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Abstract

Plasmodium falciparum malaria and non-typhoid Salmonella (NTS) bacteraemia are both major causes of morbidity
and mortality in children in sub-Saharan Africa. Co-infections are expected to occur because of their overlapping
geographical distribution, but accumulating evidence indicates that malaria is a risk factor for NTS bacteraemia.
A literature review was undertaken to provide an overview of the evidence available for this association, the
epidemiology of malaria-NTS co-infection (including the highest risk groups), the underlying mechanisms, and the
clinical consequences of this association, in children in sub-Saharan Africa. The burden of malaria-NTS co-infection
is highest in young children (especially those less than three years old). Malaria is one of the risk factors for NTS
bacteraemia in children, and the risk is higher with severe malaria, especially severe malarial anaemia. There is
insufficient evidence to determine whether asymptomatic parasitaemia is a risk factor for NTS bacteraemia. Many
mechanisms have been proposed to explain how malaria causes susceptibility to NTS, ranging from macrophage
dysfunction to increased gut permeability, but the most consistent evidence is that malarial haemolysis creates
conditions which favour bacterial growth, by increasing iron availability and by impairing neutrophil function. Few
discriminatory clinical features have been described for those with malaria and NTS co-infection, except for a
higher risk of anaemia compared to those with either infection alone. Children with malaria and NTS bacteraemia
co-infection have higher case fatality rates compared to those with malaria alone, and similar to those with
bacteraemia alone. Antimicrobial resistance is becoming widespread in invasive NTS serotypes, making empirical
treatment problematic, and increasing the need for prevention measures. Observational studies indicate that interventions
to reduce malaria transmission might also have a substantial impact on decreasing the incidence of NTS bacteraemia.
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Background
There are thousands of serotypes of Salmonella, includ-
ing those grouped as Salmonella enterica subspecies
enterica, which can cause disease in humans, and are
normally dichotomized into those causing typhoid fever
(i.e., S. enterica subsp. enterica serotype Typhi, and
Paratyphi), and non-typhoid salmonella (NTS) serotypes
which include Enteritidis and Typhimurium [1,2]. Infec-
tions due to NTS in humans are an important cause of en-
teric infections and invasive disease [3]. Enteric infections
can lead to invasive disease which includes bloodstream
infection (bacteraemia) and/or focal disease (for example,
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pneumonia, meningitis and osteomyelitis). NTS bacter-
aemia is a major cause of morbidity and mortality in
African children and immunocompromised adults [3-8].
Invasive NTS disease has particularly been associated with
the emergence of the ST313 strain of S. Typhimurium in
sub-Saharan Africa [9,10]. In this review, NTS bacteraemia
is considered synonymous with symptomatic bloodstream
infection since the diagnosis is usually made in symptom-
atic individuals admitted in health facilities.
Malaria is caused by five species of Plasmodium para-

sites that are known to affect humans and include Plas-
modium falciparum, Plasmodium ovale, Plasmodium
malariae, Plasmodium vivax, and Plasmodium knowlesi
[11]. The greatest burden of disease is caused by
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P. falciparum and is also borne by children in sub-
Saharan Africa [11].
Paediatric NTS bacteraemia and malaria overlap in

terms of geographical distribution, age groups at greatest
risk and seasonality of both diseases in the tropics. The
effect of malaria on susceptibility to NTS bacteraemia
was suspected in British Guiana in the early part of the
last century [12], but relatively few epidemiological
studies [13-17], involving human populations were
subsequently done to better quantify or confirm the as-
sociation. Most of the epidemiological evidence in
humans is based on these studies, and on studies show-
ing parallel decreases in incidence of malaria and NTS
bacteraemia in the same geographical area over time
[18,19]. Only one of these published reports included
suitable community controls [14]. Numerous hospital-
based studies have shown higher prevalence of malaria
parasites among children hospitalized with NTS com-
pared to other bacteraemia/other admitted children
[6,13,15,16,20,21], or a higher prevalence of NTS bac-
teraemia among those with malaria parasites compared
to aparasitaemic children [4,22,23], but their interpret-
ation is very challenging, as they could be subject to se-
lection bias. Nevertheless, a number of recent studies
have improved current understanding of underlying
mechanisms, and show convincingly that malaria really
does increase the risk of NTS bacteraemia. This review
focuses on the available literature on this association in
children in sub-Saharan Africa and the underlying bio-
logical mechanisms.

Search strategy
A literature search was undertaken in the PubMed data-
base using the search terms “Malaria”, “Salmonella” and
“Africa”. Articles that reported the occurrence of malaria
and NTS in children, were selected. Additional articles
were extracted from the references lists of the full publi-
cations and from the authors’ personal collections.

Burden
NTS are one of the leading causes of bacteraemia in
sub-Saharan African countries [4-6,13,15,24-28]. They
are among the two most common causes of bacteraemia
in children [4,24-27], and also a major cause of bacter-
aemia in immunocompromised adults with HIV [5,28].
The greatest burden of invasive NTS disease is in children,
especially those under three years of age [26,27]. Incidence
rates of NTS disease among hospitalized children range
from 88–300 cases per 100,000 in some African settings
[25-27], but the actual burden may be higher than this
since a great proportion of children may not be seen in
health facilities, and high quality microbiologic diagnostics
may not always be available. In addition, estimation of in-
vasive NTS incidence based on routine blood cultures will
underestimate the true incidence due to the low sensitivity
of this technique [25,29]. The proportion of all pathogenic
isolates that are NTS, obtained from health facility-based
studies, is variable and ranges from 2-77% in children
[4,6,7,24,26,27,30,31]. Of the NTS serotypes, S.Typhimur-
ium and S.Enteritidis usually account for the majority
(>80%) of the NTS isolates in blood [5,7,15,26,30,32-37].
The great variation in the incidence of NTS in the different
studies probably indicates differences in enrolment criteria
between the studies; for example, age differences, in chil-
dren and clinical characteristics, study setting (Table 1),
underlying host factors such as differences in haemoglobi-
nopathies, and malnutrition. The burden of NTS may be
linked to the invasive potential of the dominant NTS sero-
types [9,10].
In 2013, there were 104 countries and territories

around the world in which malaria was considered en-
demic [38]. An estimated 3.4 billion people around the
world are currently at risk of malaria, and in 2012, more
than 80% of cases and 90% of deaths were in WHO Af-
rican region, with pregnant women and children aged
under five years being at highest risk [38]. Malaria due
to P. falciparum is the most common form in sub-
Saharan Africa and is responsible for the vast majority
of severe disease. Other Plasmodium species are less
common, and their association with NTS has not been
systematically studied. Both pathophysiological and/or
epidemiological factors may account for the absence of
any reported association, although there are a few re-
ports of bacteraemia and P. vivax co-infection outside
sub-Saharan Africa [39].
Although a decrease in malaria burden has been re-

corded in some African countries in the past decade,
there are still a large number of countries where no
reduction has been achieved [11]. In many countries
where a substantial decline in malaria has been
described, a corresponding reduction in the rate of
NTS has also been documented [18,19,40,41]. While
in countries with sustained high malaria burden, the
rates of NTS remain a major public health problem
[4,5,15,25,42-44]. Figure 1 shows the rates of malaria
and NTS in studies conducted in settings with different
malaria burden.
There are relatively few published studies on NTS

asymptomatic faecal carriage and seasonality in sub-
Saharan Africa. A study conducted in The Gambia
showed that NTS faecal carriage remained the same
throughout the year, as opposed to NTS bacteraemia
cases that were seasonal [17], with the peak coinciding
with the malaria season. These taken together, may sug-
gest that, malaria increases the risk of NTS bacteraemia
in those who are already infected (carriers) rather than
increasing the risk of carriage of NTS, but further studies
are needed to confirm this hypothesis.



Table 1 Studies reporting malaria and NTS bacteraemia in children
Study site n Age Study population NTS

bacteraemia
diagnosis

Malaria
diagnosis

Major findings and comments

Burkina Faso (rural) [68] 711 <15 y All admitted children with
measured fever or clinical signs of
severe illness

BC M, RDT RDT positivity rate was higher in those with NTS bacteraemia
(81%) compared to those with other bacterial infections (31%)
(p <0.001)

Tanzania (rural + urban) [16] 3,639 + 457 2 m-13 y Admitted children with measured
fever or history of fever

BC M, RDT Children with recent malaria had higher rates of NTS bacteraemia
compared to those without recent malaria (adjusted OR =4.13
(95% CI = 2.66-6.44)

DRC (mainly rural) [69] 3,311 <=14 y and adults Signs suggestive of bacteraemia
or focal signs

BC M and/or
RDT

Majority of children (82%) with Salmonella had falciparum malaria
infection, NTS not seasonal, comparison group not mentioned

Kenya (rural + urban) [5] 5,716 - Children with fever, severe
respiratory illness, admitted
patients

BC M Evidence of correlation between positive malaria cases and NTS
bacteraemia, no clear seasonal pattern, no comparison group

Kenya (rural) [14] 292 3 m-13 y Cases: admitted children whose
BC grew pathogenic bacteria

BC M or RDT Those with haemozoin in blood leucocytes were more likely to
have NTS bacteraemia compared to those without haemozoin OR
16.5 (95% CI = 3.44-79.3)

Controls: healthy children
individually matched to cases on
age, sex and residential location

Tanzania (rural) [18] 6,836 2 m-14 y History of fever, clinical signs of
severe malaria, fever surveillance

BC M and
RDT

Evidence of reduction in NTS bacteraemia associated with severe
malaria reduction

Kenya (rural) [58] 585 1-36 m Children with malaria aged
1–36 m

BC M NTS was the most common isolate in children with malaria,
comparison group not mentioned

DRC (rural) [20] 1,528 - Febrile children admitted,
hypothermia, other clinical signs

BC M 40% of NTS bacteraemia had malaria co-infection compared to
1% for typhoid bacteraemia, no seasonality of NTS

Tanzania (rural) [6] 1,502 2 m-14 y Fever + signs of severity BC M or RDT 73% with NTS infection had malaria compared to 21% for those
with typhoid fever (p < 0.01) and compared to 40% for other
bacteraemia (p < 0.01) - association more for recent than current
malaria

Ghana (rural) [64] 948, 1,032 cultures 2 m-5 y Children 2 m-5 y admitted BC - 24% of children with NTS bacteraemia had malaria infection
compared to 18% for other bacteraemia (S. pneumoniae), no
significance test mentioned

Tanzania (rural) [4] 3,639 2 m-12 y Fever, non-infectious cause of
fever excluded

BC M, RDT 52% NTS in slide positive compared to 45% in slide negative, no
significance test mentioned

The Gambia (rural + urban)
[19]

- - - BC - NTS reduction associated with malaria reduction

Kenya (rural) [22] 3,068a - Children with clinical suspicion of
severe malaria and culture results
available

BC M NTS more in parasitaemic children compared to non-parasitaemic
children (p = 0.05)

Mozambique (rural) [104] 1,780 <5 y Children <5 y with severe malaria BC M NTS among frequent bacteria in patients with severe malaria but
no evidence of association

Mozambique (rural) [26] 23,686 <15 y Children <15 y admitted BC M About 44% of bacteraemic patients had malaria co-infection. No
7comparison with control and no mention of NTS specifically
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Table 1 Studies reporting malaria and NTS bacteraemia in children (Continued)

Nigeria (urban) [118] 235 0-45 m Children with fever with or without
other symptoms

BC M Co-infection with S. enteritidis and malaria present, no mention of
control group

The Gambia (urban) [41] 871 2 m-80 y Clinically ill patients BC M NTS 20% in slide positive compared to 57% in slide negative but not
statistically significant, few cases of NTS

Tanzania (urban) [65] 1,787 0-7 y Clinical suspicion of systemic
infection

BC M No evidence of association between malaria and NTS

Malawi (urban) [24] 1,388 ≥6 m Children with severe malaria and
BC results

BC M NTS bacteraemia higher in those with severe malaria anaemia (7.6%)
compared to other severe malaria entities [CM + SMA] (4.7%) compared
to CM (3.0%) p <0.0001]

Kenya (urban) [66] 332 4 w-84 m NTS bacteraemia or gastroenteritis BC M More than half of malaria confirmed children had NTS, no seasonal
pattern. Proportion in control group not mentioned

The Gambia (rural) [27] 330 2-29 m Ill children admitted BC M or RDT No difference in proportion of malaria infection between those with
NTS infections compared to other infections

Kenya (rural) [15] 166 <13 y Children with Salmonella
bacteraemia

BC M or RDT More NTS in rainy season; recent malaria (RDT positive) but not current
malaria was a risk factor for NTS bacteraemia compared to non-
bacteraemic patients (OR = 1.8, 95% CI 1.0-3.1)

Kenya (rural) [43] 2,830 >3 y Children admitted for malaria
(parasite positive) and for other
illnesses (parasite negative)

BC M Salmonella spp. bacteraemia more common in those parasite positive.
No specific mention of NTS bacteraemia

DRC (rural) [23] 779 1 m-15 y 8 m Children with and without fever - M A positive blood smear associated with bacteraemia (including NTS).
There was enough evidence that 25% of malaria positive had
bacteraemia compared to 14% for malaria negative

Malawi (urban) [13] 2,123 <1-15 y Children with clinical suspicion
bacteraemia (febrile) and low level
parasitaemia or after anti-malarial

BC M Children with NTS bacteraemia more likely to have parasitaemia
compared to other bacteraemia (RR 2.4, 95% CI 1.46-3.96), NTS increase
in rainy season

Malawi (urban) [21] 299 0-14 y Sick children with NTS bacteraemia,
focal sepsis excluded

BC M NTS increase in rainy season, coincides with malaria, NTS associated
with severe anaemia, malaria parasitaemia compared to other causes of
bacteraemia

Kenya (rural) [63] 783 - Children with severe malaria BC M 6 out of 540 children with severe malaria (and BC results available) had
NTS, bacteraemia common in children with severe malaria

DRC (rural) [29] 120 1-15 y Clinically ill in wards and
outpatient

BC M Concurrent malaria parasitaemia and bacteraemia in 25% of cases

The Gambia (rural) [70] 2,898 <5 y Clinical signs of pneumonia,
meningitis, septicaemia

BC M Salmonella bacteraemia increased during rainy season, those with
malaria pigment more likely to be found in those with Salmonella
infections compared to other infections (RR = 4.05, 95% 1.15-14.42),
comparison not done specifically for NTS

Nigeria (rural + urban) [67] 56 <5 y Case series with positive BC,
referred

BC M Increase in cases of paratyphoid fever during rainy season

The Gambia (urban) [17] 247 Clinically ill children with positive
blood culture

BC M Patients with NTS bacteraemia had higher prevalence of malaria
parasitaemia compared to other bacteraemic patients (X2 = 9, p < 0.01)

All health facility-based studies in Table 1.
BC = blood culture, M =microscopy, RDT = rapid diagnostic test, RR = relative risk, CM + SMA = cerebral malaria and severe malarial anaemia.
aThese children were compared to 592 controls from the community.
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Figure 1 Rates of malaria and NTS bacteraemia in some selected settings of low and high malaria burdena. aStudies included in which
the slide positivity rate and the proportion of all pathogenic isolates that are NTS were both reported. x-axis corresponds to the parasite positivity
rate ie number positive for malaria/total number of slides read. y-axis corresponds to the proportion of all pathogenic isolates that are NTS ie
proportion of positive blood cultures that were positive for NTS.
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Source and transmission of NTS
In most countries in sub-Saharan Africa, the majority of
NTS infections are community acquired and believed to
be related to contaminated water, food, livestock, and
poultry [45,46], although evidence for the transmission
from animals to humans is mostly indirect [47-49].
There are few data on human-to-human transmission,
but there is emerging evidence it may occur in children
[34], and nosocomial infections have been reported in
hospital wards in South Africa [50]. NTS bacteraemia
follows entry through the gut [51], which might explain
why NTS infections are strongly associated with malnu-
trition, when the gut mucosal barrier is impaired [52].
This might also explain why NTS disease increases during
the rainy season, when the gut mucosal barrier is impaired
by malaria parasite sequestration [53,54]. Nevertheless,
some other factor, which increases in the rainy season,
may be responsible for increase in susceptibility, as season-
ality in NTS bacteraemia has also been observed in non-
malarious areas [55,56].

Risk factors for NTS bacteraemia
Generally, the risk of NTS bacteraemia is higher in chil-
dren, especially those under three years of age, com-
pared to adults [26,27]. In addition, the risk of NTS
bacteraemia tends to be higher in rural compared to
urban settings [5]. In children, the main risk factors for
NTS bacteraemia are younger age [5,6,34], anaemia (in-
dependent of malaria) [13,15,21,57], malnutrition
[15,26,58,59] especially severe malnutrition, sickle-cell
disease [60,61], HIV [15,25], and malaria [4-6,13,15,17,27].
The interactions between these risk factors (for example
malnutrition, sickle-cell disease, HIV and malaria) appear
to be complex, and beyond the scope of this literature
review.
Malaria
A number of studies have reported malaria and NTS
bacteraemia in the same populations of children in sub-
Saharan Africa [4-6,13-17,20,21,23,26,27,62-66], although
only a few of them [14-17], were specifically aimed to
evaluate the effect of malaria on the risk of NTS bacter-
aemia (Table 1). In the majority of these studies that evalu-
ated the effect of malaria on NTS bacteraemia [15-17],
health facility controls were used, and could be subject to
selection bias. Thus, comparisons of prevalence of parasit-
aemia between NTS cases with other predefined hospital-
ized patients may over or underestimate the effect of
malaria on risk of NTS bacteraemia. In malaria endemic
areas, the rate of NTS bacteraemia increases during the
high transmission/rainy season, and it is believed that mal-
aria probably contributes to the seasonality of NTS
[13,15,17,19,21,30,62,67]. A more precise description of
the association between malaria and NTS is also made dif-
ficult by variation in how different studies have defined
malaria exposure. Current malaria is usually defined as
asexual stages of P. falciparum on a blood film together
with compatible clinical symptoms, whilst recent malaria
has been variably defined based on: the presence of malaria
pigment (haemozoin) in blood leucocytes; the presence of
gametocytes but not asexual parasites on the blood film; or
a positive rapid diagnostic test (RDT) in the presence of a
negative blood film. However, many studies have defined
malaria exposure in a way that may represent a composite
of these groups. Surprisingly few studies have explicitly re-
ported the independent associations of current or recent
malaria with NTS bacteraemia.
Only two studies that explicitly reported the association

of current malaria with NTS bacteraemia in children were
identified [13,17]. A study in urban Malawi showed that
those with current malaria infection (parasitaemia) were
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more likely to have NTS bacteraemia (about two times
more) compared to those without malaria parasitaemia
(Table 1) (RR =2.4, 95% CI 1.46-3.96) [13]. In this health
facility-based study with a cross-sectional design, the con-
trols were admitted children who did not have positive
blood culture for NTS. Another study that evaluated the
effect of current malaria infection in an urban area of The
Gambia showed that patients with NTS bacteraemia had
higher prevalence of malaria parasitaemia compared to
other bacteraemic patients (X2 = 9, p < 0.01) [17].
Similarly, four studies that explicitly reported an asso-

ciation with recent malaria were identified [6,14-16]. In
a study conducted in Tanzania, the proportion of those
with a positive RDT and a negative blood film was
higher in those with NTS bacteraemia (20/45, 44%)
compared to 13/97 (13.4%) in those with other bacter-
aemia [6]. In a study conducted in rural Kenya, children
with NTS bacteraemia in a health facility were compared
to community controls in a matched case–control study
[14]. Those with haemozoin (malaria pigment) visible on
blood films were close to 17 times more likely to de-
velop NTS bacteraemia compared to those without vis-
ible malaria pigment. In addition, HbAS genotype was
associated with protection against bacteraemia, which
was mediated by the known protection of HbAS against
malaria. In the same report, which included a longitu-
dinal study, there was a reduction in the incidence of
NTS bacteraemia associated with a reduction in malaria
infection [14]. Children with detectable P. falciparum
histidine rich protein 2 (PfHRP2) and negative blood
film were about two to four times more likely to have
NTS bacteraemia compared to those without any evi-
dence of recent malaria [15,16]. A health facility-based
study in Tanzania showed that children with detectable
PfHRP2 and negative blood film were more likely to
have NTS bacteraemia compared to those without (ad-
justed OR =4.13, 95% CI 2.66-6.44) [16]. Another study
conducted in rural Kenya showed that children with de-
tectable PfHRP2 and negative blood film had a higher
risk of NTS bacteraemia compared to those without
(OR = 1.8, 95% CI 1.0-3.1) [15]. It should be noted that
this study also compared children with NTS bacteraemia
to those with other bacteraemia who were admitted in a
health facility. A recent study in health facilities in rural
Burkina Faso reported that the proportion of children
with RDT-positive malaria was higher in those with NTS
bacteraemia (81%) compared to those with other bacter-
ial infections (31%) (p < 0.001) [68], although it was un-
clear whether these RDT-positive participants had a
negative blood film. In studies that explicitly evaluated
both current and recent malaria, the association with
NTS bacteraemia was observed more [6], or solely [15],
for recent malaria. This may indicate that the mechan-
ism by which malaria causes susceptibility to NTS lags
behind the acute infection, or it may simply reflect the
time at risk, since a current malaria episode is limited
relatively quickly by seeking treatment, whereas malaria
antigens and haemozoin may persist for weeks to
months, respectively.
Despite some limitations, the aforementioned studies

have provided accumulating body of evidence that has
been consistent with an association between symptom-
atic/recent malaria and NTS bacteraemia in sub-Saharan
African children. Whilst there is evidence for the
association between symptomatic malaria and NTS bac-
teraemia, few data on the association between asymp-
tomatic malaria infections and NTS bacteraemia, were
found. There is some evidence that among children with
severe malaria, those with severe malarial anaemia have
a higher risk of NTS bacteraemia [24], suggesting that
this might be due to haemolysis. It should be noted that
this is based on relatively few studies. There is lack of
data on the risk of NTS in those with severe malaria
compared to those with mild malaria.
Some studies have reported an association between

malaria parasitaemia and any Salmonella bacteraemia
(Typhoidal or NTS) [23,69,70]. One of the studies,
which involved health facilities in a rural area in The
Gambia, showed that those with haemozoin in their
leucocytes were more likely to have invasive Salmonella
infections compared to those without haemozoin in
their leucocytes (RR = 4.05, 95% CI 1.15-14.42) [70].

Mechanisms of susceptibility to NTS bacteraemia
Host defence against invasive NTS
Studying the pathogenesis of NTS bacteraemia in
humans is difficult, but findings from animal models
have suggested a plausible sequence of events from the
arrival of NTS in the intestine to invasion, bacteraemia
and dissemination to other organs. Invasive disease begins
with invasion of epithelial and M cells of the intestine,
facilitated by the proteins of the Salmonella Pathogenicity
Island 1, Type Three Secretion System (T3SS1), which in-
duce internalization of bacteria by massive rearrangement
of the host cell membrane [51]. Bacteria then invade, or
are phagocytosed by, macrophages and dendritic cells in
the submucosa and mucosa-associated lymphoid tissues,
where another set of proteins of the T3SS2 are activated to
promote intracellular survival and replication [71,72]. Bac-
teria begin to disseminate through the lymphatic system
draining the intestine, and may also pass directly into the
blood stream. These bacteria may be carried intracellularly
in migrating cells, or become extracellular after pyroptosis
(inflammatory cell death) of infected cells. Ultimately they
reach the phagocytic cells of the reticuloendothelial system
(liver, spleen and bone marrow) and establish new foci of
infection from which they can disseminate [71]. Early con-
tainment of infection in the submucosa of the intestine is
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dependent on activation of the innate immune response
and early production of interleukins (IL) IL-1β, IL-18, IL-
23 and Tumour Necrosis Factor (TNF). This early re-
sponse solicits local chemokine production, influx of
monocytes and neutrophils and interferon-γ production
by T-cells, which is critical for control of intracellular bac-
teria [73,74]. Killing of bacteria at this early stage is par-
ticularly dependent on the oxidative burst in phagocytic
cells [75], and it is likely that antibodies against NTS are
also important in limiting this initial infection and dissem-
ination of bacteria [74]. Cell-mediated immunity is likely
to have a major contribution as infection proceeds, primar-
ily by a Th1 response (most prominently IFN-γ) facilitating
intracellular killing mechanisms [74,76]. One important
caveat, is that the commonly used model system, S. Typhi-
murium infection in the mouse, has been primarily used
as a model of Typhoid [71], and may not represent all of
the features of the most invasive ST313 strain in African
children. However, in broad terms the conclusions about
mechanisms of host defence against NTS are supported by
observations of susceptibility to NTS in humans with a
variety of primary and acquired immunodeficiencies in-
cluding: innate immune defects affecting the IL-12/IL-23/
Interferon-γ axis [77]; chronic granulomatous disease (in
which phagocytic cells cannot mount an effective oxidative
burst) [78]; MHC class II deficiency; treatment with TNF
neutralizing antibodies (for inflammatory diseases such as
Crohn’s disease and rheumatoid arthritis) [74]; and HIV
(in which impaired mucosal integrity, CD4 lymphopaenia,
immune dysregulation and abnormal antibody production
are all implicated [1,79,80].

Modulation of host defence against NTS by malaria
Numerous mechanisms have been proposed to explain
the susceptibility to NTS induced by malaria, including
impairments of: mucosal barrier function; macrophage
function; neutrophil function; and, antibody production.
Plasmodium falciparum is particularly distinguished by
its propensity for cyto-adherence of infected red blood
cells to vascular endothelium, a phenomenon known as
sequestration [53]. This is believed to permit the gener-
ation of very high parasite loads in the human body, by
avoiding clearance in the spleen, and also to contribute
to pathology by obstruction of flow in small blood ves-
sels. Extensive sequestration of parasitized red blood
cells in the microvasculature of the intestine is a com-
mon finding in post-mortem studies of fatal P. falcip-
arum malaria [54]. Impaired microvasculature blood
flow might directly lead to impaired mucosal barrier
function, and reduce resistance to invasion by NTS
[22,81]. In addition, L-arginine deficiency which is in-
duced by malaria, has been shown to increase intestinal
permeability and bacterial translocation, and may ex-
acerbate this effect [82].
Macrophage dysfunction has been one of the most at-
tractive explanations for the susceptibility to NTS in
malaria [17], because macrophages are one of the most
important cells harbouring NTS in standard models of
infection. A variety of reasons for macrophage dysfunc-
tion have been proposed including haemozoin ingestion
[83], erythro‐/haemo‐phagocytosis [84] or reduced pro-
duction of cytokines such as IL‐12 (which is necessary to
facilitate the killing of intracellular NTS) [85]. Erythro-
poietin has recently been described to have a role in the
impairment of resistance to NTS in mice [86]. Erythro-
poietin is the main regulator of erythropoiesis in bone
marrow, but its receptors are also expressed on other
cell types and appear, amongst other effects, to regulate
the inflammatory function of macrophages [87]. Consist-
ent with this, erythropoietin levels are generally elevated
in severe malarial anaemia, the major risk factor for
NTS, as would be expected as part of the homeostatic
response to severe anaemia [88]. However, an important
caveat is that it is unclear to what extent the standard
model of pathogenesis applies during malaria-NTS co-
infection, and particularly whether macrophages are the
main cell type harbouring NTS. As detailed below, neu-
trophils appear to provide a new niche for bacterial rep-
lication during co-infection and may be more important
than macrophages in this respect.
Relatively little attention has focused on the role of

humoral immunity and the effect of malaria on the nat-
ural acquisition of antibodies against NTS. Antibodies
play a clear role in protection against NTS bacteraemia,
and are usually acquired during the second year of life in
African children [76]. Malaria can suppress the gener-
ation of heterologous antibody responses, and recurrent
episodes of malaria during early childhood might sup-
press natural acquisition of antibodies to NTS, just as
they suppress antibody responses to Salmonella capsular
polysaccharide vaccine [89]. Lack of antibody may also
reduce the efficiency of neutrophil-mediated oxidative
killing of NTS [90]. Disruption of splenic architecture
during malaria is one likely mechanism for humoral im-
mune dysfunction [89], but may also directly impair the
splenic clearance of NTS [91].
Despite these many possibilities, one of the most con-

sistent and compelling observations to explain the rela-
tionship between malaria and susceptibility to NTS is
the causal role of haemolysis. Apart from malaria, several
other haemolytic diseases are associated with susceptibility
to NTS, namely sickle cell disease and Carrion’s disease
(acute Bartonellosis) [92,93]. Consistent with this, any
cause of haemolysis (including malaria infection) will in-
duce susceptibility to NTS in mice [94-96]. Interestingly,
in this model, bacteraemia is a prominent feature, as seen
in human NTS-malaria co-infections, and replicating bac-
teria are particularly found concentrated inside neutrophils
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in the blood [97]. The mechanism underlying this suscepti-
bility was shown to be an indirect consequence of host
mechanisms that promote survival in malaria. Haemolysis
can be extremely damaging if its extent overwhelms host
mechanisms to prevent liberation of free haem from
haemoglobin [98,99]. Haem oxygenase-1 (HO-1) is the in-
ducible haem-degrading enzyme, which protects against
haem-mediated toxicity and is essential for survival in mal-
aria in mice. In addition to protecting against haem tox-
icity, HO-1 and the haem-degradation products, carbon
monoxide and biliverdin, all have diverse immunomodula-
tory and cytoprotective effects. Amongst these effects,
HO-1 induction has been associated with suppression of
oxidative burst activity, which could benefit the host by
preventing oxidative cytotoxicity in severe malaria, but
might be disadvantageous when combating NTS. Indeed,
malaria was shown to cause HO-1 dependent impairment
of the neutrophil oxidative burst in mice, and this was ap-
parent during neutrophil maturation in the bone marrow
[97]. However, susceptibility was also dependent on haem,
possibly as a source of iron for the siderophilic NTS, and
could be reversed by competitive inhibition of HO-1. A
similar defect in neutrophil oxidative burst activity was
subsequently demonstrated in Gambian children with P.
falciparum malaria, which correlated with the extent of
haemolysis and HO-1 induction, and interestingly per-
sisted for weeks beyond the clearance of acute malaria in-
fection [100]. No studies have yet been performed to
investigate prospectively whether the extent of impairment
of neutrophil oxidative burst function associated with mal-
aria correlates with risk of subsequent invasive NTS
infection.

Clinical presentation and diagnosis
Clinical presentation
There is much literature on the clinical presentation of
bacteraemia but little specifically on NTS and malaria co-
infection, which is the subject of this review. Generally, the
signs of NTS bacteraemia are clinically difficult to distin-
guish from other causes of bacteraemia in children
[21,101], characterised by non-focal sepsis. Nevertheless,
data on the clinical presentation of NTS bacteraemia in
children indicate that apart from the usual signs of sepsis,
the following may be prominent: anaemia, splenomegaly,
respiratory, and gastrointestinal signs [6,13,15,21,101].
Only one study that compared clinical features in children
with co-infection with those in children with malaria
alone, was identified [6]. Anaemia, particularly severe an-
aemia, tends to occur more frequently in those with NTS
bacteraemia compared to those with malaria, or those
without bacteraemia, or those with other pathogenic bac-
teria [6,13,15,21]. A recent review of 25 studies across 11
countries in sub-Saharan Africa confirmed that a higher
proportion of children with severe malaria anaemia had
NTS bacteraemia [102]. Splenomegaly is more frequent
in children with NTS bacteraemia compared to non-
bacteraemic or other causes of bacteraemia [13,15]. Other
clinical features such as fever, jaundice, hypoglycaemia,
malnutrition, and diarrhoea have also been reported to
be more frequent in NTS bacteraemia compared to
those with malaria only or other causes of bacteraemia
[6,27]. Respiratory features have been described both
clinically and radiologically in conjunction with NTS
bacteraemia, and include signs of lower respiratory
tract infection and effusion or consolidation [15,27],
however whether these are caused by NTS itself or an-
other co-infecting pathogen remains to be determined.
White blood cell counts appear to be higher in children
with NTS compared to others [27].

Diagnosis
Blood culture is the most widely used method for diag-
nosis of NTS bacteraemia in most studies, although PCR
methods have been developed and may prove useful in
future studies [103]. The sensitivity of blood culture for
NTS in sub-Saharan African children was not found in
the published literature, but a study in HIV-infected Ma-
lawian adults suggested that the viable bacterial load in
blood is low (about 1 CFU/mL), and so small volume
blood culture samples that are often taken in children
may have limited sensitivity [80]. There are no similar
data in humans with malaria and NTS co-infection, but
in mice with co-infection, bacteria were found to be par-
ticularly concentrated in blood [97].

Complications
Data available on mortality show that the case fatality
rate for children with NTS bacteraemia ranges from 12-
24% [21,101]. A recent review published in 2012 showed
that the case fatality rates in African adults and children,
with invasive NTS bacteraemia, ranged from 20-25% [1].
Another more recent review published in 2014 showed
that mortality among those with malaria and concomi-
tant invasive bacterial infections was higher, 24.1% (95%
CI 18.86-29.36) compared to those with malaria infec-
tion alone, 10.2% (95% CI 9.33-10.98), and this higher
mortality was similar specifically for malaria and con-
comitant NTS infections [102]. In general, mortality is
higher in those with bacteraemia (including NTS), com-
pared to those without bacteraemia, irrespective of malaria
infection [4,5,25,42,58,63]. NTS bacteraemia was associ-
ated with higher risk of death in children in Tanzania [6]
compared to those with malaria. Those with bacteraemia
and malaria co-infection have a higher case fatality com-
pared to those with malaria infection only [43,104]. Thus
the presence of bacteraemia increases the risk of death in
children with malaria. The risk of death in those with bac-
teraemia and malaria co-infection is similar to those with
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bacteraemia alone [13,21], i.e., the presence of malaria does
not seem to increase the case-fatality rate in bacteraemic
patients. Among bacteraemic patients, if the aetiology of
bacteraemia is considered separately, those with NTS have
a lower mortality compared to those with other causes
of bacteraemia, like other enteric Gram-negative rods
and Streptococcus pneumoniae [13]. Anaemia, lower
age, and HIV are associated with higher risk of mortal-
ity in those with NTS [21,105]. Prior antimicrobial ther-
apy might influence the case-fatality rates associated
with bacteraemia [101].
Data on mortality among those with severe malaria

and NTS are sparse. If the different severe malaria syn-
dromes are considered in those with co-infection, then
those with severe malaria anaemia and those with
cerebral malaria have a higher mortality compared to
non-bacteraemic and compared to other severe malaria
syndromes [24,104].

Prevention and management
Prevention
The most pragmatic way to prevent malaria and NTS
co-infection may be to prevent malaria. There is abun-
dant evidence that conventional strategies to reduce
malaria transmission result in reductions in both malar-
ial and non-malarial morbidity and mortality [106-108].
Furthermore, reductions in malaria transmission (at least
partly due to control measures), in at least three distinct
epidemiological settings, have been associated with re-
ductions in the incidence of NTS bacteraemia [14,18,19].
However, most of this evidence is from observational
studies, and to date there have been no controlled trials
to confirm that reducing malaria transmission is an ef-
fective method to reduce NTS bacteraemia.
To prevent NTS bacteraemia in children who already

have malaria, targeted antibiotic prophylaxis for children
at high risk of subsequent NTS infection, for example
those with severe anaemia, may represent an effective
strategy. Another intriguing possibility is inhibition of
haem oxygenase activity with tin protoporphyrin
[97,109], and which might be administered after treat-
ment for malaria in order to reverse haem oxygenase-
1-mediated neutrophil dysfunction. Neither of these
has yet been evaluated in a clinical trial, but they may
not be difficult to combine with existing malaria treat-
ment strategies.

Vaccination
The most advanced candidate vaccine for malaria, the
RTS,S vaccine, may play an important role in reducing
malaria episodes, and consequently bolster the effect of
conventional control measures [110]. Even blood stage
vaccines, which might reduce parasitaemia without pre-
venting episodes of infection, might have a substantial
effect on reducing the risk of NTS bacteraemia, by limit-
ing the amount of haemolysis. There has been some re-
cent interest in using S. Typhimurium-Plasmodium
fusion proteins, with Salmonella flagellin improving the
immunogenicity of the parasite antigen [111]. Since Sal-
monella flagellin can also induce protective immune re-
sponses against S. Typhimurium [112], there is the
intriguing possibility that the combination of antigens
from both pathogens might result in a vaccine that is ef-
ficacious against each of them. There is currently no li-
censed vaccine to prevent NTS in humans, and most
candidates are at very early stages of development. Outer
membrane protein antigens, flagellin, and the lipopoly-
saccharide O antigen are promising targets [113], and
have been assessed in both glycoconjugate and live-
attenuated vaccination strategies [114,115]. There is a
pressing need to develop an efficacious vaccine against
invasive NTS disease, but to have maximal impact, it
will need to be safe and effective in both the youngest
children and individuals with HIV.

Management
Prior to the availability of antibiotics, it was reported
that some adults with malaria-NTS co-infection were
cured with quinine alone, implying that treatment of
malaria was sufficient to allow the host response to clear
the NTS bacteraemia [12]. Such a management strategy
would no longer be acceptable, and combined anti-
malarial and antibiotic treatment would be essential.
Malaria can usually be diagnosed rapidly (by blood film
or RDT), but diagnosis of NTS bacteraemia requires at
least 24–48 hours for growth in blood cultures (which
are unavailable in many resource-poor settings), and so
a major problem is deciding which patients with malaria
should receive empirical antibiotic therapy [4]. Recent
work by Hendrikssen et al. indicates that a quantitative
measure of PfHRP2 – which is already the basis of many
RDTs – might help to identify those most at risk of hav-
ing co-incident bacteraemia [116]. Children appearing to
have severe malaria, with either very high or very low
levels of PfHRP2 had the highest risk of bacteraemia,
and might be targeted for empirical antibiotics. Arising
from this is a second problem – what empirical anti-
biotic is most appropriate? Although NTS is often re-
ported as the most common bacterial pathogen causing
co-infections in children with malaria, other bacteria
also need to be considered, including: Streptococcus
pneumoniae, Escherichia coli, Haemophilus influenzae,
Acinetobacter species and Pseudomonas aeruginosa [22].
However, antimicrobial resistance among NTS isolates

is an increasing problem worldwide, particularly with
spread of the ST313 clone of S. Typhimurium. Multi-
drug resistance to commonly used antimicrobials, such
as ampicillin, chloramphenicol and cotrimoxazole, has
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been reported to be common in a variety of African set-
tings [26,27,30,34,117,118]. Selections of empirical anti-
biotic treatment should be made based on local
epidemiology and resistance data wherever possible,
but it is clear that many of the older (cheaper) antimi-
crobials may no longer be adequate, and treatment with
a third generation cephalosporin, or combination ther-
apy including ciprofloxacin, may be necessary to give a
broad enough coverage and reasonable chance of cure
in children with malaria and suspected bacterial co-
infection [1,4].

Conclusions
Accumulating epidemiological and preclinical evidence
supports the causal association between malaria and NTS
bacteraemia. However, the clinical characteristics and con-
sequences of malaria and NTS co-infection are not well
defined, although mortality associated with co-infection
appears higher than that associated with malaria alone. Fu-
ture observational studies (case control or cohort) aimed
at evaluating the association between malaria (stratified by
different manifestations of malaria) and NTS bacteraemia,
should include suitable controls from the communities, in
order to confirm this association. At the same time, there
is a pressing need for improved point of care diagnostics
for severe bacterial infection across sub-Saharan Africa,
both for patients without malaria and those whose malaria
infection is complicated by severe bacterial infection. Inter-
vention studies (trials), focused on reducing the burden of
malaria which include NTS bacteraemia as an endpoint,
will help to corroborate the causal relationship. A reduc-
tion in the burden of malaria is likely to simultaneously re-
duce the burden of NTS bacteraemia and should be a
priority.
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