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Abstract. Eye movements are highly correlated with motor intentions and are often 

retained by patients with serious motor deficiencies. Despite this, eye tracking is not 

widely used as control interface for movement impaired patients due to poor signal 

interpretation and lack of control flexibility. We propose that tracking the gaze 

position in 3D rather than 2D provides a considerably richer signal for human 

machine interfaces by allowing direct interaction with the environment rather than via 

computer displays. We demonstrate here that by using mass-produced video-game 

hardware that an ultra-low cost binocular eye-tracker with comparable performance 

to commercial systems more than 800 times as expensive is possible. Our head-

mounted system has 30 USD material costs and operates at over 120 Hz sampling 

rate with a 0.5-1 degree of visual angle resolution. We perform 2D and 3D gaze 

estimation, controlling a real-time volumetric cursor essential for driving complex 

user interfaces. Our approach yields an information throughput of 43 bits/s, more than 

ten times that of invasive and semi-invasive BMI that are vastly more expensive. 

Unlike many BMIs our system yields effective real-time closed loop control of 

devices (10 ms latency), after just ten minutes of training, which we demonstrate 

through a novel BMI benchmark – the control of the video arcade game “Pong”. 

 

1. Introduction 

The advancement of Brain Machine Interface (BMI) technology for controlling neuromotor prosthetic 

devices holds the hope to restore vital degrees of independence to patients with neurological and 

motor disorders, improving their quality of life. Unfortunately, emerging rehabilitative methods come 

at considerable clinical and post-clinical operational cost, beyond the means of the majority of 

patients [1]. Here we present an ultra-low cost alternative: using eye-tracking. Monitoring eye 

movement provides a feasible alternative to traditional BMIs because the ocular-motor system is 
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effectively spared from degradation in a wide variety of potential users, including those with: 

muscular dystrophies and motor neuron disease [2,3]; spinal traumas, because ocular innervation 

comes from the brain-stem; paralysis and stroke, when brain lesions occur in areas unrelated to eye 

movements; amputees; Multiple Sclerosis and Parkinson’s which affect eye movements later than the 

upper extremities; as well as for a rapidly ageing population with longer life-spans that usually results 

in progressive deterioration of the musculoskeletal system. The ability to control eye-movements can 

therefore be retained in cases of severe traumas or pathologies in which all other motor functions are 

lost. Based on the disease statistics, we find that within the EU alone, there were over 16 million 

people in 2005 (3.2% of the population) with disabilities who would benefit from such gaze based 

communication and control systems [4].  

We observe the world through discrete, rapid, focussed eye movements (saccades) acting to align the 

high resolution central vision area (fovea) of both eyes with an object of interest (fixation point). 

Visual information is vital to motor planning and thus monitoring eye-movements gives significant 

insight into our motor intentions, providing a high frequency signal directly relevant for 

neuroprosthetic control. Eye tracking and gaze-based human-computer-interaction is a long 

established field, however cost, accuracy and inadequacies of current User Interfaces (UI) limit them 

to their more common use in clinical diagnostics and research settings. Low cost eye-tracking systems 

have been developed by others using off the shelf web-cams [5, 6, 7]. However, the performance of 

these systems still does not match commercial grade systems. This is due to different combinations of 

low-frame-rate (≤30Hz), resulting in motion blur and missing saccades - requiring sample frequencies 

>100 Hz; and poor gaze angle accuracy and precision, leading to an unreliable, noisy gaze estimate. 

Currently, high performance commercial eye-tracking devices (system cost >20,000 USD) are 

primarily used to record eye-movement for academic or industrial research. This is because in 

addition to cost, there are remaining issues surrounding the effective integration of eye tracking into 

gaze based interaction systems for everyday patient use. Fundamentally, gaze-based interaction 

requires the differentiation of normal behavioural eye movements and intentional eye “commands”, 

which is known as the Midas touch problem [8]. This is a major issue for existing gaze-based 

computer interaction, which focus on monocular eye tracking to drive a mouse pointer. The ‘select or 

click’ command is usually derived from either blink detection or gaze-dwell time, both of which also 

occur in natural behaviour and thus require an extended integration time (typically in the order of 

seconds) to initiate a reliable click. We have developed an ultra-low cost binocular eye tracking 

system that has a similar accuracy to commercial systems and a frame rate of 120Hz, sufficient to 

resolve saccadic eye movements (frequency ~100Hz). We have addressed the Midas touch problem 

by distinguishing non-behavioural eye winks from behavioural eye blinks, significantly speeding up 

selection time. In the future we aim to use eye movements to control motor prosthesis for restoring 

independence to severely disabled patients. The major challenge here is to derive a practical control 
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signal from eye movements that meets the interface requirements. This must be achieved without 

being intrusive to the natural sensory function of the eyes. We aim to allow the user to interact with 

their surroundings directly rather than limiting their interactions to via their computer VDU. Towards 

this, we derive a BMI signal that provides an information rich signal for inferring user intentions in 

natural contexts: 3D gaze position. 

We interact with a three dimensional world, navigating and manipulating our surroundings. Severe 

disabilities remove this ability, vital for independence. Gaze based interaction for computer control 

works towards restoring this by facilitating interaction with the world via a computer visual display 

unit (VDU); instead we propose direct 3D gaze interaction for motor-prosthetic control. With 

knowledge of both eye positions, gaze-depth information can be obtained because the eye vergence 

system forces both eyes to fixate on the same object, allowing image fusion and depth perception. The 

intention-relevant, high-information throughput 3D gaze signal can be applied to tasks such as 

wheelchair navigation, environmental control, and even the control of a prosthetic arm. Despite the 

huge potential, 3D gaze estimation has received less attention than the 2D alternative for (mouse) 

cursor control. A major challenge of gaze estimation, particularly in 3D, is the calibration and 

adaptation of the estimation system for individual users. Existing 3D approaches can be divided into 

virtual and non-virtual methods.  Interaction with 3D stereoscopic displays using gaze estimation to 

make icon selection in the virtual volume has received some attention. For these virtual applications, 

there are currently 2 main calibration approaches: 1) Calculating the intersection point between the 

monocular gaze vector and the known virtual 3D surfaces [9]. 2) Obtaining 3D calibration points to 

learn a mapping between binocular eye positions and a virtual 3D gaze location [10]. These methods 

can only be applied with a 3D stereoscopic display.  

Gaze interaction with the non-virtual 3D environment has received less attention, though Hennessey 

and Lawrence in 2009 developed the first binocular gaze tracking system for estimating the absolute 

X, Y, Z coordinates of gaze targets in the real 3-D world [11]. Their method uses the explicit geometry 

of the eye and camera mounting to relate the pupil position in each camera image to the 3D gaze 

vector of each eye. The gaze vector is the ray that runs between the centre of the fovea in the retina, 

through the cornea to a gaze fixation point (neglecting the kappa offset between the visual and optical 

axis). To obtain the gaze vectors requires precise positioning of the cameras with full geometric 

parameterisation of the hardware setup; optical properties and a model of the eye, including the 

refractive index of the fluid inside the eyeball (vitreous fluid). Based on the vergence system, a 3D 

gaze fixation point is then calculated from the gaze vectors’ nearest point of approach. This system 

has only been demonstrated in controlled research environments, possibly because of the strict 

geometric requirements and detailed modelling of the physical system.  



Low cost 3D gaze tracking for BMIs 
 

These existing methods (virtual and non-virtual) are suitable for the controlled settings of their 

proposed applications, but limit their practicality for motor prosthetic interfaces. Stereoscopic displays 

are expensive and not very portable, while the precision set-up of geometric methods is not feasible 

with low cost hardware. We present here our portable ultra-low cost hardware with a suite of 

algorithms and realisation of a system that can estimate the absolute gaze target in X, Y and Z 

coordinates with an accuracy that rivals present methods, without complex configuration routines, the 

need for 3D display equipment or user-specific details about eye geometry. 

2. Methods 

Our presented system is composed of ultra-low cost imaging hardware and stand-alone software that 

implements our algorithms and methods for 3D and 2D gaze tracking.  

 
Figure 1. System overview. Hardware: Ultra low-lost head mounted binocular eye 

tracker built using off the shelf components including two PlayStation 3 Eye cameras 

(10 USD each), two IR LEDs, cheap reading glasses frames and elastic headband 

support. The cameras are mounted on lightweight aluminium tubing. The hardware 

total cost is 30 USD. Software: The camera frames are streamed at 120Hz via USB to 

a standard lap-top computer and the pupil positions are extracted using image 

processing (see Figure 3). A 2D user calibration allows a mapping between pupil and 

2D gaze position to be learnt. Using the 2D estimates from both eyes, a 3D gaze 

estimation can be made by estimating the vergence point. 
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2.1. Ultra-Low Cost Binocular Eye-tracking Hardware 

The video based binocular eye tracker shown in figure 1 uses two ultra-low cost video game console 

cameras (PlayStation 3 Eye Camera – 10 USD per unit), capable of 120Hz frame-rate, at a resolution 

of 320x240 pixels. This is the main cost-reducing step in our system, as typical machine vision 

cameras operating at this performance are more expensive by two orders of magnitude. To optimise 

imaging conditions, we modified the camera optics for infrared (IR) imaging at no material cost by 

removing the IR filter and replaced it with a piece of exposed and developed film negative which acts 

as a low-cost IR-pass filter. We illuminate the eyes using 2 IR LEDs aligned off axis to the camera, 

creating a dark pupil effect to enhance the contrast between the pupil and the iris. Chronic IR 

exposure above a certain threshold leads to retinal damage or the formation of cataracts [12]. This 

threshold has been reported as being between 10 and 20 mW/cm2 [12,13]. The LEDs used are Optek 

Gallium arsenide OP165D which produce an irradiance of between 0.28 mWcm-2 and 1.6 mWcm-2 

(depending on the forward voltage) measured at a distance of 1.5cm. This is well below the safety 

parameter, especially as it will be mounted at 10cm from the eye. These LEDs are powered using a 

USB cable giving a 5 volts supply with up to 500mA of current to be drawn. The driver circuit 

provides 20mA current to each LED with a forward voltage of 1.6 volts applied. The cameras are 

head mounted to maximises the eye image resolution and allow unrestrained head movement 

following calibration. The camera-mounting headset shown in figure 1 has been designed with off the 

shelf components costing 10 USD in total. The system weighs in total 135g and the cameras and their 

mounting arms exert a moment of approximately 0.1 Nm on the nose. It has been designed to allow 4 

degrees of freedom for adjustment to different users (shown in figure 2). The images from the 

cameras are streamed via two USB 2.0 interfaces to a standard lap top computer facilitating an 

accessible and portable system. 
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Figure 2. . Headset adjustability. Headset design allows the camera position to be adjusted 

with 4 degrees of freedom – (a) rotation and translation of the camera on the boom arm and 

(b) rotation of the boom arm itself. This allows adjustment to customise the system to 

different users. 

 

2.2 Eye-Tracking 

The eye-tracking methodology applies standard image-processing methods to locate the pupil centre 

in each video frame; an overview of this process can be seen in figure 3. The IR imaging system 

increases the contrast between the pupil and iris. This allows simple intensity threshold image 

segmentation, converting the grey-scale image to a binary image (figure 3(b)). In this single step the 

data volume per frame is reduced from 230 kilobytes to 9.6 kilobytes; retaining sufficient information 

to locate the pupil but reducing the subsequent computational load. Due to noise effects and other 

dark regions in the image, such as shadows and eyelashes, a pupil classification step is made. To 

reduce the complexity of the classification process, morphological operations of erosion and dilation 

were applied in a sequence: first “opening” the image, removing the dropout noise; and then “closing” 

it to fill in any holes in the pupil blob (figure 3(c)). Connected component labelling is then applied to 

assign a unique label to the pixels of each candidate pupil region. Subsequently, a shape based filter is 

applied (figure 3(d)) to classify the pupil based on maximum and minimum object size and elongation 

(axis ratio).  The pupil centre is then extracted using least squares regression to fit an ellipse to the 

classified pupil object contour – this ellipse is shown overlaid on the raw image in figure 3(e). The x 

and y coordinate of the ellipse centre (in pixels) are extracted for each eye ellipse as the pupil 

positions.  
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Figure 3.  Pupil extraction image processing pipe-line. Images intermediates include: (a) raw 

grayscale (b) binary (c) noise filtered (d) shape filtered (e) original with extracted ellipse 

overlaid. 

2.3. Calibration for 3D gaze estimation. 

The pupil positions extracted from the eye images must be related to the gaze position. A purely 

explicit method requires a rigid system set-up difficult to obtain using low cost hardware, while a 

purely implicit method requires more involved 3D calibration points.  We achieve gaze estimation in 

the real 3D environment by combining an implicit step to infer the system parameters with an explicit 

geometric step to transfer this to a 3D gaze estimate. This involves the calibration of each pupil 

position to the respective gaze positions on a computer visual display unit (2D calibration). From this 

the 3D gaze vector of each eye can be found (step 1) from which the 3D fixation point is then 

calculated (step 2). 

Step 1 – Calculating 3D gaze vectors using 2D calibration. Calibration to the 2D computer monitor 

can be made explicitly using the geometry of the system [14-17] or implicitly using a calibration 

routine to infer a mapping between pupil position (in the eye image) and gaze position (on the 

computer screen) [18,19,20]. The implicit mapping provides a more suitable solution because explicit 

methods require precise geometric knowledge of camera positions, infeasible with the low cost 

adjustable headset. To learn an implicit mapping, training data is acquired using a calibration routine 

which displays each point of a 5x5 calibration grid that spans the computer VDU.  At each calibration 

point, the pupil location of each eye is extracted from a ten-frame burst and the user’s average eye 

positions are recorded. This reduces noise effects of drift and micro-saccades. The calibration data 

points collected are used to train a Bayesian linear combination of non-linear basis functions. Second 

order polynomial basis functions were found to achieve an optimum trade-off between model 

complexity and the number of calibration points required to generalise well. Following the 2D 

calibration routine, the 2nd order polynomial mapping is used to map the position of each eye to the 

gaze position in the 2D plane of the computer monitor, at a frame rate of 120Hz. When the user 

fixates in the monitor plane, the gaze estimates of each eye are approximately superimposed as shown 

in Figure 4(a). When the user fixates outside of the monitor plane, the 2D gaze estimates diverge as 

shown in Figure 4(c). This divergence gives depth information as the 2D gaze estimates are 

effectively the intersection between the gaze vectors and the computer monitor plane (see figure 4(c)). 

The gaze vectors are calculated from the 2D gaze estimates xL, yL and xR, yR  (relative to the top left 

corner of the screen) using equations (2.1) and (2.2). This requires the relative positions of the eyes 
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and monitor to be fixed during calibration and measurements of screen height (Sheight), eye level 

(Eheight), eye to screen (Deye-screen) and inter eye distance (Einter) to be made (see figure 4(a) and (b)). 

The eye tracker is head mounted and the system is calibrated with a head-centric coordinate system 

thus following calibration the user will be free to move their head and the gaze vectors will be relative 

to the origin which lies between the eyes.  

 

 

 
Figure 4. Illustration of our 3D gaze estimation method. (a) 2D Calibration step to relate the 

pupil positions to their gaze positions in the VDU screen plane. The user is aligned with the 

horizontal screen centre and must remain stationary during calibration. The measurements 

shown are required for calibration. (b) Side view of user and computer VDU screen. (c) The 

left and right gaze estimates on the VDU are represented by the two dots (xL,yL ) and (xR,yR) 

and yield the gaze vectors shown (VL and VR). (d) The nearest point of approach on each gaze 

vector is found. 

 

Step 2 - Using the 3D gaze vectors to estimate the 3D gaze position. We use the 3D gaze vectors to 

estimate the 3D gaze position. The 3D gaze position is the vergence point of the 2 gaze vectors. Exact 

3D vector intersection is unlikely thus the nearest point of approach on each vector is found. These 

points are represented by IL and IR in figure 4(d) and are given by the parametric equations (2.3) and 

(2.4). The positions of the eyes relative to the origin are represented by IL0 and IR0 as shown in figure 

4(c) while SL and SR represent scalars to be found. 
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By definition, the nearest points of approach will be connected by a vector that is uniquely 

perpendicular to both gaze vectors - W


shown in figure 4(d) and equation (2.5). To satisfy this 

condition the simultaneous equations (2.5), (2.6) and (2.7) must hold. Substituting equations (2.3) and 

(2.4) into the simultaneous equations and solving for the scalars SL and SR , we can then obtain the 

nearest points of approach -  IL and IR. The 3D gaze estimation (G3D) is then taken as the mid-point of 

these 2 positions as shown in equation (2.8).  
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This algorithm is performed for each frame in the video streams to obtain a 3D gaze estimate at 

120Hz sampling frequency that can be used as a volumetric cursor in the development of advanced 

user interfaces for neuromotor prosthetics. 

 

2.4. Solution to the Midas touch problem 

To address the Midas touch problem the system uses non-behavioural winks to confirm gaze 

commands. Winks can be distinguished from behavioural blinks by virtue of the binocular eye-

tracking feed allowing for much shorter command integration times. In the filtered binary eye image 

(see figure 3(d)), when the eye is closed, no pupil object is located by the eye tracker, raising a closed 

eye flag. We distinguish between a left eye wink, right eye wink and simultaneous eye blinks using 
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temporal logic. For example a left wink is defined by the left eye being closed and the right eye being 

open simultaneously for more than 20 frames. The high frame rate allows for this distinction to be 

made reliably with low integration times of ~170 milliseconds. 

 

3. Results 

We group the three main contributions of this paper into the following sections: 1. High performance 

Ultra low cost binocular eye-tracking system – Eye-tracking Accuracy and precision. 2. Solution to 

the Midas touch problem and continuous control: Human computer interaction and a BMI  

benchmark for closed-loop control of devices. 3. Gaze estimation in the 3D environment: Accuracy 

and precision in 3D tasks. 

 

3.1. Eye-tracking accuracy and precision. 

To precisely estimate the eye tracking system’s accuracy, a subject was calibrated and shown random 

test points of known 3D locations in three separate trials. Each trial involved a calibration routine that 

cycled through a 5x5 calibration grid displayed on a computer monitor 50cm from the user’s eyes, 15 

randomly generated test points then followed this. The results for one trial are shown in figure 5(a). 

For each trial a new set of random test points was generated. Each test point appeared in turn and the 

user looked at the point and hit the space bar, at which point the gaze position was recorded from the 

real-time data stream. Over all trials a mean Euclidean error of 0.51±0.41 cm (standard deviation) was 

achieved at a distance of 50 cm which translates into an angular error of 0.58±0.47 degrees. 

        

Figure 5. 2D and 3D Gaze estimation test points and gaze estimates. (a) 2D gaze estimation: 

The blue circles represent the 15 randomly generated test positions displayed on the VDU and 

the red squares are the gaze estimate. (b) Three dimensional plot of 3D gaze estimation results 

for a calibration test run with test points being displayed at 4 depths – (54cm, 77cm, 96cm 

and 108cm) following 2D calibration at 54cm. The blue circles represent the real displayed 

positions and the red squares represent the gaze estimations. 

(b)

) 

(a) 
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Table  compares our system with a commercially available binocular eye tracking system. Our gaze 

angle accuracy was 0.58 deg ± 0.47 (mean±SD) and is defined as the eye-tracking signal accuracy, 

namely how precisely the viewing direction of the eye can be determined. This measure is viewing 

distance and application-independent but has direct implications for both 2D (monocular) and 3D 

(binocular) gaze target position estimation accuracy. We achieved an average of 0.58˚ while the 

reference system’s EyeLink II manufacturer specifies a typical average accuracy as < 0.5˚ – but do not 

provide more specific data or measurement approach. Our system can perform 2D or 3D gaze 

estimation, while the EyeLink II, though also a binocular eye-tracker, has software to perform 2D 

estimation only. Our system is less than 1/3rd of the mass at 135g compared to the 420g commercial 

system, and less than 1/800th of the cost with a unit cost of just 30 USD compared to the 25,000 USD 

commercial system cost.  Though the tracking range is less for our system – 6 degree smaller 

horizontally and 16 degree smaller vertically, this is an image-processing problem that will be solved. 

The frame rate is also slightly lower at 120Hz compared to the 250Hz of the commercial system, but 

is sufficiently high to resolve saccades and gives a frame rate four times that of other low-cost 

systems. 

 

Table 1. Comparison between our system (referred to here as GT3D) and the 
commercial EyeLink II. Here we make comparisons using the metrics in the EyeLink 
II technical specifications. More detailed analysis of the 3D performance is shown in 
table 3. 

Metric GT3D EyeLink IIa 

Gaze angle accuracy 0.58±0.47 ˚ <0.5 ˚ b 

Gaze estimation modes 2D, 3D 2D 

Horizontal Range 34 ˚ 40˚ 

Vertical 20˚ 36˚ 

Headset Mass 135g 420g 

Frame Rate 120 Hz 250 Hz 

Cost 30 USD 25,000 USD 
a  Information is taken from the SR Research issued Technical specification.  
b For the EyeLink II The accuracy is expressed as a “Typical Average” in Corneal 

 Reflection mode. No error measurement is given. We provide here the mean gaze 

 angle accuracy and standard deviation for our GT3D system averaged over 3 separate 

 trials. 

 

3.2. Human computer interaction and a BMI benchmark for closed-loop control of devices 

With the system in 2D mode, the user can operate a computer, performing such tasks as opening and 

browsing the web and even playing real-time games. The system does not require a bespoke graphical 

user interface, operating in a windows environment with an icon size of 3cm2. The use of wink 

commands allows the integration time to be reduced to ~170 milliseconds of wink to make a 

selection. To demonstrate real-time continuous control using the eye-tracking system, we used it to 

play classic video game "Pong". This is very simplified computer tennis where the user has to return 

the ball by moving a racket to meet the approaching ball. We chose this very simple game because it 
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can be used with a mouse input, played against a computer opponent and is readily available online. 

This allows it to be used as a very simple benchmark that other BMIs can be tested against.   

We conducted a user study (6 subjects, aged 22-30) to test closed-loop real time control performance 

for our interface. Subjects (5 first-time eye-tracking users) were calibrated using our 5x5 grid method 

and then given ten minutes to learn to play Pong and to get used to using their eyes as a control input. 

Subject hands asked to keep their hands folded in their laps. The tracked gaze position (vertical 

component) controlled the Pong paddle position on the screen, as the paddle followed the movements 

of the mouse pointer (which we directly controlled through GT3D). Thereafter subjects played 4 full 

games of Pong against the computer (up to a score of 9 points) using our interface and then 4 full 

games using their hands to control the computer mouse. The final score and number of returned shots 

are reported in table 2. On average subjects using our gaze-based approach achieved a score of 

6.6±2.0 (mean±SD across subjects) compared to the computer opponent score of 8.4±1.3 0 (mean±SD 

across subjects). Subjects made 43±16 successful returns per game and on average 25%±14% of 

games were won by the player – i.e. at least one game won out of 4. Using the mouse input, subjects 

achieved a mean score of 8.3±1.5 against computer opponent 5.5±2.7, with a mean of 53±14 player 

returned shots and 80±22% of games won by the player. In addition, we compared the zero-control 

scores (without any user input) giving an average score of 0.5±1.0 and computer opponent score of 

9.0±0.0 with a mean of 8.0±3.6 returned shots per game.  

Table 2. Pong gaming performance. For each input modality the mean and standard deviation 
for the player and computer scores, number of returned shots per game and percentage of 
player wins. 

 score   

 player computer returned shots 
total player 
wins (%) 

Our System 6.6±2.0 8.4±1.3 43±16 25±14 

Mouse input 8.3±1.5 5.5±2.7 53±14 80±22 

No input 0.50±1.0 9.0±0.0 8.0±3.6 0±0 

 

These scores form the framework for our proposed new benchmark of closed-loop real-time control 

for BMIs and we make the ready-to-use browser-based game available through our website to 

facilitate benchmarking BMI systems (http://www.FaisalLab.com/Pong). As well as the above scoring 

metric, the benchmark participants should include the amount of prior training and acclimatisation 

time of the BMI system (for our system this is ten minutes) and system/treatment costs. 

 

3.3. Accuracy and precision in 3D tasks 

To assess the 3D gaze estimation, the methodology was similar to the 2D experiment but test points 

were also displayed at different depths. Following the 5x5 2D calibration routine at a depth of 54cm, 5 

random test points were generated at 4 depths: 54cm, 77cm, 96cm and 108cm by moving the 

http://www.faisallab.com/Pong
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computer monitor. Over this workspace, the system performed with a mean Euclidian error of 5.8 cm, 

with a standard deviation of 4.7 cm. The results for this experiment are displayed on a 3D plot in 

figure 5(b). The mean absolute error and standard deviation for each dimension is shown in table 3. 

The mean depth error (Z in table 3 and figure 5(b)) is 5.1cm with a standard deviation of 4.7cm, this 

accuracy and precision is 4 times larger than the horizontal and vertical equivalent (X and Y in table 3 

and figure 5) which explain the considerably higher Euclidean error in 3D compared to 2D gaze 

estimation. The gaze angle fluctuates around a value of 0.8±0.2 ˚ (mean±standard deviation) but does 

not consistently increase with depth. The mean depth error for estimations at each depth increased 

from 4.6cm at 54cm distance from the face to 6cm at 108cm distance. This is to be expected as a 

consistent gaze angle error will cause a larger spatial error at deeper depths, particularly in the depth 

direction.  

Table 3. 3D gaze estimation performance for the results shown in figure 5. 

 

Mean Absolute 

Error (cm) 

Standard 

Deviation (cm) 

x 1.1 0.7 

y 1.2 1.1 

z 5.1 5.0 

Euclidean 5.8 4.7 

 

 

4. Discussion 

We have developed the first ultra-low cost, high-speed binocular eye tracking system capable of 2 and 

3D gaze estimation, costing 1/800th of a reference commercial system that achieves a comparable eye 

tracking performance. This system drives a mouse-replacement based user-interface for which we 

have implemented an improved solution to the “Midas touch problem”. Tracking both eyes allows for 

“wink” rather than “blink” detection, decreasing the required selection integration times by a factor of 

6. This is because when blink or dwell time is used to make a selection, we must blink or dwell for an 

extended period of time to distinguish commands from normal behavioural blinks and fixations. The 

system interfaces with the computer operating system via USB, and allows the user to browse the 

web, type on a visual keyboard and play real-time games. We demonstrate closed-loop performance 

by playing a version of the 2D video game Pong (see below).  

In the 3D domain, gaze estimation is directly applicable to motor prosthetics, with the potential to 

allow patients to interact with their surroundings. Our system can estimate the absolute real-world 3D 

gaze position in real time with a performance competitive with research systems.  Table 4 shows the 

performance comparison of our system with Hennessey and Lawrence’s system [11]. As the table 

shows, the mean Euclidean error of our system is almost 2cm higher. Hennessey and Lawrence 

calibrate their system using calibration points taken at both the nearest depth (17.5cm) and the farthest 
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(42.5cm). While for our system we calibrate at a single depth of 54 cm and our work space extends 

out to 108 cm depth from the eyes. The workspace used by Hennessey and Lawrence covers half the 

depth (25cm compared to 54cm) and though Hennessey and Lawrence do not give the workspace 

depth from the face explicitly (their coordinate system has it’s origin at a corner of the computer 

monitor) we estimate the maximum workspace depth to be 42.5cm from the eyes (see table 4 

footnote) compared to the 108 cm depth we used. At larger depths we expect the estimation accuracy 

to be poorer, as such we make a more balanced comparison by normalising the error and standard 

deviation by the workspace depth as can be seen in the second column of table 4. With this metric we 

see that our system performs with almost half the normalised Euclidian error of their system. For both 

methods we see that the error has a large standard deviation, with a magnitude similar to the mean. 

This variability is partly due to noise in the image sensors and head-set slippage, but may also be due 

to micro–saccades and drift movements of the eyes.  

We found that the gaze estimation error increased linearly with gaze target depth, as we expected for 

our method, as determining the gaze intersection point from both eyes would be limited by gaze angle 

accuracy. This relationship also held for the system presented by Hennessey and Lawrence [11], 

except for the test depth closest to the face, for which they reported an increase in error. While they 

assumed the gaze angle accuracy to be constant across depths, we measured and found our system’s 

gaze angle accuracy to be uncorrelated with depth. In the future it will be important to measure and 

compare eye-tracking systems used in BMI contexts in terms of their calibration strategy and the 

effect of behavioural and anatomical differences between subjects (e.g. [11] pooled data across 7 

subjects). A systematic large user group study, beyond the scope of this proof-of-principle paper, will 

enable us in future to extract priors for the natural statistics of gaze target to enable applying empirical 

data for principled Bayesian gaze target estimation.  

Table 4. Our 3D gaze estimation performance (referred to here as GT3D) comparison with 
Hennessey and Lawrence’s system [11]. Mean Euclidian errors and standard deviation in cm 
and as a percentage of the workspace deptha. 

 
Mean Euclidean 

Error (cm) 
Mean Euclidean 

Error (%)a 

GT3D 5.8±4.7 5.3±4.4 

Hennessey and Lawrence 3.9±2.8 9.3±6.7 
a Measurements normalised to the workspace depth over which the methods were tested. 

GT3D - 108cm from the user. Hennessey and Lawrence – the workspace is described relative 

to the corner of their computer screen rather than the user’s eyes. To allow comparison 

between our data and their data, we assume the subject’s head was 60cm away from the screen 

and we know that the depth closest to the screen is 17.5cm away which yields a workspace 

depth of 42.5 cm = 60cm-17.5cm. 

Though the performance is similar, we require only a standard computer monitor as opposed to 3D 

equipment, no information on eye geometry, optics or precise camera positioning, and following 

calibration users have complete freedom to move their heads. The resulting output is a volumetric 
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cursor which can be used for advanced interfaces to allow direct 3D interaction with the world rather 

than via a computer VDU. We present the system as an alternative and complement to direct brain 

read out by BMIs. A simple performance metric to compare different BMIs is the information 

throughput – the rate at which the BMI communication interface can decode information from the 

brain. We calculate the theoretical information throughput achievable with our system and then 

compare it to information throughputs presented in an extensive review of BMIs [21].  The 

throughput is calculated as the product of bits communicated per unit command, and the number of 

unit commands that can be made per second. In the context of our gaze interface, each fixation can be 

considered as a unit command. With a sensory estimation error of 1.1cm in width, 1.2 cm in height 

and  5.1cm in depth (mean absolute error), over a workspace of 47cm x 27cm x 108cm (width x 

height x depth), there are 2.04 x 104 distinguishable states giving 14.3 bits of information per fixation. 

On average we fixate with a rate of 3 fixations per second [22]; giving a bit rate of 43 bits/second. Our 

theoretical upper limit is significantly higher than other BMI mechanisms and the signal is obtained 

non-invasively, for a significantly lower cost. The information throughput reflects the accuracy of our 

gaze-controlled real-time continuous volumetric cursor, which yields a fast control signal with very 

low latency. Both the speed of information transmission, but also the natural role of gaze in attention 

and actions make our system highly suitable for controlling disability aids such as electric wheelchairs 

or end-points of prosthetic arms. We envisage the user tracing out their desired path using their eyes 

or looking at an object they wish to grasp and then guiding the object’s manipulation. Figure 6 

demonstrates the relationship between estimated treatment cost and bit-rates for different BMI 

mechanisms, including our system, labelled as GT3D in the plot. The treatment costs are estimated 

based on device cost as well as operational set up and maintenance costs such as surgery and 

rehabilitation costs (see also Figure 6). The information rates given in [21] may underestimate 

throughput capacities of the different BMI methods, but at least offer a basic consistent benchmark 

across different readout technologies. Our system has an estimated information transfer capacity of 43 

bits/second, which is 10 times higher than other invasive BMI approaches (see Figure 6), with closed-

loop response latencies (measured from eye movement to computer response) below 10ms.  

BMI information rates from direct recording of neuronal activity are ultimately constrained by noise 

in the recording systems and the nervous system, itself [23]. In particular physical noise sources inside 

central neurons [24, 25] and peripheral axons [25, 26] will limit decoding performance from limited 

numbers of independent neuronal sources. Thus, to compensate for noise signal decoders have to 

observe signals for longer periods of time, thereby increasing response latencies for direct BMIs at the 

moment.  While these issues will be ameliorated by the steady progress of sensor quality and density 

[27], eye movements already offer a highly accurate, low-latency (and low cost) read out. This is 

because the brain has already evolved to minimise the role of noise and delays in eye movements, 

which form an aggregated output of the nervous system. The leap in readout performance (in terms of 
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readout performance and latency) enables closed-loop real-time control of rehabilitative and domotic 

devices beyond what is achievable by current BMIs: e.g. it was estimated that powered wheelchair 

control requires, on average, 15.3 bits/second and full-finger hand prosthetics require 54.2 bits/second 

[21]. Our system demonstrated a clear improvement on low-level measures of BMI performance, but 

such technical measures mask the complexities of learning to use and operating BMIs in the clinic and 

daily-life. Therefore, we also introduce a real-world, closed-loop control benchmark -- playing an 

arcade video game -- as a high-level, behaviour-based measure for BMI performance. We reported the 

performance for both normal (mouse-based) use and using our GT3D system in our subject study to 

establish the benchmark and make its software available to the community. On average naïve users of 

our gaze-based system achieved a game score within 12.5% of their own score when playing the game 

directly with a computer mouse, demonstrating that subjects achieved near-normal closed-loop real-

time control. This is also reflected in the mean number of successfully returned shots per game using 

our system (average of 43 against the computer-mouse score of 53) despite the novel control modality 

and very short training time (10 minutes from first use). We, thus, demonstrated how ultra-low cost, 

non-invasive eye-tracking approach can form the basis of an real-time control interface for 

rehabilitative devices – making it a low-cost complement or alternative to existing BMI technologies.  

Eye movements are vital for motor planning; we look where we are going, reaching and steering [28], 

therefore 3D gaze information is highly correlated with user intentions in the context of navigation 

and manipulation of our surroundings [29, 30].  Our approach, unlike other BMI technologies, enables 

us to usee gaze information to infer user intention in the context of its natural occurrence e.g. steering 

a wheel chair ‘by eye’ gaze, as we are already looking where we are going. This approach drastically 

reduce training time and boost patient adherence. Moreover, the structured statistics of human eye 

movements in real-world tasks enable us to build Bayesian decoders to further boost decoding 

accuracy, reliability and speed even in complex environments [31]. Our 3D gaze tracking approach 

lends itself ideally to complement, or when treatment costs are at a premium even replace, 

conventional BMI approaches.  



Low cost 3D gaze tracking for BMIs 
 

 

Figure 6. Comparison of different BMI and eye tracking technologies in terms of their treatment and 

hardware costs (in US Dollars) and readout performance (measured as bits/s). Note, we used a log10 

scale for the treatment cost and binary logarithm scale for the bit rate. The bit-rate data invasive and 

non-invasive BMIs were taken from [21], except stated otherwise. Treatment costs were taken from 

published data were available and cited below, or from quotes we directly obtained from 

manufacturers and healthcare providers. GT3D – our system (component cost). EMG – 

Electromyography (cost based on g.Hiamp EMG kit; Guger Technologies, Schiedlberg, Austria). ‘Sip 

and puff’ – switches actuated by user inhaling or exhaling (system cost from liberator.co.uk). Speech 

Recognition – Speech actuated commands (cost based on commercial speech recognition system 

Dragon’s “Naturally Speaking Software”. MEG – Magnetoencephalography ([32]). EEG – 

Electroencephalography; Clinical EEG (cost based on g.BCI EEG kit, Guger Technologies Gmbh, 

Schiedlberg,Austria ), Low-cost EEG (Emotive EEG headset kit, Emotiv, San Francisco, CA), bit rate 

from [33]. ECoG – Electrocorticography, MEA – Multielectrode array, cost of clinical research 

systems is based on Utah electrode arrays (Blackrock Systems, Salt Lakte City, UT) and peripheral 

equipment plus the preoperative assessment, surgery, postoperative management cost estimated from 

from deep brain stimulation costs [34]. Commercial Eye Tracking costs for 2D gaze tracking (Eyelink 

II, SR Research, Kanata, Ontario) with bit rate reported in [21]. Low-cost Eye Tracking – citations for 

individual prototype systems and their reported bit rates ([6]; [35] bit rate based on 40 characters per 

second text writing performance times 1 bit entropy per character of English language [36]yileding 

0.67 bits/second; [37] The system recognizes ten different gaze gestures with an average of 2.5s per 

gesture, yielding 1.3 bits/second; [38] the system recognises 16 different gaze states at 3 states per 

second (average number of fixations per second) yielding 12 bits/second. 
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