourne et al., 2007) 

  

Figure 2-5 depicts other failure modes for masonry arches which comprise ring separation, 

shear sliding and failure caused by movements at the abutments.  

Ring separation usually occurs in brick-masonry multi-ring arches, especially when they are 

built following the stretcher method. In this case the circumferential mortar joints which 

connect adjacent rings (Figure 2-2b) represent weak surfaces.  

Shear sliding corresponds to a local failure mode, which takes place when a sliding crack 

develops along the arch, usually close to where a concentrated load is applied.  

When a masonry arch is subject to relative movements at the abutments (e.g. settlements), 

failure may occur after the development of only three hinges at the two springings and at 

about the crown of the arch.  

The arch of a masonry bridge may also collapse because of material failure (e.g. crushing) 

which arises when internal stresses in the arch exceed the compressive strength of masonry. 
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Finally shallow arches may fail due to snap-through buckling (Wang, 2004) which may 

develop before the formation of four hinges or material failure. 

The discussion above concerns the behaviour of square arches at collapse. In the case of skew 

arches, more complex three-dimensional failure modes are expected (Hodgson, 1996) which 

are associated with the three-dimensional arrangement of mortar bed and perpendicular 

joints.   

2.4 Classic design and assessment methods 

While for many centuries masonry arch bridges had been built using empirical rules, the first 

systematic design and assessment methods were based upon elastic and plastic theories. The 

main characteristics of these classic methods, whose more advanced versions are currently 

adopted in practical design and assessment for masonry bridges, are discussed below. 

2.4.1 Early methods 

Ancient masonry bridges were designed following empirical rules forged on previous 

experience and associated with specific proportions between the mass and the geometrical 

characteristics of the arch barrel (e.g. thickness, span and rise of the arch barrel). 

In 1675, Robert Hook (LimitState Ltd, 2011) was the first modern scientist and engineer to 

consider the masonry arch stability problem. He provided a solution in the form of a Latin 

anagram as “Ut pendet continuum flexile, sic stabit contiguum rigidum inversum” which can 

be translated as “as hangs the flexible line, so but inverted will stand the rigid arch”. He also 

stated that he had found “a true mathematical and mechanical form of all manner of arches 

for buildings” but he did not present the solution. 

In the eighteenth century, Couplet and La Hire (Hamilton, 1952) conducted theoretical 

analyses and experimental tests aimed at determining the state of masonry arches at collapse. 

They independently elaborated design and assessment theories based on the line of thrust. 



Chapter 2                                                             Review of Literature 

49 

 

2.4.2 Elastic methods 

The development of the elastic methods, which were aimed at reducing the effects of tensile 

stresses preventing the formation of cracks within the arch barrel, began in the nineteenth 

century.  

Navier (Navier, 1833) proposed a theory called the straight line law for the distribution of the 

pressure on the bearing surface of voussoirs. These were assumed to be made up of a linear 

elastic material. He stated that, in order to avoid the occurrence of tension and the formation 

of cracks, the resulting line of force (the line of thrust) must lay in the middle third of the 

voussoir cross-section.  

Moseley (Moseley, 1835) set out an elastic method similar to that proposed by Navier. He 

stated that the thrust line had to be within the arch depth and its inclination to each arch joint 

had to be smaller than the friction angle of the arch material. It should be noted that Moseley 

was the first British scientist who worked out a thrust line principle. 

Barlow (Barlow, 1846) developed a very conservative method using a graphical technique to 

calculate the thrust line within the arch. He concluded that there are many possible thrust line 

locations that guarantee the stability of the arch. The work conducted by Navier and Barlow 

led to the development of the well-known middle third rule. 

Rankine (Rankine, 1862) developed a design method based on the middle third rule. He 

proposed to assume the shape of the arch intrados parallel to the line of trust due to a system 

of symmetrically distributed vertical loads. Moreover he found that in order to satisfy 

equilibrium at the arch crown, a system of horizontal pressures have to be considered. 

Castigliano (Castigliano, 1879) applied the minimum strain energy principle to the analysis 

and design of masonry arches. This allowed the calculation of the arch deformations and 

internal forces. He conceived an iterative design procedure where the geometry of the arch 
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must be changed until the trust line is included within the middle third part of any cross 

section of the arch. 

Pippard (Pippard & Chitty, 1951) proposed an elastic assessment method based on the 

minimum strain energy theorem. According to this approach, in the case of a pin-ended 

parabolic elastic arch subject to a concentrated live load W at the crown (Figure 2-6), the 

thrust H and the central bending moment Mc, resulting from the combined effects of the live 

load and the dead weight of the arch, are calculated as: 
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where l is the span of the arch, a is the rise at midspan,   is the density of the arch and the 

fill (assumed to be the same), d is the arch ring thickness at the crown and 2h is the width of 

the arch. This is obtained assuming a 45° load spread angle and considering that h is the fill 

depth at the crown. 

Pippard considered two limit loads which are associated with the development of the first 

crack W1 (2-3) and the material failure in compression W2 (2-4): 
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where f is the material strength in compression. 
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Figure 2-6: Pippard’s bridge model (Page, 1993) 

 

During and shortly after World War Two, Pippard’s approach was implemented by the 

Military Engineering Experimental Establishment (MEXE) into a practical assessment 

procedure, named MEXE method, which also at present represents the most popular 

semi-empirical method for estimating the load capacity of masonry arch bridges. According 

to this approach, considering Pippard’s parabolic pin-ended arch, the provisional axle load 

(PAL) W (kN) can be calculated as: 
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To account for different geometrical and mechanical characteristics of actual masonry 

bridges, the original MEXE method has been enhanced leading to the modified MEXE 

method which is included in the current provisions for the assessment of existing masonry 

bridges (Department of Transport, 2001). In particular a series of empirical factors are 

considered leading to a maximum permissible axle load: 

 
m sr p m j cW F F F F FW   (2-6) 

where Fsr is the span to rise factor, Fp is the profile factor, Fm is the material factor,  Fj is the 

joint factor, and Fc is the condition factor. Further details on the modified MEXE method can 
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be found in the Advice Note BA 16/97, Amendment No.2 (Department of Transport, 2001). 

Even though this widely adopted assessment approach has the great merit of simplicity and 

practicality, it not always provides consistent results. Anomalies in the application of this 

method are discussed in (Agrawal, 1973) and (Larnach, 1987) and more recently in (Wang et 

al. 2010), where it is pointed out that this assessment procedure may lead to unsafe 

predictions, especially in the analysis of short span bridges. 

2.4.3 Plastic methods 

As opposed to the elastic methods which offer lower bound solutions, the plastic approaches 

based upon the upper bound theorem enable the determination of the critical failure modes 

for masonry arch bridges, providing an estimate of their load carrying capacity. Evidently the 

accuracy of the plastic predictions depends upon the ability of the adopted models in 

representing material nonlinearity in the masonry arch and the interaction among the different 

bridge components. 

Pippard (Pippard & Baker, 1968; Pippard & Chitty, 1951; Pippard & Chitty, 1941; Pippard, 

Tranter & Chitty, 1936) collaborated with other researchers on the development of a 

“mechanism procedure” for assessing the stability of voussoir arches. Although the authors 

did not consider their approach as a plastic analysis method, it can be regarded as an early 

attempt of plastic analysis for masonry arches. In the proposed method, it is assumed that the 

arch barrel is made up rigid blocks with negligible tensile resistance and infinite compressive 

strength. Moreover it is considered that the friction between adjacent blocks prevents shear 

sliding. In this way, assuming the ultimate state with four cracks (hinges) dividing the arch in 

three parts (Figure 2-7), the collapse load W can be calculated using equilibrium 

considerations and accounting for the self-weight of the three blocks V1, V2 and V3, which 

include the arch ring and the backfill. Moreover it is considered that two hinges develop 

below the live load W and at the far springing, whereas the positions of the remaining two 

hinges are defined using a tabular method. 
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Figure 2-7: Mechanism with equilibrating forces (Page, 1993) 

 

Subsequently, Heyman (Heyman, 1982; 1980; 1969) proposed an assessment method based 

on the theorems of plastic analysis. According to this strategy, a masonry arch made up of 

rigid voussoirs can transform into a mechanism as a result of the development of a sufficient 

number of plastic hinges. As in Pippard’s method, Heyman neglected masonry tensile 

strength and disregarded potential sliding and crushing failure. Thus a masonry bridge is 

assumed to be safe if it is possible to find a thrust line within the arch in equilibrium with the 

external loading and the bridge self-weight. This approach, as the elastic methods discussed 

before, does not account for the interaction between the different bridge components (e.g. 

arch, backfill and lateral walls). 

Crisfield and Packham (Crisfield & Packham, 1987) proposed an enhanced plastic method 

using an automated procedure to obtain the critical mechanism and loading position. This is 

an advance from Heyman’s early approach, as a realistic compressive strength for masonry is 

considered, and the frictional contribution of the fill material is accounted for to determine its 

lateral resistance which opposes the sway of the arch. According to this more advanced 

plastic approach, the ultimate load W can be calculated considering the virtual work 

relationship (Figure 2-7):  
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where Vi=1..3 are the dead weights of the arch and fill blocks 1 to 3, Δi=1..3 are the virtual 

displacements at the centroids of the blocks 1 to 3, Δh is the horizontal virtual displacement at 

the centroid of block 3, Δθi=1..3 are the virtual rotations, σy is a compressive strength of the 

brickwork/stonework, da-d are the depths of the compressive “yield blocks”. Finally Hf is the 

horizontal force corresponding to the passive resistance of the fill which is given by: 
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where ρf is the density of the fill, d0 and dc are the depth of backfill from the surface to D and 

C, and kp is the passive resistance factor: 
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where φ is the angle of friction of the fill. The force Hf acts at a distance y above D where: 
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and: 

 3h y      (2-11) 

Based on basic kinematics, the relationships between Δi=1..3 and Δh can be found. The depth of 

the “yield blocks” is calculated from statics using an iterative technique. The minimum 

collapse load Wmin can then be worked out by applying equation (2-7) on various hinge 

locations. Even though this procedure has the merit of allowing for arch-fill interaction, it 

does not consider three-dimensional effects and the interaction with the spandrel walls. 

Similar plastic methods were developed by other authors, including Harvey (Harvey, 1988) 

who considered Heyman’s safe theory and extended the concept of “thrust line” defining 

“thrust zones”. In this approach, as in Crisfield’s method (Crisfield & Packham, 1987), the 
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arch compressive strength is considered adopting a compressive rectangular stress block at 

plastic hinge. Later this modelling strategy was implemented in a commercial computer 

software named Archie-M, which is currently employed for designing new or assessing 

existing masonry bridges. In particular for specific bridge geometry and loading condition, 

possible thrust zone locations are defined (Figure 2-8). If the thrust zone remains within the 

cross-section along the arch barrel, the whole structure is assumed to be stable and safe. The 

plastic solution is determined allowing for the backfill contribution, where the interaction 

between the arch and the backfill is taken into account by adopting a simplified strategy 

based on the calculation of passive and active pressures. In assessing existing bridges, the 

program provides the maximum loading capacity by increasing the live load until the zone of 

thrust reaches the edge of the arch.  

 

Figure 2-8: Analysis by means of Archie-M (Melbourne et al., 2007) 

 

Melbourne and Walker (Melbourne & Walker, 1989) developed a simplified rigid block 

model accounting for the interaction among the arch, the backfill and the lateral walls. This 

was later improved by Gilbert (Melbourne & Gilbert, 1995; 1994). The enhanced version of 

this method considers a large number of rigid blocks to model a masonry arch allowing also 

shear sliding between adjacent block. Ring separation in multi-ring arches can be represented 

using this model (see Figure 2-9), as well as the interaction with the spandrel walls. Further 

improvements of the method (Gilbert & Melbourne, 1998) allowed the ultimate loading 

prediction for multi-span arches. Later Gilbert (Gilbert, 2001) implemented an improved 
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version of this approach in the computer software RING (LimitState Ltd, 2011) which is 

currently used for practical design. 

 

Figure 2-9: Analysis by means of RING (Melbourne et al., 2007) 

The models discussed before are mainly based upon a 2D description of the masonry bridge 

response. The first attempt of adopting a 3D plastic approach with rigid blocks is due to 

Livesley, who initially developed a 2D rigid block automatic procedure to calculate the 

collapse load of masonry arches (Livesley, 1978). This was later extended to 3D analysis 

(Livesley, 1992) and was applied to investigate masonry walls, square arches (Figure 2-10) 

and domes. 

  

Figure 2-10: Livesley’s rigid block method (Livesley, 1992) 

 

2.5 Advanced modelling approaches 

The recent progress of computational resources has enabled the development of advanced yet 

computationally expensive modelling techniques for masonry arch bridges. These overcome 
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the intrinsic limits of the conventional rigid-plastic methods, which allow only for a simple 

description of the bridge 3D geometry and nonlinear behaviour and an approximate 

representation of the interaction between the masonry arch and the other bridge components. 

Moreover as opposed to rigid-plastic approaches, the more advanced modelling techniques 

enable not only the prediction of the ultimate load capacity, but the representation of the 

response including the development of damage and cracks at different loading levels and the 

consideration of abutment movement. Most of the advanced modelling techniques are based 

upon the finite element method (FEM), while alternative modelling strategies consider the 

discrete element method (Azevedo & Sincraian, 2001) and the discontinuous deformation 

analysis (Thavalingam et al., 2001b).  

The FEM represents a general structural analysis approach, which can be coupled with 

sophisticated nonlinear material descriptions for masonry enabling an accurate description of 

the actual bridge geometry, material characteristics and boundary conditions. Thus far 

different FE models have been developed to investigate the response of masonry bridges up 

to collapse. These comprise simple 1D and 2D models and more computational demanding 

3D descriptions. In the following, the main characteristics of previous FE models for 

masonry arches and bridges including also recent modelling approaches to represent material 

nonlinearity in the masonry are discussed. 

2.5.1 One-dimensional modelling approaches 

Dawe (Dawe, 1974b; 1974a) developed FE models with curved beam elements for shallow 

and deep arches, but he did not apply these FE descriptions to the analysis of masonry arch 

bridges. Probably the first effort of using the FE method for the analysis of masonry arches 

was due to Towler (Towler & Sawko, 1982). He adopted FE models for the simulation of test 

results on model-scale brickwork arches. In particular, a masonry arch was modelled using a 

set of one-dimensional straight beam elements, in which realistic geometric and material 

properties were assumed. This research showed the potential of the FE method for computing 
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the arch ultimate load capacity and predicting the development of cracks under live loads. 

Successively, Towler (Towler, 1985) enhanced the description for material nonlinearity 

setting out procedures to determine the required material parameters based on experimental 

measurements, and investigated the influence of the backfill on the strength of the arch. 

Finally he suggested that, as an explicit modelling of the backfill is computationally 

expensive requiring a long computing time, it should be considered only in special cases.  

Rouf (Rouf, 1984) extended Towler’s work by applying curved beam elements to model the 

arch. He found that apart from material failure, arch failure could also be caused by the 

formation of a mechanism and stated that also shearing failure could lead to the arch collapse. 

However this method does not allow for a realistic redistribution of stresses after the 

development of cracks. 

Apart from the above work, Crisfield (Crisfield & Packham, 1987; Crisfield & Wills, 1986; 

Crisfield, 1985b; Crisfield, 1985a; Crisfield, 1984) made significant contributions in applying 

curved beam elements to model masonry arch bridges. He compared the numerical results 

against several experimental tests showing the accuracy of the FE predictions. In Crisfield’s 

FE modelling strategy, the arc-length approach was applied for representing the softening 

post-peak response of the arch. In the first version of this modelling strategy the arch-backfill 

interaction was ignored. Afterwards, Crisfield and his co-workers performed a comparative 

research on the contribution of the backfill, where an arch with low span-to-rise ratio was 

analysed taking into account or neglecting the lateral resistance of the backfill, where 1D 

nonlinear elements (springs) were employed to simulate the backfill contribution (Figure 

2-11a). In this modelling strategy for the backfill, the nonlinear elements are activated only 

when the arch ring moves horizontally into the backfill (1D element in compression). The 

stress-strain relationship of these elements is bi-linear as shown in Figure 2-11b. Moreover, 

according to Crisfield’s modelling strategy,  the imposed loading on the road surface is 

distributed on to the arch barrel through the backfill considering a dispersal angle , which 
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may vary from 0° to 45° (Figure 2-12) and can be calculated assuming that the fill behaves as 

a semi-infinite elastic plane of unit thickness.  

 

(a) 1D nonlinear elements for the backfill (b) Stress-strain relationship 

Figure 2-11: 1D nonlinear elements for the backfill (Choo, Coutie & Gong, 1991b; Crisfield & Packham, 

1987) 

 

 

Figure 2-12: Load distribution through the backfill on the arch barrel (Choo, Coutie & Gong, 1991b; 

Crisfield & Packham, 1987) 

 

Choo et al (Choo, Coutie & Gong, 1991b; 1991a; 1990b; 1990a) suggested the use of tapered 

beam elements with negligible tensile strength and elastic-perfectly plastic behaviour in 

compression to represent the arch barrel. Consequently, after the development of cracks 

(Figure 2-13), the arch failure is determined by masonry crushing in compression, where the 
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crushed zones form when the compressive stresses approach the crushing (yielding) strength 

of the masonry. Concerning the backfill modelling, also in this model nonlinear spring 

elements are employed to simulate the lateral resistance offered by the backfill (Figure 2-10). 

The proposed model was verified through comparisons between numerical load-deflection 

curves and experimental curves from real stone arch bridges tested up to collapse. A good 

agreement was obtained only when adopting a Young’s modulus and a compressive strength 

much lower than those obtained from the laboratory measurements. 

 

Figure 2-13: 1D model with nonlinear beam elements  

 

More recently, Brencich and Francesco (Brencich & De Francesco, 2006) proposed to use 1D 

elastic-plastic models with no tensile resistance to model multi-span bridges. In this 

modelling strategy, bridge piers are simulated by one-dimensional beams similar to those 

employed for the arch barrel. The proposed model (Figure 2-14) can provide an adequate 

description of the bridge deformations and the location of plastic hinges at different loading 

levels. 

  

(a) Collapse mechanism (b) Distribution of plastic hinges 

Figure 2-14: 1D elastic-plastic modelling for multi-span bridges (Brencich & De Francesco, 2006) 
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The most recent one-dimensional FE models clearly represent an advance when compared 

against elastic and rigid-plastic formulations. However they still introduced significant 

simplifications in the description of the bridge geometry and the interaction among the 

different bridges components.   

2.5.2 Two-dimensional modelling approaches 

To increase the accuracy of the numerical predications, two-dimensional (2D) FE approaches 

may be considered. Brencich (Brencich, 2009) defined two-dimensional models for masonry 

arch bridges as “models that neglect all the three-dimensional aspects of the bridge response, 

like the effect of external and internal spandrels, reducing the bridge geometry to the arch 

barrel, the fill and the piers, if any”.  

According to the 2D FE modelling strategy, the masonry arch and the fill are represented by 

means of 2D elements under the plane strain or the plane stress conditions. The use of plane 

strain elements corresponds to implicitly assuming perfectly rigid spandrels, which prevent 

the lateral deformations of the backfill. On the other hand, the plane stress condition allows 

for excessive transverse deformations in the backfill.  

Choo et al (Choo, Coutie & Gong, 1991b) put forward a 2D model for masonry arch bridges 

(Figure 2-15a) which accounts for arch-fill interaction and enables the prediction of 

tangential cracking leading to ring separation. Eight-noded quadratic elements with the plane 

stress assumption are used to simulate multi-ring brickwork. Nodal separation is allowed to 

represent cracking development within the arch barrel. The proposed model can describe both 

radial and tangential cracks, which form when the tensile stresses are larger than the material 

tensile strength. After the formation of tangential cracks, the two adjacent rings are connected 

by joint elements with high axial but negligible shear stiffness (Figure 2-15b). This model 

was employed in numerical simulations of multi-ring masonry bridges examining the 

influence of ring separation. It was shown that ring separation largely reduces the bridge 

stiffness and loading capacity. 
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(a) 2D model for a masonry bridge (b) Joint elements for arch-fill interaction 

Figure 2-15: 2D FE modelling approach for masonry bridges (Choo, Coutie & Gong, 1990b) 

 

Loo and Yang (1991b; Loo & Yang, 1991a) developed a FE numerical procedure to 

investigate the response up to failure of semi-circular masonry arch bridges subject to 

concentrated loads. A two-dimensional “smeared crack” macro model approach (Chen & 

Baladi, 1985) was implemented within a stress redistribution scheme. This allowed the 

prediction of the development of cracks in the arch barrel. This model takes into account both 

the arch barrel and the backfill and can provide information about the formation of cracking, 

the failure mechanism and the ultimate loading capacity. This model was also adopted to 

investigate the influence of the abutment movement on the bridge response. In this respect it 

was found that also small support movements significantly affect the load-deflection 

characteristics and the load capacity of the bridge. 

Ng et al. (Ng, Fairfield & Sibbald, 1999) used the general-purpose FE program LUSAS 

(Finite Element Analysis Ltd, 1993) to assess the ultimate load of three masonry arch bridges. 

A 2D modelling approach was employed, where the arch barrel and the backfill were 

modelled using eight-noded quadrilateral elements. Comparisons were performed not only 

against a series of experimental data but also against the ultimate load predictions obtained 

using alternative approaches, including the ARCHIE program (see Section 2.3.3) and the 

MEXE method (see Section 2.3.2). It was found that the MEXE method, even though based 

on the elastic theory, does not always provide conservative solutions. Moreover the results 

obtained using the ARCHIE program, which considers the mechanism method, are affected 
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by a largely approximate representation of the backfill leading to unrealistic stress 

distributions in the arch barrel. 

Thavalingam et al. (Thavalingam et al., 2001a) conducted a comparative study on different 

2D computational modelling schemes including a nonlinear FE description. In the FE model 

(Figure 2-16), 1D nonlinear interface elements are adopted to represent the interaction 

between the arch and the backfill and the development of cracks in the mortar joints of the 

arch. 

 

Figure 2-16: 2D FE model with nonlinear interfaces (Thavalingam et al., 2001a) 

 

Cavicchi and Gambarotta (Cavicchi & Gambarotta, 2007; 2005) analysed several multi-span 

masonry bridges using two-dimensional FE models. The objective of the study was to 

examine the effect of the arch-backfill interaction on the structural behaviour of masonry arch 

bridges. In these numerical models, arches and piers are described using nonlinear beams 

with an elastic-plastic no-tension material. The backfill is simulated using a two-dimensional 

modelling technique with a modified Mohr–Coulomb failure criterion under plane strain 

conditions.  

Another 2D model was developed by Ford et al. (Ford, Augarde & Tuxford, 2003) using the 

commercial FE package Strand7 (Strand7 Pty Ltd., 2010). A micro-modelling approach was 

employed, where the arch barrel was divided into masonry unit and mortar joint which were 

modelled adopting 1D nonlinear interface elements. It should be noted that not only the arch 
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barrel and the backfill but also the pavement layer are represented to allow for a more 

realistic distribution of the live load onto the bridge structure. 

The 2D FE models discussed before, which use planar elements to represent the longitudinal 

response of masonry bridges, cannot predict the specific 3D behaviour of skew arches and 

bridges. In this respect, Choo and Gong (Choo & Gong, 1995) proposed a modelling 

approach with shell elements and a simple material description to examine the influence of 

skew angle on the structural behaviour of masonry skew bridges. According to this approach, 

eight-noded quadratic shell elements are used and the development of cracking and crushing 

in the masonry is accounted for by reducing the thickness the arch. 

2.5.3 Three-dimensional modelling approaches 

The main drawback of 2D FE models with planar elements is mainly due to the approximate 

representation of the bridge domain and the interaction between the different bridge 

components. Moreover 2D models cannot capture the lateral effects (e.g. failure of the lateral 

walls due to the fill lateral pressure) and the three-dimensional (3D) failure modes, including 

the typical collapse mechanisms of skew arches and bridges, and cannot provide a realistic 

response prediction in the case of eccentric loading. To overcome these inherent limitations, 

3D modelling approaches need to be deployed, although these are more computationally 

demanding. 

Boothby and Roberts (Boothby & Roberts, 2001) employed 3D FE models using the 

commercial finite element package ANSYS (De Salvo, Gorman & Imgrund, 1987) to 

examine the lateral effects due to the backfill on the overall structural response of masonry 

bridges subject to vertical loading. In the 3D models, the arch barrel, the backfill, the 

spandrel walls, the parapets and the wing walls were described using a continuous approach 

with eight-noded solid elements (Figure 2-17), where a macroscopic description was adopted 

for modelling masonry which was assumed as a homogeneous and isotropic material. In 

particular a smeared cracking model was adopted to represent material nonlinearity in 
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masonry and a Drucker-Prager material law (Drucker & Prager, 1952) was assumed for the 

backfill. Moreover frictional elements were adopted to capture the interaction between the 

backfill and the masonry components. The results obtained using the 3D models were 

compared against 2D predictions achieved using simpler 2D “strip” models. It was shown 

that the latter strategy does not allow the prediction of potential transverse failure modes 

which correspond to the failure of the spandrel walls subject to the transverse fill pressure, 

the edge failure and the longitudinal failure (e.g. longitudinal cracks) of the arch barrel.  

Moreover it was found that a variation in the masonry tensile strength has a greater influence 

on the numerical response obtained using 3D models than on the results determined by a 2D 

“strip” model, and that the type of backfill does not influence the potential transverse failure 

modes of the bridge.   

 

Figure 2-17: 3D macro-model for a single span masonry bridge (Boothby & Roberts, 2001) 

 

In a later study (Fanning, Boothby & Roberts, 2001), the same 3D modelling strategy was 

adopted to analyse single- and double-span bridges (Figure 2-18) subjected to truck loading 

conditions. It was shown that the distribution of tyre pressure through the fill requires the 

consideration of 3D effects. Moreover this pressure induces significant transverse bending in 

the arch barrel and a give rise to a complex interaction between the arch and the lateral walls. 
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Figure 2-18: 3D macro-model for a double-span bridge (Fanning, Boothby & Roberts, 2001) 

 

Wang (Wang, 2004) proposed a numerical modelling approach based on the use of the 

commercial FE package ANSYS (De Salvo, Gorman & Imgrund, 1987) to study the 3D 

behaviour of masonry arches. 3D FE models were developed to predict the response up to 

collapse under vertical loading. Square and skew arches were analysed using solid elements 

(Figures 2-19a,b) with a macroscopic elasto-plastic description for masonry, which was 

represented as a homogeneous and isotropic material. The numerical predictions were 

compared against the results from physical tests on brick-masonry arches (Wang, 2004). The 

type of failure mechanism was correctly predicted in the case of square and skew arches, but 

the numerical curves show a stiffer response with higher ultimate loads. Parametric studies 

were also conducted indicating that the prediction of the maximum load capacity and failure 

mechanism is mainly influenced by the masonry tensile strength.  

 

 

(a) 3D model for a square arch (b) 3D model for a skew arch 

Figure 2-19: 3D models for masonry arches using ANSYS (Wang, 2004)  
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Recently Milani and Lourenco (Milani & Lourenço, 2012) proposed an advanced modelling 

approach for investigating the three-dimensional behaviour of masonry bridges. According to 

this strategy, the masonry components are modelled using a macro-scale homogenised 

approach with parallelepiped rigid elements and nonlinear interface elements, where the FE 

mesh for the arch barrel considers the actual masonry bond on the longitudinal face of the 

arch, but not along the arch width (Figure 2-20a,b). The fill material is represented by 

elastic-plastic solid elements with an isotropic Mohr-Coulomb material model with cut-off in 

tension and softening. The authors performed numerical simulations where the numerical 

predictions were compared against the results from experimental tests and the numerical 

solutions obtained using 2D descriptions. It was found that the 3D modelling strategy 

generally provides a better approximation of the bridge response and it is mainly required in 

the case of skewed bridges and bridges subject to unsymmetrical loading. 

 
 

(a) Skew masonry arch bridge (b) Five-span arch bridge 

Figure 2-20: 3D macro-scale homogenised models (Milani & Lourenço, 2012) 

 

2.5.4 Modelling material nonlinearity  

When analysing masonry arches and bridges, the accuracy of the numerical predictions 

depends not only upon the ability of the adopted numerical strategy to describe the arch 

geometry (e.g. 1D, 2D and 3D models), but also on the material model used to represent the 

nonlinear behaviour of masonry. This is a heterogeneous and anisotropic material whose 
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response is influences by the mechanical and geometrical characteristics of the individual 

components (e.g. masonry units and mortar joints) and by the particular masonry bond, where 

masonry joints represent preferential fracture planes Dhanasekar et al. (1985). Thus far 

several modelling strategies for capturing the nonlinear response of masonry have been 

developed. These mainly include macroscale and microscale descriptions (Lourenço, 1996) 

which are associated with different scales of representation for masonry and different 

computational costs. The most detailed and accurate micromodels represent masonry units, 

mortar joints and unit-joint interface separately (Figure 2-21a) using continuum and interface 

elements. In a simplified and more efficient mesoscale description (Figure 2-21b), nonlinear 

interface elements can be used to represent both mortar joints and unit-mortar interfaces, 

while continuum elements are still used for units (Lourenço & Rots, 1997). Finally according 

to the macroscale strategy, masonry is assumed as a homogeneous and isotropic material 

(Figure 2-21c) and a description with only continuum elements with specific plasticity- or 

damage-based models is adopted to represent material nonlinearity. This latter strategy is the 

most computationally efficient, thus until now has been the most employed approach for 

advanced numerical simulations of masonry bridges (Fanning & Boothby, 2001; Boothby & 

Roberts, 2001). However this approach does not allow the representation of masonry 

anisotropy and an accurate representation of critical failure modes like those associated with 

ring separation. Moreover it provides accurate results only when selecting specific material 

parameters which are not always associated with the actual mechanical characteristics of the 

masonry constituents. On the other hand, the use of detailed micro-modelling is impractical 

also for the analysis of relatively small masonry components due to the high computational 

demand. The mesocale approach for masonry represents a good compromise between 

accuracy and efficiency, but it has been mainly employed for 2D analysis of masonry bridges 

(Thavalingam et al., 2001a), while its use in 3D models is still prevented by a high 

computational cost.  
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                    (a) Detailed micro-modelling            (b) Mesoscale modelling 

 

(c) Macro-modelling 

Figure 2-21: Modelling approaches for masonry (Lourenço & Rots, 1997) 

 

2.6 Conclusion 

Significant experimental research has been conducted to study the complex behaviour of 

masonry bridges up to collapse. This has allowed the determination of the critical failure 

mechanisms, which derive from the interaction between the different bridge components 

generally leading to the collapse of the arch barrel. Early assessment methods based upon 

elastic and plastic principles do not enable an accurate description of the bridge response. 

Most advanced procedures, generally based upon the use of the finite element method, 

provide a more accurate response prediction at different loading levels including the elastic 

behaviour, the development of damage and cracking, and the collapse mode. In this respect, 

only the use of 3D models enables the consideration of the actual bridge geometry (especially 

for skew arches which are difficult to model with 1D/2D models, mechanical characteristics, 

where the transverse effects, and the response under eccentric load can be adequately 

represented. However these models are very computationally demanding, and thus far they 

have been mainly used with a simplified macroscopic material description for masonry. This 
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cannot represent the inherent masonry anisotropy and cannot allow a realistic prediction of 

the critical failure modes associated with the specific masonry bond (e.g. ring separation). 

To sum up, accurate detailed mesoscale descriptions, where mortar and units are modelled 

separately, offer a realistic representation of the behaviour of masonry components at 

different loading level up to collapse. However the use of such detailed FE modelling for 

masonry arches and realistic masonry arch bridges, which are relatively large structures, is 

computationally demanding, thus so far it has been mainly employed in 2D plane strain 

analysis. In many cases, this is a too crude kinematic assumption, as the response of masonry 

arches and arch bridges is intrinsically three-dimensional even under simple loading 

conditions. To overcome these limitations, an advanced mesoscale modelling approach for 

masonry arches and arch bridges accounting for partitioned approach is developed in the 

current research. Detailed description of the proposed numerical modelling strategies will be 

presented in the next chapter.
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3 Numerical Modelling Strategies for 

Masonry Arch Bridge 

CHAPTER 3 

Numerical Modelling Strategies for Masonry Arch 

Bridges 

3.1 Introduction 

A masonry arch bridge is a three-dimensional (3D) heterogeneous structure, where different 

structural components perform their own function within the integral system and cooperate 

with each other to guarantee an adequate structural performance. Therefore, for a realistic 

prediction of the bridge response up to collapse, a numerical description capable of 

representing the nonlinear behaviour of the main bridge components (e.g. masonry arch and 

backfill) as well as their mutual interaction is required. 

This chapter presents the proposed numerical strategy for masonry arch bridges. This is based 

upon the use of the finite element method (FE) and allows for an accurate 3D nonlinear 

analysis of the bridge response. Unlike numerical strategies based on limit analysis concepts, 

which can provide only an estimate of the ultimate loading capacity, the adopted numerical 

modelling technique enables the prediction of the bridge nonlinear response, including the 

elastic behaviour and the evolution of damage, plastic deformations and cracks under 

different loading conditions up to collapse. 

In the following, attention is given to the 3D mesoscale modelling approach for brick-block 

masonry which is used here to model masonry arches. This advanced numerical strategy was 
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developed previously at Imperial College (Macorini & Izzuddin, 2011) and implemented in 

ADAPTIC, a general finite element code for nonlinear analysis of structures developed at 

Imperial College (Izzuddin, 1991). Thus far it has been successfully applied to the nonlinear 

analysis of brick/block-masonry wall components and structures under static and extreme 

dynamic loading (Macorini & Izzuddin, 2014). According to this approach, 2D nonlinear 

interface elements are used to represent mortar joints and to capture potential cracks in 

masonry units.  

Subsequently, the numerical description adopted for the backfill material is discussed. 3D 

elasto-plastic solid elements are employed to represent the backfill domain. An elasto-plastic 

material model suitable for describing soil materials has been implemented in ADAPTIC 

(Izzuddin, 1991) and used to account for material nonlinearity in the 3D analysis of the 

backfill. This model is based upon the use of the rounded hyperbolic Mohr-Coulomb yield 

criterion proposed by Abbo & Sloane (1995), which allows for a practical yet accurate 

representation of the development of inelastic deformations in different types of soils. As 

opposed to more sophisticated descriptions for soil materials, this constitutive law has the 

advantage of requiring only few material parameters, which are familiar not only to soil 

mechanics specialists but also to practising structural engineers and can be obtained through 

simple tests. 

According to the proposed modelling approach for masonry arch bridges, the interaction 

between the backfill and the masonry arch is modelled by using nonlinear interface elements, 

which can effectively represent the cohesive and frictional nature of the physical interface 

between the two domains.  

The mesoscale description for masonry arches and the continuous elastic-plastic model for 

the backfill are incorporated within a partitioning framework allowing for parallel 

computation. This has been recently developed at Imperial College (Jokhio & Izzuddin, 2013; 

Jokhio, 2012), and it guarantees computational efficiency also in the analysis of large 

structural systems, which could not be investigated using standard serial codes. The main 
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characteristics of this advanced computational strategy are discussed in the final part of this 

chapter, focusing on its applications to masonry arch bridges. More detailed information on 

this approach can be found in (Jokhio & Izzuddin, 2013; Jokhio, 2012), while previous 

applications on large masonry wall structures are discussed in (Macorini & Izzuddin, 2013b). 

3.2 Numerical Modelling for Masonry Arches 

The accuracy of the response prediction for masonry arches, which are the main structural 

components in masonry bridges, is mainly associated with the ability of the adopted 

mechanical model to represent material nonlinearity in masonry. As discussed in Chapter 2, 

masonry is a heterogeneous and strongly nonlinear material whose behaviour depends on the 

orientation of the loading direction with respect to the masonry bond, where mortar joints 

represent preferential fracture planes (Page, 1981).  In this respect, a detailed mechanical 

model for brick/block-masonry should take into account not only the mechanical 

characteristics of units and mortar but also the actual 3D masonry texture. This is disregarded 

in most of the numerical strategies currently used for nonlinear analysis of masonry arches, 

where the arch domain is represented using a 2D model usually based on the plane strain 

assumption. While this could be generally acceptable for the analysis of square arches 

subjected to line loads, it may lead to erroneous results when investigating the response of 

arches under patch loads or skew arches showing an inherent 3D response (Melbourne et al., 

2007). The adopted numerical strategy for brick/block-masonry, which is based on a 

mesoscale description previously developed at Imperial College (Macorini & Izzuddin, 2011), 

allows for an accurate representation of the 3D domain of any masonry arch, as the actual 3D 

masonry bond is represented using two or more elastic solid elements for each brick and 2D 

nonlinear interface element for mortar joints. In the following, this modelling strategy is 

briefly presented providing also some details on the proposed geometrical description for 

skew arches built using the helicoidal method (Melbourne & Hodgson, 1995). 
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3.2.1 3D mesoscale modelling approach 

To represent the actual masonry bond and model the development of cracks in real 

brick/stone-masonry arches, a discrete modelling strategy is used. Unlike the continuous 

approach which assumes masonry a homogeneous material, zero-thickness nonlinear 

interface elements are adopted to represent mortar joints and solid elements to model 

masonry units. This way the typical fracture lines, which characterise the nonlinear response 

up to collapse of masonry arches in masonry bridges under gravity and traffic loading, can be 

represented. These correspond to radial cracks, circumferential cracks leading to ring 

separation in multi-ring arches and longitudinal cracks caused by transverse bending (Gilbert, 

Melbourne & Smith, 2006). While the first two types of crack generally take place in the 

mortar joints, longitudinal cracks may pass also through the masonry units. Thus nonlinear 

interface elements are placed also in the middle of each brick to capture the potential 

development of cracks. This renders the FE mesh for brick-masonry arches relatively simple, 

as it is made up of identical solid elements connected to each other by nonlinear interface 

elements as shown in Figures 3-1 and 3-2. 

In particular 20-noded elastic solid elements formulated according to standard FE procedures 

(Bathe, 1996) are used together with specific 2D nonlinear interface elements accounting for 

material and geometric nonlinearity. In the following only the main characteristics of the 

adopted nonlinear interface elements are provided as more detailed information can be found 

in (Macorini & Izzuddin, 2011). 
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Figure 3-1: 3D mesoscale model for masonry arches 

 

Figure 3-2: Solid elements connected by nonlinear interfaces (Macorini & Izzuddin, 2011) 

 

The nonlinear interface elements used to represent mortar joints and capture potential cracks 

in masonry units have sixteen nodes, each of which features three translational freedoms. 

As shown in Figure 3-3, nodes 1-8 lie on the top face of the element, while nodes 9-16 lie on 

the bottom face. These two faces, which are coincident in the initial undeformed 

configuration, can represent either the two faces of two masonry units connected by a mortar 

joint or adjacent faces of the same brick or block (Figure 3-2). The three local strain 

components correspond to the normal and the two in plane relative displacements 

(separations) dz, dx, and dy calculated on the interface mid-plane. The associated stresses , x, 

andy represent traction forces. 
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Figure 3-3: Nonlinear interface element (Macorini & Izzuddin, 2011) 

 

An interface element modelling a mortar joint allows also a practical description of the joint 

elastic behaviour, where the three stress components are calculated using Hooke’s law and a 

diagonal elastic stiffness matrix k0. This collects the normal kn0 and two tangential stiffness 

values kt0x and kt0y (usually kt0x = kt0y = kt0). 
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According to previous research (Rots, 1997), in the case of thin mortar joints kn0 and kt0 can 

be calculated considering the joint geometry and the mortar elastic properties as below: 
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    (3-2) 

where Gm and Em are the mortar shear and Young’s modulus and hj is the mortar joint 

thickness. Similar expressions accounting also for the masonry unit dimensions and material 
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properties were suggested for thick mortar joints (Rots, 1997). However previous studies (e.g. 

(Da Porto et al., 2010) showed that these analytical expressions generally lead to 

overestimating the joint stiffness. More recent research (Chisari et al., 2013) has suggested to 

consider more advanced strategies coupling numerical and experimental techniques for the 

calculation of realistic elastic stiffness parameters for mortar joints.  

In the constitutive model for the adopted interface element, material nonlinearity is taken into 

account by employing a cohesive model (Brocks, Cornec & Scheider, 2003), which enables 

an effective representation of damage, cracks and plastic separations. In particular a 

multi-surface plasticity criterion is utilised. Figure 3-4 depicts the two separate yield 

functions, where a hyperbolic failure surface based on the Coulomb slip criterion determines 

the boundaries of elastic domain in tension and shear representing Mode-I and Mode-II 

fracture. It reads:   

 
2 2 2 2

1 ( tan ) ( tan )x y tF C C             (3-3) 

where C, ϕ and σt are the cohesion, friction angle and tensile strength for a mortar joint or a 

brick-brick interface. A non-associated flow rule is employed and a plastic potential Q1 

similar to function F1 (3-3), but with a different friction angle parameter, is adopted to model 

the actual dilatancy. This is due to the roughness of the fractured shear surface and can be 

measured in tests on interfaces. 
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Figure 3-4: Yield functions and plastic potentials (Macorini & Izzuddin, 2011) 

 

The second yield function corresponds to a cap model in compression and it is given by 

another hyperbolic function: 

 
2 2 2 2

2 ( tan ) ( tan )x y cF D D             (3-4) 

where σc is the compressive strength of masonry while D and θ are material parameters 

governing the shape of the cap surface. 

For a realistic representation of the development of cracks in brickwork, a work-softening 

plasticity approach is employed and two distinct historical parameters expressed in the form 

of plastic work values, namely Wpl1, Wpl2 are used. These are associated with the two yield 

functions F1 and F2 governing the degradation of the model material parameters. Wpl1 and 

Wpl2 are given by: 
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where upl1 and upl2 are the vectors collecting the three plastic deformation components 

associated with the functions F1 and F2 (Macorini & Izzuddin, 2011). 

In particular, the tensile strength and the friction angle converge to their residual values 

(material parameters) when Wpl1 approaches the Mode-I (tension) fracture energy Gf1; 

similarly the cohesion at the interface reaches its residual value when Wpl1 converges to the 

Mode-II (shear) fracture energy Gf2. Figures 3-5a,b show the traction-separation response in 

tension and shear. It can be seen that the use of very large Gf1 values moves towards a 

perfectly plastic behaviour with no strength degradation in tension. 

 

 

(a) 

 

(b) 

Figure 3-5: Traction-separation curves in (a) tension and (b) shear (Macorini & Izzuddin, 2011)  

3.2.2 Geometrical description for skew arches 

When using the mesoscale description presented before for analysing brick-masonry 

components of unreinforced masonry buildings, the construction of the FE mesh is relatively 

straightforward, as sets of equal solid and interface elements are arranged in two or three 

perpendicular directions forming masonry walls. Similarly, also the mesh for single or 

multi-ring square semi-circular or segmental arches can be defined quite easily, as the bed 

mortar joints are arranged along radial directions, and the joints connecting different rings in 
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multi-ring arches run along circumferential lines. Conversely the mesh construction for skew 

arches is more problematic as, according to the adopted mesoscale strategy, it should 

represent the actual arrangement of masonry units and mortar joints which in skew arches is 

relatively complex. In this research, skew arches built according to the English or helicoidal 

method (Hodgson, 1996; Melbourne & Hodgson, 1995) are considered. This method was 

developed in the 19
th

 century (George, 1880) and was extensively used to build 

brick-masonry skew bridges, as it allows for the use of masonry units of identical dimensions 

(bricks) which are arranged according to a specific geometry to form skew arches. In Buck’s 

manual (George, 1880) construction rules for brick skew arches are provided. These are 

based upon descriptive geometry principles, which are used here to establish the nodal 

coordinates (Figure 3-6) for all the solid elements of the FE mesh for a brick skew arch. In 

this way, the nodal coordinates of a generic solid element (block) for a segmental single-ring 

skew arch can be obtained considering the sketches in Figure 3-7, where the arch is 

represented by a strip of Nc parts including (Nc  2) hexahedrons and two triangular prisms 

for the untidy edges of the arch (see also Figure 3-6). In Figure 3-7, W, Ld, H, T and θ 

represent the arch width, the direct span, the rise, the ring thickness and the skew angle. The 

intrados of the arch can be considered as part of a cylindrical surface with radius R0, while the 

radius for the extrados is (R0+T). The direct span Ld of the arch is equal to the diameter of the 

cylinder, while the oblique span Lo is equal to Ld/sinθ. Each hexahedron corresponds to a 

generic solid element (half brick) with eight nodes at the four corners. The x, y and z 

coordinates for the corner nodes of a generic block i can be calculated using the expressions 

given in Table 3-1, where α represents the angle for each block as shown in Figure 3-6. 

Evidently the coordinates for the mid-side nodes in the 20-noded solid elements can be 

obtained from the coordinates of the corner nodes through liner interpolations.  

The expressions provided in Table 3-1 can be used to construct the mesh for segmental and 

semi-circular brick skew arches. Moreover the same principles can be applied for elliptical 

skew arches, where an elliptical arch can be divided into several parts approximated by 

circular arch segments. 

http://www.iciba.com/hexahedron
http://www.iciba.com/hexahedron
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Figure 3-6: Nodal position of a solid element within the FE mesh for a portion of single-ring skew arch 

 

 

Figure 3-7: Elevation view and projection in plan of the extrados of a skew arch showing the position of a 

generic solid element 
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Table 3-1: Nodal coordinates for the FE mesh for a skew arch 

Node No. x y z 
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3.3 Numerical Description for Backfill  

Masonry arch bridges are heterogeneous systems where the fill material plays a critical role 

spreading the loads applied on the road/rail surface below to the arch barrel, while providing 

transverse resistance and passive pressure to the deformed arch. Thus, a realistic 

representation of the fill behaviour and its interaction with the arch barrel is critical for an 

accurate response prediction of masonry arch bridges. Some of the most recent FE modelling 

approaches for masonry bridges (Milani & Lourenço, 2012; Melbourne et al., 2007; Boothby, 

2001; Fanning & Boothby, 2001) consider the backfill as a continuous elasto-plastic material, 

where specific plastic criteria are adopted to describe the development of plastic deformations. 

The same strategy is employed in the proposed 3D modelling description, where 15-noded 

elasto-plastic tetrahedral elements (Figure 3-8) are utilised to model the fill domain. 

In the following the main characteristics of the adopted plastic model for the fill material are 

provided. This has been implemented in ADAPTIC and its accuracy has been checked in 

numerical comparisons. 

 

Figure 3-8: 15-noded tetrahedral elements for the backfill domain 

3.3.1 Material model for backfill 

The backfill in existing masonry bridges is largely made up of soil materials, thus realistic 

soil models should be considered for an accurate description of the backfill contribution in 

masonry arch bridges. Thus far a number of constitutive models have proposed for 

representing the nonlinear behaviour of soil materials (Potts & Zdravkovic, 2001). These 
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models are generally formulated within the elasto-plastic framework utilising different plastic 

criteria. Usually the most advanced models, capable of reproducing the complex soil response 

with high accuracy, require a large number of input parameters which cannot be easily 

obtained from conventional tests. Consequently in structural simulations to investigate 

soil-structure interaction, as in the analysis of masonry bridges, simpler isotropic elastic 

perfectly-plastic models like the Mohr-Coulomb or the Drucker-Prager models are usually 

adopted (Milani & Lourenço, 2012; Melbourne et al., 2007; Boothby, 2001; Fanning & 

Boothby, 2001). The first model results from the combination of Hooke's law and Coulomb’s 

failure criterion and requires two elastic parameters, Young’s modulus and Poisson’s ratio, 

and only two inelastic parameters, namely cohesion and friction angle, for defining the plastic 

surface. The Mohr-Coulomb model allows for an accurate description of the soil behaviour at 

failure, but adopting constant Young's modulus and Poisson's ratio values, it provides only an 

approximate linear response prediction before reaching the plastic limit.  

 
 

(a) (b) 

Figure 3-9: (a) Mohr-Coulomb and (b) Drucker-Prager yield surfaces in the principal stress space 

 

The Drucker-Prager model (Drucker & Prager, 1952) is a simplification of the Mohr 

Coulomb model, as it substitutes the irregular hexagonal cone for the failure contour (Figure 

3-9a) with a cylindrical cone in the principal stress space (Figure 3-9b) providing significant 

computational advantages. However, as traditional soil mechanics predictions are based on 
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the Mohr-Coulomb model, whose material parameters can be obtained in standard tests, it is 

preferable to adopt the Mohr-Coulomb formulation also in numerical simulations (Potts & 

Zdravkovic, 2001). Nevertheless some computational difficulties must be solved, mainly to 

deal with the corners of the yield and plastic potential (for non-associated plastic flow) 

surfaces. In particular at the edges of the hexagonal cone, the gradients of the yield function 

and the plastic potential and the gradient derivatives cannot be univocally defined, thus 

preventing the solution of the local plastic problem using standard techniques (Simo & 

Hughes, 1998).  

In this research, an elasto perfectly-plastic model based on the use of a smooth rounded 

hyperbolic Mohr-Coulomb failure criterion (Abbo & Sloan, 1995), which circumvents the 

computational difficulties associated with the traditional Mohr-Coulomb formulation, has 

been implemented in ADAPTIC and used for analysing the backfill contribution in masonry 

bridges. In the following, some details of this constitutive model and the procedure adopted 

for the solution of the local plastic problem which has been implemented in ADAPTIC are 

discussed. 

3.3.1.1 Basic variables and elastic behaviour 

The local three-dimensional material model for the backfill is formulated in terms of 6 strain 

ε (3-7) and 6 stress σ (3-8) components, which are shown with reference to a solid element in 

Figure 3-10.  

  
T

x y z xy zx yz       ε   (3-7) 

 
T

x y z x zx yzy        σ   (3-8) 
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(a)  (b) 

Figure 3-10: Definition of (a) 3D strain and (b) 3D stress variables 

According to the adopted elasto-plastic description, the backfill is assumed as an isotropic 

material, which behaves elastically before reaching the failure surface. Only two independent 

elastic material parameters, namely Young’s modulus E and Poisson’s ratio ν, are used with 

the Hooke’s law to represent the elastic behaviour, where the symmetric elastic matrix is 

given by: 

 
  

1 0 0 0

1 0 0 0

1 0 0 0

1 2
0 0 0 0 0

21 1 2
1 2

0 0 0 0 0
2

1 2
0 0 0 0 0

2

E

  

  

  



 




 
 


 
 
 

 
   

 
 
 
 
 
 

D   (3-9) 

Thus within the elastic domain, the accumulated total stresses can be expressed as below: 

 σ = D ε   (3-10) 

where the total strain ε is elastic (it is assumed that the material has never reached the plastic 

limit). 
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3.3.1.2 Failure criterion 

The boundaries of the elastic domain are defined by a smooth hyperbolic Mohr-Coulomb 

function FSHMC, which requires only two material parameters, i.e. cohesion c and frictional 

angle . This has been derived in (Abbo & Sloan, 1995) considering the classic 

Mohr-Coulomb failure surface FMC = 0 which can be expressed in terms of the principal 

stresses 21 3     as: 

    1 3 1 3 sin 2 cos 0MCF c            (3-11) 

Alternatively using the three stress invariants: the mean total stress m , the deviatoric stress 

  and Lode’s angle  , it becomes (Nayak & Zienkiewicz, 1972): 

  sin cos 0MC mF S c          (3-12) 

where 

  
1

cos sin sin
3

S        (3-13) 

   
1

3
m x y z        (3-14)

 2 2 2 2 2 21

2
x y z xy yz zxs s s           (3-15) 

 1 3

3

1 3 3
sin

3 2

J


 

 
   

 

  (3-16) 

where 30 30    and 

 
2 2 2

3 2x y z xy yz zx x yz y zx z xyJ s s s s s s            (3-17) 
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in which  

 
x x ms      (3-18) 

 
y y ms      (3-19) 

 z z ms      (3-20) 

To avoid singularities in the octahedral plane (the deviatoric plane in three-dimensional stress 

space), Abbo & Sloan (Abbo & Sloan, 1995) recommended to substitute  S  with a 

piecewise function  S   which reads:  

  

1 2

3
cos sin sin    

3

sin 3                

T

T

S

S S

    


  


 

 
  

  (3-21) 

where θT is a specific transition angle, and  

   1

1 3
cos 3 tan tan 3 sign tan 3 3tan sin

3 3
T T T T TS       
 

     
 

  (3-22) 

  2

1 3
sign sin sin cos

3cos3 3
T T

T

S    


 
   

 

  (3-23) 

in which 

  
1     for 0

sign
1     for 0






 
 

 

  (3-24) 

The value of the transition angle is included in the interval 0°  θT  30°, where the upper 

limit provides a better approximation of the classic Mohr-Coulomb criterion in the octahedral 

plane. However the use of a too large transition angle may lead to numerical problems 

(ill-conditioning), thus a value θT = 25° is suggested in (Abbo & Sloan, 1995). 
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Moreover, as the classic Mohr-Coulomb yield criterion (3-12) exhibits a linear relationship 

between the mean total stress and the deviatoric stress for a constant Lode’s angle, an 

additional singularity point is located at the intersection between the yield function and the 

horizontal axis ( 0  ) in the meridional plane (Figure 3-11).  

 

Figure 3-11: Hyperbolic approximation to Mohr-Coulomb yield surface (Abbo & Sloan, 1995) 

 

To remove this singularity, in (Abbo & Sloan, 1995) a hyperbolic approximation is proposed 

(Figure 3-11). Thus the original yield function (3-11) is transformed into the rounded 

hyperbolic Mohr-Coulomb expression given below: 

 2
2

2 2sin sin cosRHMC m SF a c         (3-25) 

where: 

 1 cota a c    (3-26) 

with a1  0.25. In (Abbo & Sloan, 1995) it is recommended to use a1 = 0.05, which provides 

very accurate results, close to the original Mohr-Coulomb predictions. 

The modified Mohr-Coulomb function (3-25), being rounded in both the meridian and 

octahedral planes (Figure 3-12), is continuous and differentiable for all stress states. Thus it 

Mohr-Coulomb 

  

Hyperbolic approximation 

a 

  

 

 



m
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can be readily used within an implicit Euler backward scheme (Simo & Hughes, 1998) for the 

integration of the stress-strain relationships in the plastic regime. Besides, the discrepancy 

with the original Mohr-Coulomb yield criterion can be limited by a proper selection of the 

two additional parameters a1 and θT. In particular when a1 = 0 and θT = 30°, the modified 

yield function coincides with the classic Mohr-Coulomb surface.  

  

Figure 3-12: Rounded hyperbolic Mohr-Coulomb yield surface (Abbo & Sloan, 1995) in the octahedral 

plane 

3.3.1.3 Plastic potential 

In modelling the elasto-plastic behaviour of soils the use of a plastic potential Q independent 

from the yield function may be considered. This allows a more realistic representation of the 

dilatancy, which characterises the plastic response of frictional materials exhibiting 

significant pressure-sensitivity. In the adopted constitutive model for the backfill, a 

 

 

θ = -30° 

θ = -25° 

θ = 0° 

θ = 30° 

θ = 25° 

 θ  

  

 

 

 

 

a = 0.5ccotφ 
a = 0.25ccotφ 

a = 0 (Mohr-Coulomb) 

θ
T
 = 25° 

 φ = 30° 

2

c





Chapter 3                                   Numerical Modelling Strategies for Masonry Arch Bridges 

91 

 

hyperbolic plastic potential similar to the yield function (3-25) but with different material 

parameters is proposed. This is given by: 

 
22 2 2sin oi cs n sm q q qq qQ S a c         (3-27) 

where 
qc  can be taken equal to the cohesion c, the dilatancy angle 

q  can be assumed 

different from the friction angle   (non-associated plastic formulation) and qS  can be 

calculated using the equation (3-21) where the angle   is substituted by 
q . 

3.3.1.4 Solution procedure for local plasticity problem 

An incremental strategy is adopted to calculate the solution of the elasto-plastic problem 

(Figure 3-183). The strain increment ndε  is the primary variable calculated applying a 

differential operator to the variation of displacements at the current time/load step n (Bathe, 

1996). A trial elastic stress vector 
,trial nσ  is calculated using the elastic stiffness matrix D to 

obtain: 

 
, 1trial n n nd σ σ D ε   (3-28) 

where 1nσ is the stress solution at the previous time step. 

When the trial stresses cross the plastic surface (3-25), the solution for the plasticity problem 

is determined by using the implicit backward Euler method and the Kuhn-Tucker 

complementarity conditions (Simo & Hughes, 1998). 

The total strain increment is divided into an elastic eldε  and a plastic component
pldε : 

 
, ,n el n pl nd d d ε ε ε   (3-29) 
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 ,  pl n n

Q
d d





ε

σ
 (3-30) 

where nd  is the increment of the plastic multiplier which is calculated together with the 

actual stress vector nσ  by solving the nonlinear equation system: 

 

 

, 1
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0

   R 0                               

n n n n n
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d n RHMC n

Q
d d
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R σ D ε σ
σ

σ

  (3-31) 

where RR R
T

n d n   is the vector of the residuals. 

An iterative solution procedure based on the Netwon-Raphson method is adopted and the 

system in (3-31) is linearized, leading for the i
th

 iteration to: 

  
T

, 1 , ,,
0   R R J σn i n i n in i

d d   (3-32) 

Thus, 

  
1T

,, ,


 σ J Rn in i n i

d d   (3-33) 

where the 77 Jacobian matrix  
,n i

J  is given by:  

  

2

6 2

,

,

0

n i

n i

Q Q
d

F


    

    
    

  
  

   

I D D
σ σ

J

σ

  (3-34) 

where I6 is the 6×6 identity matrix. 

Finally the local solution at the time\load step n can be found simply by iterative correction of 

the unknown variables until convergence, which is attained when the norm of the residuals is 

less than a tolerance δ: 
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 1 , σ σ σn n n j

j

d   (3-35) 

with j increased until 

 
, ,n j n j R R   (3-36) 

At the end of the iterative process, the consistent tangent stiffness matrix K can be obtained 

as the first derivative of the stresses with respect to the strains: 

 
n

 
   

σ
K

ε
  (3-37) 

This can be determined by linearizing the non-linear equations for the stress components, 

represented by
,nR . Thus the stiffness K is calculated using the Jacobian Jn, obtained at the 

convergence within the expression:  

 1T

n n

K P J PD   (3-38) 

where P corresponds to the projection 7×6 matrix on the six-dimensional stress space: 

  6 6 1P I 0
T

  (3-39) 

in 06×1 is a 6×1 null matrix.  

The accumulated plastic deformation at the end of the time/load step n is calculated by 

adding the plastic deformation increment 
,ε pl nd  (3-30) to the total plastic deformation at the 

previous step as below: 

 
, , 1 , ε ε εpl n pl n pl nd   (3-40) 
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Figure 3-13: Solution procedure for the local plasticity problem 

 

Finally, for completeness, the first and the second derivatives of the yield function and the 

plastic potential derived in (Abbo & Sloan, 1995), which are required for the solution of the 

local plastic problem (e.g. in equation (3-25)) are provided below. 

Using the chain rule of differentiation the first derivative of the yield function F (or the 

plastic potential Q) can be expressed as: 

 
3

1 2 3
m JF

C C C
   

  
   σ σ σ σ

  (3-41) 

where: 

 
1

m

F
C







  (3-42) 

Given dε and σn-1    

σtrial,n= σn-1 +Ddεn  

If FRHMC(σtrial,n)≤ 0 

σn=σtrial,n    

K=D 

If FRHMC(σtrial,n)>0 

σn-σn-1-D(dε-dλn∂Q/∂σn)=0 

F(σn)=0 

σn   

K=𝜕σn /𝜕ε  
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Thus: 
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Finally:  
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The second derivative of the plastic potential reads: 
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where C1, C2 and C3 are calculated using the material properties for the plastic potential (e.g. 

dilatation angle). 

3.3.2 Numerical comparisons 

Before using the elasto-plastic material model for the backfill to investigate the response of 

masonry bridges, numerical simulations have been carried out comparing the results obtained 

using ADAPTIC against the numerical and analytical predictions found in the literature on 

the response of a strip footing. Zienkiewicz et al. (Zienkiewicz, Humpheson & Lewis, 1975) 

investigated the behaviour of a flexible and frictionless strip footing resting on clay. The 

footing was subjected to a uniformly distributed loading, which was increased up to failure 

neglecting the soil self-weight contribution. A 2D plane strain description with 32 8-noded 

parabolic elements was adopted together with the associated Mohr-Coulomb model for the 
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soil material with Young’s modulus E = 207MPa, Poisson’s ratio υ = 0.3, friction angle φ = 

20° and cohesion c = 0.069MPa. The geometry, the loading and the boundary conditions of 

the analysed system are shown in Figure 3-14, where a fixed support condition is assumed at 

the bottom of the 3660mm deep uniform soil layer and roller supports at the two lateral 

vertical sides. Figure 3-15 shows the FE mesh in ADAPTIC. 

 

 

Figure 3-14: Strip footing 

 

Figure 3-15: FE mesh in ADAPTIC for the strip footing on clay 

 

Load q 

Check point A 
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Figure 3-16: Numerical results for the strip footing 

 

 

 

Figure 3-17: Equivalent von Mises plastic deformations in the soil material  

The ADAPTIC numerical curve showing the variation of the vertical displacement at the 

right end of the footing (point A in Figure 3-14) with the applied pressure q is plotted in 

Figure 3-16, where it is also compared against the numerical response obtained in 

(Zienkiewicz, Humpheson & Lewis, 1975) using the original Mohr-Coulomb model and the 

Prandtl and Terzaghi ultimate load predictions. It can be seen that the model implemented in 

ADAPTIC provides results very close to the Zienkiewicz et al. (Zienkiewicz, Humpheson & 

Lewis, 1975) prediction, where the maximum load supported by the footing is close to the 
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Prandtl solution. This is reached when significant equivalent von Mises plastic deformations 

,pl VM  ( , 2 3 :pl VM pl pl   ) develop within the soil domain as shown in Figure 3-17.  

As discussed in section 3.3.1, the two parameters θT, and a1 are utilized to adjust the shape of 

RHMC failure surface to approximate the classic Mohr-Coulomb failure envelope. Although 

Abbo (Abbo, 1997) proposed to use θT = 25° and a1 = 0.05, the influence of these two 

parameters has not been quantitatively discussed. Numerical results obtained by varying the 

transition angle and a1 are shown in Figure 3-18 and Figure 3-20. The influence of these two 

parameters on the ultimate loading capacity of the strip footing is illustrated in Figure 3-19 

and Figure 3-21. It can be seen that all the numerical curves are very close to the Zienkiewicz 

et al. prediction which was obtained adopting the original Mohr-Coulomb model. The relative 

error, calculated assuming the Zienkiewicz et al. ultimate load prediction as exact, does not 

change significantly when the transition angles varies from 5° to 28°. On the other hand, by 

increasing a1 the relative error increases accordingly as the rounded approximation moves 

away from the Mohr-Coulomb elastic boundaries. Very similar results have been obtained 

also in term of plastic deformations. This is shown in Figure 3-22 and Figure 3-23, where the 

equivalent von Mises plastic deformations 
pl  at the last step of the numerical simulations, 

when the displacement at the check point A reaches 20mm, are displayed. Only negligible 

differences can be noticed comparing the cases with different θT and a1 values. 
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Figure 3-18: Numerical results for different transition angle θT values 

 

  

Figure 3-19: Influence of different transition angle θT on the ultimate load 
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Figure 3-20: Numerical results for different values of a1  

 

  

Figure 3-21: Influence of different values of a1 on the ultimate load 
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(a) 

 

 

(b) 

 

 

(c) 

Figure 3-22: Equivalent von Mises plastic deformations for (a) θT = 5°, (b) θT = 15° and (c) θT = 28° 
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(a) 

 

 

(b) 

 

 

(c) 

Figure 3-23: Equivalent von Mises plastic deformations in the soil material for (a) a1 = 0.1, (b) a1 = 0.2 

and (c) a1 = 0.3 
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3.4 Numerical modelling of arch-fill interaction and spandrel 

walls 

The elasto-plastic formulation for soil materials presented before allows for a realistic 

description of the backfill behaviour, but not the interaction at the interface between the fill 

and the masonry arch. Physical tests on real masonry bridges (Page, 1989; Page, 1987) and 

laboratory models (Melbourne & Gilbert, 1995; Melbourne & Walker, 1989; Walker & 

Melbourne, 1988) showed that at collapse significant sliding at the arch-fill interface may 

develop together with extensive cracks in the masonry components of the bridge. In this 

respect, a rigid connection among the nodes of the arch and the fill at their interface does not 

enable the representation of potential separation and sliding between the two domains, and 

may also restrain the development of radial and longitudinal cracks in the masonry arch. Thus 

in the proposed 3D modelling strategy for masonry arch bridges, the discrete model with 

solid elements and nonlinear interfaces for the masonry arch and the continuous model for the 

backfill are connected by nonlinear interface elements, enabling relative movements between 

the two domains. In particular, the FE mesh for the backfill is constructed with the 

rectangular face of the 15-noded prismatic solid elements at the bottom of the backfill, where 

it rests on the arch, coincident with the top face of the solid elements representing masonry 

bricks at the extrados of the arch. In this way, as shown in Figure 3-24, 16-noded nonlinear 

interface elements can be easily arranged to connect the two separate domains, where one 

interface element connects the top face of one 20-noded solid element modelling a portion of 

the arch and the bottom rectangular face of the corresponding 15-noded solid element for the 

fill. The two faces with 8 nodes coincide in the initial undeformed configuration.  

The same nonlinear model employed for representing cracks in the brick-masonry mesoscale 

description is also considered for modelling the nonlinear interaction between the backfill and 

the arch. This corresponds to a phenomenological description, which accounts not only for 

the frictional characteristics of the physical interface between the two domains, but also it 



Chapter 3                                   Numerical Modelling Strategies for Masonry Arch Bridges 

106 

 

describes the nonlinear behaviour of a portion of the backfill close to the arch which is 

subjected to finite deformations when large relative movements between the arch and the 

backfill take place. Evidently this highly nonlinear behaviour cannot be effectively described 

using a standard continuous elasto-plastic model for the backfill. 

In the proposed 3D numerical description for masonry arch bridges, the contribution of the 

spandrel walls is also taken into account. In this case only a simplified model is adopted, as 

the use of the brick-masonry mesoscale description employed for the masonry arch is quite 

problematic. This is due to the specific masonry bond of the lateral wall which does not allow 

a direct connection of the mesoscale mesh for wall to the arch, being the faces of the adjacent 

bricks at the interface of the two masonry components not coincident. Moreover, the use of 

the mesoscale description for the lateral walls would render the connection between the wall 

and the inner backfill impractical. In this case, the vertical 6-noded triangular faces solid 

elements for the backfill cannot be connected to the 8-noded rectangular faces of the solid 

elements modelling the bricks in the spandrel walls by standard interface elements 

representing the frictional characteristics of the physical interface. Because of these 

difficulties, in the proposed modelling approach, the spandrel wall contribution is modelled 

adopting the same strategy used for the backfill. Thus the continuous approach is employed 

and elasto-plastic solid elements with the Mohr-Coulomb model are used to describe the two 

lateral walls, where the FE mesh for each spandrel wall is a simple lateral extension of the FE 

mesh for the backfill. Evidently this can provide only an approximated description of the 

spandrel wall nonlinear response, but it allows an adequate representation of the contribution 

of the spandrel walls to restrain lateral expansion of the backfill, which takes place when 

vertical loads are applied on the road/rail supported by the bridge. 
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Figure 3-24: Modelling arch-fill interaction using 2D nonlinear interface elements 

 

3.5 3D Mesoscale partitioned modelling for masonry arch 

bridges 

When analysing large masonry structures, the use of the detailed 3D mesoscale strategy for 

brick/block masonry is impractical, because it requires an excessive computational effort. To 

overcome this intrinsic limitation, a novel computational strategy for brick\block-masonry 

has been recently proposed (Macorini & Izzuddin, 2013a), where the mesoscale description is 

incorporated within an advanced partitioned strategy. This has been previously developed at 

Imperial College (Jokhio & Izzuddin, 2013; Jokhio, 2012) to increase the computational 

efficiency in the analysis of large structural systems. The use of this advanced partitioning 

strategy allows realistic response predictions also for large masonry structures, where the 

accuracy is guaranteed by the use of a detailed mesoscale description at the structural scale. 

According to this strategy, a large masonry component is modelled by a parent structure 

which comprises super-elements representing the partitioned subdomains. Dual 

super-elements are used for modelling the partitions as separate processes, where two-way 

Backfill 

(15-noded prism elements) 

  

Masonry arch 

(20-noded brick +  

16-noded interface elements) 

  

Mid-plane for arch-fill 

interface 

(16-noded interface elements) 
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communication between each pair of dual parent/child super-elements allows effective 

parallelisation of the nonlinear structural analysis simulation (Jokhio & Izzuddin, 2013; 

Jokhio, 2012). 

(Macorini & Izzuddin, 2013b) showed that the partitioned mesoscale approach for 

brick/block-masonry allows a significant speed-up S. This is an objective measure of 

computational efficiency, which, in this specific case, corresponds to the ratio between the 

wall-clock time required for the analysis of a masonry component modelled by the  

mesoscale approach using a serial code (monolithic simulation), and  the time required for 

analysing the same structure employing the partitioned mesoscale strategy and parallel 

computing resources. In general, the speed-up increases when a large number of partitions is 

adopted, but it may decrease when the size of the parent structure, collecting the nodes at the 

partition boundary, becomes excessively large (Macorini & Izzuddin, 2013b). 

More recently further enhancements have been introduced into the mesoscale partitioned 

approach to improve computational efficiency (Macorini & Izzuddin, 2013b). These include 

the use of hierarchic partitioning (Jokhio, 2012) and rigid constraints to reduce the number of 

freedoms at the partition boundary (Jokhio, 2012). The first enhancement enables the use of 

multi-level partitions, where the original child partitions are further subdivided by higher 

level super-elements. This way, partitions at one level are children to those at the upper level 

and parent to those at the lower level. This is shown in Figures 3-25b,c, where a two-level 

partitioning scheme for a masonry arch is sketched. The second improvement to the original 

partitioned mesoscale strategy considers to use master-slave hard coupling to connect several 

nodes on the slave surface at the partition boundaries with only one 6 freedoms master node 

(Figures 3-25d,e). Thus the displacements at each node on the slave surface can be fully 

determined from the displacements of the master node. This allows a significant reduction of 

the size (e.g. number of freedoms) of the parent structure, but with the expense of introducing 

unrealistic rigid constraints which may alter the strain/stress distribution at the partition 

boundaries (Macorini & Izzuddin, 2013b). 
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(a) 

 

(b) 

Figure 3-25: Partitioned modelling for (a) typical masonry arch barrel, (b) different levels of super 

elements for (c) hierarchic partitioning approach, (d) multi-dimensional coupling at the partition 

boundary and (e) mesoscale partitioning with multi-dimensional coupling for a masonry arch (Cont’d …) 
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(c) 

 

(d) 

 

(e)  

Figure 3-25: Partitioned modelling for (a) typical masonry arch barrel, (b) different levels of super 

elements for (c) hierarchic partitioning approach, (d) multi-dimensional coupling at the partition 

boundary (e) mesoscale partitioning with multi-dimensional coupling for a masonry arch 
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Figure 3-26: Partitioned modelling for masonry arch bridges 

 

In the proposed 3D modelling strategy for brick/block masonry bridges, the enhanced 

partitioned strategy previously used for analysing large masonry structures (Macorini & 

Izzuddin, 2013b) is adopted. In this case, the basic partitioned model representing a realistic 

masonry arch bridge encompasses two partitions (Figure 3-26): one for the fill domain and 

the spandrel walls, which are modelled using the continuous approach with elasto-plastic 

solid elements considering different material properties, and the other for the whole masonry 

arch which is described using the mesoscale strategy with solid and nonlinear interface 

elements. Moreover, the second partition includes also the nonlinear interfaces representing 

the arch-fill interaction. The parent structure corresponds to the set of nodes at the partitioned 

boundary which are located the interface between the two separate domains (Figure 3-26). 

Evidently, to improve computational efficiency, hierarchic partitioning and master-slave 

coupling at the partitioned boundary can be used. This is shown in Figure 3-27, where a 

subdivision in higher level partitions for the masonry arch is sketched. In particular, for 

convenience, it has been assumed that the level of partitioning and the distribution of the 
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partitions can be defined independently for the two domains (arch and backfill with lateral 

walls), while the parent file collects all the nodes at the interface between the arch and the 

backfill. 

To allow for a practical use of the proposed mesoscale partitioned strategy for masonry 

bridges, an automatic FE mesh generator has been recently developed (Rodriguez-Villares, 

2014). This is coupled with Gmsh (Geuzaine & Remacle, 2009), a general 3D FE mesh 

generator for monolithic models, and it automatically generates the partition and parent input 

files for ADAPTIC. 

 

Figure 3-27: Higher level partitions for the masonry arch 
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3.6 Conclusions 

In this chapter, an advanced FE modelling strategy for masonry arches and bridges has been 

presented. It is based upon a detailed 3D mesoscale modelling strategy, which employs solid 

and nonlinear interface elements to offer an accurate prediction of the development of 

damage and cracks in the masonry. A specific geometrical description for skew arches is 

provided. This enables the consideration of the actual arrangement of masonry units and 

mortar joints for skew arches built according to the helicoidal method. In the analysis of 

masonry bridges, elasto-plastic solid elements are employed for representing the backfill and 

the lateral walls, while the arch-backfill interaction is modelled by nonlinear interface 

elements, which consider the frictional characteristics of the physical interface between the 

two domains. As the computational cost of mesoscale simulations may become excessive, the 

detailed modelling approach for masonry arches and bridges is used within a partitioning 

strategy allowing for parallel computation, thus increasing computational efficiency. 
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4 Validation of Mesoscale Modelling for 

Masonry Arches 

CHAPTER 4 

Validation of Mesoscale Modelling for Masonry Arches  

4.1 Introduction 

In previous research (Macorini & Izzuddin, 2014; Macorini & Izzuddin, 2011), the detailed 

mesoscale approach for brick/block-masonry described in Chapter 3 has been used in static 

and dynamic analysis of masonry walls, and its accuracy has been checked in several 

numerical-experimental comparisons. In the following, this approach is employed for the 

analysis of brick-masonry arches subjected to static loading, and numerical predictions are 

compared against experimental results. To this end, recent full-scale laboratory tests have 

been considered, where the analysed structures represent realistic arches similar to those 

found in existing masonry bridges. Multi-ring arches characterised by different failure 

mechanisms are analysed. These include square arches which fail due to the formation of 

radial cracks leading to a “hinge mechanism” or because of ring separation (Melbourne et al., 

2007) and a skew arch characterised by a 3D failure mode (Wang, 2004). Such complex 

failure mechanisms can be accurately represented only by using specific material descriptions 

for masonry which account for the actual masonry bond, as the adopted 3D mesoscale 

modelling technique where bricks and brick-mortar joints are modelled separately. The full 

mesoscale description is also compared against models utilising a lower number of solid and 

nonlinear interface elements so as to identify the most accurate and computationally efficient 

strategy for modelling square and skew arches. 
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In the final part of this chapter, the mesoscale strategy for brick-masonry is combined with 

the partitioning approach previously developed at Imperial College (Jokhio, 2012) to the 

analysis of a large square arch. A partitioned mesoscale description allowing for parallel 

computation is used here to overcome the intrinsic limitation of detailed mesoscale models 

which is associated with high computational demand preventing the use of such models for 

the analysis of large structures. The results obtained using different partitioning strategies are 

compared, and the most efficient yet accurate strategy is selected. This will be then used in 

the analysis of realistic masonry bridges in Chapter 6, where the interaction between the 

masonry arch and the other components of masonry bridges (e.g. backfill) will be 

investigated. 

Finally, it is important to note that focus is given not only to the ability of the proposed 

numerical descriptions to predict the ultimate arch capacity under static loading, but more in 

general to represent the complete structural response including the elastic behaviour and the 

progressive development of damage, which should be taken into account for an accurate 

safety assessment. This is in tune with recent research (Wang, Haynes & Melbourne, 2013; 

Melbourne & Tomor, 2004), which pointed out that the analysis of the response under 

serviceability loading is particularly important for the safety evaluation of masonry structures 

subjected to substantial repeated loading like masonry bridges. In these cases, damage 

accumulated in time under service loading may lead to a significant reduction of the ultimate 

capacity (Melbourne, Wang & Tomor, 2007). 

4.2 Analysis of Square Arches 

The accuracy of the proposed mesoscale description for the analysis of brick-masonry square 

arches has been checked considering the experimental results obtained in a series of 

laboratory tests on multi-ring arches under static loading. These were carried out at the 

University of Salford within the scope of the Sustainable Bridges research project 

(Melbourne et al., 2007). 
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4.2.1 Experimental tests 

The masonry specimens comprise multi-ring 3m and 5m span arches with segmental circular 

shape and the same 4:1 span-to-rise ratio. These were constructed without headers to connect 

the two rings and employing class A engineering bricks (strong bricks) or Britley Olde English 

bricks (weak bricks). The strong bricks were used to represent high quality brickwork, while 

the weak bricks to represent aged brickwork as found in typical historical masonry bridges of 

the railway networks in Europe. All the bricks used in the tests are characterised by 215mm 

stretcher, 102.5mm thickness and 65mm header, while the mortar joints are 10mm thick with a 

volumetric cement:lime:sand ratio of 1:2:9. Reinforced concrete abutments were used to 

support the masonry arch barrels, which were bolted into the reinforced concrete strong floor of 

the laboratory to avoid movement at the supports. Material properties were obtained from a 

series of sample tests. These encompass tests to determine compressive strength and density of 

bricks and mortar and tests on masonry prisms to obtain the strength of masonry in 

compression. The results of the material tests are reported in Table 4-1. 

Regarding the loading arrangement, vertical loads referred to as dead loads (DL) were applied 

near the quarter and the three quarter span of the arches either by steel weights or hydraulic 

jacks to represent the weight of the backfill above the arches of typical masonry bridges. A 

further load (live load - LL) was then applied near the quarter span in quasi-static increments of 

1kN up to the collapse of the arch. Both horizontal and vertical displacements were measured 

near the quarter and the three quarter span using linear variable displacement transducers 

(LDVTs).  
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Table 4-1: Properties of mortar, bricks and masonry (Melbourne et al., 2007) 

 
Compressive strength  

c,m (MPa) 

Density  

(kN/m
3
) 

Strong bricks 154 23.7 

Weak bricks 18.9 16.2 

Mortar 1.86 15.5 

Masonry prisms with strong bricks 24.5 22.0 

Masonry prisms with weak bricks 9.1 16.0 

 

Among the experimental specimens, two masonry arches are considered here for 

numerical-experimental comparisons. These correspond to a 3m span arch named Arch G 

(Melbourne et al., 2007) which was constructed using strong bricks and to a 5m span arch 

called Arch T (Melbourne et al., 2007) built with weak bricks. These two specimens showed 

different cracks patterns and failure modes in the tests; thus the numerical simulations of their 

response allows for an effective validation of the proposed mesoscale modelling approach. 

4.2.2 Arch G 

The specimen Arch G is a two-ring arch with strong bricks made up of 47 courses of bricks for 

the lower ring and 49 courses for the top ring. Its geometrical characteristics are reported in 

Table 4-2 and displayed together with the loading arrangement in Figure 4-1.   

Table 4-2: Principal dimensions for Arch G (Melbourne et al., 2007) 

Span 

(mm) 

Rise 

(mm) 
Span-to-rise ratio 

Thickness 

(mm) 

Width 

(mm) 

Brickwork 

courses 
Skew  

3000 750 4:1 215 455 47/49 0° 
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Figure 4-1: Geometric characteristics and loading arrangement for Arch G 

 

In the test, the arch was initially loaded by two vertical dead loads applied at the quarter and the 

three quarter span equal to DL = 10kN, while a vertical live load LL was increased up to 

collapse under force control.  

 

(a) 1
st
 radial crack at quarter span 

 

(b) Radial cracks at left and right abutments 

 

(c) Cracks at failure 

Figure 4-2: Experimental crack patterns at different load levels: (a) 1
st
 radial crack at quarter span, (b) 

radial cracks at left and right abutments and (c) cracks at failure 

DL + LL DL 
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The experimental crack patterns at different live load levels are shown in Figure 4-2, which 

illustrates the progressive formation of four radial crack lines extending through the whole 

width of the arch. The first radial crack was found near quarter span, while the positions of the 

following two cracks were located at the left and right abutments, but their sequence was not 

reported in the test report (Melbourne et al., 2007). The arch became unstable after the opening 

of further cracks near the three quarter span, thus failing due to the formation of a mechanism 

(four-hinge mechanism) at about LLu,exp = 28kN. As the test was conducted under force 

control, after the attainment of the maximum load the test was terminated without 

investigating the post-peak response. 

4.2.2.1 Model description 

According to the adopted mesoscale approach for brick-masonry, the arch barrel is modelled 

accounting for the actual arrangement of bricks and mortar joints along the arch length, 

through the thickness of the arch and along its width. Only one simplification is introduced 

into the detailed model, as mortar radial bed joints for the two rings are considered 

continuous along the radial direction even though some small deviations from this condition 

can be seen in the actual masonry bond of the arch specimen (Figure 4-1). On the basis of this 

modelling assumption, 48 solid elements are used for representing the two brick courses of 

the bottom and the top ring. The employed finite element mesh in ADAPTIC is shown in 

Figure 4-3a,b where the elastic solid elements (Figure 4-3a) and the 2D nonlinear interface 

elements (Figure 4-3b) are displayed. In the proposed mesh, each half brick arranged along 

the y direction (Figure 4-3a) is represented by one 20-noded solid element, thus nonlinear 

interface elements (Figure 4-3b) are utilised not only to model circumferential bed and head 

mortar joints and radial head joints, but also potential fracture surfaces at the mid-plane of 

each brick. In total the FE mesh encompasses 48×4×2 solid elements, 48×4 interface 

elements for circumferential mortar bed joints, 47×4×2 and 48×3×2 interface elements for 

head joints along the span and the width of the arch. 
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Concerning the boundary conditions, the two reinforced concrete abutments which support 

the masonry arch barrel in the physical test are not explicitly included in the FE description. 

On the other hand the three degrees of freedom of all the nodes at the two end surfaces S1 

and S2 are restrained to represent fixed-end supports. 

 

(a) FE mesh with solid elements 

 

(b) FE mesh with interface elements 

Figure 4-3: Mesh in ADAPTIC for Arch G: (a) FE mesh with solid elements and (b) FE mesh with 

interface elements 

As the material properties for masonry components determined in the experimental program 

(Melbourne et al., 2007) comprise only compressive strength of bricks, mortar and masonry 

(Table 4-1) the complete set of elastic and nonlinear material parameters used in the 

mesoscale model for bricks and brick-mortar joints, as shown in Table 4-3, 4-4 and 4-5, have 
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been selected among the values used in previous research to represent high quality brickwork 

(Macorini & Izzuddin, 2011; Rots, 1997; Hodgson, 1996) so as to obtain a good correlation 

with the experimental response of the arch. 

 

Table 4-3: Elastic properties for solid elements 

 Elastic modulus  

Eb (N/mm
2
) 

Poisson’s ratio  

ν 

Brick unit 1.6×10
4
   0.15 

 

Table 4-4: Elastic properties for interface elements 

 

Normal stiffness  

Kn (N/mm
3
) 

Tangent stiffness  

Kt (N/mm
3
) 

Mortar interface 90  40  

Brick-brick interface 110
5
 110

5
 

 

Table 4-5: Inelastic properties of nonlinear interface elements 

 Surface F1 Surface Q1 Surfaces F2, Q2 

Mortar-brick 

interface 

C0 = 0.40N/mm
2
 C0 = 0.40N/mm

2
 D = 24.5N/mm

2
 

σt0 = 0.26N/mm
2
 σt0 = 0.26N/mm

2
 σc0 = 24.5N/mm

2
 

tanϕ0 = 0.5 tan𝜓0 = 0.0 tanθ0 = 0.045 

Gf1 = 0.12N/mm Gf1 = 0.12N/mm Gc = 5.0N/mm  

Gf2 = 0.125N/mm Gf2 = 0.125N/mm  

Brick-brick 

interface 

C0 = 2.8N/mm
2
 C0 = 2.8N/mm

2
  

σt0 = 2.0N/mm
2
 σt0 = 2.0N/mm

2
  

tanϕ0 = 1.0 tan𝜓0 = 1.0  

Gf1 = 0.08N/mm Gf1 = 0.08N/mm  

Gf2 = 0.5N/mm Gf2 = 0.5N/mm  
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4.1.1.1 Numerical results 

Experimental and numerical comparisons are presented in Figures 4-4 and 4-5, where the 

horizontal and the vertical displacements at quarter span and the horizontal displacement at 

three quarter span are displayed.  

Numerical and experimental curves show a general good agreement until about LL = 15kN, 

when the first radial crack at quarter span is observed in the experimental test and predicted 

by the numerical model. At this loading level both the numerical and experimental curves 

diverge from the initial linear response, but all the numerical predictions show a stiffer 

response up to the maximum predicted load LLu,num = 27.8kN which is very close to the 

ultimate load measured in the test LLu,exp = 28kN. Moreover the predicted failure mechanism 

coincides with the experimental failure as well as the sequence of the formation of the four 

radial cracks (Figure 4-2) which developed because tensile stresses on large parts of some 

radial mortar head joints exceeded the tensile strength.  

 

 

Figure 4-4: Experimental-numerical comparisons at three quarter span 
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(a) Load-horizontal displacement curve 

 

(b) Load-vertical displacement curve 

Figure 4-5: Experimental-numerical comparisons at quarter span 

 

Figure 4-6a,b,c,d,e, show the deformed shapes at different loading values corresponding to 

the development of the four main fracture lines and at the end of the numerical simulation. In 

accordance with the physical evidence, the numerical model predicts the consecutive 

formation of the second, third and fourth crack at loading levels which are very close, thus 

revealing an almost sudden transition from a stable deformation regime governed by only one 

main crack to an unstable failure mechanism with four radial fracture lines. As the numerical 

analysis was carried out using displacement control, also the post peak response has been 
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predicted as shown in the numerical curves in Figures 4-4 and 4-5, and in the final deformed 

shape in Figure 4-6e, where the full opening of the four cracks can be observed. 

 

 

(a) 1
st
  crack at LL = 15kN 

 

(b) 2
nd

 crack at LL = 26kN 

 

(c) 3
rd

 crack at LL =27.3 kN 

 

(d) 4
th
 crack at LL = 27.8kN 

 

(e) Final stage 

Figure 4-6: Deformed shapes: (a) 1
st
 crack at LL = 15kN, (b) 2

nd
 crack at LL = 26kN, (c) 3

rd
 crack at LL = 

27.3kN, (d) 4
th

 crack at LL = 27.8kN and (e) Final stage 

 

The numerical results provide also a quantitative description of the development of damage 

along the fracture lines. This is displayed in Figure 4-7a,b,c,d which show the plastic work 

Wcr1 contour associated with the plastic surface F1, where plastic work values approaching 

mode I fracture energy Gf1 signifies complete degradation of the mortar resistance in tension. 
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(a) 1
st
 crack at LL = 15kN (b) 2

nd
 crack at LL = 26kN 

  

  

(c) 3
rd

 crack at LL =27.3 kN (d) 4
th
 crack at LL = 27.8kN 

 

(e) Final step 

Figure 4-7: Plastic work contour Wcr1 (N/mm): (a) 1
st
 crack at LL = 15kN, (b) 2

nd
 crack at LL = 26kN, (c) 

3
rd

 crack at LL = 27.3kN, (d) 4
th

 crack at LL = 27.8kN and (e) Final step 
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4.2.3 Arch T 

The second square arch considered here for numerical-experimental comparisons corresponds 

to the Arch T specimen (Melbourne et al., 2007) which is characterised by a 5m span and three 

brickwork rings without interlocking headers along the span. Besides, this arch specimen is 

made up of weak brick units to represent deteriorated brickwork as found in many historical 

bridges. Arch T features 77, 80 and 83 courses for the bottom, the middle and the top ring 

respectively. The two end courses for the different rings were fixed to two reinforced concrete 

abutments as shown in Figure 4-8. The main dimensions of the arch are listed in Table 4-6. 

Table 4-6: Principal dimensions for Arch T (Melbourne et al., 2007) 

Span 

(mm) 

Rise 

(mm) 
Span-to-rise ratio 

Thickness 

(mm) 

Width 

(mm) 

Brickwork 

courses 
Skew  

5000 1250 4:1 330 675 77/80/83 0° 

 

 

 

Figure 4-8: Geometric description of Arch T 

As in the case of the Arch G, two equal vertical point loads DL = 22.5kN were applied at 

quarter and three quarter span and maintained constant throughout the test. Moreover, a 

vertical load LL applied at quarter span was monotonically increased up to the arch collapse. 

  DL + LL  DL 
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During the test, initial radial cracks were found near the quarter span extending through the 

bottom two rings. Successively, ring separation developed from the quarter span to the half 

span at about LL = 26kN. Further load increments caused the formation of more radial cracks 

leading to the collapse of the masonry sample at LLexp,max = 31kN.  

 

(a) 1
st
 radial crack at LL = 14 kN 

 

(b) Ring separation at LL= 26 kN 

 

(c) Further ring separation at LL = 28 kN 

 

(d) Further radial cracks at LL = 30 kN 

 

(e) Cracks at failure at LL = 31kN 

Figure 4-9: Experimental crack patterns: (a) 1
st
 radial crack at LL = 14kN, (b) ring separation at LL = 

26kN, (c) further ring separation at LL = 28kN, (d) further radial cracks at LL = 30kN and (e) cracks at 

failure at LL = 31kN 

Figure 4-9 shows the development of radial cracks and ring separation at different load levels. 

As illustrated in the figure, crack propagation is mainly located between the quarter and the 



Chapter 4                                     Validation of Mesoscale Modelling for Masonry Arches 

128 

 

middle span, where ring separation combined with radial cracks dominate the response of the 

whole arch up to collapse. 

4.2.3.1 Model description 

The same modelling technique considered in the previous example is used here to model arch 

T. As shown in Figure 4-10a,b, each half brick arranged along the y direction (Figure 4-10a) 

is modelled by one 20-noded solid element and nonlinear interface elements (Figure 4-10b) 

are utilised to represent circumferential mortar joints and radial bed joints as well as potential 

fracture surfaces at the mid-plane of each brick. Moreover, as before, the mortar radial joints 

for the three rings are considered continuous along the radial direction and 80 solid elements 

are adopted for the brick courses of the three rings. Thus the FE mesh for the arch consists of 

80×6×3 solid elements, 80×6×2 interface elements for bed joints, 79×6×3 interface elements 

for bed joints along the span and 80×5×3 along the width of the arch, where the nodes at the 

two end surfaces S1 and S2 (Figure 4-10a) are fully restrained to represent fixed-end 

supports. 

Material properties for solid elements and nonlinear interfaces are different from the values 

considered in the Arch G model. This is due to different type of brickwork used to build the 

two arches, where the Arch T specimen is made up of degraded brickwork with weak bricks. 

As no material tests have been performed in the experimental program to determine the 

specific material properties required for the mesoscale description, typical material 

parameters found in the literature (Macorini & Izzuddin, 2013b; Oliveira, 2003) to represent 

historical brick-masonry have been considered here for numerical-experimental comparisons. 

The adopted material properties are reported in Tables 4-7, 4-8 and 4-9. 
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(a) FE mesh with solid elements 

 

(b) FE mesh with interface elements 

Figure 4-10: Mesh in ADAPTIC for Arch T with (a) solid elements and (b) interface elements 

 

Table 4-7: Elastic properties for solid elements 

 Elastic modulus  

Eb (N/mm
2
) 

Poisson’s ratio  

ν 

Brick unit 6×10
3
   0.15 

 

Table 4-8: Elastic properties for interface elements 

 

Normal stiffness  

Kn (N/mm
3
) 

Tangent stiffness  

Kt (N/mm
3
) 

Mortar interface 60  30  

Brick-brick interface 110
5
 110

5
 

20-noded  

solid elements 

 Circumferential 

interfaces 

for mortar bed joints 

 

x

X 

Radial interfaces for  

mortar head joints 

 

y 

Brick mid-plane 

interfaces 

z 

Mortar interfaces for 

 circumferential head joints 

S

1 

x 

S

2 

y 

z 
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Table 4-9: Inelastic properties of nonlinear interface elements 

 Surface F1 Surface Q1 Surfaces F2, Q2 

Mortar-brick 

interface 

C0 = 0.07N/mm
2
 C0 = 0.07N/mm

2
 D = 9.1N/mm

2
 

σt0 = 0.05N/mm
2
 σt0 = 0.05N/mm

2
 σc0 = 9.1N/mm

2
 

tanϕ0 = 0.5 tan𝜓0 = 0.0 tanθ0 = 0.045 

Gf1 = 0.02N/mm Gf1 = 0.02N/mm Gc = 5N/mm 

Gf2 = 0.125N/mm Gf2 = 0.125N/mm  

Brick-brick 

interface 

C0 = 1.8N/mm
2
 C0 = 1.8N/mm

2
  

σt0 = 1.2N/mm
2
 σt0 = 1.2N/mm

2
  

tanϕ0 = 1.0 tan𝜓0 = 1.0  

Gf1 = 0.08N/mm Gf1 = 0.08N/mm  

Gf2 = 0.5N/mm Gf2 = 0.5N/mm  

 

4.2.3.2 Numerical results 

In Figures 4-11 and 4-12, the numerical results are compared against the experimental curves 

for the horizontal displacement at quarter span and the horizontal and the vertical 

displacement at three quarter span. As in the previous case, horizontal lines mark the loading 

values associated with the formation of the cracks observed in the experimental test. In this 

numerical-experimental comparison the maximum capacity is overestimated by the proposed 

mesoscale model, as the numerical maximum load LLnum,max = 34.29kN exceeds the 

experimental ultimate load of 8.6%. On the other hand, the arch stiffness until the formation 

of the first crack at LL = 14kN is accurately predicted. For higher loading values, both the 

experimental and the numerical curves become nonlinear with a similar degradation of 

stiffness caused by the formation of further radial and longitudinal cracks. All the 

experimental curves, but the curve for the horizontal displacement at three quarter span, 

terminate well before the numerical curves which show a substantial final part where the 

displacements increase with an almost constant vertical force. This is because some of the 
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instruments used to measure the displacements in the test were removed to avoid damage 

when the arch became unstable due to the development of radial and longitudinal cracks at 

quarter span. 

 

 

 

 

Figure 4-11: Experimental-numerical comparisons at quarter span 
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Figure 4-12: Experimental-numerical comparisons at three quarter span 

 

The predicted position and sequence of the cracks up to the collapse of the arch (Figure 4-13) 

is in good agreement with what was observed in the experimental test (Figure 4-9). The onset 

of ring separation is predicted as in the experimental test at about LL = 26kN when a 

significant stiffness reduction was measured. The plastic work contour in Figure 4-14 shows 

that when approaching the maximum load, plastic work values at radial cracks are very large 

and close to the mode-I fracture energy. On the other hand plastic work values at longitudinal 

cracks along the circumferential mortar joints connecting adjacent rings at quarter span are 

not so significant and far from the mode-II fracture energy which determine the complete 
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cohesion exhaustion. This is not in agreement with the experimental evidence as large sliding 

with complete detachment of adjacent rings was observed at maximum load when the arch 

collapsed. This may be due to the specific material parameters used for the numerical model, 

as most of them were selected according to previous research and not directly determined in 

physical material tests within the experimental program on the masonry arches. 

 

  

(a) 1
st
 crack (radial crack) (b) 2

nd
 crack (ring separation) 

  

(c) 3
rd

 crack (radial crack) (d) 4
th
 crack (radial crack) 

 
 

(e) 5
th
 crack (radial crack) (f) Final step 

Figure 4-13: Deformed shapes of Arch T: (a) 1
st
 crack (radial crack), (b) 2

nd
 crack (ring separation), (c) 3

rd
 

crack (radial crack), (d) 4
th

 crack (radial crack) and (e) 5
th

 crack (radial crack) and (f) final step 
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(a) 1
st
 crack (radial crack) (b) 2

nd
 crack (radial crack) 

  

   

(c) 3
rd

 crack (ring separation) (d) 4
th
 crack (radial crack) 

 
 

    

(e) 5
th
 crack (radial crack) (f) Final step 

Figure 4-14: Plastic work contour Wcr1 (N/mm) of Arch T: (a) 1
st
 crack (radial crack), (b) 2

nd
 crack (radial 

crack), (c) 3
rd

 crack (ring separation), (d) 4
th

 crack (radial crack), (e) 5
th

 crack (radial crack) and (f) Final 

step 
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4.2.4 Modelling considerations  

Numerical analyses have been carried out to investigate the influence of some material 

properties on the response prediction of a square arch up to collapse and particular attention is 

paid to the ultimate load and the initial stiffness. Additionally, the use of less computationally 

demanding mesoscale descriptions is investigated. In this case the results obtained using 

simplified strategies, where a lower number of solid and nonlinear interface elements are 

employed, are compared and discussed. 

4.2.4.1 Influence of material properties 

Arch G is analysed considering the same loading condition as in Section 4.2.1 focusing on the 

effects of the most critical material properties. As discussed before, the response of the arch is 

governed by the development of radial cracks which are mainly associated with the normal 

stresses at the nonlinear interfaces for the radial mortar bed joints (Figure 4-3b, Figure 4-6). 

Thus the material properties considered in the parametric study comprise the Young’s modulus 

for masonry units Eb, the normal stiffness of the nonlinear interfaces for the mortar joints Kn, 

the tensile strength ft and the mode-I fracture energy Gf1 for the mortar joints. For all the 

simulations the ultimate load is assumed as the peak load, while the elastic stiffness as the 

secant stiffness calculated at 40% of the maximum load. 

Figure 4-15 shows the numerical curves and the experimental curve for the vertical 

displacement at quarter span determined by using the mesoscale model illustrated in Figure 

4-3 and the material properties in Tables 4-3, 4-4 and 4-5 but Eb. This was varied from 3GPa 

to 100GPa, where the lower value represents the Young’s modulus for old degraded bricks 

and the higher value the Young’s modulus for hard stone units. Figure 4-16 and Figure 4-17 

display the change of ultimate load LLu and elastic stiffness Ke both calculated using the 

experimental values LLu,exp and Ke,exp as below: 
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,u num u,exp

u

u,exp

LL LL
LL

LL


    (4-1) 

 
e,num e,exp

e

e,exp

K K
K

K


    (4-2) 

where LLu,num and Ke,num are the ultimate load and the elastic stiffness obtained in the 

numerical simulations.  

In Figure 4-15 it can be seen that an increasing of Eb leads to an increase of the maximum 

load and the elastic stiffness. A variation of Eb changes also the shape of the numerical curves, 

where the curves with low Eb are characterised by a smoother transition from the elastic 

response to the ultimate load. The rate of change of the ultimate load (Figure 4-16) is 

significant for low Eb, whereas the ultimate load change is almost negligible for high 

Young’s modulus values (e.g. doubling Eb from 50 GPa to 100GPa leads to only about 1% 

increment of LLu). The variation of the initial stiffness of the arch (Figure 4-17) is again very 

significant when Eb increases from low values, but the rate of change is still notable for high 

Eb (e.g. doubling Eb from 50 GPa to 100GPa leads to about 8% increment of Ke). 

The effects of the variation of Kn are displayed in Figure 4-18, where the numerical curves 

obtained by changing the normal stiffness for the mortar joints from Kn = 10N/mm
3
 to Kn = 

500kN/mm
3
 are shown together with the experimental curve. In this respect it is important to 

note that the most common values suggested in the literature to represent mortar joints in old 

brickwork are within the interval 30N/mm
3
  Kn  60N/mm

3
 (Oliveira, 2003) and for new 

masonry structures 100N/mm
3
  Kn  150N/mm

3
 (Macorini & Izzuddin, 2011; Lourenço & 

Rots, 1997). The trend of the different numerical curves shows a significant influence of Kn on 

both the ultimate load (Figure 4-19) and the initial stiffness (Figure 4-20). Low Kn values 

determine a ductile response with low ultimate load and stiffness. While increasing Kn leads to 

an increment of the ultimate load and the elastic stiffness, it reduces the displacement at the 

onset of the softening branch. Figure 4-21 displays numerical curves obtained using different ft 
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values, where the tensile strength for the mortar joints varies from ft = 0.002MPa to ft = 1.0Mpa 

being the lower limit characteristic of degraded mortar joints. Comparing the different curves it 

can be seen that the tensile strength determines the load at first crack, the ultimate load (Figure 

4-22), the initial stiffness (Figure 4-23) and the shape of the numerical response. The numerical 

curves with low ft are generally smoother, while in the case of high ft (e.g. ft = 1.0MPa) the first 

cracking is followed by a sudden release of elastic energy corresponding to a softening branch 

which is followed by a further load increment up to the ultimate load. Moreover the rate of 

change of the ultimate load is still significant for high ft values, but variation of the initial 

stiffness becomes less pronounced when ft increases from 0.5MPa to 1.0MPa. Finally the 

influence of the mode-I fracture energy is illustrated in Figure 4-24. As expected the response 

of the arch becomes more ductile when Gf1 increases, moving to the limit of elasto-plastic 

behaviour with no softening when Gf1 is relatively large. Also the ultimate load is strongly 

affected by Gf1 (Figure 4-25), while the influence on the stiffness is more limited. In this case 

an increment of the fracture energy often corresponds to a reduction of the initial stiffness 

(Figure 4-26). In general Gf1 does not affect the load at first cracking which defines the linear 

part of the numerical response, thus all the numerical curves are almost coincident until this 

load level, but afterwards curves with high Gf1 are smoother and characterised by a higher 

ultimate load. 

 



Chapter 4                                     Validation of Mesoscale Modelling for Masonry Arches 

138 

 

  

Figure 4-15: Influence of Eb on the arch response 

  

Figure 4-16: Influence of Eb on the ultimate load 

  

Figure 4-17: Influence of Eb on the elastic stiffness 
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Figure 4-18: Influence of Kn on the arch response 

  

Figure 4-19: Influence of Kn on the ultimate load 

  

Figure 4-20: Influence of Kn on the elastic stiffness 
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Figure 4-21: Influence of ft on the arch response 

  

Figure 4-22: Influence of ft on the ultimate load 

  

Figure 4-23: Influence of ft on the elastic stiffness 
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Figure 4-24: Influence of Gf1 on arch response 

  

Figure 4-25: Influence of Gf1 on the ultimate load 

  

Figure 4-26: Influence of Gf1 on the elastic stiffness 
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4.2.4.2 Mesoscale description 

The response of the Arch G has been investigated using alternative mesoscale descriptions with 

the scope of identifying an accurate and computationally efficient strategy for predicting the 

response of masonry square arches under vertical static loading. In particular, the mesoscale 

model described in Section 4.2.2 here named Mesoscale 1 which accounts for the actual 

masonry bond along the span and the width of the arch is compared against two different 

models. These are characterised by a reduced number of degrees of freedom (DOF) utilising a 

lower number of solid and nonlinear interface elements as reported in Table 4-10. In the model 

Mesoscale 2 the masonry texture along the width of the arch is not taken into account (“strip” 

model) representing the arch with only one set of solid elements along the span for each of the 

two rings (Figure 4-27). Finally, in the model Mesoscale 3 a further simplification is 

introduced by removing the nonlinear interface elements for the circumferential mortar joints 

and using only one set of solid elements along the span to model the whole arch (Figure 4-28). 

Table 4-10: Number of elements and degrees of freedoms for the three mesoscale models 

Model Solid elements Interface elements DOF 

Mesoscale 1  384   856 23040 

Mesoscale 2 96 142 5760 

Mesoscale 3 48 47 2880 

 

  

(a) Solid elements (b) Nonlinear interface elements 

Figure 4-27: Model Mesoscale 2: (a) solid elements and (b) nonlinear interface elements 
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(a) Solid elements (b) Nonlinear interface elements 

Figure 4-28: Model Mesoscale 3: (a) solid elements and (b) nonlinear interface elements 

 

  

Figure 4-29: Comparisons among different models on the displacements at quarter span 

 

 

 

 

   

(a) Deformed shape (b) Interface plastic work Wcr1 (N/mm) contour  

Figure 4-30: Deformed shape and plastic work contour for model Mesoscale 2 at final step 
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(a) Deformed shape (b) Interface plastic work Wcr1 contour (N/mm) 

Figure 4-31: Deformed shape and plastic work contour for model Mesoscale 3 at final step 

 

Figure 4-29 shows the numerical curves for the vertical and horizontal displacements at 

quarter span obtained using the three alternative descriptions. It can be noted that models 

Mesoscale 1 and Mesoscale 2 provide coincident results, while model Mesoscale 3 leads to a 

minor over prediction of the ultimate load and provides a less smooth response after the 

formation of the first radial cracks. The good agreement between the three models can be 

observed also comparing Figure 4-30 with Figure 4-31 and Figure 4-6e and Figure 4-7e, 

where the plastic work contour at the final step of the analysis (4mm vertical displacement at 

quarter span) is shown. This is uniform (the same as the stress/strain distribution) along the 

arch width and it does not depend upon the FE mesh characteristics along the width of the 

arch. Thus it can be pointed out that a detailed modelling of the brick-mortar arrangement 

along the width of the arch is not critical when investigating square masonry arches subjected 

to vertical static loads uniformly applied on a strip along the whole width of the arch (strip or 

line loads). In this case model Mesoscale 2 represents a good compromise between accuracy 

and computational efficiency. On the other hand, also the most computationally efficient 

Mesoscale 3 model provides accurate results, but only when, as in this case, cracks develop 

along the radial bed joints. In general, this simplified modelling strategy cannot capture 

damage and failure due to ring separation.  
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4.3 Analysis of Skew Arches 

Numerical simulations have been carried out to establish the effectiveness of the proposed 

mesoscale approach for representing the behaviour of skewed masonry arches. These are 

generally characterised by a complex 3D response under static loading. The results obtained 

in a laboratory test performed at the University of Salford (Wang, 2004) on a skewed 

masonry arch are considered here for numerical-experimental comparisons.  

4.3.1 Experimental test 

The test specimen (Figure 4-32) named Skew2 in (Wang, 2004) consists of a masonry arch 

with 45° skew and 3m span. The arch is characterised by a 670mm width and 215mm 

thickness and it is made up of two brickwork rings connected by headers (Figure 4-32b). The 

arch was constructed using Class A engineering bricks on two reinforced concrete abutments 

representing rigid supports. The material properties obtained in the tests on bricks, mortar and 

masonry prisms are reported in Table 4-11. 

  

Table 4-11: Properties of mortar, bricks and masonry for Skew 2 (Wang, 2004) 

 
Compressive strength  

c,m (MPa) 

Density  

ρ(kN/m
3
) 

Class A bricks 154 23.7 

Mortar 2.0 14.7 

Masonry prisms with strong bricks 25.2 22.5 
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(a) Geometric characteristics and loading arrangement for the arch Skew2 

 

(b) Lateral view showing headers bond between adjacent rings 

Figure 4-32: Description of arch Skew 2: (a) geometric characteristics and loading arrangement for arch 

Skew2 and (b) lateral view showing headers bond between adjacent rings 

 

In the test, a concentrated load P was applied under force control through a hydraulic jack on 

a wedge shaped wooden pad set at the three quarter span mid-width of the arch barrel as 

schematically shown in Figure 4-32a. The load was monotonically increased up to Pu,exp = 

17.4kN when collapse occurred because of the formation of five cracks extending in the 

mortar joints through the whole width of the arch. These divided the arch into four blocks of 

brickwork rotating about the lines of fracture. The cracks were not parallel due to the specific 

geometry of the arch and the orientation of the mortar joints giving rise to a 3D failure mode 

typical of skewed masonry arches. 

 

 

P 
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4.3.2 Model description 

The skewed arch was modelled using the proposed mesoscale description. As for the square 

arch mesoscale model presented before, one 20-noded solid element was utilised to represent 

each half brick along the width of the arch and 2D nonlinear interface elements to model 

mortar joints and potential fracture planes in the mid-plane of each brick. In this case, the 

main difficulty in defining the mesoscale mesh is due to the specific position of each brick 

which determines the geometry of the skew arch. To this end the expressions (Table 3-1), 

which were derived from the rules of descriptive geometry used in the past to build real arch 

bridges (George, 1880), have been employed to calculate the nodal coordinates for each solid 

element. The resulting 3D mesh composed of solid elements is shown in Figure 4-33a,b, 

while the arrangement of nonlinear interface elements connecting the different solid elements 

is displayed in Figure 4-33c. 

 

(a) Solid elements (elevation view) 

 

 (b) Solid elements (plan view) 

 

(c) Nonlinear interface elements (elevation view) 

Figure 4-33: Mesoscale description for the arch Skew 2: (a) solid elements (elevation view), (b) Solid 

elements (plan view) and (c) nonlinear interface elements (elevation view) 
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The material properties used in the numerical analysis and presented in Tables 4-12, 4-13 and 

4-14 were selected considering the material parameters reported in Table 4-11 and the typical 

values found in the literature for brick-masonry mesoscale descriptions (Macorini & Izzuddin, 

2011; Oliveira, 2003; Rots, 1997). Among these parameters, the material properties leading 

to a good correlation between the experimental data and the numerical prediction of the arch 

response were chosen.   

Table 4-12: Elastic properties for solid elements 

 Elastic modulus  

E (N/mm
2
) 

Poisson’s ratio  

ν 

Brick unit 1.6×10
4
   0.15 

 

Table 4-13: Elastic properties for interface elements 

 

Normal stiffness  

Kn (N/mm
3
) 

Tangent stiffness  

Kt (N/mm
3
) 

Mortar interface 36 20 

Brick-brick interface 110
5
 110

5
 

 

Table 4-14: Inelastic properties of nonlinear interface elements 

 Surface F1 Surface Q1 Surfaces F2, Q2 

Mortar-brick 

interface 

C0 = 0.14N/mm
2
 C0 = 0.14N/mm

2
 D = 25.3N/mm

2
 

σt0 = 0.10N/mm
2
 σt0 = 0.10N/mm

2
 σc0 = 25.3N/mm

2
 

tanϕ0 = 0.6 tan𝜓0 = 0.0 tanθ0 = 1.0 

Gf1 = 0.12N/mm Gf1 = 0.12N/mm Gc = 5.0 N/mm  

Gf2 = 0.15N/mm Gf2 = 0.15N/mm  

Brick-brick 

interface 

C0 = 2.8N/mm
2
 C0 = 2.8N/mm

2
  

σt0 = 2.0N/mm
2
 σt0 = 2.0N/mm

2
  

tanϕ0 = 1.0 tan𝜓0 = 1.0  

Gf1 = 0.08N/mm Gf1 = 0.08N/mm  

Gf2 = 0.5N/mm Gf2 = 0.5N/mm  
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Fixed boundary conditions were assumed at the two ends of the arch to model the rigid 

abutments, while a vertical patch load was applied incrementally under displacement control 

to represent the load applied in the test by the hydraulic jack. 

4.3.3 Numerical results 

In the experimental test, vertical displacements were measured at 8 different points along the 

arch. Their position is marked with T3, T4, T5, T6, T7, T8, T9 and T10 in Figure 4-34.  

 

Figure 4-34: Position of the markers for vertical displacements on arch Skew 2 

 

Load-displacement curves for the 8 vertical displacements are shown in Figure 4-35, where 

numerical predictions are compared against experimental results. The predicted maximum 

load is Pu,num = 17.65kN which is very close to the experimental ultimate load Pu,exp. 

Numerical curves for the displacements at T3, T7 and T9 are very close to the experimental 

results, whereas the numerical model predicts a stiffer response at T4, T8 and T10.  

 

T9 T7 

T10 T8 

T4 T3 

T6 T5 

P 
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Figure 4-35: Vertical displacements at different positions on arch Skew 2 (Cont’d …) 
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Figure 4-35: Vertical displacements at different positions on arch Skew 2  

 

In the test the first large crack was found by visual inspection at about 16kN and was 

followed in rapid succession by other four cracks. Conversely as shown in Figure 4-36 where 

the plastic work contour for yield function F1 is displayed at different loading levels, the 

numerical model predicts the first cracks along the mortar joints at the right abutment and 

underneath the applied load at P = 5.8kN. For higher loads two more cracks in mortar joints 

close to the left abutment and at the quarter span form as in the experimental test. The 

predicted failure mode is depicted also in Figure 4-37, where the deformed shape at the final 

step of the analysis is shown. In the figure the four different parts of brickwork divided by 

five fracture lines can be can be noted. 
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  (N/mm) 

(a) P = 5.8kN 

(N/mm) 

(b) P = 9.6kN 

(N/mm) 

(c) P = 16.1kN 

(N/mm) 

(d) P = 17.65kN (failure mode-elevation view)  

(N/mm) 

(e) P = 17.65kN (failure mode-plan view)  

Figure 4-36: Plastic work Wcr1 contour for Skew 2 arch at (a) P = 5.8kN, (b) P = 9.6kN, (c) P = 16.1kN, (d) 

P = 17.65kN (failure mode-elevation view) and (e) P = 17.65kN (failure mode-plan view) 
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(a) Elevation view 

 

(b) Plan view 

Figure 4-37: Deformed shape of arch Skew 2 at the final step of load: (a) elevation view and (b) plan view 

4.3.4 Modelling considerations  

As shown in the numerical-experimental comparison, the adopted mesoscale modelling 

approach for brick-masonry allows an accurate prediction of the 3D response of skew arches. 

However in the case of large skew arches it may require an excessive computational effort. 

Thus alternative strategies developed by using simplified mesoscale descriptions with a 

reduced number of elements, as discussed in 4.2.3 for square arches, should be explored to 

define an accurate and effective modelling strategy. In the following, three alternative 

simplified models are compared against the detailed mesoscale model described in Section 

4.3.2 in the analysis of the skew arch Skew 2 loaded by a line load parallel to the abutment 

and applied at three quarter span. This loading condition is more realistic than a patch load in 

the case of arches of masonry bridges, as the backfill above the arch usually spreads any 

concentrated load applied on the road/rail supported by the arch. The same material 

properties and support conditions adopted in section 4.3.2 for the numerical experimental 

comparisons are considered. The three simplified FE meshes, which do not allow for the 

actual masonry bond, are displayed in Figure 4-38, Figure 4-39 and Figure 4-40. In the first 

model named Model Sk1 the two rings of the arch are modelled separately and connected by 

interface elements as in full mesoscale description (Figure 4-33), while only one solid 

element is utilised along the width of the arch thus forming a strip model as shown in Figure 
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4-38. The second FE description called Model Sk2 considers the actual masonry texture along 

the arch width but utilises only one solid element along the arch thickness neglecting the 

circumferential mortar bed joints (Figure 4-39). Finally in the last simplified model referred 

to as Model Sk3, the arch barrel is modelled using a series of solid elements along the oblique 

span of the arch which are connected by interface elements representing mortar joins as 

displayed in Figure 4-40. This is the most computationally efficient description as only 65 

solid elements and 64 nonlinear interface elements are employed.  

  

(a) 20-noded solid elements (b) 2D interface elements 

Figure 4-38: Model Sk1 for the arch Skew 1: (a) 20-noded solid elements; (b) 2D interface elements 

 

  

(a) 20-noded solid elements (b) 2D interface elements 

Figure 4-39: Model Sk2 for the arch Skew 2: (a) 20-noded solid elements; (b) 2D interface elements 

 

  

(a) 20-noded solid elements (b) 2D interface elements 

Figure 4-40: Model Sk3 for the arch Skew 3: (a) 20-noded solid elements; (b) 2D interface elements 

 

Figure 4-41a,b,c,d show the contour of the plastic work Wcr1 for the three simplified models 

and the full mesoscale model at the final step of the analysis. All the models predict the same 

failure mechanism where large cracks develop along the whole width of the arch dividing the 

arch barrel into large blocks of brickwork rotating about the fracture lines. The position of the 

fracture lines and the plastic work distribution are also very similar in all the models. 
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However as shown in Figure 4-42, where the vertical displacements at the central line of the 

quarter and the three quarter span are compared, only the Model Sk2 provides a numerical 

response very close to that calculated by the full mesoscale model. This highlights that in the 

case of arch barrels built using the header bond method a detailed representation of the 

different rings does not enhance the accuracy but it only increases the computational burden.  

On the other hand, the use of a simplified representation for the arch along its width as in 

Model Sk1 and Model Sk3 leads to an overestimation of the load capacity, as the ultimate 

loads for Model Sk1 and Model Sk3 are 22% higher than that calculated using the full 

mesoscale model. 

 

  

  

(a) Model Sk1 (b) Model Sk2 

 Wcr1 (N/mm) 

  

  

(c) Model Sk3 (d) Mesoscale model 

Figure 4-41: Plastic work Wcr1 contour at the interface elements: (a) Model Sk1, (b) Model Sk2, (c) Model 

Sk3 and (d) Mesoscale model 
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(a) Load displacement curve at quarter span (b) Load displacement curve at three quarter span 

Figure 4-42: Numerical comparisons between full mesoscale and simplified models for arch Skew 2 

 

In the final numerical comparisons other simplified models named Square1, Square2, 

Square3 and Square4 are considered. In particular, following current practice (McKibbins et 

al., 2006) which suggests the use of simple 2D square arch models to assess the response of 

real masonry arch bridges with a limited skew angle, square arch strip models as the 

Mesoscale2 and Mesoscale3 model discussed in Section 4.2.4.2 are employed to represent the 

behaviour of the arch Skew 2 subjected to a line load. The models Square1 and Square2 allow 

for the actual connection between the two rings of the arch using circumferential interfaces 

elements, while Square3 and Square4 are single ring models. The models Square1 and 

Square3 are characterised by a span equal to the oblique span of the arch Skew 2, whereas the 

spans for the models Square2 and Square4 correspond to the direct span of Skew 2.  

Figure 4-43 shows the plastic work contour at the final step of analysis for the square arch 

models (all the analyses terminate at the same level of vertical displacement at three quarter 

span). For all the models radial cracks develop at the abutments, at quarter and three quarter 

span with distribution similar to those found by simplified skew arch models and the full 

mesoscale model (Figure 4-41).  
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(a) Model Square1 (b) Model Square2 

 Wcr1 (N/mm) 

 
 

(c) Model Square3 (d) Model Square4 

Figure 4-43: Interface plastic work Wcr1 contour for (a) Model Square1, (b) Model Square2, (c) Model 

Square3 and (d) Model Square4 

 

On the other hand, as displayed in Figure 4-44 where the numerical curves for the vertical 

displacements and quarter and three quarter span are compared, the two simplified models 

with the same oblique span of the skew arch provide a too conservative prediction of the arch 

loading capacity and a reduced initial stiffness. Conversely the use of square arch models 

with the direct span of the skew arch allows a more realistic prediction of the arch capacity 

but an overestimation of the initial stiffness. 
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(a) Load displacement curve at quarter span (b) Load displacement curve at three quarter span 

Figure 4-44: Numerical comparisons between full mesoscale and simplified square arch models 

 

4.4 Analysis of Large arches 

In the previous examples, the detailed mesoscale description for masonry has been applied to 

the analysis of relatively narrow masonry arches, which require the use of a limited number 

of solid and nonlinear interface elements also when using the full mesoscale description 

accounting for the actual masonry bond. As pointed out in previous research (Macorini & 

Izzuddin, 2013b), this detailed modelling strategy may necessitate an excessive 

computational effort when applied to the analysis of large structure as in the analysis of wide 

multi-ring brick-masonry arches. In this case to guarantee computational efficiency, the full 

mesoscale description can be combined with the partitioning approach allowing for parallel 

computation previously developed at Imperial College (Jokhio & Izzuddin, 2011), thus 

providing an accurate and efficient numerical strategy. 

In the following, a wide brick-masonry square arch is analysed comparing the numerical 

predictions obtained using different partitioning strategies (Macorini & Izzuddin, 2013a) 

against experimental results. The analysed structure corresponds to the arch barrel Arch1 

tested at the University of Salford (Wang, 2004). In the test the masonry arch specimen was 
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investigated under two different support conditions. Initially, point loads were applied to the 

arch supported only at its springings by two rigid concrete abutments which were fixed to the 

strong floor of the laboratory; afterwards the support conditions were changed adding point 

supports to represent longitudinal supporting diaphragms and the load was increased up to 

collapse (Wang, 2004). In the numerical simulations only the first support condition was 

considered, focusing on the response of the arch loaded by a centre point load P 

incrementally applied at three quarter span up to P = 24kN (Figure 4-45). 

 

Table 4-15: Principal dimensions for Arch 1 (Wang, 2004) 

Span 

(mm) 

Rise 

(mm) 
Span-to-rise ratio 

Thickness 

(mm) 

Width 

(mm) 

Brickwork 

courses 
Skew  

5000 1250 4:1 215 4000 78/81 0° 

 

 

Figure 4-45: Geometric characteristics and loading arrangement for Arch 1 

 

The masonry specimen is a two-ring arch characterised by a 4m width, 5m span and 215mm 

thickness and made up of engineering class A brick units 215×102×65 mm
3 

large and 1:2:9 

(cement:lime:sand) mortar joints. The stretcher bond method is used, thus the two rings are 

connected only by (circumferential) mortar joints. The main dimensions of the arch are 

P 
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reported in Table 4-15 and displayed together with the loading arrangement in Figure 4-45, 

while the mechanical properties of brick, mortar and brickwork used to build the specimen 

are presented in Table 4-16. 

 

Table 4-16: Properties of mortar, bricks and masonry for Arch 1 (Wang, 2004) 

 
Compressive strength  

c,m (MPa) 

Density  

(kN/m
3
) 

Bricks 154 23.7 

Mortar 1.81 15.8 

Masonry prisms with strong bricks 24.5 22.0 

 

4.4.1 Model description 

The same mesoscale strategy adopted for describing the square arch specimens Arch G and 

Arch T is followed; thus one 20-noded solid element is employed to model each half brick 

unit and 16-noded interface elements are used for mortar joints and to represent potential 

fracture in the mid-plane of each brick. The FE mesh is displayed in Figure 4-46a,b and it 

consists of 80×36×2 solid elements, 80×36 interface elements for mortar joints connecting 

the two rings, 79×36×2 for radial bed joints and 80×35×2 for circumferential mortar head 

joints and potential fracture planes in the bricks. Fixed supports are assumed at the two 

springings to account for the rigid abutments. Moreover, as the component materials of Arch1 

have about the same mechanical characteristics of the Arch G constituents as shown in Table 

4-1 and 4-16, the material parameters reported in Table 4-3, 4-4 and 4-5 have been 

considered for the mesoscale description of Arch 1. 
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(a) FE mesh with solid elements  

 

(b) FE mesh with interface elements 

Figure 4-46: Mesh in ADAPTIC for Arch 1: (a) FE mesh with solid elements and (b) FE mesh with 

interface elements 

4.4.2 Partitioning strategies 

The computational efficiency provided by the use of the partitioning approach developed 

previously at Imperial College (Jokhio, 2012) and applied here to the analysis of a large 

brick-masonry arch is investigated. The computational cost associated with different 

partitioning strategies has been analysed in the case of elastic analysis, where a patch load P 

= 20kN was applied onto the arch in five steps. The computational performance was assessed 

in terms of speed-up S, which is given by the ratio between the wall-clock time required by a 
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monolithic simulation where the FE problem is solved using a serial code and that required 

by a partitioned model. This it is an objective measure of computational efficiency (e.g. the 

most efficient model is characterised by the highest speed-up).  

In modelling the arch, both flat and hierarchic partitioning techniques (Jokhio & Izzuddin, 

2013) are considered. The former strategy is a single level partitioning approach, where the 

masonry arch is represented by a parent structure consisting of super-elements which model 

partitioned subdomains. Conversely, hierarchic partitioning implies the use of a multi-level 

scheme where original child partitions are further subdivided in higher level super-elements. 

Thus partitions at one level are children to those at the upper level and parent to those at the 

lower level. Furthermore in some models to reduce the size of the parent structures, specific 

constraints in the mesoscale description at the boundary of each partition were adopted. In 

particular as suggested in Macorini & Izzuddin (Macorini & Izzuddin, 2013a) for the analysis 

of large masonry walls, hard coupling using a master-slave approach (Jokhio, 2012) was 

utilised, where the nodes of one face of a solid or a 2D interface element at the partition 

boundary are connected to a single node (master node).  

Figure 4-47 shows the elevation of the subdivision in super-elements at the lowest 

hierarchical level for some of the models. Table 4-17 reports the characteristics of all the 

numerical descriptions in term of number of  partition levels (e.g. 1 for flat partitioning, > 1 

for hierarchic partitioning), number of processesses (e.g. total number of child partitions and 

parent files) and the number of processors employed in the numerical simulations. These 

were performed using 2.66 GHz Intel Xeon Processors X5650 cores. Each partitioned model 

is named as P-n-flat/hier/mslc/hiermslc, where n stands for the number of child partitions, flat 

for single level partitioning method, hier means multi-level hierarchic paritioning, mslc 

means single level partitioning with multi-dimensional master-slave coupling at partition 

boundary and hiermslc multi-level hierarchic paritioning with master-slave coupling. Finally, 

the descriptors X, Y, Z indicate the number of subdivisions in partitions of the analysed arch 

along the circunferential, the radial and the transverse direction.  
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Figure 4-47: Child structures at lowest hierarchical level used for the different partitioned models 

 

The speed-ups achieved by the different models were calculated considering the wall-clock 

time for the monolithic simulation Tm = 18856s. The speed-up values are reported in Table 

4-17 and plotted against the number of processes in Figure 4-48. It is important to note that 

the maximum number of processors employed is equal to 48, thus when the number of 

processes exceeds 48 means that more that 1 process is run on same processor reducing 

computational efficiency.  

In general the results show that the use of a large number of flat partitions leads to a 

significant increase in the size of the parent structure and subesequently to a speed-up 

reduction (Figure 4-48a). However, this limitation is overcome by hierarchic partitioning and 

multi-dimensional coupling as shown in Figure 4-48b. In this case the speed-up increases also 

when using a number of processes larger than the number of processors as for the model 

P-180-hiermslc which deployes 288 processes obtaining the maximum speed-up Smax = 47.55 

(Table 4-17).  
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Table 4-17: Characteristics of partitioned models and speed-up values 

 X Y Z 
No.  

Levels 

No. 

Processors 

No. 

Processes 
S 

Monolithic 1 1 1 1 1 1 - 

P-4-flat 
2 1 2 1 5 5 

1.65 

P-4-mslc 1.79 

P-16-flat 

4 1 4 

1 17 17 
1.83 

P-16-mslc 3.47 

P-16-hier 
2 21 21 

3.60 

P-16-hiermslc 4.94 

P-48-flat 

8 1 6 

1 48 49 
1.57 

P-48-mslc 17.40 

P-48-hier 
3 48 63 

4.90 

P-48-hiermslc 17.35 

P-96-flat 

16 1 6 

1 48 97 
1.15 

P-96-mslc 26.67 

P-96-hier 
4 48 127 

4.00 

P-96-hiermslc 33.07 

P-192-hier 
16 2 6 4 48 223 

1.62 

P-192-hiermslc 27.20 

P-180-hier 
20 1 9 3 48 216 

2.17 

P-180-hiermslc 47.55 

P-360-hier 
20 2 9 3 48 396 

1.03 

P-360-hiermslc 42.13 

P-720I-hier 
40 2 9 4 48 796 

0.68 

P-720I-hiermslc 33.89 

P-720II-hier 
80 1 9 5 48 876 

0.344 

P-720II-hiermslc 19.10 
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(a) Flat and hierarchic partitioning (b) Flat and hierarchic partitioning with 

master-slave coupling 

Figure 4-48: Speed-up vs. the number of processes using (a) flat and hierarchic partitioning and (b) flat 

and hierarchic partitioning with master-slave coupling 

 

Finally it is important to note that a critical role is played also by the arrangement of the 

partitions. In particular, a subdivision in partitions along the radial direction (e.g. partition 

boundaries on the surface between the two rings of the arch, Y > 1) significantly increases the 

nodes at the partition boundary thus reducing S. This can be seen in Figure 4-48b and 

comparing the computational efficiency of model P-180-hiermslc with S = 47.55 an model 

P-192-hiermslcwith S = 27.20. Both models deploy a similar number of processes but a 

different partition arrangement, where the model with lower speed-up is assembled with 

partitions along the radial direction. 

4.4.3 Numerical-experimental comparisons 

The accuracy provided by the proposed partitioned mesoscale model for brick-masonry 

arches is assessed in numerical experimental comparisions. The numerical results for the 

vertical displacements at quarter and three quarter span obtained using the monolithic model 

and the most efficient partitioned mesoscale model are compared against the experimental 

data. 
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Figure 4-49 shows the numerical and experimental curves, where the displacements along the 

arch width at P = 16kN are plotted. 

 

 

(a) Load-displacements at quarter span  

 

(b) Load-displacements at three quarter span  

Figure 4-49: Vertical displacements along the arch width at P = 16kN 
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levels. Previous reseach on numerical analysis of large masonry walls (Macorini & Izzuddin, 

2013a) has found that, while this modelling approach allows for a significat improvement of 

the computational performace (high speed-up), it introduces some minor errors especially in 

the local stress/strain distribution around the partition boudaries where the master-slave (hard) 

coupling is applied. However these local errors, which can also be seen in Figure 4-50, where 

the normal stress distributions obtained at P = 16kN using the monolithic and the 

P-180-hiermslc model are depicted, do not significantly influence the global response and the 

prediction of the displacements along the arch. Moreover comparing the numerical curves 

with the experimental values, it can be noted that the trends of the numerical predictions 

along the arch width (0 < z < 4m) both at quarter and three quarter span are similar to the 

experimental displacement variation. In general, it is envisaged that a better agreement could 

be achieved adopting material parameters for the mesoscale model directly derived from 

specific material tests instead of using material parameters found in the literature and 

associated with similar brickwork. 

 

 

 

(a) Monolithic (b) P-180-hiermslc 

 σyy (N/mm
2
) 

Figure 4-50: Contour of normal stresses at P = 16kN: (a) Monolithic and (b) P-180-hiermslc 
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(a) Load-displacement curves at quarter span (b) Load-displacement curves at three quarter span 

Figure 4-51: Experimental-numerical comparisons  

 

  

  

(a) Plastic work Wcr1 at nonlinear interface elements (N/mm) 

   

(b) Normal stresses (yy) in solid elements (MPa) 

Figure 4-52: Plastic work contour at nonlinear interfaces and normal stresses in the solid elements at the 

final step of the numerical simulation  
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4.5 Conclusions 

The accuracy and the effectiveness of the adopted mesoscale modelling approach for 

brick-masonry arches have been investigated. Experimental-numerical comparisons have 

been carried showing that the proposed numerical description allows for a realistic response 

prediction up to collapse. The development of damage and the most critical failure 

mechanisms of multi-ring square and skew arches can be predicted with good accuracy.  

A parametric study has been conducted analysing the influence of the different material 

parameters on the numerical response of a square arch. It was found that the most critical 

parameters are associated with the nonlinear interfaces for the mortar joints. Concerning the 

normal stiffness Kn, the use of the analytical expressions (3-3) provides excessively high 

stiffness values leading to overestimating the ultimate load capacity and the initial stiffness of 

the arch. Moreover the interface stiffness values suggested in the literature for different type 

of masonry are not uniform which renders their selection as well as the choice of the other 

parameters for mortar joints (e.g. tensile strength, fracture energy) quite problematic.  

As the inherent drawback of the proposed detailed mesoscale modelling strategy is due to the 

high computational cost, alterative numerical descriptions adopting a reduced number of 

elements for modelling the 3D domain of a brick-masonry arch have been investigated. It was 

found than in the case of multi ring arches constructed by using the headers bond method, a 

simplified description where the arch is modelled by a series of solid and interface elements 

extending throughout the whole thickness of the arch provides accurate results, almost 

identical to those obtained employing the more demanding full mesoscale description. 

Moreover in the case of square arch loaded by line loads, good results can be achieved 

reducing the 3D numerical description into a “strip” model, where only one solid element is 

arranged along the width of the arch. On the other hand when analysing skew arches which 

are characterised by a more complex 3D failure mode, the use of a strip model may lead to 

overestimating the ultimate capacity, while adopting a simple square arch model with a 
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reduced span seems to provide better results at least in term of loading capacity. However as 

only one skew arch has been analysed in this chapter, further investigations and a more 

systematic parametric study are required to draw final conclusions and suggest simple but 

accurate representations for skew arches.     

Finally, the effectiveness in coupling the mesoscale model with a domain partitioning 

approach allowing for parallel computation has been studied analysing the response of a large 

square arch. In the numerical simulations different partitioning approaches have been 

employed. These encompass flat partitioning, multi-level hierarchic partitioning and 

partitioning with master-slave coupling at the partition boundaries to reduce the size of the 

parent structures (Jokhio & Izzuddin, 2013). As found in previous research on large masonry 

wall structures (Macorini & Izzuddin, 2013a), the most effective computational strategy 

relies on the use of master-slave coupling and a large number of partitions. This way a 

significant speed-up can be achieved but some local errors in the stress/strain distribution at 

the partition boundaries are introduced. However the distribution of damage and the 

displacement up to collapse are very close to the predictions obtained using a monolithic 

model, which is impractical in the case of nonlinear analysis of large arches. 
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5 Mesoscale Analysis of Masonry Arches 
 

CHAPTER 5 

Mesoscale Analysis of Masonry Arches 

5.1 Introduction 

In Chapter 4, the proposed mesoscale modelling strategy for masonry arches has been 

validated and calibrated against a series of experimental tests carried out at the University of 

Salford (Melbourne et al., 2007; Wang, 2004). In the present chapter, the validated numerical 

description is employed in nonlinear numerical simulations to provide a deep insight into the 

response up to collapse of square and skew masonry arches characterised by different 

geometrical and material characteristics, and subjected to different static loading and 

boundary conditions.  

To investigate the effects of the geometry of the arch, multi-ring arches with segmental 

circular shape built using the stretcher and the header bond method, and characterised by 

different rise-to-span ratios are analysed. In this respect, the geometrical characteristics of 

typical arches found in a statistical survey on old masonry bridges (Brencich & Morbiducci, 

2007) are considered. According to this study, 50% of the brick-masonry bridges within the 

Italian railway network built between 1830 and 1940 are formed by arches with 0.5 

rise-to-span ratio (deep arches). The remaining bridges are shallow arch bridges with a 

rise-to-span ratio included in the interval 0.1-0.4.  The material properties utilised in the 

analysis of square arches correspond to the values reported in Tables 4-3, 4-4 and 4-5, and 

used in Section 4.2.2 to validate the mesoscale description against the experimental response 
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of a square arch with good quality brickwork. On the other hand in the analysis of skew 

arches, the material properties adopted in Section 4.3 and reported in Tables 4-12, 4-13 and 

4-14 are employed.  

To study the influence of defects in the brickwork, the response of defective arches with 

weak circumferential mortar joints connecting adjacent rings are compared to that of arches 

with uniform (strong) mortar joints. Previous studies pointed out that “defective” mortar 

joints in multi-ring arches without headers may facilitate ring separation. In real bridges, 

imperfection in mortar joints may be caused by mortar wash out or due to the use of poor 

material which leads, in time, to “ring delamination”. Beare (Beare, 1993) highlighted that 

ring debonding is the most common defect in multi-ring arches with stretcher bond. Besides, 

according to Sunley (Sunley, 1990) all existing brick-masonry bridges with insufficient 

interconnecting headers are defective, whether or not they are weakened by existing cracks or 

ring separation. To explore the behaviour of masonry arch bridges prone to ring separation, 

Melbourne and Gilbert (Melbourne & Gilbert, 1995) performed physical tests on models of 

arch bridges, where damp sand was used rather that standard mortar to bond arch rings so as 

to promote ring separation. The results of this study confirmed that ring separation strongly 

influences the response up to collapse, reducing the loading capacity. Moreover it was found 

that ring debonding may occur not only in arches with weak joints connecting adjacent rings, 

but also in arches with mortar joints of good quality.  

Additional numerical simulations have been carried out to study the effects of the abutment 

stiffness and movements at the supports. In this respect, the failure modes induced by 

differential vertical settlements and inward and outward horizontal displacements at the 

abutments are investigated, and the influence of these movements on the arch load capacity is 

analysed. Considering the layout of this chapter, in the first part the results obtained for 

square arches are presented and discussed, while the second part reports the numerical studies 

on skew arches. 
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5.2 Mesoscale analysis of square arches 

The static response of square arches is investigated using the simplified mesoscale 

“strip“ model introduced in Section 4.2.4.2. As discussed before, in the case of square arches 

subject to line loads, the effects of the masonry bond along the arch width are negligible. 

Thus square arches can be modelled using a computationally efficient description utilising 

only one set of solid elements along the span for each arch ring (see model Mesoscale 2 in the 

Section 4.2.4.2). Under these assumptions, the specific width of the arch does not influence its 

qualitative response characteristics. Therefore for convenience, square arches with unit width 

(1m) are considered hereinafter. 

5.2.1 Effects of rise-to-span ratio 

As mentioned before, the response up to collapse of segmental arches characterised by the 

most common rise-to-span ratios as found in a number of existing masonry arch bridges 

(Brencich & Morbiducci, 2007) are analysed. These include eight arches with two or five 

rings connected by good quality mortar. The main geometrical properties of the arches are 

reported in Table 5-1, while Figure 5-1 shows the mesoscale FE mesh for the arches with 3m 

span.  

Table 5-1: Geometry of the arches with different rise-to-span ratio 

Model Rise - H (mm) Span - L (mm) No. of Rings Thickness (mm) Rise-to-span ratio 

Arch 1 1500 3000 2 215 1:2 

Arch 2 750 3000 2 215 1:4 

Arch 3 375 3000 2 215 1:8 

Arch 4 300 3000 2 215 1:10 

Arch 5 4000 8000 5 537.5 1:2 

Arch 6 2000 8000 5 537.5 1:4 

Arch 7 1000 8000 5 537.5 1:8 

Arch 8 800 8000 5 537.5 1:10 
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(a) Arch 1  (b) Arch 2 

  

(c) Arch 3 (d) Arch 4 

Figure 5-1: Mesoscale strip models for square arches with different rise-to-span ratio 

 

As for the square arches analysed in Section 4.2, the loading arrangement encompasses two 

initial vertical (dead) loads. These are applied at the quarter and three quarter span to 

represent the weight of the backfill above the arch as in typical masonry bridges. More 

specifically, the two identical dead loads are equal to 22.5kN/m for the arches with 3m span 

and to 100kN/m for the 8m span arches. In the nonlinear numerical simulations, an additional 

line load (live load) is then applied at quarter span up to collapse under displacement control.  
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(a) Arch 1 (b) Arch 2 

  

(c) Arch 3 (d) Arch 4 

 

 

(e) Arch 5 (f) Arch 6 

 

 

(g) Arch 7 (h) Arch 8 

Figure 5-2: Deformed shapes at the last step of the analysis 

 

Similar results have been found for arches with different span length. The deformed shapes 

and the plastic work Wcr1 contours at the end of the numerical simulations are shown in 

Figure 5-2 and 5-3. In particular it can be seen that in the case of deep arches and arches with 

1:4 rise-to-span ratio the failure mechanism is a typical “hinge mechanism”, which is 



Chapter 5                                                 Mesoscale Analysis for Masonry Arches 

176 

 

governed by the development of four radial cracks at the opposite haunches and at about the 

quarter and the three quarter span. Conversely in the case of the two arches with 1:8 and 1:10 

rise-to-span ratio, radial cracks are combined with ring separation, which takes place at the 

arch haunch close to the live load. This is mainly caused by the shear forces in the arch which 

generally increase when the rise-to-span ratio reduces, becoming relatively large for very 

shallow arches (Dym & Williams, 2011). 

 

 
 

 (N/mm)  (N/mm) 

(a) Arch 1 (b) Arch 2 

  

 (N/mm)  (N/mm) 

(c) Arch 3 (d) Arch 4 

Figure 5-3: Plastic work Wcr1 contour at the last step of analysis (Cont’d …) 
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 (N/mm)  (N/mm) 

(e) Arch 5 (f) Arch 6 

 
 

 
 

 (N/mm) (N/mm) 

(g) Arch 7 (h) Arch 8 

Figure 5-3: Interface plastic work Wcr1 contour at the last step of analysis 
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(a) 3m span 

 

 

(b) 8m span 

Figure 5-4: Load displacement curves for arches with different rise-to-span ratios 

 

Figure 5-4a,b display the load-displacement curves at quarter span for the arches with 3m and 

8m span. A significant change in the response for different rise-to-span ratio values can be 

observed. The deep arch is characterised by the lowest loading capacity but a notable 

ductility, as after reaching the maximum load the displacements significantly increase while 

the load remains almost constant. The ultimate load rises for arches with low rise-to-span 

ratio (Figure 5-5), but the response up to the maximum load becomes less smooth especially 

for the very shallow arch (1:10 rise-to-span ratio). In this case while three radial cracks 

around the two springings and at about the quarter span develop gradually, ring separation 
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occurs suddenly producing a rapid realise of elastic energy and causing an abrupt softening in 

the load-displacement curve. After a short almost flat branch, where the displacement 

increases while the live load remains constant, the load-displacement curve rises again up the 

ultimate load. This is reached when the fourth radial crack forms at about three quarter span. 

A similar behaviour is expected also for the Arch 3 whose response is also governed by ring 

separation. However in this case, convergence problems occurred just after the sudden 

development of ring separation at the left haunch (Figure 5-3c). This prevented an accurate 

prediction of the maximum load; thus the ultimate load value for the Arch 3 reported in 

Figure 5-5 should be considered only as a conservative estimate. 

 

  

(a) 3m span 

  

(b) 8m span 

Figure 5-5: Ultimate load for different rise-to-span ratio 

179.98 

148.19 

62.55 

42.17 

0

40

80

120

160

200

1:10 1:8 1:4 1:2

U
lt

im
a

te
 l

o
a

d
 (

N
/m

m
) 

Rise to span ratio H/L 

0

40

80

120

160

200

0.00 0.20 0.40 0.60
H/L 

290.43 

242.49 

94.60 84.86 

0

50

100

150

200

250

300

350

1:10 1:8 1:4 1:2

U
lt

im
a

te
 l

o
a

d
 (

N
/m

m
) 

Rise to span ratio H/L 

0

50

100

150

200

250

300

350

0.00 0.20 0.40 0.60
H/L 



Chapter 5                                                 Mesoscale Analysis for Masonry Arches 

180 

 

5.2.2 Effects of brickwork defects 

Four defective arches prone to ring separation have been investigated. These are 

characterised by geometrical features identical to those of the Arch 1, Arch 2, Arch 3 and 

Arch 4 analysed in the previous section, but are constructed with weak circumferential mortar 

joints. In this respect, the material properties reported in Table 5-2 are employed for the 

interface elements representing the joints which connect the two rings. These include reduced 

cohesion, tensile strength and friction angle values. In the following the four defective arches 

are referred to as Arch 1m, Arch 2m, Arch 3m and Arch 4m. 

 

Table 5-2: Inelastic properties of the interface elements for weak mortar joints 

 Surface F1 Surface Q1 Surfaces F2, Q2 

Mortar-brick 

interface 

C0 = 0.004N/mm
2
 C0= 0.004N/mm

2
 D = 24.5 N/mm

2
 

σt0 = 0.002N/mm
2
 σt0= 0.002N/mm

2
 σc0 = 24.5N/mm

2
 

tanϕ0 = 0.3 tan𝜓0= 0.0 tanθ0 = 0.045 

Gf1 = 0.02N/mm Gf1 = 0.02N/mm Gc = 5.0N/mm 

Gf2 = 0.125N/mm Gf2 = 0.125N/mm  

Gf1 = 0.08N/mm Gf1 = 0.08N/mm  

Gf2 = 0.5N/mm Gf2 = 0.5N/mm  

 

In Figures 5-6 and 5-7 the deformed shapes and the plastic work contours at the last step of 

the numerical simulations are displayed, whereas in Figure 5-8 the load-displacement curves 

are shown. In all the cases ring separation characterises the response at collapse and the 

failure modes. Comparing the curves plotted in Figures 5-4 and 5-8, it can be seen that the 

poor connection between the two rings significantly influences the load-displacement 

response of the four arches. Ring separation starts at very low load levels, and its 

development is gradual leading to progressive stiffness degradation up to the ultimate load, 
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but not to a sudden force reduction as for the very shallow arches with good quality mortar 

(e.g. Arch 3 and Arch 4 in Section 5.2.1).   

 

 

(a) Rise-to-span ratio = 1:2 (b) Rise-to-span ratio = 1:4 

  

(c) Rise-to-span ratio = 1:8 (d) Rise-to-span ratio = 1:10 

Figure 5-6: Deformed shapes at the last step of analysis for defective arches 

 

 

 (N/mm)  (N/mm) 

(a) Rise-to-span ratio = 1:2 (b) Rise-to-span ratio = 1:4 

Figure 5-7: Plastic work Wcr1 contour at the last step of analysis for defective arches (Cont’d …) 
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Figure 5-7: Plastic work Wcr1 contour at the last step of analysis for defective arches 

 

Finally, Figure 5-9 and 5-10 compare ultimate load and initial stiffness values for arches with 

good quality masonry against those for arches with poor circumferential mortar joints. More 

than 50% strength and stiffness reduction can be observed for all the analysed arches. This 

highlights the critical role played by the connections between adjacent rings and the 

importance of a correct evaluation of the mechanical characteristics of the mortar joint for an 

accurate response prediction of existing masonry arches. 

 

Figure 5-8: Load displacement curves for defective arches with different rise-to-span ratios 
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Figure 5-9: Ultimate load for different rise-to-span ratios and different circumferential mortar joints 

 

  

Figure 5-10: Initial stiffness for different rise-to-span ratios and different circumferential mortar joints 

 

5.2.3 Effects of loading position 

The two-ring arches with 3m span considered in Section 5.2.1, are analysed here to study the 

influence of the loading position on the response up to collapse. Particular attention is given 

to the ultimate capacity and the type of failure mechanism. As shown in Figure 5-11, two 

dead loads (22.5 kN/m) are applied at quarter and three quarter span, while a live load is 

placed at four different positions: close to the left springing (Case 1), at 1/8 span (Case 2), at 

quarter span (Case 3) and at mid-span (Case 4), and then increased up to collapse. 
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(a) Case 1  (b) Case 2  

  

(c) Case 3  (d) Case 4 

Figure 5-11: Loading positions 

 

Deformed shapes at the final step of the numerical simulations for the arch with 1:4 

rise-to-span ratio (Arch 2) are shown in Figures5-12a,b,c,d, while the plastic work contours at 

collapse for the same arch are displayed in Figures 5-13a,b,c,d. Different failure mechanisms 

can be clearly noticed. In Case 1 the load near the left support induces a local failure mode; 

this is due to shear sliding at the radial bed joint close to where the load is applied. In Case 3 

only radial cracks form (high mechanism), while in Case 2 and Case 4 radial cracks are 

accompanied by ring separation. This develops at the left haunch close to the live load in 

Case 3, and symmetrically at both haunches when the live load is applied at mid-span. 
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(a) Arch 2 - Case 1 (b) Arch 2 - Case 2 

 

 

(c) Arch 2 - Case 3 (d) Arch 2 - Case 4 

Figure 5-12: Arch 2 deformed shapes at the last step of the numerical simulation for different live load 

positions 

  

(a) Arch 2 - Case 1 (b) Arch 2 - Case 2 

  

  

(c) Arch 2 - Case 3 (c) Arch 2 - Case 4 

Figure 5-13: Interface plastic work Wcr1 of Arch 2 at the last step of analysis for different live load 

positions 

 

In Figure 5-14, the displacements at the live load position for the four different cases are 

plotted against the live load. It can be seen how the response characteristics including the 

ultimate load, the initial stiffness and the arch ductility strongly depend upon the location of 

the live load. When the load is applied near the support, the load capacity of the arch is 

influenced by its ability to resist shear forces. These may cause plastic shear sliding at radial 
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bed joints as in Case 1, or ring separation associated with local failure as in Case 2. In both 

cases shear failure prevents an adequate redistribution of internal forces limiting the arch 

ductility.  On the other hand the response of Arch 2 under a live load applied at quarter span 

is very ductile, being governed by the formation of radial cracks (Figure 5-13c) leading to a 

four-hinge mechanism without ring separation. 

  

Figure 5-14: Load-displacement curves for different positions of the live load 

 

Figure 5-15 presents the ultimate load values for arches with different rise-to-span ratios (e.g. 

Arch 1, Arch 2, Arch 3 and Arch 4 in Section 5.2.1) loaded at different positions. The results 

show that the condition with loads close to the supports is the most critical for very shallow 

arches, while the lowest load capacity for the deep arch and the arch with intermediate 1:4 

rise-to-span ratio is achieved when the live load is applied at quarter span. 
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Figure 5-15: Influence of the loading position on the ultimate load for arches with different rise-to-span 

ratios 

5.2.4 Effects of abutment stiffness 

In the previous numerical simulations, square arches have been modelled assuming that the 

supports at the springings are perfectly rigid. In this section, the effects of potential 

deformations at the abutments are investigated. These may develop in real arch bridges under 

the forces transferred by the masonry arch to the foundations (Davey, 1953). To analyse the 

effects of the abutment stiffness, elastic interface elements are used to connect the arch 

springings to fixed supports so as to represent elastic abutments. In particular, the 3m span 

arches presented in Section 5.2.1 have been analysed employing the five pairs of elastic 

normal and tangent stiffness values reported in Table 5-3. 

Figures 5-16a,b,c,d,e show the plastic work contours at the end of the numerical analyses for 

Arch 2. It can be seen that the failure mechanism does not change by varying the stiffness at 

the lateral supports, and in all the cases arch failure is reached when a hinge mechanism with 

four radial cracks forms. 
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Table 5-3: Elastic stiffness values for the interface elements at the arch springings 

Model Normal stiffness Kn (N/mm
3
) Tangent stiffness Kt (N/mm

3
) 

Kab1 1.0×10
0
 1.0×10

0
 

Kab2 1.0×10
1
 1.0×10

1
 

Kab3 1.0×10
2
 1.0×10

2
  

Kab4 1.0×10
4
 1.0×10

4
 

Rigid - - 

 

 

 
 

(a) Arch 2 – Kab1 (b) Arch 2 – Kab2 

  

(c) Arch 2 – Kab3 (d) Arch 2 – Kab4 

 
 

(e) Arch 2 – Rigid Wcr1 (N/mm) 

Figure 5-16: Plastic work Wcr1 contour for Arch 2 with different abutment stiffness values 
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The load-displacement curves showing the response of Arch 2 are plotted in Figure 5-17. The 

variation of the ultimate load and the initial stiffness of the arch with the abutment stiffness 

are displayed in Figures 5-18 and 5-19. Ultimate load and initial stiffness do not change 

significantly for large stiffness values, but they both notably reduce for a normal and 

tangential stiffness at the abutments of 1N/mm
3
. In this case, a reduction of 46% for the 

ultimate load and 60% for the initial stiffness compared to the arch with perfectly rigid 

supports can be observed. As shown in Figure 5-20, when arches with different rise-to-span 

ratios are analysed, different variations of stiffness and strength can be noticed. In particular, 

for very shallow arches (e.g. 1:10 and 1:8 rise-to-span ratios) only a marginal reduction of the 

load capacity can be observed, but the stiffness variation is remarkable. 

 

 

Figure 5-17: Load-displacement curves for Arch 2 width different abutment stiffness values 
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Figure 5-18: Influence of abutment stiffness on the load capacity of the arch 

  

Figure 5-19: Influence of abutment stiffness on the initial stiffness of the arch response 
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(a) 

 

(b) 

Figure 5-20: Influence of the abutment stiffness on (a) the ultimate load and (b) the initial stiffness for 

arches with different rise-to-span ratios 

5.2.5 Effects of abutment movement 

Movement at the abutments and piers resulting from the instability of the foundations is one 

of the most common causes of deterioration for masonry arch bridges. In general, the 

performance of masonry arch barrels, which are the most critical structural components in 

masonry bridges, is highly affected by differential settlements (McKibbins et al., 2006). 

Support movements may occur during the bridge construction or may be caused by extreme 
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Moreover if the bridge is built on waterways, water flow may induce scour at the footings of 

piers and abutments, often leading to the collapse of the bridge. In practical assessment of 

masonry arch bridges, the formation of three hinges caused by vertical or horizontal 

differential movements at the supports represents a failure mechanism, and indicates that the 

arch should be immediately repaired (McKibbins et al., 2006). 

 

 

Horizontal spread of support ss 

 

 

Vertical differential settlement vs 

 

 

Horizontal inward movement im 

 

 

Figure 5-21: Settlement modes 

In this section, the possible consequences and effects of different types of support movements 

are investigated. To this end, the square arches with 3m span considered before (Arch 1, Arch 

2, Arch 3, Arch 4, Arch 5 and Arch 6 in Section 5.2.1) are analysed considering the settlement 

modes shown in Figure 5-21. Afterwards, different levels of support displacements are 

applied before increasing the live load at quarter span up to collapse. 


ss

 


vs
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Moreover, as in Section 5.2.2, the influence of defects in masonry is investigated comparing 

the response of arches with good quality brickwork (strong joints) against that of arches with 

weak mortar joints connecting the two rings (weak joints). 

 

Strong joints 

 

Weak joints 

(a) Horizontal spread of support 

 

Strong joints 

 

Weak Joints 

(b) Vertical differential settlement 

 

Strong joints 

 

Weak joints 

(c) Horizontal inward movement 

Figure 5-22: Deformed shapes at the last step of the numerical simulations considering different 

settlement modes for Arch 2 with different brickwork 
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Strong joints 

 

 

 

(N/mm)   

Weak joints 

 

 

 

(N/mm) 

(a) Horizontal spread of support 

  

 

Strong joints 

 

 

 

(N/mm)   

Weak joints 

 

 

 

(N/mm) 

(b) Vertical differential settlement 

 

 

  

Strong joints 

 

 

 

(N/mm)   

Weak joints 

 

 

 

(N/mm) 

(c) Horizontal inward movement 

Figure 5-23: Plastic work Wcr1 contour at the last step of the numerical simulations considering different 

settlement modes for Arch 2 with different brickwork 
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Figure 5-22 displays the deformed shapes for Arch 2 subjected to the three settlement modes 

and Figure 5-23 shows the plastic work Wcr1 contour for the different cases. All these figures 

refer to the last step of the numerical simulations at the failure of the arch. The failure mode 

depends not only on the specific type of settlement but also on the brickwork characteristics 

and does not always involve the formation of three main radial cracks (hinges).  In the case 

of horizontal spread of support and horizontal inward movement, three radial cracks develop 

in the arch with good quality joints, but in the arch with weak mortar joints radial cracks 

occur with ring separation, which extends from the arch crown to the left support moving 

laterally. On the other hand, when vertical differential settlements are applied only two main 

radial cracks form at the springings of the arch. 

 

  

(a) Strong joints (b) Weak joints 

Figure 5-24: Reaction force-support displacement curves for Arch 2 with different brick work 

 

The imposed displacements at the left support are plotted against the associated reaction 

forces in Figure 5-24. It can be seen that when the failure mechanism due to a specific 

settlement mode develops, the associated reaction force decreases showing a post-peak 

softening response which is steeper for the arch with strong joints. Finally Figure 5-25 

summarises the results of the numerical simulations for Arch 2 in term of maximum reaction 

forces and the corresponding support displacements, indicating the settlement level at which 
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a mechanism starts to develop. In general, it can be noticed that the support displacement 

required to form a mechanism is notably lower for arches with good quality mortar joints 

especially in the case of horizontal inward displacements. 

 

(a) Maximum reaction force Rmax (kN) 

 

(b) Displacement at Rmax (mm) 

Figure 5-25: Reaction forces and displacements at maximum reactions under different settlement modes 

for Arch 2 with different brick work 

 

5.2.5.1 Horizontal spread of support 

Numerical simulations were carried out to investigate the response of the 3m span arches 

subjected to different levels of prescribed horizontal displacements followed by the 

10.37 

3.09 

13.95 

6.11 

2.20 

4.66 

0

2

4

6

8

10

12

14

16

Horizontal spread Vertical settlement Horizontal inward

M
a

x
im

u
m

 r
e
a

ct
io

n
 f

o
rc

e 
(k

N
) Strong joints

Weak joints

1.70 

6.20 

1.90 

3.7 

14.8 

11 

0

2

4

6

8

10

12

14

16

18

Horizontal spread Vertical settlement Horizontal inward

S
et

tl
em

en
t 

v
a

lu
e 

a
t 

R
m

a
x
 (

m
m

) Strong joints

Weak joints



Chapter 5                                                 Mesoscale Analysis for Masonry Arches 

197 

 

application of a line load at quarter span. In particular, static time-history analyses were 

performed considering two phases, where two loading conditions were applied in sequence. 

In the initial phase, a specific horizontal outward displacement ss was exerted at the left 

springing of the arch incrementally; afterwards the line load was increased up to collapse. Six 

ss values were considered within the interval 1mm ≤ ss ≤ 6mm, where the upper limit is 

higher than the horizontal spread of support at which a mechanism starts to develop (see 

Figures 5-24 and 5-25). The numerical responses were calculated under force control, thus 

the nonlinear analyses terminated when the maximum loads were reached without 

representing the post-peak behaviour.  

Figures 5-26a,b display the numerical curves for Arch 2 with strong and weak mortar joints, 

where the line load is plotted against the vertical displacements at quarter span, while Figures 

5-27a,b present the results of the six numerical simulations for Arch 2 in term of ultimate 

load ratios. These correspond to the ratios between the ultimate loads Pult calculated for 

different ss values and the maximum load for the arch with fixed supports. It can be seen that 

the load capacity of the arch with good quality mortar joints significantly decreases when ss 

rises, and about 60% reduction is calculated for the 6mm horizontal support displacement. On 

the other hand, in the case of defective brickwork (weak joints), the reduction in load 

capacity is less pronounced reaching about 18% for the 6mm horizontal displacement. This is 

due to the characteristics of the response under horizontal spread of support (Figures 5-26a,b), 

where the arch with weak joints shows a more ductile behaviour.  
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(a) Strong joints (b) Weak joints 

Figure 5-26: Load-displacement curves for different levels of horizontal spread of support 

 

  

(a) Strong joints (b) Weak joints 

Figure 5-27: Effect of horizontal spread of support 
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ss = 1mm Collapse under the line load 

(a) Deformed shapes 

  

ss = 1mm Collapse under the line load 

(N/mm) (N/mm) 

(b) Contour of plastic work Wcr1 

Figure 5-28: Deformed shapes and plastic work contours for Arch 2 and ss = 1mm 

 

Figures 5-28 and 5-29 show some results for the arch with strong joints and subject to 1mm 

and 6mm spread of support. In the two figures the deformed shapes and the contours of the 

plastic work Wcr1 after the application of the two support movements and at collapse are 

displayed. It can be observed that the lower prescribed displacement induces the formation of 

two cracks at the opposite springings, while at collapse a third crack forms close to where the 

line load is applied. When a higher displacement is exerted, even though the mechanism 

associated with the support prescribed displacement forms, the arch can still carry additional 

live load and the collapse is attained only when a further crack develops below the load. 
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ss = 6mm Collapse under the line load 

(a) Deformed shapes 

  

ss = 6mm Collapse under the line load 

(N/mm) (N/mm) 

(b) Contour of plastic work Wcr1 

Figure 5-29: Deformed shapes and plastic work contours for Arch 2 and ss = 6mm  

 

The influence of the horizontal spread of abutments on the load capacity of masonry arches 

with strong mortar joints and different rise-to-span ratios is shown in Figure 5-30. The ratio 

between the ultimate load achieved after the application of different horizontal outward 

displacements at the left support and the ultimate load calculated with fixed supports for the 

arches Arch1, Arch2, Arch3 and Arch4 (see Section 5.2.1) is plotted against the prescribed 

displacement values. A similar variation of the ultimate capacity can be observed for the first 

three arches, with a maximum reduction of 46% for the arch with 1:8 rise-to-span ratio under 

a 5mm horizontal support displacement. 
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Figure 5-30: Load capacity ratio for different values of horizontal spread of abutment for arches with 

different rise-to-span ratio 

 

5.2.5.2 Vertical settlement of support 
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case the numerical responses were calculated under force control, thus the nonlinear analyses 

terminated when the maximum loads were reached without representing the post-peak 

behaviour.  

Figures 5-31a,b show the load-displacement curves for Arch 2 with strong and weak mortar 

joints, while Figures 5-32a,b display the ratio between the ultimate load calculated in the six 

two-phase time-history analyses and the ultimate load achieved considering fixed supports.  

  

(a) Normal joints (b) Weak joints 

Figure 5-31: Load-displacement curves for different levels of vertical settlement of support 

 

  

(a) Strong joints (b) Weak joints 

Figure 5-32: Effect of vertical settlement 

0

10

20

30

40

50

60

-1.6-1.2-0.8-0.40

L
iv

e 
lo

a
d

 (
k

N
/m

) 

δv at quarter span (mm) 

δvs = 0mm 

δvs = 1mm 

δvs = 2mm 

δvs = 3mm 

δvs = 4mm 

δvs = 5mm 

δvs = 6mm 
0

5

10

15

20

25

30

-2-1.5-1-0.50

L
iv

e 
lo

a
d

 (
k

N
/m

) 

δv at quarter span (mm) 

δvs = 0mm 

δvs = 1mm 

δvs = 2mm 

δvs = 3mm 

δvs = 4mm 

δvs = 5mm 

δvs = 6mm 

97% 95% 95% 95% 95% 93% 

0%

20%

40%

60%

80%

100%

120%

1 2 3 4 5 6

P
/P

u
lt

 

Vertical settlement of support (mm) 

99% 98% 96% 96% 96% 95% 

0%

20%

40%

60%

80%

100%

120%

1 2 3 4 5 6

P
/P

u
lt

 

Vertical settlement of support (mm) 



Chapter 5                                                 Mesoscale Analysis for Masonry Arches 

203 

 

 

Examining the results, it can be seen that a vertical support movement does not significantly 

influence the arch load capacity for the arches with strong mortar joints and those with weak 

mortar joints. In this case the considered prescribed displacements are not sufficiently large to 

notably reduce the load bearing capacity of the arch, especially in the case weak mortar joints, 

where the maximum vertical settlement is smaller than the displacement level at which a 

mechanism starts to develop (see Figures 5-24 and 5-25). This is confirmed also by Figures 

5-33 and 5-34, where the deformed shapes and the contours of the plastic work Wcr1 for the 

smallest and the largest vertical settlements are displayed. The figures show that the support 

displacement does not influence the collapse mechanism, which corresponds to that of the 

arch with fixed supports showing four radial cracks at the two springings and at the quarter 

and three quarter span. 

  

δvs = 1mm Collapse under line load 

(a) Deformed shapes 

  

δvs = 1mm Collapse under line load 

 (N/mm) (N/mm) 

(b) Contour of plastic work Wcr1 

Figure 5-33: Deformed shapes and plastic work contours for Arch 2 and vs = 1mm 
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Finally, investigating the response of arches with different rise-to-span ratios (Figure 5-35), it 

has been found that the support vertical movement may induce a strain/stress state in the arch 

which mitigates the effects of the live load, thus increasing the load capacity as for the arch 

with 1:8 rise-to-span ratio (Arch 3). Evidently the settlement level should be lower than the 

limit leading to a mechanism. 

  

δvs = 6mm Collapse under line load 

(a) Deformed shapes 

 
 

δvs = 6mm Collapse under line load 

(N/mm) (N/mm) 

(b) Contour of plastic work Wcr1 

Figure 5-34: Deformed shapes and plastic work for Arch 2 and vs = 6mm 
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(a) 

 

(b) 

Figure 5-35: Load capacity ratio for different values of vertical settlement for arches with different 

rise-to-span ratio 

 

5.2.5.3 Horizontal inward support displacement 
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load ratios in Figure 5-37 confirm the significant influence of the horizontal inward 

movement on the arch response. This is critical not only for the arch with strong mortar, 

where a notable maximum reduction of 46% have been calculated, but also for the arch with 

weak circumferential joints. Moreover it can be observed than the prescribed support 

displacements give rise to a strain/stress state which opposes the live load which, for 

relatively small inward movements, may lead to an increment in the load capacity (see curves 

im = 1mm in Figures 5-36a,b).  

Concerning the failure mechanisms due to the line load at quarter span applied after the 

horizontal inward support movement, Figure 5-38 shows that, in the case of relatively small 

support displacements, the failure mode corresponds to that of the arch with fixed supports. 

Conversely Figure 5-39 highlights that, by increasing the support movement, a different crack 

pattern forms in the arch. This is similar to that shown in Figure 5-23c and due to inward 

support displacements alone, but with a more diffuse cracking at the crown. 

  

(a) Strong joints (b) Weak joints 

Figure 5-36: Results for different level of horizontal inward support displacement 
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(a) Strong joints (b) Weak joints 

Figure 5-37: Effect of horizontal inward support displacement 

 

  

δim = 1mm Collapse under line load 

(a) Deformed shapes 

  

δim = 1mm Collapse under line load 

(N/mm) (N/mm) 

(b) Contour of plastic work Wcr1 

Figure 5-38: Deformed shapes and plastic work contours for Arch 2 and im = 1mm 
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δim = 6mm Collapse under line load 

(a) Deformed shapes 

 

 

δim = 6mm Collapse under line load 

(N/mm) (N/mm) 

(b) Contour of plastic work Wcr1 

Figure 5-39: Deformed shapes and plastic work contours for Arch 2 and im = 6mm 

 

Finally the influence of the horizontal inward support movements on the load capacities of 

arches with different rise-to-span ratios is shown in Figure 5-40. It can be seen that the effect 

of support movement is more critical for shallow arches with 1:8 and 1:10 rise-to-span ratios 

(e.g. Arch 3 and Arch 4). However in these cases, convergence problems allowed only an 

approximate estimate of the ultimate load for 5mm inward displacement. Thus the calculated 

70% and 83% reductions in loading capacity should be considered as conservative 

predictions. 
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Figure 5-40: Load capacity ratio for different values of horizontal support displacement for arches with 

different rise-to-span ratio  

 

5.2.5.4 Modelling considerations 

A parametric study has been conducted to identify the most critical material properties which 

determine the qualitative response under the combinations of the prescribed support 

displacements and the live loads considered before. Not surprisingly, it has been found that 

the fracture energy values (especially Mode-I fracture energy Gf1) strongly affect the 

numerical predictions. In particular using unrealistically large fracture energy values (e.g. two 

orders of magnitude larger than the values in Table 4-5), the response prediction under the 

live load seems to be almost independent of the level of support displacement, as well as the 

ultimate load capacity. This is shown in Figure 5-41, where the live load is plotted against the 
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vertical displacement at quarter span for the three types of support displacement. The results 

obtained confirm what was pointed out in Chapter 4, where it was shown that the use of large 

fracture energy values, which disregard the actual quasi-brittle nature of the mortar joints and 

the fracture in the masonry units, usually moves the numerical response towards the 

elastic-plastic limit, where the solution does not depend upon potential support movements. 

  

(a) Arch with horizontal spread of support (b) Arch with vertical support settlement  

 

(c) Arch with horizontal inward support displacement 

Figure 5-41: Load-displacement curve analysis for different settlement of left support 
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5.3 Mesoscale analysis of skew arches 

In Chapter 4, it has been shown that for an accurate analysis of skew masonry arches a full 

3D mesoscale description accounting for the actual 3D masonry bond should be considered. 

In this case the use of a more efficient strip model may lead to unrealistic results.  

In the following, the detailed 3D mesoscale strategy for skew arches presented in Chapter 4 is 

adopted to investigate the response of brick-masonry skew arches considering the effects of (i) 

rise to span ratio, (ii) masonry bond and defects in the brickwork , (iii) abutment stiffness and 

(iv) support movements. The two-ring skew arch with header bond investigated in Section 

4.3 is considered here as the reference model. Thus all the analysed arches are characterised 

by a 3m direct span, 670mm width, 215mm thickness and 45° skew angle.  

5.3.1 Effects of rise-to-span ratio 

The effects of the skew arch geometry have been analysed by comparing the numerical 

responses of three arches with different rise-to-span ratios. The main geometrical properties 

are reported in Table 5-4, while Figure 5-42 shows the three FE mesoscale meshes. 

Table 5-4: Geometry of the skew arches with different rise-to-span ratio 

Model 
Rise - H (mm) Direct span -  

Ld (mm) 

No. of Rings Thickness (mm) 
Rise-to-span ratio 

Skew 1 1500 3000 2 215 1:2 

Skew 2 750 3000 2 215 1:4 

Skew 3 375 3000 2 215 1:8 

 

In the numerical simulations, a line load was applied near the three quarter span 

perpendicularly to the oblique span.  Figure 5-43 and 5-44 show the deformed shapes and 

the plastic work Wcr1 contours at the end of the numerical simulations. In all the cases failure 

occurred because of the development of five main cracks along the mortar bed joints forming 

the typical 3D mechanism with five “hinges” (see Section 4.3). 
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(a) Skew 1- Ratio = 1:2 (b) Skew 2- Ratio = 1:4 

 

(c) Skew 3 - Ratio = 1:8 

Figure 5-42: 3D mesoscale meshes for skew arches with different rise-to-span ratios 

 

 
 

(a) Skew 1- Ratio = 1:2 (b) Skew 2- Ratio = 1:4 

 

(c) Skew 3 - Ratio = 1:8 

Figure 5-43: Deformed shapes at the last step of the analysis 
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(a) Skew 1- Ratio = 1:2 

 
 

(b) Skew 2- Ratio = 1:4 

 
 

(c) Skew 3 - Ratio = 1:8 

 (N/mm) 

Figure 5-44: Plastic work Wcr1 contours at the last step of the analysis 

 

In Figures 5-45a,b the numerical load-displacement curves measured at quarter and three 

quarter span are plotted. The deep arch features the highest load capacity but a limited 

ductility, as it shows a softening behaviour just after reaching the maximum load. The arch 

Skew 2 is characterised by the lowest load capacity but a notable ductility. Finally, the arch 

with a 1:8 rise-to-span ratio shows an intermediate response. In this case the analysis stopped 

because of convergence problems probably before reaching the maximum load. 
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(a) Quarter span   (b) Three quarter span 

Figure 5-45: Load displacement curves at (a) quarter span and (b) three quarter span for arches with 

different rise-to-span ratios 

 

5.3.2 Influence of masonry bond and defects in brickwork 

The three arches with different rise-to-span ratios presented in the previous section, has been 

analysed considering different masonry bonds and defective brickwork. In particular, the 

responses of arches built with the stretcher or the header method (Figure 5-46) to connect the 

adjacent rings have been compared. Moreover the effects of defective mortar joints at the 

interface between the two brickwork rings have been taken into account. In this case, very 

small tensile strength and cohesion values for the nonlinear interface elements representing 

the circumferential mortar joints have been employed (Table 5-2). 
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(a) Header bond 

 

(b) Stretcher bond 

Figure 5-46: Lateral view showing the two alternative bond methods to connect adjacent rings 

 

Figure 5-47 displays the load-displacement curves for the arches with 1:4 rise-to-span ratio 

(Skew2), while the deformed shapes obtained from the different models and the 

corresponding plastic work contours are illustrated in Figures 5-48 and 5-49. Ring separation 

occurs only in the arch built according to the stretcher method and with defective 

circumferential mortar joints (weak joints). This arch is also characterised by the lowest load 

capacity, but it shows a significant ductility as depicted in Figure 5-47. All the other 

numerical curves are very close, being characterised by practically identical initial stiffness, 

ultimate load and alike post-peak response. This is reflected into very similar failure modes 

with cracks along the mortar bed joints without ring separation. 
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(a) Load-displacement curves at quarter span 

 

(b) Load-displacement curves at three quarter span 

Figure 5-47: Numerical results for arches with 1:4 rise-to-span ratio and different circumferential joints 

 

  

(a) Header bond – weak joints (b) Stretcher bond– strong joints 

 

(c) Stretcher bond – weak joints 

Figure 5-48: Failure mode for arches with 1:4 rise-to-span ratio and different circumferential joints 
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(a) Header bond – weak joints 

 

 

(b) Stretcher bond – strong joints 

 
 

(c) Stretcher bond – weak joints 

 Wcr1 (N/mm) 

Figure 5-49: Interface plastic work contour for arches with 1:4 rise-to-span ratio and different 

circumferential joints 

 

Besides, the influence of defective brickwork on the behaviour of skew arches with different 

rise-to-span ratio has been investigated. Numerical analyses have been carried out for the 

arches Skew 1, Skew 2 and Skew 3 with stretcher bond. In all the cases, weak circumferential 

mortar joints have been considered.  

Figure 5-50 displays the load-displacement curves. As for the arches with header bond and 

strong joints (Figure 5-45), the deep arch is characterised by the highest load capacity, the 

arch Skew 2 by the lowest peak load, while the arch Skew 3 shows an intermediate behaviour. 

However when compared against the numerical responses in Figure 5-45, all the curves for 
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arches with stretcher bond and defective brickwork show higher ductility. This is associated 

with the development of ring separation which is coupled with cracks in the mortar bed 

joints.  

The influence of mortar defects is summarised in Figure 5-51, where the ultimate loads and 

the initial stiffness values obtained in the analysis of arches with weak and strong joints are 

compared. It has been found that defective brickwork leading to ring separation significantly 

reduces both initial stiffness and load capacity, where the maximum reduction of stiffness 

(60%) and ultimate load (68%) have been calculated for the arch with 1:8 rise-to-span ratio. 

 

 

Figure 5-50: Load-displacement curves for skew arches with weak joints 
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(a)  

 

(b)  

Figure 5-51: Influence of bond and defects on skew arches with different rise-to-span ratio on (a) ultimate 

load and (b) initial stiffness 

 

5.3.3 Effects of the abutment stiffness 

In Section 5.2.4, the influence of the abutment stiffness on the response of square arches was 

examined. In this section, the effects of potential deformations at the abutments on the 

response of an arch with 45° skew angle are investigated. Also in this case, elastic interface 

elements are used to connect the arch springings to fixed supports so as to represent elastic 

abutments. Again, the reference skew arch (e.g. arch Skew 2 with header bond) is analysed 
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considering the five pairs of elastic normal and tangent stiffness values reported in Table 5-3. 

As for the square arches, the failure mechanism does not change by varying the stiffness at 

the lateral supports, and in all the cases arch failure is reached when a 3D hinge mechanism 

with five main cracks forms. 

The load-displacement curves showing the response of the arch Skew 2 with header bond are 

plotted in Figure 5-52, where the displacement was measured at the centre line of the arch 

barrel at three quarter span. The variation of the ultimate load and the initial stiffness of the 

arch with the abutment stiffness are displayed in Figures 5-53 and 5-54. As for the square 

arches (see Section 5.2.4), only the case with the lowest support stiffness (Kab = 1N/mm
3
) 

shows a significant change in the response, where an ultimate load (Figure 5-53) and initial 

stiffness (Figure 5-54) reduction can be observed. Moreover when compared to the responses 

of the arches with fixed supports or higher abutment stiffness, the skew arch with Kab = 

1N/mm
3
 shows a more ductile behaviour with no softening. 

 

Figure 5-52: Load-displacement curves for arch Skew 2 with different abutment stiffness 
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Figure 5-53: Influence of abutment stiffness on the load capacity of the skew arch 

 

  

Figure 5-54: Influence of abutment stiffness on the initial stiffness of the skew arch 

 

5.3.4 Effects of abutment movement 

The skew arch collapse mechanisms due to support movements have been investigated 

considering the response of the reference arch (arch Skew 2 with header bond) subject to the 

three support displacement modes considered in Section 5.2.5 and shown in 5-21. The 

imposed displacements at the left support are plotted against the associated reaction forces in 

Figure 5-55. When the failure mechanisms due to horizontal support displacements develop, 
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the associated reaction forces decrease showing a post-peak softening response. Conversely, 

in the case of differential vertical support movements, the reaction force remains almost 

constant for relative large displacement values. Figure 5-56 displays the deformed shapes for 

skew arch subjected to the three settlement modes, and Figure 5-57 shows the plastic work 

Wcr1 contour for the different cases. All these figures refer to the last step of the numerical 

simulations at the failure of the arch. It can be noticed that the three failure modes are 

associated with the formation of cracks close to the two springings but not at the crown as in 

the case of square arches (see Figure 5-22). 

 

 

Figure 5-55: Reaction force-support displacement curves for arch Skew 2 
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(a) Horizontal spread of support 

 

(b) Vertical differential settlement 

 

(c) Horizontal inward movement 

Figure 5-56: Deformed shape for the arch Skew 2 subject to different support displacement 
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(N/mm) 

(a) Horizontal spread of support 

 

 

(N/mm) 

(b) Vertical differential settlement  

 

 

(N/mm) 

(c) Horizontal inward movement 

Figure 5-57: Plastic work Wcr1 contour for the arch Skew 2 subject to different support displacement 
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5.4 Conclusions 

The response up to collapse of square and skew brick-masonry arches has been investigated 

using the validated mesoscale strategy described in Chapter 4. The effects of (i) rise-to-span 

ratio, (ii) loading position, (iii) masonry bond and defects in the brickwork, (iv) abutment 

stiffness and (iv) support movements have been considered in the numerical study. 

In the case of square arches it has been found that the rise-to-span ratio significantly 

influences the arch response and failure mode, but similar results have been obtained for 

arches with different span lengths. Deep arches or arches with intermediate rise-to-span ratio 

generally show a typical four hinge mechanisms, where cracks form in the mortar bed joints. 

On the other hand, shallow arches may fail by a combination of radial cracks and ring 

separation, where the later usually develops abruptly, leading to a sudden release of elastic 

energy. Moreover the arch failure mode strongly depends upon the load position, as line loads 

close to the springings may induce a brittle collapse, also for arches with high rise-to-span 

ratio. This may occur because of ring reparation at the arch haunch close to the load, or shear 

sliding at a radial mortar joint. In the case of multi-ring square arches built according to the 

stretcher method and with weak circumferential mortar joints, the response is governed by 

ring separation, which develops gradually causing a progressive stiffness reduction but 

leading to a more ductile behaviour. The numerical study on the effects of support stiffness 

has shown that the abutment deformability may significantly reduce the arch stiffness and the 

load capacity, but it seems that it does not modify the failure mode characteristics. Finally, 

the numerical simulations on the effects of abutment movements revealed that brick-masonry 

arches can support live loads also after the formation of a mechanism due to differential 

support movements. This additional load bearing capacity depends on the level of abutment 

displacement. Moreover it has been shown that the accuracy of these predictions is associated 

with the ability of the numerical description in representing the quasi-brittle nature of 

masonry. In fact, the use of a material model which disregards de-cohesion and potential 

friction reduction (e.g. an elastic-plastic approximation with high fracture energy values) 
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generally leads to unrealistic response predictions, where the arch capacity is insensitive to 

potential abutment movements.  

As opposed to the analyses on square arches which were conducted using efficient strip 

models, full 3D mesoscale descriptions have been adopted in the numerical studies for skew 

arches. In has been found that arches with different rise-to-span ratio are characterised by a 

different response, where the deep arch shows the highest load capacity, but the same failure 

mode with five cracks in the mortar bed joints. On the other hand, arches built according to 

the stretcher method, and made up of defective brickwork with weak circumferential mortar 

bed joints, may also experience ring reparation. As for square arches, this reduces the initial 

stiffness but improves arch ductility. The response up to collapse of skew arches subject to 

abutment movements has been also analysed. It has been found that the failure modes under 

differential horizontal and vertical support displacements are characterised by the 

development of cracks at the two springing regions but not at the crown. 
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6 Mesoscale Partitioned Analysis of 

Masonry Bridges 

CHAPTER 6 

Mesoscale Partitioned Analysis of Masonry Bridges 

6.1 Introduction 

Masonry arch bridges are heterogeneous systems whose behaviour is determined by the 

interaction between different structural and non-structural components, including the arch 

barrel, the backfill and the lateral walls. 

In Chapters 4 and 5 a mesoscale approach for masonry (Macorini & Izzuddin, 2011) has been 

adopted to investigate the response of masonry arches. It has been shown that this advanced 

modelling strategy allows for an accurate response prediction, as it takes into account the 

actual masonry bond, including potential defects in the brickwork.  

In this chapter the interaction between the arch and the backfill is accounted for in the 

analysis of masonry bridges. Because of the significant computational cost, in all the 

numerical simulations the proposed modelling strategy with solid and nonlinear interface 

elements is coupled with the partitioning approach allowing for parallel computation which 

has been developed previously at Imperial College (Jokhio, 2012; Jokhio & Izzuddin, 2013). 

Initially, the assumption of rigid spandrel walls is considered which, in the case of square 

arch bridges, enables the use of an efficient description where the arch and the backfill are 

represented by a strip model. This implies employing a FE mesh with only one set of solid 

elements for the arch and the soil domain along the width of the bridge, and restraining the 
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transverse displacements to allow for the confinement provided to the backfill by the two 

rigid lateral walls. Using this simplified modelling strategy, numerical simulations have been 

performed on a multi-ring arch bridge, which was previously tested at the Bolton Institute 

(Gilbert & Melbourne, 1998). In the following the numerical predictions are firstly compared 

against the test results, and then the results of parametric studies are presented and discussed. 

These have been conducted to investigate the influence of the backfill and the arch 

characteristics, the loading position, the arch shape and the effects of abutment movements 

on the bridge response. Subsequently the results of full 3D mesoscale analyses carried out to 

investigate the contribution of the spandrel walls are shown.  

In the final part of this chapter, the computational performance associated with the use of the 

mesoscale partitioning approach for the full 3D analysis of a realistic stone masonry bridge is 

investigated. The efficiency and the accuracy provided by using alternative strategies with 

flat partitioning, hierarchic partitioning and master-slave coupling at the partitioned 

boundaries (Jokhio, 2012) is also analysed. 

6.2 Analysis of a brick-masonry arch bridge 

A brick-masonry arch bridge previously tested at the Bolton Institute (Melbourne & Gilbert, 

1995) is analysed using the proposed mesoscale partitioned modelling strategy for masonry 

arch bridges.  The characteristic of the analysed bridge and a description of the experimental 

test are provided below. Then the results obtained using a strip model and a full 3D 

description are presented and discussed. 

6.2.1 Experimental test 

In 1995 an experimental programme including tests on four masonry arch barrels and seven 

single span masonry arch bridges was conducted at the Bolton Institute (Melbourne & Gilbert, 

1995). In particular masonry bridges with 3m and 5m span and 2.88m width were subject to 

vertical line loads up to collapse. 
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Hereinafter the response of the bridge specimen named Bridge 3-3 in (Melbourne & Gilbert, 

1995) is investigated. The bridge geometry is sketched in Figure 6-1 and indicated in Table 

6-1. The 3m span two-ring arch barrel was built according with the stretcher method in a 

segmental circular shape on massive concrete foundations. The arch is 215mm thick and is 

characterised by a 4:1 span-to-rise ratio with a springing angle of 37°. The spandrel and the 

wing walls are made up of English bond brick-masonry. Full size class A engineering bricks 

and a 1:2:9 (cement:lime:sand) mortar were used for all the brickwork, while 50mm graded 

crushed limestone was adopted for the backfill, filling the space above the arch and between 

the two lateral walls (spandrel and wing walls). 

  

 

Figure 6-1: Geometric characteristics and loading arrangement for Bridge 3-3 

 

Table 6-1: Principal dimensions for Bridge 3-3 (Melbourne & Gilbert, 1995) 

 

In the test, a vertical line load was applied at quarter span through a 2200×200mm
2
 steel 

loading beam placed on the surface of the backfill and against a reaction frame incorporating 

Arch 

Span 

(mm) 

Rise 

(mm) 

Ring thickness 

(mm) 

Width 

(mm) 

Number of 

bricks 

3000 750 215 2880 48 

Backfill 
Depth at crown (mm) Width (mm) Length (mm) 

300 2880 2460×2+3000 

Spandrel 

walls 

Depth at crown (mm) Width (mm) Length (mm) 

300 330 2460×2+3000 
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hollow jacks and three sets of prestressing tendons. The full width line load was increased 

monotonically until the failure of the bridges specimen.  

Figure 6-2 depicts the failure mode of Bridge 3-3 which was due to the formation of four 

large radial cracks (hinges) in the arch mortar bed joints. These transformed the arch into a 

mechanism when the applied load reached about 600kN. The first hinge developed under the 

load at about the quarter span, and the other three main cracks progressively formed at about 

the three quarter span and at the two springings. At collapse significant separation between 

the arch and the lateral walls was also observed. 

 

Figure 6-2: Failure mechanism of Bridge 3-3 (Melbourne & Gilbert, 1995) 

 

6.2.2 Strip-model analysis 

As anticipated in the introduction, numerical simulations have been performed adopting a 

simplified strip-model. 

6.2.2.1 Model description 

The bridge is represented by a FE mesh with only one set of solid elements for the arch and 

the soil domain along the width of the bridge as shown in Figure 6-3. The actual masonry 

bond of the arch on the face of the bridge is accurately represented adopting one 20-noded 

solid element for each brick. Thus two nonlinear interface elements are used for representing 

each individual radial mortar joint. The adopted mesh for the backfill is not uniform and 
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formed by 15-noded solid elements, where a linear refinement has been considered at the 

abutments, and at the quarter span close to the loading area. Moreover to allow for an 

accurate modelling of the arch backfill interaction, the FE mesh for the backfill is constructed 

with the rectangular faces of the 15-noded prismatic solid elements at the bottom of the 

backfill coincident with the top face of the solid elements representing masonry bricks at the 

extrados of the arch. Coincident nodes belonging to the two domains are then connected by 

nonlinear interface elements to represent separation and frictional sliding at the arch-backfill 

interface. 

 

 
Figure 6-3: Strip model mesh for Bridge 3-3 

 

Concerning the model boundary conditions, fixed supports have been assumed for the nodes 

on two bases of the backfill domain extending beyond the two arch springings. Additionally, 

the nodes on the two lateral faces of the backfill are restrained longitudinally (along x in 

Figure 6-3), and the node of the arch and the backfill on the two longitudinal faces of the 

bridges are restrained along z (Figure 6-3). This is to prevent transverse deformations within 

the bridge to model the contribution of rigid lateral walls. 

The FE mesoscale description for the arch encompasses 96 20-noded elastic solid elements 

for the brick units, 94 nonlinear interface elements for the mortar bed joints, 48 nonlinear 

interface elements for the circumferential mortar joints connecting the two adjacent rings and 

48 interface elements for representing the interaction between the arch and the fill. Moreover 

the backfill domain is represented by 407 15-noded elasto-plastic tetrahedral elements. Thus 

y 

x 

z 
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the bridge is described by a strip-model employing more than 7000 degrees of freedoms. To 

improve computational efficiency, the model for the bridge is incorporated into an advanced 

partitioning strategy (Jokhio, 2012) allowing for parallel computation. Hierarchic partitioning 

techniques are employed for the mesoscale description of the masonry domain, while a flat 

partitioning strategy is adopted for the backfill. The FE mesh with partitions has been 

generated using Caim, a semi-automatic mesher developed at Imperial College 

(Rodriguez-Villares, 2014). More specifically, 24 child partitions have been used for the 

masonry domain and 11 child partitions for the backfill. According to the adopted 

partitioning strategy, the parent file at level 0 collects all the nodes at the interface between 

the arch and the backfill. 

The material tests performed in the experimental program (Melbourne & Gilbert, 1995) did 

not provide information on the critical material parameters required by the adopted mesoscale 

model for brick-masonry (Macorini & Izzuddin, 2011). Thus, in the numerical simulations of 

Brige3-3, the masonry material properties reported in Tables 4-3, 4-4 and 4-5 and used in 

Chapter 4 to investigate Arch G have been employed. This is because the generic 

characteristics of bricks and mortar for Arch G (e.g. class A bricks and 1:2:9 mortar) 

correspond to those of the masonry components for Brige3-3.  

The main material properties for the backfill are reported in Table 6-2. These have been used 

with the Hooke’s law and the rounded hyperbolic Mohr-Coulomb failure criterion (Abbo & 

Sloan, 1995) to capture the elasto-plastic behaviour of the backfill.  

Finally, the values in Tables 4-4 and 4-5 have been considered for the nonlinear interface 

elements representing the interaction between the arch and the backfill. 

Table 6-2: Mechanical properties for backfill 

Elastic modulus 

Ef  (N/mm
2
) 

Poisson’s ratio 

νf 

Frictional angle 

φf 

Cohesion 

cf (N/mm
2
) 

Unit weight 

ρf (kN/m
3
) 

a1 T 

500 0.20 45° 0.01 19.1 0.05 25° 
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6.2.2.2 Numerical-experimental comparison 

In Figure 6-4, the deformed shape of the strip model at the last step of analysis is displayed. 

A typical four-hinge mechanism with radial cracks below the load, at the two springings and 

at three quarter span can be noticed. 

 

Figure 6-4: Deformed shape at the last step of the analysis for Bridge 3-3 

 

Numerical-experimental comparisons in term of the applied load against the vertical 

displacement measured on the arch at the quarter span are shown in Figure 6-5. A generally 

good agreement between the experimental and the numerical curves can be observed, where 

the initial stiffness and load capacity measured in the test are accurately predicted by the 

proposed strip-model. It is important to note that the numerical simulation was stopped just 

after reaching the peak load at the onset of a softening branch, because the prediction of the 

post-peak response would have required an excessive computational time. 

 

Figure 6-5: Experimental-numerical comparison for Bridge 3-3 
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Cracking in the arch barrel and damage at the interface between the arch and the backfill are 

shown at different loading levels in Figures 6-6a,b,c,d,e. Radial cracks first appear in the 

mortar bed joints at the quarter span just below the load (Figure 6-6a). Then cracking 

develops at the left springing (Figure 6-6b), which is almost simultaneously followed by 

cracking at the right springing (Figure 6-6c). Finally, the formation of the fourth radial cracks 

at about the three quarter span leads to a mechanism when the arch reaches the maximum 

load (Figures 6-6d,e). At this loading level, significant plastic work can be also noticed at the 

top circumferential interface elements in the area close to the quarter span. This reveals 

separation and plastic sliding at the interface between the arch and the backfill.  

 

  

(N/mm) (N/mm) 

(a) 1
st
 radial crack P = 80kN (b) 2

nd
 radial crack P = 150kN 

 
 

(N/mm) (N/mm) 

(c)
 
3

rd
 radial crack P = 350kN (d) 4

th
 radial crack P = 570kN 

Figure 6-6: Plastic work Wcr1 contours at (a) 1st radial crack P = 80kN, (b) 2nd radial crack P = 150kN, 

(c) 3rd radial crack P = 350kN, (d) 4th radial crack P = 570kN and (e) at the final step of analysis 

(Cont’d …) 
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(e) Final step 

Figure 6-6: Plastic work Wcr1 contours at (a) 1
st
 radial crack P = 80kN, (b) 2

nd
 radial crack P = 150kN, (c) 

3
rd

 radial crack P = 350kN, (d) 4
th

 radial crack P = 570kN and (e) at the final step of analysis 

 

 

(a) P = 80kN 

 

(b) P = 150kN 

 

(c) P = 350kN 

 

(d) P = 570kN 

 

(e) Final step 

Figure 6-7: Equivalent von Mises plastic deformations in the backfill at (a) P = 80kN, (b) P = 150kN, (c) P 

= 350kN, (d) P = 570kN and (e) at the final step of analysis 
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Figures 6-7a,b,c,d,e display the equivalent von Mises plastic deformations in the backfill, 

when the cracks progressively developed in the masonry arch. It can be seen that at low 

loading levels plastic deformations form below the loading area and then, by increasing the 

load, they develop at the bottom of the fill domain when it connects to the right haunch of the 

arch and close to the arch crown. Finally, plastic deformations form at the bottom of the 

backfill at the three quarter span of the arch. These are caused by the pressure exerted by the 

backfill to the arch (passive pressure) which opposes the arch sway. 

6.2.2.3 Modelling arch-fill interaction 

To investigate the influence of the modelling strategy adopted to represent the contribution of 

the backfill and the arch-fill interaction, numerical simulations have been performed 

comparing the results obtained by the strip-model described in the previous section and those 

achieved using alternative simplified strategies. These include (i) a model which disregards 

the backfill and considers only the contribution of the arch (Arch-model 1), (ii) a numerical 

description where backfill contribution is represented as an additional distributed load onto 

the arch (Arch-model 2), (iii) a model where the fill is described by a continuum elastic 

approach (Strip-model elastic fill), and (iv) a model similar to the original strip-model 

introduced before, but with rigid interface elements for describing the arch-fill interaction 

(Strip-model rigid interface). 

Figure 6-8 compares the load-displacement responses obtained using the strip-model and the 

two arch models (e.g. Arch-model 1 and Arch-model 2). Significant differences, both in term 

of initial stiffness and load capacity, can be easily observed. In particular Arch-model 1 

predicts an ultimate load of 150kN, while Arch-model 2 a load capacity of 180kN. Both 

predictions are quite far from the experimental ultimate load P = 600kN, which practically 

coincides with the maximum load calculated by the Strip-model. The difference in the 

response predictions of two arch models is due to the beneficial effects due to the weight of 

the backfill which are accounted for only in Arch-model 2. However, these results confirm 

that the most critical backfill contribution is associated with the pressure exerted by the fill 



Chapter 6                                        Mesoscale Partitioned Analysis of Masonry Bridges 

237 

 

onto the arch which opposes the arch sway. This can be captured only by employing an 

explicit modelling for the backfill. 

 

 

Figure 6-8: Numerical comparisons among the strip-model and models modelling only the arch 

contribution 

 

In Figure 6-9, the response obtained assuming the backfill as an elastic continuum domain 

(Strip-model elastic fill) is compared against the prediction provided by the original 

strip-model with an elasto-plastic backfill. It can be noticed that the Strip-model elastic fill 

curve shows unrealistic high stiffness and load capacity. This points out that the use of a 

continuum description neglecting material nonlinearity for the backfill leads to significantly 

overestimating the backfill contribution. In this case, cracking in the arch is partially 

restrained by the backfill and it starts to develop at higher load level. This is shown in Figure 

6-10, where the von Mises stresses VM  ( 3 2 : VM    with    m  ) in the 

backfill and the plastic work Wcr1 contour in the interface elements are depicted at a 

displacement equal to the displacement at maximum load measured in the test. It can be seen 

that only one radial crack forms in the arch, when the predicted load is about 3 times higher 

than the collapse load in the test. 
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Figure 6-9: Numerical comparisons on the contribution of different modelling strategies for fill domain 

 

 

(a)  

 Wcr1 (N/mm) 

(b)  

Figure 6-10: Contours of (a) equivalent von Mises stresses in the backfill and (b) plastic work in the  

interface elements for the strip-model with elastic fill 

 

To investigate the influence of the mechanical properties of the interface elements modelling 

the arch-backfill interface, the response obtained using the original strip model, where the 

physical interface is represented by nonlinear interface elements with the same properties of 

the mortar joints (Tables 4-4 and 4-5), is compared against the numerical prediction obtained 

employing rigid interface elements to connect the extrados of the arch with the backfill. The 

two numerical curves and the experimental response are shown in Figure 6-11. It can be seen 
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that introducing a rigid interface between the two bridge components significantly influences 

the numerical prediction at different loading levels, where the maximum load is about 33% 

higher than that obtained using the original strip-model. 

 

Figure 6-11: Numerical comparisons on the contribution of different modelling strategies for the interface 

between the arch and the fill domain 

 

6.2.3 Parametric studies 

Numerical analyses have been carried out to study the influence of material and geometric 

aspects on the response prediction of masonry arch bridges up to collapse. The brick-masonry 

bridge analysed in the previous section by adopting a strip-model is considered here as the 

reference structure. In the initial studies, the numerical responses obtained changing the 

material parameters for the backfill, and considering defective brickwork for the arch have 

been analysed. Then the effects due to the loading position, the arch rise-to-span ratio, and 

support movements have been investigated.  

6.2.3.1 Influence of backfill material properties 

Numerical simulations have been performed varying the most critical material parameters for 

the backfill one at a time. These include Young’s modulus Ef, cohesion cf and friction angle φf. 
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Then the response of Bridge 3-3 has been analysed considering the two most common types of 

soil material for the backfill, namely clay and limestone.  

Figure 6-12 compares the load-displacement responses determined considering three typical 

Young’s modulus values for the backfill: Ef = 200 MPa, 500 MPa, 1000MPa, while Figure 

6-13 shows the relative errors calculated assuming the experimental results as the exact values 

for the initial stiffness and the load capacity. It can be seen that a variation of Ef within realistic 

limits is more critical for the prediction of the initial stiffness with a maximum error of 26%, 

but the variation of strength is more limited with a maximum error of 8%.  

Similar numerical analyses have been conducted assuming a change in the cohesion, 

considering the values cf = 10kPa, 30kPa, 50kPa (Figure 6-14) and a variation in the friction 

angle φf =45°, 50°, 60° (Figure 6-16). Similar results have been found for the two cases, where 

the top values lead to overestimating maximum load and initial stiffness of about 20% (see 

Figures 6-15 and 6-17).  

The material properties presented in Table 6-3 (Melbourne, Wang & Tomor, 2007) have been 

used together with a Young’s modulus Ef = 500MPa to describe clay and limestone backfill. 

  

Table 6-3: Mechanical properties for typical backfill 

 

Friction angle 

φf 

Cohesion 

cf (N/mm
2
) 

Unit weight 

ρf (kN/m
3
) 

Limestone 46.4° 0.0224 19.1 

Clay 20° 0.078 22.1 
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Figure 6-12: Influence of backfill Young’s modulus on the bridge response 

 

  
(a) 

  
(b) 

Figure 6-13: Influence of Ef on (a) ultimate load and (b) initial stiffness 
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Figure 6-14: Influence of backfill cohesion on the bridge response 

 

  
(a) 

  
(b) 

Figure 6-15: Influence of cf on (a) ultimate load and (b) initial stiffness 
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Figure 6-16: Influence of backfill frictional angle on the bridge response 

 

  
(a) 

  
(b) 

Figure 6-17: Influence of cf on (a) ultimate load and (b) initial stiffness 

0

100

200

300

400

500

600

700

800

-1.5-1-0.50

L
iv

e 
lo

a
d

 (
k

N
) 

Vertical displacemen at quarter span (mm) 

Exp. values

φ = 45° 

φ = 50° 

φ = 60° 

0% 

9% 

22% 

-5%

0%

5%

10%

15%

20%

25%

30%

45 50 60

U
lt

im
a

te
 l

o
a

d
 e

rr
o

r
 

Frictional angle of backfill, φf (°) 

-5%

0%

5%

10%

15%

20%

25%

30%

0 20 40 60 80
φf (°) 

-8% 

8% 

22% 

-20%

-10%

0%

10%

20%

30%

10 30 50

In
it

ia
l 

st
if

fn
es

s 
er

ro
r
 

Cohesion of backfill, cf  (kPa) 

-20%

-10%

0%

10%

20%

30%

0 20 40 60
cf  (kPa) 



Chapter 6                                        Mesoscale Partitioned Analysis of Masonry Bridges 

244 

 

The numerical results (Figure 6-18) confirm than the masonry bridge with limestone backfill 

is characterised by the higher load capacity. The responses of the two structures are quite 

similar (e.g. about the same initial stiffness) until the development of the substantial cracking. 

For higher loading values the bridge with limestone fill shows a stiffer behaviour up to 

collapse. The distribution of plastic deformations is slightly different, as plastic deformations 

in the limestone backfill are mainly concentrated below the load, while plastic deformations 

develop also above the arch crown in the bridge with clay fill (Figure 6-19). On the other 

hand, the plastic work contours in the interface elements (Figure 6-20) reveal a similar 

cracking pattern and damage at the interface between the arch and the backfill domain. 

 

 

Figure 6-18: Load displacement curves for different types of backfill 
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 (a) 

 

 (b) 

Figure 6-19: Equivalent von Mises plastic deformations for (a) limestone and (b) clay backfill 

 

  (N/mm) 

(a) 

   (N/mm) 

(b) 

Figure 6-20: Plastic work Wcr1 in the interface elements for (a) limestone and (b) clay backfill 
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6.2.3.2 Influence of brickwork defects 

As in Chapter 5, the influence of defects in the brickwork has been analysed assuming a weak 

circumferential mortar joint to connect the two adjacent rings. The material properties for the 

nonlinear interface elements used to model the weak joints are reported in Table 5-2. 

 

Figure 6-21: Influence of defects in the brickwork in the bridge response 

 

Figure 6-21 compares the numerical load-displacement responses of the two models with 

strong and weak circumferential mortar joints, while Figure 6-22 shows the contours of 

plastic deformations in the backfill and the plastic work in the interface elements of the arch. 

As for masonry arches (see Section 5.2.2), defects in the brickwork lead to ring separation 

which starts at a very low loading level and develops from the left haunch up to the crown of 

the bridge. This strongly influences the load capacity of the bridge which is notably lower 

than the ultimate load for the bridge with no defects in the brickwork (strong joints). 
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(a) 

 
 

Wcr1 (N/mm) 

(b) 

Figure 6-22: Contours at final step of the analysis for (a) equivalent von Mises plastic deformations in the 

backfill; (b) interface plastic work in the arch barrel for a masonry bridge with defects in the brickwork  

 

6.2.3.3 Influence of loading position 

In this section, the effects of the loading position on the structural behaviour of masonry arch 

bridges are analysed. The reference bridge (Bridge 3-3) has been investigated considering (i) 

a live load applied on the top surface of the backfill above the mid-span of the arch barrel 

(Load 1), (ii) a live load at the quarter span (Load 2) and (iii) a live load at one-eighth span 

(Load 3). Figure 6-23 displays the three FE meshes and the loading positions. Figure 6-24 

shows the deformed shapes, while Figure 6-25 compares the load-displacement curves. In 

Figure 6-26 and 6-27, the contours of plastic deformations in the backfill and the plastic work 

contours in the interface elements of the arch barrel are presented. 

In all the cases, radial cracks developed below the load and at the two springings. The 

analyses for Load 1 and Load 3 stopped because of convergence problems, thus the ultimate 

loads for these two cases should be considered as conservative predictions. The numerical 

curves confirm than the maximum load is reached when the load is applied at the one-eighth 

span. The responses of the other two cases are quite similar until the load level when the 

analysis for Load 1 stopped. 
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(a) Live load at mid-span – Load 1 

 

(b) Live load at quarter span – Load 2 

 

(c) Live load at 1/8 span – Load 3 

Figure 6-23: FE meshes and Loading positions (a) Load 1, (b) Load 2 and (c) Load 3 

 

  

Figure 6-24: Load-displacement curves for different loading positions 
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(a) Load 1 

 

(b) Load 2 

 

(c) Load 3 

Figure 6-25: Deformed shapes for (a) Load 1, (b) Load 2 and (c) Load 3 

 

  

(a) Load 1 

  

(b) Load 2 

  

(c) Load 3 

Figure 6-26: Plastic deformation in the backfill for (a) Load 1, (b) Load 2 and (c) Load 3 



Chapter 6                                        Mesoscale Partitioned Analysis of Masonry Bridges 

250 
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(a) Load 1 

  (N/mm) 

(b) Load 2 

 (N/mm) 

(c) Load 3 

Figure 6-27: Interface plastic work Wcr1 contour for (a) Load 1, (b) Load 2 and (c) Load 3 

 

6.2.3.4 Influence of rise-to-span ratio 

Similar to the analyses on brick-masonry arches presented in Section 5.2.1, a numerical study 

has been conducted to analyse the response of segmental arch bridges characterised by the 

most common rise-to-span ratios as found in a number of existing masonry arch bridges 

(Brencich & Morbiducci, 2007). The main geometrical properties of the three analysed 

bridges are reported in Table 6-4, while the FE meshes for the three strip models are shown in 

Figure 6-28. In Figure 6-29 the load-displacement curves are compared, while the deformed 

shapes for the three bridges subject to a live load at quarter span are provided in Figure 6-30. 
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Table 6-4: Principal geometry for bridges with different rise-to-span ratio 

 Height 
Backfill depth 

at the crown 
Rise 

Ring 

thickness 

Rise-to-span 

ratio 

Bridge 1 1885 170 1500 215 1:2 

Bridge 2 1135 170 750 215 1:4 

Bridge 3 685 170 300 215 1:10 

Note: all the dimensions are in mm 

 

 

(a) Bridge 1 

 

(b) Bridge 2 

 

(c) Bridge 3 

Figure 6-28: FE meshes for (a) Bridge 1, (b) Bridge 2 and (c) Bridge 3 
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Figure 6-29: Load displacement curves for bridges with different rise-to-span ratios 

 

 

(a) 

 

(b) 

 

(c) 

Figure 6-30: Deformed shape for (a) Bridge 1, (b) Bridge 2 and (c) Bridge 3 
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capacity. However the simulation for Bridge 1 stopped because of convergence problems 

thus in this case, the maximum load is a conservative prediction. Concerning the backfill, 

plastic deformations (Figure 6-31) formed below the load and at the interface between the 

arch and the fill (Figure 6-32). These were mostly concentrated around the left haunch of the 

arch for Bridge 1 and Bridge 3, while in the case of Bridge 2 plastic deformations developed 

also above the three quarter span of the arch. Mainly radial cracks formed in the mortar bed 

joints below the load in Bridge 1; four main radial cracks transformed the arch of Bridge 2 

into a mechanism with significant plastic sliding and separation at the arch-fill interface.  

Finally radial cracks combined with ring separation at the left haunch characterised the 

nonlinear behaviour of Bridge 3. 

 

 

(a) 

  

(b) 

 
 

(c) 

Figure 6-31: Plastic deformations contour of backfill for (a) Bridge 1, (b) Bridge 2 and (c) Bridge 3 
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(a) Bridge 1 
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(b) Bridge 2 

 

(N/mm) 

(c) Bridge 3 

Figure 6-32: Plastic work Wcr1 contour in the interface elements for (a) Bridge 1, (b) Bridge 2 and (c) 

Bridge 3 

 

6.2.3.5 Influence of abutment movements 

In this section the effects of movements at the abutments are investigated. As pointed out by 

Melbourne et al. (2006), differential displacements at the abutments and the piers resulting 

from the instability of the foundations is one of the most common causes of deterioration for 

masonry arch bridges. 

Three different displacement modes have been considered. These include vertical downward 

uniform displacements, horizontal inward and horizontal outward movements. In the 

numerical simulations, all the nodes of the left arch springing and at the base of the backfill 

extending from the arch to the left have been subject to prescribed displacements, which have 

been increased up to collapse. Reaction forces obtained from the left abutment bottom surface 
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and the arch left end surface are plotted against the support movement in Figure 6-33. The 

three failure modes are depicted in Figure 6-34, where Figure 6-35 shows the imposed 

displacement at the left abutment against the reaction forces. As in the case of masonry 

arches, the formation of a mechanism is associated with a softening branch. However in this 

case the contribution of the backfill mitigates the force reduction, especially in the case of 

vertical settlement. 

Figure 6-36 displays the contours of plastic deformations in the backfill and Figure 6-37 the 

plastic work in the interface elements of the arch. It can be seen that by increasing the vertical 

displacement at the left abutment, two main radial cracks form in the arch barrel at about the 

quarter and the three quarter span. In this case, the plastic deformations in the fill form at the 

arch-fill interface from the crack at the quarter span to the crown of the arch and extend to the 

top of the backfill domain. The failure mode under horizontal inward displacements is 

characterised by three main radial cracks at the two springings and at the crown. Also in this 

case plastic deformations in the backfill develop above the cracks up to the top of the backfill. 

Finally when the bridge is subjected to horizontal inward displacement at the left abutment, a 

local failure occurs at the left springing with cracks also in the masonry bed joints at the 

opposite haunch and plastic deformations in the backfill at the left springing and at the 

arch-fill interface at about the three quarter span. 
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Figure 6-33: Numerical results for Bridge 3-3 subjected to different support movement 

 

 

(a) Vertical differential settlement of support 

 

(b) Horizontal spread of support 

 

(c) Horinzontal inward displacement at the abutment 

Figure 6-34: Deformed shapes for Bridge 3-3 subject to different abutment displacements 
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(a) Vertical settlement of support 

  

(b) Horizontal spread of support 

 
 

(c) Horizontal inward of support 

Figure 6-35: Equivalent von Mises plastic deformations in the backfill for Bridge 3-3 subject to different 

abutment displacements 

 
 

(a) Vertical differential settlement of support 

 
 

(b) Horizontal spread of support 

 
 

(c) Horizontal inward movement at the abutment 

Figure 6-36: Plastic work Wcr1 contour in the interface elements in the backfill for Bridge 3-3 subject to 

different abutment displacements  



Chapter 6                                        Mesoscale Partitioned Analysis of Masonry Bridges 

258 

 

6.2.4 Full 3D model analysis 

Numerical simulations have been carried out considering a full 3D representation of Bridge 

3-3 subject to a line load uniformly distributed on the top of the backfill along the width of 

the bridge. 

6.2.4.1 Model description 

Thanks to the symmetry of the bridge response about the vertical plane at the longitudinal 

axis of the bridge, a FE mesh representing only half bridge has been considered (Figure 6-37). 

As opposed to the strip-model, five set of solid elements along the width of the arch have 

been utilised allowing the representation of the transverse behaviour of the bridges and a 

more realistic description of the contribution of the lateral walls. According to the proposed 

modelling strategy for masonry arch bridges (see Section 3.4) the lateral wall is modelled 

with 15-noded solid elements as an extension of the backfill domain. Thus in the FE mesh 

(Figure 6-37), one longitudinal strips of solid elements represents the lateral wall, the 

remaining four the backfill. The dimension of the solid elements for the lateral wall along z 

corresponds to the actual thickness of the wall equal to 330mm, while the same dimension for 

the solid elements of the backfill is 277.5mm.  

Fixed supports have been assumed at the abutments (bottom of the fill domain on the left and 

the right of the arch), while the transverse displacements (along z in Figure 6-37) at the nodes 

on the vertical plane at the bridge longitudinal axis have been restrained to allow for 

symmetry condition. 
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Figure 6-37: 3D FE mesh for Bridge 3-3 

 

The same material properties for masonry and the backfill adopted in the strip-model (Section 

6.2.2) have been adopted, while for the masonry spandrel wall, the elastic properties in Table 

6-5 have been considered. 

Table 6-5: Elastic properties for spandrel walls 

Elastic modulus 

Ew (N/mm
2
) 

Poisson’s ratio 

νw 

Unit weight 

ρw (kN/m
3
) 

16000 0.15 22.7 

 

The 3D model comprises 480 20-noded solid elements and 1948 16-noded nonlinear interface 

elements for the arch, 2035 15-noded solid elements for the backfill and the lateral walls, and 

240 interface elements at the boundary between the arch and the fill. This corresponds to 

77,493 degrees of freedom which makes the nonlinear analysis of the bridge impractical 

when using conventional computational resources with a serial code.  

Thus to improve computational efficiency, the partitioning scheme illustrated in Figure 6-38 

has been considered. This has been generated using Caim, a semi-automatic mesher 

developed at Imperial College (Rodriguez-Villares, 2014) and includes 11 child partitions for 

the backfill and the lateral wall and 120 partitions for the arch, where the parent structure 

collects the 2747 nodes at the interface between the arch and the backfill. 

y 

x 

z 
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(a) 

 

(b) 

Figure 6-38: Partitioning strategy for (a) backfill and (b) arch barrel 
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6.2.4.2 Numerical results 

Nonlinear analyses have been performed utilising the 3D description for Bridge 3-3 described 

before. The numerical simulations have been carried out using 48 2.66 GHz Intel Xeon 

Processors X5650 cores. A wall-clock time limit of 60 hours has been assigned to each 

analysis. This has not allowed the prediction of the bridge failure, as most of the analyses 

stopped at a load of about 110kN because of the time constraint. However comparisons 

between the results obtained by the strip-model and those determined by the full 3D model 

enabled the investigation of the transverse behaviour of the bridge and the influence of the 

lateral walls on the bridge response.  

Figure 6-39 shows the deformed shape at the last step of the nonlinear analysis, while Figure 

6-40 compares the strip-model prediction against the load-displacement curve achieved by 

using the full 3D description. The latter curve shows higher stiffness which is mainly 

associated with the longitudinal stiffening contribution of the lateral walls. 

 

 

Figure 6-39: Deformed shape at last step of analysis 
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Figure 6-40: Load-displacement curves at quarter spans 

 

The displacements at the quarter span along the arch width at different loading levels are 

displayed in Figure 6-41, where also the strip model predictions are shown. It can be seen that 

by increasing the load the displacement distribution becomes less uniform. This is due to the 

development of plastic deformations in the backfill (Figure 6-42). Thus, the displacements 

close to the spandrel walls are notably lower than those at the mid-width of the arch which 

are well approximated by the strip-model. 

 

Figure 6-41: Displacement along the arch width at different loading levels for the 3D model of Bridge 3-3 
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Figure 6-42: Equivalent von Mises plastic deformations of backfill at last step of analysis for the 3D 

model of Bridge 3-3 

 

The plastic deformations in the backfill are not uniform (Figure 6-42) because of the 

transverse effects and the interaction with the lateral wall. The maximum values are located 

close to the arch mid-width. The transverse effects give rise also to notable normal stresses in 

the arch (Figure 6-43) along the transverse direction. At higher loading level these may 

induce the development of longitudinal cracks in the arch barrel. 
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(a) Longitudinal stress σxx 

 

 

(c) Transverse stress σzz 

Figure 6-43: Stress contour for the masonry arch barrel of the 3D model of Bridge 3-3 

 

The influence of the lateral wall characteristics on the arch response has been analysed 

comparing the numerical results obtained adopting different Young’s modulus values for the 

lateral wall. Three different values of the elastic modulus Es = 5000N/mm
2
, 10000N/mm

2
, 

and 16000N/mm
2
 have been considered. These three values represent different types of 

brickwork, in which 16000N/mm
2
 is a reference value reported in the literature for masonry 

structures made of new brickwork (Wang, 2004), while 5000N/mm
2
 is suggested for 

historical brick-masonry. 
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Figure 6-44: Load displacement curves for 3D model with different spandrel walls 

 

Figure 6-44 shows the responses for the vertical displacement at mid-width quarter span of 

the arch barrel against the applied load. It can be noticed that, in this specific case, the initial 

stiffness of the bridge along the longitudinal direction is only marginally influenced by the 

spandrel wall elastic properties. The same can be seen for the evolution of the transverse 

displacements shown in Figure 6-45, where the displacements across the arch width are only 

slightly affected by the lateral wall stiffness. On the other hand, the maximum values of 

plastic deformations in the backfill (Figure 6-46) and the normal stresses along the 

longitudinal (Figure 6-48) and the transversal direction (Figure 6-49) in the arch barrel 

(Figure 6-47) and in the lateral walls seem to be more dependent on the lateral wall stiffness, 

where the model with highest Young’s modulus for the lateral wall shows highest plastic 

deformation and stress values. 

 

0

10

20

30

40

50

60

70

80

90

100

-0.1-0.08-0.06-0.04-0.020

L
iv

e 
lo

a
d

 (
k

N
) 

Vertical displacement (mm) 

E = 16000MPa

E = 10000MPa

E = 5000MPa



Chapter 6                                        Mesoscale Partitioned Analysis of Masonry Bridges 

266 

 

 

 

 

Figure 6-45: Vertical displacements across the width for bridges with different spandrels 
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 Es = 10000MPa       Es = 16000MPa 

 

 

Figure 6-46: Equivalent von Mises plastic deformations in backfill for bridges with different spandrels 
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Figure 6-47: Spandrel wall longitudinal stress contour for bridges with different spandrels 
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Figure 6-48: Arch longitudinal stress contour for bridges with different spandrels 
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Figure 6-49: Arch transverse stress contour for bridges with different spandrels 

 

6.3 Analysis of a large stone-masonry bridge 

According to the proposed numerical strategy for masonry arch bridges, the detailed 3D FE 

model is incorporated within an advanced partitioning approach (Jokhio, 2012; Jokhio & 

Izzuddin, 2013) to improve computational efficiency. In this section, the computational 

performance provided by using different partitioning techniques for the analysis of a realistic 

stone-masonry bridge is investigated. 
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The analysed structure corresponds to the Bargower Bridge, a 10m single span 

stone-masonry arch bridge which was constructed in 1895 with a semi-circular profile. In 

1986, the bridge was tested to collapse within the scope of a research program conducted by 

the Transport and Road Research Laboratory (Hendry et al., 1986a). The principal geometry 

of the bridge is reported in Table 6-6. 

Table 6-6: Principal geometry for Bargower Bridge (Hendry et al., 1986a) 

Arch 
Span (mm) Rise (mm) Ring thickness (mm) Width (mm) Number of units 

   10000 5000 558 8680 53 

Backfill 
Depth at the crown (mm) Width (mm) Length (mm) 

1200 8680 1000 

Spandrel 

walls 

Depth at the crown (mm) Thickness (mm) Length (mm) 

1200 1400 1000 

 

6.3.1 Model description 

As before, the mesoscale strategy for brick\block-masonry developed in (Macorini & 

Izzuddin, 2011) is considered for representing the stone-masonry arch taking into account the 

actual masonry bond on the face of the bridge. On the other hand, the backfill and the lateral 

walls are modelled using 15-noded solid elements. Thus the adopted FE mesh (Figure 6-50) 

consists of 53×6 solid elements, 52×6 interface elements for radial bed joints and 53×5 for 

circumferential mortar head joints and potential fracture planes in the stone blocks. Other 

53×6 interface elements are used to represent the physical interface connecting the arch barrel 

to the backfill. Fixed supports are assumed at the two springings to account for the rigid 

abutments. Besides, the bottom surfaces of the backfill at each side of the arch barrel are also 

fixed.  

Elastic analyses have been carried out applying a line load (total load P = 100kN) at the top 

of the backfill at the third span of the arch in 5 steps. The elastic material properties for the 

component materials used in the analyses are reported in Tables 6-7, 6-8 and 6-9. 
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(a) Elevation view 

 

(b) 3D view 

Figure 6-50: FE mesh for the Bargower Bridge (a) elevation and (b) 3D view 
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Table 6-7: Elastic properties of stone units for elastic analysis of Bargower Bridge 

 
Elastic modulus 

E (N/mm
2
) 

Poisson’s ratio 

ν 

Stone block 1.41×10
4
 0.15 

  

Table 6-8: Elastic properties of mortar interface elements for elastic analysis of Bargower Bridge 

 

Normal stiffness  

Kn (N/mm
3
) 

Tangent stiffness  

Kt (N/mm
3
) 

Mortar interface 90 40  

Stone-stone interface 110
5
 110

5
 

 

Table 6-9: Elastic properties of backfill for elastic analysis of Bargower Bridge 

Elastic modulus, E 

 (N/mm
2
) 

Poisson’s ratio 

 ν 

Unit weight 

(kN/mm
3
) 

500 0.20 19.1 

 

6.3.2 Computational efficiency and solution accuracy 

As before, to improve computational efficiency the detailed model for the bridge has been 

implemented into the partitioning approach developed previously at Imperial College (Jokhio, 

2012). The performance provided by using different partitioning techniques has been 

compared in terms of speed-up S. As discussed in Chapter 4, this is usually defined as the 

ratio between the wall-clock time required by a monolithic simulation and that needed by a 

partitioned model. However in this specific case, the monolithic model required an excessive 

memory allocation which did not allow a numerical simulation using a serial code. Thus a 

model with only two partitions has been assumed as the reference model for calculating S. In 

this “basic” partitioned model, one partition represents the backfill and the other the masonry 
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arch. The parent structure corresponds to the set of nodes at the partition boundaries between 

the two domains. 

The characteristics of the different partitioned models are reported in Table 6-10. These 

include models with flat partitions, hierarchic partitions and partitions with master-slave 

coupling at the partitioned boundary. For each model, the table presents the number of 

partitions along the longitudinal (x) and transverse (z) directions, the partition level (e.g. 1 for 

flat partitioning, > 1 for hierarchic partitioning) and the number of processors employed in 

the numerical simulations. Also the analyses considered in this section were performed using 

2.66 GHz Intel Xeon Processors X5650 cores. Again, each partitioned model is named as 

P-n-flat/hier/mslc/hiermslc, where n stands for the number of child partitions, flat for single 

level partitioning method, hier means multi-level hierarchic paritioning, mslc means single 

level partitioning with multi-dimensional master-slave coupling at partition boundary and 

hiermslc multi-level hierarchic paritioning with master-slave coupling.  

All the FE meshes have been generated using Caim (Rodriguez-Villares, 2014). Figure 6-51 

illustrates the elevation of the subdivision in super-elements at the lowest hierarchical level 

for some of the analysed models. 
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Table 6-10: Characteristics of partitioned models and speed-up values 

 

Arch 

partition 

z     x 

Backfill 

partition 

No. 

Arch levels 

No. 

Backfill levels 

No. 

Processors 
S 

P-2-flat 
1 1 

1 1 4 - 

P-2-mslc 1 1 4 1.47 

P-8-flat 
01×02 03×02 

1 1 12 1.26 

P-8-mslc 1 1 12 1.89 

P-30-flat 

01×03 09×03 

1 1 34 1.11 

P-30-mslc 1 1 34 1.63 

P-30-hier 1 2 37 1.12 

P-30-hiermslc 1 2 37 2.22 

P-60-hier 
01×06 18×03 

2 3 48 0.69 

P-60-hiermslc 2 3 48 1.95 

P-141-hier 
01×06 45×03 

2 3 48 0.49 

P-141-hiermslc 2 3 48 1.28 

P-188-hier 
53×01 45×03 

1 3 48 0.35 

P-188-hiermslc 1 3 48 0.82 

 

   

P2 P8 P30 

   

P60 P141 P188 

Figure 6-51: Child structures at lowest hierarchical level used for the different partitioned models of 

Bargower Bridge 
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Table 6-10 reports also the S values for the different models, where the wall-clock time for 

the “basic” partitioned model is tsm = 6,793s, while the fastest execution took tP030 = 3,066s. 

This is associated with the model P-30-hiermslc which utilises master-slave coupling at the 

partition boundaries. Similar results have been obtained in the mesoscale partitioned analysis 

of masonry arches (see Section 4.4.2). However the use of hard (e.g. master slave) coupling 

leads to some errors in the solution as shown in Figure 6-52, where the normal stresses in the 

masonry bridge modelled using alternative partitioning techniques are compared. It can be 

seen that the models employing master slave coupling predict higher local stresses which is 

due by the use of rigid internal constraints. 

 

  

(a) P-2-flat (b) P-2-mslc 

  

(c) P-30-hier (d) P-30-hiermslc 

 

σyy (N/mm
2
) 

Figure 6-52: Normal stress distribution along the vertical direction at the last step of analysis 
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6.4 Conclusions 

In this chapter the accuracy and potential of the proposed detailed modelling strategy for 

masonry arch bridges has been shown. Initially a simplified and efficient strip-model, 

developed assuming rigid spandrel walls, has been used in the numerical-experimental 

comparisons of the structural response of a brick-masonry bridge in terms of the ultimate 

loading capacity and initial stiffness. It has been shown that the proposed model enables an 

accurate prediction of the cracking in the arch, and to capture the actual collapse mechanism 

providing a good prediction of the initial stiffness and the load capacity. In this respect the 

contribution of the backfill is critical, where an explicit modelling of the backfill domain 

including its elastic and plastic characteristics is required to achieve realistic results. 

Moreover it has been found that also the representation of the physical interface between the 

arch and the fill plays a significant role, and an adequate nonlinear description allowing for 

separations and plastic sliding should be used for taking into account its contribution. 

The strip-model has been used in parametric studies to analyse the influence of the backfill 

material and brickwork parameters on the response, and the effects of the loading position, 

the geometrical characteristics of the arch and potential movement at the abutment. It has 

been found that a variation of the fill parameters within realistic limits can lead to a 

significant change of the initial stiffness and the ultimate load, but not in the collapse 

mechanism. On the other hand, defects in the brickwork may cause more substantial changes 

in the response, where the cracking pattern is governed by ring separation which leads to a 

notable reduction of the load capacity. As for brick-masonry arches (see Chapter 5), the 

loading position and the arch shape influence the development and location of the cracks in 

the arch, where ring separation can occur in shallow arches also with good quality brickwork.  

Different failure mechanisms induced by movements at the abutment have also been 

investigated, finding that they are associated with a different number and position of radial 

cracks, and that these mechanisms generally show a more ductile response when compared 
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with the failure behaviour of masonry arches caused by support movements which is more 

brittle. 

Full 3D analyses have been performed considering an accurate 3D description for the bridge. 

Due to the significant computational cost, and the limit in the computing time (60 hours), the 

numerical simulations did not allow the investigation of the failure mechanism. However 

they provided significant information on the interaction between the different bridge 

components leading to a complex longitudinal and transverse response. 

Finally the computational efficiency guaranteed by the use of different partitioning strategies 

has been investigated. As in the case of masonry arches, it has been found that the use of 

master-slave coupling at partitioned boundaries provides the highest speed-up but it 

introduces errors mainly in the stress distribution. In the case of masonry arch bridges, the 

use of master-slave coupling may introduce more errors because the arch-fill interaction is 

dominated by the behaviour of interface elements between the arch and the fill which cannot 

be replaced using rigid connection. Thus further research should be carried out to enhance the 

speedup of the proposed advanced modelling technique in analysing large masonry arch 

bridges.
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7 Conclusions and Future Work 
 

CHAPTER 7 

Conclusions and Future Work 

7.1 Introduction 

Previous experimental research (e.g. Page, 1993; Hendry et al., 1986b) conducted to study the 

behaviour of masonry bridges under static loading showed that the response up to collapse 

derives from a 3D interaction between the different structural and non-structural components, 

eventually leading to the collapse of the arch barrel. Current practical assessment methods 

founded upon the elastic (e.g. Pippard & Chitty, 1951) and plastic (e.g. Heyman, 1982) 

principles and most of the advanced modelling techniques for masonry bridges based upon 

1D (e.g. Crisfield, 1984) or 2D (e.g. Choo, Coutie & Gong, 1991b) representations disregard 

such 3D interaction. Moreover most of previous modelling approaches (e.g. Boothby & 

Roberts, 2001) describing the 3D geometrical characteristics of masonry bridges employ the 

macroscopic approach for representing material nonlinearity at the structural scale, thus they 

do not allow for the specific masonry bond and the consideration of potential defects in the 

brickwork, which may determine the behaviour of these complex structural systems. To 

overcome the intrinsic limitations of current response prediction techniques for masonry 

bridges, this research has been devoted to developing a novel detailed 3D modelling approach 

for masonry arches and bridges, and the use of this advanced strategy in nonlinear analysis 

for accurate response predictions. This is to enhance the understanding of the actual response 

up to collapse, considering different geometrical and material characteristics, loading and 
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boundary conditions. The research objectives stated in Chapter 1 have been met by 

completing a research program comprising four main parts, which were described in Chapters 

2 to 6. The main results are discussed in the conclusions below, which are then followed by 

some proposals for future work on the modelling and analysis of masonry arch bridges. 

7.2 Conclusions 

The main results achieved in this research, which concern (i) the development of an accurate 

mesoscale description for brick/block-masonry arches, (ii) the nonlinear analysis of masonry 

arches subject to static loading, (iii) the development of a 3D modelling strategy for masonry 

bridges and (iv) the nonlinear analysis of realistic masonry bridges under static loading, are 

discussed below. 

7.2.1 Mesoscale description for brick/block-masonry arches 

The use of an advanced mesoscale strategy for brick/block-masonry previously developed at 

Imperial College (Macorini & Izzuddin, 2011) has been considered to overcome the inherent 

limitations of previous 3D modelling approaches for masonry arches. Solid and nonlinear 

interface elements are employed to offer an accurate prediction of the development of 

damage and cracks in the masonry. In the case of large arches, a partitioning approach 

allowing for parallel computation (Jokhio & Izzuddin, 2013; Jokhio, 2012) is adopted to 

increase computational efficiency. Moreover a specific geometrical description for skew 

arches has been developed, considering the rules for the helicoidal method used to build old 

skew arches in masonry bridges. The accuracy and the effectiveness of the adopted mesoscale 

modelling approach have been investigated. Experimental-numerical comparisons have been 

carried out, showing that the proposed numerical description allows for a realistic response 

prediction up to collapse. The development of damage and the most critical failure 

mechanisms of multi-ring square and skew arches can be predicted with good accuracy. 

Besides, parametric studies have been conducted to investigate the influence of the mesoscale 
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material parameters on the response prediction, and to define the most computationally 

efficient mesoscale modelling strategy for square and skew arches. Moreover, it has been 

found that in the case of square arches under line loads applied uniformly across the width of 

the arch, an efficient strip-model, accounting for the actual masonry bond only on the face of 

the arch, provides accurate results. On the other hand, when analysing skew arches a “full” 

3D description describing the actual 3D masonry bond should be considered for accurate 

response predictions. Finally, the efficiency provided by different partitioning schemes has 

been assessed. Significant speed-ups have been obtained when a large number of partitions 

and master-slave coupling (Jokhio, 2012) at the partition boundaries are used. In this case, as 

opposed to the use of standard flat or hierarchic partition techniques, some local errors, 

especially in the stress distribution at the partition boundaries, may affect the numerical 

results. 

7.2.2 Nonlinear analysis of brick/block-masonry arches 

The response up to collapse of square and skew brick-masonry arches has been investigated 

using the proposed mesoscale description, and considering the effects of (i) rise-to-span ratio, 

(ii) loading position, (iii) masonry bond and defects in the brickwork, (iv) abutment stiffness 

and (iv) support movements. It has been found that the rise-to-span ratio considerably 

influences the response. Deep arches or arches with an intermediate rise-to-span ratio, such as 

1:4, generally show a typical four hinge mechanism, while shallow arches typically with 

rise-to-span ratio smaller than 1:8 may fail by a combination of radial cracks and ring 

separation. Moreover the failure mode strongly depends upon the load position, as line loads 

close to the springings may induce a brittle collapse also for arches with high rise-to-span 

ratio. It has also been shown that defects (e.g. weak material, mortar debonding) in the 

brickwork generally lead to ring separation even at very low loading levels. On the contrary, 

in masonry arches without defects, ring separation can be rarely found. Further analyses have 

confirmed that brick-masonry arches can support live loads also after the formation of a 
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mechanism due to differential support movements. This additional load bearing capacity 

depends upon the mount of abutment displacement. 

7.2.3 Mesoscale description for brick-block-masonry bridges 

According the proposed modelling strategy for masonry bridges, the mesoscale modelling 

technique for masonry arches described before has been coupled with an effective nonlinear 

modelling description for the backfill and the arch-backfill interaction. In this respect, an 

accurate and robust elasto-plastic model for soil material has been selected and implemented 

into ADAPTIC (Izzuddin, 1991). This is used within a continuum description with solid 

elements to represent the backfill and the lateral walls. The arch-backfill interaction is 

modelled by nonlinear interface elements, which consider the frictional characteristics of the 

physical interface between the arch and the fill. As before, to improve computational 

efficiency, the detailed 3D description is incorporated within a partitioned approach 

developed previously at Imperial College (Jokhio & Izzuddin 2013; Jokhio, 2012). 

7.2.4 Nonlinear analysis of brick-masonry bridges 

The accuracy of the proposed detailed modelling strategy for masonry arch bridges has been 

checked in numerical-experimental comparisons. Initially, simplified and efficient 

strip-models have been used. It has been shown that the proposed modelling approach 

enables an accurate prediction of cracking in the arch and the actual collapse mechanism, 

providing a good prediction of the initial stiffness and the load capacity. In this respect the 

contribution of the backfill is critical, where an explicit modelling of the backfill domain 

including its elastic and plastic characteristics is required to achieve realistic results. The 

strip-model has been used in parametric studies to analyse the influence of the backfill 

material and brickwork parameters on the response, and the effects of the loading position, 

the geometrical characteristics of the arch and potential movement at the abutment. It has 

been shown that defects in the brickwork may cause substantial changes in the response, 
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where the cracking pattern is governed by ring separation which leads to a notable reduction 

of the load capacity. Different failure mechanisms induced by movements at the abutment 

have been investigated, finding that they are associated with a different number and position 

of radial cracks. Full 3D analyses have been performed considering an accurate 3D 

description for the bridge. These have shown the 3D effects including a non-uniform 

distribution of stresses along the arch width under static loading confirming the potential of 

the proposed modelling strategy for a realistic response prediction. 

7.3 Future work 

Further research is required toward the definition of efficient and accurate numerical 

strategies for representing the complex response of masonry arch bridges. This comprises 

experimental and numerical research. Additionally, the proposed advanced modelling 

approach could be used as a substitute for experimental tests towards the enhancement and 

calibration of existing practical assessment methods for masonry arches and bridges. 

7.3.1 Experimental work 

Previous experimental programs on masonry bridges did not provide detailed information on 

the mechanical characteristics of the component materials. In future experimental research, 

experimental tests on masonry arch and bridges should be coupled with specific material tests 

providing detailed information on the “mesoscale” material properties. This will allow a more 

effective validation of the proposed modelling approach. Additionally, specific experimental 

techniques to be used on site on existing structures should be developed again to obtain 

mesoscale material parameters. This will allow the use of the proposed numerical strategy for 

an accurate analysis of existing structural systems. 
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7.3.2 Numerical research 

According the present research, arch-fill interaction has significant influence on the overall 

behaviour of masonry arch bridges. In the proposed 3D model for masonry arch bridges, 

nonlinear interface elements are employed at the physical arch-fill interface. However, this 

technique requires perfectly matching meshes for the two domains at their actual interface. 

This renders the FE mesoscale representation for bridges with skewed arch barrels 

impractical. To overcome this intrinsic limitation, contact mechanics techniques enabling the 

representation of frictional contact between two domains with non-matching meshes could be 

used. Moreover, as the use of the partitioning approach for the analysis of masonry arch 

bridges has provided increased computational efficiency with relatively low speed-up, further 

research is required to improve this advanced modelling strategy especially when applied to 

the analysis of complex systems as masonry bridges. 
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